WorldWideScience

Sample records for large evolutionary distance

  1. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  2. Computing the Quartet Distance Between Evolutionary Trees in Time O(n log n)

    DEFF Research Database (Denmark)

    Brodal, Gerth Sølfting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm

    2003-01-01

    Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, McMorris, and ...... unrooted evolutionary trees of n species, where all internal nodes have degree three, in time O(n log n. The previous best algorithm for the problem uses time O(n 2).......Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, Mc......Morris, and Meacham. The quartet distance between two unrooted evolutionary trees is the number of quartet topology differences between the two trees, where a quartet topology is the topological subtree induced by four species. In this paper we present an algorithm for computing the quartet distance between two...

  3. Estimating true evolutionary distances under the DCJ model.

    Science.gov (United States)

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  4. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance.

    Science.gov (United States)

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-02-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.

  5. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    Directory of Open Access Journals (Sweden)

    Michael J Wise

    Full Text Available Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED, measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV, dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza, and viroporins agnoprotein (polyomavirus, p7 (hepatitis C and VPU (HIV emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles, PB1/PB2 (influenza and VP1 (rotavirus, and internal serine proteases such as NS3 (dengue and hepatitis C virus emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.

  6. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    Science.gov (United States)

    Wise, Michael J

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.

  7. A tentative theory of large distance physics

    International Nuclear Information System (INIS)

    Friedan, Daniel

    2003-01-01

    A theoretical mechanism is devised to determine the large distance physics of spacetime. It is a two dimensional nonlinear model, the lambda model, set to govern the string world surface in an attempt to remedy the failure of string theory, as it stands. The lambda model is formulated to cancel the infrared divergent effects of handles at short distance on the world surface. The target manifold is the manifold of background spacetimes. The coupling strength is the spacetime coupling constant. The lambda model operates at 2d distance Δ -1 , very much shorter than the 2d distance μ -1 where the world surface is seen. A large characteristic spacetime distance L is given by L 2 ln(Δ/μ). Spacetime fields of wave number up to 1=L are the local coordinates for the manifold of spacetimes. The distribution of fluctuations at 2d distances shorter than Δ -1 gives the a priori measure on the target manifold, the manifold of spacetimes. If this measure concentrates at a macroscopic spacetime, then, nearby, it is a measure on the spacetime fields. The lambda model thereby constructs a spacetime quantum field theory, cutoff at ultraviolet distance L, describing physics at distances larger than L. The lambda model also constructs an effective string theory with infrared cutoff L, describing physics at distances smaller than L. The lambda model evolves outward from zero 2d distance, Δ -1 = 0, building spacetime physics starting from L ∞ and proceeding downward in L. L can be taken smaller than any distance practical for experiments, so the lambda model, if right, gives all actually observable physics. The harmonic surfaces in the manifold of spacetimes are expected to have novel nonperturbative effects at large distances. (author)

  8. Large fluctuations and fixation in evolutionary games

    International Nuclear Information System (INIS)

    Assaf, Michael; Mobilia, Mauro

    2010-01-01

    We study large fluctuations in evolutionary games belonging to the coordination and anti-coordination classes. The dynamics of these games, modeling cooperation dilemmas, is characterized by a coexistence fixed point separating two absorbing states. We are particularly interested in the problem of fixation that refers to the possibility that a few mutants take over the entire population. Here, the fixation phenomenon is induced by large fluctuations and is investigated by a semiclassical WKB (Wentzel–Kramers–Brillouin) theory generalized to treat stochastic systems possessing multiple absorbing states. Importantly, this method allows us to analyze the combined influence of selection and random fluctuations on the evolutionary dynamics beyond the weak selection limit often considered in previous works. We accurately compute, including pre-exponential factors, the probability distribution function in the long-lived coexistence state and the mean fixation time necessary for a few mutants to take over the entire population in anti-coordination games, and also the fixation probability in the coordination class. Our analytical results compare excellently with extensive numerical simulations. Furthermore, we demonstrate that our treatment is superior to the Fokker–Planck approximation when the selection intensity is finite

  9. The distances of nearby cool carbon stars

    International Nuclear Information System (INIS)

    Bergeat, J.; Sibille, F.; Lunel, M.

    1978-01-01

    Distance ratios are provided for 38 cool carbon stars on the basis of a previous study (Bergeat et al., 1976 a,b,c). The validation of this distance scale is obtained through an analysis of stellar velocities. A relationship is established between proper motions and the distance scale. Luminosities and radii are derived for cool carbon stars which permit a discussion of their evolutionary status. Finally, evaluations are given for the rate of mass ejection corresponding to large graphite grains. (WL) [de

  10. VESPA: Very large-scale Evolutionary and Selective Pressure Analyses

    Directory of Open Access Journals (Sweden)

    Andrew E. Webb

    2017-06-01

    Full Text Available Background Large-scale molecular evolutionary analyses of protein coding sequences requires a number of preparatory inter-related steps from finding gene families, to generating alignments and phylogenetic trees and assessing selective pressure variation. Each phase of these analyses can represent significant challenges, particularly when working with entire proteomes (all protein coding sequences in a genome from a large number of species. Methods We present VESPA, software capable of automating a selective pressure analysis using codeML in addition to the preparatory analyses and summary statistics. VESPA is written in python and Perl and is designed to run within a UNIX environment. Results We have benchmarked VESPA and our results show that the method is consistent, performs well on both large scale and smaller scale datasets, and produces results in line with previously published datasets. Discussion Large-scale gene family identification, sequence alignment, and phylogeny reconstruction are all important aspects of large-scale molecular evolutionary analyses. VESPA provides flexible software for simplifying these processes along with downstream selective pressure variation analyses. The software automatically interprets results from codeML and produces simplified summary files to assist the user in better understanding the results. VESPA may be found at the following website: http://www.mol-evol.org/VESPA.

  11. Quantum chromodynamics at large distances

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1987-01-01

    Properties of QCD at large distances are considered in the framework of traditional quantum field theory. An investigation of asymptotic behaviour of lower Green functions in QCD is the starting point of the approach. The recent works are reviewed which confirm the singular infrared behaviour of gluon propagator M 2 /(k 2 ) 2 at least under some gauge conditions. A special covariant gauge comes out to be the most suitable for description of infrared region due to absence of ghost contributions to infrared asymptotics of Green functions. Solutions of Schwinger-Dyson equation for quark propagator are obtained in this special gauge and are shown to possess desirable properties: spontaneous breaking of chiral invariance and nonperturbative character. The infrared asymptotics of lower Green functions are used for calculation of vacuum expectation values of gluon and quark fields. These vacuum expectation values are obtained in a good agreement with the corresponding phenomenological values which are needed in the method of sum rules in QCD, that confirms adequacy of the infrared region description. The consideration of a behaviour of QCD at large distances leads to the conclusion that at contemporary stage of theory development one may consider two possibilities. The first one is the well-known confinement hypothesis and the second one is called incomplete confinement and stipulates for open color to be observable. Possible manifestations of incomplete confinement are discussed

  12. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    Science.gov (United States)

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  13. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  14. Stabilization of Large Generalized Lotka-Volterra Foodwebs By Evolutionary Feedback

    Science.gov (United States)

    Ackland, G. J.; Gallagher, I. D.

    2004-10-01

    Conventional ecological models show that complexity destabilizes foodwebs, suggesting that foodwebs should have neither large numbers of species nor a large number of interactions. However, in nature the opposite appears to be the case. Here we show that if the interactions between species are allowed to evolve within a generalized Lotka-Volterra model such stabilizing feedbacks and weak interactions emerge automatically. Moreover, we show that trophic levels also emerge spontaneously from the evolutionary approach, and the efficiency of the unperturbed ecosystem increases with time. The key to stability in large foodwebs appears to arise not from complexity perse but from evolution at the level of the ecosystem which favors stabilizing (negative) feedbacks.

  15. The limits of weak selection and large population size in evolutionary game theory.

    Science.gov (United States)

    Sample, Christine; Allen, Benjamin

    2017-11-01

    Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

  16. Optimizing distance-based methods for large data sets

    Science.gov (United States)

    Scholl, Tobias; Brenner, Thomas

    2015-10-01

    Distance-based methods for measuring spatial concentration of industries have received an increasing popularity in the spatial econometrics community. However, a limiting factor for using these methods is their computational complexity since both their memory requirements and running times are in {{O}}(n^2). In this paper, we present an algorithm with constant memory requirements and shorter running time, enabling distance-based methods to deal with large data sets. We discuss three recent distance-based methods in spatial econometrics: the D&O-Index by Duranton and Overman (Rev Econ Stud 72(4):1077-1106, 2005), the M-function by Marcon and Puech (J Econ Geogr 10(5):745-762, 2010) and the Cluster-Index by Scholl and Brenner (Reg Stud (ahead-of-print):1-15, 2014). Finally, we present an alternative calculation for the latter index that allows the use of data sets with millions of firms.

  17. Time warping of evolutionary distant temporal gene expression data based on noise suppression

    Directory of Open Access Journals (Sweden)

    Papatsenko Dmitri

    2009-10-01

    Full Text Available Abstract Background Comparative analysis of genome wide temporal gene expression data has a broad potential area of application, including evolutionary biology, developmental biology, and medicine. However, at large evolutionary distances, the construction of global alignments and the consequent comparison of the time-series data are difficult. The main reason is the accumulation of variability in expression profiles of orthologous genes, in the course of evolution. Results We applied Pearson distance matrices, in combination with other noise-suppression techniques and data filtering to improve alignments. This novel framework enhanced the capacity to capture the similarities between the temporal gene expression datasets separated by large evolutionary distances. We aligned and compared the temporal gene expression data in budding (Saccharomyces cerevisiae and fission (Schizosaccharomyces pombe yeast, which are separated by more then ~400 myr of evolution. We found that the global alignment (time warping properly matched the duration of cell cycle phases in these distant organisms, which was measured in prior studies. At the same time, when applied to individual ortholog pairs, this alignment procedure revealed groups of genes with distinct alignments, different from the global alignment. Conclusion Our alignment-based predictions of differences in the cell cycle phases between the two yeast species were in a good agreement with the existing data, thus supporting the computational strategy adopted in this study. We propose that the existence of the alternative alignments, specific to distinct groups of genes, suggests presence of different synchronization modes between the two organisms and possible functional decoupling of particular physiological gene networks in the course of evolution.

  18. Accounting for age structure and spatial structure in eco-evolutionary analyses of a large, mobile vertebrate.

    Science.gov (United States)

    Waples, Robin S; Scribner, Kim; Moore, Jennifer; Draheim, Hope; Etter, Dwayne; Boersen, Mark

    2018-04-14

    The idealized concept of a population is integral to ecology, evolutionary biology, and natural resource management. To make analyses tractable, most models adopt simplifying assumptions, which almost inevitably are violated by real species in nature. Here we focus on both demographic and genetic estimates of effective population size per generation (Ne), the effective number of breeders per year (Nb), and Wright's neighborhood size (NS) for black bears (Ursus americanus) that are continuously distributed in the northern lower peninsula of Michigan, USA. We illustrate practical application of recently-developed methods to account for violations of two common, simplifying assumptions about populations: 1) reproduction occurs in discrete generations, and 2) mating occurs randomly among all individuals. We use a 9-year harvest dataset of >3300 individuals, together with genetic determination of 221 parent-offspring pairs, to estimate male and female vital rates, including age-specific survival, age-specific fecundity, and age-specific variance in fecundity (for which empirical data are rare). We find strong evidence for overdispersed variance in reproductive success of same-age individuals in both sexes, and we show that constraints on litter size have a strong influence on results. We also estimate that another life-history trait that is often ignored (skip breeding by females) has a relatively modest influence, reducing Nb by 9% and increasing Ne by 3%. We conclude that isolation by distance depresses genetic estimates of Nb, which implicitly assume a randomly-mating population. Estimated demographic NS (100, based on parent-offspring dispersal) was similar to genetic NS (85, based on regression of genetic distance and geographic distance), indicating that the >36,000 km2 study area includes about 4-5 black-bear neighborhoods. Results from this expansive data set provide important insight into effects of violating assumptions when estimating evolutionary parameters

  19. When David beats Goliath: the advantage of large size in interspecific aggressive contests declines over evolutionary time.

    Directory of Open Access Journals (Sweden)

    Paul R Martin

    Full Text Available Body size has long been recognized to play a key role in shaping species interactions. For example, while small species thrive in a diversity of environments, they typically lose aggressive contests for resources with larger species. However, numerous examples exist of smaller species dominating larger species during aggressive interactions, suggesting that the evolution of traits can allow species to overcome the competitive disadvantage of small size. If these traits accumulate as lineages diverge, then the advantage of large size in interspecific aggressive interactions should decline with increased evolutionary distance. We tested this hypothesis using data on the outcomes of 23,362 aggressive interactions among 246 bird species pairs involving vultures at carcasses, hummingbirds at nectar sources, and antbirds and woodcreepers at army ant swarms. We found the advantage of large size declined as species became more evolutionarily divergent, and smaller species were more likely to dominate aggressive contests when interacting with more distantly-related species. These results appear to be caused by both the evolution of traits in smaller species that enhanced their abilities in aggressive contests, and the evolution of traits in larger species that were adaptive for other functions, but compromised their abilities to compete aggressively. Specific traits that may provide advantages to small species in aggressive interactions included well-developed leg musculature and talons, enhanced flight acceleration and maneuverability, novel fighting behaviors, and traits associated with aggression, such as testosterone and muscle development. Traits that may have hindered larger species in aggressive interactions included the evolution of morphologies for tree trunk foraging that compromised performance in aggressive contests away from trunks, and the evolution of migration. Overall, our results suggest that fundamental trade-offs, such as those

  20. The influence of selection on the evolutionary distance estimated from the base changes observed between homologous nucleotide sequences.

    Science.gov (United States)

    Otsuka, J; Kawai, Y; Sugaya, N

    2001-11-21

    In most studies of molecular evolution, the nucleotide base at a site is assumed to change with the apparent rate under functional constraint, and the comparison of base changes between homologous genes is thought to yield the evolutionary distance corresponding to the site-average change rate multiplied by the divergence time. However, this view is not sufficiently successful in estimating the divergence time of species, but mostly results in the construction of tree topology without a time-scale. In the present paper, this problem is investigated theoretically by considering that observed base changes are the results of comparing the survivals through selection of mutated bases. In the case of weak selection, the time course of base changes due to mutation and selection can be obtained analytically, leading to a theoretical equation showing how the selection has influence on the evolutionary distance estimated from the enumeration of base changes. This result provides a new method for estimating the divergence time more accurately from the observed base changes by evaluating both the strength of selection and the mutation rate. The validity of this method is verified by analysing the base changes observed at the third codon positions of amino acid residues with four-fold codon degeneracy in the protein genes of mammalian mitochondria; i.e. the ratios of estimated divergence times are fairly well consistent with a series of fossil records of mammals. Throughout this analysis, it is also suggested that the mutation rates in mitochondrial genomes are almost the same in different lineages of mammals and that the lineage-specific base-change rates indicated previously are due to the selection probably arising from the preference of transfer RNAs to codons.

  1. Efficient Similarity Search Using the Earth Mover's Distance for Large Multimedia Databases

    DEFF Research Database (Denmark)

    Assent, Ira; Wichterich, Marc; Meisen, Tobias

    2008-01-01

    Multimedia similarity search in large databases requires efficient query processing. The Earth mover's distance, introduced in computer vision, is successfully used as a similarity model in a number of small-scale applications. Its computational complexity hindered its adoption in large multimedia...... databases. We enable directly indexing the Earth mover's distance in structures such as the R-tree and the VA-file by providing the accurate 'MinDist' function to any bounding rectangle in the index. We exploit the computational structure of the new MinDist to derive a new lower bound for the EMD Min...

  2. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  3. The dipole-dipole dispersion forces for small, intermediate and large distances

    International Nuclear Information System (INIS)

    Antonio, J.C.

    1986-10-01

    An improved expression is obtained for the dipole-dipole London dispersion force between closed shell atoms for small, intermediate and large distances compared with their linear dimensions. (Author) [pt

  4. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    Science.gov (United States)

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  5. Determining distances using asteroseismic methods

    DEFF Research Database (Denmark)

    Aguirre, Victor Silva; Casagrande, L.; Basu, Sarbina

    2013-01-01

    Asteroseismology has been extremely successful in determining the properties of stars in different evolutionary stages with a remarkable level of precision. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the r......Asteroseismology has been extremely successful in determining the properties of stars in different evolutionary stages with a remarkable level of precision. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification...... fluxes, and thus distances for field stars in a self-consistent manner. Applying our method to a sample of solar-like oscillators in the {\\it Kepler} field that have accurate {\\it Hipparcos} parallaxes, we find agreement in our distance determinations to better than 5%. Comparison with measurements...

  6. Maternal Grandmothers Do Go the Extra Mile: Factoring Distance and Lineage into Differential Contact with Grandchildren

    Directory of Open Access Journals (Sweden)

    Thomas V. Pollet

    2007-10-01

    Full Text Available Several studies conducted from an evolutionary perspective have documented differential investment in grandchildren by lineage. The majority of these studies have used retrospective ratings by grandchildren, but only a fraction of these studies have examined actual grandparental behavior. Here we focus on the interaction between distance and lineage on face-to-face contact with a (random grandchild in a large scale sample. Our main prediction is that maternal grandparents are significantly more willing to travel in order to see their grandchild. While controlling for initiative of contact, urbanization, sex and age of the grandchild, educational attainment, marital status and age we found a significant interaction between distance and grandparent type on frequency of contact with a grandchild. Maternal grandmothers were significantly more inclined than paternal grandfathers and grandmothers to maintain frequent face-to-face contact, as distance between grandparent and grandchild increased. The results are discussed with reference to evolutionary theories of grandparental investment.

  7. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Directory of Open Access Journals (Sweden)

    David Lee Erickson

    2014-11-01

    Full Text Available Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1,347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK and psbA-trnH and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance metrics that are commonly used to infer assembly processes were estimated for each plot (Phylogenetic Distance [PD], Mean Phylogenetic Distance [MPD], and Mean Nearest Taxon Distance [MNTD]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for

  8. Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-11-01

    Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)

  9. Heterogeneous Compression of Large Collections of Evolutionary Trees.

    Science.gov (United States)

    Matthews, Suzanne J

    2015-01-01

    Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.

  10. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    Science.gov (United States)

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  11. Distance correlation methods for discovering associations in large astrophysical databases

    International Nuclear Information System (INIS)

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P.

    2014-01-01

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

  12. HADRONS-94: Soft interactions at large distances

    International Nuclear Information System (INIS)

    Atkinson, David; Jenkovszky, Laszlo

    1994-01-01

    Ten years ago the Institute for Theoretical Physics (known since 1992 as the Bogolubov Institute after its founder) of the Academy of Science of the Ukraine initiated what has become a very successful series of annual meetings on strong interactions at large distances. Although sometimes overshadowed by the successes of the Standard Model isotope dilutions and the theoretical enticements of supertheories; the Hadrons series has overcome political barriers and financial chaos to bring together physicists from diverse backgrounds to discuss central physics issues. The latest workshop in the series was held from September 7-11 in Uzhgorod (Ungvar), a small university town in the westernmost reaches of the Ukraine, bordering on Hungary, Poland, Romania and Slovakia.

  13. Perturbative QCD lagrangian at large distances and stochastic dimensionality reduction

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-10-01

    We construct a Lagrangian for perturbative QCD at large distances within the covariant operator formalism which explains the color confinement of quarks and gluons while maintaining unitarity of the S-matrix. It is also shown that when interactions are switched off, the mechanism of stochastic dimensionality reduction is operative in the system due to exact super-Lorentz symmetries. (orig.)

  14. A large catalog of accurate distances to molecular clouds from PS1 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Green, G.; Finkbeiner, D. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P. W.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-01

    Distance measurements to molecular clouds are important but are often made separately for each cloud of interest, employing very different data and techniques. We present a large, homogeneous catalog of distances to molecular clouds, most of which are of unprecedented accuracy. We determine distances using optical photometry of stars along lines of sight toward these clouds, obtained from PanSTARRS-1. We simultaneously infer the reddenings and distances to these stars, tracking the full probability distribution function using a technique presented in Green et al. We fit these star-by-star measurements using a simple dust screen model to find the distance to each cloud. We thus estimate the distances to almost all of the clouds in the Magnani et al. catalog, as well as many other well-studied clouds, including Orion, Perseus, Taurus, Cepheus, Polaris, California, and Monoceros R2, avoiding only the inner Galaxy. Typical statistical uncertainties in the distances are 5%, though the systematic uncertainty stemming from the quality of our stellar models is about 10%. The resulting catalog is the largest catalog of accurate, directly measured distances to molecular clouds. Our distance estimates are generally consistent with available distance estimates from the literature, though in some cases the literature estimates are off by a factor of more than two.

  15. Practical method of calculating time-integrated concentrations at medium and large distances

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.

    1980-01-01

    Previous reports have covered the possibility of calculating time-integrated concentrations (TICs) for a prolonged release, based on concentration estimates for a brief release. This study proposes a simple method of evaluating concentrations in the air at medium and large distances, for a brief release. It is known that the stability of the atmospheric layers close to ground level influence diffusion only over short distances. Beyond some tens of kilometers, as the pollutant cloud progressively reaches higher layers, diffusion is affected by factors other than the stability at ground level, such as wind shear for intermediate distances and the divergence and rotational motion of air masses towards the upper limit of the mesoscale and on the synoptic scale. Using the data available in the literature, expressions for sigmasub(y) and sigmasub(z) are proposed for transfer times corresponding to those for up to distances of several thousand kilometres, for two initial diffusion situations (up to distances of 10 - 20 km), those characterized by stable and neutral conditions respectively. Using this method simple hand calculations can be made for any problem relating to the diffusion of radioactive pollutants over long distances

  16. Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods

    Directory of Open Access Journals (Sweden)

    B. Y. Qu

    2017-01-01

    Full Text Available Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultaneously. The complexity of the optimal asset allocation problem increases with an increase in the number of assets available to select from for investing. The optimization problem becomes computationally challenging when there are more than a few hundreds of assets to select from. To reduce the complexity of large-scale portfolio optimization, two asset preselection procedures that consider return and risk of individual asset and pairwise correlation to remove assets that may not potentially be selected into any portfolio are proposed in this paper. With these asset preselection methods, the number of assets considered to be included in a portfolio can be increased to thousands. To test the effectiveness of the proposed methods, a Normalized Multiobjective Evolutionary Algorithm based on Decomposition (NMOEA/D algorithm and several other commonly used multiobjective evolutionary algorithms are applied and compared. Six experiments with different settings are carried out. The experimental results show that with the proposed methods the simulation time is reduced while return-risk trade-off performances are significantly improved. Meanwhile, the NMOEA/D is able to outperform other compared algorithms on all experiments according to the comparative analysis.

  17. Distribution of hadron intranuclear cascade for large distance from a source

    International Nuclear Information System (INIS)

    Bibin, V.L.; Kazarnovskij, M.V.; Serezhnikov, S.V.

    1985-01-01

    Analytical solution of the problem of three-component hadron cascade development for large distances from a source is obtained in the framework of a series of simplifying assumptions. It makes possible to understand physical mechanisms of the process studied and to obtain approximate asymptotic expressions for hadron distribution functions

  18. Geography and major host evolutionary transitions shape the resource use of plant parasites.

    Science.gov (United States)

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín

    2016-08-30

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.

  19. ON THE EVOLUTIONARY AND PULSATION MASS OF CLASSICAL CEPHEIDS. III. THE CASE OF THE ECLIPSING BINARY CEPHEID CEP0227 IN THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Prada Moroni, P. G.; Gennaro, M.; Bono, G.; Pietrzyński, G.; Gieren, W.; Pilecki, B.; Graczyk, D.; Thompson, I. B.

    2012-01-01

    We present a new Bayesian approach to constrain the intrinsic parameters (stellar mass and age) of the eclipsing binary system—CEP0227—in the Large Magellanic Cloud (LMC). We computed several sets of evolutionary models covering a broad range in chemical compositions and in stellar mass. Independent sets of models were also constructed either by neglecting or by including a moderate convective core overshooting (β ov = 0.2) during central hydrogen-burning phases. Sets of models were also constructed either by neglecting or by assuming a canonical (η = 0.4, 0.8) or an enhanced (η = 4) mass-loss rate. The most probable solutions were computed in three different planes: luminosity-temperature, mass-radius, and gravity-temperature. By using the Bayes factor, we found that the most probable solutions were obtained in the gravity-temperature plane with a Gaussian mass prior distribution. The evolutionary models constructed by assuming a moderate convective core overshooting (β ov = 0.2) and a canonical mass-loss rate (η = 0.4) give stellar masses for the primary (Cepheid)—M = 4.14 +0.04 –0.05 M ☉ —and for the secondary—M = 4.15 +0.04 –0.05 M ☉ —that agree at the 1% level with dynamical measurements. Moreover, we found ages for the two components and for the combined system—t = 151 +4 –3 Myr—that agree at the 5% level. The solutions based on evolutionary models that neglect the mass loss attain similar parameters, while those ones based on models that either account for an enhanced mass loss or neglect convective core overshooting have lower Bayes factors and larger confidence intervals. The dependence on the mass-loss rate might be the consequence of the crude approximation we use to mimic this phenomenon. By using the isochrone of the most probable solution and a Gaussian prior on the LMC distance, we found a true distance modulus—18.53 +0.02 –0.02 mag—and a reddening value—E(B – V) = 0.142 +0.005 –0.010 mag—that agree quite

  20. Phenomenological dynamics in QCD at large distances

    International Nuclear Information System (INIS)

    Gogohia, V.Sh.; Kluge, Gy.

    1991-07-01

    A gauge-invariant, nonperturbative approach to QCD at large distances in the context of the Schwinger-Dyson equations and corresponding Slavnov-Taylor identities in the quark sector is presented. Making only one widely accepted assumption that the full gluon propagator becomes an infrared singular like (q 2 ) -2 in the covariant gauge, we find three and only three confinement-type solutions for the quark propagator (quark confinement theorem.) The approach is free from ghost complications. Also show that multiplication by the quark infrared renormalization constant only, would make all the Green's functions infrared finite (multiplicative renormalizability). The bound-state problem in framework of Bethe-Salpeter equation is discussed as well. Some basic physical parameters of chiral QCD as pion decay constant and quark condensate, have been calculated within our approach. (author) 75 refs.; 14 figs

  1. A Distance Measure for Genome Phylogenetic Analysis

    Science.gov (United States)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  2. Alignment-free genome tree inference by learning group-specific distance metrics.

    Science.gov (United States)

    Patil, Kaustubh R; McHardy, Alice C

    2013-01-01

    Understanding the evolutionary relationships between organisms is vital for their in-depth study. Gene-based methods are often used to infer such relationships, which are not without drawbacks. One can now attempt to use genome-scale information, because of the ever increasing number of genomes available. This opportunity also presents a challenge in terms of computational efficiency. Two fundamentally different methods are often employed for sequence comparisons, namely alignment-based and alignment-free methods. Alignment-free methods rely on the genome signature concept and provide a computationally efficient way that is also applicable to nonhomologous sequences. The genome signature contains evolutionary signal as it is more similar for closely related organisms than for distantly related ones. We used genome-scale sequence information to infer taxonomic distances between organisms without additional information such as gene annotations. We propose a method to improve genome tree inference by learning specific distance metrics over the genome signature for groups of organisms with similar phylogenetic, genomic, or ecological properties. Specifically, our method learns a Mahalanobis metric for a set of genomes and a reference taxonomy to guide the learning process. By applying this method to more than a thousand prokaryotic genomes, we showed that, indeed, better distance metrics could be learned for most of the 18 groups of organisms tested here. Once a group-specific metric is available, it can be used to estimate the taxonomic distances for other sequenced organisms from the group. This study also presents a large scale comparison between 10 methods--9 alignment-free and 1 alignment-based.

  3. Evolutionary distance from human homologs reflects allergenicity of animal food proteins.

    Science.gov (United States)

    Jenkins, John A; Breiteneder, Heimo; Mills, E N Clare

    2007-12-01

    In silico analysis of allergens can identify putative relationships among protein sequence, structure, and allergenic properties. Such systematic analysis reveals that most plant food allergens belong to a restricted number of protein superfamilies, with pollen allergens behaving similarly. We have investigated the structural relationships of animal food allergens and their evolutionary relatedness to human homologs to define how closely a protein must resemble a human counterpart to lose its allergenic potential. Profile-based sequence homology methods were used to classify animal food allergens into Pfam families, and in silico analyses of their evolutionary and structural relationships were performed. Animal food allergens could be classified into 3 main families--tropomyosins, EF-hand proteins, and caseins--along with 14 minor families each composed of 1 to 3 allergens. The evolutionary relationships of each of these allergen superfamilies showed that in general, proteins with a sequence identity to a human homolog above approximately 62% were rarely allergenic. Single substitutions in otherwise highly conserved regions containing IgE epitopes in EF-hand parvalbumins may modulate allergenicity. These data support the premise that certain protein structures are more allergenic than others. Contrasting with plant food allergens, animal allergens, such as the highly conserved tropomyosins, challenge the capability of the human immune system to discriminate between foreign and self-proteins. Such immune responses run close to becoming autoimmune responses. Exploiting the closeness between animal allergens and their human homologs in the development of recombinant allergens for immunotherapy will need to consider the potential for developing unanticipated autoimmune responses.

  4. Reconstruction of Oomycete Genome Evolution Identifies Differences in Evolutionary Trajectories Leading to Present-Day Large Gene Families

    NARCIS (Netherlands)

    Seidl, M.F.; Ackerveken, van den G.; Govers, F.; Snel, B.

    2012-01-01

    The taxonomic class of oomycetes contains numerous pathogens of plants and animals but is related to nonpathogenic diatoms and brown algae. Oomycetes have flexible genomes comprising large gene families that play roles in pathogenicity. The evolutionary processes that shaped the gene content have

  5. A New Paradigm for Supergranulation Derived from Large-Distance Time-Distance Helioseismology: Pancakes

    Science.gov (United States)

    Duvall, Thomas L.; Hanasoge, Shravan M.

    2012-01-01

    With large separations (10-24 deg heliocentric), it has proven possible to cleanly separate the horizontal and vertical components of supergranular flow with time-distance helioseismology. These measurements require very broad filters in the k-$\\omega$ power spectrum as apparently supergranulation scatters waves over a large area of the power spectrum. By picking locations of supergranulation as peaks in the horizontal divergence signal derived from f-mode waves, it is possible to simultaneously obtain average properties of supergranules and a high signal/noise ratio by averaging over many cells. By comparing ray-theory forward modeling with HMI measurements, an average supergranule model with a peak upflow of 240 m/s at cell center at a depth of 2.3 Mm and a peak horizontal outflow of 700 m/s at a depth of 1.6 Mm. This upflow is a factor of 20 larger than the measured photospheric upflow. These results may not be consistent with earlier measurements using much shorter separations (<5 deg heliocentric). With a 30 Mm horizontal extent and a few Mm in depth, the cells might be characterized as thick pancakes.

  6. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.

    2016-12-15

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12–24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19–36 km) or 19 km (15–27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life.

  7. Robust haptic large distance telemanipulation for ITER

    International Nuclear Information System (INIS)

    Heck, D.J.F.; Heemskerk, C.J.M.; Koning, J.F.; Abbasi, A.; Nijmeijer, H.

    2013-01-01

    Highlights: • ITER remote handling maintenance can be controlled safely over a large distance. • Bilateral teleoperation experiments were performed in a local network. • Wave variables make the controller robust against constant communication delays. • Master and slave position synchronization guaranteed by proportional action. -- Abstract: During shutdowns, maintenance crews are expected to work in 24/6 shifts to perform critical remote handling maintenance tasks on the ITER system. In this article, we investigate the possibility to safely perform these haptic maintenance tasks remotely from control stations located anywhere around the world. To guarantee stability in time delayed bilateral teleoperation, the symmetric position tracking controller using wave variables is selected. This algorithm guarantees robustness against communication delays, can eliminate wave reflections and provide position synchronization of the master and slave devices. Experiments have been conducted under realistic local network bandwidth, latency and jitter constraints. They show sufficient transparency even for substantial communication delays

  8. Robust haptic large distance telemanipulation for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Heck, D.J.F., E-mail: d.j.f.heck@tue.nl [Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technologies, Sassenheim (Netherlands); Abbasi, A.; Nijmeijer, H. [Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven (Netherlands)

    2013-10-15

    Highlights: • ITER remote handling maintenance can be controlled safely over a large distance. • Bilateral teleoperation experiments were performed in a local network. • Wave variables make the controller robust against constant communication delays. • Master and slave position synchronization guaranteed by proportional action. -- Abstract: During shutdowns, maintenance crews are expected to work in 24/6 shifts to perform critical remote handling maintenance tasks on the ITER system. In this article, we investigate the possibility to safely perform these haptic maintenance tasks remotely from control stations located anywhere around the world. To guarantee stability in time delayed bilateral teleoperation, the symmetric position tracking controller using wave variables is selected. This algorithm guarantees robustness against communication delays, can eliminate wave reflections and provide position synchronization of the master and slave devices. Experiments have been conducted under realistic local network bandwidth, latency and jitter constraints. They show sufficient transparency even for substantial communication delays.

  9. Reactive sputtering of TiN films at large substrate to target distances

    International Nuclear Information System (INIS)

    Musil, J.; Kadlec, S.

    1990-01-01

    This paper is a critical review of the present status of the magnetron ion sputter plating of thin CiN films. Thus different possibilities of extracting high ion currents 1 s from the magnetron discharge to substrates located not only at standard target to substrate distances d S-T of about 50 mm but also at larger distances d S-T are discussed in detail. Special attention is devoted to magnetron sputtering systems with enhanced ionization, to plasma confinement in the magnetron sputtering systems and to the discharge characteristics of an unbalanced magnetron (UM). It is shown that a UM can be operated in the regime of a double-site-sustained discharge (DSSD) and in this case large 1 s can be extracted to substrates located in large D S-T of about 200 mm and even at high pressures p = 5 Pa. A physical comparison of the conventional magnetron (CM), UM and DSSD is also given. Considerable attention is also devoted to the effect of ion bombardment on properties of TiN films created in the sputtering system using DSSD. (author)

  10. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  11. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  12. Very Large Distance Education Systems: The Case of China. ZIFF Papiere 94.

    Science.gov (United States)

    Keegan, Desmond

    One answer to the magnitude of the world education crisis is the provision of very large education systems, capable of enrolling 100,000 students or more. The largest distance system is the Dianda or Chinese Radio and Television University (CRTVU) system. Dianda is best described as a network of one central open university that does not enroll…

  13. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time

    KAUST Repository

    Pinsky, Malin L.; Saenz-Agudelo, Pablo; Salles, Océ ane C.; Almany, Glenn R.; Bode, Michael; Berumen, Michael L.; André fouë t, Serge; Thorrold, Simon R.; Jones, Geoffrey P.; Planes, Serge

    2016-01-01

    -distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing

  14. Genetic distances and phylogenetic trees of different Awassi sheep populations based on DNA sequencing.

    Science.gov (United States)

    Al-Atiyat, R M; Aljumaah, R S

    2014-08-27

    This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.

  15. DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES

    International Nuclear Information System (INIS)

    Foster, Jonathan B.; Jackson, James M.; Stead, Joseph J.; Hoare, Melvin G.; Benjamin, Robert A.

    2012-01-01

    We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.

  16. Current correlators in QCD: Operator product expansion versus large distance dynamics

    International Nuclear Information System (INIS)

    Shevchenko, V.I.; Simonov, Yu.A.

    2004-01-01

    We analyze the structure of current-current correlators in coordinate space in the large N c limit when the corresponding spectral density takes the form of an infinite sum over hadron poles. The latter are computed in the QCD string model with quarks at the ends, including the lowest states, for all channels. The corresponding correlators demonstrate reasonable qualitative agreement with the lattice data without any additional fits. Different issues concerning the structure of the short-distance operator product expansion are discussed

  17. Democratizing evolutionary biology, lessons from insects

    DEFF Research Database (Denmark)

    Dunn, Robert Roberdeau; Beasley, DeAnna E.

    2016-01-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This ...

  18. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  19. Dynamic Ising model: reconstruction of evolutionary trees

    International Nuclear Information System (INIS)

    De Oliveira, P M C

    2013-01-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N − 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed. (paper)

  20. [Evolutionary history of human locomotor system--from walking to long-distance running].

    Science.gov (United States)

    Viranta-Kovanen, Suvi

    2015-01-01

    Bipedality evolved in hominids more than 4 million years ago. Bipedals were a diverse group including the lineage of obligatory walkers that finally lead to humans. Important anatomical changes in this group were: enhanced lumbar lordosis, shortening of the ilium, and emphasize on the parasagittal movements. Long-distance running evolved much later and it was associated with well-developed plantar arches, strengthening of muscles supporting the erect trunk, and decoupling of the pectoral girdle and head. In addition to anatomical changes, humans have many physiological adaptations to long-distance running. It is likely that the ability to run long-distance has been important for the survival of our species.

  1. LARGE MAGELLANIC CLOUD DISTANCE AND STRUCTURE FROM NEAR-INFRARED RED CLUMP OBSERVATIONS

    International Nuclear Information System (INIS)

    Koerwer, Joel F.

    2009-01-01

    We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, φ, have little dependence on the assumed RC absolute magnitude; we find i = 23. 0 5 ± 0. 0 4 and φ = 154. 0 6 ± 1. 0 2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.

  2. Large Magellanic Cloud Distance and Structure from Near-Infrared Red Clump Observations

    Science.gov (United States)

    Koerwer, Joel F.

    2009-07-01

    We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 μm) and H- (1.63 μm) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of μ = 18.54 ± 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, phi, have little dependence on the assumed RC absolute magnitude; we find i = 23fdg5 ± 0fdg4 and phi = 154fdg6 ± 1fdg2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.

  3. The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates

    Science.gov (United States)

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-01-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells

  4. A representation-theoretic approach to the calculation of evolutionary distance in bacteria

    Science.gov (United States)

    Sumner, Jeremy G.; Jarvis, Peter D.; Francis, Andrew R.

    2017-08-01

    In the context of bacteria and models of their evolution under genome rearrangement, we explore a novel application of group representation theory to the inference of evolutionary history. Our contribution is to show, in a very general maximum likelihood setting, how to use elementary matrix algebra to sidestep intractable combinatorial computations and convert the problem into one of eigenvalue estimation amenable to standard numerical approximation techniques.

  5. Large distance modification of Newtonian potential and structure formation in universe

    Science.gov (United States)

    Hameeda, Mir; Upadhyay, Sudhaker; Faizal, Mir; Ali, Ahmed F.; Pourhassan, Behnam

    2018-03-01

    In this paper, we study the effects of super-light brane world perturbative modes on structure formation in our universe. As these modes modify the large distance behavior of Newtonian potential, they effect the clustering of a system of galaxies. So, we explicitly calculate the clustering of galaxies interacting through such a modified Newtonian potential. We use a suitable approximation for analyzing this system of galaxies, and discuss the validity of such approximations. We observe that such corrections also modify the virial theorem for such a system of galaxies.

  6. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.

    Directory of Open Access Journals (Sweden)

    Benjamin R Jack

    2016-05-01

    Full Text Available Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.

  7. Why national IQs do not support evolutionary theories of intelligence

    NARCIS (Netherlands)

    Wicherts, J.M.; Borsboom, D.; Dolan, C.V.

    2010-01-01

    Kanazawa (2008), Templer (2008), and Templer and Arikawa (2006) claimed to have found empirical support for evolutionary theories of race differences in intelligence by correlating estimates of national IQ with indicators of reproductive strategies, temperature, and geographic distance from Africa.

  8. QuartetS-DB: a large-scale orthology database for prokaryotes and eukaryotes inferred by evolutionary evidence

    Directory of Open Access Journals (Sweden)

    Yu Chenggang

    2012-06-01

    Full Text Available Abstract Background The concept of orthology is key to decoding evolutionary relationships among genes across different species using comparative genomics. QuartetS is a recently reported algorithm for large-scale orthology detection. Based on the well-established evolutionary principle that gene duplication events discriminate paralogous from orthologous genes, QuartetS has been shown to improve orthology detection accuracy while maintaining computational efficiency. Description QuartetS-DB is a new orthology database constructed using the QuartetS algorithm. The database provides orthology predictions among 1621 complete genomes (1365 bacterial, 92 archaeal, and 164 eukaryotic, covering more than seven million proteins and four million pairwise orthologs. It is a major source of orthologous groups, containing more than 300,000 groups of orthologous proteins and 236,000 corresponding gene trees. The database also provides over 500,000 groups of inparalogs. In addition to its size, a distinguishing feature of QuartetS-DB is the ability to allow users to select a cutoff value that modulates the balance between prediction accuracy and coverage of the retrieved pairwise orthologs. The database is accessible at https://applications.bioanalysis.org/quartetsdb. Conclusions QuartetS-DB is one of the largest orthology resources available to date. Because its orthology predictions are underpinned by evolutionary evidence obtained from sequenced genomes, we expect its accuracy to continue to increase in future releases as the genomes of additional species are sequenced.

  9. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...

  10. Perihelion asymmetry in the photometric parameters of long-period comets at large heliocentric distances

    International Nuclear Information System (INIS)

    Svoren, J.

    1982-01-01

    The present statistical analysis is based on a sample of long-period comets selected according to two criteria: (1) availability of photometric observations made at large distances from the Sun and covering an orbital arc long enough for a reliable determination of the photometric parameters, and (2) availability of a well determined orbit making it possible to classify the comet as new or old in Oort's (1950) sense. The selection was confined to comets with nearly parabolic orbits. 67 objects were found to satisfy the selection criteria. Photometric data referring to heliocentric distances of r > 2.5 AU were only used, yielding a total of 2,842 individual estimates and measurements. (Auth.)

  11. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Hindi and English. Port 1. Resonance, Vo1.7 ... they use. Of course, many evolutionary biologists do work with fossils or DNA, or both, but there are also large numbers of ... The first major division that I like to make is between studies focussed ...

  12. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics.

    Science.gov (United States)

    Solé, Ricard V; Montoya, José M; Erwin, Douglas H

    2002-01-01

    Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems. PMID:12079530

  13. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  14. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    Energy Technology Data Exchange (ETDEWEB)

    Maljkovic-berry, Irina [Los Alamos National Laboratory; Athreya, Gayathri [Los Alamos National Laboratory; Daniels, Marcus [Los Alamos National Laboratory; Bruno, William [Los Alamos National Laboratory; Korber, Bette [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2009-01-01

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.

  15. On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs)

    Science.gov (United States)

    Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.

    2018-06-01

    The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.

  16. Evaluation of models generated via hybrid evolutionary algorithms ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.

  17. Evolutionary Computing for Intelligent Power System Optimization and Control

    DEFF Research Database (Denmark)

    This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....

  18. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Science.gov (United States)

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  19. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  20. Does the evolutionary conservation of microsatellite loci imply function?

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, M.D.; Deka, R.; Ferrell, R.E. [Univ. of Pittsburgh, PA (United States)] [and others

    1994-09-01

    Microsatellites are highly polymorphic tandem arrays of short (1-6 bp) sequence motifs which have been found widely distributed in the genomes of all eukaryotes. We have analyzed allele frequency data on 16 microsatellite loci typed in the great apes (human, chimp, orangutan, and gorilla). The majority of these loci (13) were isolated from human genomic libraries; three were cloned from chimpanzee genomic DNA. Most of these loci are not only present in all apes species, but are polymorphic with comparable levels of heterozygosity and have alleles which overlap in size. The extent of divergence of allele frequencies among these four species were studies using the stepwise-weighted genetic distance (Dsw), which was previously shown to conform to linearity with evolutionary time since divergence for loci where mutations exist in a stepwise fashion. The phylogenetic tree of the great apes constructed from this distance matrix was consistent with the expected topology, with a high bootstrap confidence (82%) for the human/chimp clade. However, the allele frequency distributions of these species are 10 times more similar to each other than expected when they were calibrated with a conservative estimate of the time since separation of humans and the apes. These results are in agreement with sequence-based surveys of microsatellites which have demonstrated that they are highly (90%) conserved over short periods of evolutionary time (< 10 million years) and moderately (30%) conserved over long periods of evolutionary time (> 60-80 million years). This evolutionary conservation has prompted some authors to speculate that there are functional constraints on microsatellite loci. In contrast, the presence of directional bias of mutations with constraints and/or selection against aberrant sized alleles can explain these results.

  1. Large-Scale Evolutionary Patterns of Host Plant Associations in the Lepidoptera

    DEFF Research Database (Denmark)

    Menken, S.B.J.; Boomsma, J.J.; van Nieukerken, E.J.

    2010-01-01

    We characterized evolutionary patterns of host plant use across about 2500 species of British Lepidoptera, using character optimization and independent phylogenetic contrasts among 95 operational taxa, and evaluated the extent to which caterpillars are monophagous, use woody host plants, and feed...

  2. The parallel volume at large distances

    DEFF Research Database (Denmark)

    Kampf, Jürgen

    In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to . This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....

  3. The parallel volume at large distances

    DEFF Research Database (Denmark)

    Kampf, Jürgen

    In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to 0. This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....

  4. On the distance scale of planetary nebulae and white dwarf birth rates

    International Nuclear Information System (INIS)

    Weidemann, V.

    1977-01-01

    Arguments are presented which favor an increase of the distance scale of planetary nebulae by 30% compared to the Seaton-Webster scale. The consequences for evolutionary tracks, PN and white dwarf relations, and birth rates are discussed. It is concluded that opposite to Smith jr. (1976) underestimated, and that the proposed change in distance scale of PN brings white dwarf and PN birth rates into almost complete agreement. (orig.) [de

  5. Evolutionary tracks of the terrestrial planets

    International Nuclear Information System (INIS)

    Matsui, Takafumi; Abe, Yutaka

    1987-01-01

    On the basis of the model proposed by Matsui and Abe, the authors show that two major factors - distance from the Sun and the efficiency of retention of accretional energy - control the early evolution of the terrestrial planets. A diagram of accretional energy versus the optical depth of a proto-atmosphere provides a means to follow the evolutionary track of surface temperature of the terrestrial planets and an explanation for why the third planet in our solar system is an 'aqua'-planet. 15 refs; 3 figs

  6. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  7. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    Energy Technology Data Exchange (ETDEWEB)

    N. Price, Morgan; S. Dehal, Paramvir; P. Arkin, Adam

    2009-07-31

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

  8. Observations of the Earth's polar cleft at large radial distances with the Hawkeye 1 magnetometer

    International Nuclear Information System (INIS)

    Farrell, W.M.; Van Allen, J.A.

    1990-01-01

    Based on 364-spacecraft passes through the dayside region, the position of the polar cleft at large redial distances was determined with the magnetometer flown on Hawkeye 1. This data set represents one of the largest to investigate the high-latitude region at large radial distances, making it ideal for the study of the cusp and cleft region. Identification of the cleft depended on noting strong negative deviations of the magnetic field strength in the region from that of the dipole field. In solar magnetic coordinates, cleft observations were found between 40 degree and 70 degree latitude and ±75 degree longitude, while in geocentric magnetospheric coordinates, these observations were found between 20 degree and 75 degree latitude and ± 75 degree longitude. The extreme longitudinal extent of 150 degree is larger than those reported in some previous studies. Large magnetic depressions associated with the cleft extend out to 12 R E . Beyond this point, low model dipole field strengths make the determination of the cleft based on magnetic depressions unreliable. The cleft occurrences fall within an oval in magnetic latitude and longitude, but this oval is of a statistical nature and cannot be interpreted as the shape of the region at a given moment. As reported in other studies, the cleft was observed to shift to lower latitudes as compared to its quiet time geometry during periods when Kp was large and when the interplanetary magnetic field (IMF) pointed in a southerly direction. A southerly shift was also observed when th solar wind bulk flow speed, V sw , was large (>450 km/s), and the region might have enlarged when solar wind pressure, P sw , was large. The variation of the cleft latitude with V sw and P sw has not been thoroughly examined in previous studies

  9. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  10. Female orgasm rates are largely independent of other traits: implications for "female orgasmic disorder" and evolutionary theories of orgasm.

    Science.gov (United States)

    Zietsch, Brendan P; Miller, Geoffrey F; Bailey, J Michael; Martin, Nicholas G

    2011-08-01

    The criteria for "female orgasmic disorder" (FOD) assume that low rates of orgasm are dysfunctional, implying that high rates are functional. Evolutionary theories about the function of female orgasm predict correlations of orgasm rates with sexual attitudes and behavior and other fitness-related traits. To test hypothesized evolutionary functions of the female orgasm. We examined such correlations in a community sample of 2,914 adult female Australian twins who reported their orgasm rates during masturbation, intercourse, and other sexual activities, and who completed demographic, personality, and sexuality questionnaires. Orgasm rates during intercourse, other sex, and masturbation. Although orgasm rates showed high variance across women and substantial heritability, they were largely phenotypically and genetically independent of other important traits. We found zero to weak phenotypic correlations between all three orgasm rates and all other 19 traits examined, including occupational status, social class, educational attainment, extraversion, neuroticism, psychoticism, impulsiveness, childhood illness, maternal pregnancy stress, marital status, political liberalism, restrictive attitudes toward sex, libido, lifetime number of sex partners, risky sexual behavior, masculinity, orientation toward uncommitted sex, age of first intercourse, and sexual fantasy. Furthermore, none of the correlations had significant genetic components. These findings cast doubt on most current evolutionary theories about female orgasm's adaptive functions, and on the validity of FOD as a psychiatric construct. © 2011 International Society for Sexual Medicine.

  11. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    Directory of Open Access Journals (Sweden)

    Lespinet Olivier

    2007-11-01

    Full Text Available Abstract Background Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving. Results We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing bona fide orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs, and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms. Conclusion The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene

  12. A Unified tool to estimate Distances, Ages, and Masses (UniDAM) from spectrophotometric data

    Science.gov (United States)

    Mints, Alexey; Hekker, Saskia

    2017-08-01

    Context. Galactic archaeology, the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents, requires precise and accurate knowledge of stellar parameters for as many stars as possible. To achieve this, a number of large spectroscopic surveys have been undertaken and are still ongoing. Aims: So far consortia carrying out the different spectroscopic surveys have used different tools to determine stellar parameters of stars from their derived effective temperatures (Teff), surface gravities (log g), and metallicities ([Fe/H]); the parameters can be combined with photometric, astrometric, interferometric, or asteroseismic information. Here we aim to homogenise the stellar characterisation by applying a unified tool to a large set of publicly available spectrophotometric data. Methods: We used spectroscopic data from a variety of large surveys combined with infrared photometry from 2MASS and AllWISE and compared these in a Bayesian manner with PARSEC isochrones to derive probability density functions (PDFs) for stellar masses, ages, and distances. We treated PDFs of pre-helium-core burning, helium-core burning, and post helium-core burning solutions as well as different peaks in multimodal PDFs (I.e. each unimodal sub-PDF) of the different evolutionary phases separately. Results: For over 2.5 million stars we report mass, age, and distance estimates for each evolutionary phase and unimodal sub-PDF. We report Gaussian, skewed, Gaussian, truncated Gaussian, modified truncated exponential distribution or truncated Student's t-distribution functions to represent each sub-PDF, allowing us to reconstruct detailed PDFs. Comparisons with stellar parameter estimates from the literature show good agreement within uncertainties. Conclusions: We present UniDAM, the unified tool applicable to spectrophotometric data of different surveys, to obtain a homogenised set of stellar parameters. The unified tool and the tables with

  13. Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix

    OpenAIRE

    N. Price, Morgan

    2009-01-01

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor i...

  14. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix

    OpenAIRE

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2009-01-01

    Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement Neighbor-Joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest neighbor in...

  15. Evolutionary dynamics of ecological niche in three Rhinogobio fishes from the upper Yangtze River inferred from morphological traits

    Science.gov (United States)

    Wang, Meirong; Liu, Fei; Lin, Pengcheng; Yang, Shaorong; Liu, Huanzhang

    2015-01-01

    In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus,R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism. PMID:25691981

  16. On Normalized Compression Distance and Large Malware

    OpenAIRE

    Borbely, Rebecca Schuller

    2015-01-01

    Normalized Compression Distance (NCD) is a popular tool that uses compression algorithms to cluster and classify data in a wide range of applications. Existing discussions of NCD's theoretical merit rely on certain theoretical properties of compression algorithms. However, we demonstrate that many popular compression algorithms don't seem to satisfy these theoretical properties. We explore the relationship between some of these properties and file size, demonstrating that this theoretical pro...

  17. Evolutionary mysteries in meiosis.

    Science.gov (United States)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  18. Indo-European languages tree by Levenshtein distance

    Science.gov (United States)

    Serva, M.; Petroni, F.

    2008-03-01

    The evolution of languages closely resembles the evolution of haploid organisms. This similarity has been recently exploited (Gray R. D. and Atkinson Q. D., Nature, 426 (2003) 435; Gray R. D. and Jordan F. M., Nature, 405 (2000) 1052) to construct language trees. The key point is the definition of a distance among all pairs of languages which is the analogous of a genetic distance. Many methods have been proposed to define these distances; one of these, used by glottochronology, computes the distance from the percentage of shared "cognates". Cognates are words inferred to have a common historical origin, and subjective judgment plays a relevant role in the identification process. Here we push closer the analogy with evolutionary biology and we introduce a genetic distance among language pairs by considering a renormalized Levenshtein distance among words with same meaning and averaging on all words contained in a Swadesh list (Swadesh M., Proc. Am. Philos. Soc., 96 (1952) 452). The subjectivity of process is consistently reduced and the reproducibility is highly facilitated. We test our method against the Indo-European group considering fifty different languages and the two hundred words of the Swadesh list for any of them. We find out a tree which closely resembles the one published in Gray and Atkinson (2003), with some significant differences.

  19. A new method to determine large scale structure from the luminosity distance

    International Nuclear Information System (INIS)

    Romano, Antonio Enea; Chiang, Hsu-Wen; Chen, Pisin

    2014-01-01

    The luminosity distance can be used to determine the properties of large scale structure around the observer. To this purpose we develop a new inversion method to map luminosity distance to a Lemaitre–Tolman–Bondi (LTB) metric based on the use of the exact analytical solution for Einstein equations. The main advantages of this approach are an improved numerical accuracy and stability, an exact analytical setting of the initial conditions for the differential equations which need to be solved and the validity for any sign of the functions determining the LTB geometry. Given the fully analytical form of the differential equations, this method also simplifies the calculation of the red-shift expansion around the apparent horizon point where the numerical solution becomes unstable. We test the method by inverting the supernovae Ia luminosity distance function corresponding to the best fit ΛCDM model. We find that only a limited range of initial conditions is compatible with observations, or a transition from red to blue-shift can occur at relatively low red-shift. Despite LTB solutions without a cosmological constant have been shown not to be compatible with all different set of available observational data, those studies normally fit data assuming a special functional ansatz for the inhomogeneity profile, which often depend only on few parameters. Inversion methods on the contrary are able to fully explore the freedom in fixing the functions which determine a LTB solution. Another important possible application is not about LTB solutions as cosmological models, but rather as tools to study the effects on the observations made by a generic observer located in an inhomogeneous region of the Universe where a fully non perturbative treatment involving exact solutions of Einstein equations is required. (paper)

  20. Reconstruction of certain phylogenetic networks from their tree-average distances.

    Science.gov (United States)

    Willson, Stephen J

    2013-10-01

    Trees are commonly utilized to describe the evolutionary history of a collection of biological species, in which case the trees are called phylogenetic trees. Often these are reconstructed from data by making use of distances between extant species corresponding to the leaves of the tree. Because of increased recognition of the possibility of hybridization events, more attention is being given to the use of phylogenetic networks that are not necessarily trees. This paper describes the reconstruction of certain such networks from the tree-average distances between the leaves. For a certain class of phylogenetic networks, a polynomial-time method is presented to reconstruct the network from the tree-average distances. The method is proved to work if there is a single reticulation cycle.

  1. Observation of the activity of selected Oort Cloud comets with perihelia at large distances from the Sun

    Science.gov (United States)

    Kulyk, Iryna; Rousselot, Philippe; Korsun, Pavlo

    2016-10-01

    Many comets exhibit considerable level of activity at large distances from the Sun, where sublimation of crystalline water ice cannot account for observable comae. Different patterns of physical activity already observed at large heliocentric distances may be related to the primordial differences in the composition of comet nuclei. Therefore, monitoring of physical activity in the wide range of heliocentric distances can potentially contribute to understanding of internal structure of comet-like bodies. We have observed ten long periodic comets with orbital perihelia lying beyond the "water ice sublimation zone" to quantify the level of physical activity in the wide range of heliocentric distances. Pre-perihelion observations were made when targets moved between 16.7 and 6.5 au from the Sun; post perihelion activity was monitored between 5.2 and 10.6 au. The bulk of the data were gathered with the 2-m Robotic Liverpool Telescope (Observatorio del Roque de Los Muchachos, La Palma, Spain). Some targets were observed with the 2-m RC Telescope located at Peak Terskol Observatory and the 6-m Telescope of the Special Astrophysical Observatory (Northern Caucasus, Russia). Since most of recently obtained spectra of distant active objects are continuum dominated, we use B, V, R images to estimate dust production rates, an upper limit on nucleus radii, and color indices of near nucleus region. The comets C/2005 L3 (McNaught) and C/2006 S3 (Boattini), which exhibit the considerable level of activity, have been repeatedly observed. This enables us to infer the heliocentric dependence of dust production rates, perihelion brightness asymmetries, and color variations over the comae caused possibly by small changes in dust particle properties.

  2. Using large-scale public health data to explore the evolutionary biology of human pregnancy and child bearing

    DEFF Research Database (Denmark)

    Hollegaard, Birgitte

    . Consequently, research has increasingly focused on the underlying causes of disease, shaped by human evolution. Evolutionary medicine is a relatively new field, specifically bridging the gap between conventional medicine and evolutionary biology: Instead of asking how we get sick, we can apply evolutionary...... explanations for this phenomenon. This thesis demonstrates how taking an evolutionary perspective can help us to better understand important aspects of health and medicine that remain opaque, using the specific example of pregnancy-related conditions.......Medicine has made a giant leap forward over the last century when it comes to the treatment of human disease, but even the most cutting edge 21st century medicine cannot prevent new diseases arising, nor those thought to be extinct developing resistance to pharmaceuticals and returning...

  3. Symbiotic virus at the evolutionary intersection of three types of large DNA viruses; iridoviruses, ascoviruses, and ichnoviruses.

    Directory of Open Access Journals (Sweden)

    Yves Bigot

    Full Text Available BACKGROUND: The ascovirus, DpAV4a (family Ascoviridae, is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a and the lepidopteran iridovirus (family Iridoviridae, Chilo iridescent virus (CIV, and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae. METHODOLOGY/PRINCIPAL FINDINGS: To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs, the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses. CONCLUSIONS: Analyses of core DpAV4a genes confirmed that ascoviruses and iridoviruses are evolutionary related. Nevertheless, our results suggested that the symbiotic DpAV4a had a separate origin in the iridoviruses from the pathogenic ascoviruses, and that these two types shared parallel evolutionary paths, which converged with respect to virion structure (icosahedral to bacilliform, genome configuration (linear to circular, and cytopathology (plasmalemma blebbing to virion-containing vesicles. Our analyses also revealed that DpAV4a shared more core genes with CIV than with other ascoviruses and iridoviruses, providing additional evidence that DpAV4a represents a separate lineage. Given the differences in the biology of the various iridoviruses and ascoviruses studied, these results provide an interesting model for how viruses of different families evolved from one another.

  4. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  5. Evolutionary Graphs with Frequency Dependent Fitness

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory was recently proposed by Lieberman et al. in 2005. In the previous papers about evolutionary graphs (EGs), the fitness of the residents in the EGs is in general assumed to be unity, and the fitness of a mutant is assumed to be a constant r. We aim to extend EG to general cases in this paper, namely, the fitness of a mutant is heavily dependent upon frequency. The corresponding properties for these new EGs are analyzed, and the fixation probability is obtained for large population.

  6. The complex evolutionary history and phylogeography of Caridina typus (Crustacea: Decapoda): long-distance dispersal and cryptic allopatric species.

    Science.gov (United States)

    Bernardes, Samuel C; Pepato, Almir R; von Rintelen, Thomas; von Rintelen, Kristina; Page, Timothy J; Freitag, Hendrik; de Bruyn, Mark

    2017-08-22

    The evolutionary history of the old, diverse freshwater shrimp genus Caridina is still poorly understood, despite its vast distribution - from Africa to Polynesia. Here, we used nuclear and mitochondrial DNA to infer the phylogeographic and evolutionary history of C. typus, which is one of only four species distributed across the entire range of the genus. Despite this species' potential for high levels of gene flow, questions have been raised regarding its phylogeographic structure and taxonomic status. We identified three distinct lineages that likely diverged in the Miocene. Molecular dating and ancestral range reconstructions are congruent with C. typus' early dispersal to Africa, possibly mediated by the Miocene Indian Ocean Equatorial Jet, followed by back dispersal to Australasia after the Jet's closure. Furthermore, several different species delimitation methods indicate each lineage represents a distinct (cryptic) species, contradicting current morphospecies delimitation of a single C. typus taxon. The evolutionary history of C. typus lineages is complex, in which ancient oceanic current systems and (currently unrecognised) speciation events preceded secondary sympatry of these cryptic species.

  7. Evolutionary history of lagomorphs in response to global environmental change.

    Directory of Open Access Journals (Sweden)

    Deyan Ge

    Full Text Available Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C(3 plants, while for the diet of leporids, more than 16% of plant species are identified as C(4 (31% species are from Poaceae. The ability of several leporid species to consume C(4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C(4 plants in the late Miocene, the so-called 'nature's green revolution', induced by global environmental change, is suggested to be one of the major 'ecological opportunities', which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of

  8. Evolutionary heritage influences Amazon tree ecology

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  9. Evolutionary heritage influences Amazon tree ecology.

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  10. Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses

    Science.gov (United States)

    2013-01-01

    Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting

  11. Physical activity of the selected nearly isotropic comets with perihelia at large heliocentric distance

    Science.gov (United States)

    Kulyk, I.; Rousselot, P.; Korsun, P. P.; Afanasiev, V. L.; Sergeev, A. V.; Velichko, S. F.

    2018-03-01

    Context. The systematic investigation of comets in a wide range of heliocentric distances can contribute to a better understanding of the physical mechanisms that trigger activity at large distances from the Sun and reveals possible differences in the composition of outer solar system bodies belonging to various dynamical groups. Aims: We seek to analyze the dust environment of the selected nearly isotropic comets with a perihelion distance between 4.5 and 9.1 au, where sublimation of water ice is considered to be negligible. Methods: We present results of multicolor broadband photometric observations for 14 distant active objects conducted between 2008 and 2015 with various telescopes. Images obtained with broadband filters were used to investigate optical colors of the cometary comae and to quantify physical activity of the comet nuclei. Results: The activity level was estimated with Afρ parameters ranging between 95 ± 10 cm and 9600 ± 300 cm. Three returning comets were less active than the dynamically new comets. Dust production rates of the comet nuclei were estimated between 1 and 100 kg s-1 based on some assumptions about the physical properties of dust particles populating comae. The measured colors point out reddening of the continuum for all the comets. The mean values of a normalized reflectivity gradient within the group of the comets amount to 14 ± 2% per 1000 Å and 3 ± 2% per 1000 Å in the BV and VR spectral domains, respectively. The comae of the dynamically new comets, which were observed on their inbound legs, may be slightly redder in the blue spectral interval than comae of the comets observed after the perihelion passages. The dynamically new comets observed both pre- and post-perihelion, seem to have higher production rates post-perihelion than pre-perihelion for similar heliocentric distances.

  12. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  13. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  14. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.

    Directory of Open Access Journals (Sweden)

    Cécile Troupin

    2016-12-01

    Full Text Available The natural evolution of rabies virus (RABV provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics.

  15. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances

    Directory of Open Access Journals (Sweden)

    Manuel Gil

    2014-09-01

    Full Text Available Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989 which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  16. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.

    Science.gov (United States)

    Gil, Manuel

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  17. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  18. Effects of tectonics and large scale climatic changes on the evolutionary history of Hyalomma ticks.

    Science.gov (United States)

    Sands, Arthur F; Apanaskevich, Dmitry A; Matthee, Sonja; Horak, Ivan G; Harrison, Alan; Karim, Shahid; Mohammad, Mohammad K; Mumcuoglu, Kosta Y; Rajakaruna, Rupika S; Santos-Silva, Maria M; Matthee, Conrad A

    2017-09-01

    Hyalomma Koch, 1844 are ixodid ticks that infest mammals, birds and reptiles, to which 27 recognized species occur across the Afrotropical, Palearctic and Oriental regions. Despite their medical and veterinary importance, the evolutionary history of the group is enigmatic. To investigate various taxonomic hypotheses based on morphology, and also some of the mechanisms involved in the diversification of the genus, we sequenced and analysed data derived from two mtDNA fragments, three nuclear DNA genes and 47 morphological characters. Bayesian and Parsimony analyses based on the combined data (2242 characters for 84 taxa) provided maximum resolution and strongly supported the monophyly of Hyalomma and the subgenus Euhyalomma Filippova, 1984 (including H. punt Hoogstraal, Kaiser and Pedersen, 1969). A predicted close evolutionary association was found between morphologically similar H. dromedarii Koch, 1844, H. somalicum Tonelli Rondelli, 1935, H. impeltatum Schulze and Schlottke, 1929 and H. punt, and together they form a sister lineage to H. asiaticum Schulze and Schlottke, 1929, H. schulzei Olenev, 1931 and H. scupense Schulze, 1919. Congruent with morphological suggestions, H. anatolicum Koch, 1844, H. excavatum Koch, 1844 and H. lusitanicum Koch, 1844 form a clade and so also H. glabrum Delpy, 1949, H. marginatum Koch, 1844, H. turanicum Pomerantzev, 1946 and H. rufipes Koch, 1844. Wide scale continental sampling revealed cryptic divergences within African H. truncatum Koch, 1844 and H. rufipes and suggested that the taxonomy of these lineages is in need of a revision. The most basal lineages in Hyalomma represent taxa currently confined to Eurasia and molecular clock estimates suggest that members of the genus started to diverge approximately 36.25 million years ago (Mya). The early diversification event coincides well with the collision of the Indian and Eurasian Plates, an event that was also characterized by large scale faunal turnover in the region. Using S

  19. Evolutionary heritage influences amazon tree ecology

    NARCIS (Netherlands)

    Souza, De Fernanda Coelho; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J.W.; Chave, Jerome; Galbraith, David R.; Gonzalez, Gabriela Lopez; Mendoza, Abel Monteagudo; Toby Pennington, R.; Poorter, Lourens; Arets, E.J.M.M.; Boot, Rene G.A.; Meer, van der Peter J.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of

  20. Population genetic structure and long-distance dispersal of a recently expanding migratory bird.

    Science.gov (United States)

    Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin

    2016-06-01

    Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    Science.gov (United States)

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  2. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    International Nuclear Information System (INIS)

    Gorbunov, Dmitry S.; Sibiryakov, Sergei M.

    2005-01-01

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances

  3. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation); Sibiryakov, Sergei M. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation)

    2005-09-15

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  4. Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm

    Directory of Open Access Journals (Sweden)

    Carolina Lagos

    2014-01-01

    Full Text Available Evolutionary algorithms have been widely used to solve large and complex optimisation problems. Cultural algorithms (CAs are evolutionary algorithms that have been used to solve both single and, to a less extent, multiobjective optimisation problems. In order to solve these optimisation problems, CAs make use of different strategies such as normative knowledge, historical knowledge, circumstantial knowledge, and among others. In this paper we present a comparison among CAs that make use of different evolutionary strategies; the first one implements a historical knowledge, the second one considers a circumstantial knowledge, and the third one implements a normative knowledge. These CAs are applied on a biobjective uncapacitated facility location problem (BOUFLP, the biobjective version of the well-known uncapacitated facility location problem. To the best of our knowledge, only few articles have applied evolutionary multiobjective algorithms on the BOUFLP and none of those has focused on the impact of the evolutionary strategy on the algorithm performance. Our biobjective cultural algorithm, called BOCA, obtains important improvements when compared to other well-known evolutionary biobjective optimisation algorithms such as PAES and NSGA-II. The conflicting objective functions considered in this study are cost minimisation and coverage maximisation. Solutions obtained by each algorithm are compared using a hypervolume S metric.

  5. A program to compute the soft Robinson-Foulds distance between phylogenetic networks.

    Science.gov (United States)

    Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai

    2017-03-14

    Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.

  6. Testing evolutionary hypotheses for phenotypic divergence using landscape genetics.

    Science.gov (United States)

    Funk, W Chris; Murphy, Melanie A

    2010-02-01

    Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence (Garant et al. 2007) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation (Coyne & Orr 2004). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica (Fig. 1). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation-by-distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.

  7. Evolutionary ethics from Darwin to Moore.

    Science.gov (United States)

    Allhoff, Fritz

    2003-01-01

    to but never fully brought to the fore by Huxley. These philosophers were the well known moralists from Cambridge: Henry Sidgwick (Sidgwick 1902, 1907) and G.E. Moore (Moore 1903), though their ideas hearkened back to David Hume (Hume 1960). These criticisms were so strong that the industry of evolutionary ethics was largely abandoned (though with some exceptions) for many years. Third, E.O. Wilson, a Harvard entomologist, published Sociobiology: The New Synthesis in 1975 (Wilson E.O. 1975), which sparked renewed interest in evolutionary ethics and offered new directions of investigation. These events suggest the following stages for the history of evolutionary ethics: development, criticism and abandonment, revival. In this paper, I shall focus on the first two stages, since those are the ones on which the philosophical merits have already been largely decided. The revival stage is still in progress and we shall eventually find out whether it was a success.

  8. Long-distance gene flow and adaptation of forest trees to rapid climate change

    Science.gov (United States)

    Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio

    2012-01-01

    Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change. PMID:22372546

  9. EvolQG - An R package for evolutionary quantitative genetics [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Diogo Melo

    2016-06-01

    Full Text Available We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the EvolQG package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification.

  10. Equivalence of massive propagator distance and mathematical distance on graphs

    International Nuclear Information System (INIS)

    Filk, T.

    1992-01-01

    It is shown in this paper that the assignment of distance according to the massive propagator method and according to the mathematical definition (length of minimal path) on arbitrary graphs with a bound on the degree leads to equivalent large scale properties of the graph. Especially, the internal scaling dimension is the same for both definitions. This result holds for any fixed, non-vanishing mass, so that a really inequivalent definition of distance requires the limit m → 0

  11. Infrastructure system restoration planning using evolutionary algorithms

    Science.gov (United States)

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  12. Does Distance to Subsidiaries affect Headquarters Value Added?

    DEFF Research Database (Denmark)

    Nell, Phillip C.; Beugelsdijk, Sjoerd; Ambos, Björn

    2014-01-01

    How does distance between MNC headquarters and their subsidiaries affect the value added generated by headquarters? Integrating theories on spatial transaction costs with the headquarter view of the MNC, we link two types of distances, geographic distance and contextual distance, with headquarters...... value added. We test our hypotheses on an original dataset of 124 manufacturing subsidiaries in Europe. We find that the relation between distance and headquarters value added is conditional on the degree of subsidiaries’ external embeddedness. We find no direct effect of distance. The value added...... of headquarters is highest for subsidiaries that are not externally embedded in the host country and that operate at a large distance. It is lowest for locally responsive subsidiaries with high external embeddedness operating at a large distance. We discuss implications for the literature on headquarters-subsidiaries...

  13. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  14. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    Science.gov (United States)

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  15. An evolutionary basis for pollination ecology

    NARCIS (Netherlands)

    Willemstein, S.C.

    1987-01-01

    In the introduction and chapter 2 the incentives and way of reasoning are given for the description of an evolutionary basis of pollination ecology. Starting from the until recently rather anecdotical character of the study of pollination ecology as a whole, and in the absence of large-scale

  16. Patient Characteristics and Comorbidities Influence Walking Distances in Symptomatic Peripheral Arterial Disease: A Large One-Year Physiotherapy Cohort Study.

    Science.gov (United States)

    Dörenkamp, Sarah; Mesters, Ilse; de Bie, Rob; Teijink, Joep; van Breukelen, Gerard

    2016-01-01

    The aim of this study is to investigate the association between age, gender, body-mass index, smoking behavior, orthopedic comorbidity, neurologic comorbidity, cardiac comorbidity, vascular comorbidity, pulmonic comorbidity, internal comorbidity and Initial Claudication Distance during and after Supervised Exercise Therapy at 1, 3, 6 and 12 months in a large sample of patients with Intermittent Claudication. Data was prospectively collected in standard physiotherapy care. Patients received Supervised Exercise Therapy according to the guideline Intermittent Claudication of the Royal Dutch Society for Physiotherapy. Three-level mixed linear regression analysis was carried out to analyze the association between patient characteristics, comorbidities and Initial Claudication Distance at 1, 3, 6 and 12 months. Data from 2995 patients was analyzed. Results showed that being female, advanced age and a high body-mass index were associated with lower Initial Claudication Distance at all-time points (p = 0.000). Besides, a negative association between cardiac comorbidity and Initial Claudication Distance was revealed (p = 0.011). The interaction time by age, time by body-mass index and time by vascular comorbidity were significantly associated with Initial Claudication Distance (p≤ 0.05). Per year increase in age (range: 33-93 years), the reduction in Initial Claudication Distance was 8m after 12 months of Supervised Exercise Therapy. One unit increase in body-mass index (range: 16-44 kg/m2) led to 10 m less improvement in Initial Claudication Distance after 12 months and for vascular comorbidity the reduction in improvement was 85 m after 12 months. This study reveals that females, patients at advanced age, patients with a high body-mass index and cardiac comorbidity are more likely to show less improvement in Initial Claudication Distances (ICD) after 1, 3, 6 and 12 months of Supervised Exercise Therapy. Further research should elucidate treatment adaptations that

  17. An Evolutionary Real-Time 3D Route Planner for Aircraft

    Institute of Scientific and Technical Information of China (English)

    郑昌文; 丁明跃; 周成平

    2003-01-01

    A novel evolutionary route planner for aircraft is proposed in this paper. In the new planner, individual candidates are evaluated with respect to the workspace, thus the computation of the configuration space is not required. By using problem-specific chromosome structure and genetic operators, the routes are generated in real time,with different mission constraints such as minimum route leg length and flying altitude, maximum turning angle, maximum climbing/diving angle and route distance constraint taken into account.

  18. Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance

    Science.gov (United States)

    2013-01-01

    Background Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. Results We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem. We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. Conclusions Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as

  19. The higher the farther: distance-specific referential gestures in chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Gonseth, Chloe; Kawakami, Fumito; Ichino, Etsuko; Tomonaga, Masaki

    2017-11-01

    Referential signals, such as manual pointing or deictic words, allow individuals to efficiently locate a specific entity in the environment, using distance-specific linguistic and/or gestural units. To explore the evolutionary prerequisites of such deictic ability, the present study investigates the ability of chimpanzees to adjust their communicative signals to the distance of a referent. A food-request paradigm in which the chimpanzees had to request a close or distant piece of food on a table in the presence/absence of an experimenter was employed. Our main finding concerns the chimpanzees adjusting their requesting behaviours to the distance of the food such that higher manual gestures and larger mouth openings were used to request the distant piece of food. To the best of our knowledge, this is the first study to demonstrate that chimpanzees are able to use distance-specific gestures. © 2017 The Authors.

  20. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. © 2013 Blackwell Publishing Ltd.

  1. Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii

    Energy Technology Data Exchange (ETDEWEB)

    Kupavskii, A B; Raigorodskii, A M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2013-10-31

    We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3 (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.

  2. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  3. Solar cosmic ray events at large radial distances from the sun

    International Nuclear Information System (INIS)

    Zwickl, R.; Webber, W.R.; McDonald, F.B.; Teegarden, B.; Trainor, J.

    1975-01-01

    Using the GSFC-UNH cosmic ray telescope on Pioneer 10 and 11 we have examined solar cosmic ray events out to a distance approximately 5 AU from the sun. Here we consider two aspects of this work, both related to our anisotropy studies. First, a detailed error analysis of the cosine fit to the anisotropy is presented. Second, we look at the anisotropy and intensity time characteristics during solar events as a function of radial distance. (orig.) [de

  4. Monte Carlo estimation of total variation distance of Markov chains on large spaces, with application to phylogenetics.

    Science.gov (United States)

    Herbei, Radu; Kubatko, Laura

    2013-03-26

    Markov chains are widely used for modeling in many areas of molecular biology and genetics. As the complexity of such models advances, it becomes increasingly important to assess the rate at which a Markov chain converges to its stationary distribution in order to carry out accurate inference. A common measure of convergence to the stationary distribution is the total variation distance, but this measure can be difficult to compute when the state space of the chain is large. We propose a Monte Carlo method to estimate the total variation distance that can be applied in this situation, and we demonstrate how the method can be efficiently implemented by taking advantage of GPU computing techniques. We apply the method to two Markov chains on the space of phylogenetic trees, and discuss the implications of our findings for the development of algorithms for phylogenetic inference.

  5. BEAST: Bayesian evolutionary analysis by sampling trees

    Directory of Open Access Journals (Sweden)

    Drummond Alexei J

    2007-11-01

    Full Text Available Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

  6. Ant-Based Phylogenetic Reconstruction (ABPR: A new distance algorithm for phylogenetic estimation based on ant colony optimization

    Directory of Open Access Journals (Sweden)

    Karla Vittori

    2008-12-01

    Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.

  7. Biology Needs Evolutionary Software Tools: Let’s Build Them Right

    Science.gov (United States)

    Team, Galaxy; Goecks, Jeremy; Taylor, James

    2018-01-01

    Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462

  8. Distance education student accompaniment: IPGN course, an experience in large scale capacitation

    Directory of Open Access Journals (Sweden)

    Sônia Inez Grüdtner Floriano

    2005-06-01

    Full Text Available One of the most difficulties found by the providersinstitution of courses on the distance education modality, since its beginning until nowadays, is to accompany the development of its students. Today there are too much possibilities brought up by the new technologies of communication and information. Although it is known that those one are only a thru, once the difference is exactly in the pedagogical proposal of the course. For this, this paper intens to present the pedagogical proposal, the methodology and the technological resourles utilized to accompany, orient and support on de systematic way, permanent and proactive the students of a e-learning course of large scale, free with two months lenght, and 30 hours/class charge. It is a result of a partnership between SEBRAE (Serviço Brasileiro de Micro e Pequenas Empresas and IEA(Instituto de Estudos Avançados. This course has begun in 2001 and til the present moment has capacited 216.648 students.

  9. On the dependency of the decay of ground motion peak values with distance for small and large earthquakes

    Science.gov (United States)

    Dujardin, Alain; Courboulex, Françoise; Causse, Matthieu; Traversa, Paola; Monfret, Tony

    2013-04-01

    Ground motion decay with distance presents a clear magnitude dependence, PGA values of small events decreasing faster than those of larger events. This observation is now widely accepted and often taken into account in recent ground motion prediction equations (Anderson 2005, Akkar & Bommer 2010). The aim of this study is to investigate the origin of this dependence, which has not been clearly identified yet. Two main hypotheses are considered. On one hand the difference of ground motion decay is related to an attenuation effect, on the other hand the difference is related to an effect of extended fault (Anderson 2000). To study the role of attenuation, we realized synthetic tests using the stochastic simulation program SMSIM from Boore (2005). We build a set of simulations from several magnitudes and epicentral distances, and observe that the decay in PGA values is strongly dependent on the spectral shape of the Fourier spectra, which in turn strongly depends on the attenuation factor (Q(f) or kappa). We found that, for a point source approximation and an infinite value of Q (no attenuation) there is no difference between small and large events and that this difference increases when Q decreases. Theses results show that the influence of attenuation on spectral shape is different for earthquakes of different magnitude. In fact the influence of attenuation, which is more important at higher frequency, is larger for small earthquakes, whose Fourier acceleration spectrum has predominantly higher frequencies. We then study the effect of extended source using complete waveform simulations in a 1D model. We find that when the duration of the source time function increases, there is a larger probability to obtain large PGA values at equivalent distances. This effect could also play an important role in the PGA decay with magnitude and distance. Finally we compare these results with real datasets from the Japanese accelerometric network KIK-net.

  10. THE DISTANCE TO M51

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-07-20

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties.

  11. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction

    DEFF Research Database (Denmark)

    Teppa, Elin; Wilkins, Angela D.; Nielsen, Morten

    2012-01-01

    Background: A large panel of methods exists that aim to identify residues with critical impact on protein function based on evolutionary signals, sequence and structure information. However, it is not clear to what extent these different methods overlap, and if any of the methods have higher...... predictive potential compared to others when it comes to, in particular, the identification of catalytic residues (CR) in proteins. Using a large set of enzymatic protein families and measures based on different evolutionary signals, we sought to break up the different components of the information content......-value Evolutionary Trace (rvET) methods and conservation, another containing mutual information (MI) methods, and the last containing methods designed explicitly for the identification of specificity determining positions (SDPs): integer-value Evolutionary Trace (ivET), SDPfox, and XDET. In terms of prediction of CR...

  12. Large-distance and long-time asymptotic behavior of the reduced density matrix in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2010-12-15

    Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)

  13. From Pleistocene to Holocene: the prehistory of southwest Asia in evolutionary context.

    Science.gov (United States)

    Watkins, Trevor

    2017-08-14

    In this paper I seek to show how cultural niche construction theory offers the potential to extend the human evolutionary story beyond the Pleistocene, through the Neolithic, towards the kind of very large-scale societies in which we live today. The study of the human past has been compartmentalised, each compartment using different analytical vocabularies, so that their accounts are written in mutually incompatible languages. In recent years social, cognitive and cultural evolutionary theories, building on a growing body of archaeological evidence, have made substantial sense of the social and cultural evolution of the genus Homo. However, specialists in this field of studies have found it difficult to extend their kind of analysis into the Holocene human world. Within southwest Asia the three or four millennia of the Neolithic period at the beginning of the Holocene represents a pivotal point, which saw the transformation of human society in the emergence of the first large-scale, permanent communities, the domestication of plants and animals, and the establishment of effective farming economies. Following the Neolithic, the pace of human social, economic and cultural evolution continued to increase. By 5000 years ago, in parts of southwest Asia and northeast Africa there were very large-scale urban societies, and the first large-scale states (kingdoms). An extension of cultural niche construction theory enables us to extend the evolutionary narrative of the Pleistocene into the Holocene, opening the way to developing a single, long-term, evolutionary account of human history.

  14. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.

    Science.gov (United States)

    Blanchard, Benjamin D; Moreau, Corrie S

    2017-02-01

    Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Assessing fluctuating evolutionary pressure in yeast and mammal evolutionary rate covariation using bioinformatics of meiotic protein genetic sequences

    Science.gov (United States)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Holden, T.; Lieberman, D.; Cheung, T.

    2013-09-01

    The evolutionary rate co-variation in meiotic proteins has been reported for yeast and mammal using phylogenic branch lengths which assess retention, duplication and mutation. The bioinformatics of the corresponding DNA sequences could be classified as a diagram of fractal dimension and Shannon entropy. Results from biomedical gene research provide examples on the diagram methodology. The identification of adaptive selection using entropy marker and functional-structural diversity using fractal dimension would support a regression analysis where the coefficient of determination would serve as evolutionary pathway marker for DNA sequences and be an important component in the astrobiology community. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, clinical trial targeted cancer gene CD47, SIRT6 in spermatogenesis, and HLA-C in mosquito bite immunology demonstrate the diagram classification methodology. Comparisons to the SEPT4-XIAP pair in stem cell apoptosis, testesexpressed taste genes TAS1R3-GNAT3 pair, and amyloid beta APLP1-APLP2 pair with the yeast-mammal DNA sequences for meiotic proteins RAD50-MRE11 pair and NCAPD2-ICK pair have accounted for the observed fluctuating evolutionary pressure systematically. Regression with high R-sq values or a triangular-like cluster pattern for concordant pairs in co-variation among the studied species could serve as evidences for the possible location of common ancestors in the entropy-fractal dimension diagram, consistent with an example of the human-chimp common ancestor study using the FOXP2 regulated genes reported in human fetal brain study. The Deinococcus radiodurans R1 Rad-A could be viewed as an outlier in the RAD50 diagram and also in the free energy versus fractal dimension regression Cook's distance, consistent with a non-Earth source for this radiation resistant bacterium. Convergent and divergent fluctuating evolutionary

  16. Quasi-periodic variations of cometary ion fluxes at large distances from comet Halley

    Energy Technology Data Exchange (ETDEWEB)

    Richter, A.K.; Daly, P.W.; Verigin, M.I.; Gringauz, K.I.; Erdos, G.; Kecskemety, K.; Somogyi, A.J.; Szego, K.; Varga, A.; McKenna-Lawlor, S.

    1989-04-01

    Large variations, with a period of about 4 h, in the energetic ion fluxes have been observed far upstream (between 2 and 10 million kilometers) of comet Halley on both the Vega-1 and Giotto spacecraft. We have fitted the cometocentric distances of the occurrences to a simple model of expanding shells of neutral particles, the production of which is modulated by the spin of the comet nucleus, and have achieved excellent agreement between the two spacecraft. We derive an expansion speed for the neutrals of 6.18 +- 0.14 km s/sup -1/. Possible candidates for the neutrals are hydrogen atoms, created by the photo-dissociation of OH with a speed of 8 km s/sup -1/, or oxygen atoms, produced from the photo-dissociation of CO/sub 2/ with a speed of 6.5 km s/sup -1/.

  17. ORDERED WEIGHTED DISTANCE MEASURE

    Institute of Scientific and Technical Information of China (English)

    Zeshui XU; Jian CHEN

    2008-01-01

    The aim of this paper is to develop an ordered weighted distance (OWD) measure, which is thegeneralization of some widely used distance measures, including the normalized Hamming distance, the normalized Euclidean distance, the normalized geometric distance, the max distance, the median distance and the min distance, etc. Moreover, the ordered weighted averaging operator, the generalized ordered weighted aggregation operator, the ordered weighted geometric operator, the averaging operator, the geometric mean operator, the ordered weighted square root operator, the square root operator, the max operator, the median operator and the min operator axe also the special cases of the OWD measure. Some methods depending on the input arguments are given to determine the weights associated with the OWD measure. The prominent characteristic of the OWD measure is that it can relieve (or intensify) the influence of unduly large or unduly small deviations on the aggregation results by assigning them low (or high) weights. This desirable characteristic makes the OWD measure very suitable to be used in many actual fields, including group decision making, medical diagnosis, data mining, and pattern recognition, etc. Finally, based on the OWD measure, we develop a group decision making approach, and illustrate it with a numerical example.

  18. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures

    Science.gov (United States)

    Kim, Minwoo; Ha, Yoon-Cheol; Nhat Nguyen, Truong; Choi, Hae Young; Kim, Doohun

    2013-12-01

    We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V-1 compared to the reported 2.0 nm V-1 for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ˜47 mm in diameter and ˜60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.

  19. Segmenting healthcare terminology users: a strategic approach to large scale evolutionary development.

    Science.gov (United States)

    Price, C; Briggs, K; Brown, P J

    1999-01-01

    Healthcare terminologies have become larger and more complex, aiming to support a diverse range of functions across the whole spectrum of healthcare activity. Prioritization of development, implementation and evaluation can be achieved by regarding the "terminology" as an integrated system of content-based and functional components. Matching these components to target segments within the healthcare community, supports a strategic approach to evolutionary development and provides essential product differentiation to enable terminology providers and systems suppliers to focus on end-user requirements.

  20. Neutral processes forming large clones during colonization of new areas.

    Science.gov (United States)

    Rafajlović, M; Kleinhans, D; Gulliksson, C; Fries, J; Johansson, D; Ardehed, A; Sundqvist, L; Pereyra, R T; Mehlig, B; Jonsson, P R; Johannesson, K

    2017-08-01

    In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species' range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long-distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post-glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported. © 2017 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on Behalf of European Society for Evolutionary Biology.

  1. Representing distance, consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    Title: Representing Distance, Consuming Distance Abstract: Distance is a condition for corporeal and virtual mobilities, for desired and actual travel, but yet it has received relatively little attention as a theoretical entity in its own right. Understandings of and assumptions about distance...... are being consumed in the contemporary society, in the same way as places, media, cultures and status are being consumed (Urry 1995, Featherstone 2007). An exploration of distance and its representations through contemporary consumption theory could expose what role distance plays in forming...

  2. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species.

    Directory of Open Access Journals (Sweden)

    Jiaqin Shi

    Full Text Available Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences. The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type the angiosperm species (aside from a few species all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite

  3. Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2013-01-01

    Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with

  4. StarHorse: a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars

    Science.gov (United States)

    Queiroz, A. B. A.; Anders, F.; Santiago, B. X.; Chiappini, C.; Steinmetz, M.; Dal Ponte, M.; Stassun, K. G.; da Costa, L. N.; Maia, M. A. G.; Crestani, J.; Beers, T. C.; Fernández-Trincado, J. G.; García-Hernández, D. A.; Roman-Lopes, A.; Zamora, O.

    2018-05-01

    Understanding the formation and evolution of our Galaxy requires accurate distances, ages, and chemistry for large populations of field stars. Here, we present several updates to our spectrophotometric distance code, which can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectrophotometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called StarHorse) can accommodate different observational data sets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known Gaia-like parallaxes. The typical internal precisions (obtained from realistic simulations of an APOGEE+Gaia-like sample) are {˜eq } 8 {per cent} in distance, {˜eq } 20 {per cent} in age, {˜eq } 6 {per cent} in mass, and ≃ 0.04 mag in AV. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of {˜eq } [0,2] {per cent} for distances, {˜eq } [12,31] {per cent} for ages, {˜eq } [4,12] {per cent} for masses, and ≃ 0.07 mag for AV. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3, and GALAH DR1 catalogues.

  5. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    Science.gov (United States)

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  6. On Reciprocal Causation in the Evolutionary Process.

    Science.gov (United States)

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  7. On the evolutionary origins of equity.

    Directory of Open Access Journals (Sweden)

    Stéphane Debove

    Full Text Available Equity, defined as reward according to contribution, is considered a central aspect of human fairness in both philosophical debates and scientific research. Despite large amounts of research on the evolutionary origins of fairness, the evolutionary rationale behind equity is still unknown. Here, we investigate how equity can be understood in the context of the cooperative environment in which humans evolved. We model a population of individuals who cooperate to produce and divide a resource, and choose their cooperative partners based on how they are willing to divide the resource. Agent-based simulations, an analytical model, and extended simulations using neural networks provide converging evidence that equity is the best evolutionary strategy in such an environment: individuals maximize their fitness by dividing benefits in proportion to their own and their partners' relative contribution. The need to be chosen as a cooperative partner thus creates a selection pressure strong enough to explain the evolution of preferences for equity. We discuss the limitations of our model, the discrepancies between its predictions and empirical data, and how interindividual and intercultural variability fit within this framework.

  8. The repeated evolution of large seeds on islands.

    Science.gov (United States)

    Kavanagh, Patrick H; Burns, Kevin C

    2014-07-07

    Several plant traits are known to evolve in predictable ways on islands. For example, herbaceous species often evolve to become woody and species frequently evolve larger leaves, regardless of growth form. However, our understanding of how seed sizes might evolve on islands lags far behind other plant traits. Here, we conduct the first test for macroevolutionary patterns of seed size on islands. We tested for differences in seed size between 40 island-mainland taxonomic pairings from four island groups surrounding New Zealand. Seed size data were collected in the field and then augmented by published seed descriptions to produce a more comprehensive dataset. Seed sizes of insular plants were consistently larger than mainland relatives, even after accounting for differences in growth form, dispersal mode and evolutionary history. Selection may favour seed size increases on islands to reduce dispersibility, as long-distance dispersal may result in propagule mortality at sea. Alternatively, larger seeds tend to generate larger seedlings, which are more likely to establish and outcompete neighbours. Our results indicate there is a general tendency for the evolution of large seeds on islands, but the mechanisms responsible for this evolutionary pathway have yet to be fully resolved. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Polymorphic Evolutionary Games.

    Science.gov (United States)

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Iris double recognition based on modified evolutionary neural network

    Science.gov (United States)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  11. Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity

    Science.gov (United States)

    Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.

    2016-04-01

    Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.

  12. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  13. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples.

    Science.gov (United States)

    Pettengill, James B; Pightling, Arthur W; Baugher, Joseph D; Rand, Hugh; Strain, Errol

    2016-01-01

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.

  14. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples.

    Directory of Open Access Journals (Sweden)

    James B Pettengill

    Full Text Available The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis. In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples and computational (petabytes of sequence data issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST scheme. When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates there are features (e.g., genomic, assembly, and contamination that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.

  15. Predicting loss of evolutionary history: Where are we?

    Science.gov (United States)

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic

  16. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  17. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  18. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree

    OpenAIRE

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Cheverud, James M.

    2016-01-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a pop...

  19. Designing legible fonts for distance reading

    DEFF Research Database (Denmark)

    Beier, Sofie

    2016-01-01

    This chapter reviews existing knowledge on distance legibility of fonts, and finds that for optimal distance reading, letters and numbers benefit from relative wide shapes, open inner counters and a large x-height; fonts should further be widely spaced, and the weight should not be too heavy or t...

  20. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  2. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures

    International Nuclear Information System (INIS)

    Kim, Minwoo; Ha, Yoon-Cheol; Choi, Hae Young; Kim, Doohun; Nguyen, Truong Nhat

    2013-01-01

    We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage–interpore distance relationship of 2.2 nm V −1 compared to the reported 2.0 nm V −1 for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ∼47 mm in diameter and ∼60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm. (paper)

  3. Extended self-ordering regime in hard anodization and its application to make asymmetric AAO membranes for large pitch-distance nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minwoo; Ha, Yoon-Cheol; Choi, Hae Young; Kim, Doohun [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of); Nguyen, Truong Nhat, E-mail: ycha@keri.re.kr [Department of Materials Science and Engineering, University of Erlangen-Nuremberg, D-91058 Erlangen (Germany)

    2013-12-20

    We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage–interpore distance relationship of 2.2 nm V{sup −1} compared to the reported 2.0 nm V{sup −1} for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ∼47 mm in diameter and ∼60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm. (paper)

  4. Evolutionary Games with Randomly Changing Payoff Matrices

    Science.gov (United States)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  5. Application of a sensitive collection heuristic for very large protein families: Evolutionary relationship between adipose triglyceride lipase (ATGL and classic mammalian lipases

    Directory of Open Access Journals (Sweden)

    Berezovsky Igor

    2006-03-01

    Full Text Available Abstract Background Manually finding subtle yet statistically significant links to distantly related homologues becomes practically impossible for very populated protein families due to the sheer number of similarity searches to be invoked and analyzed. The unclear evolutionary relationship between classical mammalian lipases and the recently discovered human adipose triglyceride lipase (ATGL; a patatin family member is an exemplary case for such a problem. Results We describe an unsupervised, sensitive sequence segment collection heuristic suitable for assembling very large protein families. It is based on fan-like expanding, iterative database searches. To prevent inclusion of unrelated hits, additional criteria are introduced: minimal alignment length and overlap with starting sequence segments, finding starting sequences in reciprocal searches, automated filtering for compositional bias and repetitive patterns. This heuristic was implemented as FAMILYSEARCHER in the ANNIE sequence analysis environment and applied to search for protein links between the classical lipase family and the patatin-like group. Conclusion The FAMILYSEARCHER is an efficient tool for tracing distant evolutionary relationships involving large protein families. Although classical lipases and ATGL have no obvious sequence similarity and differ with regard to fold and catalytic mechanism, homology links detected with FAMILYSEARCHER show that they are evolutionarily related. The conserved sequence parts can be narrowed down to an ancestral core module consisting of three β-strands, one α-helix and a turn containing the typical nucleophilic serine. Moreover, this ancestral module also appears in numerous enzymes with various substrate specificities, but that critically rely on nucleophilic attack mechanisms.

  6. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  7. Are hotspots of evolutionary potential adequately protected in southern California?

    Science.gov (United States)

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  8. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    , they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...

  9. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  10. Modern Geometric Methods of Distance Determination

    Science.gov (United States)

    Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki

    2017-11-01

    Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest

  11. Distance between configurations in Markov chain Monte Carlo simulations

    Science.gov (United States)

    Fukuma, Masafumi; Matsumoto, Nobuyuki; Umeda, Naoya

    2017-12-01

    For a given Markov chain Monte Carlo algorithm we introduce a distance between two configurations that quantifies the difficulty of transition from one configuration to the other configuration. We argue that the distance takes a universal form for the class of algorithms which generate local moves in the configuration space. We explicitly calculate the distance for the Langevin algorithm, and show that it certainly has desired and expected properties as distance. We further show that the distance for a multimodal distribution gets dramatically reduced from a large value by the introduction of a tempering method. We also argue that, when the original distribution is highly multimodal with large number of degenerate vacua, an anti-de Sitter-like geometry naturally emerges in the extended configuration space.

  12. Evolutionary design optimization of traffic signals applied to Quito city.

    Science.gov (United States)

    Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi

    2017-01-01

    This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.

  13. An evolutionary ecology of individual differences

    Science.gov (United States)

    Dall, Sasha R. X.; Bell, Alison M.; Bolnick, Daniel I.; Ratnieks, Francis L. W.

    2014-01-01

    Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive ‘crossfertilisation’ among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be covariation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences. PMID:22897772

  14. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  15. The evolutionary state of the β Canis Majoris variables

    International Nuclear Information System (INIS)

    Shobbrook, R.R.

    1978-01-01

    It is found from accurate β photometry of bright stars in the region of the β CMa instability strip that about three-quarters of the stars in the strip, to a distance modulus of 8.0, are β CMa variables. The strip is not resolved by the data so that its intrinsic width is uncertain, but the conclusion from a consideration of theoretical evolutionary rates is that the variables must be very near the end of core hydrogen burning. Comparison of the relative positions of the empirical and theoretical instability strip and zero age main sequence indicates that the observationally located upper ZAMS is too bright. (author)

  16. Alfalfa discovery of the nearby gas-rich dwarf galaxy Leo P. IV. Distance measurement from LBT optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Berg, Danielle [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Dolphin, Andrew, E-mail: kmcquinn@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: berg@astro.umn.edu, E-mail: jcannon@macalester.edu, E-mail: rhode@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States)

    2013-12-01

    Leo P is a low-luminosity dwarf galaxy discovered through the blind H I Arecibo Legacy Fast ALFA survey. The H I and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19{sub −0.50}{sup +0.17} mag corresponding to a distance of 1.72{sub −0.40}{sup +0.14} Mpc. Although our photometry reaches 3 mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ∼0.5 Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1 Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.

  17. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    Science.gov (United States)

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  18. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  19. Phylogenetic and evolutionary history of influenza B viruses, which caused a large epidemic in 2011-2012, Taiwan.

    Directory of Open Access Journals (Sweden)

    Ji-Rong Yang

    Full Text Available The annual recurrence of the influenza epidemic is considered to be primarily associated with immune escape due to changes to the virus. In 2011-2012, the influenza B epidemic in Taiwan was unusually large, and influenza B was predominant for a long time. To investigate the genetic dynamics of influenza B viruses during the 2011-2012 epidemic, we analyzed the sequences of 4,386 influenza B viruses collected in Taiwan from 2004 to 2012. The data provided detailed insight into the flux patterns of multiple genotypes. We found that a re-emergent TW08-I virus, which was the major genotype and had co-circulated with the two others, TW08-II and TW08-III, from 2007 to 2009 in Taiwan, successively overtook TW08-II in March and then underwent a lineage switch in July 2011. This lineage switch was followed by the large epidemic in Taiwan. The whole-genome compositions and phylogenetic relationships of the representative viruses of various genotypes were compared to determine the viral evolutionary histories. We demonstrated that the large influenza B epidemic of 2011-2012 was caused by Yamagata lineage TW08-I viruses that were derived from TW04-II viruses in 2004-2005 through genetic drifts without detectable reassortments. The TW08-I viruses isolated in both 2011-2012 and 2007-2009 were antigenically similar, indicating that an influenza B virus have persisted for 5 years in antigenic stasis before causing a large epidemic. The results suggest that in addition to the emergence of new variants with mutations or reassortments, other factors, including the interference of multi-types or lineages of influenza viruses and the accumulation of susceptible hosts, can also affect the scale and time of an influenza B epidemic.

  20. The Distance to M51

    Science.gov (United States)

    McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert

    2016-07-01

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  1. New measurements of distances to spirals in the great attractor - Further confirmation of the large-scale flow

    International Nuclear Information System (INIS)

    Dressler, A.; Faber, S.M.

    1990-01-01

    H-alpha rotation curves and CCD photometry have been obtained for 117 Sb-Sc spiral galaxies in the direction of the large-scale streaming flow. By means of the Tully-Fisher relation, these data are used to predict distances to these galaxies and, by comparison with their observed radial velocities, their peculiar motions relative to a smooth Hubble flow. The new data confirm the results of the earlier studies of a coherent flow pattern in a large region called the 'great attractor'. For the first time, evidence is found for backside infall into the great attractor. Taken as a whole, the data sets for E, S0, and spiral galaxies support the model proposed by Lynden-Bell et al. (1988) of a large, extended overdensity centered at about 45/h Mpc that perturbs the Hubble flow over a region less than about 100/h Mpc in diameter. Observation of the full 's-wave' in the Hubble flow establishes this scale for the structure, providing a strong constraint for models of structure formation, like those based on hot or cold dark matter. 24 refs

  2. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  3. Neotropical fish-fruit interactions: eco-evolutionary dynamics and conservation.

    Science.gov (United States)

    Correa, Sandra Bibiana; Costa-Pereira, Raul; Fleming, Theodore; Goulding, Michael; Anderson, Jill T

    2015-11-01

    Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems. © 2015 Cambridge Philosophical Society.

  4. Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty

    Science.gov (United States)

    Longo, Mark S; Carone, Dawn M; Green, Eric D; O'Neill, Michael J; O'Neill, Rachel J

    2009-01-01

    Background Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB), are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined. Results To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, Macropus eugenii, derived from centromeric regions (CEN), euchromatic regions (EU), and an evolutionary breakpoint (EB) that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s) and endogenous retroviruses (ERVs) and a depletion of short interspersed nucleotide elements (SINEs) shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33), known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements. Conclusion Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the divergence of marsupials

  5. Distinct retroelement classes define evolutionary breakpoints demarcating sites of evolutionary novelty

    Directory of Open Access Journals (Sweden)

    Green Eric D

    2009-07-01

    Full Text Available Abstract Background Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB, are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined. Results To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, Macropus eugenii, derived from centromeric regions (CEN, euchromatic regions (EU, and an evolutionary breakpoint (EB that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s and endogenous retroviruses (ERVs and a depletion of short interspersed nucleotide elements (SINEs shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33, known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements. Conclusion Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the

  6. A cognitively grounded measure of pronunciation distance.

    Directory of Open Access Journals (Sweden)

    Martijn Wieling

    Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  7. Particle swarm optimization for determining shortest distance to voltage collapse

    Energy Technology Data Exchange (ETDEWEB)

    Arya, L.D.; Choube, S.C. [Electrical Engineering Department, S.G.S.I.T.S. Indore, MP 452 003 (India); Shrivastava, M. [Electrical Engineering Department, Government Engineering College Ujjain, MP 456 010 (India); Kothari, D.P. [Centre for Energy Studies, Indian Institute of Technology, Delhi (India)

    2007-12-15

    This paper describes an algorithm for computing shortest distance to voltage collapse or determination of CSNBP using PSO technique. A direction along CSNBP gives conservative results from voltage security view point. This information is useful to the operator to steer the system away from this point by taking corrective actions. The distance to a closest bifurcation is a minimum of the loadability given a slack bus or participation factors for increasing generation as the load increases. CSNBP determination has been formulated as an optimization problem to be used in PSO technique. PSO is a new evolutionary algorithm (EA) which is population based inspired by the social behavior of animals such as fish schooling and birds flocking. It can handle optimization problems with any complexity since mechanization is simple with few parameters to be tuned. The developed algorithm has been implemented on two standard test systems. (author)

  8. Accurate and robust phylogeny estimation based on profile distances: a study of the Chlorophyceae (Chlorophyta

    Directory of Open Access Journals (Sweden)

    Rahmann Sven

    2004-06-01

    Full Text Available Abstract Background In phylogenetic analysis we face the problem that several subclade topologies are known or easily inferred and well supported by bootstrap analysis, but basal branching patterns cannot be unambiguously estimated by the usual methods (maximum parsimony (MP, neighbor-joining (NJ, or maximum likelihood (ML, nor are they well supported. We represent each subclade by a sequence profile and estimate evolutionary distances between profiles to obtain a matrix of distances between subclades. Results Our estimator of profile distances generalizes the maximum likelihood estimator of sequence distances. The basal branching pattern can be estimated by any distance-based method, such as neighbor-joining. Our method (profile neighbor-joining, PNJ then inherits the accuracy and robustness of profiles and the time efficiency of neighbor-joining. Conclusions Phylogenetic analysis of Chlorophyceae with traditional methods (MP, NJ, ML and MrBayes reveals seven well supported subclades, but the methods disagree on the basal branching pattern. The tree reconstructed by our method is better supported and can be confirmed by known morphological characters. Moreover the accuracy is significantly improved as shown by parametric bootstrap.

  9. The Evolutionary Puzzle of Suicide

    Directory of Open Access Journals (Sweden)

    Henri-Jean Aubin

    2013-12-01

    Full Text Available Mechanisms of self-destruction are difficult to reconcile with evolution’s first rule of thumb: survive and reproduce. However, evolutionary success ultimately depends on inclusive fitness. The altruistic suicide hypothesis posits that the presence of low reproductive potential and burdensomeness toward kin can increase the inclusive fitness payoff of self-removal. The bargaining hypothesis assumes that suicide attempts could function as an honest signal of need. The payoff may be positive if the suicidal person has a low reproductive potential. The parasite manipulation hypothesis is founded on the rodent—Toxoplasma gondii host-parasite model, in which the parasite induces a “suicidal” feline attraction that allows the parasite to complete its life cycle. Interestingly, latent infection by T. gondii has been shown to cause behavioral alterations in humans, including increased suicide attempts. Finally, we discuss how suicide risk factors can be understood as nonadaptive byproducts of evolved mechanisms that malfunction. Although most of the mechanisms proposed in this article are largely speculative, the hypotheses that we raise accept self-destructive behavior within the framework of evolutionary theory.

  10. Distance-two interpolation for parallel algebraic multigrid

    International Nuclear Information System (INIS)

    Sterck, H de; Falgout, R D; Nolting, J W; Yang, U M

    2007-01-01

    In this paper we study the use of long distance interpolation methods with the low complexity coarsening algorithm PMIS. AMG performance and scalability is compared for classical as well as long distance interpolation methods on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers

  11. Evolutionary trade-offs in kidney injury and repair.

    Science.gov (United States)

    Lei, Yutian; Anders, Hans-Joachim

    2017-11-01

    Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.

  12. Comparative Genomics of Chrysochromulina Ericina Virus and Other Microalga-Infecting Large DNA Viruses Highlights Their Intricate Evolutionary Relationship with the Established Mimiviridae Family.

    Science.gov (United States)

    Gallot-Lavallée, Lucie; Blanc, Guillaume; Claverie, Jean-Michel

    2017-07-15

    Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina , formerly Chrysochromulina ericina ), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera ( Mimivirus and Cafeteriavirus ) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae , they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes. IMPORTANCE Although it infects the microalga Chrysochromulina ericina , CeV is more closely

  13. Large distance of epsilon Aurigae inferred from interstellar absorption and reddening

    Czech Academy of Sciences Publication Activity Database

    Guinan, E. F.; Mayer, P.; Harmanec, P.; Božić, H.; Brož, M.; Nemravová, J.; Engle, S.; Šlechta, Miroslav; Zasche, P.; Wolf, M.; Korčáková, D.; Johnston, C.

    2012-01-01

    Roč. 546, October (2012), A123/1-A123/15 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : AGB and post-AGB stars * distances * eclipsing Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  14. Revised Distances to 21 Supernova Remnants

    Science.gov (United States)

    Ranasinghe, S.; Leahy, D. A.

    2018-05-01

    We carry out a comprehensive study of H I 21 cm line observations and 13CO line observations of 21 supernova remnants (SNRs). The aim of the study is to search for H I absorption features to obtain kinematic distances in a consistent manner. The 21 SNRs are in the region of sky covered by the Very Large Array Galactic Plane Survey (H I 21 cm observations) and Galactic Ring Survey (13CO line observations). We obtain revised distances for 10 SNRs based on new evidence in the H I and 13CO observations. We revise distances for the other 11 SNRs based on an updated rotation curve and new error analysis. The mean change in distance for the 21 SNRs is ≃25%, i.e., a change of 1.5 kpc compared to a mean distance for the sample of 6.4 kpc. This has a significant impact on interpretation of the physical state of these SNRs. For example, using a Sedov model, age and explosion energy scale as the square of distance, and inferred ISM density scales as distance.

  15. 36 CFR 13.1206 - Wildlife distance conditions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Wildlife distance conditions. 13.1206 Section 13.1206 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1206 Wildlife distance conditions. (a) Approaching a bear or any large mammal within 50 yards...

  16. 36 CFR 13.604 - Wildlife distance conditions.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Wildlife distance conditions. 13.604 Section 13.604 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... § 13.604 Wildlife distance conditions. (a) Approaching a bear or any large mammal within 50 yards is...

  17. Transient diagnosis system using quantum-inspired computing and Minkowski distance

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b [Federal University of Rio de Janeiro (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program

    2011-07-01

    This paper proposes a diagnosis system model for identification of transient in a PWR nuclear power plant, optimized by the Quantum Inspired Evolutionary Algorithm - QEA in order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition. This method was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the nuclear power plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). This System compares the similarly distance between the set of variables of the anomalous event, in a given time t, and the centroids of the design-basis transient variables. The lower similarly distance indicates the class of the transient to which the anomalous event belongs. The QEA was then used to find the best position of the centroids of each class of the selected transients. Such positions maximize the number of the correct classifications. Unlike the diagnosis system proposed in the literature, Minkowski distance was employed to calculate the similarity distance. The signatures of four transients were submitted to 1% and 2% of noise, and tested with prototype vector found by QEA. The results showed that the present transient diagnostic system was successfully implemented in the nuclear accident identification problem and was compatible with the techniques presented in the literature. (author)

  18. Transient diagnosis system using quantum-inspired computing and Minkowski distance

    International Nuclear Information System (INIS)

    Nicolau, Andressa dos Santos; Schirru, Roberto

    2011-01-01

    This paper proposes a diagnosis system model for identification of transient in a PWR nuclear power plant, optimized by the Quantum Inspired Evolutionary Algorithm - QEA in order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition. This method was developed in order to be able to recognize the normal condition and three accidents of the design basis list of the nuclear power plant Angra 2, postulated in the Final Safety Analysis Report (FSAR). This System compares the similarly distance between the set of variables of the anomalous event, in a given time t, and the centroids of the design-basis transient variables. The lower similarly distance indicates the class of the transient to which the anomalous event belongs. The QEA was then used to find the best position of the centroids of each class of the selected transients. Such positions maximize the number of the correct classifications. Unlike the diagnosis system proposed in the literature, Minkowski distance was employed to calculate the similarity distance. The signatures of four transients were submitted to 1% and 2% of noise, and tested with prototype vector found by QEA. The results showed that the present transient diagnostic system was successfully implemented in the nuclear accident identification problem and was compatible with the techniques presented in the literature. (author)

  19. Robustness of cooperation in the evolutionary prisoner's dilemma on complex networks

    International Nuclear Information System (INIS)

    Poncela, J; Gomez-Gardenes, J; FlorIa, L M; Moreno, Y

    2007-01-01

    Recent studies on the evolutionary dynamics of the prisoner's dilemma game in scale-free networks have demonstrated that the heterogeneity of the network interconnections enhances the evolutionary success of cooperation. In this paper we address the issue of how the characterization of the asymptotic states of the evolutionary dynamics depends on the initial concentration of cooperators. We find that the measure and the connectedness properties of the set of nodes where cooperation reaches fixation is largely independent of initial conditions, in contrast with the behaviour of both the set of nodes where defection is fixed, and the fluctuating nodes. We also check for the robustness of these results when varying the degree heterogeneity along a one-parametric family of networks interpolating between the class of Erdos-Renyi graphs and the Barabasi-Albert networks

  20. Comparing multi-objective non-evolutionary NLPQL and evolutionary genetic algorithm optimization of a DI diesel engine: DoE estimation and creating surrogate model

    International Nuclear Information System (INIS)

    Navid, Ali; Khalilarya, Shahram; Taghavifar, Hadi

    2016-01-01

    Highlights: • NLPQL algorithm with Latin hypercube and multi-objective GA were applied on engine. • NLPQL converge to the best solution at RunID41, MOGA introduces at RunID84. • Deeper, more encircled design gives the lowest NOx, greater radius and deeper bowl the highest IMEP. • The maximum IMEP and minimum ISFC obtained with NLPQL, the lowest NOx with MOGA. - Abstract: This study is concerned with the application of two major kinds of optimization algorithms on the baseline diesel engine in the class of evolutionary and non-evolutionary algorithms. The multi-objective genetic algorithm and non-linear programming by quadratic Lagrangian (NLPQL) method have completely different functions in optimizing and finding the global optimal design. The design variables are injection angle, half spray cone angle, inner distance of the bowl wall, and the bowl radius, while the objectives include NOx emission, spray droplet diameter, indicated mean effective pressure (IMEP), and indicated specific fuel consumption (ISFC). The restrictions were set on the objectives to distinguish between feasible designs and infeasible designs to sort those cases that cannot fulfill the demands of diesel engine designers and emission control measures. It is found that a design with deeper bowl and more encircled shape (higher swirl motion) is more suitable for NO_x emission control, whereas designs with a bigger bowl radius, and closer inner wall distance of the bowl (Di) may lead to higher engine efficiency indices. Moreover, it was revealed that the NLPQL could rapidly search for the best design at Run ID 41 compared to genetic algorithm, which is able to find the global optima at last runs (ID 84). Both techniques introduce almost the same geometrical shape of the combustion chamber with a negligible contrast in the injection system.

  1. Behavior of the hadron potential at large distances and properties of the hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Predazzi, E.; Selyugin, O.V.

    2002-01-01

    The impact of the form of the hadron potential at large distances on the behavior of the hadron spin-flip amplitude at small angles is examined. The t-dependence of the spin-flip amplitude of high-energy hadron elastic scattering is analyzed under different assumptions on the hadron interaction. It is shown that the long tail of the nonGaussian form of the hadron potential of the hadron interaction in the impact parameter representation leads to a large value of the slope of the spin-flip amplitude (without the kinematical factor √(vertical stroke t vertical stroke)) as compared with the slope of the spin-nonflip amplitude. This effect can explain the form of the differential cross-section and the analyzing power at small transfer momenta. The methods for the definition of the spin-dependent part of the hadron scattering amplitude are presented. A possibility to investigate the structure of the hadron spin-flip amplitude from the accurate measure of the differential cross-section and the spin correlation parameters is shown. (orig.)

  2. Inconsistent Distances in Substitution Matrices can be Avoided by Properly Handling Hydrophobic Residues

    Directory of Open Access Journals (Sweden)

    J. Baussand

    2008-01-01

    Full Text Available The adequacy of substitution matrices to model evolutionary relationships between amino acid sequences can be numerically evaluated by checking the mathematical property of triangle inequality for all triplets of residues. By converting substitution scores into distances, one can verify that a direct path between two amino acids is shorter than a path passing through a third amino acid in the amino acid space modeled by the matrix. If the triangle inequality is not verified, the intuition is that the evolutionary signal is not well modeled by the matrix, that the space is locally inconsistent and that the matrix construction was probably based on insufficient biological data. Previous analysis on several substitution matrices revealed that the number of triplets violating the triangle inequality increases with sequence divergence. Here, we compare matrices which are dedicated to the alignment of highly divergent proteins. The triangle inequality is tested on several classical substitution matrices as well as in a pair of “complementary” substitution matrices recording the evolutionary pressures inside and outside hydrophobic blocks in protein sequences. The analysis proves the crucial role of hydrophobic residues in substitution matrices dedicated to the alignment of distantly related proteins.

  3. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...

  4. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  5. The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis

    Science.gov (United States)

    2011-01-01

    Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552

  6. The performance of the Congruence Among Distance Matrices (CADM test in phylogenetic analysis

    Directory of Open Access Journals (Sweden)

    Lapointe François-Joseph

    2011-03-01

    Full Text Available Abstract Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa, the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously.

  7. Gene genealogies indicates abundant gene conversions and independent evolutionary histories of the mating-type chromosomes in the evolutionary history of Neurospora tetrasperma

    Directory of Open Access Journals (Sweden)

    Whittle Carrie A

    2010-07-01

    Full Text Available Abstract Background The self-fertile filamentous ascomycete Neurospora tetrasperma contains a large (~7 Mbp and young (mat chromosomes. The objective of the present study is to reveal the evolutionary history, including key genomic events, associated with the various regions of the mat chromosomes among ten strains representing all the nine known species (lineages contained within the N. tetrasperma species complex. Results Comparative analysis of sequence divergence among alleles of 24 mat-linked genes (mat A and mat a indicates that a large region of suppressed recombination exists within the mat chromosome for each of nine lineages of N. tetrasperma sensu latu. The recombinationally suppressed region varies in size and gene composition among lineages, and is flanked on both ends by normally recombining regions. Genealogical analyses among lineages reveals that eight gene conversion events have occurred between homologous mat A and mat a-linked alleles of genes located within the region of restricted recombination during the evolutionary history of N. tetrasperma. Conclusions We conclude that the region of suppressed recombination in the mat chromosomes has likely been subjected to independent contraction and/or expansion during the evolutionary history of the N. tetrasperma species complex. Furthermore, we infer that gene conversion events are likely a common phenomenon within this recombinationally suppressed genomic region. We argue that gene conversions might provide an efficient mechanism of adaptive editing of functional genes, including the removal of deleterious mutations, within the young recombinationally suppressed region of the mat chromosomes.

  8. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  9. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  10. Low Count Anomaly Detection at Large Standoff Distances

    Science.gov (United States)

    Pfund, David Michael; Jarman, Kenneth D.; Milbrath, Brian D.; Kiff, Scott D.; Sidor, Daniel E.

    2010-02-01

    Searching for hidden illicit sources of gamma radiation in an urban environment is difficult. Background radiation profiles are variable and cluttered with transient acquisitions from naturally occurring radioactive materials and medical isotopes. Potentially threatening sources likely will be nearly hidden in this noise and encountered at high standoff distances and low threat count rates. We discuss an anomaly detection algorithm that characterizes low count sources as threatening or non-threatening and operates well in the presence of high benign source variability. We discuss the algorithm parameters needed to reliably find sources both close to the detector and far away from it. These parameters include the cutoff frequencies of background tracking filters and the integration time of the spectrometer. This work is part of the development of the Standoff Radiation Imaging System (SORIS) as part of DNDO's Standoff Radiation Detection System Advanced Technology Demonstration (SORDS-ATD) program.

  11. Regional variation in short distance homogamy

    OpenAIRE

    Haandrikman, Karen; van Wissen, Leo

    2011-01-01

    A third of all Dutch cohabiters choose a partner from the same municipality, so-called short distance homogamy. This article analyses the regional variation in this phenomenon, and it explains this variation in terms of geographical, socioeconomic, demographic and cultural determinants. Population register data on all new cohabiters in 2004 were used. Regression methods were employed to explain spatial patterns. Regional variation in short distance homogamy is largely explained by geographica...

  12. An Evolutionary Game Theory Model of Revision-Resistant Motivations and Strategic Reasoning

    National Research Council Canada - National Science Library

    DeLancey, Craig

    2008-01-01

    Strong reciprocity and other forms of cooperation with non-kin in large groups and in one-time social interactions is difficult to explain with traditional economic or with simple evolutionary accounts...

  13. The Evolutionary Origin of Female Orgasm.

    Science.gov (United States)

    Pavličev, Mihaela; Wagner, Günter

    2016-09-01

    The evolutionary explanation of female orgasm has been difficult to come by. The orgasm in women does not obviously contribute to the reproductive success, and surprisingly unreliably accompanies heterosexual intercourse. Two types of explanations have been proposed: one insisting on extant adaptive roles in reproduction, another explaining female orgasm as a byproduct of selection on male orgasm, which is crucial for sperm transfer. We emphasize that these explanations tend to focus on evidence from human biology and thus address the modification of a trait rather than its evolutionary origin. To trace the trait through evolution requires identifying its homologue in other species, which may have limited similarity with the human trait. Human female orgasm is associated with an endocrine surge similar to the copulatory surges in species with induced ovulation. We suggest that the homolog of human orgasm is the reflex that, ancestrally, induced ovulation. This reflex became superfluous with the evolution of spontaneous ovulation, potentially freeing female orgasm for other roles. This is supported by phylogenetic evidence showing that induced ovulation is ancestral, while spontaneous ovulation is derived within eutherians. In addition, the comparative anatomy of female reproductive tract shows that evolution of spontaneous ovulation is correlated with increasing distance of clitoris from the copulatory canal. In summary, we suggest that the female orgasm-like trait may have been adaptive, however for a different role, namely for inducing ovulation. With the evolution of spontaneous ovulation, orgasm was freed to gain secondary roles, which may explain its maintenance, but not its origin. © 2016 Wiley Periodicals, Inc.

  14. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  15. Divergent evolutionary processes associated with colonization of offshore islands.

    Science.gov (United States)

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  16. Cooperation and conflict in cancer: An evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Featherston

    2012-09-01

    Full Text Available Evolutionary approaches to carcinogenesis have gained prominence in the literature and enhanced our understanding of cancer. However, an appreciation of neoplasia in the context of evolutionary transitions, particularly the transition from independent genes to a fullyintegrated genome, is largely absent. In the gene–genome evolutionary transition, mobile genetic elements (MGEs can be studied as the extant exemplars of selfish autonomous lowerlevel units that cooperated to form a higher-level, functionally integrated genome. Here,we discuss levels of selection in cancer cells. In particular, we examine the tension between gene and genome units of selection by examining the expression profiles of MGE domains in an array of human cancers. Overall, across diverse cancers, there is an aberrant expression of several families of mobile elements, including the most common MGE in the human genome, retrotransposon LINE 1. These results indicate an alternative life-history strategy for MGEs in the cancers studied. Whether the aberrant expression is the cause or effect oftumourigenesis is unknown, although some evidence suggests that dysregulation of MGEs can play a role in cancer origin and progression. These data are interpreted in combination with phylostratigraphic reports correlating the origin of cancer genes with multicellularity and other potential increases in complexity in cancer cell populations. Cooperation and conflict between individuals at the gene, genome and cell level provide an evolutionary medicineperspective of cancer that enhances our understanding of disease pathogenesis and treatment.

  17. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  18. Minimal barcode distance between two water mite species from Madeira Island: a cautionary tale.

    Science.gov (United States)

    García-Jiménez, Ricardo; Horreo, Jose Luis; Valdecasas, Antonio G

    2017-06-01

    In this work, we compare morphological and molecular data in their ability to distinguish between species of water mites (Acari, Prostigmata, Hydrachnidia). We have focused on the two species of the genus Lebertia inhabiting the island of Madeira. While traditional morphological traits were initially sufficient to distinguish between these two species, the molecular data were more dependable on the kind of analysis carried out. Single arbitrary genetic distance (e.g. a K2P distance below 2%) may lead to the conclusion that the specimens under study belong to the same species. Analysing the same specimens with the coalescent model has proved the evolutionary independence of both Lebertia clades in Madeira. Furthermore, multi-rate Poisson Tree Process analysis confirmed both lineages as independent species. Our results agree with previous studies warning of the dangers of rigid species delimitation based on arbitrary molecular distances. In addition, the importance of different molecular data approaches for correct species delimitation in water mites is highlighted.

  19. Large distance expansion of mutual information for disjoint disks in a free scalar theory

    Energy Technology Data Exchange (ETDEWEB)

    Agón, Cesar A.; Cohen-Abbo, Isaac; Schnitzer, Howard J. [Martin Fisher School of Physics, Brandeis University,Waltham, MA 02454 (United States)

    2016-11-11

    We compute the next-to-leading order term in the long-distance expansion of the mutual information for free scalars in three space-time dimensions. The geometry considered is two disjoint disks separated by a distance r between their centers. No evidence for non-analyticity in the Rényi parameter n for the continuation n→1 in the next-to-leading order term is found.

  20. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  1. Development of the table of initial isolation distances and protective action distances for the 2004 emergency response guidebook.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. F.; Freeman, W. A.; Carhart, R. A.; Krumpolc, M.; Decision and Information Sciences; Univ. of Illinois at Chicago

    2005-09-23

    This report provides technical documentation for values in the Table of Initial Isolation and Protective Action Distances (PADs) in the 2004 Emergency Response Guidebook (ERG2004). The objective for choosing the PADs specified in the ERG2004 is to balance the need to adequately protect the public from exposure to potentially harmful substances against the risks and expenses that could result from overreacting to a spill. To quantify this balance, a statistical approach is adopted, whereby the best available information is used to conduct an accident scenario analysis and develop a set of up to 1,000,000 hypothetical incidents. The set accounts for differences in containers types, incident types, accident severity (i.e., amounts released), locations, times of day, times of year, and meteorological conditions. Each scenario is analyzed using detailed emission rate and atmospheric dispersion models to calculate the downwind chemical concentrations from which a 'safe distance' is determined. The safe distance is defined as the distance downwind from the source at which the chemical concentration falls below health protection criteria. The American Industrial Hygiene Association's Emergency Response Planning Guideline Level 2 (ERPG-2) or equivalent is the health criteria used. The statistical sample of safe distance values for all incidents considered in the analysis are separated into four categories: small spill/daytime release, small spill/nighttime release, large spill/daytime release, and large spill/nighttime release. The 90th-percentile safe distance values for each of these groups became the PADs that appear in the ERG2004.

  2. Understanding Turkish students' preferences for distance education depending on financial circumstances: A large-scale CHAID analysis

    Science.gov (United States)

    Firat, Mehmet

    2017-04-01

    In the past, distance education was used as a method to meet the educational needs of citizens with limited options to attend an institution of higher education. Nowadays, it has become irreplaceable in higher education thanks to developments in instructional technology. But the question of why students choose distance education is still important. The purpose of this study was to determine Turkish students' reasons for choosing distance education and to investigate how these reasons differ depending on their financial circumstances. The author used a Chi squared Automatic Interaction Detector (CHAID) analysis to determine 18,856 Turkish students' reasons for choosing distance education. Results of the research revealed that Turkish students chose distance education not because of geographical limitations, family-related problems or economic difficulties, but for such reasons as already being engaged in their profession, increasing their knowledge, and seeking promotion to a better position.

  3. Brown dwarf distances and atmospheres: Spitzer Parallaxes and the Keck/NIRSPEC upgrade

    Science.gov (United States)

    Martin, Emily C.

    2018-01-01

    Advances in infrared technology have been essential towards improving our understanding of the solar neighborhood, revealing a large population of brown dwarfs, which span the mass regime between planets and stars. My thesis combines near-infrared (NIR) spectroscopic and astrometric analysis of nearby low-mass stars and brown dwarfs with instrumentation work to upgrade the NIRSPEC instrument for the Keck II Telescope. I will present results from a program using Spitzer/IRAC data to measure precise locations and distances to 22 of the coldest and closest brown dwarfs. These distances allow us to constrain absolute physical properties, such as mass, radius, and age, of free-floating planetary-mass objects through comparison to atmospheric and evolutionary models. NIR spectroscopy combined with the Spitzer photometry reveals a detailed look into the atmospheres of brown dwarfs and gaseous extrasolar planets. Additionally, I will discuss the improvements we are making to the NIRSPEC instrument at Keck. NIRSPEC is a NIR echelle spectrograph, capable of R~2000 and R~25,000 observations in the 1-5 μm range. As part of the upgrade, I performed detector characterization, optical design of a new slit-viewing camera, mechanical testing, and electronics design. NIRSPEC’s increased efficiency will allow us to obtain moderate- and high-resolution NIR spectra of objects up to a magnitude fainter than the current NIRSPEC design. Finally, I will demonstrate the utility of a NIR laser frequency comb as a high-resolution calibrator. This new technology will revolutionize precision radial velocity measurements in the coming decade.

  4. A Short-Range Distance Sensor with Exceptional Linearity

    Science.gov (United States)

    Simmons, Steven; Youngquist, Robert

    2013-01-01

    A sensor has been demonstrated that can measure distance over a total range of about 300 microns to an accuracy of about 0.1 nm (resolution of about 0.01 nm). This represents an exceptionally large dynamic range of operation - over 1,000,000. The sensor is optical in nature, and requires the attachment of a mirror to the object whose distance is being measured. This work resulted from actively developing a white light interferometric system to be used to measure the depths of defects in the Space Shuttle Orbiter windows. The concept was then applied to measuring distance. The concept later expanded to include spectrometer calibration. In summary, broadband (i.e., white) light is launched into a Michelson interferometer, one mirror of which is fixed and one of which is attached to the object whose distance is to be measured. The light emerging from the interferometer has traveled one of two distances: either the distance to the fixed mirror and back, or the distance to the moving mirror and back. These two light beams mix and produce an interference pattern where some wavelengths interfere constructively and some destructively. Sending this light into a spectrometer allows this interference pattern to be analyzed, yielding the net distance difference between the two paths. The unique feature of this distance sensor is its ability to measure accurately distance over a dynamic range of more than one million, the ratio of its range (about 300 microns) to its accuracy (about 0.1 nanometer). Such a large linear operating range is rare and arises here because both amplitude and phase-matching algorithms contribute to the performance. The sensor is limited by the need to attach a mirror of some kind to the object being tracked, and by the fairly small total range, but the exceptional dynamic range should make it of interest.

  5. Molecular phylogeography and evolutionary history of Poropuntius huangchuchieni (Cyprinidae in Southwest China.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The evolution of the Yunnan Plateau's drainages network during the Pleistocene was dominated by the intense uplifts of the Qinghai-Tibetan Plateau. In the present study, we investigated the association between the evolutionary histories of three main drainage systems and the geographic patterns of genetic differentiation of Poropuntius huangchuchieni.We sequenced the complete sequences of mitochondrial control region for 304 specimens and the sequences of Cytochrome b gene for 15 specimens of the species P. huangchuchieni and 5 specimens of Poropuntius opisthoptera. Phylogenetic analysis identified five major lineages, of which lineages MK-A and MK-B constrained to the Mekong River System, lineages RL and LX to the Red River System, and lineage SW to the Salween River System. The genetic distance and network analysis detected significant divergences among these lineages. Mismatch distribution analysis implied that the population of P. huangchuchieni underwent demographic stability and the lineage MK-B, sublineages MK-A1 and LX-1 underwent a recent population expansion. The divergence of the 5 major lineages was dated back to 0.73-1.57 MYA.Our results suggest that P. opisthoptera was a paraphyletic group of P. huangchuchieni. The phylogenetic pattern of P. huangchuchieni was mostly associated with the drainage's structures and the geomorphological history of the Southwest Yunnan Plateau. Also the differentiation of the major lineages among the three drainages systems coincides with the Kunlun-Yellow River Movement (1.10-0.60 MYA. The genetic differentiation within river basins and recent demographical expansions that occurred in some lineages and sublineages are consistent with the palaeoclimatic oscillations during the Pleistocene. Additionally, our results also suggest that the populations of P. huangchuchieni had keep long term large effective population sizes and demographic stability in the recent evolutionary history, which may be

  6. TSO Study Project on Development of a Common Safety Approach in the EU for Large Evolutionary Pressurised Water Reactors

    International Nuclear Information System (INIS)

    2001-10-01

    In pursuance of the objectives of the Council Resolutions of 1975 and 1992 on the technological issues of nuclear safety, the European Commission (EC) is seeking to promote a sustained joint in-depth study on possible significant future nuclear power reactor safety cases. To that end the EC decided to support financially a study by the grouping of the European Union Technical Safety Organisations (TSOG). The general objective of the study programme was to promote, through a collaboration of European Union Technical Safety Organisations (TSOs), common views on technical safety issues related to large evolutionary PWRs in Europe, which could be ready for operation during the next decade. AVN (Belgium) (Technical project leader), AEA Technology (United Kingdom), ANPA (Italy) CIEMAT (Spain), GRS (Germany), IPSN (France), were the TSOs participating in the study which was co-ordinated by RISKAUDIT. The study focused notably on the EPR project initiated by the French and German utilities and vendors. It also considered relevant projects, even of plants of different size, developed outside the European Union in order to provide elements important for the safety characterisation and which could contribute to the credibility and confidence of EPR. It is expected that this study will constitute a significant step towards the development of a common safety approach in EU countries. The study constitutes an important step forward in the development of a common approach of the TSOs to the safety of advanced evolutionary pressurised water reactors. This goal was mainly achieved by an in-depth analysis of the key safety issues, taking into account new developments in the national technical safety objectives and in the EPR design. For this reason the Commission has decided to publish at least the present summary report containing the main outcomes of the TSO study. Confidentiality considerations unfortunately prevent the open publication of the full series of reports. (author)

  7. Prediction of strong earthquake motions on rock surface using evolutionary process models

    International Nuclear Information System (INIS)

    Kameda, H.; Sugito, M.

    1984-01-01

    Stochastic process models are developed for prediction of strong earthquake motions for engineering design purposes. Earthquake motions with nonstationary frequency content are modeled by using the concept of evolutionary processes. Discussion is focused on the earthquake motions on bed rocks which are important for construction of nuclear power plants in seismic regions. On this basis, two earthquake motion prediction models are developed, one (EMP-IB Model) for prediction with given magnitude and epicentral distance, and the other (EMP-IIB Model) to account for the successive fault ruptures and the site location relative to the fault of great earthquakes. (Author) [pt

  8. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes.

    Science.gov (United States)

    Chen, Jianshun; Chen, Qiaomiao; Jiang, Lingli; Cheng, Changyong; Bai, Fan; Wang, Jun; Mo, Fan; Fang, Weihuan

    2010-03-31

    , and one atypical subgroup D serving as a link between L. monocytogenes and L. innocua in the evolutionary chain. Although subgroups A and B appeared at approximately the same time, subgroup A seems to have experienced a recent expansion of the population size with higher recombination frequency and effect than those of subgroup B, and might represent the possible evolutionary direction towards adaptation to environments. The evolutionary history in the L. monocytogenes-L. innocua clade represents a rare example of evolution towards reduced virulence of pathogens.

  9. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes

    Science.gov (United States)

    2010-01-01

    major subgroups A and B, and one atypical subgroup D serving as a link between L. monocytogenes and L. innocua in the evolutionary chain. Although subgroups A and B appeared at approximately the same time, subgroup A seems to have experienced a recent expansion of the population size with higher recombination frequency and effect than those of subgroup B, and might represent the possible evolutionary direction towards adaptation to enviroments. The evolutionary history in the L. monocytogenes-L. innocua clade represents a rare example of evolution towards reduced virulence of pathogens. PMID:20356375

  10. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  11. The origins of pedagogy: developmental and evolutionary perspectives.

    Science.gov (United States)

    Skerry, Amy E; Lambert, Enoch; Powell, Lindsey J; McAuliffe, Katherine

    2013-07-18

    The question of whether and how information is actively transferred from knowledgeable to ignorant individuals has received much attention in psychology and evolutionary biology. Research in these fields has proceeded largely independently, with studies of nonhuman animals focusing on knowledgeable individuals and whether or not they meet a functional definition of teaching, while studies of children focus on the learner's assumptions and inferences. We argue that a comprehensive theory of teaching will benefit from integrating perspectives and empirical phenomena from evolutionary and developmental disciplines. In this review, we identify cases of seemingly purposeful information transfer (i.e. teaching) in human and nonhuman animals, discuss what is known about the cognitive processes that support teaching in different species, and highlight ways in which each discipline might be informed by extant theories and empirical tools from the other.

  12. Testing modified gravity at large distances with the HI Nearby Galaxy Survey's rotation curves

    Science.gov (United States)

    Mastache, Jorge; Cervantes-Cota, Jorge L.; de la Macorra, Axel

    2013-03-01

    Recently a new—quantum motivated—theory of gravity has been proposed that modifies the standard Newtonian potential at large distances when spherical symmetry is considered. Accordingly, Newtonian gravity is altered by adding an extra Rindler acceleration term that has to be phenomenologically determined. Here we consider a standard and a power-law generalization of the Rindler modified Newtonian potential. The new terms in the gravitational potential are hypothesized to play the role of dark matter in galaxies. Our galactic model includes the mass of the integrated gas, and stars for which we consider three stellar mass functions (Kroupa, diet-Salpeter, and free mass model). We test this idea by fitting rotation curves of seventeen low surface brightness galaxies from the HI Nearby Galaxy Survey (THINGS). We find that the Rindler parameters do not perform a suitable fit to the rotation curves in comparison to standard dark matter profiles (Navarro-Frenk-White and Burkert) and, in addition, the computed parameters of the Rindler gravity show a high spread, posing the model as a nonacceptable alternative to dark matter.

  13. Trans-National Genetic Distance and Genetic Identity of Barak Valley Hindus en Route the Journey of Mankind from Africa for ABO Gene

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2011-08-01

    Full Text Available The present study aimed at estimating the genetic distance and genetic identity between Barak Valley Hindus and other twenty four nations for ABO blood group gene along the route of historic journey of mankind from Africa as proposed by Stephen Oppenheimer to gain insights on the evolutionary relationship and genetic closeness of the Hindus with other nations. Barak Valley Zone, located in southern part of Assam state in North East India, has inhabited the major endogamous group, the Hindus, for several centuries. Over the last few decades, they have maintained distinct culture and life style. This study used ABO gene frequency data of these populations to estimate Neis standard genetic distance and genetic identity of population genetics between Barak Valley Hindus and other nations. The historic journey of mankind commenced from Africa about 200,000 years ago (www.bradshawfoundation.com. Genetic distance estimate ranged from 0.07 to 5.18%. Barak Valley Hindus (BVH showed relatively low genetic distance for ABO gene with the populations of Saudi Arabia (0.07%, India (0.13%, Borneo (0.40%, Russia (0.59%, Central Asia (0.60%, Siberia (0.60%, South China (0.71% and Sri Lanka (0.93% suggesting high genetic identity and possible evolutionary relationship of BVH during migration with these nations. But the BVH showed highest genetic distance with Australia (5.18% followed by Norway (4.13%, Sudan (3.89% and Sweden (3.60% indicating low genetic identity of BVH with these nations. Migration was not the key determining factor in changing the ABO gene frequency in human populations.

  14. Trans-National Genetic Distance and Genetic Identity of Barak Valley Hindus en Route the Journey of Mankind from Africa for ABO Gene

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2011-08-01

    Full Text Available The present study aimed at estimating the genetic distance and genetic identity between Barak Valley Hindus and other twenty four nations for ABO blood group gene along the route of historic journey of mankind from Africa as proposed by Stephen Oppenheimer to gain insights on the evolutionary relationship and genetic closeness of the Hindus with other nations. Barak Valley Zone, located in southern part of Assam state in North East India, has inhabited the major endogamous group, the Hindus, for several centuries. Over the last few decades, they have maintained distinct culture and life style. This study used ABO gene frequency data of these populations to estimate Nei�s standard genetic distance and genetic identity of population genetics between Barak Valley Hindus and other nations. The historic journey of mankind commenced from Africa about 200,000 years ago (www.bradshawfoundation.com. Genetic distance estimate ranged from 0.07 to 5.18%. Barak Valley Hindus (BVH showed relatively low genetic distance for ABO gene with the populations of Saudi Arabia (0.07%, India (0.13%, Borneo (0.40%, Russia (0.59%, Central Asia (0.60%, Siberia (0.60%, South China (0.71% and Sri Lanka (0.93% suggesting high genetic identity and possible evolutionary relationship of BVH during migration with these nations. But the BVH showed highest genetic distance with Australia (5.18% followed by Norway (4.13%, Sudan (3.89% and Sweden (3.60% indicating low genetic identity of BVH with these nations. Migration was not the key determining factor in changing the ABO gene frequency in human populations.

  15. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    Science.gov (United States)

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  17. The citation field of evolutionary economics

    NARCIS (Netherlands)

    Dolfsma, Wilfred; Leydesdorff, Loet

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal

  18. Towards a mechanistic foundation of evolutionary theory.

    Science.gov (United States)

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  19. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    Science.gov (United States)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  20. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    Science.gov (United States)

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  1. Where Evolutionary Psychology Meets Cognitive Neuroscience: A Précis to Evolutionary Cognitive Neuroscience1

    Directory of Open Access Journals (Sweden)

    Austen L. Krill

    2007-01-01

    Full Text Available Cognitive neuroscience, the study of brain-behavior relationships, has long attempted to map the brain. The discipline is flourishing, with an increasing number of functional neuroimaging studies appearing in the scientific literature daily. Unlike biology and even psychology, the cognitive neurosciences have only recently begun to apply evolutionary meta-theory and methodological guidance. Approaching cognitive neuroscience from an evolutionary perspective allows scientists to apply biologically based theoretical guidance to their investigations and can be conducted in both humans and nonhuman animals. In fact, several investigations of this sort are underway in laboratories around the world. This paper and two new volumes (Platek, Keenan, and Shackelford [Eds.], 2007; Platek and Shackelford [Eds.], under contract represent the first formal attempts to document the burgeoning field of evolutionary cognitive neuroscience. Here, we briefly review the current state of the science of evolutionary cognitive neuroscience, the methods available to the evolutionary cognitive neuroscientist, and what we foresee as the future directions of the discipline.

  2. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  3. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  4. Essays on nonlinear evolutionary game dynamics

    NARCIS (Netherlands)

    Ochea, M.I.

    2010-01-01

    Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis

  5. Extrapolating Weak Selection in Evolutionary Games

    Science.gov (United States)

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  6. Integrating genomics into evolutionary medicine.

    Science.gov (United States)

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    Science.gov (United States)

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  8. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  9. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs.

    Science.gov (United States)

    Moen, Daniel S; Irschick, Duncan J; Wiens, John J

    2013-12-22

    Many clades contain ecologically and phenotypically similar species across continents, yet the processes generating this similarity are largely unstudied, leaving fundamental questions unanswered. Is similarity in morphology and performance across assemblages caused by evolutionary convergence or by biogeographic dispersal of evolutionarily conserved ecotypes? Does convergence to new ecological conditions erase evidence of past adaptation? Here, we analyse ecology, morphology and performance in frog assemblages from three continents (Asia, Australia and South America), assessing the importance of dispersal and convergent evolution in explaining similarity across regions. We find three striking results. First, species using the same microhabitat type are highly similar in morphology and performance across both clades and continents. Second, some species on different continents owe their similarity to dispersal and evolutionary conservatism (rather than evolutionary convergence), even over vast temporal and spatial scales. Third, in one case, an ecologically specialized ancestor radiated into diverse ecotypes that have converged with those on other continents, largely erasing traces of past adaptation to their ancestral ecology. Overall, our study highlights the roles of both evolutionary conservatism and convergence in explaining similarity in species traits over large spatial and temporal scales and demonstrates a statistical framework for addressing these questions in other systems.

  10. Phanerozoic changes in hardpart availability and utilization in benthic communities: evolutionary ecology or evolutionary stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, S.M.

    1985-01-01

    Published experiments on modern communities and quantitative data from Miocene assemblages indicate that the accumulation of dead hardparts can drive specific changes in the composition of benthic communities (taphonomic feedback). Both opportunities and pathways of taphonomic feedback have changed over the Phanerozoic, however, owing to the evolution and environmental expansion of hardpart producers, utilizers, and destroyers. These changes were tracked using semi-quantitative estimates of hardpart availability based on familial diversity of the most abundant taxa, scored according to preservation potential at or near the seafloor. The data suggest a dramatic increase in hardpart availability from the Cambrian into the later Paleozoic, with a decline through the Mesozoic and Cenozoic related to the loss or dramatic reduction in calcitic epifauna, recliners on soft substrata, and large shelled nekton/plankton. The reduction in opportunities for taphonomic feedback among epifauna was accompanied by an increase in levels of infaunal interactions in the Cenozoic, which is characterized by fully three-dimensional shell gravels. In addition to evolutionary change in body sizes of hardpart producers and biotically-driven declines in certain benthic life habits, the change in pathways of taphonomic feedback was also a consequence of the large-scale shift from predominantly carbonate sedimentation in the Paleozoic to predominantly terrigenous sedimentation in the Cenozoic. For example, the waning of epifauna-dominated communities is closely associated with the restriction of level-bottom carbonate environments through the late Mesozoic and Cenozoic. The global evolution of sedimentary environments and their relative representation is important not only in its consequences for sampling but as a driving mechanism of evolutionary ecology of marine benthos.

  11. Short-distance perturbation theory for the leading logarithm models

    International Nuclear Information System (INIS)

    Adler, S.L.

    1983-01-01

    I derive a short-distance perturbation expansion for the static potential of quasi-abelian quark and antiquark source charges, in the models in which renormalization group radiative corrections are retained in the gauge gluon effective dielectric functional. A natural running coupling parameter zeta for the models is identified, and the scale mass #betta#sub(p) appearing in zeta is computed by requiring the vanishing of the O(zeta 2 ) term in the perturbation expansions. The models are shown to give unsatisfactory results beyond one-loop order in the short-distance expansion, as a result of the breakdown in the ultraviolet of the assumption that the effective action is a local functional of the field strength. The same argument indicates that the assumption of a local effective action becomes self-consistent in the large-distance limit. The coupling parameter zeta is identified as a running coupling which evolves in field strength, rather than momentum, and which becomes infinite in the large-distance limit. (orig.)

  12. Auditory/visual distance estimation: accuracy and variability

    Directory of Open Access Journals (Sweden)

    Paul Wallace Anderson

    2014-10-01

    Full Text Available Past research has shown that auditory distance estimation improves when listeners are given the opportunity to see all possible sound sources when compared to no visual input. It has also been established that distance estimation is more accurate in vision than in audition. The present study investigates the degree to which auditory distance estimation is improved when matched with a congruent visual stimulus. Virtual sound sources based on binaural room impulse response (BRIR measurements made from distances ranging from approximately 0.3 to 9.8 m in a concert hall were used as auditory stimuli. Visual stimuli were photographs taken from the listener’s perspective at each distance in the impulse response measurement setup presented on a large HDTV monitor. Listeners were asked to estimate egocentric distance to the sound source in each of three conditions: auditory only (A, visual only (V, and congruent auditory/visual stimuli (A+V. Each condition was presented within its own block. Sixty-two listeners were tested in order to quantify the response variability inherent in auditory distance perception. Distance estimates from both the V and A+V conditions were found to be considerably more accurate and less variable than estimates from the A condition.

  13. Correlation function of the luminosity distances

    Energy Technology Data Exchange (ETDEWEB)

    Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich (Switzerland)

    2017-09-01

    We present the correlation function of the luminosity distances in a flat ΛCDM universe. Decomposing the luminosity distance fluctuation into the velocity, the gravitational potential, and the lensing contributions in linear perturbation theory, we study their individual contributions to the correlation function. The lensing contribution is important at large redshift ( z ∼> 0.5) but only for small angular separation (θ ∼< 3°), while the velocity contribution dominates over the other contributions at low redshift or at larger separation. However, the gravitational potential contribution is always subdominant at all scale, if the correct gauge-invariant expression is used. The correlation function of the luminosity distances depends significantly on the matter content, especially for the lensing contribution, thus providing a novel tool of estimating cosmological parameters.

  14. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2010-03-01

    comprises four subgroups: two major subgroups A and B, and one atypical subgroup D serving as a link between L. monocytogenes and L. innocua in the evolutionary chain. Although subgroups A and B appeared at approximately the same time, subgroup A seems to have experienced a recent expansion of the population size with higher recombination frequency and effect than those of subgroup B, and might represent the possible evolutionary direction towards adaptation to enviroments. The evolutionary history in the L. monocytogenes-L. innocua clade represents a rare example of evolution towards reduced virulence of pathogens.

  15. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  16. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  17. Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Kuo-Yang Wu

    2013-01-01

    Full Text Available We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS in the Flexible Manufacturing System (FMS used in modern industrial production. Three types of evolutionary algorithms, the Genetic Algorithm (GA, the Immune Genetic Algorithm (IGA, and the Particle Swarm Optimization (PSO algorithm, are implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval time travelled by the Storage and Retrieval (S/R machine. Simulation results and comparisons show the advantages and feasibility of the proposed methods.

  18. Evolutionary Multiplayer Games

    OpenAIRE

    Gokhale, Chaitanya S.; Traulsen, Arne

    2014-01-01

    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...

  19. Why Do Long-Distance Travelers Have Improved Pancreatectomy Outcomes?

    Science.gov (United States)

    Jindal, Manila; Zheng, Chaoyi; Quadri, Humair S; Ihemelandu, Chukwuemeka U; Hong, Young K; Smith, Andrew K; Dudeja, Vikas; Shara, Nawar M; Johnson, Lynt B; Al-Refaie, Waddah B

    2017-08-01

    Centralization of complex surgical care has led patients to travel longer distances. Emerging evidence suggested a negative association between increased travel distance and mortality after pancreatectomy. However, the reason for this association remains largely unknown. We sought to unravel the relationships among travel distance, receiving pancreatectomy at high-volume hospitals, delayed surgery, and operative outcomes. We identified 44,476 patients who underwent pancreatectomy for neoplasms between 2004 and 2013 at the reporting facility from the National Cancer Database. Multivariable analyses were performed to examine the independent relationships between increments in travel distance mortality (30-day and long-term survival) after adjusting for patient demographics, comorbidity, cancer stage, and time trend. We then examined how additional adjustment of procedure volume affected this relationship overall and among rural patients. Median travel distance to undergo pancreatectomy increased from 16.5 to 18.7 miles (p for trend pancreatectomy, it was also related to higher odds of receiving pancreatectomy at a high-volume hospital and lower postoperative mortality. In multivariable analysis, difference in mortality among patients with varying travel distance was attenuated by adjustment for procedure volume. However, longest travel distance was still associated with a 77% lower 30-day mortality rate than shortest travel among rural patients, even when accounting for procedure volume. Our large national study found that the beneficial effect of longer travel distance on mortality after pancreatectomy is mainly attributable to increase in procedure volume. However, it can have additional benefits on rural patients that are not explained by volume. Distance can represent a surrogate for rural populations. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Asteroseismology of pulsating DA white dwarfs with fully evolutionary models

    Directory of Open Access Journals (Sweden)

    Althaus L.G.

    2013-03-01

    Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.

  1. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  2. Industrial Applications of Evolutionary Algorithms

    CERN Document Server

    Sanchez, Ernesto; Tonda, Alberto

    2012-01-01

    This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the

  3. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  4. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  5. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  6. Elitism, Sharing and Ranking Choices in Evolutionary Multi-Criterion Optimisation

    OpenAIRE

    Pursehouse, R.C.; Fleming, P.J.

    2002-01-01

    Elitism and sharing are two mechanisms that are believed to improve the performance of an evolutionary multi-criterion optimiser. The relative performance of of the two most popular ranking strategies is largely unknown. Using a new empirical inquiry framework, this report studies the effect of elitism, sharing and ranking design choices using a benchmark suite of two-criterion problems.........

  7. Evolutionary analysis of hepatitis C virus gene sequences from 1953

    Science.gov (United States)

    Gray, Rebecca R.; Tanaka, Yasuhito; Takebe, Yutaka; Magiorkinis, Gkikas; Buskell, Zelma; Seeff, Leonard; Alter, Harvey J.; Pybus, Oliver G.

    2013-01-01

    Reconstructing the transmission history of infectious diseases in the absence of medical or epidemiological records often relies on the evolutionary analysis of pathogen genetic sequences. The precision of evolutionary estimates of epidemic history can be increased by the inclusion of sequences derived from ‘archived’ samples that are genetically distinct from contemporary strains. Historical sequences are especially valuable for viral pathogens that circulated for many years before being formally identified, including HIV and the hepatitis C virus (HCV). However, surprisingly few HCV isolates sampled before discovery of the virus in 1989 are currently available. Here, we report and analyse two HCV subgenomic sequences obtained from infected individuals in 1953, which represent the oldest genetic evidence of HCV infection. The pairwise genetic diversity between the two sequences indicates a substantial period of HCV transmission prior to the 1950s, and their inclusion in evolutionary analyses provides new estimates of the common ancestor of HCV in the USA. To explore and validate the evolutionary information provided by these sequences, we used a new phylogenetic molecular clock method to estimate the date of sampling of the archived strains, plus the dates of four more contemporary reference genomes. Despite the short fragments available, we conclude that the archived sequences are consistent with a proposed sampling date of 1953, although statistical uncertainty is large. Our cross-validation analyses suggest that the bias and low statistical power observed here likely arise from a combination of high evolutionary rate heterogeneity and an unstructured, star-like phylogeny. We expect that attempts to date other historical viruses under similar circumstances will meet similar problems. PMID:23938759

  8. Distance Magic-Type and Distance Antimagic-Type Labelings of Graphs

    Science.gov (United States)

    Freyberg, Bryan J.

    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection l from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G = ( V,E) of order n is a bijection l from V to the set {1,2,...,n} with induced weight function [special characters omitted]. such that l(xi) = i and the sequence of weights w(x 1),w(x2),...,w (xn) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d ) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i + 1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n.. In Chapter 2 we provide general constructions for every d for large classes of both n and k, providing breadfth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order

  9. The necessary distance between large wind farms offshore - study

    DEFF Research Database (Denmark)

    Frandsen, S.; Barthelmie, R.J.; Pryor, S.C.

    2005-01-01

    the new Storpark Analytical Model has been developed and evaluated. As it is often the need for offshore wind farms, the model handles a regular array-geometry with straight rows of wind turbines and equidistantspacing between units in each row and equidistant spacing between rows. Firstly, the case...... with the flow direction being parallel to rows in a rectangular geometry is considered by defining three flow regimes. Secondly, when the flow is not in line withthe main rows, solutions are found for the patterns of wind turbine units emerging corresponding to each wind direction. The model complex......A review of state of the art wake and boundary layer wind farms was conducted. The predictions made for wind recovery distances (that might be used to estimate optimal placing of neighbouring wind farms) range between 2 and 14 km. In order to model thelink between wakes and the boundary layer...

  10. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    These discussions included, among others, the possible consequences of nonDNA-based inheritance—epigenetics and cultural evolution, niche construction, and developmental mechanisms on our understanding of the evolutionary process, speciation, complexity in biology, and constructing a formal evolutionary theory.

  11. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evolutionary hypothesis for Chiari type I malformation.

    Science.gov (United States)

    Fernandes, Yvens Barbosa; Ramina, Ricardo; Campos-Herrera, Cynthia Resende; Borges, Guilherme

    2013-10-01

    Chiari I malformation (CM-I) is classically defined as a cerebellar tonsillar herniation (≥5 mm) through the foramen magnum. A decreased posterior fossa volume, mainly due to basioccipital hypoplasia and sometimes platybasia, leads to posterior fossa overcrowding and consequently cerebellar herniation. Regardless of radiological findings, embryological genetic hypothesis or any other postulations, the real cause behind this malformation is yet not well-elucidated and remains largely unknown. The aim of this paper is to approach CM-I under a broader and new perspective, conjoining anthropology, genetics and neurosurgery, with special focus on the substantial changes that have occurred in the posterior cranial base through human evolution. Important evolutionary allometric changes occurred during brain expansion and genetics studies of human evolution demonstrated an unexpected high rate of gene flow interchange and possibly interbreeding during this process. Based upon this review we hypothesize that CM-I may be the result of an evolutionary anthropological imprint, caused by evolving species populations that eventually met each other and mingled in the last 1.7 million years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Principal distance constraint error diffusion algorithm for homogeneous dot distribution

    Science.gov (United States)

    Kang, Ki-Min; Kim, Choon-Woo

    1999-12-01

    The perceived quality of the halftoned image strongly depends on the spatial distribution of the binary dots. Various error diffusion algorithms have been proposed for realizing the homogeneous dot distribution in the highlight and shadow regions. However, they are computationally expensive and/or require large memory space. This paper presents a new threshold modulated error diffusion algorithm for the homogeneous dot distribution. The proposed method is applied exactly same as the Floyd-Steinberg's algorithm except the thresholding process. The threshold value is modulated based on the difference between the distance to the nearest minor pixel, `minor pixel distance', and the principal distance. To do so, calculation of the minor pixel distance is needed for every pixel. But, it is quite time consuming and requires large memory resources. In order to alleviate this problem, `the minor pixel offset array' that transforms the 2D history of minor pixels into the 1D codes is proposed. The proposed algorithm drastically reduces the computational load and memory spaces needed for calculation of the minor pixel distance.

  14. Evolutionary experience design – the case of Otopia

    DEFF Research Database (Denmark)

    Hansen, Kenneth

    experiences with the case of “Otopia”. “Otopia” is a large scale, new media experiment, which combines the areas of computer games, sports and performance in to a spectator oriented concept; it was premiered in a dome tent at the Roskilde Festival in Denmark the summer 2005. This paper presents and discusses......The design of experiences is a complicated challenge. It might not even be possible to design such a “thing”, but only to design for it. If this is the case it could seem appropriate with an evolutionary approach. This paper introduces such an approach to the design of new public oriented...... used as a means of specifying the basic immaterial design form. This discussion leads to the suggestion of a rule-based evolutionary model for the design of situations as a practical option for designers of new spectator oriented experiences in the future The project of Otopia was supported...

  15. Evolution of microbes and viruses: A paradigm shift in evolutionary biology?

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2012-09-01

    Full Text Available When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain ‘ribosomal Tree of Life’ that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: i pervasive horizontal gene transfer (HGT, in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment of the Tree of Life concept, ii Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and iii evolution of evolvability, i.e. dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary

  16. Research traditions and evolutionary explanations in medicine.

    Science.gov (United States)

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  17. Applications of evolutionary economic geography

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.; Puranam, Krishna Kishore; Ravi Kumar Jain B., xx

    2008-01-01

    This paper is written as the first chapter of an edited volume on evolutionary economics and economic geography (Frenken, K., editor, Applied Evolutionary Economics and Economic Geography, Cheltenham: Edward Elgar, expected publication date February 2007). The paper reviews empirical applications of

  18. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Properties of solar proton events at large heliocentric distances near ecliptic

    International Nuclear Information System (INIS)

    Khiber, B.; Struminskij, A.B.

    2005-01-01

    The absolute intensities, fluences and propagation times of the solar protons with the energy of 38-125 MeV, obtained on the basis of the observation data of the Kilskij electron telescope (KET ULYSSES) onboard the ULYSSES cosmic apparatus and GOES proton detector, are compared. The observation data on the solar cosmic rays at the heliocentric distances above 5 a.e. are analyzed for the first time. Certain characteristics of the proton events under consideration and their possible parent flares are presented [ru

  20. An evolutionary theory of large-scale human warfare: Group-structured cultural selection.

    Science.gov (United States)

    Zefferman, Matthew R; Mathew, Sarah

    2015-01-01

    When humans wage war, it is not unusual for battlefields to be strewn with dead warriors. These warriors typically were men in their reproductive prime who, had they not died in battle, might have gone on to father more children. Typically, they are also genetically unrelated to one another. We know of no other animal species in which reproductively capable, genetically unrelated individuals risk their lives in this manner. Because the immense private costs borne by individual warriors create benefits that are shared widely by others in their group, warfare is a stark evolutionary puzzle that is difficult to explain. Although several scholars have posited models of the evolution of human warfare, these models do not adequately explain how humans solve the problem of collective action in warfare at the evolutionarily novel scale of hundreds of genetically unrelated individuals. We propose that group-structured cultural selection explains this phenomenon. © 2015 Wiley Periodicals, Inc.

  1. Evolutionary leap in large-scale flood risk assessment needed

    OpenAIRE

    Vorogushyn, Sergiy; Bates, Paul D.; de Bruijn, Karin; Castellarin, Attilio; Kreibich, Heidi; Priest, Sally J.; Schröter, Kai; Bagli, Stefano; Blöschl, Günter; Domeneghetti, Alessio; Gouldby, Ben; Klijn, Frans; Lammersen, Rita; Neal, Jeffrey C.; Ridder, Nina

    2018-01-01

    Current approaches for assessing large-scale flood risks contravene the fundamental principles of the flood risk system functioning because they largely ignore basic interactions and feedbacks between atmosphere, catchments, river-floodplain systems and socio-economic processes. As a consequence, risk analyses are uncertain and might be biased. However, reliable risk estimates are required for prioritizing national investments in flood risk mitigation or for appraisal and management of insura...

  2. INTERPRETING THE DISTANCE CORRELATION RESULTS FOR THE COMBO-17 SURVEY

    International Nuclear Information System (INIS)

    Richards, Mercedes T.; Richards, Donald St. P.; Martínez-Gómez, Elizabeth

    2014-01-01

    The accurate classification of galaxies in large-sample astrophysical databases of galaxy clusters depends sensitively on the ability to distinguish between morphological types, especially at higher redshifts. This capability can be enhanced through a new statistical measure of association and correlation, called the distance correlation coefficient, which has more statistical power to detect associations than does the classical Pearson measure of linear relationships between two variables. The distance correlation measure offers a more precise alternative to the classical measure since it is capable of detecting nonlinear relationships that may appear in astrophysical applications. We showed recently that the comparison between the distance and Pearson correlation coefficients can be used effectively to isolate potential outliers in various galaxy data sets, and this comparison has the ability to confirm the level of accuracy associated with the data. In this work, we elucidate the advantages of distance correlation when applied to large databases. We illustrate how the distance correlation measure can be used effectively as a tool to confirm nonlinear relationships between various variables in the COMBO-17 database, including the lengths of the major and minor axes, and the alternative redshift distribution. For these outlier pairs, the distance correlation coefficient is routinely higher than the Pearson coefficient since it is easier to detect nonlinear relationships with distance correlation. The V-shaped scatter plots of Pearson versus distance correlation coefficients also reveal the patterns with increasing redshift and the contributions of different galaxy types within each redshift range

  3. Historical change and evolutionary theory.

    Science.gov (United States)

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  4. The Orbital and Physical Parameters, and the Distance of the Eclipsing Binary System OGLE-LMC-ECL-25658 in the Large Magellanic Cloud

    Science.gov (United States)

    Elgueta, S. S.; Graczyk, D.; Gieren, W.; Pietrzyński, G.; Thompson, I. B.; Konorski, P.; Pilecki, B.; Villanova, S.; Udalski, A.; Soszyński, I.; Suchomska, K.; Karczmarek, P.; Górski, M.; Wielgórski, P.

    2016-08-01

    We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud (LMC). The system consists of two late G-type giant stars on an eccentric orbit with an orbital period of ˜200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson-Devinney code. We derived orbital and physical parameters of the binary with a high precision of \\lt 1%. The masses and surface metallicities of the components are virtually the same and equal to 2.23+/- 0.02 {M}⊙ and [{Fe}/{{H}}]\\=\\-0.63+/- 0.10 dex. However, their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M)\\=\\18.452+/- 0.023 (statistical) ± 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter, we applied a geometrical correction for its position in the LMC disk using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is {d}{{LMC}}\\=\\50.30+/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzyński et al.

  5. Pan-Genome Analysis Links the Hereditary Variation of Leptospirillum ferriphilum With Its Evolutionary Adaptation

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2018-03-01

    Full Text Available Niche adaptation has long been recognized to drive intra-species differentiation and speciation, yet knowledge about its relatedness with hereditary variation of microbial genomes is relatively limited. Using Leptospirillum ferriphilum species as a case study, we present a detailed analysis of genomic features of five recognized strains. Genome-to-genome distance calculation preliminarily determined the roles of spatial distance and environmental heterogeneity that potentially contribute to intra-species variation within L. ferriphilum species at the genome level. Mathematical models were further constructed to extrapolate the expansion of L. ferriphilum genomes (an ‘open’ pan-genome, indicating the emergence of novel genes with new sequenced genomes. The identification of diverse mobile genetic elements (MGEs (such as transposases, integrases, and phage-associated genes revealed the prevalence of horizontal gene transfer events, which is an important evolutionary mechanism that provides avenues for the recruitment of novel functionalities and further for the genetic divergence of microbial genomes. Comprehensive analysis also demonstrated that the genome reduction by gene loss in a broad sense might contribute to the observed diversification. We thus inferred a plausible explanation to address this observation: the community-dependent adaptation that potentially economizes the limiting resources of the entire community. Now that the introduction of new genes is accompanied by a parallel abandonment of some other ones, our results provide snapshots on the biological fitness cost of environmental adaptation within the L. ferriphilum genomes. In short, our genome-wide analyses bridge the relation between genetic variation of L. ferriphilum with its evolutionary adaptation.

  6. Evolutionary disarmament in interspecific competition.

    Science.gov (United States)

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  7. Distance Learning for Teacher Training in Brazil

    Directory of Open Access Journals (Sweden)

    Alvana Maria Bof

    2004-04-01

    Full Text Available Proformação is a distance teacher certification course aimed at providing training to 27,000 uncertified teachers in 15 Brazilian states. This innovative program organizes human and technical resources for delivering distance education in a cost-effective manner. Different from other institutional systems – which typically employ their own dedicated content, design, and instructional resource personnel, and accompanied by a large pool of administrative staff – Proformação leverages pre-existing learning resources such as content experts, technology specialists, instruction, and student support systems from several institutions. Proformação goal is to create a viable teacher certification course to upgrade thousands of non-certified teachers working in the field. Proformação is coordinated by an administrative unit of the Brazilian Ministry of Education. To support the program, an information system was implemented to continuously and consistently monitor the program’s activities and results. Results of an external evaluation have been positive; Proformação is regarded by some as an innovative model for delivering decentralized training opportunities to large student numbers. Therefore, the findings in this article may prove interesting to those charged with implementing distance learning initiatives in developing countries, in that the lessons learned in Brazil may help others interested in implementing similar distance training programs.

  8. Incorporating evolutionary principles into environmental management and policy

    DEFF Research Database (Denmark)

    Lankau, Richard; Jørgensen, Peter Søgaard; Harris, David J.

    2011-01-01

    As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history...... in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding...... of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary...

  9. Does sex speed up evolutionary rate and increase biodiversity?

    Science.gov (United States)

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  10. The necessary distance between large wind farms offshore - study

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Hoejstrup, J.; Nielsen, P.; Lybech Thoegersen, M.

    2004-08-01

    A review of state of the art wake and boundary layer wind farms was conducted. The predictions made for wind recovery distances (that might be used to estimate optimal placing of neighbouring wind farms) range between 2 and 14 km. In order to model the link between wakes and the boundary layer the new Storpark Analytical Model has been developed and evaluated. As it is often the need for offshore wind farms, the model handles a regular array-geometry with straight rows of wind turbines and equidistant spacing between units in each row and equidistant spacing between rows. Firstly, the case with the flow direction being parallel to rows in a rectangular geometry is considered by defining three flow regimes. Secondly, when the flow is not in line with the main rows, solutions are found for the patterns of wind turbine units emerging corresponding to each wind direction. The model complex will be adjusted and calibrated with measurements in the near future. (au)

  11. Evolutionary economics and industry location

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.

    2003-01-01

    This paper aims to provide the outlines of an evolutionary economic geography of industry location. We discuss two evolutionary explanations of industry location, that is, one that concentrates on spin-offs, and one that focuses attention on knowledge and agglomeration economies. We claim that both

  12. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  13. [Narcissism in the world of Facebook. An evolutionary psychopathological interpretation].

    Science.gov (United States)

    Szekeres, Adám; Tisljár, Roland

    2013-01-01

    In the last few decades there has been a considerable increase in the levels of narcissism among the population of individualistic, western cultures. The phenomena of narcissism induced a large number of psychological researches, some of which approaches the issue from changes in environmental factors. The modern environment of these days is substantially different from the one to which our ancestors have adapted over millions of years of evolution. The research results of narcissism from the perspective of evolutionary psychopathology approach have yet to integrate.The present review focuses on two studies and empirical findings induced by them in which an attempt is made to explore the evolutionary origins of narcissism. Relating to these studies we present the main mechanisms by which evolution may have played a role in the development and maintenance of narcissism. One of the significant elements of the current, changing social environment allowing virtual contacts is the social networking site called Facebook. Following the presentation of the main features of the site we discuss research results in connection with narcissistic traits and Facebook usage. Finally an attempt is made to integrate these findings into an evolutionary psychopathological framework.

  14. Application of evolutionary games to modeling carcinogenesis.

    Science.gov (United States)

    Swierniak, Andrzej; Krzeslak, Michal

    2013-06-01

    We review a quite large volume of literature concerning mathematical modelling of processes related to carcinogenesis and the growth of cancer cell populations based on the theory of evolutionary games. This review, although partly idiosyncratic, covers such major areas of cancer-related phenomena as production of cytotoxins, avoidance of apoptosis, production of growth factors, motility and invasion, and intra- and extracellular signaling. We discuss the results of other authors and append to them some additional results of our own simulations dealing with the possible dynamics and/or spatial distribution of the processes discussed.

  15. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics.

    Science.gov (United States)

    Antunes, Agostinho; Troyer, Jennifer L; Roelke, Melody E; Pecon-Slattery, Jill; Packer, Craig; Winterbach, Christiaan; Winterbach, Hanlie; Hemson, Graham; Frank, Laurence; Stander, Philip; Siefert, Ludwig; Driciru, Margaret; Funston, Paul J; Alexander, Kathy A; Prager, Katherine C; Mills, Gus; Wildt, David; Bush, Mitch; O'Brien, Stephen J; Johnson, Warren E

    2008-11-01

    The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIV(Ple)), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA Phi(ST) = 0.92; nDNA F(ST) = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIV(Ple) subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa ( approximately 324,000-169,000 years ago), which expanded during the Late Pleistocene ( approximately 100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition ( approximately 14,000-7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIV(Ple) variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently.

  16. The evolutionary dynamics of the lion Panthera leo revealed by host and viral population genomics.

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2008-11-01

    Full Text Available The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA, paternal (Y-chromosome, and biparental nuclear (nDNA genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIV(Ple, a lentivirus analogous to human immunodeficiency virus (HIV. In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA Phi(ST = 0.92; nDNA F(ST = 0.18, and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIV(Ple subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa ( approximately 324,000-169,000 years ago, which expanded during the Late Pleistocene ( approximately 100,000 years ago into Central and North Africa and into Asia. During the Pleistocene/Holocene transition ( approximately 14,000-7,000 years, another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIV(Ple variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently.

  17. Evolutionary principles and their practical application

    DEFF Research Database (Denmark)

    Hendry, A. P.; Kinnison, M. T.; Heino, M.

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles...... are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design...... of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently...

  18. Gesture Interaction at a Distance

    NARCIS (Netherlands)

    Fikkert, F.W.

    2010-01-01

    The aim of this work is to explore, from a perspective of human behavior, which gestures are suited to control large display surfaces from a short distance away; why that is so; and, equally important, how such an interface can be made a reality. A well-known example of the type of interface that is

  19. Distance Learning For Mobile Internet Users

    Directory of Open Access Journals (Sweden)

    Beran NECAT

    2007-04-01

    Full Text Available This paper provides an overview on the current state of art in the field of Distance learning for mobile users. It mentions a large range of technologies, services and approaches that may be used to bring distance learning to mobile internet users. These technologies are supposed to considerably increase innovative e-learning solutions for the next generation. While this definitely appears to be true, I think what is not so clear are the implications for students, and lecturers etc. In this article I first evaluate distributed e-learning technologies. With some of the most vital topics, focusing on adaptive distributed e-learning for Mobile Internet Users (MIUs. I also provide a brief analysis of Broadband Network Services, Collaborative e-Learning Tools and Distributed Virtual Environments, Internet-Based Adaptive Learning Technologies and Personalised Distance Learning. I continue my discussion on to Internet Development Tools (IDTs for Distance Learning Solutions, Learning Technologies for MIUs, Semantic and Web-Based Services for Enriching Learning Interactivity, and Evaluations of Distributed Learning Technologies (DLTs.

  20. Bin Ratio-Based Histogram Distances and Their Application to Image Classification.

    Science.gov (United States)

    Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen

    2014-12-01

    Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.

  1. Gender Inequality in Interaction--An Evolutionary Account

    Science.gov (United States)

    Hopcroft, Rosemary L.

    2009-01-01

    In this article I argue that evolutionary theorizing can help sociologists and feminists better understand gender inequality. Evolutionary theory explains why control of the sexuality of young women is a priority across most human societies both past and present. Evolutionary psychology has extended our understanding of male violence against…

  2. Reference interval for the disc-macula distance to disc diameter ratio in a large population of healthy Japanese adults

    Science.gov (United States)

    Sato, Ken-ichi

    2017-01-01

    Abstract This study presents the calculated reference interval for the disc-to-macula distance to disc diameter ratio (DM:DD) based on a large population of healthy Japanese adults. A total of 308 consecutive, healthy Japanese adults were examined in this prospective observational study. Eighteen subjects were also excluded because of poor quality of the fundus photograph of one or both eyes; 290 (161 men and 129 women) were included in this study. For each subject, a color fundus photograph of one eye, either the right or left, was randomly selected and used for analysis. On the photograph, the distances between the fovea and the nearest temporal margin of the optic disc (Dft), and the two kinds of disc diameters (D1 and D2), which bisected at right angles and one of which was directed to the fovea (D1), were measured. DM:DD was estimated using the formula: (2Dft + D1)/(D1 + D2). The mean ± standard deviation of DM:DD was 2.91 ± 0.49 for men and 2.96 ± 0.54 for women; there was no sex difference (P = .78, Mann–Whitney U test). Also, almost no relationship was found between DM:DD and age (ρ = −.12, P = .04, Spearman's rank correlation coefficient). The data did not fit a normal distribution (P < .001, Kolmogorov–Smirnov test). The estimated reference interval for DM:DD corresponding to the 2.5th and 97.5th percentiles was 2.12 to 4.18. Using a nonparametric approach, the reference interval for DM:DD of a large population of healthy Japanese adults was calculated to be 2.12 to 4.18, regardless of age or sex. PMID:28403107

  3. A pharyngeal jaw evolutionary innovation facilitated extinction in Lake Victoria cichlids.

    Science.gov (United States)

    McGee, Matthew D; Borstein, Samuel R; Neches, Russell Y; Buescher, Heinz H; Seehausen, Ole; Wainwright, Peter C

    2015-11-27

    Evolutionary innovations, traits that give species access to previously unoccupied niches, may promote speciation and adaptive radiation. Here, we show that such innovations can also result in competitive inferiority and extinction. We present evidence that the modified pharyngeal jaws of cichlid fishes and several marine fish lineages, a classic example of evolutionary innovation, are not universally beneficial. A large-scale analysis of dietary evolution across marine fish lineages reveals that the innovation compromises access to energy-rich predator niches. We show that this competitive inferiority shaped the adaptive radiation of cichlids in Lake Tanganyika and played a pivotal and previously unrecognized role in the mass extinction of cichlid fishes in Lake Victoria after Nile perch invasion. Copyright © 2015, American Association for the Advancement of Science.

  4. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  5. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    We are delighted to bring to the readers, a set of peer-reviewed papers on evolutionary biology, published as a special issue of the Journal of Genetics. These papers emanated from ruminations upon and discussions at the Foundations of. Evolutionary Theory: the Ongoing Synthesis meeting at Coorg, India, in February ...

  6. Evolutionary Based Solutions for Green Computing

    CERN Document Server

    Kołodziej, Joanna; Li, Juan; Zomaya, Albert

    2013-01-01

    Today’s highly parameterized large-scale distributed computing systems may be composed  of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system’s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems.   This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing’’ systems. The recent evolutionary and general metaheuristic-based solutions ...

  7. The extra mile: Ungulate migration distance alters the use of seasonal range and exposure to anthropogenic risk

    Science.gov (United States)

    Sawyer, Hall; Middleton, Arthur D.; Hayes, Matthew M.; Kauffman, Matthew J.; Monteith, Kevin L.

    2016-01-01

    Partial migration occurs across a variety of taxa and has important ecological and evolutionary consequences. Among ungulates, studies of partially migratory populations have allowed researchers to compare and contrast performance metrics of migrants versus residents and examine how environmental factors influence the relative abundance of each. Such studies tend to characterize animals discretely as either migratory or resident, but we suggest that variable migration distances within migratory herds are an important and overlooked form of population structure, with potential consequences for animal fitness. We examined whether the variation in individual migration distances (20–264 km) within a single wintering population of mule deer (Odocoileus hemionus) was associated with several critical behavioral attributes of migration, including timing of migration, time allocation to seasonal ranges, and exposure to anthropogenic mortality risks. Both the timing of migration and the amount of time animals allocated to seasonal ranges varied with migration distance. Animals migrating long distances (150–250 km) initiated spring migration more than three weeks before than those migrating moderate (50–150 km) or short distances (forage and effectively increase carrying capacity. Clear differences in winter residency, migration duration, and risk of anthropogenic mortality among short-, moderate-, and long-distance migrants suggest fitness trade-offs may exist among migratory segments of the population. Future studies of partial migration may benefit from expanding comparisons of residents and migrants, to consider how variable migration distances of migrants may influence the costs and benefits of migration.

  8. Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries.

    Science.gov (United States)

    Marazzi, Brigitte; Sanderson, Michael J

    2010-12-01

    Unraveling the diversification history of old, species-rich and widespread clades is difficult because of extinction, undersampling, and taxonomic uncertainty. In the context of these challenges, we investigated the timing and mode of lineage diversification in Senna (Leguminosae) to gain insights into the evolutionary role of extrafloral nectaries (EFNs). EFNs secrete nectar, attracting ants and forming ecologically important ant-plant mutualisms. In Senna, EFNs characterize one large clade (EFN clade), including 80% of its 350 species. Taxonomic accounts make Senna the largest caesalpinioid genus, but quantitative comparisons to other taxa require inferences about rates. Molecular dating analyses suggest that Senna originated in the early Eocene, and its major lineages appeared during early/mid Eocene to early Oligocene. EFNs evolved in the late Eocene, after the main radiation of ants. The EFN clade diversified faster, becoming significantly more species-rich than non-EFN clades. The shift in diversification rates associated with EFN evolution supports the hypothesis that EFNs represent a (relatively old) key innovation in Senna. EFNs may have promoted the colonization of new habitats appearing with the early uplift of the Andes. This would explain the distinctive geographic concentration of the EFN clade in South America. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  9. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique

    2010-12-15

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  10. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    International Nuclear Information System (INIS)

    Kozlowski, K.K.; Terras, V.

    2010-12-01

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  11. PERBANDINGAN EUCLIDEAN DISTANCE DENGAN CANBERRA DISTANCE PADA FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    Sendhy Rachmat Wurdianarto

    2014-08-01

    Full Text Available Perkembangan ilmu pada dunia komputer sangatlah pesat. Salah satu yang menandai hal ini adalah ilmu komputer telah merambah pada dunia biometrik. Arti biometrik sendiri adalah karakter-karakter manusia yang dapat digunakan untuk membedakan antara orang yang satu dengan yang lainnya. Salah satu pemanfaatan karakter / organ tubuh pada setiap manusia yang digunakan untuk identifikasi (pengenalan adalah dengan memanfaatkan wajah. Dari permasalahan diatas dalam pengenalan lebih tentang aplikasi Matlab pada Face Recognation menggunakan metode Euclidean Distance dan Canberra Distance. Model pengembangan aplikasi yang digunakan adalah model waterfall. Model waterfall beriisi rangkaian aktivitas proses yang disajikan dalam proses analisa kebutuhan, desain menggunakan UML (Unified Modeling Language, inputan objek gambar diproses menggunakan Euclidean Distance dan Canberra Distance. Kesimpulan yang dapat ditarik adalah aplikasi face Recognation menggunakan metode euclidean Distance dan Canverra Distance terdapat kelebihan dan kekurangan masing-masing. Untuk kedepannya aplikasi tersebut dapat dikembangkan dengan menggunakan objek berupa video ataupun objek lainnya.   Kata kunci : Euclidean Distance, Face Recognition, Biometrik, Canberra Distance

  12. Predicting evolutionary responses when genetic variance and selection covary with the environment: a large-scale Open Access Data approach

    NARCIS (Netherlands)

    Ramakers, J.J.C.; Culina, A.; Visser, M.E.; Gienapp, P.

    2017-01-01

    Additive genetic variance and selection are the key ingredients for evolution. In wild populations, however, predicting evolutionary trajectories is difficult, potentially by an unrecognised underlying environment dependency of both (additive) genetic variance and selection (i.e. G×E and S×E).

  13. Archaeogenetics in evolutionary medicine.

    Science.gov (United States)

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  14. The non-random clustering of non-synonymous substitutions and its relationship to evolutionary rate

    Directory of Open Access Journals (Sweden)

    Stone Eric A

    2011-08-01

    Full Text Available Abstract Background Protein sequences are subject to a mosaic of constraint. Changes to functional domains and buried residues, for example, are more apt to disrupt protein structure and function than are changes to residues participating in loops or exposed to solvent. Regions of constraint on the tertiary structure of a protein often result in loose segmentation of its primary structure into stretches of slowly- and rapidly-evolving amino acids. This clustering can be exploited, and existing methods have done so by relying on local sequence conservation as a signature of selection to help identify functionally important regions within proteins. We invert this paradigm by leveraging the regional nature of protein structure and function to both illuminate and make use of genome-wide patterns of local sequence conservation. Results Our hypothesis is that the regional nature of structural and functional constraints will assert a positive autocorrelation on the evolutionary rates of neighboring sites, which, in a pairwise comparison of orthologous proteins, will manifest itself as the clustering of non-synonymous changes across the amino acid sequence. We introduce a dispersion ratio statistic to test this and related hypotheses. Using genome-wide interspecific comparisons of orthologous protein pairs, we reveal a strong log-linear relationship between the degree of clustering and the intensity of constraint. We further demonstrate how this relationship varies with the evolutionary distance between the species being compared. We provide some evidence that proteins with a history of positive selection deviate from genome-wide trends. Conclusions We find a significant association between the evolutionary rate of a protein and the degree to which non-synonymous changes cluster along its primary sequence. We show that clustering is a non-redundant predictor of evolutionary rate, and we speculate that conflicting signals of clustering and constraint may

  15. Evolutionary relevance facilitates visual information processing.

    Science.gov (United States)

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  16. Mean-Potential Law in Evolutionary Games

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  17. Is evolutionary psychology a metatheory for psychology? A discussion of four major issues in psychology from an evolutionary developmental perspective

    NARCIS (Netherlands)

    Ploeger, A.; van der Maas, H.L.J.; Raijmakers, M.E.J.

    2008-01-01

    Evolutionary psychology has been proposed as a metatheoretical framework for psychology. We argue that evolutionary psychology should be expanded if it is to offer new insights regarding the major issues in psychology. Evolutionary developmental biology can provide valuable new insights into issues

  18. Deep-Focusing Time-Distance Helioseismology

    Science.gov (United States)

    Duvall, T. L., Jr.; Jensen, J. M.; Kosovichev, A. G.; Birch, A. C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Much progress has been made by measuring the travel times of solar acoustic waves from a central surface location to points at equal arc distance away. Depth information is obtained from the range of arc distances examined, with the larger distances revealing the deeper layers. This method we will call surface-focusing, as the common point, or focus, is at the surface. To obtain a clearer picture of the subsurface region, it would, no doubt, be better to focus on points below the surface. Our first attempt to do this used the ray theory to pick surface location pairs that would focus on a particular subsurface point. This is not the ideal procedure, as Born approximation kernels suggest that this focus should have zero sensitivity to sound speed inhomogeneities. However, the sensitivity is concentrated below the surface in a much better way than the old surface-focusing method, and so we expect the deep-focusing method to be more sensitive. A large sunspot group was studied by both methods. Inversions based on both methods will be compared.

  19. Cyclic dominance in evolutionary games: a review

    Science.gov (United States)

    Szolnoki, Attila; Mobilia, Mauro; Jiang, Luo-Luo; Szczesny, Bartosz; Rucklidge, Alastair M.; Perc, Matjaž

    2014-01-01

    Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator–prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock–paper–scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg–Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined. PMID:25232048

  20. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.

  1. Species co-evolutionary algorithm: a novel evolutionary algorithm based on the ecology and environments for optimization

    DEFF Research Database (Denmark)

    Li, Wuzhao; Wang, Lei; Cai, Xingjuan

    2015-01-01

    and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...

  2. Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression

    KAUST Repository

    Mineta, Katsuhiko

    2015-05-01

    The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness. Here, we provide a general overview of the potential effects of SGE on population genetic parameters, arguing that SGE can indeed have a profound effect on evolutionary processes. Our analyses suggest that SGE potentially alters the fate of mutations by influencing effective population size and fixation probability. In addition, a genetic control of SGE magnitude could evolve under certain conditions, if the fitness of the less-fit individual increases due to SGE and environmental fluctuation. Although empirical evidence for our arguments is yet to come, methodological developments for precisely measuring SGE in living organisms will further advance our understanding of SGE-driven evolution.

  3. Population genetics of non-genetic traits: Evolutionary roles of stochasticity in gene expression

    KAUST Repository

    Mineta, Katsuhiko; Matsumoto, Tomotaka; Osada, Naoki; Araki, Hitoshi

    2015-01-01

    The role of stochasticity in evolutionary genetics has long been debated. To date, however, the potential roles of non-genetic traits in evolutionary processes have been largely neglected. In molecular biology, growing evidence suggests that stochasticity in gene expression (SGE) is common and that SGE has major impacts on phenotypes and fitness. Here, we provide a general overview of the potential effects of SGE on population genetic parameters, arguing that SGE can indeed have a profound effect on evolutionary processes. Our analyses suggest that SGE potentially alters the fate of mutations by influencing effective population size and fixation probability. In addition, a genetic control of SGE magnitude could evolve under certain conditions, if the fitness of the less-fit individual increases due to SGE and environmental fluctuation. Although empirical evidence for our arguments is yet to come, methodological developments for precisely measuring SGE in living organisms will further advance our understanding of SGE-driven evolution.

  4. Algorithms for Speeding up Distance-Based Outlier Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — The problem of distance-based outlier detection is difficult to solve efficiently in very large datasets because of potential quadratic time complexity. We address...

  5. Dinosaurs reveal the geographical signature of an evolutionary radiation.

    Science.gov (United States)

    O'Donovan, Ciara; Meade, Andrew; Venditti, Chris

    2018-03-01

    Dinosaurs dominated terrestrial ecosystems across the globe for over 100 million years and provide a classic example of an evolutionary radiation. However, little is known about how these animals radiated geographically to become globally distributed. Here, we use a biogeographical model to reconstruct the dinosaurs' ancestral locations, revealing the spatial mechanisms that underpinned this 170-million-year-long radiation. We find that dinosaurs spread rapidly initially, followed by a significant continuous and gradual reduction in their speed of movement towards the Cretaceous/Tertiary boundary (66 million years ago). This suggests that the predominant mode of dinosaur speciation changed through time with speciation originally largely driven by geographical isolation-when dinosaurs speciated more, they moved further. This was gradually replaced by increasing levels of sympatric speciation (species taking advantage of ecological opportunities within their existing environment) as terrestrial space became a limiting factor. Our results uncover the geographical signature of an evolutionary radiation.

  6. Does sex speed up evolutionary rate and increase biodiversity?

    Directory of Open Access Journals (Sweden)

    Carlos J Melián

    Full Text Available Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  7. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  8. Fast stochastic algorithm for simulating evolutionary population dynamics

    Science.gov (United States)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  9. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2016-01-01

    This 4th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Lea...

  10. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  11. Evolutionary accounts of human behavioural diversity

    Science.gov (United States)

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  12. An evolutionary model for protein-coding regions with conserved RNA structure

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Forsberg, Roald; Meyer, Irmtraud Margret

    2004-01-01

    in the RNA structure. The overlap of these fundamental dependencies is sufficient to cause "contagious" context dependencies which cascade across many nucleotide sites. Such large-scale dependencies challenge the use of traditional phylogenetic models in evolutionary inference because they explicitly assume...... components of traditional phylogenetic models. We applied this to a data set of full-genome sequences from the hepatitis C virus where five RNA structures are mapped within the coding region. This allowed us to partition the effects of selection on different structural elements and to test various hypotheses......Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying the same codon and between nucleotides forming a base pair...

  13. Distance Learning

    National Research Council Canada - National Science Library

    Braddock, Joseph

    1997-01-01

    A study reviewing the existing Army Distance Learning Plan (ADLP) and current Distance Learning practices, with a focus on the Army's training and educational challenges and the benefits of applying Distance Learning techniques...

  14. Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.

    Science.gov (United States)

    Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki

    2015-05-01

    Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.

  15. Network-level architecture and the evolutionary potential of underground metabolism.

    Science.gov (United States)

    Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-08-12

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.

  16. Evolutionary Relevance Facilitates Visual Information Processing

    Directory of Open Access Journals (Sweden)

    Russell E. Jackson

    2013-07-01

    Full Text Available Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  17. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  18. A Note on Evolutionary Algorithms and Its Applications

    Science.gov (United States)

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  19. Applied evolutionary economics and economic geography

    NARCIS (Netherlands)

    Frenken, K.

    2007-01-01

    Applied Evolutionary Economics and Economic Geography" aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and

  20. REPRESENTATIONS OF DISTANCE: DIFFERENCES IN UNDERSTANDING DISTANCE ACCORDING TO TRAVEL METHOD

    Directory of Open Access Journals (Sweden)

    Gunvor Riber Larsen

    2017-12-01

    Full Text Available This paper explores how Danish tourists represent distance in relation to their holiday mobility and how these representations of distance are a result of being aero-mobile as opposed to being land-mobile. Based on interviews with Danish tourists, whose holiday mobility ranges from the European continent to global destinations, the first part of this qualitative study identifies three categories of representations of distance that show how distance is being ‘translated’ by the tourists into non-geometric forms: distance as resources, distance as accessibility, and distance as knowledge. The representations of distance articulated by the Danish tourists show that distance is often not viewed in ‘just’ kilometres. Rather, it is understood in forms that express how transcending the physical distance through holiday mobility is dependent on individual social and economic contexts, and on whether the journey was undertaken by air or land. The analysis also shows that being aeromobile is the holiday transportation mode that removes the tourists the furthest away from physical distance, resulting in the distance travelled by air being represented in ways that have the least correlation, in the tourists’ minds, with physical distance measured in kilometres.

  1. Barriers to Communication in Distance Education

    Science.gov (United States)

    Berge, Zane L.

    2013-01-01

    To a large extent education can be thought of as a communication process among the participants. This article focuses on distance education, which has both the general communication processes that in-person education venues possess, and also communication specific to the technologies that mediate the teaching and learning taking place at a…

  2. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.

    Science.gov (United States)

    Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M

    2012-11-06

    All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.

  3. Araucaria Project: Pulsating stars in binary systems and as distance indicators

    Directory of Open Access Journals (Sweden)

    Pilecki Bogumił

    2017-01-01

    Type II Cepheids are recently becoming more important as distance indicators and astrophysics laboratory, although our knowledge of these stars is quite limited. Their evolutionary status is also not well understood and observational constraints are needed to confirm the current theories. We are presenting here our first results of the spectroscopic analysis of 4 of these systems. The masses of type II Cepheids seem consistent with the expected 0.5 − 0.6 M⊙. We also present first results of the fully modeled pulsator originally classified as peculiar W Vir star. The mass of this star is 1.51 ± 0.09 M⊙ and the p-factor 1.3 ± 0.03. It was eventually found not to belong to any typical Cepheid group.

  4. Evolutionary perspectives on ageing.

    Science.gov (United States)

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    Science.gov (United States)

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  6. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  7. Using Evolutionary Theory to Guide Mental Health Research.

    Science.gov (United States)

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  8. Evolutionary engineering of industrial microorganisms-strategies and applications.

    Science.gov (United States)

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  9. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    Science.gov (United States)

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  10. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory......The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...

  11. Evolutionary public health: introducing the concept.

    Science.gov (United States)

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A teleofunctional account of evolutionary mismatch.

    Science.gov (United States)

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  13. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  14. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    Science.gov (United States)

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  15. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  16. A Foundation for Efficient Indoor Distance-Aware Query Processing

    DEFF Research Database (Denmark)

    Lu, Hua; Cao, Xin; Jensen, Christian Søndergaard

    2012-01-01

    model that integrates indoor distance seamlessly. To enable the use of the model as a foundation for query processing, we develop accompanying, efficient algorithms that compute indoor distances for different indoor entities like doors as well as locations. We also propose an indexing framework......Indoor spaces accommodate large numbers of spatial objects, e.g., points of interest (POIs), and moving populations. A variety of services, e.g., location-based services and security control, are relevant to indoor spaces. Such services can be improved substantially if they are capable of utilizing...... that accommodates indoor distances that are pre-computed using the proposed algorithms. On top of this foundation, we develop efficient algorithms for typical indoor, distance-aware queries. The results of an extensive experimental evaluation demonstrate the efficacy of the proposals....

  17. How to Identify and Interpret Evolutionary Tree Diagrams

    Science.gov (United States)

    Kong, Yi; Anderson, Trevor; Pelaez, Nancy

    2016-01-01

    Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly…

  18. Cross-species genome-wide identification of evolutionary conserved microproteins

    DEFF Research Database (Denmark)

    Straub, Daniel; Wenkel, Stephan

    2017-01-01

    Protein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known micro...... act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals....

  19. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  20. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  1. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  2. Evolutionary model of an anonymous consumer durable market

    Science.gov (United States)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal

  3. Regional systems of innovation: an evolutionary perspective

    OpenAIRE

    P Cooke; M G Uranga; G Etxebarria

    1998-01-01

    The authors develop the concept of regional systems of innovation and relate it to preexisting research on national systems of innovation. They argue that work conducted in the 'new regional science' field is complementary to systems of innovation approaches. They seek to link new regional work to evolutionary economics, and argue for the development of evolutionary regional science. Common elements of interest to evolutionary innovation research and new regional science are important in unde...

  4. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2014-01-01

    This updated and revised third edition of the leading reference volume on distance metrics includes new items from very active research areas in the use of distances and metrics such as geometry, graph theory, probability theory and analysis. Among the new topics included are, for example, polyhedral metric space, nearness matrix problems, distances between belief assignments, distance-related animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-severance distance, and brain distances. The publication of this volume coincides with intensifying research efforts into metric spaces and especially distance design for applications. Accurate metrics have become a crucial goal in computational biology, image analysis, speech recognition and information retrieval. Leaving aside the practical questions that arise during the selection of a ‘good’ distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available di...

  5. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  6. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Bilsland Elizabeth

    2007-08-01

    Full Text Available Abstract Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100

  7. A Catalog of Distances to Molecular Clouds from Pan-STARRS1

    Science.gov (United States)

    Schlafly, Eddie; Green, G.; Finkbeiner, D. P.; Rix, H.

    2014-01-01

    We present a catalog of distances to molecular clouds, derived from PanSTARRS-1 photometry. We simultaneously infer the full probability distribution function of reddening and distance of the stars towards these clouds using the technique of Green et al. (2013) (see neighboring poster). We fit the resulting measurements using a simple dust screen model to infer the distance to each cloud. The result is a large, homogeneous catalog of distances to molecular clouds. For clouds with heliocentric distances greater than about 200 pc, typical statistical uncertainties in the distances are 5%, with systematic uncertainty stemming from the quality of our stellar models of about 10%. We have applied this analysis to many of the most well-studied clouds in the δ > -30° sky, including Orion, California, Taurus, Perseus, and Cepheus. We have also studied the entire catalog of Magnani, Blitz, and Mundy (1985; MBM), though for about half of those clouds we can provide only upper limits on the distances. We compare our distances with distances from the literature, when available, and find good agreement.

  8. Shortest triplet clustering: reconstructing large phylogenies using representative sets

    Directory of Open Access Journals (Sweden)

    Sy Vinh Le

    2005-04-01

    Full Text Available Abstract Background Understanding the evolutionary relationships among species based on their genetic information is one of the primary objectives in phylogenetic analysis. Reconstructing phylogenies for large data sets is still a challenging task in Bioinformatics. Results We propose a new distance-based clustering method, the shortest triplet clustering algorithm (STC, to reconstruct phylogenies. The main idea is the introduction of a natural definition of so-called k-representative sets. Based on k-representative sets, shortest triplets are reconstructed and serve as building blocks for the STC algorithm to agglomerate sequences for tree reconstruction in O(n2 time for n sequences. Simulations show that STC gives better topological accuracy than other tested methods that also build a first starting tree. STC appears as a very good method to start the tree reconstruction. However, all tested methods give similar results if balanced nearest neighbor interchange (BNNI is applied as a post-processing step. BNNI leads to an improvement in all instances. The program is available at http://www.bi.uni-duesseldorf.de/software/stc/. Conclusion The results demonstrate that the new approach efficiently reconstructs phylogenies for large data sets. We found that BNNI boosts the topological accuracy of all methods including STC, therefore, one should use BNNI as a post-processing step to get better topological accuracy.

  9. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

    Science.gov (United States)

    Várnai, Csilla; Burkoff, Nikolas S; Wild, David L

    2017-01-01

    Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

  10. CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Samarasinha, Nalin H. [Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Kelley, Michael S. P.; Farnham, Tony L.; A' Hearn, Michael F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mutchler, Max J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218-2463 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, Space Department, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Delamere, W. Alan, E-mail: jyli@psi.edu, E-mail: nalin@psi.edu, E-mail: msk@astro.umd.edu, E-mail: farnham@astro.umd.edu, E-mail: ma@astro.umd.edu, E-mail: mutchler@stsci.edu, E-mail: carey.lisse@jpuapl.edu, E-mail: alan@delamere.biz [Delamere Support Service, Boulder, CO 80304 (United States)

    2014-12-10

    The close encounter of comet C/2013 A1 (Siding Spring) with Mars on 2014 October 19 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comet's dust tail potentially posed an impact hazard to those spacecraft orbiting Mars. To characterize the comet at large heliocentric distances, study its long-term evolution, and provide critical inputs to hazard modeling, we imaged C/Siding Spring with the Hubble Space Telescope when the comet was at 4.58, 3.77, and 3.28 AU from the Sun. The dust production rate, parameterized by the quantity Afρ, was 2500, 2100, and 1700 cm (5000 km radius aperture) for the three epochs, respectively. The color of the dust coma is (5.0 ± 0.3)%/100 nm for the first two epochs, and (9.0 ± 0.3)%/100 nm for the last epoch, and reddens with increasing cometocentric distance out to ∼3000 km from the nucleus. The spatial distribution and the temporal evolution of the dust color are most consistent with the existence of icy grains in the coma. Two jet-like dust features appear in the northwest and south-southeast directions projected in the sky plane. Within each epoch of 1-2 hr, no temporal variations were observed for either feature, but the position angle of the south-southeastern feature varied between the three epochs by ∼30°. The dust feature morphology suggests two possible orientations for the rotational pole of the nucleus, (R.A., decl.) = (295° ± 5°, +43° ± 2°) and (190° ± 10°, +50° ± 5°), or their diametrically opposite orientations.

  11. CONSTRAINING THE DUST COMA PROPERTIES OF COMET C/SIDING SPRING (2013 A1) AT LARGE HELIOCENTRIC DISTANCES

    International Nuclear Information System (INIS)

    Li, Jian-Yang; Samarasinha, Nalin H.; Kelley, Michael S. P.; Farnham, Tony L.; A'Hearn, Michael F.; Mutchler, Max J.; Lisse, Carey M.; Delamere, W. Alan

    2014-01-01

    The close encounter of comet C/2013 A1 (Siding Spring) with Mars on 2014 October 19 presented an extremely rare opportunity to obtain the first flyby quality data of the nucleus and inner coma of a dynamically new comet. However, the comet's dust tail potentially posed an impact hazard to those spacecraft orbiting Mars. To characterize the comet at large heliocentric distances, study its long-term evolution, and provide critical inputs to hazard modeling, we imaged C/Siding Spring with the Hubble Space Telescope when the comet was at 4.58, 3.77, and 3.28 AU from the Sun. The dust production rate, parameterized by the quantity Afρ, was 2500, 2100, and 1700 cm (5000 km radius aperture) for the three epochs, respectively. The color of the dust coma is (5.0 ± 0.3)%/100 nm for the first two epochs, and (9.0 ± 0.3)%/100 nm for the last epoch, and reddens with increasing cometocentric distance out to ∼3000 km from the nucleus. The spatial distribution and the temporal evolution of the dust color are most consistent with the existence of icy grains in the coma. Two jet-like dust features appear in the northwest and south-southeast directions projected in the sky plane. Within each epoch of 1-2 hr, no temporal variations were observed for either feature, but the position angle of the south-southeastern feature varied between the three epochs by ∼30°. The dust feature morphology suggests two possible orientations for the rotational pole of the nucleus, (R.A., decl.) = (295° ± 5°, +43° ± 2°) and (190° ± 10°, +50° ± 5°), or their diametrically opposite orientations

  12. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management.

    Science.gov (United States)

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-03-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

  13. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  14. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  15. Freud: the first evolutionary psychologist?

    Science.gov (United States)

    LeCroy, D

    2000-04-01

    An evolutionary perspective on attachment theory and psychoanalytic theory brings these two fields together in interesting ways. Application of the evolutionary principle of parent-offspring conflict to attachment theory suggests that attachment styles represent context-sensitive, evolved (adaptive) behaviors. In addition, an emphasis on offspring counter-strategies to adult reproductive strategies leads to consideration of attachment styles as overt manifestations of psychodynamic mediating processes, including the defense mechanisms of repression and reaction formation.

  16. Mathematics and evolutionary biology make bioinformatics education comprehensible

    Science.gov (United States)

    Weisstein, Anton E.

    2013-01-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621

  17. Organisms as natural purposes: the contemporary evolutionary perspective.

    Science.gov (United States)

    Walsh, D M

    2006-12-01

    Kant's conception of organisms as natural purposes raises a challenge to the adequacy of mechanistic explanation in biology. Certain features of organisms appear to be inexplicable by appeal to mechanical law alone. Some biological phenomena, it seems, can only be accounted for teleologically. Contemporary evolutionary biology has by and large ignored this challenge. It is widely held that Darwin's theory of natural selection gives us an adequate, wholly mechanical account of the nature of organisms. In contemporary biology, the category of the organism plays virtually no explanatory role. Contemporary evolutionary biology is a science of sub-organismal entities-replicators. I argue that recent advances in developmental biology demonstrate the inadequacy of sub-organismal mechanism. The category of the organism, construed as a 'natural purpose' should play an ineliminable role in explaining ontogenetic development and adaptive evolution. According to Kant the natural purposiveness of organisms cannot be demonstrated to be an objective principle in nature, nor can purposiveness figure in genuine explain. I attempt to argue, by appeal to recent work on self-organization, that the purposiveness of organisms is a natural phenomenon, and, by appeal to the apparatus of invariance explanation, that biological purposiveness provides genuine, ineliminable biological explanations.

  18. Mathematics and evolutionary biology make bioinformatics education comprehensible.

    Science.gov (United States)

    Jungck, John R; Weisstein, Anton E

    2013-09-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes-the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software-the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a 'two-culture' problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses.

  19. Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus.

    Science.gov (United States)

    Yong, Luok Wen; Yu, Jr-Kai

    2016-08-01

    Vertebrate mineralized skeletal tissues are widely considered as an evolutionary novelty. Despite the importance of these tissues to the adaptation and radiation of vertebrate animals, the evolutionary origin of vertebrate skeletal tissues remains largely unclear. Cephalochordates (Amphioxus) occupy a key phylogenetic position and can serve as a valuable model for studying the evolution of vertebrate skeletal tissues. Here we summarize recent advances in amphioxus developmental biology and comparative genomics that can help to elucidate the evolutionary origins of the vertebrate skeletal tissues and their underlying developmental gene regulatory networks (GRN). By making comparisons to the developmental studies in vertebrate models and recent discoveries in paleontology and genomics, it becomes evident that the collagen matrix-based connective tissues secreted by the somite-derived cells in amphioxus likely represent the rudimentary skeletal tissues in chordates. We propose that upon the foundation of this collagenous precursor, novel tissue mineralization genes that arose from gene duplications were incorporated into an ancestral mesodermal GRN that makes connective and supporting tissues, leading to the emergence of highly-mineralized skeletal tissues in early vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Home and away- the evolutionary dynamics of homing endonucleases

    Directory of Open Access Journals (Sweden)

    Barzel Adi

    2011-11-01

    Full Text Available Abstract Background Homing endonucleases (HEases are a large and diverse group of site-specific DNAases. They reside within self-splicing introns and inteins, and promote their horizontal dissemination. In recent years, HEases have been the focus of extensive research due to their promising potential use in gene targeting procedures for the treatment of genetic diseases and for the genetic engineering of crop, animal models and cell lines. Results Using mathematical analysis and computational modeling, we present here a novel account for the evolution and population dynamics of HEase genes (HEGs. We describe HEGs as paradoxical selfish elements whose long-term persistence in a single population relies on low transmission rates and a positive correlation between transmission efficiency and toxicity. Conclusion Plausible conditions allow HEGs to sustain at high frequency through long evolutionary periods, with the endonuclease frequency being either at equilibrium or periodically oscillating. The predictions of our model may prove important not only for evolutionary theory but also for gene therapy and bio-engineering applications of HEases.

  1. Evolutionary and mechanistic drivers of laterality: A review and new synthesis.

    Science.gov (United States)

    Wiper, Mallory L

    2017-11-01

    Laterality, best understood as asymmetries of bilateral structures or biases in behaviour, has been demonstrated in species from all major vertebrate classes, and in many invertebrates, showing a large degree of evolutionary conservation across vertebrate groups. Despite the establishment of this phenomenon in so many species, however, the evolutionary and mechanistic study of laterality is uneven with numerous areas in this field requiring greater attention. Here, I present a partial review of how far the study of laterality has come, outlining previous pioneering work, I discuss the hypothesized costs and benefits of a lateralized brain and the suggested path of the evolution of laterality for populations and individuals. I propose an expansion of laterality research into areas that have been touched upon in the past but require stronger evidence from which the field will greatly benefit. Namely, I suggest a continuation of the phylogenetic approach to investigating laterality to better understand its evolutionary path; and a further focus on mechanistic drivers, with special attention to genetic and environmental effects. Putting together the puzzle of laterality using as many pieces as possible will provide a stronger understanding of this field, allowing us to continue to expand the field in novel ways.

  2. Editorial ~ Does "Lean Thinking" Relate to Network-based Distance Education

    Directory of Open Access Journals (Sweden)

    Peter S. Cookson

    2003-10-01

    Full Text Available Pointing to the “objectivised, rationalized, technologically-based interaction,” Peters (1973 referred to the then prevailing correspondence forms of distance education as “the most industrialized form of education” (p. 313. With such features as assembly line methods; division of labor; centralized processes of teaching materials development, production and dispatching; student admissions enrollment systems; automated registration, course allocation, and student support, and personnel management systems, distance education institutions demonstrated management structures and practices utilized in industrial and business organizations. Large numbers of courses and students were thus “processed” in correspondence, radio, and television-based distance education systems.

  3. EPR by AREVA. An evolutionary reactor

    International Nuclear Information System (INIS)

    Horstmann, Marion

    2010-01-01

    The EPR development goals are as follows: 1. Evolutionary design to fully capitalize on the design, construction and operating experience based on the 86 AREVA's PWR operating worldwide; 2. Enhanced Safety compared to operating PWRs: reduce core damage frequency (CDF), accommodate severe accidents with no long-term population effect, Withstand large airplane crash (APC); 3. High availability; 4. Simplified operation and maintenance; and 5. Generation cost at least 10 % lower than 1500 MWe series in operation.The design builds on the achievements of the N4 and Konvoi reactors. The main plant data are tabulated. The PWR structure is shown as an example of the stepwise improvement. Focus of the presentation is on the construction techniques, supply chain, and project delivery. (P.A.)

  4. A Hybrid Multiobjective Evolutionary Approach for Flexible Job-Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Jian Xiong

    2012-01-01

    Full Text Available This paper addresses multiobjective flexible job-shop scheduling problem (FJSP with three simultaneously considered objectives: minimizing makespan, minimizing total workload, and minimizing maximal workload. A hybrid multiobjective evolutionary approach (H-MOEA is developed to solve the problem. According to the characteristic of FJSP, a modified crowding distance measure is introduced to maintain the diversity of individuals. In the proposed H-MOEA, well-designed chromosome representation and genetic operators are developed for FJSP. Moreover, a local search procedure based on critical path theory is incorporated in H-MOEA to improve the convergence ability of the algorithm. Experiment results on several well-known benchmark instances demonstrate the efficiency and stability of the proposed algorithm. The comparison with other recently published approaches validates that H-MOEA can obtain Pareto-optimal solutions with better quality and/or diversity.

  5. Long-distance seed dispersal by straw-coloured fruit bats varies by season and landscape

    Directory of Open Access Journals (Sweden)

    Michael Abedi-Lartey

    2016-07-01

    Full Text Available On-going fragmentation of tropical forest ecosystems and associated depletion of seed dispersers threatens the long-term survival of animal-dispersed plants. These threats do not only affect biodiversity and species abundance, but ultimately ecosystem functions and services. Thus, seed dispersers such as the straw-coloured fruit bat, E. helvum, which traverse long distances across fragmented landscapes, are particularly important for maintaining genetic connectivity and colonizing new sites for plant species. Using high-resolution GPS-tracking of movements, field observations and gut retention experiments, we quantify dispersal distances for small- and large-seeded fruits foraged by E. helvum during periods of colony population low (wet season and high (dry season in an urban and a rural landscape in the forest zone of Ghana. Gut passage time averaged 116 min (range 4–1143 min, comparable to other fruit bats. Movements were generally longer in the urban than in the rural landscape and also longer in the dry than in the wet season. As the majority of seeds are dispersed only to feeding roosts, median dispersal distances were similar for both large (42–67 m and small (42–65 m seeds. However, small seeds were potentially dispersed up to 75.4 km, four times further than the previous maximum distance estimated for a similar-sized frugivore. Maximum seed dispersal distances for small seeds were almost twice as long in the rural (49.7 km compare to the urban (31.2 km landscape. Within the urban landscape, estimated maximum dispersal distances for small seeds were three times longer during the dry season (75.4 km compared to the wet season (22.8 km; in contrast, distances in the rural landscape were three times longer in the wet season (67 km compared to the dry season (24.4. Dispersal distances for large seeds during the dry season (551 m in the rural landscape were almost twice that in the wet season (319 m. We found no influence of food

  6. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs

    Science.gov (United States)

    Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong

    2018-02-01

    The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.

  7. [Evolutionary medicine: an introduction. Evolutionary biology, a missing element in medical teaching].

    Science.gov (United States)

    Swynghedauw, Bernard

    2009-05-01

    The aim of this brief review article is to help to reconcile medicine with evolutionary biology, a subject that should be taught in medical school. Evolutionary medicine takes the view that contemporary ills are related to an incompatibility between the environment in which humans currently live and their genomes, which have been shaped by diferent environmental conditions during biological evolution. Human activity has recently induced acute environmental modifications that have profoundly changed the medical landscape. Evolutionary biology is an irreversible, ongoing and discontinuous process characterized by periods of stasis followed by accelerations. Evolutionary biology is determined by genetic mutations, which are selected either by Darwinian selective pressure or randomly by genetic drift. Most medical events result from a genome/environment conflict. Some may be purely genetic, as in monogenic diseases, and others purely environmental, such as traffic accidents. Nevertheless, in most common diseases the clinical landscape is determined by the conflict between these two factors, the genetic elements of which are gradually being unraveled Three examples are examined in depth:--The medical consequences of the greenhouse effect. The absence of excess mortality during recent heat waves suggests that the main determinant of mortality in the 2003 heatwave was heatstroke and old age. The projected long-term effects of global warming call for research on thermolysis, a forgotten branch of physiology.--The hygiene hypothesis postulates that the exponential rise in autoimmune and allergic diseases is linked to lesser exposure to infectious agents, possibly involving counter-regulatory factors such as IL-10.--The recent rise in the incidence of obesity and type 2 diabetes in rich countries can be considered to result from a conflict between a calorie-rich environment and gene variants that control appetite. These variants are currently being identified by genome

  8. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    Science.gov (United States)

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary

  9. Reducing the distance in distance-caregiving by technology innovation

    Directory of Open Access Journals (Sweden)

    Lazelle E Benefield

    2007-07-01

    Full Text Available Lazelle E Benefield1, Cornelia Beck21College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; 2Pat & Willard Walker Family Memory Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USAAbstract: Family caregivers are responsible for the home care of over 34 million older adults in the United States. For many, the elder family member lives more than an hour’s distance away. Distance caregiving is a growing alternative to more familiar models where: 1 the elder and the family caregiver(s may reside in the same household; or 2 the family caregiver may live nearby but not in the same household as the elder. The distance caregiving model involves elders and their family caregivers who live at some distance, defined as more than a 60-minute commute, from one another. Evidence suggests that distance caregiving is a distinct phenomenon, differs substantially from on-site family caregiving, and requires additional assistance to support the physical, social, and contextual dimensions of the caregiving process. Technology-based assists could virtually connect the caregiver and elder and provide strong support that addresses the elder’s physical, social, cognitive, and/or sensory impairments. Therefore, in today’s era of high technology, it is surprising that so few affordable innovations are being marketed for distance caregiving. This article addresses distance caregiving, proposes the use of technology innovation to support caregiving, and suggests a research agenda to better inform policy decisions related to the unique needs of this situation.Keywords: caregiving, family, distance, technology, elders

  10. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  11. Assessing distances and consistency of kinematics in Gaia/TGAS

    Science.gov (United States)

    Schönrich, Ralph; Aumer, Michael

    2017-12-01

    We apply the statistical methods by Schönrich, Binney & Asplund to assess the quality of distances and kinematics in the Radial Velocity Experiment (RAVE)-Tycho-Gaia Astrometric Solution (TGAS) and Large Sky Area Multiobject Fiber Spectroscopic Telescope (LAMOST)-TGAS samples of Solar neighbourhood stars. These methods yield a nominal distance accuracy of 1-2 per cent. Other than common tests on parallax accuracy, they directly test distance estimations including the effects of distance priors. We show how to construct these priors including the survey selection functions (SSFs) directly from the data. We demonstrate that neglecting the SSFs causes severe distance biases. Due to the decline of the SSFs in distance, the simple 1/parallax estimate only mildly underestimates distances. We test the accuracy of measured line-of-sight velocities (vlos) by binning the samples in the nominal vlos uncertainties. We find: (i) the LAMOST vlos have a ∼-5 km s-1 offset; (ii) the average LAMOST measurement error for vlos is ∼7 km s-1, significantly smaller than, and nearly uncorrelated with the nominal LAMOST estimates. The RAVE sample shows either a moderate distance underestimate, or an unaccounted source of vlos dispersion (e∥) from measurement errors and binary stars. For a subsample of suspected binary stars in RAVE, our methods indicate significant distance underestimates. Separating a sample in metallicity or kinematics to select thick-disc/halo stars, discriminates between distance bias and e∥. For LAMOST, this separation yields consistency with pure vlos measurement errors. We find an anomaly near longitude l ∼ (300 ± 60)° and distance s ∼ (0.32 ± 0.03) kpc on both sides of the galactic plane, which could be explained by either a localized distance error or a breathing mode.

  12. Parallel evolutionary computation in bioinformatics applications.

    Science.gov (United States)

    Pinho, Jorge; Sobral, João Luis; Rocha, Miguel

    2013-05-01

    A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  14. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  15. Training for Distance Teaching through Distance Learning.

    Science.gov (United States)

    Cadorath, Jill; Harris, Simon; Encinas, Fatima

    2002-01-01

    Describes a mixed-mode bachelor degree course in English language teaching at the Universidad Autonoma de Puebla (Mexico) that was designed to help practicing teachers write appropriate distance education materials by giving them the experience of being distance students. Includes a course outline and results of a course evaluation. (Author/LRW)

  16. Evolutionary medicine: its scope, interest and potential.

    Science.gov (United States)

    Stearns, Stephen C

    2012-11-07

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.

  17. Research on volume metrology method of large vertical energy storage tank based on internal electro-optical distance-ranging method

    Science.gov (United States)

    Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang

    2018-01-01

    A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.

  18. Temporal knowledge and autobiographical memory: an evolutionary perspective

    OpenAIRE

    Skowronski, John J.; Sedikides, Constantine

    2007-01-01

    Section I: Philosophical issues 1. Evolutionary pyschology in the round , Robin Dunbar & Louise Barrett 2. The power of culture , Henry Plotkin 3. Evolution and psychology in philosophical perspective , Matteo Mameli 4. Niche construction, human behavioural ecology and evolutionary psychology , Kevin N Laland 5. Group level evolutionary processes , David Sloan Wilson Section II: The comparative Approach 6. Homologizing the mind , Drew Rendall, Hugh Nottman & John ...

  19. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history.

    Science.gov (United States)

    Kamilar, J M; Tecot, S R

    2015-11-01

    At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. Tourists consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    The environmental impact of tourism mobility is linked to the distances travelled in order to reach a holiday destination, and with tourists travelling more and further than previously, an understanding of how the tourists view the distance they travel across becomes relevant. Based on interviews...... contribute to an understanding of how it is possible to change tourism travel behaviour towards becoming more sustainable. How tourists 'consume distance' is discussed, from the practical level of actually driving the car or sitting in the air plane, to the symbolic consumption of distance that occurs when...... travelling on holiday becomes part of a lifestyle and a social positioning game. Further, different types of tourist distance consumers are identified, ranging from the reluctant to the deliberate and nonchalant distance consumers, who display very differing attitudes towards the distance they all travel...

  1. Analytic processing of distance.

    Science.gov (United States)

    Dopkins, Stephen; Galyer, Darin

    2018-01-01

    How does a human observer extract from the distance between two frontal points the component corresponding to an axis of a rectangular reference frame? To find out we had participants classify pairs of small circles, varying on the horizontal and vertical axes of a computer screen, in terms of the horizontal distance between them. A response signal controlled response time. The error rate depended on the irrelevant vertical as well as the relevant horizontal distance between the test circles with the relevant distance effect being larger than the irrelevant distance effect. The results implied that the horizontal distance between the test circles was imperfectly extracted from the overall distance between them. The results supported an account, derived from the Exemplar Based Random Walk model (Nosofsky & Palmieri, 1997), under which distance classification is based on the overall distance between the test circles, with relevant distance being extracted from overall distance to the extent that the relevant and irrelevant axes are differentially weighted so as to reduce the contribution of irrelevant distance to overall distance. The results did not support an account, derived from the General Recognition Theory (Ashby & Maddox, 1994), under which distance classification is based on the relevant distance between the test circles, with the irrelevant distance effect arising because a test circle's perceived location on the relevant axis depends on its location on the irrelevant axis, and with relevant distance being extracted from overall distance to the extent that this dependency is absent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    Science.gov (United States)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural

  3. Distancing, not embracing, the Distancing-Embracing model of art reception.

    Science.gov (United States)

    Davies, Stephen

    2017-01-01

    Despite denials in the target article, the Distancing-Embracing model appeals to compensatory ideas in explaining the appeal of artworks that elicit negative affect. The model also appeals to the deflationary effects of psychological distancing. Having pointed to the famous rejection in the 1960s of the view that aesthetic experience involves psychological distancing, I suggest that "distance" functions here as a weak metaphor that cannot sustain the explanatory burden the theory demands of it.

  4. Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals

    Directory of Open Access Journals (Sweden)

    Glenn D. Sutherland

    2000-07-01

    Full Text Available Natal dispersal is a process that is critical in the spatial dynamics of populations, including population spread, recolonization, and gene flow. It is a central focus of conservation issues for many vertebrate species. Using data for 77 bird and 68 mammal species, we tested whether median and maximum natal dispersal distances were correlated with body mass, diet type, social system, taxonomic family, and migratory status. Body mass and diet type were found to predict both median and maximum natal dispersal distances in mammals: large species dispersed farther than small ones, and carnivorous species dispersed farther than herbivores and omnivores. Similar relationships occurred for carnivorous bird species, but not for herbivorous or omnivorous ones. Natal dispersal distances in birds or mammals were not significantly related to broad categories of social systems. Only in birds were factors such as taxonomic relatedness and migratory status correlated with natal dispersal, and then only for maximum distances. Summary properties of dispersal processes appeared to be derived from interactions among behavioral and morphological characteristics of species and from their linkages to the dynamics of resource availability in landscapes. In all the species we examined, most dispersers moved relatively short distances, and long-distance dispersal was uncommon. On the basis of these findings, we fit an empirical model based on the negative exponential distribution for calculating minimum probabilities that animals disperse particular distances from their natal areas. This model, coupled with knowledge of a species' body mass and diet type, can be used to conservatively predict dispersal distances for different species and examine possible consequences of large-scale habitat alterations on connectedness between populations. Taken together, our results can provide managers with the means to identify species vulnerable to landscape-level habitat changes

  5. Evolutionary Game Theory: A Renaissance

    Directory of Open Access Journals (Sweden)

    Jonathan Newton

    2018-05-01

    Full Text Available Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences.

  6. Quartet-net: a quartet-based method to reconstruct phylogenetic networks.

    Science.gov (United States)

    Yang, Jialiang; Grünewald, Stefan; Wan, Xiu-Feng

    2013-05-01

    Phylogenetic networks can model reticulate evolutionary events such as hybridization, recombination, and horizontal gene transfer. However, reconstructing such networks is not trivial. Popular character-based methods are computationally inefficient, whereas distance-based methods cannot guarantee reconstruction accuracy because pairwise genetic distances only reflect partial information about a reticulate phylogeny. To balance accuracy and computational efficiency, here we introduce a quartet-based method to construct a phylogenetic network from a multiple sequence alignment. Unlike distances that only reflect the relationship between a pair of taxa, quartets contain information on the relationships among four taxa; these quartets provide adequate capacity to infer a more accurate phylogenetic network. In applications to simulated and biological data sets, we demonstrate that this novel method is robust and effective in reconstructing reticulate evolutionary events and it has the potential to infer more accurate phylogenetic distances than other conventional phylogenetic network construction methods such as Neighbor-Joining, Neighbor-Net, and Split Decomposition. This method can be used in constructing phylogenetic networks from simple evolutionary events involving a few reticulate events to complex evolutionary histories involving a large number of reticulate events. A software called "Quartet-Net" is implemented and available at http://sysbio.cvm.msstate.edu/QuartetNet/.

  7. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  8. Foundations of Distance Education. Third Edition. Routledge Studies in Distance Education.

    Science.gov (United States)

    Keegan, Desmond

    This text gives an overview of distance education for students, administrators, and practitioners in distance education. Chapter 1 discusses the study of distance education. Chapter 2 analyzes forms of nonconventional education (open, nontraditional) that may have similarities to distance education but are not to be identified with it. Chapter 3…

  9. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  10. modelling distances

    Directory of Open Access Journals (Sweden)

    Robert F. Love

    2001-01-01

    Full Text Available Distance predicting functions may be used in a variety of applications for estimating travel distances between points. To evaluate the accuracy of a distance predicting function and to determine its parameters, a goodness-of-fit criteria is employed. AD (Absolute Deviations, SD (Squared Deviations and NAD (Normalized Absolute Deviations are the three criteria that are mostly employed in practice. In the literature some assumptions have been made about the properties of each criterion. In this paper, we present statistical analyses performed to compare the three criteria from different perspectives. For this purpose, we employ the ℓkpθ-norm as the distance predicting function, and statistically compare the three criteria by using normalized absolute prediction error distributions in seventeen geographical regions. We find that there exist no significant differences between the criteria. However, since the criterion SD has desirable properties in terms of distance modelling procedures, we suggest its use in practice.

  11. The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866-1936) and the developmental basis of evolutionary change.

    Science.gov (United States)

    Levit, George S; Hossfeld, Uwe; Olsson, Lennart

    2004-07-15

    The growth of evolutionary morphology in the late 19th and early 20th centuries was inspired by the work of Carl Gegenbaur (1826-1903) and his protégé and friend Ernst Haeckel (1834-1919). However, neither of them succeeded in creating and applying a strictly Darwinian (selectionist) methodology. This task was left to the next generation of evolutionary morphologists. In this paper we present a relatively unknown researcher, Alexej Nikolajevich Sewertzoff (1866-1936) who made important contributions towards a synthesis of Darwinism and evolutionary morphology. Copyright 2004 Wiley-Liss, Inc.

  12. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  13. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  14. Islamic medicine and evolutionary medicine: a comparative analysis.

    Science.gov (United States)

    Saniotis, Arthur

    2012-01-01

    The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings' susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration.

  15. [Evolutionary perspective in precocious puberty].

    Science.gov (United States)

    Hochberg, Ze'ev

    2014-10-01

    Pubertal development is subject to substantial heritability, but much variation remains to be explained, including fast changes over the last 150 years, that cannot be explained by changes of gene frequency in the population. This article discusses the influence of environmental factors to adjust maturational tempo in the service of fitness goals. Utilizing evolutionary development thinking (evo-devo), the author examines adolescence as an evolutionary life-history stage in its developmental context. The transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, social needs of adolescence and maturation toward youth and adulthood. Using Belsky's evolutionary theory of socialization, I show that familial psychosocial environment during the infancy-childhood and childhood-juvenility transitions foster a fast life-history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. The implications of the evo-devo framework for theory building, illuminates new directions in the understanding of precocious puberty other than a diagnosis of a disease.

  16. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  17. Handbook of differential equations evolutionary equations

    CERN Document Server

    Dafermos, CM

    2008-01-01

    The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

  18. Yunnan-III models for evolutionary population synthesis

    Science.gov (United States)

    Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.

    2013-02-01

    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands

  19. Ecological and Evolutionary Consequences of Plant Mediation of Multi-Trophic Interactions

    OpenAIRE

    Abdala, Luis Alejandro

    2014-01-01

    Consumers are strongly influenced by plant phenotypic variation. Such variation may have a genetic or environmental basis, and occurs when plant genotypes or species vary in traits or when patches of co-occurring plants vary in the number of genotypes or species. However, these sources of plant variation have usually been studied separately, their underlying mechanisms are poorly understood, and the evolutionary consequences are largely unknown. This dissertation aims to fill these gaps in re...

  20. Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms

    Science.gov (United States)

    Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre

    2010-06-01

    The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples

  1. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  2. Understanding herding based on a co-evolutionary model for strategy and game structure

    International Nuclear Information System (INIS)

    Wang, Tao; Huang, Keke; Cheng, Yuan; Zheng, Xiaoping

    2015-01-01

    Highlights: •We model herding effect in emergency from perspective of evolutionary game theory. •Rational subpopulation survives only when the game parameter is significantly large. •Herding effect may arise if the relative rewarding for rational agents is small. •Increasing the relative rewarding for rational agents will prevent herding effect. •The evolution result is unstable if the game parameter approaches critical points. -- Abstract: So far, there has been no conclusion on the mechanism for herding, which is often discussed in the academia. Assuming escaping behavior of individuals in emergency is rational rather than out of panic according to recent findings in social psychology, we investigate the behavioral evolution of large crowds from the perspective of evolutionary game theory. Specifically, evolution of the whole population divided into two subpopulations, namely the co-evolution of strategy and game structure, is numerically simulated based on the game theoretical models built and the evolutionary rule designed, and a series of phenomena including extinction of one subpopulation and herding effect are predicted in the proposed framework. Furthermore, if the rewarding for rational agents becomes significantly larger than that for emotional ones, herding effect will disappear. It is exciting that some phase transition points with interesting properties for the system can be found. In addition, our model framework is able to explain the fact that it is difficult for mavericks to prevail in society. The current results of this work will be helpful in understanding and restraining herding effect in real life

  3. Resumming Long-Distance Contributions to the QCD Pressure

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2001-01-01

    The strict coupling constant expansion for the free energy of hot QCD plasma shows bad convergence at all reasonable temperatures, and does not agree well with its 4d lattice determination. This has recently lead to various refined resummations, whereby the agreement with the lattice result should improve, at the cost of a loss of a formal agreement with the coupling constant expansion and particularly with its large infrared sensitive ``long-distance'' contributions. We show here how to resum the dominant long-distance effects by using a 3d effective field theory, and determine their magnitude by simple lattice Monte Carlo simulations.

  4. Human genomic disease variants: a neutral evolutionary explanation.

    Science.gov (United States)

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  5. THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kounkel, Marina; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Street, Ann Arbor, MI 48109 (United States); Loinard, Laurent; Ortiz-León, Gisela N.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de Mexico, Morelia 58089 (Mexico); Mioduszewski, Amy J. [National Radio Astronomy Observatory, Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Torres, Rosa M. [Centro Universitario de Tonalá, Universidad de Guadalajara, Avenida Nuevo Perifrico No. 555, Ejido San José, Tatepozco, C.P. 48525, Tonalá, Jalisco, México (Mexico); Galli, Phillip A. B. [Université Grenoble Alpes, IPAG, F-38000, Grenoble (France); Boden, Andrew F. [Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Evans II, Neal J. [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Briceño, Cesar [Cerro Tololo Interamerican Observatory, Casilla 603, La Serena (Chile); Tobin, John J., E-mail: mkounkel@umich.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2017-01-10

    We present the results of the Gould’s Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc toward NGC 2068, and roughly ∼420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori.

  6. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    International Nuclear Information System (INIS)

    Saito, T.; Gasparini, M.

    2004-01-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  7. Psychological influences on distance estimation in a virtual reality environment

    Directory of Open Access Journals (Sweden)

    Kohske eTakahashi

    2013-09-01

    Full Text Available Researches on embodied perception have revealed that social, psychological and physiological factors influence perception of space. While many of these influences were observed with real or highly realistic stimuli, the present work showed that even the orientation of abstract geometric objects with a non-realistic virtual environment could influence distance perception. Observers wore a head mounted display and watched virtual cones moving within an invisible cube for five seconds with their head movement recorded. Subsequently, observers estimated the distance to the cones or evaluated their friendliness. The cones either faced the observer, a target behind the cones, or random orientations. Average viewing distance to the cones varied between 1.2 and 2.0 m. At a viewing distance of 1.6 m, observers perceived cones facing them as closer than cones facing an opposite target or random orientations. Furthermore, irrespective of viewing distance, observers moved their head away from the cones more strongly and evaluated the cones as less friendly when the cones were facing observers. Similar results of distance estimation were obtained with a 3D projection onto a large screen, although the effective viewing distance was farther away. These results suggest that factors other than physical distance could influence distance perception even with non-realistic geometric objects within a virtual environment. Furthermore, the modulation of distance perception was also accompanied by changes in subjective impression and avoidance movement. We propose that cones facing an observer are perceived as socially discomforting or threatening and potentially violate an observer’s personal space, which might influence the perceived distance of cones.

  8. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations.

    Directory of Open Access Journals (Sweden)

    Ronny Kellner

    Full Text Available The maintenance of an intimate interaction between plant-biotrophic fungi and their hosts over evolutionary times involves strong selection and adaptative evolution of virulence-related genes. The highly specialised maize pathogen Ustilago maydis is assigned with a high evolutionary capability to overcome host resistances due to its high rates of sexual recombination, large population sizes and long distance dispersal. Unlike most studied fungus-plant interactions, the U. maydis - Zea mays pathosystem lacks a typical gene-for-gene interaction. It exerts a large set of secreted fungal virulence factors that are mostly organised in gene clusters. Their contribution to virulence has been experimentally demonstrated but their genetic diversity within U. maydis remains poorly understood. Here, we report on the intraspecific diversity of 34 potential virulence factor genes of U. maydis. We analysed their sequence polymorphisms in 17 isolates of U. maydis from Europe, North and Latin America. We focused on gene cluster 2A, associated with virulence attenuation, cluster 19A that is crucial for virulence, and the cluster-independent effector gene pep1. Although higher compared to four house-keeping genes, the overall levels of intraspecific genetic variation of virulence clusters 2A and 19A, and pep1 are remarkably low and commensurate to the levels of 14 studied non-virulence genes. In addition, each gene is present in all studied isolates and synteny in cluster 2A is conserved. Furthermore, 7 out of 34 virulence genes contain either no polymorphisms or only synonymous substitutions among all isolates. However, genetic variation of clusters 2A and 19A each resolve the large scale population structure of U. maydis indicating subpopulations with decreased gene flow. Hence, the genetic diversity of these virulence-related genes largely reflect the demographic history of U. maydis populations.

  9. Brownian distance covariance

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2010-01-01

    Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...

  10. An Evolutionary Psychology Approach to Consumer Choice

    Directory of Open Access Journals (Sweden)

    ZURINA BT MOHAIDIN

    2013-07-01

    Full Text Available Human behaviour can be explained not only through experience and environments but also by incorporating evolutionary explanation. Consumer behaviour could not be understood accurately without infusing Darwinian evolutionary theory which has contributed in the knowledge of human nature. Evolutionary psychology revolves around the human’s evolved mental and the impact on human’s traits and behaviour where the influence of the environment to our genes would determine our individual behaviour and traits, resulting in variation among us. Foraging which is a part of behavioural ecology involves many sequences or repetitions of animals’ activities and decision making which is useful to relate these patterns of activities to the decisions made in human consumption. The aim of this research is to investigate the similarities of human consumption and ecological behaviour by employing interpretative and comparative approach. It is hoped that by applying the evolutionary theory in explaining consumer choice, this study is able to contribute to the development of behavioural ecology in human consumption. The analysis of the data is done aggregately for 200 consumers and individually for 20 consumers, who have purchased four product categories over a year. This study concludes that the theories of evolutionary psychology can fit to the consumers’ buying behaviour implicating its usefulness in explaining the consumers’ choice.

  11. An Improved Evolutionary Programming with Voting and Elitist Dispersal Scheme

    Science.gov (United States)

    Maity, Sayan; Gunjan, Kumar; Das, Swagatam

    Although initially conceived for evolving finite state machines, Evolutionary Programming (EP), in its present form, is largely used as a powerful real parameter optimizer. For function optimization, EP mainly relies on its mutation operators. Over past few years several mutation operators have been proposed to improve the performance of EP on a wide variety of numerical benchmarks. However, unlike real-coded GAs, there has been no fitness-induced bias in parent selection for mutation in EP. That means the i-th population member is selected deterministically for mutation and creation of the i-th offspring in each generation. In this article we present an improved EP variant called Evolutionary Programming with Voting and Elitist Dispersal (EPVE). The scheme encompasses a voting process which not only gives importance to best solutions but also consider those solutions which are converging fast. By introducing Elitist Dispersal Scheme we maintain the elitism by keeping the potential solutions intact and other solutions are perturbed accordingly, so that those come out of the local minima. By applying these two techniques we can be able to explore those regions which have not been explored so far that may contain optima. Comparison with the recent and best-known versions of EP over 25 benchmark functions from the CEC (Congress on Evolutionary Computation) 2005 test-suite for real parameter optimization reflects the superiority of the new scheme in terms of final accuracy, speed, and robustness.

  12. The four cornerstones of Evolutionary Toxicology.

    Science.gov (United States)

    Bickham, John W

    2011-05-01

    Evolutionary Toxicology is the study of the effects of chemical pollutants on the genetics of natural populations. Research in Evolutionary Toxicology uses experimental designs familiar to the ecotoxicologist with matched reference and contaminated sites and the selection of sentinel species. It uses the methods of molecular genetics and population genetics, and is based on the theories and concepts of evolutionary biology and conservation genetics. Although it is a relatively young field, interest is rapidly growing among ecotoxicologists and more and more field studies and even controlled laboratory experiments are appearing in the literature. A number of population genetic impacts have been observed in organisms exposed to pollutants which I refer to here as the four cornerstones of Evolutionary Toxicology. These include (1) genome-wide changes in genetic diversity, (2) changes in allelic or genotypic frequencies caused by contaminant-induced selection acting at survivorship loci, (3) changes in dispersal patterns or gene flow which alter the genetic relationships among populations, and (4) changes in allelic or genotypic frequencies caused by increased mutation rates. It is concluded that population genetic impacts of pollution exposure are emergent effects that are not necessarily predictable from the mode of toxicity of the pollutant. Thus, to attribute an effect to a particular contaminant requires a careful experimental design which includes selection of appropriate reference sites, detailed chemistry analyses of environmental samples and tissues, and the use of appropriate biomarkers to establish exposure and effect. This paper describes the field of Evolutionary Toxicology and discusses relevant field studies and their findings. © Springer Science+Business Media, LLC 2011

  13. Applied evolutionary economics and economic geography

    OpenAIRE

    Peter Sunley

    2008-01-01

    Applied Evolutionary Economics and Economic Geography aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and sociologists, all of whom share an interest in explaining the uneven distribution of economic activities in space and the historical processes that have produced these patterns.

  14. Traversing psychological distance.

    Science.gov (United States)

    Liberman, Nira; Trope, Yaacov

    2014-07-01

    Traversing psychological distance involves going beyond direct experience, and includes planning, perspective taking, and contemplating counterfactuals. Consistent with this view, temporal, spatial, and social distances as well as hypotheticality are associated, affect each other, and are inferred from one another. Moreover, traversing all distances involves the use of abstraction, which we define as forming a belief about the substitutability for a specific purpose of subjectively distinct objects. Indeed, across many instances of both abstraction and psychological distancing, more abstract constructs are used for more distal objects. Here, we describe the implications of this relation for prediction, choice, communication, negotiation, and self-control. We ask whether traversing distance is a general mental ability and whether distance should replace expectancy in expected-utility theories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Pulse EPR distance measurements to study multimers and multimerisation

    Science.gov (United States)

    Ackermann, Katrin; Bode, Bela E.

    2018-06-01

    Pulse dipolar electron paramagnetic resonance (PD-EPR) has become a powerful tool for structural biology determining distances on the nanometre scale. Recent advances in hardware, methodology, and data analysis have widened the scope to complex biological systems. PD-EPR can be applied to systems containing lowly populated conformers or displaying large intrinsic flexibility, making them all but intractable for cryo-electron microscopy and crystallography. Membrane protein applications are of particular interest due to the intrinsic difficulties for obtaining high-resolution structures of all relevant conformations. Many drug targets involved in critical cell functions are multimeric channels or transporters. Here, common approaches for introducing spin labels for PD-EPR cause the presence of more than two electron spins per multimeric complex. This requires careful experimental design to overcome detrimental multi-spin effects and to secure sufficient distance resolution in presence of multiple distances. In addition to obtaining mere distances, PD-EPR can also provide information on multimerisation degrees allowing to study binding equilibria and to determine dissociation constants.

  16. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    Science.gov (United States)

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  17. On economic applications of evolutionary game theory

    OpenAIRE

    Daniel Friedman

    1998-01-01

    Evolutionary games have considerable unrealized potential for modeling substantive economic issues. They promise richer predictions than orthodox game models but often require more extensive specifications. This paper exposits the specification of evolutionary game models and classifies the possible asymptotic behavior for one and two dimensional models.

  18. On the Evolutionary Stability of Bargaining Inefficiency

    DEFF Research Database (Denmark)

    Poulsen, Anders

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game tough behavior survives. Indeed, almost all the surplus may be wasted. We also study the Ultimatum Game. Here evolutionary select...

  19. Evolutionary Robotics: What, Why, and Where to

    Directory of Open Access Journals (Sweden)

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  20. Evolutionary constraints shape caste-specific gene expression across 15 ant species.

    Science.gov (United States)

    Morandin, Claire; Mikheyev, Alexander S; Pedersen, Jes Søe; Helanterä, Heikki

    2017-05-01

    Development of polymorphic phenotypes from similar genomes requires gene expression differences. However, little is known about how morph-specific gene expression patterns vary on a broad phylogenetic scale. We hypothesize that evolution of morph-specific gene expression, and consequently morph-specific phenotypic evolution, may be constrained by gene essentiality and the amount of pleiotropic constraints. Here, we use comparative transcriptomics of queen and worker morphs, that is, castes, from 15 ant species to understand the constraints of morph-biased gene expression. In particular, we investigate how measures of evolutionary constraints at the sequence level (expression level, connectivity, and number of gene ontology [GO] terms) correlate with morph-biased expression. Our results show that genes indeed vary in their potential to become morph-biased. The existence of genes that are constrained in becoming caste-biased potentially limits the evolutionary decoupling of the caste phenotypes, that is, it might result in "caste load" occasioning from antagonistic fitness variation, similarly to sexually antagonistic fitness variation between males and females. On the other hand, we suggest that genes under low constraints are released from antagonistic variation and thus more likely to be co-opted for morph specific use. Overall, our results suggest that the factors that affect sequence evolutionary rates and evolution of plastic expression may largely overlap. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. [Charles Darwin and the problem of evolutionary progress].

    Science.gov (United States)

    Iordanskiĭ, N N

    2010-01-01

    According to Ch. Darwin's evolutionary theory, evolutionary progress (interpreted as morpho-physiological progress or arogenesis in recent terminology) is one of logical results of natural selection. At the same time, natural selection does not hold any factors especially promoting evolutionary progress. Darwin emphasized that the pattern of evolutionary changes depends on organism nature more than on the pattern of environment changes. Arogenesis specificity is determined by organization of rigorous biological systems - integral organisms. Onward progressive development is determined by fundamental features of living organisms: metabolism and homeostasis. The concept of social Darwinism differs fundamentally from Darwin's ideas about the most important role of social instincts in progress of mankind. Competition and selection play secondary role in socio-cultural progress of human society.

  2. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    Science.gov (United States)

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  3. Evolutionary adaptations: theoretical and practical implications for visual ergonomics.

    Science.gov (United States)

    Fostervold, Knut Inge; Watten, Reidulf G; Volden, Frode

    2014-01-01

    The literature discussing visual ergonomics often mention that human vision is adapted to light emitted by the sun. However, theoretical and practical implications of this viewpoint is seldom discussed or taken into account. The paper discusses some of the main theoretical implications of an evolutionary approach to visual ergonomics. Based on interactional theory and ideas from ecological psychology an evolutionary stress model is proposed as a theoretical framework for future research in ergonomics and human factors. The model stresses the importance of developing work environments that fits with our evolutionary adaptations. In accordance with evolutionary psychology, the environment of evolutionary adaptedness (EEA) and evolutionarily-novel environments (EN) are used as key concepts. Using work with visual display units (VDU) as an example, the paper discusses how this knowledge can be utilized in an ergonomic analysis of risk factors in the work environment. The paper emphasises the importance of incorporating evolutionary theory in the field of ergonomics. Further, the paper encourages scientific practices that further our understanding of any phenomena beyond the borders of traditional proximal explanations.

  4. Taxon ordering in phylogenetic trees by means of evolutionary algorithms

    Directory of Open Access Journals (Sweden)

    Cerutti Francesco

    2011-07-01

    Full Text Available Abstract Background In in a typical "left-to-right" phylogenetic tree, the vertical order of taxa is meaningless, as only the branch path between them reflects their degree of similarity. To make unresolved trees more informative, here we propose an innovative Evolutionary Algorithm (EA method to search the best graphical representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods Starting from a West Nile virus phylogenetic tree, in a (1 + 1-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius next taxa. After having set the radius to the best performance, we evolved the trees with (λ + μ-EAs to study the influence of population on the algorithm. Results The (1 + 1-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (λ + μ-EAs performed as well as the (1 + 1, except the larger population (1000 + 1000. Conclusions The trees after the evolution showed an improvement both of the fitness (based on a genetic distance matrix, then close taxa are actually genetically close, and of the biological interpretation. Samples collected in the same state or year moved close each other, making the tree easier to interpret. Biological relationships between samples are also easier to observe.

  5. Quality evaluation in distance undergraduate courses in Brazil

    Directory of Open Access Journals (Sweden)

    Carla Netto

    2015-01-01

    of distance-run undergraduate courses (D.Ed.. The data from the instruments were then processed according to Discourse Textual Analysis (DTA. The evaluation process for undergraduate distance education courses in the USA was evaluated by identifying those quality indicators adopted by international accreditation agencies. Based on the analysis of the evaluation process of distance undergraduate courses in Brazil, a further study was carried out about the results and impacts of the Brazilian system, especially the indicators used and the level of confidence that existed when measuring the quality of distance-based undergraduate courses. As a result of this research, our researchers observed there was a real need to establish a quality assurance benchmark in Brazil along these conceptual lines, namely one that represents quality in D.Ed. and includes the usage of indicators that reflect the excellence of the degree course that are offered. This level of excellence is assessed on the basis of the training, experience, knowledge and skills of the evaluators, as well as on clear, precise and transparent criteria for measuring the quality-based distance degree courses. On the other hand, it is also necessary to be equipped with a Bank of Evaluators – not only for those who work in this field, but also for a group of experts that is large enough to implement the Brazilian evaluation system in distance education programs.

  6. Stochastic evolutionary dynamics in minimum-effort coordination games

    Science.gov (United States)

    Li, Kun; Cong, Rui; Wang, Long

    2016-08-01

    The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.

  7. Phylo_dCor: distance correlation as a novel metric for phylogenetic profiling.

    Science.gov (United States)

    Sferra, Gabriella; Fratini, Federica; Ponzi, Marta; Pizzi, Elisabetta

    2017-09-05

    Elaboration of powerful methods to predict functional and/or physical protein-protein interactions from genome sequence is one of the main tasks in the post-genomic era. Phylogenetic profiling allows the prediction of protein-protein interactions at a whole genome level in both Prokaryotes and Eukaryotes. For this reason it is considered one of the most promising methods. Here, we propose an improvement of phylogenetic profiling that enables handling of large genomic datasets and infer global protein-protein interactions. This method uses the distance correlation as a new measure of phylogenetic profile similarity. We constructed robust reference sets and developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation that makes it applicable to large genomic data. Using Saccharomyces cerevisiae and Escherichia coli genome datasets, we showed that Phylo-dCor outperforms phylogenetic profiling methods previously described based on the mutual information and Pearson's correlation as measures of profile similarity. In this work, we constructed and assessed robust reference sets and propose the distance correlation as a measure for comparing phylogenetic profiles. To make it applicable to large genomic data, we developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation. Two R scripts that can be run on a wide range of machines are available upon request.

  8. Prenatal phthalate exposures and anogenital distance in Swedish boys

    DEFF Research Database (Denmark)

    Bornehag, Carl-Gustaf; Carlstedt, Fredrik; Jönsson, Bo Ag

    2015-01-01

    BACKGROUND: Phthalates are used as plasticizers in soft polyvinyl chloride (PVC) and in a large number of consumer products. Because of reported health risks, diisononyl phthalate (DiNP) has been introduced as a replacement for di(2-ethylhexyl) phthalate (DEHP) in soft PVC. This raises concerns...... because animal data suggest that DiNP may have antiandrogenic properties similar to those of DEHP. The anogenital distance (AGD)-the distance from the anus to the genitals-has been used to assess reproductive toxicity. OBJECTIVE: The objective of this study was to examine the associations between prenatal...

  9. On the group approximation errors in description of neutron slowing-down at large distances from a source. Diffusion approach

    International Nuclear Information System (INIS)

    Kulakovskij, M.Ya.; Savitskij, V.I.

    1981-01-01

    The errors of multigroup calculating the neutron flux spatial and energy distribution in the fast reactor shield caused by using group and age approximations are considered. It is shown that at small distances from a source the age theory rather well describes the distribution of the slowing-down density. With the distance increase the age approximation leads to underestimating the neutron fluxes, and the error quickly increases at that. At small distances from the source (up to 15 lengths of free path in graphite) the multigroup diffusion approximation describes the distribution of slowing down density quite satisfactorily and at that the results almost do not depend on the number of groups. With the distance increase the multigroup diffusion calculations lead to considerable overestimating of the slowing-down density. The conclusion is drawn that the group approximation proper errors are opposite in sign to the error introduced by the age approximation and to some extent compensate each other

  10. Modifications of Einstein's theory of gravity at large distances

    CERN Document Server

    2015-01-01

    In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories.   In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments.   Edite...

  11. Lessons in modularity: the evolutionary ecology of colonial invertebrates

    Directory of Open Access Journals (Sweden)

    Roger N. Hughes

    2005-06-01

    Full Text Available Benthic colonial invertebrates share with higher plants a modular construction and a sessile adult life. Both types of organism show parallel evolutionary responses to common selective forces, but in contrast to the long-established focus on plants, comparable study of colonial invertebrates has developed relatively recently, largely owing to the application of new techniques in image processing and molecular biology. Species whose life cycles are readily completed under laboratory conditions and whose colonies are easily propagated from cuttings provide powerful models for experimentally investigating fundamental evolutionary problems, including metabolic allometry, the manifestation of ageing and the origin of allorecognition systems. Free of the confounding influences of behavioural manipulation and costs of copulation, colonial invertebrates whose water-borne sperm fertilize retained eggs lend themselves well to the experimental study of cryptic female choice, sperm competition and sexual conflict. In these respects, it will be productive to adopt and extend theoretical frameworks developed for flowering plants to guide experimental investigation of modular animals. Since mate choice occurs at the cellular level in modular animals, reproductive isolation is uncorrelated with morphology and cryptic speciation is likely to be widespread.

  12. Multipurpose Water Reservoir Management: An Evolutionary Multiobjective Optimization Approach

    Directory of Open Access Journals (Sweden)

    Luís A. Scola

    2014-01-01

    Full Text Available The reservoirs that feed large hydropower plants should be managed in order to provide other uses for the water resources. Those uses include, for instance, flood control and avoidance, irrigation, navigability in the rivers, and other ones. This work presents an evolutionary multiobjective optimization approach for the study of multiple water usages in multiple interlinked reservoirs, including both power generation objectives and other objectives not related to energy generation. The classical evolutionary algorithm NSGA-II is employed as the basic multiobjective optimization machinery, being modified in order to cope with specific problem features. The case studies, which include the analysis of a problem which involves an objective of navigability on the river, are tailored in order to illustrate the usefulness of the data generated by the proposed methodology for decision-making on the problem of operation planning of multiple reservoirs with multiple usages. It is shown that it is even possible to use the generated data in order to determine the cost of any new usage of the water, in terms of the opportunity cost that can be measured on the revenues related to electric energy sales.

  13. The effect of debris-flow composition on runout distance

    Science.gov (United States)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  14. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  15. The First Joke: Exploring the Evolutionary Origins of Humor

    Directory of Open Access Journals (Sweden)

    Joseph Polimeni

    2006-01-01

    Full Text Available Humor is a complex cognitive function which often leads to laughter. Contemporary humor theorists have begun to formulate hypotheses outlining the possible innate cognitive structures underlying humor. Humor's conspicuous presence in the behavioral repertoire of humankind invites adaptive explanations. This article explores the possible adaptive features of humor and ponders its evolutionary path through hominid history. Current humor theories and previous evolutionary ideas on humor are reviewed. In addition, scientific fields germane to the evolutionary study of humor are examined: animal models, genetics, children's humor, humor in pathological conditions, neurobiology, humor in traditional societies and cognitive archeology. Candidate selection pressures and associated evolutionary mechanisms are considered. The authors conclude that several evolutionary-related topics such as the origins of language, cognition underlying spiritual feelings, hominid group size, and primate teasing could have special relevance to the origins of humor.

  16. How evolutionary principles improve the understanding of human health and disease.

    Science.gov (United States)

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  17. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    Science.gov (United States)

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  18. Distance between two binding sites of the same antibody molecule

    International Nuclear Information System (INIS)

    Cser, L.; Gladkikh, I.A.; Ostanevich, Y.M.; Franek, F.; Novotny, J.; Nezlin, R.S.

    1978-01-01

    Neutron small-angle scattering experiments are reported, aimed at determining the distance between the two binding sites of the same antibody molecule employing complexes of anti-Dnp antibody with an antigenically univalent, high molecular weight ligand. Although the distance values could be determined only with a large statistical error, the data allowed the conclusion that the geometrical parameters of the complexes formed with the early (i.e., precipitating) antibody are significantly different from those of the complexes formed with the late (i.e, non-precipitating) antibody. The data suggest that the precipitating antibody complexed with a high molecular weight antigen assumes an extended shape with an antigen to antigen distance of 35.8 +- 1.3 nm. (Auth.)

  19. Planning the expansion of transmission with evolutionary programming; Planeacion de la expansion de transmision con programacion evolutiva

    Energy Technology Data Exchange (ETDEWEB)

    Ceciliano Meza, Jose Luis; Nieva Gomez, Rolando [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    A method of evolutionary programming for the planning of transmission networks in electrical power systems is presented. This is a whole problem mixed and nonlinear, with a combinatory nature that leads to a very large number of possible solutions for electrical systems of medium and large scale. The problem of transmission planning is described briefly and later it is formulated in mathematical terms. The proposed algorithm of evolutionary programming is applied to a large scale network that is representative of the Mexican electrical system. [Spanish] Se presenta un metodo de programacion evolutiva para la planeacion de redes de transmision en sistemas electricos de potencia. Este es un problema entero mixto y no lineal, con una naturaleza combinatoria que conduce a un numero muy grande de soluciones posibles para sistemas electricos de mediana y gran escala. Se describe brevemente el problema de planeacion de transmision y posteriormente se formula en terminos matematicos. El algoritmo propuesto de programacion evolutiva se aplica a una red electrica de gran escala que es representativa del sistema electrico Mexicano.

  20. What Is Sexual Orientation All About? Explaining an Evolutionary Paradox

    OpenAIRE

    Brad Bowins

    2015-01-01

    Numerous psychological, biological, and evolutionary theories have been proposed to explain sexual orientation. For a theory to be valid it must account for the evolutionary or Darwinian paradox of how homosexual behavior seemingly blocking evolutionary fitness could have evolved. Typically it is only evolutionary based theories that attempt to address this issue. All theories proposed to date have limitations, a major one being that they tend to be specific for male or female sexual orientat...

  1. Psychological influences on distance estimation in a virtual reality environment.

    Science.gov (United States)

    Takahashi, Kohske; Meilinger, Tobias; Watanabe, Katsumi; Bülthoff, Heinrich H

    2013-01-01

    Studies of embodied perception have revealed that social, psychological, and physiological factors influence space perception. While many of these influences were observed with real or highly realistic stimuli, the present work showed that even the orientation of abstract geometric objects in a non-realistic virtual environment could influence distance perception. Observers wore a head mounted display and watched virtual cones moving within an invisible cube for 5 s with their head movement recorded. Subsequently, the observers estimated the distance to the cones or evaluated their friendliness. The cones either faced the observer, a target behind the cones, or were oriented randomly. The average viewing distance to the cones varied between 1.2 and 2.0 m. At a viewing distance of 1.6 m, the observers perceived the cones facing them as closer than the cones facing a target in the opposite direction, or those oriented randomly. Furthermore, irrespective of the viewing distance, observers moved their head away from the cones more strongly and evaluated the cones as less friendly when the cones faced the observers. Similar distance estimation results were obtained with a 3-dimensional projection onto a large screen, although the effective viewing distances were farther away. These results suggest that factors other than physical distance influenced distance perception even with non-realistic geometric objects in a virtual environment. Furthermore, the distance perception modulation was accompanied by changes in subjective impression and avoidance movement. We propose that cones facing an observer are perceived as socially discomforting or threatening, and potentially violate an observer's personal space, which might influence the perceived distance of cones.

  2. Distance matrix-based approach to protein structure prediction.

    Science.gov (United States)

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  3. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  4. Telecommuting Academics Within an Open Distance Education Environment of South Africa: More Content, Productive, and Healthy?

    Directory of Open Access Journals (Sweden)

    Deon Harold Tustin

    2014-07-01

    Full Text Available Outside an academic setting, telecommuting has become fairly popular in recent years. However, research on telecommuting practices within a higher education environment is fairly sparse, especially within the higher distance education sphere. Drawing on existing literature on telecommuting and the outcome of a valuation study on the success of an experimental telecommuting programme at the largest distance education institution in South Africa, this article presents discerning findings on telecommuting practices. In fact, the research builds on evolutionary telecommuting assessment methods of the direct or indirect effect (work based and affective impact (emotional on multiple stakeholder groups. This holistic approach allowed for comparative analysis between telecommuting and nontelecommuting academics with regard to the impact of telecommuting practices. The research reveals high levels of support for telecommuting practices that are associated with high levels of work productivity and satisfaction, lower levels of emotional and physical fatigue, and reduced work stress, frustration, and overload. The study also reveals higher levels of student satisfaction with academic support from telecommuters than nontelecommuters. Overall, the critique presents insightful findings on telecommuting practices within an academic setting, which clearly signal a potential for a shift in the office culture of higher distance education institutions in the years to come. The study makes a significant contribution to a limited collection of empirical research on telecommuting practices within the higher distance education sector and guides institutions in refining and/or redefining future telecommuting strategies or programmes.

  5. Open and Distance Learning Today. Routledge Studies in Distance Education Series.

    Science.gov (United States)

    Lockwood, Fred, Ed.

    This book contains the following papers on open and distance learning today: "Preface" (Daniel); "Big Bang Theory in Distance Education" (Hawkridge); "Practical Agenda for Theorists of Distance Education" (Perraton); "Trends, Directions and Needs: A View from Developing Countries" (Koul); "American…

  6. The great opportunity: Evolutionary applications to medicine and public health.

    Science.gov (United States)

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  7. Molecular evolutionary rates are not correlated with temperature and latitude in Squamata: an exception to the metabolic theory of ecology?

    Science.gov (United States)

    Rolland, Jonathan; Loiseau, Oriane; Romiguier, Jonathan; Salamin, Nicolas

    2016-05-20

    The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology.

  8. Special Issue on Distance Education and Development, Guest Editor Editorial -- Low Cost Distance Education Strategies: the use of appropriate information and communication technologies

    Directory of Open Access Journals (Sweden)

    Thomas Hülsmann

    2004-04-01

    Full Text Available The argument for distance education (including e-learning in developing countries could be imagined as a “triple jump.” Each leap of the triple jump consists of a theorem and a corollary applying it to developing countries.Theorem 1: Education is good for development. Corollary: The demand for education is especially high in the developing world. Traditional education cannot cope with its size and is, in many cases, not the most cost-effective allocation of resources.Theorem 2: Distance education can help. Corollary: Distance education is able to deal with large numbers more cost-effectively than traditional education, and has proved to do so also in developing countries.Theorem 3: E-learning is extending the capabilities of traditional distance education. Corollary: Given the emerging global information infrastructure, there are a number of cases where e-learning can enhance the capabilities of distance education in the developing world.Many distance educators would readily subscribe to theorems of leaps 1 and 2 of the triple jump, but argue that the argument collapses at leap 3, especially when it comes to the corollary suggesting that ICT-based distance education could be relevant in the developing world. This paper takes the role of the “devil’s advocate”1 , and will try to cast some doubt on the first two theorems, while intending to strengthen the third leap theorem, the least established argument of the three.

  9. An International Parallax Campaign to Measure Distance to the Moon and Mars

    Science.gov (United States)

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  10. Classification and evolutionary analysis of the basic helix-loop-helix gene family in the green anole lizard, Anolis carolinensis.

    Science.gov (United States)

    Liu, Ake; Wang, Yong; Zhang, Debao; Wang, Xuhua; Song, Huifang; Dang, Chunwang; Yao, Qin; Chen, Keping

    2013-08-01

    Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.

  11. Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions

    Science.gov (United States)

    Hadzibeganovic, Tarik; Stauffer, Dietrich; Han, Xiao-Pu

    2018-04-01

    Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks.

  12. Online Operation Guidance of Computer System Used in Real-Time Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2011-01-01

    Computer system is useful for improving real time and interactive distance education activities. Especially in the case that a large number of students participate in one distance lecture together and every student uses their own computer to share teaching materials or control discussions over the virtual classrooms. The problem is that within…

  13. From a distance: implications of spontaneous self-distancing for adaptive self-reflection.

    Science.gov (United States)

    Ayduk, Ozlem; Kross, Ethan

    2010-05-01

    Although recent experimental work indicates that self-distancing facilitates adaptive self-reflection, it remains unclear (a) whether spontaneous self-distancing leads to similar adaptive outcomes, (b) how spontaneous self-distancing relates to avoidance, and (c) how this strategy impacts interpersonal behavior. Three studies examined these issues demonstrating that the more participants spontaneously self-distanced while reflecting on negative memories, the less emotional (Studies 1-3) and cardiovascular (Study 2) reactivity they displayed in the short term. Spontaneous self-distancing was also associated with lower emotional reactivity and intrusive ideation over time (Study 1). The negative association between spontaneous self-distancing and emotional reactivity was mediated by how participants construed their experience (i.e., less recounting relative to reconstruing) rather than avoidance (Studies 1-2). In addition, spontaneous self-distancing was associated with more problem-solving behavior and less reciprocation of negativity during conflicts among couples in ongoing relationships (Study 3). Although spontaneous self-distancing was empirically related to trait rumination, it explained unique variance in predicting key outcomes. 2010 APA, all rights reserved

  14. Micro-evolutionary diversification among Indian Ocean parrots: temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion

    OpenAIRE

    Jackson, H; Jones, C G; Agapow, P-M; Tatayah, V; Groombridge, Jim J.

    2015-01-01

    Almost 90% of global bird extinctions have occurred on islands. The loss of endemic spe- cies from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th cen- tury, many of these parrots have become extinct or h...

  15. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  16. Cultural Distance and the Performance of International Joint Ventures

    DEFF Research Database (Denmark)

    Christoffersen, Jeppe; Globerman, Steven; Nielsen, Bo Bernhard

    2013-01-01

    This study provides a critical summary and assessment of the empirical literature on the relationship between cultural distance and the performance of international joint ventures (IJVs) based on studies published over the period 1993-2008. The existing literature reports inconsistent and largely...

  17. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  18. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  19. EVOLUTIONARY THEORY AND THE MARKET COMPETITION

    Directory of Open Access Journals (Sweden)

    SIRGHI Nicoleta

    2014-12-01

    Full Text Available Evolutionary theory study of processes that transform economy for firms, institutions, industries, employment, production, trade and growth within, through the actions of diverse agents from experience and interactions, using evolutionary methodology. Evolutionary theory analyses the unleashing of a process of technological and institutional innovation by generating and testing a diversity of ideas which discover and accumulate more survival value for the costs incurred than competing alternatives.This paper presents study the behavior of the firms on the market used the evolutionary theory.The paper is to present in full the developments that have led to the re-assessment of theories of firms starting from the criticism on Coase's theory based on the lack of testable hypotheses and on non-operative definition of transaction costs. In the literature in the field studies on firms were allotted a secondary place for a long period of time, to date the new theories of the firm hold a dominant place in the firms’ economic analysis. In an article, published in 1937, Ronald H. Coase identified the main sources of the cost of using the market mechanism. The firms theory represent a issue intensively studied in the literature in the field, regarding the survival, competitiveness and innovation of firm on the market. The research of Nelson and Winter, “An Evolutionary Theory of Economic Change” (1982 is the starting point for a modern literature in the field which considers the approach of the theory of the firm from an evolutionary perspective. Nelson and Winter have shown that the “orthodox” theory, is objectionable primarily by the fact that the hypothesis regarding profit maximization has a normative character and is not valid in any situation. Nelson and Winter reconsidered their microeconomic analysis showing that excessive attention should not be paid to market equilibrium but rather to dynamic processes resulting from irreversible