WorldWideScience

Sample records for large eddy simulation

  1. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  2. Large eddy simulation of turbulent mixing in a T-junction

    International Nuclear Information System (INIS)

    Kim, Jung Woo

    2010-12-01

    In this report, large eddy simulation was performed in order to further improve our understanding the physics of turbulent mixing in a T-junction, which is recently regarded as one of the most important problems in nuclear thermal-hydraulics safety. Large eddy simulation technique and the other numerical methods used in this study were presented in Sec. 2, and the numerical results obtained from large eddy simulation were described in Sec. 3. Finally, the summary was written in Sec. 4

  3. Large Eddy Simulations using oodlesDST

    Science.gov (United States)

    2016-01-01

    Research Agency DST-Group-TR-3205 ABSTRACT The oodlesDST code is based on OpenFOAM software and performs Large Eddy Simulations of......maritime platforms using a variety of simulation techniques. He is currently using OpenFOAM software to perform both Reynolds Averaged Navier-Stokes

  4. Large Eddy Simulation of turbulence

    International Nuclear Information System (INIS)

    Poullet, P.; Sancandi, M.

    1994-12-01

    Results of Large Eddy Simulation of 3D isotropic homogeneous turbulent flows are presented. A computer code developed on Connexion Machine (CM5) has allowed to compare two turbulent viscosity models (Smagorinsky and structure function). The numerical scheme influence on the energy density spectrum is also studied [fr

  5. Quality and Reliability of Large-Eddy Simulations

    CERN Document Server

    Meyers, Johan; Sagaut, Pierre

    2008-01-01

    Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, ...

  6. Large eddy simulation of premixed and non-premixed combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Sadasivuni, SK; Gubba, SR

    2010-01-01

    This paper summarises the authors experience in using the Large Eddy Simulation (LES) technique for the modelling of premixed and non-premixed combustion. The paper describes the application of LES based combustion modelling technique to two well defined experimental configurations where high quality data is available for validation. The large eddy simulation technique for the modelling flow and turbulence is based on the solution of governing equations for continuity and momentum in a struct...

  7. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  8. Large Eddy Simulation for Compressible Flows

    CERN Document Server

    Garnier, E; Sagaut, P

    2009-01-01

    Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...

  9. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    Science.gov (United States)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Large-eddy simulation of the temporal mixing layer using the Clark model

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, B.J.; Kuerten, J.G.M.

    1996-01-01

    The Clark model for the turbulent stress tensor in large-eddy simulation is investigated from a theoretical and computational point of view. In order to be applicable to compressible turbulent flows, the Clark model has been reformulated. Actual large-eddy simulation of a weakly compressible,

  11. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  12. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  13. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  14. Realizability conditions for the turbulent stress tensor in large-eddy simulation

    NARCIS (Netherlands)

    Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1994-01-01

    The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy

  15. Large-eddy simulation of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Chlond, A [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany)

    1998-12-31

    A large eddy simulation (LES) model has been used to investigate the role of various external parameters and physical processes in the life-cycle of contrails. The model is applied to conditions that are typical for those under which contrails could be observed, i.e. in an atmosphere which is supersaturated with respect to ice and at a temperature of approximately 230 K or colder. The sensitivity runs indicate that the contrail evolution is controlled primarily by humidity, temperature and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, it turns out that the initial ice particle concentration and radiative processes are of minor importance in the evolution of contrails at least during the 30 minutes simulation period. (author) 9 refs.

  16. Large-eddy simulation of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Chlond, A. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany)

    1997-12-31

    A large eddy simulation (LES) model has been used to investigate the role of various external parameters and physical processes in the life-cycle of contrails. The model is applied to conditions that are typical for those under which contrails could be observed, i.e. in an atmosphere which is supersaturated with respect to ice and at a temperature of approximately 230 K or colder. The sensitivity runs indicate that the contrail evolution is controlled primarily by humidity, temperature and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, it turns out that the initial ice particle concentration and radiative processes are of minor importance in the evolution of contrails at least during the 30 minutes simulation period. (author) 9 refs.

  17. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the

  18. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  19. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.

    Science.gov (United States)

    Torner, Benjamin; Konnigk, Lucas; Hallier, Sebastian; Kumar, Jitendra; Witte, Matthias; Wurm, Frank-Hendrik

    2018-06-01

    Numerical flow analysis (computational fluid dynamics) in combination with the prediction of blood damage is an important procedure to investigate the hemocompatibility of a blood pump, since blood trauma due to shear stresses remains a problem in these devices. Today, the numerical damage prediction is conducted using unsteady Reynolds-averaged Navier-Stokes simulations. Investigations with large eddy simulations are rarely being performed for blood pumps. Hence, the aim of the study is to examine the viscous shear stresses of a large eddy simulation in a blood pump and compare the results with an unsteady Reynolds-averaged Navier-Stokes simulation. The simulations were carried out at two operation points of a blood pump. The flow was simulated on a 100M element mesh for the large eddy simulation and a 20M element mesh for the unsteady Reynolds-averaged Navier-Stokes simulation. As a first step, the large eddy simulation was verified by analyzing internal dissipative losses within the pump. Then, the pump characteristics and mean and turbulent viscous shear stresses were compared between the two simulation methods. The verification showed that the large eddy simulation is able to reproduce the significant portion of dissipative losses, which is a global indication that the equivalent viscous shear stresses are adequately resolved. The comparison with the unsteady Reynolds-averaged Navier-Stokes simulation revealed that the hydraulic parameters were in agreement, but differences for the shear stresses were found. The results show the potential of the large eddy simulation as a high-quality comparative case to check the suitability of a chosen Reynolds-averaged Navier-Stokes setup and turbulence model. Furthermore, the results lead to suggest that large eddy simulations are superior to unsteady Reynolds-averaged Navier-Stokes simulations when instantaneous stresses are applied for the blood damage prediction.

  20. Large-eddy simulation with accurate implicit subgrid-scale diffusion

    NARCIS (Netherlands)

    B. Koren (Barry); C. Beets

    1996-01-01

    textabstractA method for large-eddy simulation is presented that does not use an explicit subgrid-scale diffusion term. Subgrid-scale effects are modelled implicitly through an appropriate monotone (in the sense of Spekreijse 1987) discretization method for the advective terms. Special attention is

  1. Direct and large-eddy simulation IX

    CERN Document Server

    Kuerten, Hans; Geurts, Bernard; Armenio, Vincenzo

    2015-01-01

    This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universität Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.

  2. Large eddy simulation of hydrodynamic cavitation

    Science.gov (United States)

    Bhatt, Mrugank; Mahesh, Krishnan

    2017-11-01

    Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.

  3. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  4. Large eddy simulations of an airfoil in turbulent inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels N.

    2008-01-01

    Wind turbines operate in the turbulent boundary layer of the atmosphere and due to the rotational sampling effect the blades experience a high level of turbulence [1]. In this project the effect of turbulence is investigated by large eddy simulations of the turbulent flow past a NACA 0015 airfoil...

  5. Large-eddy simulation of highly underexpanded transient gas jets

    NARCIS (Netherlands)

    Vuorinen, V.; Yu, J.; Tirunagari, S.; Kaario, O.; Larmi, M.; Duwig, C.; Boersma, B.J.

    2013-01-01

    Large-eddy simulations (LES) based on scale-selective implicit filtering are carried out in order to study the effect of nozzle pressure ratios on the characteristics of highly underexpanded jets. Pressure ratios ranging from 4.5 to 8.5 with Reynolds numbers of the order 75?000–140?000 are

  6. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  7. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  8. Aero-Acoustic Modelling using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Shen, W Z; Soerensen, J N

    2007-01-01

    The splitting technique for aero-acoustic computations is extended to simulate three-dimensional flow and acoustic waves from airfoils. The aero-acoustic model is coupled to a sub-grid-scale turbulence model for Large-Eddy Simulations. In the first test case, the model is applied to compute laminar flow past a NACA 0015 airfoil at a Reynolds number of 800, a Mach number of 0.2 and an angle of attack of 20 deg. The model is then applied to compute turbulent flow past a NACA 0015 airfoil at a Reynolds number of 100 000, a Mach number of 0.2 and an angle of attack of 20 deg. The predicted noise spectrum is compared to experimental data

  9. Thermal large Eddy simulations and experiments in the framework of non-isothermal blowing

    International Nuclear Information System (INIS)

    Brillant, G.

    2004-06-01

    The aim of this work is to study thermal large-eddy simulations and to determine the nonisothermal blowing impact on a turbulent boundary layer. An experimental study is also carried out in order to complete and validate simulation results. In a first time, we developed a turbulent inlet condition for the velocity and the temperature, which is necessary for the blowing simulations.We studied the asymptotic behavior of the velocity, the temperature and the thermal turbulent fluxes in a large-eddy simulation point of view. We then considered dynamics models for the eddy-diffusivity and we simulated a turbulent channel flow with imposed temperature, imposed flux and adiabatic walls. The numerical and experimental study of blowing permitted to obtain to the modifications of a thermal turbulent boundary layer with the blowing rate. We observed the consequences of the blowing on mean and rms profiles of velocity and temperature but also on velocity-velocity and velocity-temperature correlations. Moreover, we noticed an increase of the turbulent structures in the boundary layer with blowing. (author)

  10. Large-Eddy Simulation of Internal Flow through Human Vocal Folds

    Science.gov (United States)

    Lasota, Martin; Šidlof, Petr

    2018-06-01

    The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.

  11. Large-Eddy Simulation of Internal Flow through Human Vocal Folds

    Directory of Open Access Journals (Sweden)

    Lasota Martin

    2018-01-01

    Full Text Available The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.

  12. Large-Eddy Simulations of Flows in Complex Terrain

    Science.gov (United States)

    Kosovic, B.; Lundquist, K. A.

    2011-12-01

    Large-eddy simulation as a methodology for numerical simulation of turbulent flows was first developed to study turbulent flows in atmospheric by Lilly (1967). The first LES were carried by Deardorff (1970) who used these simulations to study atmospheric boundary layers. Ever since, LES has been extensively used to study canonical atmospheric boundary layers, in most cases flat plate boundary layers under the assumption of horizontal homogeneity. Carefully designed LES of canonical convective and neutrally stratified and more recently stably stratified atmospheric boundary layers have contributed significantly to development of better understanding of these flows and their parameterizations in large scale models. These simulations were often carried out using codes specifically designed and developed for large-eddy simulations of horizontally homogeneous flows with periodic lateral boundary conditions. Recent developments in multi-scale numerical simulations of atmospheric flows enable numerical weather prediction (NWP) codes such as ARPS (Chow and Street, 2009), COAMPS (Golaz et al., 2009) and Weather Research and Forecasting model, to be used nearly seamlessly across a wide range of atmospheric scales from synoptic down to turbulent scales in atmospheric boundary layers. Before we can with confidence carry out multi-scale simulations of atmospheric flows, NWP codes must be validated for accurate performance in simulating flows over complex or inhomogeneous terrain. We therefore carry out validation of WRF-LES for simulations of flows over complex terrain using data from Askervein Hill (Taylor and Teunissen, 1985, 1987) and METCRAX (Whiteman et al., 2008) field experiments. WRF's nesting capability is employed with a one-way nested inner domain that includes complex terrain representation while the coarser outer nest is used to spin up fully developed atmospheric boundary layer turbulence and thus represent accurately inflow to the inner domain. LES of a

  13. Large eddy simulation of breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Deigaard, Rolf

    2001-01-01

    A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence....... The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes...... the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved...

  14. Large Eddy Simulation of Sydney Swirl Non-Reaction Jets

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    The Sydney swirl burner non-reaction case was studied using large eddy simulation. The two-point correlation method was introduced and used to estimate grid resolution. Energy spectra and instantaneous pressure and velocity plots were used to identify features in flow field. By using these method......, vortex breakdown and precessing vortex core are identified and different flow zones are shown....

  15. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  16. Implementation of a Large Eddy Simulation Method Applied to Recirculating Flow in a Ventilated Room

    DEFF Research Database (Denmark)

    Davidson, Lars

    In the present work Large Eddy Simulations are presented. The flow in a ventilated enclosure is studied. We use an explicit, two-steps time-advancement scheme where the pressure is solved from a Poisson equation.......In the present work Large Eddy Simulations are presented. The flow in a ventilated enclosure is studied. We use an explicit, two-steps time-advancement scheme where the pressure is solved from a Poisson equation....

  17. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  18. Large Eddy Simulation of Film-Cooling Jets

    Science.gov (United States)

    Iourokina, Ioulia

    2005-11-01

    Large Eddy Simulation of inclined jets issuing into a turbulent boundary layer crossflow has been performed. The simulation models film-cooling experiments of Pietrzyk et al. (J. of. Turb., 1989), consisting of a large plenum feeding an array of jets inclined at 35° to the flat surface with a pitch 3D and L/D=3.5. The blowing ratio is 0.5 with unity density ratio. The numerical method used is a hybrid combining external compressible solver with a low-Mach number code for the plenum and film holes. Vorticity dynamics pertinent to jet-in-crossflow interactions is analyzed and three-dimensional vortical structures are revealed. Turbulence statistics are compared to the experimental data. The turbulence production due to shearing in the crossflow is compared to that within the jet hole. The influence of three-dimensional coherent structures on the wall heat transfer is investigated and strategies to increase film- cooling performance are discussed.

  19. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  20. Large eddy simulation of particulate flow inside a differentially heated cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bosshard, Christoph, E-mail: christoph.bosshard@a3.epfl.ch [Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI (Switzerland); Dehbi, Abdelouahab, E-mail: abdel.dehbi@psi.ch [Paul Scherrer Institut, Laboratory for Thermalhydraulics (LTH), 5232 Villigen PSI (Switzerland); Deville, Michel, E-mail: michel.deville@epfl.ch [École Polytechnique Fédérale de Lausanne, STI-DO, Station 12, 1015 Lausanne (Switzerland); Leriche, Emmanuel, E-mail: emmanuel.leriche@univ-lille1.fr [Université de Lille I, Laboratoire de Mécanique de Lille, Avenue Paul Langevin, Cité Scientifique, F-59655 Villeneuve d’Ascq Cédex (France); Soldati, Alfredo, E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine and Centro Interdipartimentale di Fluidodinamica e Idraulica, Universitá degli Studi di Udine, Udine (Italy)

    2014-02-15

    Highlights: • Nuclear accident leads to airborne radioactive particles in containment atmosphere. • Large eddy simulation with particles in differentially heated cavity is carried out. • LES results show negligible differences with direct numerical simulation. • Four different particle sets with diameters from 10 μm to 35 μm are tracked. • Particle removal dominated by gravity settling and turbophoresis is negligible. - Abstract: In nuclear safety, some severe accident scenarios lead to the presence of fission products in aerosol form in the closed containment atmosphere. It is important to understand the particle depletion process to estimate the risk of a release of radioactivity to the environment should a containment break occur. As a model for the containment, we use the three-dimensional differentially heated cavity problem. The differentially heated cavity is a cubical box with a hot wall and a cold wall on vertical opposite sides. On the other walls of the cube we have adiabatic boundary conditions. For the velocity field the no-slip boundary condition is applied. The flow of the air in the cavity is described by the Boussinesq equations. The method used to simulate the turbulent flow is the large eddy simulation (LES) where the dynamics of the large eddies is resolved by the computational grid and the small eddies are modelled by the introduction of subgrid scale quantities using a filter function. Particle trajectories are computed using the Lagrangian particle tracking method, including the relevant forces (drag, gravity, thermophoresis). Four different sets with each set containing one million particles and diameters of 10 μm, 15 μm, 25 μm and 35 μm are simulated. Simulation results for the flow field and particle sizes from 15 μm to 35 μm are compared to previous results from direct numerical simulation (DNS). The integration time of the LES is three times longer and the smallest particles have been simulated only in the LES. Particle

  1. Large-Eddy Simulation of Subsonic Jets

    International Nuclear Information System (INIS)

    Vuorinen, Ville; Wehrfritz, Armin; Yu Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan

    2011-01-01

    The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.

  2. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    OpenAIRE

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  3. Application of renormalization group theory to the large-eddy simulation of transitional boundary layers

    Science.gov (United States)

    Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.

    1990-01-01

    An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.

  4. Large Eddy Simulation (LES for IC Engine Flows

    Directory of Open Access Journals (Sweden)

    Kuo Tang-Wei

    2013-10-01

    Full Text Available Numerical computations are carried out using an engineering-level Large Eddy Simulation (LES model that is provided by a commercial CFD code CONVERGE. The analytical framework and experimental setup consist of a single cylinder engine with Transparent Combustion Chamber (TCC under motored conditions. A rigorous working procedure for comparing and analyzing the results from simulation and high speed Particle Image Velocimetry (PIV experiments is documented in this work. The following aspects of LES are analyzed using this procedure: number of cycles required for convergence with adequate accuracy; effect of mesh size, time step, sub-grid-scale (SGS turbulence models and boundary condition treatments; application of the proper orthogonal decomposition (POD technique.

  5. Large-eddy simulation of sand dune morphodynamics

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team

    2015-11-01

    Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  6. A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation

    Science.gov (United States)

    Chapelier, J.-B.; Wasistho, B.; Scalo, C.

    2018-04-01

    This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.

  7. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  8. Very large eddy simulation of the Red Sea overflow

    Science.gov (United States)

    Ilıcak, Mehmet; Özgökmen, Tamay M.; Peters, Hartmut; Baumert, Helmut Z.; Iskandarani, Mohamed

    Mixing between overflows and ambient water masses is a critical problem of deep-water mass formation in the downwelling branch of the meridional overturning circulation of the ocean. Modeling approaches that have been tested so far rely either on algebraic parameterizations in hydrostatic ocean circulation models, or on large eddy simulations that resolve most of the mixing using nonhydrostatic models. In this study, we examine the performance of a set of turbulence closures, that have not been tested in comparison to observational data for overflows before. We employ the so-called very large eddy simulation (VLES) technique, which allows the use of k-ɛ models in nonhydrostatic models. This is done by applying a dynamic spatial filtering to the k-ɛ equations. To our knowledge, this is the first time that the VLES approach is adopted for an ocean modeling problem. The performance of k-ɛ and VLES models are evaluated by conducting numerical simulations of the Red Sea overflow and comparing them to observations from the Red Sea Outflow Experiment (REDSOX). The computations are constrained to one of the main channels transporting the overflow, which is narrow enough to permit the use of a two-dimensional (and nonhydrostatic) model. A large set of experiments are conducted using different closure models, Reynolds numbers and spatial resolutions. It is found that, when no turbulence closure is used, the basic structure of the overflow, consisting of a well-mixed bottom layer (BL) and entraining interfacial layer (IL), cannot be reproduced. The k-ɛ model leads to unrealistic thicknesses for both BL and IL, while VLES results in the most realistic reproduction of the REDSOX observations.

  9. Comparison of reynolds averaged navier stokes based simulation and large eddy simulation for one isothermal swirling flow

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen

    2012-01-01

    The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied...

  10. Large eddy simulation of cavitating flows

    Science.gov (United States)

    Gnanaskandan, Aswin; Mahesh, Krishnan

    2014-11-01

    Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.

  11. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  12. Large-eddy simulation of swirling pulverized-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X.; Xu, C.S. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    A Eulerian-Lagrangian large-eddy simulation (LES) with a Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and EBU gas combustion models, particle devolatilization and particle combustion models are used to study the turbulence and flame structures of swirling pulverized-coal combustion. The LES statistical results are validated by the measurement results. The instantaneous LES results show that the coherent structures for pulverized coal combustion is stronger than that for swirling gas combustion. The particles are concentrated in the periphery of the coherent structures. The flame is located at the high vorticity and high particle concentration zone.

  13. Large-eddy simulations for turbulent flows

    International Nuclear Information System (INIS)

    Husson, S.

    2007-07-01

    The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)

  14. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  15. A regularized vortex-particle mesh method for large eddy simulation

    DEFF Research Database (Denmark)

    Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy...

  16. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.

    2010-08-01

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  17. Coupled large-eddy simulation of thermal mixing in a T-junction

    International Nuclear Information System (INIS)

    Kloeren, D.; Laurien, E.

    2011-01-01

    Analyzing thermal fatigue due to thermal mixing in T-junctions is part of the safety assessment of nuclear power plants. Results of two large-eddy simulations of mixing flow in a T-junction with coupled and adiabatic boundary condition are presented and compared. The temperature difference is set to 100 K, which leads to strong stratification of the flow. The main and the branch pipe intersect horizontally in this simulation. The flow is characterized by steady wavy pattern of stratification and temperature distribution. The coupled solution approach shows highly reduced temperature fluctuations in the near wall region due to thermal inertia of the wall. A conjugate heat transfer approach is necessary in order to simulate unsteady heat transfer accurately for large inlet temperature differences. (author)

  18. Large-eddy simulation of atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas

    2007-01-01

    The present report describes the development and validation of a turbulence model designed for atmospheric flows based on the concept of Large-Eddy Simulation (LES). The background for the work is the high Reynolds number k - #epsilon# model, which has been implemented on a finite-volume code...... turbulence model is able to handle both engineering and atmospheric flows and can be run in both RANS or LES mode. For LES simulations a time-dependent wind field that accurately represents the turbulent structures of a wind environment must be prescribed at the computational inlet. A method is implemented...... where the turbulent wind field from a separate LES simulation can be used as inflow. To avoid numerical dissipation of turbulence special care is paid to the numerical method, e.g. the turbulence model is calibrated with the specific numerical scheme used. This is done by simulating decaying isotropic...

  19. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)

    International Nuclear Information System (INIS)

    Pitsch, H.; Steiner, H.

    2000-01-01

    The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel. (c) 2000 American Institute of Physics

  20. Methods for Evaluating the Temperature Structure-Function Parameter Using Unmanned Aerial Systems and Large-Eddy Simulation

    Science.gov (United States)

    Wainwright, Charlotte E.; Bonin, Timothy A.; Chilson, Phillip B.; Gibbs, Jeremy A.; Fedorovich, Evgeni; Palmer, Robert D.

    2015-05-01

    Small-scale turbulent fluctuations of temperature are known to affect the propagation of both electromagnetic and acoustic waves. Within the inertial-subrange scale, where the turbulence is locally homogeneous and isotropic, these temperature perturbations can be described, in a statistical sense, using the structure-function parameter for temperature, . Here we investigate different methods of evaluating , using data from a numerical large-eddy simulation together with atmospheric observations collected by an unmanned aerial system and a sodar. An example case using data from a late afternoon unmanned aerial system flight on April 24 2013 and corresponding large-eddy simulation data is presented and discussed.

  1. Large eddy simulation of a wing-body junction flow

    Science.gov (United States)

    Ryu, Sungmin; Emory, Michael; Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2014-11-01

    We present numerical simulations of the wing-body junction flow experimentally investigated by Devenport & Simpson (1990). Wall-junction flows are common in engineering applications but relevant flow physics close to the corner region is not well understood. Moreover, performance of turbulence models for the body-junction case is not well characterized. Motivated by the insufficient investigations, we have numerically investigated the case with Reynolds-averaged Naiver-Stokes equation (RANS) and Large Eddy Simulation (LES) approaches. The Vreman model applied for the LES and SST k- ω model for the RANS simulation are validated focusing on the ability to predict turbulence statistics near the junction region. Moreover, a sensitivity study of the form of the Vreman model will also be presented. This work is funded under NASA Cooperative Agreement NNX11AI41A (Technical Monitor Dr. Stephen Woodruff)

  2. Pressure fluctuation prediction in pump mode using large eddy simulation and unsteady Reynolds-averaged Navier–Stokes in a pump–turbine

    Directory of Open Access Journals (Sweden)

    De-You Li

    2016-06-01

    Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.

  3. Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, J.P.; Noe, H.; Menant, B.

    1995-09-01

    The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.

  4. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    NARCIS (Netherlands)

    Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike

  5. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    Science.gov (United States)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  6. Investigation of wake interaction using full-scale lidar measurements and large eddy simulation

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels

    2016-01-01

    dynamics flow solver, using large eddy simulation and fully turbulent inflow. The rotors are modelled using the actuator disc technique. A mutual validation of the computational fluid dynamics model with the measurements is conducted for a selected dataset, where wake interaction occurs. This validation...

  7. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  8. Large Eddy Simulation of the spray formation in confinements

    International Nuclear Information System (INIS)

    Lampa, A.; Fritsching, U.

    2013-01-01

    Highlights: • Process stability of confined spray processes is affected by the geometric design of the spray confinement. • LES simulations of confined spray flow have been performed successfully. • Clustering processes of droplets is predicted in simulations and validated with experiments. • Criteria for specific coherent gas flow patterns and droplet clustering behaviour are found. -- Abstract: The particle and powder properties produced within spray drying processes are influenced by various unsteady transport phenomena in the dispersed multiphase spray flow in a confined spray chamber. In this context differently scaled spray structures in a confined spray environment have been analyzed in experiments and numerical simulations. The experimental investigations have been carried out with Particle-Image-Velocimetry to determine the velocity of the gas and the discrete phase. Large-Eddy-Simulations have been set up to predict the transient behaviour of the spray process and have given more insight into the sensitivity of the spray flow structures in dependency from the spray chamber design

  9. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  10. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  11. Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows

    KAUST Repository

    Rahman, Mustafa M.

    2017-01-05

    We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.

  12. Large-eddy simulation of maritime deep tropical convection

    Directory of Open Access Journals (Sweden)

    Peter A Bogenschutz

    2009-12-01

    Full Text Available This study represents an attempt to apply Large-Eddy Simulation (LES resolution to simulate deep tropical convection in near equilibrium for 24 hours over an area of about 205 x 205 km2, which is comparable to that of a typical horizontal grid cell in a global climate model. The simulation is driven by large-scale thermodynamic tendencies derived from mean conditions during the GATE Phase III field experiment. The LES uses 2048 x 2048 x 256 grid points with horizontal grid spacing of 100 m and vertical grid spacing ranging from 50 m in the boundary layer to 100 m in the free troposphere. The simulation reaches a near equilibrium deep convection regime in 12 hours. The simulated vertical cloud distribution exhibits a trimodal vertical distribution of deep, middle and shallow clouds similar to that often observed in Tropics. A sensitivity experiment in which cold pools are suppressed by switching off the evaporation of precipitation results in much lower amounts of shallow and congestus clouds. Unlike the benchmark LES where the new deep clouds tend to appear along the edges of spreading cold pools, the deep clouds in the no-cold-pool experiment tend to reappear at the sites of the previous deep clouds and tend to be surrounded by extensive areas of sporadic shallow clouds. The vertical velocity statistics of updraft and downdraft cores below 6 km height are compared to aircraft observations made during GATE. The comparison shows generally good agreement, and strongly suggests that the LES simulation can be used as a benchmark to represent the dynamics of tropical deep convection on scales ranging from large turbulent eddies to mesoscale convective systems. The effect of horizontal grid resolution is examined by running the same case with progressively larger grid sizes of 200, 400, 800, and 1600 m. These runs show a reasonable agreement with the benchmark LES in statistics such as convective available potential energy, convective inhibition

  13. Multiscale Data Assimilation for Large-Eddy Simulations

    Science.gov (United States)

    Li, Z.; Cheng, X.; Gustafson, W. I., Jr.; Xiao, H.; Vogelmann, A. M.; Endo, S.; Toto, T.

    2017-12-01

    Large-eddy simulation (LES) is a powerful tool for understanding atmospheric turbulence, boundary layer physics and cloud development, and there is a great need for developing data assimilation methodologies that can constrain LES models. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) User Facility has been developing the capability to routinely generate ensembles of LES. The LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso) is generating simulations for shallow convection days at the ARM Southern Great Plains site in Oklahoma. One of major objectives of LASSO is to develop the capability to observationally constrain LES using a hierarchy of ARM observations. We have implemented a multiscale data assimilation (MSDA) scheme, which allows data assimilation to be implemented separately for distinct spatial scales, so that the localized observations can be effectively assimilated to constrain the mesoscale fields in the LES area of about 15 km in width. The MSDA analysis is used to produce forcing data that drive LES. With such LES workflow we have examined 13 days with shallow convection selected from the period May-August 2016. We will describe the implementation of MSDA, present LES results, and address challenges and opportunities for applying data assimilation to LES studies.

  14. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    Science.gov (United States)

    Oefelein, Joseph C.

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  15. Large Eddy Simulation for Incompressible Flows An Introduction

    CERN Document Server

    Sagaut, P

    2005-01-01

    The first and most exhaustive work of its kind devoted entirely to the subject, Large Eddy Simulation presents a comprehensive account and a unified view of this young but very rich discipline. LES is the only efficient technique for approaching high Reynolds numbers when simulating industrial, natural or experimental configurations. The author concentrates on incompressible fluids and chooses his topics in treating with care both the mathematical ideas and their applications. The book addresses researchers as well as graduate students and engineers. The second edition was a greatly enriched version motivated both by the increasing theoretical interest in LES and the increasing number of applications. Two entirely new chapters were devoted to the coupling of LES with multiresolution multidomain techniques and to the new hybrid approaches that relate the LES procedures to the classical statistical methods based on the Reynolds-Averaged Navier-Stokes equations. This 3rd edition adds various sections to the text...

  16. Quality and Reliability of Large-Eddy Simulations II

    CERN Document Server

    Salvetti, Maria Vittoria; Meyers, Johan; Sagaut, Pierre

    2011-01-01

    The second Workshop on "Quality and Reliability of Large-Eddy Simulations", QLES2009, was held at the University of Pisa from September 9 to September 11, 2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The focus of QLES2009 was on issues related to predicting, assessing and assuring the quality of LES. The main goal of QLES2009 was to enhance the knowledge on error sources and on their interaction in LES and to devise criteria for the prediction and optimization of simulation quality, by bringing together mathematicians, physicists and engineers and providing a platform specifically addressing these aspects for LES. Contributions were made by leading experts in the field. The present book contains the written contributions to QLES2009 and is divided into three parts, which reflect the main topics addressed at the workshop: (i) SGS modeling and discretization errors; (ii) Assessment and reduction of computational errors; (iii) Mathematical analysis and foundation for SGS modeling.

  17. Towards Large Eddy Simulation of gas turbine compressors

    Science.gov (United States)

    McMullan, W. A.; Page, G. J.

    2012-07-01

    With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.

  18. One-Way Nested Large-Eddy Simulation over the Askervein Hill

    Directory of Open Access Journals (Sweden)

    James D. Doyle

    2009-07-01

    Full Text Available Large-eddy simulation (LES models have been used extensively to study atmospheric boundary layer turbulence over flat surfaces; however, LES applications over topography are less common. We evaluate the ability of an existing model – COAMPS®-LES – to simulate flow over terrain using data from the Askervein Hill Project. A new approach is suggested for the treatment of the lateral boundaries using one-way grid nesting. LES wind profile and speed-up are compared with observations at various locations around the hill. The COAMPS-LES model performs generally well. This case could serve as a useful benchmark for evaluating LES models for applications over topography.

  19. Subgrid scale modeling in large-Eddy simulation of turbulent combustion using premixed fdlamelet chemistry

    NARCIS (Netherlands)

    Vreman, A.W.; Oijen, van J.A.; Goey, de L.P.H.; Bastiaans, R.J.M.

    2009-01-01

    Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier-Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet

  20. Large eddy simulation of a mechanically ventilated compartment fire for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bao P. [Dalian Univ. of Technology (China). Faculty of Energy and Power Engineering; Wen, Jennifer X. [Warwick Univ. (United Kingdom). Warwick FIRE, School of Engineering

    2015-12-15

    This paper deals with the modelling of a mechanically ventilated compartment fire which is a commonplace in nuclear fire scenarios. An advanced Computational Fluid Dynamics (CFD) field model with a wall conjugate heat transfer treatment is proposed. It simultaneously solves the compartment fire flow and the wall heat conduction. The flow solver is based on the Large Eddy Simulation (LES) based fire simulation solver FireFOAM within the frame of open source CFD code OpenFOAM {sup registered}. An extended eddy dissipation model is used to calculate the chemical reaction rate. A soot model based on the concept of smoke point height is employed to model the soot formation and oxidation. A finite volume method is adopted to model the radiative heat transfer. The ventilation flow is modelled by a simplified Bernoulli equation neglecting the detailed information on the ventilation system. The proposed model is validated against a single room fire test with forced mechanical ventilations. The predictions are in reasonably good agreement with experimental data.

  1. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  2. Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective

    KAUST Repository

    Cheng, Wan; Pullin, D. I.; Samtaney, Ravi; Zhang, W.; Gao, Wei

    2017-01-01

    , numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at , with a mesh of , agree well

  3. Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto

    2018-04-01

    Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.

  4. Large-Eddy-Simulation of turbulent magnetohydrodynamic flows

    Directory of Open Access Journals (Sweden)

    Woelck Johannes

    2017-01-01

    Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.

  5. Large eddy simulation of stably stratified turbulence

    International Nuclear Information System (INIS)

    Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao

    2011-01-01

    Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.

  6. Large Eddy Simulation for an inherent boron dilution transient

    International Nuclear Information System (INIS)

    Jayaraju, S.T.; Sathiah, P.; Komen, E.M.J.; Baglietto, E.

    2013-01-01

    Highlights: • Large Eddy Simulation is performed for a transient boron dilution scenario in the scaled experimental facility of ROCOM. • Fully conformal polyhedral grid of 14 million is created to capture all details of the domain. • Systematic multi-step validation methodology is followed to assess the accuracy of LES model. • For the presently simulated BDT scenario, the LES results lend support to its reliability in consistently predicting the slug transport in the RPV. -- Abstract: The present paper focuses on the validation and applicability of large eddy simulation (LES) to analyze the transport and mixing in the reactor pressure vessel (RPV) during an inherent boron dilution transient (BDT) scenario. Extensive validation data comes from relevant integral tests performed in the scaled ROCOM experimental facility. The modeling of sub-grid-scales is based on the WALE model. A fully conformal polyhedral grid of about 15 million cells is constructed to capture all details in the domain, including the complex structures of the lower-plenum. Detailed qualitative and quantitative validations are performed by following a systematic multi-step validation methodology. Qualitative comparisons to the experimental data in the cold legs, downcomer and the core inlet showed good predictions by the LES model. Minor deviations seen in the quantitative comparisons are rigorously quantified. A key parameter which is affecting the core neutron kinetics response is the value of highest deborated slug concentration that occurs at the core inlet during the transient. Detailed analyses are made at the core inlet to evaluate not only the value of the maximum slug concentration, but also the location and the time at which it occurs during the transient. The relative differences between the ensemble averaged experimental data and CFD predictions were within the range of relative differences seen within 10 different experimental realizations. For the studied scenario, the

  7. Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine

    International Nuclear Information System (INIS)

    Bulat, G.; Jones, W.P.; Navarro-Martinez, S.

    2015-01-01

    Highlights: • We conduct a large eddy simulation of an industrial gas turbine. • The results are compared with measurements obtained under isothermal conditions. • The method reproduces the observed precessing vortex and central vortex cores. • The profiles of mean and rms velocities are found to be captured to a good accuracy. - Abstract: The paper describes the results of a computational study of the strongly swirling isothermal flow in the combustion chamber of an industrial gas turbine. The flow field characteristics are computed using large eddy simulation in conjunction with a dynamic version of the Smagorinsky model for the sub-grid-scale stresses. Grid refinement studies demonstrate that the results are essentially grid independent. The LES results are compared with an extensive set of measurements and the agreement with these is overall good. The method is shown to be capable of reproducing the observed precessing vortex and central vortex cores and the profiles of mean and rms velocities are found to be captured to a good accuracy. The overall flow structure is shown to be virtually independent of Reynolds number

  8. General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David, E-mail: dradice@astro.princeton.edu [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-20

    The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrino emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.

  9. Comparison of Large Eddy Simulations of a convective boundary layer with wind LIDAR measurements

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik

    2012-01-01

    Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when...

  10. Subfilter Scale Modelling for Large Eddy Simulation of Lean Hydrogen-Enriched Turbulent Premixed Combustion

    NARCIS (Netherlands)

    Hernandez Perez, F.E.

    2011-01-01

    Hydrogen (H2) enrichment of hydrocarbon fuels in lean premixed systems is desirable since it can lead to a progressive reduction in greenhouse-gas emissions, while paving the way towards pure hydrogen combustion. In recent decades, large-eddy simulation (LES) has emerged as a promising tool to

  11. Large Eddy Simulations of turbulent flows at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)

    2011-07-01

    A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)

  12. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which

  13. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  14. Implementation of a roughness element to trip transition in large-eddy simulation

    Science.gov (United States)

    Boudet, J.; Monier, J.-F.; Gao, F.

    2015-02-01

    In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element ( e.g. a step) on the wall. The present paper is concerned with the numerical implementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer configuration, with Reynolds number Rex=1.3×106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nicoud and Ducros ( Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Lévêque et al. ( J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.

  15. Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency

    Science.gov (United States)

    Aikens, Kurt; Craft, Kyle; Redman, Andrew

    2015-11-01

    The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  16. Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Mikkelsen, Robert Flemming; Troldborg, Niels

    2014-01-01

    , superimposed on top of a mean deterministic shear layer consistent with that used in the IEC standard for wind turbine load calculations. First, the method is evaluated by running a series of large-eddy simulations in an empty domain, where the imposed turbulence and wind shear is allowed to reach a fully...

  17. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  18. Visualization and analysis of eddies in a global ocean simulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Sean J [Los Alamos National Laboratory; Hecht, Matthew W [Los Alamos National Laboratory; Petersen, Mark [Los Alamos National Laboratory; Strelitz, Richard [Los Alamos National Laboratory; Maltrud, Mathew E [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS

    2010-10-15

    Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.

  19. A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, nan-Suey

    2010-01-01

    A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.

  20. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  1. Large Eddy Simulations of the Flow in a Three-Dimensional Ventilated Room

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    We have done Large Eddy Simulations (LES) of the flow in a three-dimensional ventilated room. A finite volume method is used with a collocated grid arrangement. The momentum equations are solved with an explicit method using central differencing for all terms. The pressure is obtained from a Pois...... a Poisson equation, which is solved with a conjugate gradient method. For the discretization in time we use the Adam-Bashfourth scheme, which is second-order accurate....

  2. Developments and validation of large eddy simulation of turbulent flows in an industrial code

    International Nuclear Information System (INIS)

    Ackermann, C.

    2000-01-01

    Large Eddy Simulation, where large scales of the flow are resolved and sub-grid scales are modelled, is well adapted to the study of turbulent flow, in which geometry and/or heat transfer effects lead to unsteady phenomena. To obtain an improved numerical tool, simulations of elementary test cases, Homogeneous Isotropic Turbulence and Turbulent Plane Channel, were clone on both structured and unstructured grids, before moving to more complex geometries. This allowed the influence of the different physical and numerical parameters to be studied separately. On structured grids, the different properties of the numerical methods corresponding to our problem were identified, a new sub-grid model was elaborated and several laws of the wall tested: for this discretization, our numerical tool is yet validated. On unstructured grids, the construction of numerical methods with the same properties as on the structured grids is harder, especially for the convection scheme: several numerical schemes were tested, and sub-grid models and laws of the wall were adapted to unstructured grids. Simulations of the same elementary tests were clone: the results are relatively satisfactorily, even if they are not so good as the one obtained in structured grids, most probably because the numerical methods chosen cannot perfectly isolate the effects between the convection scheme, physical modelling and the mesh chosen. This work is the first stage towards the development of a practical Large Eddy Simulation tool for unstructured grid. (author) [fr

  3. Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils

    DEFF Research Database (Denmark)

    Frére, A.; Sørensen, Niels N.; Hillewaert, K.

    2016-01-01

    This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy...... sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible...... at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 × 104), involving laminar boundary layer separation and transition...

  4. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    Science.gov (United States)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  5. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  6. A regularized vortex-particle mesh method for large eddy simulation

    Science.gov (United States)

    Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.

    2017-11-01

    We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.

  7. Large Eddy Simulation of Flows Associated with Offshore Oil and Gas Pipeline

    Directory of Open Access Journals (Sweden)

    Nizamani Z.

    2017-01-01

    Full Text Available Fluid structure interaction (FSI applications are of wide range from offshore fixed and floating structures to offshore pipelines. Reynolds Averaged Navier Stoke (RANS solution has limitation for unsteady and turbulent flow modelling. A possible approach is Large Eddy Simulation (LES and it is applied to flows past a circular cylinder located far above, near and on a flat seabed. The Reynolds number considered is based on the real situation off Malaysia Coast and is sub-critical around 105. Hydrodynamic quantities in terms of mean pressure are predicted and vortex shedding mechanism is evaluated. The results are validated by comparing the simulation and experimental previous studies.

  8. Large eddy simulation of a fuel rod subchannel

    International Nuclear Information System (INIS)

    Mayer, Gusztav

    2007-01-01

    In a VVER-440 reactor the measured outlet temperature is related to fuel limit parameters and the power upgrading plans of VVER-440 reactors motivated us to obtain more information on the mixing process of the fuel assemblies. In a VVER-440 rod bundle the fuel rods are arranged in triangular array. Measurement shows (Krauss and Meyer, 1998) that the classical engineering approach, which tries to trace the characterization of such systems back to equivalent (hydraulic diameter) pipe flows, does not give reasonable results. Due to the different turbulence characteristics, the mixing is more intensive in rod bundles than it would be expected based on equivalent pipe flow correlations. As a possible explanation of the high mixing, secondary flow was deduced from measurements by several experimentalists (Trupp and Azad, 1975). Another candidate to explain the high mixing is the so-called flow pulsation phenomenon (Krauss and Meyer, 1998). In this paper we present subchannel simulations (Mayer et al. 2007) using large eddy simulation (LES) methodology and the lattice Boltzmann method (LBM) without the spacers at Reynolds number 21000. The simulation results are compared with the measurements of Trupp and Azad (1975). The mean axial velocity profile shows good agreement with the measurement data. Secondary flow has been observed directly in the simulation results. Reasonable agreement has been achieved for most Reynolds stresses. Nevertheless, the calculated normal stresses show small, but systematic deviation from the measurement data. (author)

  9. Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, P; Bretherton, C

    2008-03-03

    This paper describes a series of 6 day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At other times of the day, entrainment is found to be proportional to the vertically-integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated cloud albedo. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.

  10. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  11. 1st ERCOFTAC Workshop on Direct and Large-Eddy Simulation

    CERN Document Server

    Kleiser, Leonhard; Chollet, Jean-Pierre

    1994-01-01

    It is a truism that turbulence is an unsolved problem, whether in scientific, engin­ eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur­ bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen­ erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu­ lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula­ tions are necessarily time-depen...

  12. The impact of boundary layer turbulence on snow growth and precipitation: Idealized Large Eddy Simulations

    Science.gov (United States)

    Chu, Xia; Xue, Lulin; Geerts, Bart; Kosović, Branko

    2018-05-01

    Ice particles and supercooled droplets often co-exist in planetary boundary-layer (PBL) clouds. The question examined in this numerical study is how large turbulent PBL eddies affect snow growth and surface precipitation from mixed-phase PBL clouds. In order to simplify this question, this study assumes an idealized BL with well-developed turbulence but no surface heat fluxes or radiative heat exchanges. Large Eddy Simulations with and without resolved PBL turbulence are compared. This comparison demonstrates that the impact on snow growth in mixed-phase clouds is controlled by two opposing mechanisms, a microphysical and a dynamical one. The cloud microphysical impact of large turbulent eddies is based on the difference in saturation vapor pressure over water and over ice. The net outcome of alternating turbulent up- and downdrafts is snow growth by diffusion and/or accretion (riming). On the other hand, turbulence-induced entrainment and detrainment may suppress snow growth. In the case presented herein, the net effect of these microphysical and dynamical processes is positive, but in general the net effect depends on ambient conditions, in particular the profiles of temperature, humidity, and wind.

  13. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    International Nuclear Information System (INIS)

    Yang Yang; Kær, Søren Knudsen

    2012-01-01

    Highlights: ► Rational mesh and grid system for LES are discussed. ► Validated results are provided and discrepancy of mean radial velocity component is discussed. ► Flow structures are identified using vorticity field. ► We performed POD on cross sections to assist in understanding of coherent structures. - Abstract: This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time averaged results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics.

  14. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  15. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    NARCIS (Netherlands)

    Moonen, P.; Gromke, C.B.; Dorer, V.

    2013-01-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are

  16. To conserve, or not to conserve ... : Large eddy simulation of wind farms with energy-conserving schemes

    NARCIS (Netherlands)

    Mehta, D.

    2016-01-01

    This thesis concerns the industrial application of large eddy simulation to wind farm aerodynamics. Through a series of simple tests, it presents the pros and cons of using energy-conserving time integration and furthers the importance of a dissipation-free spatial discretisation. Finally, it

  17. Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F

    NARCIS (Netherlands)

    Vreman, A.W.; Albrecht, B.A.; Oijen, van J.A.; Goey, de L.P.H.; Bastiaans, R.J.M.

    2008-01-01

    Premixed and nonpremixed flamelet-generated manifolds have been constructed and applied to large-eddy simulation of the piloted partially premixed turbulent flames Sandia Flame D and F. In both manifolds the chemistry is parameterized as a function of the mixture fraction and a progress variable.

  18. Dynamic large eddy simulation: Stability via realizability

    Science.gov (United States)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  19. An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    Science.gov (United States)

    Mankbadi, M. R.; Georgiadis, N. J.

    2014-01-01

    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.

  20. Large-eddy simulation of stratified atmospheric flows with the CFD code Code-Saturne

    International Nuclear Information System (INIS)

    Dall'Ozzo, Cedric

    2013-01-01

    Large-eddy simulation (LES) of the physical processes in the atmospheric boundary layer (ABL) remains a complex subject. LES models have difficulties to capture the evolution of the turbulence in different conditions of stratification. Consequently, LES of the whole diurnal cycle of the ABL including convective situations in daytime and stable situations in the nighttime is seldom documented. The simulation of the stable atmospheric boundary layer which is characterized by small eddies and by weak and sporadic turbulence is especially difficult. Therefore The LES ability to well reproduce real meteorological conditions, particularly in stable situations, is studied with the CFD code developed by EDF R and D, Code-Saturne. The first study consist in validate LES on a quasi-steady state convective case with homogeneous terrain. The influence of the sub-grid-scale models (Smagorinsky model, Germano-Lilly model, Wong-Lilly model and Wall-Adapting Local Eddy-viscosity model) and the sensitivity to the parametrization method on the mean fields, flux and variances are discussed. In a second study, the diurnal cycle of the ABL during Wangara experiment is simulated. The deviation from the measurement is weak during the day, so this work is focused on the difficulties met during the night to simulate the stable atmospheric boundary layer. The impact of the different sub-grid-scale models and the sensitivity to the Smagorinsky constant are been analysed. By coupling radiative forcing with LES, the consequences of infra-red and solar radiation on the nocturnal low level jet and on thermal gradient, close to the surface, are exposed. More, enhancement of the domain resolution to the turbulence intensity and the strong atmospheric stability during the Wangara experiment are analysed. Finally, a study of the numerical oscillations inherent to Code-Saturne is realized in order to decrease their effects. (author) [fr

  1. Large eddy simulation of the atmospheric boundary layer above a forest canopy

    Science.gov (United States)

    Alam, Jahrul

    2017-11-01

    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  2. Spatio-temporal spectra in the logarithmic layer of wall turbulence: large-eddy simulations and simple models

    NARCIS (Netherlands)

    Wilczek, Michael; Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2015-01-01

    Motivated by the need to characterize the spatio-temporal structure of turbulence in wall-bounded flows, we study wavenumber–frequency spectra of the streamwise velocity component based on large-eddy simulation (LES) data. The LES data are used to measure spectra as a function of the two

  3. Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments

    Science.gov (United States)

    Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.

    2012-01-01

    ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data

  4. Large-eddy simulations of surface-induced turbulence and its implications to the interpretation of eddy-covariance measurements in heterogeneous landscapes

    Science.gov (United States)

    Bohrer, G.; Kenny, W.; Morin, T. H.

    2015-12-01

    We used the RAMS-based Forest Large Eddy Simulations (RAFLES) to evaluate the sensitivity of eddy covariance measurements to land-surface discontinuity. While the sensitivity of eddy covariance measurements to surface heterogeneity is well known, it is, in most cases, no feasible to restrict measurements only to sites where the surface include undisturbed and homogeneous land cover over vast distances around the observation tower. The common approach to handle surface heterogeneity is to use a footprint model and reject observations obtained while the source of observed signal is from a mixture of land-use types, and maintain only measurements where the signal originates mostly from the land-use type of interest. We simulated two scenarios - measurements of fluxes from a small forest-surrounded lake, and measurements near a forest edge. These are two very common scenarios where measurements are bound to be affected by heterogeneity - measurements in small lakes, will, by definition, be in some non-negligible proximity or the lake edge; forest edges are common in any forest, near the forest patch edge but also around disturbed patches and forest gaps. We identify regions where the surface heterogeneity is creating persistent updraft or downdraft. A non-zero mean vertical wind is typically neglected in eddy-covariance measurements. We find that these circulations lead to both vertical and horizontal advection that cannot be easily measured by a single eddy-covariance tower. We identify downwind effects, which are well known, but also quantify the upwind effects. We find that surface-induced circulations may affect the flux measured from a tower up to several canopy heights ahead of the discontinuity. We used the High-resolution Volatile Organic Compound Atmospheric Chemistry in Canopies (Hi-VACC) model to determine the actual measurement footprints throughout the RAFLES domain. We estimated the land-cover type distribution of the source signal at different virtual

  5. Ten questions concerning the large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Pope, Stephen B

    2004-01-01

    In the past 30 years, there has been considerable progress in the development of large-eddy simulation (LES) for turbulent flows, which has been greatly facilitated by the substantial increase in computer power. In this paper, we raise some fundamental questions concerning the conceptual foundations of LES and about the methodologies and protocols used in its application. The 10 questions addressed are stated at the end of the introduction. Several of these questions highlight the importance of recognizing the dependence of LES calculations on the artificial parameter Δ (i.e. the filter width or, more generally, the turbulence resolution length scale). The principle that LES predictions of turbulence statistics should depend minimally on Δ provides an alternative justification for the dynamic procedure

  6. Large-Eddy Simulation of turbulent vortex shedding

    International Nuclear Information System (INIS)

    Archambeau, F.

    1995-06-01

    This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author)

  7. Large-Eddy Simulation of turbulent vortex shedding

    Energy Technology Data Exchange (ETDEWEB)

    Archambeau, F

    1995-06-01

    This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author) 87 refs.

  8. Large-eddy simulation of plume dispersion within regular arrays of cubic buildings

    Science.gov (United States)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2011-04-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released within populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. In this study, we perform Large-Eddy Simulation (LES) of plume dispersion within regular arrays of cubic buildings with large obstacle densities and investigate the influence of the building arrangement on the characteristics of mean and fluctuating concentrations.

  9. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.

    Science.gov (United States)

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H

    2014-07-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

  10. A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation

    DEFF Research Database (Denmark)

    Breton, Simon-Philippe; Sumner, J.; Sørensen, Jens Nørkær

    2017-01-01

    surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple......Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review...

  11. Thermal large Eddy simulations and experiments in the framework of non-isothermal blowing; Simulations des grandes echelles thermiques et experiences dans le cadre d'effusion anisotherme

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, G

    2004-06-15

    The aim of this work is to study thermal large-eddy simulations and to determine the nonisothermal blowing impact on a turbulent boundary layer. An experimental study is also carried out in order to complete and validate simulation results. In a first time, we developed a turbulent inlet condition for the velocity and the temperature, which is necessary for the blowing simulations.We studied the asymptotic behavior of the velocity, the temperature and the thermal turbulent fluxes in a large-eddy simulation point of view. We then considered dynamics models for the eddy-diffusivity and we simulated a turbulent channel flow with imposed temperature, imposed flux and adiabatic walls. The numerical and experimental study of blowing permitted to obtain to the modifications of a thermal turbulent boundary layer with the blowing rate. We observed the consequences of the blowing on mean and rms profiles of velocity and temperature but also on velocity-velocity and velocity-temperature correlations. Moreover, we noticed an increase of the turbulent structures in the boundary layer with blowing. (author)

  12. Study of Hydrokinetic Turbine Arrays with Large Eddy Simulation

    Science.gov (United States)

    Sale, Danny; Aliseda, Alberto

    2014-11-01

    Marine renewable energy is advancing towards commercialization, including electrical power generation from ocean, river, and tidal currents. The focus of this work is to develop numerical simulations capable of predicting the power generation potential of hydrokinetic turbine arrays-this includes analysis of unsteady and averaged flow fields, turbulence statistics, and unsteady loadings on turbine rotors and support structures due to interaction with rotor wakes and ambient turbulence. The governing equations of large-eddy-simulation (LES) are solved using a finite-volume method, and the presence of turbine blades are approximated by the actuator-line method in which hydrodynamic forces are projected to the flow field as a body force. The actuator-line approach captures helical wake formation including vortex shedding from individual blades, and the effects of drag and vorticity generation from the rough seabed surface are accounted for by wall-models. This LES framework was used to replicate a previous flume experiment consisting of three hydrokinetic turbines tested under various operating conditions and array layouts. Predictions of the power generation, velocity deficit and turbulence statistics in the wakes are compared between the LES and experimental datasets.

  13. Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations

    Directory of Open Access Journals (Sweden)

    Moutassem El Rafei

    2017-12-01

    Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum

  14. Large Eddy Simulation of Unstably Stratified Turbulent Flow over Urban-Like Building Arrays

    Directory of Open Access Journals (Sweden)

    Bobin Wang

    2013-01-01

    Full Text Available Thermal instability induced by solar radiation is the most common condition of urban atmosphere in daytime. Compared to researches under neutral conditions, only a few numerical works studied the unstable urban boundary layer and the effect of buoyancy force is unclear. In this paper, unstably stratified turbulent boundary layer flow over three-dimensional urban-like building arrays with ground heating is simulated. Large eddy simulation is applied to capture main turbulence structures and the effect of buoyancy force on turbulence can be investigated. Lagrangian dynamic subgrid scale model is used for complex flow together with a wall function, taking into account the large pressure gradient near buildings. The numerical model and method are verified with the results measured in wind tunnel experiment. The simulated results satisfy well with the experiment in mean velocity and temperature, as well as turbulent intensities. Mean flow structure inside canopy layer varies with thermal instability, while no large secondary vortex is observed. Turbulent intensities are enhanced, as buoyancy force contributes to the production of turbulent kinetic energy.

  15. Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model

    Science.gov (United States)

    Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan

    2015-05-01

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.

  16. Generating wind fluctuations for Large Eddy Simulation inflow boundary condition

    International Nuclear Information System (INIS)

    Bekele, S.A.; Hangan, H.

    2004-01-01

    Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)

  17. Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN

    Science.gov (United States)

    Quinlan, Jesse; McDaniel, James; Baurle, Robert A.

    2013-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.

  18. Large Eddy Simulation of Supercritical CO2 Through Bend Pipes

    Science.gov (United States)

    He, Xiaoliang; Apte, Sourabh; Dogan, Omer

    2017-11-01

    Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.

  19. Experimental validation of large-eddy simulation for swirling methane-air non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H.; Xu, C.S. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    Large-eddy simulation of swirling methane-air non-premixed combustion was carried out using a Smagorinsky-Lilly subgrid scale stress model and a presumed-PDF fast-chemistry combustion model. The LES statistical results are validated by PIV, temperature and species concentration measurements made by the present authors. The results indicate that in the present case the presumed-PDF fast-chemistry combustion model is a fairish one. The instantaneous vorticity and temperature maps show clearly the development and the interaction between coherent structures and combustion.

  20. Large-Eddy Simulation of pollutant dispersion in downtown Montreal: Evaluation of the convective and turbulent mass fluxes

    NARCIS (Netherlands)

    Gousseau, P.; Blocken, B.J.E.; Stathopoulos, T.; Heijst, van G.J.F.; Seppelt, R.; Voinov, A.A.; Lange, S.; Bankamp, D.

    2012-01-01

    Abstract: Large-Eddy Simulation of pollutant dispersion from a stack on the roof of a low-rise building in downtown Montreal is performed. Two wind directions are considered, with different wind flow patterns and plume behaviours. The resulting mean concentration field is observed and analysed with

  1. Large Eddy and Interface Simulation (LEIS) of liquid entrainment in turbulent stratified flow

    International Nuclear Information System (INIS)

    Gulati, S.; Buongiorno, J.; Lakehal, D.

    2011-01-01

    Dryout of the liquid film on the fuel rods in BWR fuel assemblies leads to an abrupt decrease in heat transfer coefficient and can result in fuel failure. The process of mechanical mass transfer from the continuous liquid field into the continuous vapor field along the liquid-vapor interface is called entrainment and is the dominant depletion mechanism for the liquid film in annular flow. Using interface tracking methods combined with a Large Eddy Simulation approach, implemented in the Computational Multi-Fluid Dynamics (CMFD) code TransAT®, we are studying entrainment phenomena in BWR fuel assemblies. In this paper we report on the CMFD simulation approaches and the current validation effort for the code. (author)

  2. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    Science.gov (United States)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  3. Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows

    Energy Technology Data Exchange (ETDEWEB)

    Ayache, S.; Dawson, J.R.; Triantafyllidis, A. [Department of Engineering, University of Cambridge (United Kingdom); Balachandran, R. [Department of Mechanical Engineering, University College London (United Kingdom); Mastorakos, E., E-mail: em257@eng.cam.ac.u [Department of Engineering, University of Cambridge (United Kingdom)

    2010-10-15

    The isothermal air flow behind an enclosed axisymmetric bluff body, with the incoming flow being forced by a loudspeaker at a single frequency and with large amplitude, has been explored with high data-rate Laser-Doppler Anemometry measurements and Large-Eddy Simulations. The comparison between experiment and simulations allows a quantification of the accuracy of LES for turbulent flows with periodicity and the results provide insights into the structure of flows relevant to combustors undergoing self-excited oscillations. At low forcing frequencies, the whole flow pulsates with the incoming flow, although at a phase lag that depends on spatial location. At high forcing frequencies, vortices are shed from the bluff body and the recirculation zone, as a whole, pulsates less. Despite the fact that the incoming flow has an oscillation that is virtually monochromatic, the velocity spectra show peaks at various harmonics, whose relative magnitudes vary with location. A sub-harmonic peak is also observed inside the recirculation zone possibly caused by merging of the shed vortices. The phase-averaged turbulent fluctuations show large temporal and spatial variations. The LES reproduces reasonably accurately the experimental findings in terms of phase-averaged mean and r.m.s. velocities, vortex formation, and spectral peaks.

  4. Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows

    International Nuclear Information System (INIS)

    Ayache, S.; Dawson, J.R.; Triantafyllidis, A.; Balachandran, R.; Mastorakos, E.

    2010-01-01

    The isothermal air flow behind an enclosed axisymmetric bluff body, with the incoming flow being forced by a loudspeaker at a single frequency and with large amplitude, has been explored with high data-rate Laser-Doppler Anemometry measurements and Large-Eddy Simulations. The comparison between experiment and simulations allows a quantification of the accuracy of LES for turbulent flows with periodicity and the results provide insights into the structure of flows relevant to combustors undergoing self-excited oscillations. At low forcing frequencies, the whole flow pulsates with the incoming flow, although at a phase lag that depends on spatial location. At high forcing frequencies, vortices are shed from the bluff body and the recirculation zone, as a whole, pulsates less. Despite the fact that the incoming flow has an oscillation that is virtually monochromatic, the velocity spectra show peaks at various harmonics, whose relative magnitudes vary with location. A sub-harmonic peak is also observed inside the recirculation zone possibly caused by merging of the shed vortices. The phase-averaged turbulent fluctuations show large temporal and spatial variations. The LES reproduces reasonably accurately the experimental findings in terms of phase-averaged mean and r.m.s. velocities, vortex formation, and spectral peaks.

  5. Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer

    Science.gov (United States)

    Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh

    2013-11-01

    Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.

  6. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  7. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    Science.gov (United States)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  8. Unsteady Reynolds Averaged Navier-Stokes and Large Eddy Simulations of Flows across Staggered Tube Bundle for a VHTR Lower Plenum Design

    International Nuclear Information System (INIS)

    Choi, Hyeon Kyeong; Park, Jong Woon

    2013-01-01

    In this work, behavior of unsteady and oscillating flow through a typical tube bundle array are analyzed by unsteady computations: 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) and the results are compared with existing experimental data. In order to confirm appropriateness and limitations of CFD applications in the Korean VHTR design, two types of unsteady computations are performed such as 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) for the existing tube bundle array. The velocity component profiles are compared with the experimental data and it is concluded that the URANS with the standard k-ω model is reasonably appropriate for cost-effective VHTR lower plenum analysis. Nevertheless, if more accurate results are needed, the LES-Smagorinsky computation is recommended considering limitations in the time averaged RANS in capturing small eddies

  9. Large Eddy Simulation of stratified flows over structures

    OpenAIRE

    Brechler J.; Fuka V.

    2013-01-01

    We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  10. Large Eddy Simulation of stratified flows over structures

    Science.gov (United States)

    Fuka, V.; Brechler, J.

    2013-04-01

    We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  11. Large eddy simulation modeling of particle-laden flows in complex terrain

    Science.gov (United States)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  12. Large-eddy simulation of atmospheric flow over complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Bechmann, A.

    2006-11-15

    The present report describes the development and validation of a turbulence model designed for atmospheric flows based on the concept of Large-Eddy Simulation (LES). The background for the work is the high Reynolds number k - epsilon model, which has been implemented on a finite-volume code of the incompressible Reynolds-averaged Navier-Stokes equations (RANS). The k - epsilon model is traditionally used for RANS computations, but is here developed to also enable LES. LES is able to provide detailed descriptions of a wide range of engineering flows at low Reynolds numbers. For atmospheric flows, however, the high Reynolds numbers and the rough surface of the earth provide difficulties normally not compatible with LES. Since these issues are most severe near the surface they are addressed by handling the near surface region with RANS and only use LES above this region. Using this method, the developed turbulence model is able to handle both engineering and atmospheric flows and can be run in both RANS or LES mode. For LES simulations a time-dependent wind field that accurately represents the turbulent structures of a wind environment must be prescribed at the computational inlet. A method is implemented where the turbulent wind field from a separate LES simulation can be used as inflow. To avoid numerical dissipation of turbulence special care is paid to the numerical method, e.g. the turbulence model is calibrated with the specific numerical scheme used. This is done by simulating decaying isotropic and homogeneous turbulence. Three atmospheric test cases are investigated in order to validate the behavior of the presented turbulence model. Simulation of the neutral atmospheric boundary layer, illustrates the turbulence model ability to generate and maintain the turbulent structures responsible for boundary layer transport processes. Velocity and turbulence profiles are in good agreement with measurements. Simulation of the flow over the Askervein hill is also

  13. A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows

    Science.gov (United States)

    Bui, Trong T.

    1999-01-01

    A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.

  14. Large Eddy Simulation of stratified flows over structures

    Directory of Open Access Journals (Sweden)

    Brechler J.

    2013-04-01

    Full Text Available We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.

  15. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

    International Nuclear Information System (INIS)

    Bogey, Christophe; Bailly, Christophe

    2006-01-01

    Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers

  16. Hybrid Large Eddy Simulation / Reynolds Averaged Navier-Stokes Modeling in Directed Energy Applications

    Science.gov (United States)

    Zilberter, Ilya Alexandrovich

    In this work, a hybrid Large Eddy Simulation / Reynolds-Averaged Navier Stokes (LES/RANS) turbulence model is applied to simulate two flows relevant to directed energy applications. The flow solver blends the Menter Baseline turbulence closure near solid boundaries with a Lenormand-type subgrid model in the free-stream with a blending function that employs the ratio of estimated inner and outer turbulent length scales. A Mach 2.2 mixing nozzle/diffuser system representative of a gas laser is simulated under a range of exit pressures to assess the ability of the model to predict the dynamics of the shock train. The simulation captures the location of the shock train responsible for pressure recovery but under-predicts the rate of pressure increase. Predicted turbulence production at the wall is found to be highly sensitive to the behavior of the RANS turbulence model. A Mach 2.3, high-Reynolds number, three-dimensional cavity flow is also simulated in order to compute the wavefront aberrations of an optical beam passing thorough the cavity. The cavity geometry is modeled using an immersed boundary method, and an auxiliary flat plate simulation is performed to replicate the effects of the wind-tunnel boundary layer on the computed optical path difference. Pressure spectra extracted on the cavity walls agree with empirical predictions based on Rossiter's formula. Proper orthogonal modes of the wavefront aberrations in a beam originating from the cavity center agree well with experimental data despite uncertainty about in flow turbulence levels and boundary layer thicknesses over the wind tunnel window. Dynamic mode decomposition of a planar wavefront spanning the cavity reveals that wavefront distortions are driven by shear layer oscillations at the Rossiter frequencies; these disturbances create eddy shocklets that propagate into the free-stream, creating additional optical wavefront distortion.

  17. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    OpenAIRE

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie Keith; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2009-01-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier–Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were valida...

  18. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  19. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    Directory of Open Access Journals (Sweden)

    S. Nishizawa

    2015-10-01

    Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  20. Coupled large-eddy simulation and morphodynamics of a large-scale river under extreme flood conditions

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team

    2016-11-01

    We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.

  1. Large eddy simulation of turbulent premixed combustion flows over backward facing step

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Seob [Yuhan University, Bucheon (Korea, Republic of); Ko, Sang Cheol [Jeju National University, Jeju (Korea, Republic of)

    2011-03-15

    Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained.

  2. Large eddy simulation of turbulent premixed combustion flows over backward facing step

    International Nuclear Information System (INIS)

    Park, Nam Seob; Ko, Sang Cheol

    2011-01-01

    Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained

  3. LARGE EDDY SIMULATIONS OF THE TURBULENT FLOW IN A STIRRED TANK

    DEFF Research Database (Denmark)

    Fan, Jianhua; Wang, Yundong; Fei, Weiyang

    respectively. Results show that CFD simulations using k-ε and LES model agree well with DPIV measurements. From the LES simulation, the velocity fluctuation is shown to occur with the development of vortices and eddies. This shows that LES simulation is better than k-ε simulation, although it demands a lot...... more computational time and computer memory. The results of the present work help to give deep understanding to the mixing mechanisms of the mechanically agitated tank, and can be used as guidance for future development of engineering tools for the design and scale-up of the stirred tank....

  4. LARGE EDDY SIMULATIONS OF THE TURBULENT FLOW IN A STIRRED TANK

    DEFF Research Database (Denmark)

    Fan, Jianhua; Wang, Yundong; Fei, Weiyang

    2005-01-01

    respectively. Results show that CFD simulations using k-ε and LES model agree well with DPIV measurements. From the LES simulation, the velocity fluctuation is shown to occur with the development of vortices and eddies. This shows that LES simulation is better than k-ε simulation, although it demands a lot...... more computational time and computer memory. The results of the present work help to give deep understanding to the mixing mechanisms of the mechanically agitated tank, and can be used as guidance for future development of engineering tools for the design and scale-up of the stirred tank....

  5. Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations

    Science.gov (United States)

    Nastac, Gabriel; Labahn, Jeffrey W.; Magri, Luca; Ihme, Matthias

    2017-09-01

    Metrics used to assess the quality of large-eddy simulations commonly rely on a statistical assessment of the solution. While these metrics are valuable, a dynamic measure is desirable to further characterize the ability of a numerical simulation for capturing dynamic processes inherent in turbulent flows. To address this issue, a dynamic metric based on the Lyapunov exponent is proposed which assesses the growth rate of the solution separation. This metric is applied to two turbulent flow configurations: forced homogeneous isotropic turbulence and a turbulent jet diffusion flame. First, it is shown that, despite the direct numerical simulation (DNS) and large-eddy simulation (LES) being high-dimensional dynamical systems with O (107) degrees of freedom, the separation growth rate qualitatively behaves like a lower-dimensional dynamical system, in which the dimension of the Lyapunov system is substantially smaller than the discretized dynamical system. Second, a grid refinement analysis of each configuration demonstrates that as the LES filter width approaches the smallest scales of the system the Lyapunov exponent asymptotically approaches a plateau. Third, a small perturbation is superimposed onto the initial conditions of each configuration, and the Lyapunov exponent is used to estimate the time required for divergence, thereby providing a direct assessment of the predictability time of simulations. By comparing inert and reacting flows, it is shown that combustion increases the predictability of the turbulent simulation as a result of the dilatation and increased viscosity by heat release. The predictability time is found to scale with the integral time scale in both the reacting and inert jet flows. Fourth, an analysis of the local Lyapunov exponent is performed to demonstrate that this metric can also determine flow-dependent properties, such as regions that are sensitive to small perturbations or conditions of large turbulence within the flow field. Finally

  6. Mathematics of large eddy simulation of turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Berselli, L.C. [Pisa Univ. (Italy). Dept. of Applied Mathematics ' ' U. Dini' ' ; Iliescu, T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mathematics; Layton, W.J. [Pittsburgh Univ., PA (United States). Dept. of Mathematics

    2006-07-01

    Large eddy simulation (LES) is a method of scientific computation seeking to predict the dynamics of organized structures in turbulent flows by approximating local, spatial averages of the flow. Since its birth in 1970, LES has undergone an explosive development and has matured into a highly-developed computational technology. It uses the tools of turbulence theory and the experience gained from practical computation. This book focuses on the mathematical foundations of LES and its models and provides a connection between the powerful tools of applied mathematics, partial differential equations and LES. Thus, it is concerned with fundamental aspects not treated so deeply in the other books in the field, aspects such as well-posedness of the models, their energy balance and the connection to the Leray theory of weak solutions of the Navier-Stokes equations. The authors give a mathematically informed and detailed treatment of an interesting selection of models, focusing on issues connected with understanding and expanding the correctness and universality of LES. This volume offers a useful entry point into the field for PhD students in applied mathematics, computational mathematics and partial differential equations. Non-mathematicians will appreciate it as a reference that introduces them to current tools and advances in the mathematical theory of LES. (orig.)

  7. Large-eddy simulation of unidirectional turbulent flow over dunes

    Science.gov (United States)

    Omidyeganeh, Mohammad

    We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves

  8. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    Science.gov (United States)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  9. Large eddy simulation of vortex breakdown behind a delta wing

    International Nuclear Information System (INIS)

    Mary, I.

    2003-01-01

    A large eddy simulation (LES) of a turbulent flow past a 70 deg. sweep angle delta wing is performed and compared with wind tunnel experiments. The angle of attack and the Reynolds number based on the root chord are equal to 27 deg. and 1.6x10 6 , respectively. Due to the high value of the Reynolds number and the three-dimensional geometry, the mesh resolution usually required by LES cannot be reached. Therefore a local mesh refinement technique based on semi-structured grids is proposed, whereas different wall functions are assessed in this paper. The goal is to evaluate if these techniques are sufficient to provide an accurate solution of such flow on available supercomputers. An implicit Miles model is retained for the subgrid scale (SGS) modelling because the resolution is too coarse to take advantage of more sophisticated SGS models. The solution sensitivity to grid refinement in the streamwise and wall normal direction is investigated

  10. Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis

    2015-11-01

    In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.

  11. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  12. Large Eddy Simulation of a thermal mixing tee in order to assess the thermal fatigue

    International Nuclear Information System (INIS)

    Galpin, J.; Simoneau, J.P.

    2011-01-01

    Highlights: → In this study, we perform a Large Eddy Simulation of a mixing tee, for which experimental thermal statistics are available. → A special methodology has been set up for comparing properly the fluctuations with the experiment. → A comparison between the Smagorinsky and the structure-function sub-grid scale model is achieved out. → Slight better predictions are obtained with the structure-function model. → The possibility to reduce the computational domain by prescribing synthetic turbulence at the inlet is tested. First results are encouraging and underline the advantage of considering this technique instead of a standard noise at the entrance of the domain. - Abstract: The present paper deals with thermal fatigue phenomenon, and more particularly with the numerical simulation using Large Eddy Simulation technique of a mixing tee, for which experimental thermal statistics are available. The sensitivity to the sub-grid scale closure is first evaluated by comparing the experimental statistics with the numerical results obtained via both the Smagorinsky and the structure-function models. Because of a difference of temporal resolution between the experiment and the simulation, the direct comparison of the fluctuations is not possible. Therefore, a methodology based on filtering the numerical results is proposed in order to achieve a proper comparison. The comparison of the numerical results with the experiment suggests that slight better predictions are obtained with the structure-function model even if the dependency of the results to the sub-grid scale model is low. Then, the possibility to reduce the fluid computational domain by prescribing synthetic turbulence at the inlet is tested. First results are encouraging and underline the advantage of considering this technique instead of a standard noise at the entrance of the domain. All the simulations are conducted with the commercial CFD code STAR-CD.

  13. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  14. Direct and large eddy simulation of turbulent heat transfer at very low Prandtl number: Application to lead–bismuth flows

    International Nuclear Information System (INIS)

    Bricteux, L.; Duponcheel, M.; Winckelmans, G.; Tiselj, I.; Bartosiewicz, Y.

    2012-01-01

    Highlights: ► We perform direct and hybrid-large eddy simulations of high Reynolds and low Prandtl turbulent wall-bounded flows with heat transfer. ► We use a state-of-the-art numerical methods with low energy dissipation and low dispersion. ► We use recent multiscalesubgrid scale models. ► Important results concerning the establishment of near wall modeling strategy in RANS are provided. ► The turbulent Prandtl number that is predicted by our simulation is different than that proposed by some correlations of the literature. - Abstract: This paper deals with the issue of modeling convective turbulent heat transfer of a liquid metal with a Prandtl number down to 0.01, which is the order of magnitude of lead–bismuth eutectic in a liquid metal reactor. This work presents a DNS (direct numerical simulation) and a LES (large eddy simulation) of a channel flow at two different Reynolds numbers, and the results are analyzed in the frame of best practice guidelines for RANS (Reynolds averaged Navier–Stokes) computations used in industrial applications. They primarily show that the turbulent Prandtl number concept should be used with care and that even recent proposed correlations may not be sufficient.

  15. Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system

    Science.gov (United States)

    Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory

    2016-11-01

    Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.

  16. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik; Hughes, Thomas Jr R; Calo, Victor M.

    2012-01-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  17. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik

    2012-09-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  18. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen

    2012-01-01

    results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field...... with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD...... package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics....

  19. Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, M.V. [DICI, University of Pisa, I-56122 Pisa (Italy)

    2015-03-10

    Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined.

  20. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  1. On the effect of numerical errors in large eddy simulations of turbulent flows

    International Nuclear Information System (INIS)

    Kravchenko, A.G.; Moin, P.

    1997-01-01

    Aliased and dealiased numerical simulations of a turbulent channel flow are performed using spectral and finite difference methods. Analytical and numerical studies show that aliasing errors are more destructive for spectral and high-order finite-difference calculations than for low-order finite-difference simulations. Numerical errors have different effects for different forms of the nonlinear terms in the Navier-Stokes equations. For divergence and convective forms, spectral methods are energy-conserving only if dealiasing is performed. For skew-symmetric and rotational forms, both spectral and finite-difference methods are energy-conserving even in the presence of aliasing errors. It is shown that discrepancies between the results of dealiased spectral and standard nondialiased finite-difference methods are due to both aliasing and truncation errors with the latter being the leading source of differences. The relative importance of aliasing and truncation errors as compared to subgrid scale model terms in large eddy simulations is analyzed and discussed. For low-order finite-difference simulations, truncation errors can exceed the magnitude of the subgrid scale term. 25 refs., 17 figs., 1 tab

  2. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    Science.gov (United States)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  3. Numerical experiments with assimilation of the mean and unresolved meteorological conditions into large-eddy simulation model

    OpenAIRE

    Esau, Igor

    2010-01-01

    Micrometeorology, city comfort, land use management and air quality monitoring increasingly become important environmental issues. To serve the needs, meteorology needs to achieve a serious advance in representation and forecast on micro-scales (meters to 100 km) called meteorological terra incognita. There is a suitable numerical tool, namely, the large-eddy simulation modelling (LES) to support the development. However, at present, the LES is of limited utility for applications. The study a...

  4. Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid

    2017-01-01

    This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...... the Reynolds number, and the effect is visible even at a relatively low chord-Reynolds number of 60,000. Among the tested models, the dynamic Smagorinsky gives the poorest predictions of the flow, with overprediction of lift and a larger separation on airfoils suction side. Among various models, the implicit...

  5. Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.; hide

    2012-01-01

    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused

  6. Large eddy simulation for predicting turbulent heat transfer in gas turbines.

    Science.gov (United States)

    Tafti, Danesh K; He, Long; Nagendra, K

    2014-08-13

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds

    Science.gov (United States)

    Xiangyang Zhou; Shankar Mahalingam; David Weise

    2007-01-01

    This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...

  8. Estimation of turbulence dissipation rate by Large eddy PIV method in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Kysela Bohuš

    2015-01-01

    Full Text Available The distribution of turbulent kinetic energy dissipation rate is important for design of mixing apparatuses in chemical industry. Generally used experimental methods of velocity measurements for measurement in complex geometries of an agitated vessel disallow measurement in resolution of small scales close to turbulence dissipation ones. Therefore, Particle image velocity (PIV measurement method improved by large eddy Ply approach was used. Large eddy PIV method is based on modeling of smallest eddies by a sub grid scale (SGS model. This method is similar to numerical calculations using Large Eddy Simulation (LES and the same SGS models are used. In this work the basic Smagorinsky model was employed and compared with power law approximation. Time resolved PIV data were processed by Large Eddy PIV approach and the obtained results of turbulent kinetic dissipation rate were compared in selected points for several operating conditions (impeller speed, operating liquid viscosity.

  9. A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows

    KAUST Repository

    Cheng, Wan

    2014-03-01

    We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.

  10. Large Eddy Simulation of turbulent flows in compound channels with a finite element code

    International Nuclear Information System (INIS)

    Xavier, C.M.; Petry, A.P.; Moeller, S.V.

    2011-01-01

    This paper presents the numerical investigation of the developing flow in a compound channel formed by a rectangular main channel and a gap in one of the sidewalls. A three dimensional Large Eddy Simulation computational code with the classic Smagorinsky model is introduced, where the transient flow is modeled through the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite Element Method, Taylor-Galerkin scheme and linear hexahedrical elements are applied. Numerical results of velocity profile show the development of a shear layer in agreement with experimental results obtained with Pitot tube and hot wires. (author)

  11. Coupled large eddy simulation and discrete element model of bedload motion

    Science.gov (United States)

    Furbish, D.; Schmeeckle, M. W.

    2011-12-01

    We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including

  12. Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Serre, Eric

    2015-01-01

    Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation

  13. Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective

    KAUST Repository

    Cheng, Wan

    2017-05-05

    We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to , where is Reynolds number based on the cylinder diameter and the free-stream speed . The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with . Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at , with a mesh of , agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625-639) especially for the skin-friction coefficient, where a spike is produced by the laminar-turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with . Within the separated portion of the flow, mean-flow separation-reattachment bubbles are observed at some values of , with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation-reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.

  14. Comparison of Large Eddy Simulations and κ-ε Modelling of Fluid Velocity and Tracer Concentration in Impinging Jet Mixers

    Directory of Open Access Journals (Sweden)

    Wojtas Krzysztof

    2015-06-01

    Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.

  15. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  16. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2014-02-01

    Full Text Available In this study, large eddy simulation (LES is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS stresses: (a the Smagorinsky model; and (b the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a the actuator swept-surface model (ASSM, in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e., the actuator swept surface; and (b the actuator line model (ALM, in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e., the actuator lines. This is the first time that LES has been applied and validated for the simulation of VAWT wakes by using either the ASSM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST water channel. Different combinations of SGS models with VAWT models are studied, and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASSM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient.

  17. Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Nejat, Amir

    2015-01-01

    Operating wind turbines generate tonal and broadband noises affecting the living environment adversely; especially small wind turbines located in the vicinity of human living places. Therefore, it is important to determine the level of noise pollution of such type of wind turbine installation. The current study carries out numerical prediction for aerodynamic noise radiated from an H-Darrieus Vertical Axis Wind Turbine. Incompressible LES (Large Eddy Simulation) is conducted to obtain the instantaneous turbulent flow field. The noise predictions are performed by the Ffowcs Williams and Hawkings (FW–H) acoustic analogy formulation. Simulations are performed for five different tip-speed ratios. First, the mean torque coefficient is compared with the experimental data, and good agreement is observed. Then, the research focuses on the broadband noises of the turbulent boundary layers and the tonal noises due to blade passing frequency. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicate a direct relation between the strength of the radiated noise and the rotational speed. Furthermore, the effect of receiver distance on the OASPL (Overall Sound Pressure Level) is investigated. It is concluded that the OASPL varies with a logarithmic trend with the receiver distance as it was expected. - Highlights: • Large Eddy Simulation has been used to predict the turbulent flow field. • The Ffowcs Williams and Hawkings method was employed to predict radiated noise. • There is a direct relation between the radiated noise and the tip speed ratio. • The quadrupole noises have negligible effect on the tonal noises

  18. Investigation of turbulent boundary layer flow over 2D bump using highly resolved large eddy simulation

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2011-01-01

    A large eddy simulation (LES) study of turbulent non-equilibrium boundary layer flow over 2 D Bump, at comparatively low Reynolds number Reh = U∞h/ν = 1950, was conducted. A well-known LES issue of obtaining and sustaining turbulent flow inside the computational domain at such low Re, is addresse...... partially confirm a close interdependency between generation and evolution of internal layers and the abrupt changes in the skin friction, previously reported in the literature. © 2011 American Society of Mechanical Engineers....

  19. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot W.; Churchfield, Matthew J.; Cheung, Lawrence; Kern, Stefan

    2017-01-09

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  20. Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows

    International Nuclear Information System (INIS)

    Zhao, S.; Lardjane, N.; Fedioun, I.

    2014-01-01

    Improved WENO schemes, Z, M, and their combination MZ, originally designed to capture sharper discontinuities than the classical fifth order Jiang-Shu scheme does, are evaluated for the purpose of implicit large eddy simulation of free shear flows. 1D Fourier analysis of errors reveals the built-in filter and dissipative properties of the schemes, which are subsequently applied to the canonical Rayleigh-Taylor and Taylor-Green flows. Large eddy simulations of a transonic non-reacting and a supersonic reacting air/H2 jets are then performed at resolution 128 * 128 * 512, showing no significant difference in the flow statistics. However, the computational time varies from one scheme to the other, the Z scheme providing the smaller wall-time due to larger allowed time steps. (authors)

  1. On the properties of energy stable flux reconstruction schemes for implicit large eddy simulation

    Science.gov (United States)

    Vermeire, B. C.; Vincent, P. E.

    2016-12-01

    We begin by investigating the stability, order of accuracy, and dispersion and dissipation characteristics of the extended range of energy stable flux reconstruction (E-ESFR) schemes in the context of implicit large eddy simulation (ILES). We proceed to demonstrate that subsets of the E-ESFR schemes are more stable than collocation nodal discontinuous Galerkin methods recovered with the flux reconstruction approach (FRDG) for marginally-resolved ILES simulations of the Taylor-Green vortex. These schemes are shown to have reduced dissipation and dispersion errors relative to FRDG schemes of the same polynomial degree and, simultaneously, have increased Courant-Friedrichs-Lewy (CFL) limits. Finally, we simulate turbulent flow over an SD7003 aerofoil using two of the most stable E-ESFR schemes identified by the aforementioned Taylor-Green vortex experiments. Results demonstrate that subsets of E-ESFR schemes appear more stable than the commonly used FRDG method, have increased CFL limits, and are suitable for ILES of complex turbulent flows on unstructured grids.

  2. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  3. Passive heat transfer in a turbulent channel flow simulation using large eddy simulation based on the lattice Boltzmann method framework

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191 (China); Wang Jiao, E-mail: wangjiao@sjp.buaa.edu.cn [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191 (China); Tao Zhi [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A double MRT-LBM is used to study heat transfer in turbulent channel flow. Black-Right-Pointing-Pointer Turbulent Pr is modeled by dynamic subgrid scale model. Black-Right-Pointing-Pointer Temperature gradients are calculated by the non-equilibrium temperature distribution moments. - Abstract: In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT-LES in studying turbulence.

  4. Large eddy simulation of the generation and breakdown of a tumbling flow

    International Nuclear Information System (INIS)

    Toledo, Mauricio S.; Le Penven, Lionel; Buffat, Marc; Cadiou, Anne; Padilla, Judith

    2007-01-01

    Large eddy simulations (LES) are performed in order to reproduce the generation and the breakdown of a tumbling motion in the simplified model engine [Boree, J., Maurel, S., Bazile, R., 2002. Disruption of a compressed vortex. Phys. Fluids, 14 (7) 2543-2556]. A second-order accurate numerical scheme is applied in conjunction with a mixed finite volume/finite element formulation adapted for unstructured deforming meshes. Subgrid terms are kept as simple as possible with a Smagorinsky model in order to build a methodology devoted to engine-like flows. The main statistical quantities, such as mean velocity and turbulent kinetic energy, are obtained from a set of independent cycles and compared to experiments. Important experimental features, such as oscillations of the intake jet, vortex precession and a turbulent kinetic energy peak near the vortex core, are well reproduced

  5. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    Science.gov (United States)

    Cheng, W.; Samtaney, R.

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  6. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    KAUST Repository

    Cheng, W.

    2014-01-29

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  7. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan; Pullin, D. I.; Samtaney, Ravi

    2015-01-01

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used

  8. Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations

    Science.gov (United States)

    Curran, Thomas; Denner, Fabian; van Wachem, Berend

    2017-11-01

    The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.

  9. Large-eddy simulation of open channel flow with surface cooling

    International Nuclear Information System (INIS)

    Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.

    2014-01-01

    Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the

  10. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Science.gov (United States)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water

  11. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    Directory of Open Access Journals (Sweden)

    T. Wolf-Grosse

    2017-06-01

    Full Text Available Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES experiments with the Parallelised Large-Eddy Simulation Model (PALM for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a

  12. Characteristics of vertical velocity in marine stratocumulus: comparison of large eddy simulations with observations

    International Nuclear Information System (INIS)

    Guo Huan; Liu Yangang; Daum, Peter H; Senum, Gunnar I; Tao, W-K

    2008-01-01

    We simulated a marine stratus deck sampled during the Marine Stratus/Stratocumulus Experiment (MASE) with a three-dimensional large eddy simulation (LES) model at different model resolutions. Various characteristics of the vertical velocity from the model simulations were evaluated against those derived from the corresponding aircraft in situ observations, focusing on standard deviation, skewness, kurtosis, probability density function (PDF), power spectrum, and structure function. Our results show that although the LES model captures reasonably well the lower-order moments (e.g., horizontal averages and standard deviations), it fails to simulate many aspects of the higher-order moments, such as kurtosis, especially near cloud base and cloud top. Further investigations of the PDFs, power spectra, and structure functions reveal that compared to the observations, the model generally underestimates relatively strong variations on small scales. The results also suggest that increasing the model resolutions improves the agreements between the model results and the observations in virtually all of the properties that we examined. Furthermore, the results indicate that a vertical grid size <10 m is necessary for accurately simulating even the standard-deviation profile, posing new challenges to computer resources.

  13. Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice

    Science.gov (United States)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2018-01-01

    Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.

  14. Large Eddy Simulation Study for Fluid Disintegration and Mixing

    Science.gov (United States)

    Bellan, Josette; Taskinoglu, Ezgi

    2011-01-01

    A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not

  15. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  16. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  17. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-11-15

    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  18. High-fidelity large eddy simulation for supersonic jet noise prediction

    Science.gov (United States)

    Aikens, Kurt M.

    The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the

  19. Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model

    International Nuclear Information System (INIS)

    Xiao, Gang; Jia, Ming; Wang, Tianyou

    2016-01-01

    Spray combustion of n-heptane in a constant-volume vessel under engine-relevant conditions was investigated using linear eddy model in the framework of large eddy simulation. In this numerical approach, turbulent mixing was traced by an innovative stochastic approach instead of the conventional gradient diffusion model. Chemical reaction rates were calculated with the consideration of the sub-grid scale spatial fluctuations of reactive scalars. Turbulence-chemistry interactions were represented by the separated treatments of the underlying processes including turbulent stirring, chemical reaction, and molecular diffusion. The model was validated against the experimental data of ignition delay times, chemiluminescence images, and soot images from Sandia National Laboratories. Numerical results showed that the ignition process changed from the temperature-controlled regime to the mixing-controlled regime as the initial ambient temperature increased from 800 K to 1000 K. The premixed flame and the diffusion flame coexisted, while the gross heat release rate was found to be dominated by the premixed flame. The temperature fluctuation was mainly observed around the spray jet due to the cooling effect of the fuel vaporization. The fluctuations were more significantly smoothed out by the high-temperature flame than the low-temperature flame. The mean temperature would be overpredicted if the sub-grid temperature fluctuation was neglected. - Highlights: • Turbulent mixing is traced by stochastic method instead of gradient diffusion model. • Sub-grid scale fluctuations of reactive scalars are captured. • Ignition process varies from temperature-controlled to mixing-controlled regime. • Temperature fluctuation can be smoothed out by high-temperature flame. • The heat release rate is dominated by the premixed flame.

  20. Development of a Wind Plant Large-Eddy Simulation with Measurement-Driven Atmospheric Inflow: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Quon, Eliot; Churchfield, Matthew; Cheung, Lawrence; Kern, Stefan

    2017-02-01

    This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.

  1. WRF nested large-eddy simulations of deep convection during SEAC4RS

    Science.gov (United States)

    Heath, Nicholas K.; Fuelberg, Henry E.; Tanelli, Simone; Turk, F. Joseph; Lawson, R. Paul; Woods, Sarah; Freeman, Sean

    2017-04-01

    Large-eddy simulations (LES) and observations are often combined to increase our understanding and improve the simulation of deep convection. This study evaluates a nested LES method that uses the Weather Research and Forecasting (WRF) model and, specifically, tests whether the nested LES approach is useful for studying deep convection during a real-world case. The method was applied on 2 September 2013, a day of continental convection that occurred during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Mesoscale WRF output (1.35 km grid length) was used to drive a nested LES with 450 m grid spacing, which then drove a 150 m domain. Results reveal that the 450 m nested LES reasonably simulates observed reflectivity distributions and aircraft-observed in-cloud vertical velocities during the study period. However, when examining convective updrafts, reducing the grid spacing to 150 m worsened results. We find that the simulated updrafts in the 150 m run become too diluted by entrainment, thereby generating updrafts that are weaker than observed. Lastly, the 450 m simulation is combined with observations to study the processes forcing strong midlevel cloud/updraft edge downdrafts that were observed on 2 September. Results suggest that these strong downdrafts are forced by evaporative cooling due to mixing and by perturbation pressure forces acting to restore mass continuity around neighboring updrafts. We conclude that the WRF nested LES approach, with further development and evaluation, could potentially provide an effective method for studying deep convection in real-world cases.

  2. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    Science.gov (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  3. Modeling boundary-layer transition in direct and large-eddy simulations using parabolized stability equations

    Science.gov (United States)

    Lozano-Durán, A.; Hack, M. J. P.; Moin, P.

    2018-02-01

    We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.

  4. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: Using large-eddy simulation

    International Nuclear Information System (INIS)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-01-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. - Highlights: • Large-eddy simulation reproduces two unsteady vortices seen in a lab experiment. • Reactive pollutants in an urban street canyon exhibit significant spatial variation. • O 3 production rate inferred by the NO x -O 3 -steady-state-defect approach is discussed. • Ground level sourced pollutants are largely trapped within the lower vortex. • A method of quantifying parameters of a two-box model is developed. - Reactive pollutants in a deep street canyon exhibit significant spatial variation driven by two unsteady vortices. A method of quantifying parameters of a two-box model is developed

  5. Large eddy simulation of the flow through a swirl generator

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Stephen

    1998-12-01

    The advances made in computer technology over recent years have led to a great increase in the engineering problems that can be studied using CFD. The computation of flows over and through complex geometries at relatively high Reynolds numbers is becoming more common using the Large Eddy Simulation (LES) technique. Direct numerical simulations of such flows is still beyond the capacity of todays fastest supercomputers, requiring excessive computational times and memory. In addition, traditional Reynolds Averaged Navier Stokes (RANS) methods are known to have limited applicability in a wide range of engineering flow situations. In this thesis LES has been used to simulate the flow through a cascade of guidance vanes, more commonly known as a swirl generator, positioned at the inlet to a gas turbine combustion chamber. This flow case is of interest because of the complex flow phenomena which occur within the swirl generator, which include compressibility effects, different types of flow instabilities, transition, laminar and turbulent separation and near wall turbulence. It is also of interest because it fits very well into the range of engineering applications that can be studied using LES. Two computational grids with different resolutions and two subgrid scale stress models were used in the study. The effects of separation and transition are investigated. A vortex shedding frequency from the guidance vanes is determined which is seen to be dependent on the angle of incident air flow. Interaction between the movement of the separation region and the shedding frequency is also noted. Such vortex shedding phenomena can directly affect the quality of fuel and air mixing within the combustion chamber and can in some cases induce vibrations in the gas turbine structure. Comparisons between the results obtained using different grid resolutions with an implicit and a dynamic divergence (DDM) subgrid scale stress models are also made 32 refs, 35 figs, 2 tabs

  6. On the Structure and Adjustment of Inversion-Capped Neutral Atmospheric Boundary-Layer Flows: Large-Eddy Simulation Study

    DEFF Research Database (Denmark)

    Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.

    2014-01-01

    A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis...... on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development...... of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude...

  7. Large eddy simulation on thermal fluid mixing in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, R.; Laurien, E. [Stuttgart Univ. (Germany). Inst fuer Kernenergie und Energiesysteme (IKE)

    2014-11-15

    High cycle thermal fatigue damage caused in piping systems is an important problem encountered in the context of nuclear safety and lifetime management of a Nuclear Power Plant (NPP). The T-junction piping system present in the Residual Heat Removal System (RHRS) is more vulnerable to thermal fatigue cracking. In this numerical study, thermal mixing of fluids at temperature difference (?T) of 117 K between the mixing fluids is analyzed. Large Eddy Simulation (LES) is performed with conjugate heat transfer between the fluid and structure. LES is performed based on the Fluid-Structure Interaction (FSI) test facility at University of Stuttgart. The results show an intense turbulent mixing of fluids downstream of T-junction. Amplitude of temperature fluctuations near the wall region and its corresponding frequency distribution is analyzed. LES is performed using commercial CFD software ANSYS CFX 14.0.

  8. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian

    2017-10-01

    This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation

  9. Large eddy simulation of atmospheric boundary layer over wind farms using a prescribed boundary layer approach

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2012-01-01

    Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...

  10. Large-Eddy Simulation of the Aerodynamic and Aeroacoustic Performance of a Ventilation Fan

    Directory of Open Access Journals (Sweden)

    Stefano Bianchi

    2013-01-01

    Full Text Available There are controversial requirements involved in developing numerical methodologies in order to compute the flow in industrial fans. The full resolution of turbulence spectrum in such high-Reynolds number flow configurations entails unreasonably expensive computational costs. The authors applied the study to a large unidirectional axial flow fan unit for tunnel ventilation to operate in the forward direction under ambient conditions. This delivered cooling air to the tunnel under routine operation, or hot gases at 400∘C under emergency conditions in the event of a tunnel fire. The simulations were carried out using the open source code OpenFOAM, within which they implemented a very large eddy simulation (VLES based on one-equation SGS model to solve a transport equation for the modelled (subgrid turbulent kinetic energy. This subgrid turbulence model improvement is a remedial strategy in VLES of high-Reynolds number industrial flows which are able to tackle the turbulence spectrum’s well-known insufficient resolution. The VLES of the industrial fan permits detecting the unsteady topology of the rotor flow. This paper explores the evolution of secondary flow phenomena and speculates on its influence on the actual load capability when operating at peak-pressure condition. Predicted noise emissions, in terms of sound pressure level spectra, are also compared with experimental results and found to agree within the uncertainty of the measurements.

  11. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  12. Large Eddy Simulation of Supersonic Boundary Layer Transition over a Flat-Plate Based on the Spatial Mode

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2014-02-01

    Full Text Available The large eddy simulation (LES of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 is performed in the present work. The Favre-filtered Navier-Stokes equations are used to simulate large scales, while a dynamic mixed subgrid-scale (SGS model is used to simulate subgrid stress. The convective terms are discretized with a fifth-order upwind compact difference scheme, while a sixth-order symmetric compact difference scheme is employed for the diffusive terms. The basic mean flow is obtained from the similarity solution of the compressible laminar boundary layer. In order to ensure the transition from the initial laminar flow to fully developed turbulence, a pair of oblique first-mode perturbation is imposed on the inflow boundary. The whole process of the spatial transition is obtained from the simulation. Through the space-time average, the variations of typical statistical quantities are analyzed. It is found that the distributions of turbulent Mach number, root-mean-square (rms fluctuation quantities, and Reynolds stresses along the wall-normal direction at different streamwise locations exhibit self-similarity in fully developed turbulent region. Finally, the onset and development of large-scale coherent structures through the transition process are depicted.

  13. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  14. Detached Eddy Simulation of a Flow over a Backward-Facing Step

    International Nuclear Information System (INIS)

    Kim, Seong Hoon; Kim, Young In; Park, Chun Tae; Seo, Jae Kwang

    2007-01-01

    Turbulence models are essential ingredients for a successful flow field simulation. The turbulence models that have been generally adopted for the industry are based on the eddy viscosity assumption such as the standard k-ω model. The Boussinesq approximation, which is the linear relationship between the strain rate and the Reynolds stress, has been known to have a limitation when additional effects such as curvature, buoyancy and rotation are added to the flow field. To overcome these shortcomings, more sophisticated turbulence models such as the Reynolds Stress Model and the Algebraic Stress Model has been developed by many researchers. Even though the complexity of models is increased, it is difficult to overcome an inherent defect coming from an averaging process. The averaging process in the model development is required to determine the averaged effect of turbulence to the mean flow field. The defect comes from the fact that the averaging is conducted over a full range of turbulence length scales and removes the direct effect of unsteady large eddy motions. Direct Numerical Simulation (DNS) takes an opposite approach, in which it solves all turbulence scales down to the smallest scale using very fine grids. But, this method has a serious problem for an industrial usage. The simulation cost is enormous and because of that, the possible range of the Reynolds number is limited to be very low. Large Eddy Simulation (LES) that models only small scales of turbulence has been a candidate for filling the gap between DNS and RANS. Unfortunately, LES also has a limitation of the possible Reynolds number. The detached eddy simulation (DES) is a hybrid method between RANS and LES. The grid requirement near boundary is a main obstacle for an LES usage. DES uses RANS near the wall and LES outside of it. The backward-facing step flow is simulated to show the DES capability. The near wall models of DES are the SST-kω model and the Spalart-Allmaras model. DES results are

  15. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  16. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    Science.gov (United States)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  17. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  18. Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-12-01

    Full Text Available This paper describes a Large Eddy Simulation (LES investigation into flow fields in a model gas turbine combustor equipped with a swirl burner. A probability density function was used to describe the interaction physics of chemical reaction and turbulent flow as liquid fuel was directly injected into the combustion chamber and rapidly mixed with the swirling air. Simulation results showed that heat release during combustion accelerated the axial velocity motion and made the recirculation zone more compact. As the combustion was taking place under lean burn conditions, NO emissions was less than 10 ppm. Finally, the effects of outlet contraction on swirling flows and combustion instability were investigated. Results suggest that contracted outlet can enhance the generation of a Central Vortex Core (CVC flow structure. As peak RMS of velocity fluctuation profiles at center-line suggested the turbulent instability can be enhanced by CVC motion, the Power Spectrum Density (PSD amplitude also explained that the oscillation at CVC position was greater than other places. Both evidences demonstrated that outlet contraction can increase the instability of the central field.

  19. The hybridized Discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows

    Science.gov (United States)

    Fernandez, P.; Nguyen, N. C.; Peraire, J.

    2017-05-01

    We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.

  20. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  1. Analysis of noise radiation mechanisms in hot subsonic jet from a validated large eddy simulation solution

    Energy Technology Data Exchange (ETDEWEB)

    Lorteau, Mathieu, E-mail: mathieu.lorteau@onera.fr; Cléro, Franck, E-mail: franck.clero@onera.fr; Vuillot, François, E-mail: francois.vuillot@onera.fr [Onera–The French Aerospace Lab, F-92322 Châtillon (France)

    2015-07-15

    In the framework of jet noise computation, a numerical simulation of a subsonic turbulent hot jet is performed using large-eddy simulation. A geometrical tripping is used in order to trigger the turbulence at the nozzle exit. In a first part, the validity of the simulation is assessed by comparison with experimental measurements. The mean and rms velocity fields show good agreement, so do the azimuthal composition of the near pressure field and the far field spectra. Discrepancies remain close to the nozzle exit which lead to a limited overestimation of the pressure levels in both near and far fields, especially near the 90{sup ∘} angular sector. Two point correlation analyses are then applied to the data obtained from the simulation. These enable to link the downstream acoustic radiation, which is the main direction of radiation, to pressure waves developing in the shear layer and propagating toward the potential core end. The intermittency of the downstream acoustic radiation is evidenced and related to the coherent structures developing in the shear layer.

  2. Computation of unsteady flow and aerodynamic noise of NACA0018 airfoil using large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.-J. [Department of Mechanical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of); Lee, S. [Department of Mechanical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751 (Korea, Republic of)]. E-mail: sbaelee@inha.ac.kr; Fujisawa, N. [Department of Mechanical and Production Engineering, Niigata University, 8050 Ikarashi-2, Niigata 950-2181 (Japan)

    2006-04-15

    The flow field around a symmetrical NACA airfoil in the uniform flow under generation of noise was numerically studied. The numerical simulation was carried out by a large-eddy simulation that employs a deductive dynamic model as the subgrid-scale model. The results at small angle of attack {alpha} = 3-6{sup o} indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of pressure side and the strong instability thereafter affects positive vortices shed near the trailing edge. The quasi-periodic behavior of negative vortex formation on the suction side is affected by the strength and the periodicity of positive vortices near the trailing edge. The computation using aero-acoustic analogy indicates the primary discrete peak at the Strouhal frequency (=2f . {delta}/U ) of 0.15 by the vortex shedding from the trailing edge, which is in a close agreement with the experiment.

  3. Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion

    Energy Technology Data Exchange (ETDEWEB)

    Vervisch, Luc; Domingo, Pascale; Lodato, Guido [CORIA - CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France); Veynante, Denis [EM2C - CNRS and Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)

    2010-04-15

    Large-Eddy Simulation (LES) provides space-filtered quantities to compare with measurements, which usually have been obtained using a different filtering operation; hence, numerical and experimental results can be examined side-by-side in a statistical sense only. Instantaneous, space-filtered and statistically time-averaged signals feature different characteristic length-scales, which can be combined in dimensionless ratios. From two canonical manufactured turbulent solutions, a turbulent flame and a passive scalar turbulent mixing layer, the critical values of these ratios under which measured and computed variances (resolved plus sub-grid scale) can be compared without resorting to additional residual terms are first determined. It is shown that actual Direct Numerical Simulation can hardly accommodate a sufficiently large range of length-scales to perform statistical studies of LES filtered reactive scalar-fields energy budget based on sub-grid scale variances; an estimation of the minimum Reynolds number allowing for such DNS studies is given. From these developments, a reliability mesh criterion emerges for scalar LES and scaling for scalar sub-grid scale energy is discussed. (author)

  4. Large-eddy simulations of unidirectional water flow over dunes

    Science.gov (United States)

    Grigoriadis, D. G. E.; Balaras, E.; Dimas, A. A.

    2009-06-01

    The unidirectional, subcritical flow over fixed dunes is studied numerically using large-eddy simulation, while the immersed boundary method is implemented to incorporate the bed geometry. Results are presented for a typical dune shape and two Reynolds numbers, Re = 17,500 and Re = 93,500, on the basis of bulk velocity and water depth. The numerical predictions of velocity statistics at the low Reynolds number are in very good agreement with available experimental data. A primary recirculation region develops downstream of the dune crest at both Reynolds numbers, while a secondary region develops at the toe of the dune crest only for the low Reynolds number. Downstream of the reattachment point, on the dune stoss, the turbulence intensity in the developing boundary layer is weaker than in comparable equilibrium boundary layers. Coherent vortical structures are identified using the fluctuating pressure field and the second invariant of the velocity gradient tensor. Vorticity is primarily generated at the dune crest in the form of spanwise "roller" structures. Roller structures dominate the flow dynamics near the crest, and are responsible for perturbing the boundary layer downstream of the reattachment point, which leads to the formation of "horseshoe" structures. Horseshoe structures dominate the near-wall dynamics after the reattachment point, do not rise to the free surface, and are distorted by the shear layer of the next crest. The occasional interaction between roller and horseshoe structures generates tube-like "kolk" structures, which rise to the free surface and persist for a long time before attenuating.

  5. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  6. Effect of grid resolution on large eddy simulation of wall-bounded turbulence

    Science.gov (United States)

    Rezaeiravesh, S.; Liefvendahl, M.

    2018-05-01

    The effect of grid resolution on a large eddy simulation (LES) of a wall-bounded turbulent flow is investigated. A channel flow simulation campaign involving a systematic variation of the streamwise (Δx) and spanwise (Δz) grid resolution is used for this purpose. The main friction-velocity-based Reynolds number investigated is 300. Near the walls, the grid cell size is determined by the frictional scaling, Δx+ and Δz+, and strongly anisotropic cells, with first Δy+ ˜ 1, thus aiming for the wall-resolving LES. Results are compared to direct numerical simulations, and several quality measures are investigated, including the error in the predicted mean friction velocity and the error in cross-channel profiles of flow statistics. To reduce the total number of channel flow simulations, techniques from the framework of uncertainty quantification are employed. In particular, a generalized polynomial chaos expansion (gPCE) is used to create metamodels for the errors over the allowed parameter ranges. The differing behavior of the different quality measures is demonstrated and analyzed. It is shown that friction velocity and profiles of the velocity and Reynolds stress tensor are most sensitive to Δz+, while the error in the turbulent kinetic energy is mostly influenced by Δx+. Recommendations for grid resolution requirements are given, together with the quantification of the resulting predictive accuracy. The sensitivity of the results to the subgrid-scale (SGS) model and varying Reynolds number is also investigated. All simulations are carried out with second-order accurate finite-volume-based solver OpenFOAM. It is shown that the choice of numerical scheme for the convective term significantly influences the error portraits. It is emphasized that the proposed methodology, involving the gPCE, can be applied to other modeling approaches, i.e., other numerical methods and the choice of SGS model.

  7. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    Science.gov (United States)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  8. Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Saxena, Aakanksha; Cadiou, Thierry; Bieder, Ulrich; Viazzo, Stephane

    2013-06-01

    The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)

  9. Wall-resolved Large Eddy Simulations of turbulent heat transfer in a T-junction

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis V.

    2017-11-01

    In this talk we report on wall-resolved Large Eddy Simulations of turbulent heat transfer between a cold crossflow and a hot incoming jet in a T-junction. Due to their high efficiency in mixing and heat transfer, T-junctions are encountered in numerous industrial applications. Our study is motivated by the need to assess phenomena related to thermal fatigue that are often encountered at their walls. We first describe the important features of the flow with emphasis on the shear layers that are formed at the entry of the jet and the recirculation regions. We also show results for first- and second-order statistics of the flow and compare our predictions with previous experimental data. Lastly, we present results from the spectral analysis of the temperature signal that we performed in order to assess the oscillating mechanisms that dominate the flow and the risk of thermal fatigue at the walls of the T-junction.

  10. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  11. Effects of numerical dissipation and unphysical excursions on scalar-mixing estimates in large-eddy simulations

    Science.gov (United States)

    Sharan, Nek; Matheou, Georgios; Dimotakis, Paul

    2017-11-01

    Artificial numerical dissipation decreases dispersive oscillations and can play a key role in mitigating unphysical scalar excursions in large eddy simulations (LES). Its influence on scalar mixing can be assessed through the resolved-scale scalar, Z , its probability density function (PDF), variance, spectra, and the budget of the horizontally averaged equation for Z2. LES of incompressible temporally evolving shear flow enabled us to study the influence of numerical dissipation on unphysical scalar excursions and mixing estimates. Flows with different mixing behavior, with both marching and non-marching scalar PDFs, are studied. Scalar fields for each flow are compared for different grid resolutions and numerical scalar-convection term schemes. As expected, increasing numerical dissipation enhances scalar mixing in the development stage of shear flow characterized by organized large-scale pairings with a non-marching PDF, but has little influence in the self-similar stage of flows with marching PDFs. Flow parameters and regimes sensitive to numerical dissipation help identify approaches to mitigate unphysical excursions while minimizing dissipation.

  12. Direct and large eddy simulations of a bottom Ekman layer under an external stratification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, John R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego La Jolla, CA 92093 (United States); Sarkar, Sutanu [Department of Mechanical and Aerospace Engineering, University of California, San Diego La Jolla, CA 92093 (United States)], E-mail: sarkar@ucsd.edu

    2008-06-15

    A steady Ekman layer with a thermally stratified outer flow and an adiabatic boundary condition at the lower wall is studied using direct numerical simulation (DNS) and large eddy simulation (LES). An initially linear temperature profile is mixed by turbulence near the wall, and a stable thermocline forms above the mixed layer. The thickness of the mixed layer is reduced by the outer layer stratification. Observations from the DNS are used to evaluate the performance of the LES model and to examine the resolution requirements. A resolved LES and a near-wall model LES (NWM-LES) both compare reasonably well with the DNS when the thermal field is treated as a passive scalar. When buoyancy effects are included, the LES mean velocity and temperature profiles also agree well with the DNS. However, the NWM-LES does not sufficiently account for the overturning scales responsible for entrainment at the top of the mixed layer. As a result, the turbulent heat flux and the rate of change of the mixed layer temperature are significantly underestimated in the NWM-LES. In order to accurately simulate the boundary layer growth, the motions responsible for entrainment must either be resolved or more accurately represented in improved subgrid-scale models.

  13. Direct and large eddy simulations of a bottom Ekman layer under an external stratification

    International Nuclear Information System (INIS)

    Taylor, John R.; Sarkar, Sutanu

    2008-01-01

    A steady Ekman layer with a thermally stratified outer flow and an adiabatic boundary condition at the lower wall is studied using direct numerical simulation (DNS) and large eddy simulation (LES). An initially linear temperature profile is mixed by turbulence near the wall, and a stable thermocline forms above the mixed layer. The thickness of the mixed layer is reduced by the outer layer stratification. Observations from the DNS are used to evaluate the performance of the LES model and to examine the resolution requirements. A resolved LES and a near-wall model LES (NWM-LES) both compare reasonably well with the DNS when the thermal field is treated as a passive scalar. When buoyancy effects are included, the LES mean velocity and temperature profiles also agree well with the DNS. However, the NWM-LES does not sufficiently account for the overturning scales responsible for entrainment at the top of the mixed layer. As a result, the turbulent heat flux and the rate of change of the mixed layer temperature are significantly underestimated in the NWM-LES. In order to accurately simulate the boundary layer growth, the motions responsible for entrainment must either be resolved or more accurately represented in improved subgrid-scale models

  14. Large Eddy Simulation study of the development of finite-channel lock-release currents at high Grashof numbers

    Science.gov (United States)

    Ooi, Seng-Keat

    2005-11-01

    Lock-exchange gravity current flows produced by the instantaneous release of a heavy fluid are investigated using 3-D well resolved Large Eddy Simulation simulations at Grashof numbers up to 8*10^9. It is found the 3-D simulations correctly predict a constant front velocity over the initial slumping phase and a front speed decrease proportional to t-1/3 (the time t is measured from the release) over the inviscid phase, in agreement with theory. The evolution of the current in the simulations is found to be similar to that observed experimentally by Hacker et al. (1996). The effect of the dynamic LES model on the solutions is discussed. The energy budget of the current is discussed and the contribution of the turbulent dissipation to the total dissipation is analyzed. The limitations of less expensive 2D simulations are discussed; in particular their failure to correctly predict the spatio-temporal distributions of the bed shear stresses which is important in determining the amount of sediment the gravity current can entrain in the case in advances of a loose bed.

  15. Large eddy simulation of the subcritical flow over a V grooved circular cylinder

    International Nuclear Information System (INIS)

    Alonzo-García, A.; Gutiérrez-Torres, C. del C.; Jiménez-Bernal, J.A.

    2015-01-01

    Highlights: • We compared numerically the turbulent flow over a smooth circular cylinder and a V grooved cylinder in the subcritical regime. • Turbulence intensities in both streamwise and normal direction suffered attenuations. • The swirls structures on grooves peaks seemed to have a cyclic behavior. • The evolution of the flow inside grooves showed that swirls structures located in peaks suffered elongations in the normal direction. • The secondary vortex structures formed in the grooved cylinder near wake were smaller in comparison of the smooth cylinder flow. - Abstract: In this paper, a comparative numerical study of the subcritical flow over a smooth cylinder and a cylinder with V grooves (Re = 140,000) is presented. The implemented technique was the Large Eddy Simulation (LES), which according to Kolmogorov's theory, resolves directly the most energetic largest eddies and models the smallest and considered universal high frequency ones. The Navier-Stokes (N-S) equations were solved using the commercial software ANSYS FLUENT V.12.1, which applied the finite volume method (FVM) to discretize these equations in their unsteady and incompressible forms. The grid densities were 2.6 million cells and 13.5 million cells for the smooth and V grooved cylinder, respectively. Both meshes were composed of structured hexahedral cells and close to the wall of the cylinders, additional refinements were employed in order to obtain y +<5 values. All cases were simulated during at least 15 vortex shedding cycles with the aim of obtaining significant statistical data. Results: showed that for both cases (smooth and V grooved cylinder flow), the numerical code was capable of reproducing the most important physical quantities of the subcritical regime. Velocity distribution and turbulence intensity in the flow direction suffered a slight attenuation along the wake, as a consequence of grooves perturbation, which also caused an increase in the pressure coefficient

  16. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  17. Large-Eddy Simulation of a High Reynolds Number Flow Around a Cylinder Including Aeroacoustic Predictions

    Science.gov (United States)

    Spyropoulos, Evangelos T.; Holmes, Bayard S.

    1997-01-01

    The dynamic subgrid-scale model is employed in large-eddy simulations of flow over a cylinder at a Reynolds number, based on the diameter of the cylinder, of 90,000. The Centric SPECTRUM(trademark) finite element solver is used for the analysis. The far field sound pressure is calculated from Lighthill-Curle's equation using the computed fluctuating pressure at the surface of the cylinder. The sound pressure level at a location 35 diameters away from the cylinder and at an angle of 90 deg with respect to the wake's downstream axis was found to have a peak value of approximately 110 db. Slightly smaller peak values were predicted at the 60 deg and 120 deg locations. A grid refinement study suggests that the dynamic model demands mesh refinement beyond that used here.

  18. A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)

    2016-04-12

    Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.

  19. Large eddy simulations of the influence of piston position on the swirling flow in a model two-stroke diesel engine

    DEFF Research Database (Denmark)

    Obeidat, Anas Hassan MohD; Schnipper, Teis; Ingvorsen, Kristian Mark

    2014-01-01

    Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one...... qualitatively with port closure from a Lamb-Oseen vortex profile to a solid body rotation, while the axial velocity changes from a wake-like profile to a jet-like profile. The numerical results are compared with particle image velocimetry measurements, and in general, the authors find a good agreement. Research...

  20. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    Science.gov (United States)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  1. Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiangrui; Chen, Yaohui; Dong, Gang; Liu, Yixin, E-mail: cyh873@163.com [National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2017-06-15

    In this paper, a novel slotted ramp-type micro vortex generator (slotted micro-ramp) for flow separation control is simulated in the supersonic flow of Ma = 1.5, based on large eddy simulation combined with the finite volume method. The wake structure characteristics and control mechanisms of both slotted and standard micro-ramps are presented and discussed. The results show that the wake of standard micro-ramp includes a primary counter-rotating streamwise vortex pair, a train of vortex rings, and secondary vortices. The slotted micro-ramp has more complicated wake structures, which contain a confluent counter-rotating streamwise vortex pair and additional streamwise vortices, with the same rotation generated by slot and the vortex rings enveloping the vortex pair. The additional vortices generated by the slot of the micro-ramp can mix with the primary counter-rotating vortex pair, extend the life time, and strengthen the vortex intensity of primary vortex pair. Moreover, the slot can effectively alleviate, or even eliminate the backflow and decrease the profile drag induced by the standard micro-ramp, therefore improving the efficiency of separation control. (paper)

  2. MicroHH 1.0: a computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows

    Science.gov (United States)

    van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro

    2017-08-01

    This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.

  3. Large Eddy Simulations of Two-phase Turbulent Reactive Flows in IC Engines

    Science.gov (United States)

    Banaeizadeh, Araz; Schock, Harold; Jaberi, Farhad

    2008-11-01

    The two-phase filtered mass density function (FMDF) subgrid-scale (SGS) model is used for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The reliability and the consistency of the numerical methods are established for different IC engines and the complex interactions among mean and turbulent velocity fields, fuel droplets and combustion are shown to be well captured with the LES/FMDF. In both spark-ignition/direct-injection and diesel engines, the droplet size and velocity distributions are found to be modified by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure. In the spark-ignition engine, flame propagation is similar to the experiment. In the diesel engine, the maximum evaporated fuel concentration is near the cylinder wall where the flame starts, which is again consistent with the experiment.

  4. A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution - Part 1: Experimental design and basic evaluation

    Science.gov (United States)

    Ballarotta, M.; Brodeau, L.; Brandefelt, J.; Lundberg, P.; Döös, K.

    2013-01-01

    Most state-of-the-art climate models include a coarsely resolved oceanic component, which has difficulties in capturing detailed dynamics, and therefore eddy-permitting/eddy-resolving simulations have been developed to reproduce the observed World Ocean. In this study, an eddy-permitting numerical experiment is conducted to simulate the global ocean state for a period of the Last Glacial Maximum (LGM, ~ 26 500 to 19 000 yr ago) and to investigate the improvements due to taking into account these higher spatial scales. The ocean general circulation model is forced by a 49-yr sample of LGM atmospheric fields constructed from a quasi-equilibrated climate-model simulation. The initial state and the bottom boundary condition conform to the Paleoclimate Modelling Intercomparison Project (PMIP) recommendations. Before evaluating the model efficiency in representing the paleo-proxy reconstruction of the surface state, the LGM experiment is in this first part of the investigation, compared with a present-day eddy-permitting hindcast simulation as well as with the available PMIP results. It is shown that the LGM eddy-permitting simulation is consistent with the quasi-equilibrated climate-model simulation, but large discrepancies are found with the PMIP model analyses, probably due to the different equilibration states. The strongest meridional gradients of the sea-surface temperature are located near 40° N and S, this due to particularly large North-Atlantic and Southern-Ocean sea-ice covers. These also modify the locations of the convection sites (where deep-water forms) and most of the LGM Conveyor Belt circulation consequently takes place in a thinner layer than today. Despite some discrepancies with other LGM simulations, a glacial state is captured and the eddy-permitting simulation undertaken here yielded a useful set of data for comparisons with paleo-proxy reconstructions.

  5. Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    Science.gov (United States)

    Safari, Mehdi

    Analysis of local entropy generation is an effective means to optimize the performance of energy and combustion systems by minimizing the irreversibilities in transport processes. Large eddy simulation (LES) is employed to describe entropy transport and generation in turbulent reacting flows. The entropy transport equation in LES contains several unclosed terms. These are the subgrid scale (SGS) entropy flux and entropy generation caused by irreversible processes: heat conduction, mass diffusion, chemical reaction and viscous dissipation. The SGS effects are taken into account using a novel methodology based on the filtered density function (FDF). This methodology, entitled entropy FDF (En-FDF), is developed and utilized in the form of joint entropy-velocity-scalar-turbulent frequency FDF and the marginal scalar-entropy FDF, both of which contain the chemical reaction effects in a closed form. The former constitutes the most comprehensive form of the En-FDF and provides closure for all the unclosed filtered moments. This methodology is applied for LES of a turbulent shear layer involving transport of passive scalars. Predictions show favor- able agreements with the data generated by direct numerical simulation (DNS) of the same layer. The marginal En-FDF accounts for entropy generation effects as well as scalar and entropy statistics. This methodology is applied to a turbulent nonpremixed jet flame (Sandia Flame D) and predictions are validated against experimental data. In both flows, sources of irreversibility are predicted and analyzed.

  6. Large Eddy simulation of turbulent flow past a circular cylinder in the subcritical and critical regimes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyongjun; Yang, Kyung-Soo [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    Large Eddy simulation (LES) results of turbulent flow past a circular cylinder for the specified Reynolds numbers (Re = 63100, 126000, 252000) are presented. An immersed boundary method was employed to facilitate implementation of a circular cylinder in a Cartesian grid system. A dynamic subgrid-scale model, in which the model coefficient is dynamically determined by the current resolved flow field rather than assigned a prefixed constant, was implemented for accurate turbulence modeling. For better resolution near the cylinder surface and in the separated free-shear layers, a composite grid was used. Flow statistics including mean and rms values of force coefficients and Strouhal number of vortex shedding, are presented. Flow visualization using vorticity or Q contours are also shown. Our results are in better agreement with the MARIN measurements compared with RANS calculations reported in the previous ITTC workshop, confirming that LES is a more appropriate simulation methodology than a RANS approach to predict VIV for marine structures.

  7. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  8. Connecting the failure of K-theory inside and above vegetation canopies and ejection-sweep cycles by a large eddy simulation

    International Nuclear Information System (INIS)

    Banerjee, Tirtha; De Roo, Frederik; Mauder, Matthias

    2017-01-01

    Parameterizations of biosphere-atmosphere interaction processes in climate models and other hydrological applications require characterization of turbulent transport of momentum and scalars between vegetation canopies and the atmosphere, which is often modeled using a turbulent analogy to molecular diffusion processes. However, simple flux-gradient approaches (K-theory) fail for canopy turbulence. One cause is turbulent transport by large coherent eddies at the canopy scale, which can be linked to sweep-ejection events, and bear signatures of non-local organized eddy motions. K-theory, that parameterizes the turbulent flux or stress proportional to the local concentration or velocity gradient, fails to account for these non-local organized motions. The connection to sweep-ejection cycles and the local turbulent flux can be traced back to the turbulence triple moment (C ′ W ′ W ′ )-bar. In this work, we use large-eddy simulation to investigate the diagnostic connection between the failure of K-theory and sweep-ejection motions. Analyzed schemes are quadrant analysis (QA) and a complete and incomplete cumulant expansion (CEM and ICEM) method. The latter approaches introduce a turbulence timescale in the modeling. Furthermore, we find that the momentum flux needs a different formulation for the turbulence timescale than the sensible heat flux. In conclusion, accounting for buoyancy in stratified conditions is also deemed to be important in addition to accounting for non-local events to predict the correct momentum or scalar fluxes.

  9. Large-eddy simulation of shallow turbulent wakes behind a conical island

    Science.gov (United States)

    Ouro, Pablo; Wilson, Catherine A. M. E.; Evans, Paul; Angeloudis, Athanasios

    2017-12-01

    Large-Eddy Simulations (LESs) and experiments were employed to study the influence of water depth on the hydrodynamics in the wake of a conical island for emergent, shallow, and deeply submerged conditions. The Reynolds numbers based on the island's base diameter for these conditions range from 6500 to 8125. LES results from the two shallower conditions were validated against experimental measurements from an open channel flume and captured the characteristic flow structures around the cone, including the attached recirculation region, vortex shedding, and separated shear layers. The wake was impacted by the transition from emergent to shallow submerged flow conditions with more subtle changes in time-averaged velocity and instantaneous flow structures when the submergence increases further. Despite differences in the breakdown of the separated shear layers, vortex shedding, and the upward flow region on the leeward face (once the cone's apex is submerged), similar flow structures to cylinder flow were observed. These include an arch vortex tilted in the downstream direction and von Karman vortices in the far-wake. Spectra of velocity time series and the drag coefficient indicated that the vortex shedding was constrained by the overtopping flow layer, and thus the shedding frequency decreased as the cone's apex became submerged. Finally, the generalised flow structures in the wake of a submerged conical body are outlined.

  10. Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation

    Science.gov (United States)

    Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison

    2017-07-01

    The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.

  11. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms

    Science.gov (United States)

    VerHulst, Claire; Meneveau, Charles

    2014-02-01

    In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative

  12. Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.

  13. F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids

    Science.gov (United States)

    Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2015-01-01

    This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.

  14. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  15. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  16. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  17. Large-eddy simulation study of oil/gas plumes in stratified fluid with cross current

    Science.gov (United States)

    Yang, Di; Xiao, Shuolin; Chen, Bicheng; Chamecki, Marcelo; Meneveau, Charles

    2017-11-01

    Dynamics of the oil/gas plume from a subsea blowout are strongly affected by the seawater stratification and cross current. The buoyant plume entrains ambient seawater and lifts it up to higher elevations. During the rising process, the continuously increasing density difference between the entrained and ambient seawater caused by the stable stratification eventually results in a detrainment of the entrained seawater and small oil droplets at a height of maximum rise (peel height), forming a downward plume outside the rising inner plume. The presence of a cross current breaks the plume's axisymmetry and causes the outer plume to fall along the downstream side of the inner plume. The detrained seawater and oil eventually fall to a neutral buoyancy level (trap height), and disperse horizontally to form an intrusion layer. In this study, the complex plume dynamics is investigated using large-eddy simulation (LES). Various laboratory and field scale cases are simulated to explore the effect of cross current and stratification on the plume dynamics. Based on the LES data, various turbulence statistics of the plume are systematically quantified, leading to some useful insights for modeling the mean plume dynamics using integral plume models. This research is made possible by a RFP-V Grant from The Gulf of Mexico Research Initiative.

  18. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

    Science.gov (United States)

    Sudjai, W.; Juntasaro, V.; Juttijudata, V.

    2018-01-01

    The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

  19. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  20. Numerical Investigation of the Flameless Oxidation of Natural Gas in the IFRF Furnace Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Seyed Mahmood Mousavi

    2014-12-01

    Full Text Available In this paper, in order to investigate the effect of working parameters on 3D non-premixed Flameless oxidation occurring in the IFRF furnace, large eddy simulation model is applied on OpenFOAM environment. The radiation and combustion are modeled by applying the finite volume discrete ordinate model and partially stirred reactor, respectively. Furthermore the detailed mechanism GRI-2.11 is undertaken represent chemistry reactions. The obtained results are compared with the published experimental measurements. After ensuring the accuracy of the LES method, the combustion characteristics are examined with different fuel injection angles, adding H2O, H2, and the inlet Reynolds number. The results indicated significant changes in the characteristics of the Flameless oxidation process.

  1. Numerical modelling of an isothermal flow in a mixing Tee using large eddy simulation

    International Nuclear Information System (INIS)

    Ndombo, Jean-Marc

    2013-01-01

    Thermal fatigue in Pressurized Water Reactor plants has been found to be very acute in some hot/cold Tee junction mixing zones (CIVAUX, 1998). Large Eddy Simulation (LES) can be used to capture the unsteadiness which is responsible for the large mechanical stresses associated with thermal fatigue. Firstly, we analyze some results obtained using the EDF R and D Code Saturne applied to the Vattenfall Tee junction benchmark (version 2006) and we look at the effect of including synthetic turbulence at the Tee junction pipe inlets. Then we analyze high-order turbulent statistics in the T-junction using LES, to gain a better understanding of the heat exchange near the junction walls. The configuration of the T-junction used is that of the MOTHER project. The bulk Reynolds number is 30,000. The study shows the structure of the mean flow, budgets of the kinetic energy, temperature variance and the thermal heat flux are made in the internal flow and near the walls. Two kinds of computations are made. One with an adiabatic condition and the other with a non adiabatic condition (steel walls). The EDF R and D Code Saturne is coupled with SYRTHES to analyze the temperature in the wall (SYRTHES is also developed by EDF R and D). (author)

  2. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Large-Eddy Simulation on Plume Dispersion within Regular Arrays of Cubic Buildings

    Science.gov (United States)

    Nakayama, H.; Jurcakova, K.; Nagai, H.

    2010-09-01

    There is a potential problem that hazardous and flammable materials are accidentally or intentionally released into the atmosphere, either within or close to populated urban areas. For the assessment of human health hazard from toxic substances, the existence of high concentration peaks in a plume should be considered. For the safety analysis of flammable gas, certain critical threshold levels should be evaluated. Therefore, in such a situation, not only average levels but also instantaneous magnitudes of concentration should be accurately predicted. However, plume dispersion is an extremely complicated process strongly influenced by the existence of buildings. In complex turbulent flows, such as impinging, separated and circulation flows around buildings, plume behaviors can be no longer accurately predicted using empirical Gaussian-type plume model. Therefore, we perform Large-Eddy Simulations (LES) on turbulent flows and plume dispersions within and over regular arrays of cubic buildings with various roughness densities and investigate the influence of the building arrangement pattern on the characteristics of mean and fluctuation concentrations. The basic equations for the LES model are composed of the spatially filtered continuity equation, Navier-Stokes equation and transport equation of concentration. The standard Smagorinsky model (Smagorinsky, 1963) that has enough potential for environment flows is used and its constant is set to 0.12 for estimating the eddy viscosity. The turbulent Schmidt number is 0.5. In our LES model, two computational regions are set up. One is a driver region for generation of inflow turbulence and the other is a main region for LES of plume dispersion within a regular array of cubic buildings. First, inflow turbulence is generated by using Kataoka's method (2002) in the driver region and then, its data are imposed at the inlet of the main computational region at each time step. In this study, the cubic building arrays with λf=0

  4. Evaluation of Presumed Probability-Density-Function Models in Non-Premixed Flames by using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Cao Hong-Jun; Zhang Hui-Qiang; Lin Wen-Yi

    2012-01-01

    Four kinds of presumed probability-density-function (PDF) models for non-premixed turbulent combustion are evaluated in flames with various stoichiometric mixture fractions by using large eddy simulation (LES). The LES code is validated by the experimental data of a classical turbulent jet flame (Sandia flame D). The mean and rms temperatures obtained by the presumed PDF models are compared with the LES results. The β-function model achieves a good prediction for different flames. The predicted rms temperature by using the double-δ function model is very small and unphysical in the vicinity of the maximum mean temperature. The clip-Gaussian model and the multi-δ function model make a worse prediction of the extremely fuel-rich or fuel-lean side due to the clip at the boundary of the mixture fraction space. The results also show that the overall prediction performance of presumed PDF models is better at mediate stoichiometric mixture fractions than that at very small or very large ones. (fundamental areas of phenomenology(including applications))

  5. Large-Eddy Simulation (LES of Spray Transients: Start and End of Injection Phenomena

    Directory of Open Access Journals (Sweden)

    Battistoni Michele

    2016-01-01

    Full Text Available This work reports investigations on Diesel spray transients, accounting for internal nozzle flow and needle motion, and demonstrates how seamless calculations of internal flow and external jet can be accomplished in a Large-Eddy Simulation (LES framework using an Eulerian mixture model. Sub-grid stresses are modeled with the Dynamic Structure (DS model, a non-viscosity based one-equation LES model. Two problems are studied with high level of spatial and temporal resolution. The first one concerns an End-Of-Injection (EOI case where gas ingestion, cavitation, and dribble formation are resolved. The second case is a Start-Of-Injection (SOI simulation that aims at analyzing the effect of residual gas trapped inside the injector sac on spray penetration and rate of fuel injection. Simulation results are compared against experiments carried out at Argonne National Laboratory (ANL using synchrotron X-ray. A mesh sensitivity analysis is conducted to assess the quality of the LES approach by evaluating the resolved turbulent kinetic energy budget and comparing the outcomes with a length-scale resolution index. LES of both EOI and SOI processes have been carried out on a single hole Diesel injector, providing insights in to the physics of the processes, with internal and external flow details, and linking the phenomena at the end of an injection event to those at the start of a new injection. Concerning the EOI, the model predicts ligament formation and gas ingestion, as observed experimentally, and the amount of residual gas in the nozzle sac matches with the available data. The fast dynamics of the process is described in detail. The simulation provides unique insights into the physics at the EOI. Similarly, the SOI simulation shows how gas is ejected first, and liquid fuel starts being injected with a delay. The simulation starts from a very low needle lift and is able to predict the actual Rate-Of-Injection (ROI and jet penetration, based only on the

  6. Large-eddy simulation of a turbulent flow over the DrivAer fastback vehicle model

    Science.gov (United States)

    Ruettgers, Mario; Park, Junshin; You, Donghyun

    2017-11-01

    In 2012 the Technical University of Munich (TUM) made realistic generic car models called DrivAer available to the public. These detailed models allow a precise calculation of the flow around a lifelike car which was limited to simplified geometries in the past. In the present study, the turbulent flow around one of the models, the DrivAer Fastback model, is simulated using large-eddy simulation (LES). The goal of the study is to give a deeper physical understanding of highly turbulent regions around the car, like at the side mirror or at the rear end. For each region the contribution to the total drag is worked out. The results have shown that almost 35% of the drag is generated from the car wheels whereas the side mirror only contributes 4% of the total drag. Detailed frequency analysis on velocity signals in each wake region have also been conducted and found 3 dominant frequencies which correspond to the dominant frequency of the total drag. Furthermore, vortical structures are visualized and highly energetic points are identified. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).

  7. The emerging role of large eddy simulation in industrial practice: challenges and opportunities.

    Science.gov (United States)

    Hutton, A G

    2009-07-28

    That class of methods for treating turbulence gathered under the banner of large eddy simulation is poised to enter mainstream engineering practice. There is a growing body of evidence that such methods offer a significant stretch in industrial capability over solely Reynolds-averaged Navier-Stokes (RANS)-based modelling. A key enabling development will be the adaptation of innovative processor architectures, resulting from the huge investment in the gaming industry, to engineering analysis. This promises to reduce the computational burden to practicable levels. However, there are many lessons to be learned from the history of the past three decades. These lessons should be analysed in order to inform, if not modulate, the unfolding of this next cycle in the development of industrial modelling capability. This provides the theme for this paper, which is written very much from the standpoint of the informed practitioner rather than the innovator; someone with a strong motivation to improve significantly the competence with which industrial turbulent flows are treated. It is asserted that the reliable deployment of the methodology in the industrial context will prove to be a knowledge-based discipline, as was the case with RANS-based modelling, if not more so. The community at large should collectively make great efforts to put in place that knowledge base from which best practice advice can be derived at the very start of this cycle of advancement and continue to enrich it as the cycle progresses.

  8. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    Energy Technology Data Exchange (ETDEWEB)

    Örley, F., E-mail: felix.oerley@aer.mw.tum.de; Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Hickel, S. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Chair of Computational Aerodynamics, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  9. Towards an entropy-based detached-eddy simulation

    Science.gov (United States)

    Zhao, Rui; Yan, Chao; Li, XinLiang; Kong, WeiXuan

    2013-10-01

    A concept of entropy increment ratio ( s¯) is introduced for compressible turbulence simulation through a series of direct numerical simulations (DNS). s¯ represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f s to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed detached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performances are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic flat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.

  10. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    Science.gov (United States)

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  11. An adaptive DES smodel that allows wall-resolved eddy simulation

    International Nuclear Information System (INIS)

    Yin, Zifei; Durbin, Paul A.

    2016-01-01

    Highlights: • A Detached Eddy Simulation model that mimics dynamic Smagorinsky formulation. • Adaptivity of model allows wall resolved eddy simulation on sufficient grids. • Ability to simulate natural and bypass transition is tested. - Abstract: A modification to the Adaptive-DES method of Yin et al. (2015) is proposed to improve its near-wall behavior. The modification is to the function (C_l_i_m) that imposes a lower limit on the dynamically evaluated coefficient (C_D_E_S). The modification allows Adaptive-DES to converge to wall-resolved eddy simulation, when grid resolution supports it. On coarse grids, or at high Reynolds number, it reverts to shielded DES — that is to DDES. The new formulation predicts results closer to wall-resolved LES than the previous formulation. It provides an ability to simulate transition: it is tested in both orderly and bypass transition. In fully turbulent, attached flow, the modification has little effect. Any improvement in predictions stem from better near-wall behavior of the adaptive method.

  12. Inflow turbulence generation for eddy-resolving simulations of turbomachinery flows

    OpenAIRE

    Arolla, Sunil K.

    2014-01-01

    A simple variant of recycling and rescaling method to generate inflow turbulence using unstructured grid CFD codes is presented. The method has been validated on large eddy simulation of spatially developing flat plate turbulent boundary layer. The proposed rescaling algorithm is based on the momentum thickness which is more robust and essentially obviates the need of finding the edge of the turbulent boundary layer in unstructured grid codes. Extension of this algorithm to hybrid RANS/LES ty...

  13. Detached Eddy Simulations of Hypersonic Transition

    Science.gov (United States)

    Yoon, S.; Barnhardt, M.; Candler, G.

    2010-01-01

    This slide presentation reviews the use of Detached Eddy Simulation (DES) of hypersonic transistion. The objective of the study was to investigate the feasibility of using CFD in general, DES in particular, for prediction of roughness-induced boundary layer transition to turbulence and the resulting increase in heat transfer.

  14. Large Eddy simulations of jet in cross flow; Simulations aux grandes echelles: application au jet transverse

    Energy Technology Data Exchange (ETDEWEB)

    Priere, C

    2005-01-15

    Nowadays, environmental and economic constraints require considerable research efforts from the gas turbine industry. Objectives aim at lowering pollutants emissions and fuel consumption. These efforts take a primary importance to satisfy a continue growth of energy production and to obey to stringent environmental legislations. Recorded progresses are linked to mixing enhancement in combustors running at lean premixed operating point. Indeed, industry shows itself to be attentive in the mixing enhancement and during the last years, efforts are concentrated on fresh and burned gas dilution. The Jet In Cross Flow (JICF), which constitutes a representative case to further the research effort. It has been to be widely studied both in experimentally and numerically, and is particularly well suited for the evaluation of Large Eddy Simulations (LES). This approach, where large scale phenomena are naturally taken into account in the governing equation while the small scales are modelled, offers the means to well-predict such flows. The main objective of this work is to gauge and to enhance the quality of the LES predictions in JICF configurations by means of numerical tools developed in the compressible AVBP code. Physical and numerical parameters considered in the JICF modelization are taken into account and strategies that are able to enhance quality of LES results are proposed. Configurations studied in this work are the following: - Influences of the boundary conditions and jet injection system on a free JICF - Study of static mixing device in an industrial gas turbine chamber. - Study of a JICF configuration represented a dilution zone in low emissions combustors. (author)

  15. Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500

    Science.gov (United States)

    Feldmann, Daniel; Avila, Marc

    2018-04-01

    We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.

  16. Application of large-eddy simulation to pressurized thermal shock: Assessment of the accuracy

    International Nuclear Information System (INIS)

    Loginov, M.S.; Komen, E.M.J.; Hoehne, T.

    2011-01-01

    Highlights: → We compare large-eddy simulation with experiment on the single-phase pressurized thermal shock problem. → Three test cases are considered, they cover entire range of mixing patterns. → The accuracy of the flow mixing in the reactor pressure vessel is assessed qualitatively and quantitatively. - Abstract: Pressurized Thermal Shock (PTS) is identified as one of the safety issues where Computational Fluid Dynamics (CFD) can bring real benefits. The turbulence modeling may impact overall accuracy of the calculated thermal loads on the vessel walls, therefore advanced methods for turbulent flows are required. The feasibility and mesh resolution of LES for single-phase PTS are assessed earlier in a companion paper. The current investigation deals with the accuracy of LES approach with respect to the experiment. Experimental data from the Rossendorf Coolant Mixing (ROCOM) facility is used as a basis for validation. Three test cases with different flow rates are considered. They correspond to a buoyancy-driven, a momentum-driven, and a transitional coolant mixing pattern in the downcomer. Time- and frequency-domain analysis are employed for comparison of the numerical and experimental data. The investigation shows a good qualitative prediction of the bulk flow patterns. The fluctuations are modeled correctly. A conservative estimate of the temperature drop near the wall can be obtained from the numerical results with safety factor of 1.1-1.3. In general, the current LES gives a realistic and reliable description of the considered coolant mixing experiments. The accuracy of the prediction is definitely improved with respect to earlier CFD simulations.

  17. Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone

    International Nuclear Information System (INIS)

    Mikulčić, Hrvoje; Vujanović, Milan; Ashhab, Moh'd Sami; Duić, Neven

    2014-01-01

    This work presents a numerical study of the highly swirled gas–solid flow inside a cement cyclone. The computational fluid dynamics – CFD simulation for continuum fluid flow and heat exchange was used for the investigation. The Eulearian–Lagrangian approach was used to describe the two-phase flow, and the large eddy simulation – LES method was used for correctly obtaining the turbulent fluctuations of the gas phase. A model describing the reaction of the solid phase, e.g. the calcination process, has been developed and implemented within the commercial finite volume CFD code FIRE. Due to the fact that the calcination process has a direct influence on the overall energy efficiency of the cement production, it is of great importance to have a certain degree of limestone degradation at the cyclone's outlet. The heat exchange between the gas and solid phase is of particular importance when studying cement cyclones, as it has a direct effect on the calcination process. In order to study the heat exchange phenomena and the flow characteristics, a three dimensional geometry of a real industrial scroll type cyclone was used for the CFD simulation. The gained numerical results, characteristic for cyclones, such as the pressure drop, and concentration of particles can thus be used for better understanding of the complex swirled two-phase flow inside the cement cyclone and also for improving the heat exchange phenomena. - Highlights: • CFD (computational fluid dynamics) is being increasingly used to enhance efficiency of reacting multi-phase flows. • Numerical model of calcination process was presented. • A detailed industrial geometry was used for the CFD simulation. • Presented model and measurement data are in good agreement

  18. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    Science.gov (United States)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  19. Large-eddy simulations of turbulent flows in internal combustion engines

    Science.gov (United States)

    Banaeizadeh, Araz

    The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and

  20. Online model evaluation of large-eddy simulations covering Germany with a horizontal resolution of 156 m

    Science.gov (United States)

    Hansen, Akio; Ament, Felix; Lammert, Andrea

    2017-04-01

    Large-eddy simulations have been performed since several decades, but due to computational limits most studies were restricted to small domains or idealised initial-/boundary conditions. Within the High definition clouds and precipitation for advancing climate prediction (HD(CP)2) project realistic weather forecasting like LES simulations were performed with the newly developed ICON LES model for several days. The domain covers central Europe with a horizontal resolution down to 156 m. The setup consists of more than 3 billion grid cells, by what one 3D dump requires roughly 500 GB. A newly developed online evaluation toolbox was created to check instantaneously for realistic model simulations. The toolbox automatically combines model results with observations and generates several quicklooks for various variables. So far temperature-/humidity profiles, cloud cover, integrated water vapour, precipitation and many more are included. All kind of observations like aircraft observations, soundings or precipitation radar networks are used. For each dataset, a specific module is created, which allows for an easy handling and enhancement of the toolbox. Most of the observations are automatically downloaded from the Standardized Atmospheric Measurement Database (SAMD). The evaluation tool should support scientists at monitoring computational costly model simulations as well as to give a first overview about model's performance. The structure of the toolbox as well as the SAMD database are presented. Furthermore, the toolbox was applied on an ICON LES sensitivity study, where example results are shown.

  1. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-11-15

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8{sup th} floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C.

  2. Large eddy simulation of cooling flows in underground subway station according to different PSD operating conditions

    International Nuclear Information System (INIS)

    Jang, Yong Jun; Kim, Jin Ho; Park, Sung Huk; Koo, Dong Hoe

    2015-01-01

    Large eddy simulation (LES) method is applied to systematically investigate the cooling fluid flow and the temperature distribution under the operating of air conditioning in the deeply underground subway station. The Shin-Gum-Ho subway station in Seoul which is the 8"t"h floor and 43.6 m deep is selected for this analysis. The entire station is covered for simulation. The ventilation mode for air conditioning is kept as ordinary state. Different operating conditions for Platform screen door (PSD) are applied. First one is PSD is completely close and second one is PSD is regularly open and close which imitate the actual circumstances in the platform. The ventilation diffusers are modeled as 95 square shapes in the lobby and 222 squares in the platform. The temperature variations and flow behaviors are numerically simulated after operating of air conditioning for the whole station and the calculated results are compared with experimental data. LES method solves the momentum and thermal equations. Werner-Wengle wall law is applied to viscous sub layers for near wall resolution. The total grid numbers are 7.5 million and the whole domain is divided to 22 blocks. Multi blocks are computed in parallel using MPI. The results show the temperature difference in the platform between PSD-close and PSD-regularly open and close cases is 3-4 .deg. C

  3. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035

    Science.gov (United States)

    Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.

    2014-01-01

    A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422

  4. Large-eddy simulation of flow separation on an airfoil at a high angle of attack and re=10{sup 5} using Cartesian grids

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Sven; Friedrich, Rainer [Fachgebiet Stroemungsmechanik, Technische Universitaet Muenchen, Garching (Germany)

    2008-05-15

    Incompressible flow separating from the upper surface of an airfoil at an 18 angle of attack and a Reynolds number of Re=10{sup 5}, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data. (orig.)

  5. Detached-eddy simulation of flow around the NREL phase VI blade

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.; Michelsen, J.A.

    2002-01-01

    the blade axis. Computed blade characteristics are compared with experimental data from the NREL/NASA Ames Phase VI unsteady experiment. The detached-eddy simulation model is a method for predicting turbulence in computational fluid dynamics computations, which combines a Reynolds-averaged Navier......-eddy simulation show considerably more three-dimensional flow structures compared to conventional two-equation Reynolds-averaged Navier–Stokes turbulence models, but no particular improvements are seen in the global blade characteristics. Copyright © 2002 John Wiley & Sons, Ltd.......The detached-eddy simulation model implemented in the computational fluid dynamics code EllipSys3D is used to calculate the flow around the non-rotating NREL Phase VI wind turbine blade. Results are presented for flow around a parked blade at fixed angle of attack and a blade pitching along...

  6. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  7. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    Science.gov (United States)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  8. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  9. Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils

    KAUST Repository

    Zhang, Yue

    2015-07-23

    This paper presentsamultiscale finite-element formulation for the second modeofzonal detached-eddy simulation. The multiscale formulation corrects the lack of stability of the standard Galerkin formulation by incorporating the effect of unresolved scales to the grid (resolved) scales. The stabilization terms arise naturally and are free of userdefined stability parameters. Validation of the method is accomplished via the turbulent flow over tandem cylinders. The boundary-layer separation, free shear-layer rollup, vortex shedding from the upstream cylinder, and interaction with the downstream cylinder are well reproduced. Good agreement with experimental measurements gives credence to the accuracy of zonal detached-eddy simulation in modeling turbulent separated flows. A comprehensive study is then conducted on the performance degradation of ice-contaminated airfoils. NACA 23012 airfoil with a spanwise ice ridge and Gates Learjet Corporation-305 airfoil with a leading-edge horn-shape glaze ice are selected for investigation. Appropriate spanwise domain size and sufficient grid density are determined to enhance the reliability of the simulations. A comparison of lift coefficient and flowfield variables demonstrates the added advantage that the zonal detached-eddy simulation model brings to the Spalart-Allmaras turbulence model. Spectral analysis and instantaneous visualization of turbulent structures are also highlighted via zonal detached-eddy simulation. Copyright © 2015 by the CFD Lab of McGill University. Published by the American Institute of Aeronautics and Astronautics, Inc.

  10. Eddy current NDE performance demonstrations using simulation tools

    International Nuclear Information System (INIS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code C armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  11. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    Science.gov (United States)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

  12. Large-Eddy Simulation of the Impact of Great Garuda Project on Wind and Thermal Environment over Built-Up Area in Jakarta

    Science.gov (United States)

    Yucel, M.; Sueishi, T.; Inagaki, A.; Kanda, M.

    2017-12-01

    `Great Garuda' project is an eagle-shaped offshore structure with 17 artificial islands. This project has been designed for the coastal protection and land reclamation of Jakarta due to catastrophic flooding in the city. It offers an urban generation for 300.000 inhabitants and 600.000 workers in addition to its water safety goal. A broad coalition of Indonesian scientists has criticized the project for being negative impacts on the surrounding environment. Despite the vast research by Indonesian scientist on maritime environment, studies on wind and thermal environment over built-up area are still lacking. However, the construction of the various islands off the coast may result changes in wind patterns and thermal environment due to the alteration of the coastline and urbanization in the Jakarta Bay. Therefore, it is important to understand the airflow within the urban canopy in case of unpredictable gust events. These gust events may occur through the closely-packed high-rise buildings and pedestrians may be harmed from such gusts. Accordingly, we used numerical simulations to investigate the impact of the sea wall and the artificial islands over built-up area and, the intensity of wind gusts at the pedestrian level. Considering the fact that the size of turbulence organized structure sufficiently large computational domain is required. Therefore, a 19.2km×4.8km×1.0 km simulation domain with 2-m resolution in all directions was created to explicitly resolve the detailed shapes of buildings and the flow at the pedestrian level. This complex computation was accomplished by implementing a large-eddy simulation (LES) model. Two case studies were conducted considering the effect of realistic surface roughness and upward heat flux. Case_1 was conducted based on the current built environment and Case_2 for investigating the effect of the project on the chosen coastal region of the city. Fig.1 illustrates the schematic of the large-eddy simulation domains of two cases

  13. Performance assessment of Large Eddy Simulation (LES) for modeling dispersion in an urban street canyon with tree planting

    Science.gov (United States)

    Moonen, P.; Gromke, C.; Dorer, V.

    2013-08-01

    The potential of a Large Eddy Simulation (LES) model to reliably predict near-field pollutant dispersion is assessed. To that extent, detailed time-resolved numerical simulations of coupled flow and dispersion are conducted for a street canyon with tree planting. Different crown porosities are considered. The model performance is assessed in several steps, ranging from a qualitative comparison to measured concentrations, over statistical data analysis by means of scatter plots and box plots, up to the calculation of objective validation metrics. The extensive validation effort highlights and quantifies notable features and shortcomings of the model, which would otherwise remain unnoticed. The model performance is found to be spatially non-uniform. Closer agreement with measurement data is achieved near the canyon ends than for the central part of the canyon, and typical model acceptance criteria are satisfied more easily for the leeward than for the windward canyon wall. This demonstrates the need for rigorous model evaluation. Only quality-assured models can be used with confidence to support assessment, planning and implementation of pollutant mitigation strategies.

  14. Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network

    International Nuclear Information System (INIS)

    Balzarolo, M.; Boussetta, S.; Balsamo, G.; Beljaars, A.; Maignan, F.; Chevallier, F.; Poulter, B.

    2014-01-01

    This paper reports a comparison between large scale simulations of three different land surface models (LSMs), ORCHIDEE, ISBA-A-gs and CTESSEL, forced with the same meteorological data, and compared with the carbon fluxes measured at 32 eddy covariance (EC) flux tower sites in Europe. The results show that the three simulations have the best performance for forest sites and the poorest performance for cropland and grassland sites. In addition, the three simulations have difficulties capturing the seasonality of Mediterranean and sub-tropical biomes, characterized by dry summers. This reduced simulation performance is also reflected in deficiencies in diagnosed light-use efficiency (LUE) and vapour pressure deficit (VPD) dependencies compared to observations. Shortcomings in the forcing data may also play a role. These results indicate that more research is needed on the LUE and VPD functions for Mediterranean and sub-tropical biomes. Finally, this study highlights the importance of correctly representing phenology (i.e. leaf area evolution) and management (i.e. rotation-irrigation for cropland, and grazing-harvesting for grassland) to simulate the carbon dynamics of European ecosystems and the importance of ecosystem-level observations in model development and validation. (authors)

  15. The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations

    Science.gov (United States)

    Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel

    2017-03-01

    A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.

  16. Analysis of the pump-turbine S characteristics using the detached eddy simulation method

    Science.gov (United States)

    Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao

    2015-01-01

    Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.

  17. A large-eddy simulation based power estimation capability for wind farms over complex terrain

    Science.gov (United States)

    Senocak, I.; Sandusky, M.; Deleon, R.

    2017-12-01

    There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.

  18. Large interface simulation in an averaged two-fluid code

    International Nuclear Information System (INIS)

    Henriques, A.

    2006-01-01

    Different ranges of size of interfaces and eddies are involved in multiphase flow phenomena. Classical formalisms focus on a specific range of size. This study presents a Large Interface Simulation (LIS) two-fluid compressible formalism taking into account different sizes of interfaces. As in the single-phase Large Eddy Simulation, a filtering process is used to point out Large Interface (LI) simulation and Small interface (SI) modelization. The LI surface tension force is modelled adapting the well-known CSF method. The modelling of SI transfer terms is done calling for classical closure laws of the averaged approach. To simulate accurately LI transfer terms, we develop a LI recognition algorithm based on a dimensionless criterion. The LIS model is applied in a classical averaged two-fluid code. The LI transfer terms modelling and the LI recognition are validated on analytical and experimental tests. A square base basin excited by a horizontal periodic movement is studied with the LIS model. The capability of the model is also shown on the case of the break-up of a bubble in a turbulent liquid flow. The break-up of a large bubble at a grid impact performed regime transition between two different scales of interface from LI to SI and from PI to LI. (author) [fr

  19. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N., E-mail: stechmann@wisc.edu [Department of Mathematics, University of Wisconsin-Madison (United States); Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison (United States)

    2014-08-15

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes.

  20. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation

    International Nuclear Information System (INIS)

    Stechmann, Samuel N.

    2014-01-01

    A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multiscale eddy simulation (MES). Through its fine-scale turbulence and moist thermodynamics, MES allows coarse grid cells to be partially cloudy and to encompass cloudy–clear air mixing on scales down to 1 m; in contrast, in typical LES such fine-scale processes are not represented or are parameterized using bulk deterministic closures. To illustrate MES and investigate its multiscale dynamics, a shallow cumulus cloud field is simulated. The fine-scale variability is seen to take a plausible form, with partially cloudy grid cells prominent near cloud edges and cloud top. From earlier theoretical work, this mixing of cloudy and clear air is believed to have an important impact on buoyancy. However, contrary to expectations based on earlier theoretical studies, the mean statistics of the bulk cloud field are essentially the same in MES and LES; possible reasons for this are discussed, including possible limitations in the present formulation of MES. One difference between LES and MES is seen in the coarse-scale turbulent kinetic energy, which appears to grow slowly in time due to incoherent stochastic fluctuations in the buoyancy. This and other considerations suggest the need for some type of spatial and/or temporal filtering to attenuate undersampling of the stochastic fine-scale processes

  1. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    Science.gov (United States)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  2. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    Science.gov (United States)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  3. Three-dimensional Improved Delayed Detached Eddy Simulation of a two-bladed vertical axis wind turbine

    International Nuclear Information System (INIS)

    Lei, Hang; Zhou, Dai; Bao, Yan; Li, Ye; Han, Zhaolong

    2017-01-01

    Highlights: • The Improved Delayed Detached Eddy Simulation and polyhedral mesh are utilized. • Power coefficient and wake velocity are compared between experiments and simulations. • Improved Delayed Detached Eddy Simulation shows more vortices under dynamic stall. • Different scales of flow separations are distinguished by these two models. - Abstract: The aerodynamic performance of a two-bladed vertical axis wind turbine is investigated using the turbulence model of the Improved Delayed Detached Eddy Simulation and the polyhedral mesh. The sliding mesh technique is used to simulate the rotation of the rotor. Meanwhile, the results obtained by the shear stress transport k-ω model are presented as contrast. Then, the simulated power coefficients at different tip speed ratios and the wake velocity are validated by comparison with the experimental data from available literature. It is shown that the power coefficients and wake velocity predicted by the Improved Delayed Detached Eddy Simulation are closer to the experimental data than those by the shear stress transport k-ω model. The pressure distributions predicted by the two turbulence models show different degrees of discrepancies in different scales of flow separation. By comparing the vorticity magnitude graphs, the Improved Delayed Detached Eddy Simulation is found to be able to capture more exquisite vortices after the flow separations. Limited by its inherent ability, the shear stress transport k-ω model predicts vortices that are less realistic than those of Improved Delayed Detached Eddy Simulation. Hence, it may cause some errors in predicting the pressure distributions, especially when the blades suffer dynamic stall. It is demonstrated that the Improved Delayed Detached Eddy Simulation is regarded as a reliable model to analyze the aerodynamic performance of vertical axis wine turbines.

  4. Large Eddy Simulation and the effect of the turbulent inlet conditions in the mixing Tee

    International Nuclear Information System (INIS)

    Ndombo, Jean-Marc; Howard, Richard J.A.

    2011-01-01

    Highlights: → LES of Tee junctions can easily reproduce the bulk flow. → The presence or absence of a turbulent inlet condition has an affect on the wall heat transfer. → The maximum heat transfer moves 1 cm and reduces by 10% when a turbulent inlet is used. - Abstract: Thermal fatigue in Pressurized Water Reactor plants has been found to be very acute in some hot/cold Tee junction mixing zones. Large Eddy Simulation (LES) can be used to capture the unsteadiness which is responsible for the large mechanical stresses associated with thermal fatigue. Here one LES subgrid model is studied, namely the Dynamic Smagorinsky model. This paper has two goals. The first is to demonstrate some results obtained using the EDF R and D Code Saturne applied to the Vattenfall Tee junction benchmark (version 2006) and the second is to look at the effect of including synthetic turbulence at the Tee junction pipe inlets. The last goal is the main topic of this paper. The Synthetic Eddy Method is used to create the turbulent inlet conditions and is applied to two kinds of grids. One contains six million cells and the other ten million. The addition of turbulence at the inlet does not seem to have much effect on the bulk flow and all computations are in good agreement with the experimental data. However, the inlet turbulence does have an effect on the near wall flow. All cases show that the wall temperature fluctuation and the wall temperature/velocity correlation are not the same when a turbulent inlet condition is used. Inclusion of the turbulent inlet condition moves the downstream location of the maximum temperature/velocity correlation by 1 cm and reduces its magnitude by 10%. This result is very important because the temperature/velocity correlation is closely related to the turbulent heat transfer in the flow, which is in turn responsible for the mechanical stresses on the structure. Finally we have studied in detail the influence of the turbulent inlet condition just

  5. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

    Science.gov (United States)

    Liou, Tong-Miin; Wang, Chun-Sheng

    2018-01-01

    Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

  6. Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Yao

    2016-01-01

    Full Text Available The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV and laser Doppler velocimetry (LDV. It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.

  7. Effect of turbulent model closure and type of inlet boundary condition on a Large Eddy Simulation of a non-reacting jet with co-flow stream

    International Nuclear Information System (INIS)

    Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.

    2016-01-01

    Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.

  8. Large-eddy simulation of passive shock-wave/boundary-layer interaction control

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Grilli, Muzio; Hickel, Stefan; Adams, Nikolaus A.

    2014-01-01

    Highlights: • The present study investigates a passive flow-control technique for shock-wave/boundary-layer interaction. • The control configuration consists of local suction and injection through a pressure feedback duct. • Implicit LES have been conducted for three different suction locations. • Suction reduces the size of the separation zone. • Turbulence amplification and reflected shock dynamics can be significantly reduced. - Abstract: We investigate a passive flow-control technique for the interaction of an oblique shock generated by an 8.8° wedge with a turbulent boundary-layer at a free-stream Mach number of Ma ∞ =2.3 and a Reynolds number based on the incoming boundary-layer thickness of Re δ 0 =60.5×10 3 by means of large-eddy simulation (LES). The compressible Navier–Stokes equations in conservative form are solved using the adaptive local deconvolution method (ALDM) for physically consistent subgrid scale modeling. Emphasis is placed on the correct description of turbulent inflow boundary conditions, which do not artificially force low-frequency periodic motion of the reflected shock. The control configuration combines suction inside the separation zone and blowing upstream of the interaction region by a pressure feedback through a duct embedded in the wall. We vary the suction location within the recirculation zone while the injection position is kept constant. Suction reduces the size of the separation zone with strongest effect when applied in the rear part of the separation bubble. The analysis of wall-pressure spectra reveals that all control configurations shift the high-energy low-frequency range to higher frequencies, while the energy level is significantly reduced only if suction acts in the rear part of the separated zone. In that case also turbulence production within the interaction region is significantly reduced as a consequence of mitigated reflected shock dynamics and near-wall flow acceleration

  9. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  10. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  11. Comparison of turbulent flow through hexagram and hexagon orifices in circular pipes using large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Nicolleau, Franck C G A; Qin, Ning, E-mail: n.qin@sheffield.ac.uk [Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-04-15

    Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice. (paper)

  12. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    Science.gov (United States)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  13. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    Science.gov (United States)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these

  14. Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

    KAUST Repository

    Cheng, W.

    2015-11-11

    © 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

  15. Analysis of cyclic variations of liquid fuel-air mixing processes in a realistic DISI IC-engine using Large Eddy Simulation

    International Nuclear Information System (INIS)

    Goryntsev, D.; Sadiki, A.; Klein, M.; Janicka, J.

    2010-01-01

    Direct injection spark ignition (DISI) engines have a large potential to reduce emissions and specific fuel consumption. One of the most important problem in the design of DISI engines is the cycle-to-cycle variations of the flow, mixing and combustion processes. The Large Eddy Simulation (LES) based analysis is used to characterize the cycle-to-cycle fluctuations of the flow field as well as the mixture preparation in a realistic four-stroke internal combustion engine with variable charge motion system. Based on the analysis of cycle-to-cycle velocity fluctuations of in-cylinder flow, the impact of various fuel spray boundary conditions on injection processes and mixture preparation is pointed out. The joint effect of both cycle-to-cycle velocity fluctuations and variable spray boundary conditions is discussed in terms of mean and standard deviation of relative air-fuel ratio, velocity and mass fraction. Finally a qualitative analysis of the intensity of cyclic fluctuations below the spark plug is provided.

  16. Five-equation and robust three-equation methods for solution verification of large eddy simulation

    Science.gov (United States)

    Dutta, Rabijit; Xing, Tao

    2018-02-01

    This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.

  17. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  18. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river

    Science.gov (United States)

    Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.

    2017-01-01

    Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the flow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flowmeasurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forfluvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of fluid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main flow is dynamic, with large temporal changes in flow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.

  19. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-05-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Flow distribution of pebble bed high temperature gas cooled reactors using large eddy simulation

    International Nuclear Information System (INIS)

    Gokhan Yesilyurt; Hassan, Y.A.

    2003-01-01

    authors' knowledge there is no detailed complete calculations for this kind of reactor to address this local phenomena. This work is an attempt to evaluate and calculate this effect. The simulation of these local phenomena cannot be computed with existing conventional computational tools. Not all Computational Fluid Dynamic (CFD) methods are applicable to solve turbulence problems, in complex geometries. As in pebble bed reactor core, a compromise is needed between accuracy of results and time/cost of effort in acquiring the results. Resolving all the scales of a turbulent flow is too costly, while employing highly empirical turbulence models to complex problems could give inaccurate simulation results. The large eddy simulation (LES) method would achieve the above requirements. Here, the large scales in the flow are solved and the small scales are modeled. A schematic of the simulated core region used in the calculations is presented in Figure 1.1. (author)

  1. Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.

  2. Tree-crown-resolving large-eddy simulation for evaluating greenery effects on urban heat environments

    Science.gov (United States)

    Matsuda, K.; Onishi, R.; Takahashi, K.

    2017-12-01

    Urban high temperatures due to the combined influence of global warming and urban heat islands increase the risk of heat stroke. Greenery is one of possible countermeasures for mitigating the heat environments since the transpiration and shading effect of trees can reduce the air temperature and the radiative heat flux. In order to formulate effective measures, it is important to estimate the influence of the greenery on the heat stroke risk. In this study, we have developed a tree-crown-resolving large-eddy simulation (LES) model that is coupled with three-dimensional radiative transfer (3DRT) model. The Multi-Scale Simulator for the Geoenvironment (MSSG) is used for performing building- and tree-crown-resolving LES. The 3DRT model is implemented in the MSSG so that the 3DRT is calculated repeatedly during the time integration of the LES. We have confirmed that the computational time for the 3DRT model is negligibly small compared with that for the LES and the accuracy of the 3DRT model is sufficiently high to evaluate the radiative heat flux at the pedestrian level. The present model is applied to the analysis of the heat environment in an actual urban area around the Tokyo Bay area, covering 8 km × 8 km with 5-m grid mesh, in order to confirm its feasibility. The results show that the wet-bulb globe temperature (WBGT), which is an indicator of the heat stroke risk, is predicted in a sufficiently high accuracy to evaluate the influence of tree crowns on the heat environment. In addition, by comparing with a case without the greenery in the Tokyo Bay area, we have confirmed that the greenery increases the low WBGT areas in major pedestrian spaces by a factor of 3.4. This indicates that the present model can predict the greenery effect on the urban heat environment quantitatively.

  3. Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10

    International Nuclear Information System (INIS)

    Afgan, Imran; Moulinec, Charles; Prosser, Robert; Laurence, Dominique

    2007-01-01

    The flow structure around wall mounted circular cylinders of finite heights is numerically investigated via large eddy simulation (LES). The cylinder aspect ratios (AR) are 6 and 10 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 20,000 for both cases. The cantilever cylinder mounted on a flat plate is chosen since it gives insight into two entirely different flow phenomena; the tip effects of the free end (which show strong three-dimensional wake structures) and the base or junction effects (due to interaction of flow between the cylinder and the flat plate). Regular vortex shedding is found in the wake of the higher aspect ratio case as was anticipated, along with a strong downwash originating from the flow over the free end of the cylinder, whereas irregular and intermittent vortex shedding occurs in the lower aspect ratio case. Pressure distributions are computed along the length of the cylinder and compared to experimental results. Lift and drag values are also computed, along with Strouhal numbers

  4. Large-eddy simulation of mesoscale dynamics and entrainment around a pocket of open cells observed in VOCALS-REx RF06

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2011-10-01

    Full Text Available Large-eddy simulations of a pocket of open cells (POC based on VOCALS Regional Experiment (REx NSF C-130 Research Flight 06 are analyzed and compared with aircraft observations. A doubly-periodic domain 192 km × 24 km with 125 m horizontal and 5 m vertical grid spacing near the capping inversion is used. The POC is realized in the model as a fixed 96 km wide region of reduced cloud droplet number concentration (Nc based on observed values; initialization and forcing are otherwise uniform across the domain. The model reproduces aircraft-observed differences in boundary-layer structure and precipitation organization between a well-mixed overcast region and a decoupled POC with open-cell precipitating cumuli, although the simulated cloud cover is too large in the POC. A sensitivity study in which Nc is allowed to advect following the turbulent flow gives nearly identical results over the 16 h length of the simulation (which starts at night and goes into the next afternoon.

    The simulated entrainment rate is nearly a factor of two smaller in the less turbulent POC than in the more turbulent overcast region. However, the inversion rises at a nearly uniform rate across the domain because powerful buoyancy restoring forces counteract horizontal inversion height gradients. A secondary circulation develops in the model that diverts subsiding free-tropospheric air away from the POC into the surrounding overcast region, counterbalancing the weaker entrainment in the POC with locally weaker subsidence.

  5. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  6. The role of eddy transports in climate change

    International Nuclear Information System (INIS)

    Stone, P.H.

    1994-01-01

    Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans

  7. Large eddy simulation of turbulent diffusion flame with hybrid fuel of CH4/H2 in various background conditions

    Science.gov (United States)

    Hong, Sungmin; Lee, Wook; Song, Han Ho; Kang, Seongwon

    2014-11-01

    A turbulent diffusion flame with hybrid fuel of methane and hydrogen is analyzed to investigate the effects of operating conditions on flame shape, rate of fuel consumption and pollutant formation. Various combinations of operating parameter, i.e. hydrogen concentration, background pressure and temperature, are examined in relatively high pressure and temperature conditions that can be found at the end of compression stroke in an internal combustion engine. A flamelet-progress variable approach (FPVA) and a dynamic subgrid scale (SGS) model are used for large eddy simulation (LES). A comparison with previous experiments and simulations in the standard condition shows a good agreement in the statistics of flow fields and chemical compositions, as well as in the resultant trends by similar parametric studies. As a result, the effects of added hydrogen are found to be consistent for most of the chemical species in the range of background pressure and temperature conditions. However, the flow fields of some species such as OH, NO, CO at a higher pressure and temperature state show a behavior different from the standard condition. Finally, hydrogen addition is shown to improve flame stability which is measured by the pressure fluctuations in all the tested conditions.

  8. Cold pool organization and the merging of convective updrafts in a Large Eddy Simulation

    Science.gov (United States)

    Glenn, I. B.; Krueger, S. K.

    2016-12-01

    Cold pool organization is a process that accelerates the transition from shallow to deep cumulus convection, and leads to higher deep convective cloud top heights. The mechanism by which cold pool organization enhances convection remains not well understood, but the basic idea is that since precipitation evaporation and a low equivalent potential temperature in the mid-troposphere lead to strong cold pools, the net cold pool effect can be accounted for in a cumulus parameterization as a relationship involving those factors. Understanding the actual physical mechanism at work will help quantify the strength of the relationship between cold pools and enhanced deep convection. One proposed mechanism of enhancement is that cold pool organization leads to reduced distances between updrafts, creating a local environment more conducive to convection as updrafts entrain parcels of air recently detrained by their neighbors. We take this hypothesis one step further and propose that convective updrafts actually merge, not just exchange recently processed air. Because entrainment and detrainment around an updraft draws nearby air in or pushes it out, respectively, they act like dynamic flow sources and sinks, drawing each other in or pushing each other away. The acceleration is proportional to the inverse square of the distance between two updrafts, so a small reduction in distance can make a big difference in the rate of merging. We have shown in previous research how merging can be seen as collisions between different updraft air parcels using Lagrangian Parcel Trajectories (LPTs) released in a Large Eddy Simulation (LES) during a period with organized deep convection. Now we use a Eulerian frame of reference to examine the updraft merging process during the transition from shallow to organized deep convection. We use a case based on the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for our LES. We directly measure the rate of entrainment and the properties

  9. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  10. Delayed detached-eddy simulation of vortex breakdown over a 70 .deg. delta wing

    International Nuclear Information System (INIS)

    Son, Mi So; Sa, Jeong Hwan; Park, Soo Hyung; Byun, Yung Hwan; Cho, Kum Won

    2015-01-01

    To investigate the vortex breakdown over the ONERA70 delta wing at an angle-of-attack of 27 .deg., unsteady simulations were performed using Reynolds-averaged Navier-Stokes and Spalart-Allmaras delayed detached-eddy simulations. A low-diffusive preconditioned Roe scheme with third-order MUSCL interpolation scheme was applied, along with second-order dual-time stepping combined with diagonalized alternating direction implicit method for unsteady simulation. Vortex breakdown was investigated through an examination of total pressure loss, axial velocity, and axial vorticity around the primary vortex. Delayed dtached-eddy simulation provided good agreement with experimental data and predicted all physical phenomena related to vortex breakdown well.

  11. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  12. High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2): Large Eddy Simulation Study Over Germany

    Science.gov (United States)

    Dipankar, A.; Stevens, B. B.; Zängl, G.; Pondkule, M.; Brdar, S.

    2014-12-01

    The effect of clouds on large scale dynamics is represented in climate models through parameterization of various processes, of which the parameterization of shallow and deep convection are particularly uncertain. The atmospheric boundary layer, which controls the coupling to the surface, and which defines the scale of shallow convection, is typically 1 km in depth. Thus, simulations on a O(100 m) grid largely obviate the need for such parameterizations. By crossing this threshold of O(100m) grid resolution one can begin thinking of large-eddy simulation (LES), wherein the sub-grid scale parameterization have a sounder theoretical foundation. Substantial initiatives have been taken internationally to approach this threshold. For example, Miura et al., 2007 and Mirakawa et al., 2014 approach this threshold by doing global simulations, with (gradually) decreasing grid resolution, to understand the effect of cloud-resolving scales on the general circulation. Our strategy, on the other hand, is to take a big leap forward by fixing the resolution at O(100 m), and gradually increasing the domain size. We believe that breaking this threshold would greatly help in improving the parameterization schemes and reducing the uncertainty in climate predictions. To take this forward, the German Federal Ministry of Education and Research has initiated a project on HD(CP)2 that aims for a limited area LES at resolution O(100 m) using the new unified modeling system ICON (Zängl et al., 2014). In the talk, results from the HD(CP)2 evaluation simulation will be shown that targets high resolution simulation over a small domain around Jülich, Germany. This site is chosen because high resolution HD(CP)2 Observational Prototype Experiment took place in this region from 1.04.2013 to 31.05.2013, in order to critically evaluate the model. Nesting capabilities of ICON is used to gradually increase the resolution from the outermost domain, which is forced from the COSMO-DE data, to the

  13. On the scale similarity in large eddy simulation. A proposal of a new model

    International Nuclear Information System (INIS)

    Pasero, E.; Cannata, G.; Gallerano, F.

    2004-01-01

    Among the most common LES models present in literature there are the Eddy Viscosity-type models. In these models the subgrid scale (SGS) stress tensor is related to the resolved strain rate tensor through a scalar eddy viscosity coefficient. These models are affected by three fundamental drawbacks: they are purely dissipative, i.e. they cannot account for back scatter; they assume that the principal axes of the resolved strain rate tensor and SGS stress tensor are aligned; and that a local balance exists between the SGS turbulent kinetic energy production and its dissipation. Scale similarity models (SSM) were created to overcome the drawbacks of eddy viscosity-type models. The SSM models, such as that of Bardina et al. and that of Liu et al., assume that scales adjacent in wave number space present similar hydrodynamic features. This similarity makes it possible to effectively relate the unresolved scales, represented by the modified Cross tensor and the modified Reynolds tensor, to the smallest resolved scales represented by the modified Leonard tensor] or by a term obtained through multiple filtering operations at different scales. The models of Bardina et al. and Liu et al. are affected, however, by a fundamental drawback: they are not dissipative enough, i.e they are not able to ensure a sufficient energy drain from the resolved scales of motion to the unresolved ones. In this paper it is shown that such a drawback is due to the fact that such models do not take into account the smallest unresolved scales where the most dissipation of turbulent SGS energy takes place. A new scale similarity LES model that is able to grant an adequate drain of energy from the resolved scales to the unresolved ones is presented. The SGS stress tensor is aligned with the modified Leonard tensor. The coefficient of proportionality is expressed in terms of the trace of the modified Leonard tensor and in terms of the SGS kinetic energy (computed by solving its balance equation). The

  14. Investigation of natural gas plume dispersion using mobile observations and large eddy simulations

    Science.gov (United States)

    Caulton, Dana R.; Li, Qi; Golston, Levi; Pan, Da; Bou-Zeid, Elie; Fitts, Jeff; Lane, Haley; Lu, Jessica; Zondlo, Mark A.

    2016-04-01

    Recent work suggests the distribution of methane emissions from fracking operations is skewed with a small percentage of emitters contributing a large proportion of the total emissions. These sites are known as 'super-emitters.' The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here used as a test site for targeted analysis between current standard trace-gas advection practices and possible improvements via advanced modeling techniques. The Marcellus shale is topographically complex, making traditional techniques difficult to implement and evaluate. For many ground based mobile studies, the inverse Gaussian plume method (IGM) is used to produce emission rates. This method is best applied to well-mixed plumes from strong point sources and may not currently be well-suited for use with disperse weak sources, short-time frame measurements or data collected in complex terrain. To assess the quality of IGM results and to improve source-strength estimations, a robust study that combines observational data with a hierarchy of models of increasing complexity will be presented. The field test sites were sampled with multiple passes using a mobile lab as well as a stationary tower. This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. The sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. The modeling will focus on large eddy simulations (LES) of the wind and CH4 concentration fields for these test sites. The LES model used 2 m horizontal and 1 m vertical resolution and was integrated in time for 45 min for various test sites under stable, neutral and unstable conditions. It is here considered as the reference to which various IGM approaches can be

  15. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    Science.gov (United States)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  16. Large eddy simulation on the effect of free-stream turbulence on bypass transition

    International Nuclear Information System (INIS)

    Xu, Zhengqian; Zhao, Qingjun; Lin, Qizhao; Xu, Jianzhong

    2015-01-01

    Highlights: • Low-frequency dominant inflow leads to inner instability. • High-frequency mode is indispensable for inner instability. • Low-frequency mode highly affects the transition onset. • High-frequency mode highly affects the transition rate. • The frequency of laminar streaks is comparable with that of turbulent spot. - Abstract: The effect of free-stream turbulence (FST) on bypass transition in a zero-pressure-gradient boundary layer is investigated by means of Large Eddy Simulation (LES). The broadband turbulent inflow is synthesized to validate the feasibility of LES. Both a zero-thickness plate and one with super-ellipse leading-edge are addressed. The calculated Reynolds-averaged fields are compared with experimental data and decent agreement is achieved. Instantaneous fields show the instability occurs in the lifted low-speed streaks similar to earlier DNS results, which can be ascribed to outer mode. Various inflows with bi-/tri-mode interaction are specified to analyze effects of particular frequency mode on the instability pattern and multifarious transition or non-transition scenarios are obtained. Outer instability is observed in the cases with one low-frequency mode and one high-frequency mode inflow as reported by Zaki and Durbin (2005), and with one more high-frequency mode appended. Inner instability is observed in the case with a low-frequency dominant inflow, while the high-frequency mode is indispensable to induce the secondary instability. Furthermore, the results show that the transition onset is highly sensitive to low-frequency mode while the transition rate is highly sensitive to high-frequency mode. Finally, the formational frequency of turbulent spot (FFTS) is counted and the frequency of laminar streaks is demonstrated by spectral analysis

  17. Large Eddy Simulations of sediment entrainment induced by a lock-exchange gravity current

    Science.gov (United States)

    Kyrousi, Foteini; Leonardi, A.; Roman, F.; Armenio, V.; Zanello, F.; Zordan, J.; Juez, C.; Falcomer, L.

    2018-04-01

    Large Eddy simulations of lock-exchange gravity currents propagating over a mobile reach are presented. The numerical setting allows to investigate the sediment pick up induced by the currents and to study the underlying mechanisms leading to sediment entrainment for different Grashof numbers and grain sizes. First, the velocity field and the bed shear-stress distribution are investigated, along with turbulent structures formed in the flow, before the current reaches the mobile bed. Then, during the propagation of the current above the erodible section of the bed the contour plots of the entrained material are presented as well as the time evolution of the areas covered by the current and by the sediment at this section. The numerical outcomes are compared with experimental data showing a very good agreement. Overall, the study confirms that sediment pick up is prevalent at the head of the current where the strongest turbulence occurs. Further, above the mobile reach of the bed, settling process seems to be of minor importance, with the entrained material being advected downstream by the current. Additionally, the study shows that, although shear stress is the main mechanism that sets particles in motion, turbulent bursts as well as vertical velocity fluctuations are also necessary to counteract the falling velocity of the particles and maintain them into suspension. Finally, the analysis of the stability conditions of the current shows that, from one side, sediment concentration gives a negligible contribution to the stability of the front of the current and from the other side, the stability conditions provided by the current do not allow sediments to move into the ambient fluid.

  18. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  19. A novel approach to predict the stability limits of combustion chambers with large eddy simulation

    Science.gov (United States)

    Pritz, B.; Magagnato, F.; Gabi, M.

    2010-06-01

    Lean premixed combustion, which allows for reducing the production of thermal NOx, is prone to combustion instabilities. There is an extensive research to develop a reduced physical model, which allows — without time-consuming measurements — to calculate the resonance characteristics of a combustion system consisting of Helmholtz resonator type components (burner plenum, combustion chamber). For the formulation of this model numerical investigations by means of compressible Large Eddy Simulation (LES) were carried out. In these investigations the flow in the combustion chamber is isotherm, non-reacting and excited with a sinusoidal mass flow rate. Firstly a combustion chamber as a single resonator subsequently a coupled system of a burner plenum and a combustion chamber were investigated. In this paper the results of additional investigations of the single resonator are presented. The flow in the combustion chamber was investigated without excitation at the inlet. It was detected, that the mass flow rate at the outlet cross section is pulsating once the flow in the chamber is turbulent. The fast Fourier transform of the signal showed that the dominant mode is at the resonance frequency of the combustion chamber. This result sheds light on a very important source of self-excited combustion instabilities. Furthermore the LES can provide not only the damping ratio for the analytical model but the eigenfrequency of the resonator also.

  20. The structure of Karman vortex streets in the atmospheric boundary layer derived from large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Rieke; Raasch, Siegfried; Etling, Dieter [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    2012-06-15

    Karman vortex streets generated in the wake of an idealized island are studied using large eddy simulation (LES). Simulations were carried out under conditions of a dry convective boundary layer, capped by an inversion below the island top. These conditions are more realistic compared to previous studies in which mesoscale models with a uniform stable stratification were used. Several properties of the vortex streets like the shedding period of the vortices and the distances between cyclonic and anti-cyclonic vortices were determined for various values of Froude number and surface heat flux. The main focus of the study was to identify the azimuthally averaged structure of fully developed single vortices, which is presented here for the first time. For this purpose a tracking mechanism was developed which allows to detect and to follow vortices automatically. Because the capping inversion is located below the obstacle top, the vortices extend throughout the whole depth of the mixed layer and their features are almost constant with height. They have a nearly upright vertical axis with a warm core, which is feeded by a convergent near-surface inflow of warm air. The vortex core is dominated by a continuous updraft in the order of 10 cm s{sup -1}, which is associated with a divergent outflow of air at the vortex' top. This flow divergence creates an additional increase in temperature due to a locally sinking inversion, which is probably responsible for the cloud-free eye of many observed vortices. An increase in the surface heat flux is causing a faster decay of the vortices due to stronger boundary layer turbulence. Other vortex features derived from the simulations are very similar to those from previous studies. (orig.)

  1. Large Eddy Simulations of Electromagnetic Braking Effects on Argon Bubble Transport and Capture in a Steel Continuous Casting Mold

    Science.gov (United States)

    Jin, Kai; Vanka, Surya P.; Thomas, Brian G.

    2018-06-01

    In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.

  2. LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILE

    KAUST Repository

    Cheng, Wan

    2015-06-30

    We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.

  3. Large eddy simulation study of turbulent kinetic energy and scalar variance budgets and turbulent/non-turbulent interface in planar jets

    Science.gov (United States)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Koji; Ito, Yasumasa

    2016-04-01

    Spatially developing planar jets with passive scalar transports are simulated for various Reynolds (Re = 2200, 7000, and 22 000) and Schmidt numbers (Sc = 1, 4, 16, 64, and 128) by the implicit large eddy simulation (ILES) using low-pass filtering as an implicit subgrid-scale model. The budgets of resolved turbulent kinetic energy k and scalar variance are explicitly evaluated from the ILES data except for the dissipation terms, which are obtained from the balance in the transport equations. The budgets of k and in the ILES agree well with the DNS and experiments for both high and low Re cases. The streamwise decay of the mean turbulent kinetic energy dissipation rate obeys the power low obtained by the scaling argument. The mechanical-to-scalar timescale ratio C ϕ is evaluated in the self-similar region. For the high Re case, C ϕ is close to the isotropic value (C ϕ = 2) near the jet centerline. However, when Re is not large, C ϕ is smaller than 2 and depends on the Schmidt number. The T/NT interface is also investigated by using the scalar isosurface. The velocity and scalar fields near the interface depend on the interface orientation for all Re. The velocity toward the interface is observed near the interface facing in the streamwise, cross-streamwise, and spanwise directions in the planar jet in the resolved velocity field.

  4. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    Science.gov (United States)

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  6. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  7. Large-eddy-simulation approach in understanding flow structures of 2D turbulent density currents over sloping surfaces

    Science.gov (United States)

    Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran

    2018-04-01

    A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.

  8. Adjustment of Turbulent Boundary-Layer Flow to Idealized Urban Surfaces: A Large-Eddy Simulation Study

    Science.gov (United States)

    Cheng, Wai-Chi; Porté-Agel, Fernando

    2015-05-01

    Large-eddy simulations (LES) are performed to simulate the atmospheric boundary-layer (ABL) flow through idealized urban canopies represented by uniform arrays of cubes in order to better understand atmospheric flow over rural-to-urban surface transitions. The LES framework is first validated with wind-tunnel experimental data. Good agreement between the simulation results and the experimental data are found for the vertical and spanwise profiles of the mean velocities and velocity standard deviations at different streamwise locations. Next, the model is used to simulate ABL flows over surface transitions from a flat homogeneous terrain to aligned and staggered arrays of cubes with height . For both configurations, five different frontal area densities , equal to 0.028, 0.063, 0.111, 0.174 and 0.250, are considered. Within the arrays, the flow is found to adjust quickly and shows similar structure to the wake of the cubes after the second row of cubes. An internal boundary layer is identified above the cube arrays and found to have a similar depth in all different cases. At a downstream location where the flow immediately above the cube array is already adjusted to the surface, the spatially-averaged velocity is found to have a logarithmic profile in the vertical. The values of the displacement height are found to be quite insensitive to the canopy layout (aligned vs. staggered) and increase roughly from to as increases from 0.028 to 0.25. Relatively larger values of the aerodynamic roughness length are obtained for the staggered arrays, compared with the aligned cases, and a maximum value of is found at for both configurations. By explicitly calculating the drag exerted by the cubes on the flow and the drag coefficients of the cubes using our LES results, and comparing the results with existing theoretical expressions, we show that the larger values of for the staggered arrays are related to the relatively larger drag coefficients of the cubes for that

  9. Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion with Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model

    Directory of Open Access Journals (Sweden)

    Amir-Hasan Kakaee

    2018-03-01

    Full Text Available In the current study, a comparative study is performed using Large Eddy Simulation (LES and Reynolds-averaged Navier–Stokes (RANS turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI engine. The numerical results are validated against the available research work in the literature. The RNG (Re-Normalization Group k − ε and dynamic structure models are employed to model turbulent flow for RANS and LES simulations, respectively. Parameters like the premixed natural gas mass fraction, the second start of injection timing (SOI2 of diesel and the engine speed are studied to compare performance of RANS and LES models on combustion and pollutant emissions prediction. The results obtained showed that the LES and RANS model give almost similar predictions of cylinder pressure and heat release rate at lower natural gas mass fractions and late SOI2 timings. However, the LES showed improved capability to predict the natural gas auto-ignition and pollutant emissions prediction compared to RANS model especially at higher natural gas mass fractions.

  10. Development of Quality Assessment Techniques for Large Eddy Simulation of Propulsion and Power Systems in Complex Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Lacaze, Guilhem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oefelein, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.

  11. Large-Eddy Simulations of Motored Flow and Combustion in a Homogeneous-Charge Spark-Ignition Engine

    Science.gov (United States)

    Shekhawat, Yajuvendra Singh

    Cycle-to-cycle variations (CCV) of flow and combustion in internal combustion engines (ICE) limit their fuel efficiency and emissions potential. Large-eddy simulation (LES) is the most practical simulation tool to understand the nature of these CCV. In this research, multi-cycle LES of a two-valve, four-stroke, spark-ignition optical engine has been performed for motored and fired operations. The LES mesh quality is assessed using a length scale resolution parameter and a energy resolution parameter. For the motored operation, two 50-consecutive-cycle LES with different turbulence models (Smagorinsky model and dynamic structure model) are compared with the experiment. The pressure comparison shows that the LES is able to capture the wave-dynamics in the intake and exhaust ports. The LES velocity fields are compared with particle-image velocimetry (PIV) measurements at three cutting planes. Based on the structure and magnitude indices, the dynamic structure model is somewhat better than the Smagorinsky model as far as the ensemble-averaged velocity fields are concerned. The CCV in the velocity fields is assessed by proper-orthogonal decomposition (POD). The POD analysis shows that LES is able to capture the level of CCV seen in the experiment. For the fired operation, two 60-cycle LES with different combustion models (thickened frame model and coherent frame model) are compared with experiment. The in-cylinder pressure and the apparent heat release rate comparison shows higher CCV for LES compared to the experiment, with the thickened frame model showing higher CCV than the coherent frame model. The correlation analysis for the LES using thickened frame model shows that the CCV in combustion/pressure is correlated with: the tumble at the intake valve closing, the resolved and subfilter-scale kinetic energy just before spark time, and the second POD mode (shear flow near spark gap) of the velocity fields just before spark time.

  12. Detached Eddy Simulations of an Airfoil in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels; Davidson, Lars

    2009-01-01

    The effect of resolving inflow turbulence in detached eddy simulations of airfoil flows is studied. Synthetic turbulence is used for inflow boundary condition. The generated turbulence fields are shown to decay according to experimental data as they are convected through the domain with the free...... stream velocity. The subsonic flow around a NACA 0015 airfoil is studied at Reynolds number 1.6 × 106 and at various angles of attack before and after stall. Simulations with turbulent inflow are compared to experiments and to simulations without turbulent inflow. The results show that the flow...

  13. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    Science.gov (United States)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while

  14. Detached Eddy Simulation of Flap Side-Edge Flow

    Science.gov (United States)

    Balakrishnan, Shankar K.; Shariff, Karim R.

    2016-01-01

    Detached Eddy Simulation (DES) of flap side-edge flow was performed with a wing and half-span flap configuration used in previous experimental and numerical studies. The focus of the study is the unsteady flow features responsible for the production of far-field noise. The simulation was performed at a Reynolds number (based on the main wing chord) of 3.7 million. Reynolds Averaged Navier-Stokes (RANS) simulations were performed as a precursor to the DES. The results of these precursor simulations match previous experimental and RANS results closely. Although the present DES simulations have not reached statistical stationary yet, some unsteady features of the developing flap side-edge flowfield are presented. In the final paper it is expected that statistically stationary results will be presented including comparisons of surface pressure spectra with experimental data.

  15. A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies

    Science.gov (United States)

    Sutyrin, G.

    2016-02-01

    In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.

  16. Improvement of prediction accuracy of large eddy simulation on colocated grids; Colocation koshi wo mochiita LES no keisan seido kaizen ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, M.; Abe, K. [Toyota Central Research and Development Labs., Inc., Aichi (Japan)

    1998-07-25

    With the recent advances in computers, large eddy simulation (LES) has become applicable to engineering prediction. However, most cases of the engineering applications need to use the nonorthgonal curvilimear coordinate systems. The staggered grids, usually used in LES in the orthgonal coordinates, don`t keep conservative properties in the nonorthgonal curvilinear coordinates. On the other hand, the colocated grids can be applied in the nonorthgonal curvilinear coordinates without losing its conservative properties, although its prediction accuracy isn`t so high as the staggered grid`s in the orthgonal coordinates especially with the coarse grids. In this research, the discretization method of the colocated grids is modified to improve its prediction accuracy. Plane channel flows are simulated on four grids of different resolution using the modified colocated grids and the original colocated grids. The results show that the modified colocated grids have higher accuracy than the original colocated grids. 17 refs., 13 figs., 1 tab.

  17. Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

    Science.gov (United States)

    Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar

    2017-07-01

    Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.

  18. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    Science.gov (United States)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is

  19. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part I: from the airfoil performance to the very far wake

    Science.gov (United States)

    Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire

    2017-11-01

    A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  20. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    International Nuclear Information System (INIS)

    Kajzer, A; Pozorski, J; Szewc, K

    2014-01-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  1. Prediction of broadband trailing edge noise from a NACA0012 airfoil using wall-modeled large-eddy simulation

    Science.gov (United States)

    Mehrabadi, Mohammad; Bodony, Daniel

    2017-11-01

    In modern high-bypass ratio turbofan engines, the reduction of jet exhaust noise through engine design has increased the acoustic importance of the main fan to the point where it can be the primary source of noise in the fight direction of an airplane. While fan noise has been reduced by improved fan designs, its broadband component, originating from the interaction of turbulent flow with a solid surface, still remains an issue. Broadband fan noise is generated by several mechanisms, usually involving a turbulent boundary layer interacting with a solid surface. To prepare for a wall modeled large eddy simulation (WMLES) of the NASA/GE source diagnostic test fan, we study the broadband noise due to the turbulent flow on a NACA0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000, and a Mach number of 0.115 using WMLES. We investigate the prediction of transition-to-turbulence and sound generation from the WMLES and examine its predictability compared with available experimental and DNS datasets for the same flow conditions. Verification of WMLES for such a canonical problem is crucial since it provides useful insight about the WMLES approach before using it for broadband fan noise prediction. AeroAcoustics Research Consortium.

  2. Improved Large-Eddy Simulation Using a Stochastic Backscatter Model: Application to the Neutral Atmospheric Boundary Layer and Urban Street Canyon Flow

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.; Kinnersley, R.

    2015-12-01

    Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.

  3. Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method

    Science.gov (United States)

    Kim, Jeonglae; Pope, Stephen B.

    2014-05-01

    A turbulent lean-premixed propane-air flame stabilised by a triangular cylinder as a flame-holder is simulated to assess the accuracy and computational efficiency of combined dimension reduction and tabulation of chemistry. The computational condition matches the Volvo rig experiments. For the reactive simulation, the Lagrangian Large-Eddy Simulation/Probability Density Function (LES/PDF) formulation is used. A novel two-way coupling approach between LES and PDF is applied to obtain resolved density to reduce its statistical fluctuations. Composition mixing is evaluated by the modified Interaction-by-Exchange with the Mean (IEM) model. A baseline case uses In Situ Adaptive Tabulation (ISAT) to calculate chemical reactions efficiently. Its results demonstrate good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. For dimension reduction, 11 and 16 represented species are chosen and a variant of Rate Controlled Constrained Equilibrium (RCCE) is applied in conjunction with ISAT to each case. All the quantities in the comparison are indistinguishable from the baseline results using ISAT only. The combined use of RCCE/ISAT reduces the computational time for chemical reaction by more than 50%. However, for the current turbulent premixed flame, chemical reaction takes only a minor portion of the overall computational cost, in contrast to non-premixed flame simulations using LES/PDF, presumably due to the restricted manifold of purely premixed flame in the composition space. Instead, composition mixing is the major contributor to cost reduction since the mean-drift term, which is computationally expensive, is computed for the reduced representation. Overall, a reduction of more than 15% in the computational cost is obtained.

  4. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    Energy Technology Data Exchange (ETDEWEB)

    Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  5. A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin

    Science.gov (United States)

    Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.

    2016-12-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.

  6. Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0

    Science.gov (United States)

    Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.

    2017-12-01

    Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.

  7. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    Science.gov (United States)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky

  8. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  9. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  10. Response of eddy activities to localized diabatic heating in Held-Suarez simulations

    Science.gov (United States)

    Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi

    2018-01-01

    Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.

  11. Numerical study by large-eddy simulation on effects and mechanism of air-cooling enhancing technologies

    International Nuclear Information System (INIS)

    Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki

    2014-01-01

    Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying

  12. Large Eddy simulations of flame/acoustics interactions in a swirl flow; Simulation aux grandes echelles des interactions flamme / acoustique dans un ecoulement vrille

    Energy Technology Data Exchange (ETDEWEB)

    Selle, L.

    2004-01-15

    Swirl flows exhibit a large variety of topologies, depending on the ratio of the flux axial momentum to the axial flux of tangential momentum: this ratio is called swirl number. Above a given critical value for the swirl number, the pressure gradient reverses the flow on the axis of rotation. This central recirculation zone is used in turbines for flame stabilization. And yet, reacting-swirled flows can exhibit combustion instabilities resulting from the coupling between acoustics and unsteady heat release. Combustion instabilities can lead to loss of control or even complete destruction of the system. Their prediction is impossible with standard engineering tools. The work presented here investigates the capabilities of numerical research tools for the prediction of combustion instabilities. Large-Eddy Simulation (LES) is implemented in a code solving the Navier-Stokes equations for compressible-multi-components fluids (code AVBP developed at CERFACS). This method takes into account for the major ingredients of combustion instabilities such as acoustics and flame / vortex interaction. The LES methodology is validated in the swirled flow from a complex industrial burner (SIEMENS PG). Both reactive and non-reactive regimes are successfully compared with experimental data in terms of mean temperature and mean and RMS velocities. Experimental measurements were performed at the university of Karlsruhe (Germany). A detailed analysis of the acoustics and its interaction with the flame front is performed with the code AVSP, also developed at CERFACS. (author)

  13. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    Science.gov (United States)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  14. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    Science.gov (United States)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-10-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  15. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  16. Evaluations on Profiles of the Eddy Diffusion Coefficients through Simulations of Super Typhoons in the Northwestern Pacific

    Directory of Open Access Journals (Sweden)

    Jimmy Chi Hung Fung

    2016-01-01

    Full Text Available The modeling of the eddy diffusion coefficients (also known as eddy diffusivity in the first-order turbulence closure schemes is important for the typhoon simulations, since the coefficients control the magnitude of the sensible heat flux and the latent heat flux, which are energy sources for the typhoon intensification. Profiles of the eddy diffusion coefficients in the YSU planetary boundary layer (PBL scheme are evaluated in the advanced research WRF (ARW system. Three versions of the YSU scheme (original, K025, and K200 are included in this study. The simulation results are compared with the observational data from track, center sea-level pressure (CSLP, and maximum surface wind speed (MWSP. Comparing with the original version, the K200 improves the averaged mean absolute errors (MAE of track, CSLP, and MWSP by 6.0%, 3.7%, and 23.1%, respectively, while the K025 deteriorates the averaged MAEs of track, CSLP, and MWSP by 25.1%, 19.0%, and 95.0%, respectively. Our results suggest that the enlarged eddy diffusion coefficients may be more suitable for super typhoon simulations.

  17. High Order Large Eddy Simulation (LES) of Gliding Snake Aerodynamics: Effect of 3D Flow on Gliding Performance

    Science.gov (United States)

    Delorme, Yann; Hassan, Syed Harris; Socha, Jake; Vlachos, Pavlos; Frankel, Steven

    2014-11-01

    Chrysopelea paradisi are snakes that are able to glide over long distances by morphing the cross section of their bodies from circular to a triangular airfoil, and undulating through the air. Snake glide is characterized by relatively low Reynolds number and high angle of attack as well as three dimensional and unsteady flow. Here we study the 3D dynamics of the flow using an in-house high-order large eddy simulation code. The code features a novel multi block immersed boundary method to accurately and efficiently represent the complex snake geometry. We investigate the steady state 3-dimensionality of the flow, especially the wake flow induced by the presence of the snake's body, as well as the vortex-body interaction thought to be responsible for part of the lift enhancement. Numerical predictions of global lift and drag will be compared to experimental measurements, as well as the lift distribution along the body of the snake due to cross sectional variations. Comparisons with previously published 2D results are made to highlight the importance of 3-dimensional effects. Additional efforts are made to quantify properties of the vortex shedding and Dynamic Mode Decomposition (DMD) is used to analyse the main modes responsible for the lift and drag forces.

  18. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge

  19. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    Directory of Open Access Journals (Sweden)

    Sina Shamsoddin

    2016-05-01

    Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the

  20. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  1. Dynamic Kalman filtering to separate low-frequency instabilities from turbulent fluctuations: Application to the Large-Eddy Simulation of unsteady turbulent flows

    International Nuclear Information System (INIS)

    Cahuzac, A; Boudet, J; Borgnat, P; Lévêque, E

    2011-01-01

    A dynamic method based on Kalman filtering is presented to isolate low-frequency unsteadiness from turbulent fluctuations in the large-eddy simulation (LES) of unsteady turbulent flows. The method can be viewed as an adaptive exponential smoothing, in which the smoothing factor adapts itself dynamically to the local behavior of the flow. Interestingly, the proposed method does not require any empirical tuning. In practice, it is used to estimate a shear-improved Smagorinsky viscosity, in which the low-frequency component of the velocity field is used to estimate a correction term to the Smagorinsky viscosity. The LES of the flow past a circular cylinder at Reynolds number Re D = 4.7 × 10 4 is examined as a challenging test case. Good comparisons are obtained with the experimental results, indicating the relevance of the shear-improved Smagorinsky model and the efficiency of the Kalman filtering. Finally, the adaptive cut-off of the Kalman filter is investigated, and shown to adapt locally and instantaneously to the complex flow around the cylinder.

  2. Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Wim Munters

    2018-01-01

    Full Text Available In wind farms, wakes originating from upstream turbines cause reduced energy extraction and increased loading variability in downstream rows. The prospect of mitigating these detrimental effects through coordinated controllers at the wind-farm level has fueled a multitude of research efforts in wind-farm control. The main strategies in wind-farm control are to influence the velocity deficits in the wake by deviating from locally optimal axial induction setpoints on the one hand, and steering wakes away from downstream rows through yaw misalignment on the other hand. The current work investigates dynamic induction and yaw control of individual turbines for wind-farm power maximization in large-eddy simulations. To this end, receding-horizon optimal control techniques combined with continuous adjoint gradient evaluations are used. We study a 4 × 4 aligned wind farm, and find that for this farm layout yaw control is more effective than induction control, both for uniform and turbulent inflow conditions. Analysis of optimal yaw controls leads to the definition of two simplified yaw control strategies, in which wake meandering and wake redirection are exploited respectively. Furthermore it is found that dynamic yawing provides significant benefits over static yaw control in turbulent flow environments, whereas this is not the case for uniform inflow. Finally, the potential of combining overinductive axial induction control with yaw control is shown, with power gains that approximate the sum of those achieved by each control strategy separately.

  3. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Directory of Open Access Journals (Sweden)

    K. Ichii

    2010-07-01

    Full Text Available Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine – based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID, we conducted two simulations: (1 point simulations at four eddy flux sites in Japan and (2 spatial simulations for Japan with a default model (based on original settings and a modified model (based on model parameter tuning using eddy flux data. Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP, most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  4. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    Science.gov (United States)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  5. Retrieval of convective boundary layer wind field statistics from radar profiler measurements in conjunction with large eddy simulation

    Directory of Open Access Journals (Sweden)

    Danny Scipión

    2009-05-01

    Full Text Available The daytime convective boundary layer (CBL is characterized by strong turbulence that is primarily forced by buoyancy transport from the heated underlying surface. The present study focuses on an example of flow structure of the CBL as observed in the U.S. Great Plains on June 8, 2007. The considered CBL flow has been reproduced using a numerical large eddy simulation (LES, sampled with an LES-based virtual boundary layer radar (BLR, and probed with an actual operational radar profiler. The LES-generated CBL flow data are then ingested by the virtual BLR and treated as a proxy for prevailing atmospheric conditions. The mean flow and turbulence parameters retrieved via each technique (actual radar profiler, virtual BLR, and LES have been cross-analyzed and reasonable agreement was found between the CBL wind parameters obtained from the LES and those measured by the actual radar. Averaged vertical velocity variance estimates from the virtual and actual BLRs were compared with estimates calculated from the LES for different periods of time. There is good agreement in the estimates from all three sources. Also, values of the vertical velocity skewness retrieved by all three techniques have been inter-compared as a function of height for different stages of the CBL evolution, showing fair agreement with each other. All three retrievals contain positively skewed vertical velocity structure throughout the main portion of the CBL. Radar estimates of the turbulence kinetic energy (eddy dissipation rate (ε have been obtained based on the Doppler spectral width of the returned signal for the vertical radar beam. The radar estimates were averaged over time in the same fashion as the LES output data. The agreement between estimates was generally good, especially within the mixing layer. Discrepancies observed above the inversion layer may be explained by a weak turbulence signal in particular flow configurations. The virtual BLR produces voltage

  6. Large eddy simulation of a T-Junction with upstream elbow: The role of Dean vortices in thermal fatigue

    International Nuclear Information System (INIS)

    Tunstall, R.; Laurence, D.; Prosser, R.; Skillen, A.

    2016-01-01

    Highlights: • A T-Junction with an upstream bend is studied using wall-resolved LES and POD. • The bend generates Dean vortices which remain prominent downstream of the junction. • Dean vortex swirl-switching results in an unsteady secondary flow about the pipe axis. • This provides a further mechanism for near-wall temperature fluctuations. • Upstream bends can have a crucial role in T-Junction thermal fatigue problems. - Abstract: Turbulent mixing of fluids in a T-Junction can generate oscillating thermal stresses in pipe walls, which may lead to high cycle thermal fatigue. This thermal stripping problem is an important safety issue in nuclear plant thermal-hydraulic systems, since it can lead to unexpected failure of the pipe material. Here, we carry out a large eddy simulation (LES) of a T-Junction with an upstream bend and use proper orthogonal decomposition (POD) to identify the dominant structures in the flow. The bend generates an unsteady secondary flow about the pipe axis, known as Dean vortex swirl-switching. This provides an additional mechanism for low-frequency near-wall temperature fluctuations downstream of the T-Junction, over those that would be produced by mixing in the same T-Junction with straight inlets. The paper highlights the important role of neighbouring pipe bends in T-Junction thermal fatigue problems and the need to include them when using CFD as a predictive tool.

  7. Large-Eddy Simulation of Shallow Cumulus over Land: A Composite Case Based on ARM Long-Term Observations at Its Southern Great Plains Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunyan [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Fan, Jiwen [Pacific Northwest National Laboratory, Richland, Washington; Chandra, Arunchandra S. [Division of Meteorology and Physical Oceanography, University of Miami, Miami, Florida; Kollias, Pavlos [School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California

    2017-10-01

    Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.

  8. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation (Invited)

    Science.gov (United States)

    Xie, S.; Archer, C. L.

    2013-12-01

    In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near

  9. Investigation of flow past a translatoric oscillating airfoil using detached eddy simulation

    DEFF Research Database (Denmark)

    Reck, Mads; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2003-01-01

    Wind turbine rotor blades in operation have been observed to undergo stall-induced lead-lag instabilities resulting in dramatic reduction of blade life, due to structural fatigue. Previous attempts to numerically simulate the flow past a translatoric oscillating airfoil have been few and feeble...... at the high angle of attacks often experienced by the individual rotor blade. The present paper covers simulation of a translatoric oscillating NACA 0015 airfoil at a Reynolds number of 555,000, corresponding to avialable experimental data, using the newly adopted Detached Eddy Simulation (DES) approach...

  10. Simulation of turbulent separated flows using a novel, evolution-based, eddy-viscosity formulation

    Science.gov (United States)

    Castellucci, Paul

    Currently, there exists a lack of confidence in the computational simulation of turbulent separated flows at large Reynolds numbers. The most accurate methods available are too computationally costly to use in engineering applications. Thus, inexpensive models, developed using the Reynolds-averaged Navier-Stokes (RANS) equations, are often extended beyond their applicability. Although these methods will often reproduce integrated quantities within engineering tolerances, such metrics are often insensitive to details within a separated wake, and therefore, poor indicators of simulation fidelity. Using concepts borrowed from large-eddy simulation (LES), a two-equation RANS model is modified to simulate the turbulent wake behind a circular cylinder. This modification involves the computation of one additional scalar field, adding very little to the overall computational cost. When properly inserted into the baseline RANS model, this modification mimics LES in the separated wake, yet reverts to the unmodified form at the cylinder surface. In this manner, superior predictive capability may be achieved without the additional cost of fine spatial resolution associated with LES near solid boundaries. Simulations using modified and baseline RANS models are benchmarked against both LES and experimental data for a circular cylinder wake at Reynolds number 3900. In addition, the computational tool used in this investigation is subject to verification via the Method of Manufactured Solutions. Post-processing of the resultant flow fields includes both mean value and triple-decomposition analysis. These results reveal substantial improvements using the modified system and appear to drive the baseline wake solution toward that of LES, as intended.

  11. UCLALES-SALSA v1.0: a large-eddy model with interactive sectional microphysics for aerosol, clouds and precipitation

    Science.gov (United States)

    Tonttila, Juha; Maalick, Zubair; Raatikainen, Tomi; Kokkola, Harri; Kühn, Thomas; Romakkaniemi, Sami

    2017-01-01

    Challenges in understanding the aerosol-cloud interactions and their impacts on global climate highlight the need for improved knowledge of the underlying physical processes and feedbacks as well as their interactions with cloud and boundary layer dynamics. To pursue this goal, increasingly sophisticated cloud-scale models are needed to complement the limited supply of observations of the interactions between aerosols and clouds. For this purpose, a new large-eddy simulation (LES) model, coupled with an interactive sectional description for aerosols and clouds, is introduced. The new model builds and extends upon the well-characterized UCLA Large-Eddy Simulation Code (UCLALES) and the Sectional Aerosol module for Large-Scale Applications (SALSA), hereafter denoted as UCLALES-SALSA. Novel strategies for the aerosol, cloud and precipitation bin discretisation are presented. These enable tracking the effects of cloud processing and wet scavenging on the aerosol size distribution as accurately as possible, while keeping the computational cost of the model as low as possible. The model is tested with two different simulation set-ups: a marine stratocumulus case in the DYCOMS-II campaign and another case focusing on the formation and evolution of a nocturnal radiation fog. It is shown that, in both cases, the size-resolved interactions between aerosols and clouds have a critical influence on the dynamics of the boundary layer. The results demonstrate the importance of accurately representing the wet scavenging of aerosol in the model. Specifically, in a case with marine stratocumulus, precipitation and the subsequent removal of cloud activating particles lead to thinning of the cloud deck and the formation of a decoupled boundary layer structure. In radiation fog, the growth and sedimentation of droplets strongly affect their radiative properties, which in turn drive new droplet formation. The size-resolved diagnostics provided by the model enable investigations of these

  12. Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

    Science.gov (United States)

    Lee, Chin Yik; Cant, Stewart

    2017-07-01

    A premixed propane-air flame stabilised on a triangular bluff body in a model jet-engine afterburner configuration is investigated using large-eddy simulation (LES). The reaction rate source term for turbulent premixed combustion is closed using the transported flame surface density (TFSD) model. In this approach, there is no need to assume local equilibrium between the generation and destruction of subgrid FSD, as commonly done in simple algebraic closure models. Instead, the key processes that create and destroy FSD are accounted for explicitly. This allows the model to capture large-scale unsteady flame propagation in the presence of combustion instabilities, or in situations where the flame encounters progressive wrinkling with time. In this study, comprehensive validation of the numerical method is carried out. For the non-reacting flow, good agreement for both the time-averaged and root-mean-square velocity fields are obtained, and the Karman type vortex shedding behaviour seen in the experiment is well represented. For the reacting flow, two mesh configurations are used to investigate the sensitivity of the LES results to the numerical resolution. Profiles for the velocity and temperature fields exhibit good agreement with the experimental data for both the coarse and dense mesh. This demonstrates the capability of LES coupled with the TFSD approach in representing the highly unsteady premixed combustion observed in this configuration. The instantaneous flow pattern and turbulent flame behaviour are discussed, and the differences between the non-reacting and reacting flow are described through visualisation of vortical structures and their interaction with the flame. Lastly, the generation and destruction of FSD are evaluated by examining the individual terms in the FSD transport equation. Localised regions where straining, curvature and propagation are each dominant are observed, highlighting the importance of non-equilibrium effects of FSD generation and

  13. Large-Eddy Simulations of Reacting Liquid Spray

    Science.gov (United States)

    Lederlin, Thomas; Sanjose, Marlene; Gicquel, Laurent; Cuenot, Benedicte; Pitsch, Heinz; Poinsot, Thierry

    2008-11-01

    Numerical simulation, which is commonly used in many stages of aero-engine design, still has to demonstrate its predictive capability for two-phase reacting flows. This study is a collaboration between Stanford University and CERFACS to perform LES of a realistic spray combustor installed at ONERA, Toulouse. The experimental configuration is computed on the same unstructured mesh with two different solvers: Stanford's CDP code and CERFACS's AVBP code. CDP uses a low-Mach, variable-density solver with implicit time advancement. Droplets are tracked in a Lagrangian point-particle framework. The combustion model uses a flamelet approach, based on two transported scalars, mixture fraction and reaction progress variable. AVBP is a fully compressible solver with explicit time advancement. The liquid phase is described with an Eulerian method. The flame-turbulence interaction is modeled using a dynamically-thickened flame. Results are compared with experimental data for three regimes: purely gaseous non-reacting flow, non-reacting flow with evaporating droplets, reacting flow with droplets. Both simulations show a good agreement with experimental data and also stress the difference and relative advantages of the numerical methods.

  14. Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2014-11-01

    Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.

  15. Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup

    International Nuclear Information System (INIS)

    Hasse, Christian; Sohm, Volker; Durst, Bodo

    2009-01-01

    Computational Fluid Dynamics using RANS-based modelling approaches have become an important tool in the internal combustion engine development and optimization process. However, these models cannot resolve cycle to cycle variations, which are an important aspect in the design of new combustion systems. In this study the feasibility of using a Detached Eddy Simulation (DES) SST model, which is a hybrid RANS/LES model, to predict cycle to cycle variations is investigated. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS SST model is used. In the other regions with higher grid resolution an LES model is applied. The case considered is a geometrically simplified engine, for which detailed experimental data for the ensemble averaged and single cycle velocity field are available from Boree et al. [Boree, J., Maurel, S., Bazile, R., 2002. Disruption of a compressed vortex, Physics of Fluids 14 (7), 2543-2556]. The fluid flow shows a strong tumbling motion, which is a major characteristic for modern turbo-charged, direct-injection gasoline engines. The general flow structure is analyzed first and the extent of the LES region and the amount of resolved fluctuations are discussed. Multiple consecutive cycles are computed and turbulent statistics of DES SST, URANS and the measured velocity field are compared for different piston positions. Cycle to cycle variations of the velocity field are analyzed for both computation and experiment with a special emphasis on the useability of the DES SST model to predict cyclic variations

  16. Entropic Lattice Boltzmann: an implicit Large-Eddy Simulation?

    Science.gov (United States)

    Tauzin, Guillaume; Biferale, Luca; Sbragaglia, Mauro; Gupta, Abhineet; Toschi, Federico; Ehrhardt, Matthias; Bartel, Andreas

    2017-11-01

    We study the modeling of turbulence implied by the unconditionally stable Entropic Lattice Boltzmann Method (ELBM). We first focus on 2D homogeneous turbulence, for which we conduct numerical simulations for a wide range of relaxation times τ. For these simulations, we analyze the effective viscosity obtained by numerically differentiating the kinetic energy and enstrophy balance equations averaged over sub-domains of the computational grid. We aim at understanding the behavior of the implied sub-grid scale model and verify a formulation previously derived using Chapman-Enskog expansion. These ELBM benchmark simulations are thus useful to understand the range of validity of ELBM as a turbulence model. Finally, we will discuss an extension of the previously obtained results to the 3D case. Supported by the European Unions Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 642069 and by the European Research Council under the ERC Grant Agreement No. 339032.

  17. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    Science.gov (United States)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  18. Large Eddy Simulation of Fluid flow and Heat Transfer in the Upper Plenum of Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seokki; Lee, Taeho; Kim, Dongeun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Sungho [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    The important parameters in the thermal striping are the frequency and the amplitude of the temperature fluctuation. Since the sodium used as coolant in the PGSFR has a high thermal conductivity, the temperature fluctuation can be easily transferred to the solid walls of the components in the upper plenum. To remedy these problems, numerical studies are performed in the present study to analyze the thermal striping for possible improvement of the design and safety of the reactor. For the numerical works, Chacko et al. performed LES for the experiment by Nam and Kim, and found that the LES can produce the oscillation of temperature fluctuation properly, while the realizable k - ε model predicts the amplitude and frequency of the temperature fluctuation very poorly indicating that the LES method is an appropriate calculation method for the thermal striping. In this paper, the simulation of thermal striping in the upper plenum of PGSFR is performed using the LES method. The WALE eddy viscosity model by Nicoud and Ducros built in CFX-13 commercial code is employed for the LES eddy viscosity model. The numerical investigation of the thermal striping is performed with the LES method using the CFX-13 commercial code, where the solution domain is the upper plenum of the PGSFR. As the first step, dozens of monitoring points are set to locations that are anticipated to cause thermal striping. Then, the temperature fluctuations were calculated along with the time-averaged variables such as the velocity and temperature. From these results we have obtained the following conclusions. At the side wall of IHX, a slight fluctuation is observed, but it seems that there is no risk of thermal striping. The flows from the reactor core are not mixed when reaching the UIS. So both the first and second plates need to be considered. Among the first grid plate regions, the shape region is the weakest region for thermal striping. The second weakest region for thermal striping is the shape

  19. Skill of ship-following large-eddy simulations in reproducing MAGIC observations across the northeast Pacific stratocumulus to cumulus transition region

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-06-01

    During the Marine ARM GPCI Investigation of Clouds (MAGIC) in October 2011 to September 2012, a container ship making periodic cruises between Los Angeles, CA, and Honolulu, HI, was instrumented with surface meteorological, aerosol and radiation instruments, a cloud radar and ceilometer, and radiosondes. Here large-eddy simulation (LES) is performed in a ship-following frame of reference for 13 four day transects from the MAGIC field campaign. The goal is to assess if LES can skillfully simulate the broad range of observed cloud characteristics and boundary layer structure across the subtropical stratocumulus to cumulus transition region sampled during different seasons and meteorological conditions. Results from Leg 15A, which sampled a particularly well-defined stratocumulus to cumulus transition, demonstrate the approach. The LES reproduces the observed timing of decoupling and transition from stratocumulus to cumulus and matches the observed evolution of boundary layer structure, cloud fraction, liquid water path, and precipitation statistics remarkably well. Considering the simulations of all 13 cruises, the LES skillfully simulates the mean diurnal variation of key measured quantities, including liquid water path (LWP), cloud fraction, measures of decoupling, and cloud radar-derived precipitation. The daily mean quantities are well represented, and daily mean LWP and cloud fraction show the expected correlation with estimated inversion strength. There is a -0.6 K low bias in LES near-surface air temperature that results in a high bias of 5.6 W m-2 in sensible heat flux (SHF). Overall, these results build confidence in the ability of LES to represent the northeast Pacific stratocumulus to trade cumulus transition region.Plain Language SummaryDuring the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign in October 2011 to September 2012, a cargo container ship making regular cruises between Los Angeles, CA, and Honolulu, HI, was fitted with tools to

  20. Using In Situ Observations and Satellite Retrievals to Constrain Large-Eddy Simulations and Single-Column Simulations: Implications for Boundary-Layer Cloud Parameterization in the NASA GISS GCM

    Science.gov (United States)

    Remillard, J.

    2015-12-01

    Two low-cloud periods from the CAP-MBL deployment of the ARM Mobile Facility at the Azores are selected through a cluster analysis of ISCCP cloud property matrices, so as to represent two low-cloud weather states that the GISS GCM severely underpredicts not only in that region but also globally. The two cases represent (1) shallow cumulus clouds occurring in a cold-air outbreak behind a cold front, and (2) stratocumulus clouds occurring when the region was dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) and single-column model (SCM) simulations. The LES captures the major differences in horizontal structure between the two low-cloud fields, but there are unconstrained uncertainties in cloud microphysics and challenges in reproducing W-band Doppler radar moments. The SCM run on the vertical grid used for CMIP-5 runs of the GCM does a poor job of representing the shallow cumulus case and is unable to maintain an overcast deck in the stratocumulus case, providing some clues regarding problems with low-cloud representation in the GCM. SCM sensitivity tests with a finer vertical grid in the boundary layer show substantial improvement in the representation of cloud amount for both cases. GCM simulations with CMIP-5 versus finer vertical gridding in the boundary layer are compared with observations. The adoption of a two-moment cloud microphysics scheme in the GCM is also tested in this framework. The methodology followed in this study, with the process-based examination of different time and space scales in both models and observations, represents a prototype for GCM cloud parameterization improvements.

  1. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    Science.gov (United States)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  2. Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific

    Science.gov (United States)

    Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.

    2017-12-01

    Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of

  3. Eddy-Kuroshio Interactions: Local and Remote Effects

    Science.gov (United States)

    Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang

    2017-12-01

    western North Pacific, is important in redistributing ocean energy and, in turn, shaping the large scale ocean circulation. This study focuses on the processes underlying the interaction of nonlinear mesoscale eddies with the Kuroshio, which have not yet been thoroughly investigated in the literature. Using pressure-sensor equipped echo sounder and satellite observations interpreted in the context of semi-idealized numerical simulations, this study find (1) locally, eddy arrivals modify velocity structure in the Kuroshio first, followed by changes in sea level and isopycnal depths leading to seesaw-like variations of the sea level and density slopes across the Kuroshio, and (2) modeled remote effects, i.e., Kuroshio intrusions, manifest in the Luzon Strait and on the East China Sea shelf and depend on the eddies' impingement latitude, strength, and polarity.

  4. Study of the influence of particles on turbulence with the help of direct and large eddy simulations of gas-solid two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, M.

    1996-12-31

    An investigation of dilute dispersed turbulent two-way coupling two-phase flows has been undertaken with the hemp of Direct Numerical Simulations (DNS) on stationary-forced homogeneous isotropic turbulence. The particle relaxation times range from the Kolmogorov to the Eulerian time scales and the load goes up to 1. The analyses is made within the Eulerian-model framework, enhanced by the National Hydraulics Laboratory Lagrangian approach, which is extended here to include inverse coupling and Reynolds effects. Particles are found to dissipate on average turbulence energy. The spectra of the fluid-particle exchange energy rate show that small particles drag the fluid at high wavenumbers, which explains the observed relative increase of small scale energy. A spectral analysis points as responsible mechanism the transfer of fluid-particle covariance by fluid turbulence. Regarding the modeling, he Reynolds dependency and the load contribution are found crucial for good predictions of the dispersed phase moments. A study for practical applications with Large Eddy Simulations (LES) has yielded: LES can be used two-way coupling two-phase flows provided that a dynamic mixed sub-grid scale model is adopted and the particle relaxation time is larger than the cutoff filter one; the inverse coupling should depend more on the position of this relaxation time with respect to the Eulerian one than to the Kolmogorov one. (author) 67 refs.

  5. Modeling and Control of Large Eddies Generated by Maneuvering Self-Propelled Bodies in Stratified Fluids

    National Research Council Canada - National Science Library

    Voropayev, Sergey

    2001-01-01

    .... It is also shown that for vertical background shear typical for the upper ocean, the shear itself only partly suppresses the eddy formation and reduces their decay times, which still remain significantly large...

  6. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    Science.gov (United States)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  7. Large Eddy Simulations of a Premixed Jet Combustor Using Flamelet-Generated Manifolds: Effects of Heat Loss and Subgrid-Scale Models

    KAUST Repository

    Hernandez Perez, Francisco E.; Lee, Bok Jik; Im, Hong G.; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, Philip H.

    2017-01-01

    Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.

  8. Large Eddy Simulations of a Premixed Jet Combustor Using Flamelet-Generated Manifolds: Effects of Heat Loss and Subgrid-Scale Models

    KAUST Repository

    Hernandez Perez, Francisco E.

    2017-01-05

    Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.

  9. On the use of kinetic energy preserving DG-schemes for large eddy simulation

    Science.gov (United States)

    Flad, David; Gassner, Gregor

    2017-12-01

    Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub

  10. Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers

    KAUST Repository

    Cheng, W.

    2017-11-27

    We report wall-resolved large-eddy simulation (LES) of flow over a grooved cylinder up to the transcritical regime. The stretched-vortex subgrid-scale model is embedded in a general fourth-order finite-difference code discretization on a curvilinear mesh. In the present study grooves are equally distributed around the circumference of the cylinder, each of sinusoidal shape with height , invariant in the spanwise direction. Based on the two parameters, and the Reynolds number where is the free-stream velocity, the diameter of the cylinder and the kinematic viscosity, two main sets of simulations are described. The first set varies from to while fixing . We study the flow deviation from the smooth-cylinder case, with emphasis on several important statistics such as the length of the mean-flow recirculation bubble , the pressure coefficient , the skin-friction coefficient and the non-dimensional pressure gradient parameter . It is found that, with increasing at fixed , some properties of the mean flow behave somewhat similarly to changes in the smooth-cylinder flow when is increased. This includes shrinking and nearly constant minimum pressure coefficient. In contrast, while the non-dimensional pressure gradient parameter remains nearly constant for the front part of the smooth cylinder flow, shows an oscillatory variation for the grooved-cylinder case. The second main set of LES varies from to with fixed . It is found that this range spans the subcritical and supercritical regimes and reaches the beginning of the transcritical flow regime. Mean-flow properties are diagnosed and compared with available experimental data including and the drag coefficient . The timewise variation of the lift and drag coefficients are also studied to elucidate the transition among three regimes. Instantaneous images of the surface, skin-friction vector field and also of the three-dimensional Q-criterion field are utilized to further understand the dynamics of the near-surface flow

  11. Large eddy simulation on thermal mixing of fluids in a T-junction with conjugate heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de; Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de; Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de

    2015-04-01

    Highlights: • LES of fluid mixing in a T-junction at ΔT = 117 K and 123 K is performed. • Dynamical thermal stratification flow behavior downstream of T-junction. • Temperature fluctuations have maximum amplitudes of about 3.4–5.6% of ΔT. • High amplitude fluctuations occur near stratification layer in the mixing region. • Energy of temperature fluctuations mainly contained in the range 0.1–3 Hz. - Abstract: High cycle thermal fatigue failure in a nuclear power plant T-junction piping system may be caused by near-wall temperature fluctuations due to thermal mixing of hot and cold fluid streams. In the present study, thermal mixing at temperature differences (ΔT) of 117 K and 123 K between the mixing fluids is numerically investigated using Large Eddy Simulation (LES) method with the commercial Computational Fluid Dynamics (CFD) software ANSYS CFX 14.0. LES results from the study are validated with experimental data obtained from Fluid–Structure Interaction (FSI) test facility at the Materials Testing Institute (MPA), University of Stuttgart. Mass flow rate ratios (main/branch) in both cases are 4 and 6, respectively. LES results in both cases show that there is incomplete mixing of fluids and within three diameters downstream of T-junction, the mixing results in a dynamical thermal stratification flow behavior, which is maintained throughout the computational domain. Mean temperature predictions by LES show good agreement with the experimental data, whereas the root mean square (RMS) temperature fluctuations are over or understated at a few positions. The temperature fluctuations have amplitudes ranging from 0.09 to 5.6% of ΔT between the mixing fluids. Incomplete mixing of fluids and relatively lower amplitude of temperature fluctuations are mainly due to lower Reynolds number of 3670 in the cold fluid coming from the branch pipe along with buoyancy effects in the flow due to higher inflow temperature in the main pipe.

  12. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    Science.gov (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  13. Internal and forced eddy variability in the Labrador Sea

    Science.gov (United States)

    Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.

    2009-04-01

    Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.

  14. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Science.gov (United States)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  15. Role of mesoscale eddies in the global ocean uptake of anthropogenic CO2

    International Nuclear Information System (INIS)

    Zouhair, Lachkar

    2007-02-01

    Mesoscale eddies play a fundamental role in ocean dynamics particularly in the Southern Ocean. Global-scale tracer simulations are typically made at coarse resolution without explicitly modeling eddies. Here we ask what role do eddies play in ocean uptake, storage, and meridional transport of anthropogenic CO 2 , CFC-11 and bomb Δ 14 C. We made global anthropogenic transient tracer simulations in coarse-resolution, ORCA2, and eddy-permitting, ORCA05 and ORCA025, versions of the ocean modelling system NEMO. We focus on the Southern Ocean where tracer air-sea fluxes are largest. Eddies have little effect on bomb Δ 14 C uptake and storage. Yet for CFC-11 and anthropogenic CO 2 , increased eddy activity reduces southern extra-tropical uptake by 28% and 25% respectively, thereby providing better agreement with observations. It is shown that the discrepancies in the equilibration times between the three tracers determine their respective sensitivities to the model horizontal resolution. Applying Gent and McWilliams (1990) (GM) parameterization of eddies in the non-eddying version of the model does improve results, but not enough. An in-depth investigation of the mechanisms by which eddies affect the uptake of the transient tracers shows that including mesoscale eddies leads to an overall reduction in the Antarctic Intermediate Water (AAIW) ventilation, and modifies substantially the spatial distribution of their source regions. This investigation reveals also that the GM parameterization still overestimates the ventilation and the subduction of AAIW in the Indian Ocean where the simulated mixed layer is particularly deep during the winter. This work suggests that most current coarse-resolution models may overestimate the ventilation of AAIW in the Indian sector of the Southern Ocean. This study shows also that the use of the GM parameterization may be of limited utility where mixed layer is relatively deep and confirms the general need for a more adequate

  16. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  17. Impact of Subgrid Scale Models and Heat Loss on Large Eddy Simulations of a Premixed Jet Burner Using Flamelet-Generated Manifolds

    Science.gov (United States)

    Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.

    2017-11-01

    Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.

  18. Wall-resolved Large Eddy Simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000

    Energy Technology Data Exchange (ETDEWEB)

    Benhamadouche, S., E-mail: sofiane.benhamadouche@edf.fr; Arenas, M.; Malouf, W.J.

    2017-02-15

    Highlights: • Wall-resolved LES can predict the flow through a square-edged orifice at Re = 25,000. • LES results are compared with the available experimental data and ISO 5167-2. • Pressure loss and discharge coefficients are in very good agreement with ISO 5167-2. • The present wall-resolved LES could be used as reference data for RANS validation. - Abstract: The orifice plate is a pressure differential device frequently used for flow measurements in pipes across different industries. The present study demonstrates the accuracy obtainable using a wall-resolved Large Eddy Simulation (LES) approach to predict the velocity, the Reynolds stresses, the pressure loss and the discharge coefficient for a flow through a square-edged orifice in a round pipe at a Reynolds number of 25,000. The ratio of the orifice diameter to the pipe diameter is β = 0.62, and the ratio of the orifice thickness to the pipe diameter is 0.11. The mesh is sized using refinement criteria at the wall and preliminary RANS results to ensure that the solution is resolved beyond an estimated Taylor micro-scale. The inlet condition is simulated using a recycling method, and the LES is run with a dynamic Smagorinsky sub-grid scale (SGS) model. The sensitivity to the SGS model and to the pressure–velocity coupling is shown to be small in the present study. The LES is compared with the available experimental data and ISO 5167-2. In general, the LES shows good agreement with the velocity from the experimental data. The profiles of the Reynolds stresses are similar, but an offset is observed in the diagonal stresses. The pressure loss and discharge coefficients are shown to be in very good agreement with the predictions of ISO 5167-2. Therefore, the wall-resolved LES is shown to be highly accurate in simulating the flow across a square-edged orifice.

  19. Wall-resolved Large Eddy Simulation of a flow through a square-edged orifice in a round pipe at Re = 25,000

    International Nuclear Information System (INIS)

    Benhamadouche, S.; Arenas, M.; Malouf, W.J.

    2017-01-01

    Highlights: • Wall-resolved LES can predict the flow through a square-edged orifice at Re = 25,000. • LES results are compared with the available experimental data and ISO 5167-2. • Pressure loss and discharge coefficients are in very good agreement with ISO 5167-2. • The present wall-resolved LES could be used as reference data for RANS validation. - Abstract: The orifice plate is a pressure differential device frequently used for flow measurements in pipes across different industries. The present study demonstrates the accuracy obtainable using a wall-resolved Large Eddy Simulation (LES) approach to predict the velocity, the Reynolds stresses, the pressure loss and the discharge coefficient for a flow through a square-edged orifice in a round pipe at a Reynolds number of 25,000. The ratio of the orifice diameter to the pipe diameter is β = 0.62, and the ratio of the orifice thickness to the pipe diameter is 0.11. The mesh is sized using refinement criteria at the wall and preliminary RANS results to ensure that the solution is resolved beyond an estimated Taylor micro-scale. The inlet condition is simulated using a recycling method, and the LES is run with a dynamic Smagorinsky sub-grid scale (SGS) model. The sensitivity to the SGS model and to the pressure–velocity coupling is shown to be small in the present study. The LES is compared with the available experimental data and ISO 5167-2. In general, the LES shows good agreement with the velocity from the experimental data. The profiles of the Reynolds stresses are similar, but an offset is observed in the diagonal stresses. The pressure loss and discharge coefficients are shown to be in very good agreement with the predictions of ISO 5167-2. Therefore, the wall-resolved LES is shown to be highly accurate in simulating the flow across a square-edged orifice.

  20. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.

    Science.gov (United States)

    Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim

    2008-07-19

    Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.

  1. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective

    Directory of Open Access Journals (Sweden)

    Mona Kurppa

    2018-02-01

    Full Text Available Buildings and vegetation alter the wind and pollutant transport in urban environments. This comparative study investigates the role of orientation and shape of perimeter blocks on the dispersion and ventilation of traffic-related air pollutants, and the street-level concentrations along a planned city boulevard. A large-eddy simulation (LES model PALM is employed over a highly detailed representation of the urban domain including street trees and forested areas. Air pollutants are represented by massless and passive particles (non-reactive gases, which are released with traffic-related emission rates. High-resolution simulations for four different city-block-structures are conducted over a 8.2 km 2 domain under two contrasting inflow conditions with neutral and stable atmospheric stratification corresponding the general and wintry meteorological conditions. Variation in building height together with multiple cross streets along the boulevard improves ventilation, resulting in 7–9% lower mean concentrations at pedestrian level. The impact of smaller scale variability in building shape was negligible. Street trees further complicate the flow and dispersion. Notwithstanding the surface roughness, atmospheric stability controls the concentration levels with higher values under stably stratified inflow. Little traffic emissions are transported to courtyards. The results provide urban planners direct information to reduce air pollution by proper structural layout of perimeter blocks.

  2. Lattice Boltzmann simulation of flow across a staggered tube bundle array

    Energy Technology Data Exchange (ETDEWEB)

    Tiftikçi, A.; Kocar, C., E-mail: ckocar@hacettepe.edu.tr

    2016-04-15

    Highlights: • Large eddy simulation of the cross-flow in a staggered tube bundle array in 3D was made. • LBM and FVM are used separately as numerical solvers and the results of each method compared with experimental data. • Effect of lattice model is studied for tube bundle flow. • Filter size effects, mesh size effects are studied for VLES turbulence model. - Abstract: The decision on the magnitude of the grid size is a crucial problem in large eddy simulations. Finer mesh requires excessive memory and causes long simulation time. Large eddy simulation model becomes inefficient when the extent of the flow geometry to be simulated with the lattice-Boltzmann method is large. Thus, in this study, it is proposed to investigate the capabilities of three turbulence models, namely, very large eddy simulation, Van Driest and Smagorinsky–Lilly. As a test case, a staggered tube bundle flow experiment is used for the validation and comparison purposes. Sensitivity analyses (including mesh and filter size) have been made. Furthermore, the effect of lattice model is investigated and it is showed that the D3Q27 and D3Q19 models do not differ significantly in lattice-Boltzmann method for this type of flow. The results of turbulence model comparisons for staggered tube bundle flow showed that very large eddy simulation is superior at low resolution. This paper might be considered as a good validation of the lattice-Boltzmann method. In turbulent flow conditions, the code successfully captures the velocity and stress profiles even if the flow is quite complicated.

  3. Simulation of the transient eddy current measurement for the characterization of depth and conductivity of a plate

    International Nuclear Information System (INIS)

    Cheng, Weiying; Komura, Ichiro

    2008-01-01

    A transient eddy current measurement method is presented to determine the thickness and conductivity of a conductive plate. The conductive plate is induced by an air-cored coil, the magnetic flux density along the axial is measured and the various signals corresponding to plates with different thickness and conductivity are calculated using a 3D transient eddy current simulator. Characteristic features are obtained from the transient response. A similarity-based modeling method is utilized in this study to estimate the thickness and conductivity of the conductive plate. (author)

  4. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    Science.gov (United States)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  5. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    Science.gov (United States)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to

  6. Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NOx-VOC chemistry.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2017-05-01

    A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd

  7. Investigation of Future Thermal Comforts in a Tropical Megacity Using Coupling of Energy Balance Model and Large Eddy Simulation

    Science.gov (United States)

    Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.

    2017-12-01

    Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate

  8. Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih; Weihing, Pascal; Lutz, Thorsten; Krämer, Ewald [University of Stuttgart, Stuttgart (Germany)

    2017-05-15

    The present study focuses on the impact of grid for accurate prediction of the MEXICO rotor under stalled conditions. Two different blade mesh topologies, O and C-H meshes, and two different grid resolutions are tested for several time step sizes. The simulations are carried out using Delayed detached-eddy simulation (DDES) with two eddy viscosity RANS turbulence models, namely Spalart- Allmaras (SA) and Menter Shear stress transport (SST) k-ω. A high order spatial discretization, WENO (Weighted essentially non- oscillatory) scheme, is used in these computations. The results are validated against measurement data with regards to the sectional loads and the chordwise pressure distributions. The C-H mesh topology is observed to give the best results employing the SST k-ω turbulence model, but the computational cost is more expensive as the grid contains a wake block that increases the number of cells.

  9. PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model

    Directory of Open Access Journals (Sweden)

    J. Resler

    2017-10-01

    Full Text Available Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM, describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs. Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL. The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the

  10. Numerical simulation of complex turbulent Flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A.

    1991-06-01

    A statistical and topological study of a complex turbulent flow over a backward-facing step is realized by means of Direct and Large-Eddy Simulations. Direct simulations are performed in an isothermal and in a stratified two-dimensional case. In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. In a second step a thermal stratification is imposed on this flow. The coherent structures are in this case produced in the immediate vicinity of the step and disappear dowstream for increasing stratification. Afterwards, large-eddy simulations are carried out in the three-dimensional case. The subgrid-scale model is a local adaptation to the physical space of the spectral eddy-viscosity concept. The statistics of turbulence are in good agreement with the experimental data, corresponding to a small step configuration. Furthermore, calculations at higher step configuration show that the eddy structure of the flow presents striking analogies with the plane shear layers, with large billows shed behind the step, and intense longitudinal vortices strained between these billows [fr

  11. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    International Nuclear Information System (INIS)

    Hoelzl, M; Merkel, P; Lackner, K; Strumberger, E; Huijsmans, G T A; Aleynikova, K; Liu, F; Atanasiu, C; Nardon, E; Fil, A; McAdams, R; Chapman, I

    2014-01-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described

  12. A synthetic-eddy-method for generating inflow conditions for large-eddy simulations

    International Nuclear Information System (INIS)

    Jarrin, N.; Benhamadouche, S.; Laurence, D.; Prosser, R.

    2006-01-01

    The generation of inflow data for spatially developing turbulent flows is one of the challenges that must be addressed prior to the application of LES to industrial flows and complex geometries. A new method of generation of synthetic turbulence, suitable for complex geometries and unstructured meshes, is presented herein. The method is based on the classical view of turbulence as a superposition of coherent structures. It is able to reproduce prescribed first and second order one point statistics, characteristic length and time scales, and the shape of coherent structures. The ability of the method to produce realistic inflow conditions in the test cases of a spatially decaying homogeneous isotropic turbulence and of a fully developed turbulent channel flow is presented. The method is systematically compared to other methods of generation of inflow conditions (precursor simulation, spectral methods and algebraic methods)

  13. Eddy Current Assessment of Engineered Components Containing Nanofibers

    Science.gov (United States)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  14. Cyclonic entrainment of preconditioned shelf waters into a frontal eddy

    Science.gov (United States)

    Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.

    2015-02-01

    The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.

  15. Large eddy simulations of flow and mixing in jets and swirl flows: application to a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Schluter, J.U.

    2000-07-01

    Large Eddy Simulations (LES) are an accepted tool in turbulence research. Most LES investigations deal with low Reynolds-number flows and have a high spatial discretization, which results in high computational costs. To make LES applicable to industrial purposes, the possibilities of LES to deliver results with low computational costs on high Reynolds-number flows have to be investigated. As an example, the cold flow through the Siemens V64.3A.HR gas turbine burner shall be examined. It is a gas turbine burner of swirl type, where the fuel is injected on the surface of vanes perpendicular to the main air flow. The flow regime of an industrial gas turbine is governed by several flow phenomena. The most important are the fuel injection in form of a jet in cross flow (JICF) and the swirl flow issuing into a combustion chamber. In order to prove the ability of LES to deal with these flow phenomena, two numerical investigations were made in order to reproduce the results of experimental studies. The first one deals with JICF. It will be shown that the reproduction of three different JICF is possible with LES on meshes with a low number of mesh points. The results are used to investigate the flow physics of the JICF, especially the merging of two adjacent JICFs. The second fundamental investigation deals with swirl flows. Here, the accuracy of an axisymmetric assumption is examined in detail by comparing it to full 3D LES computations and experimental data. Having demonstrated the ability of LES and the flow solver to deal with such complex flows with low computational efforts, the LES approach is used to examine some details of the burner. First, the investigation of the fuel injection on a vane reveals that the vane flow tends to separate. Furthermore the tendency of the fuel jets to merge is shown. Second, the swirl flow in the combustion chamber is computed. For this investigation the vanes are removed from the burner and swirl is imposed as a boundary condition. As

  16. Eddy Current Flaw Characterization Using Neural Networks

    International Nuclear Information System (INIS)

    Song, S. J.; Park, H. J.; Shin, Y. K.

    1998-01-01

    Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw

  17. Research on magnetohydrodynamic turbulent behavior. Development of the turbulence model using large eddy simulation. FY15 report of the JNC cooperative research scheme on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanahashi, Takahiko; Miyoshi, Ichiro; Ara, Kuniaki; Ohira, Hiroaki

    2004-08-01

    Investigation of magnetohydrodynamic (MHD) turbulent model with Large Eddy Simulation (LES) method was started in FY15 to evaluate MHD turbulent behavior on the conditions of high Reynolds numbers and high magnetic Reynolds numbers. In FY15, the proposed Subgrid Scale (SGS) model for magnetic fields generated by direct current was formulated with GSMAC-FEM (Generalized Simplified Marker and Cell method for Finite Element Method) and the characteristic behavior of MHD turbulence studied theoretically. A Direct Numerical Simulation (DNS) method was also developed to verify the theoretical study and construct and advanced SGS model. The last purpose of this study is to analyze the realistic Electromagnetic Pump. In order to understand basic concept, analyses of small-scale Electromagnetic Pump was started with A-φ method. The following results were obtained from these studies: (1) Homogeneous turbulent flows in a conducting fluid which were exposed to uniform magnetic fields were examined through the Direct Numerical Simulation and the characteristics of energy distribution were shown in the MHD turbulence at low magnetic Reynolds numbers. (2) For the analysis of the realistic Electromagnetic Pump, the parallel scheme based on GSMAC-FEM was constructed. Effectiveness of the scheme for large-scale calculation was shown through the benchmark problem, three dimensional cavity flow. (3) A new Balancing Tensor Diffusivity (BTD) formulation for the magnetic fields was proposed in this study and the proposed SGS model in previous study was formulated with GSMAC-FEM. The FEM scheme for MHD turbulence at high magnetic Reynolds number was verified through homogeneous MHD turbulence. (4) An A-φ method formulated with GSMAC-FEM was applied to the analysis of small-scale Electromagnetic pump. The basic concepts for the analysis with B method were obtained through the results. (author)

  18. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region

    OpenAIRE

    X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan

    2014-01-01

    Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...

  19. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  20. Preliminary Investigations of Eddy Current Effects on a Spinning Disk

    International Nuclear Information System (INIS)

    Piggott, W T; Walston, S; Mayhall, D

    2006-01-01

    The design of the positron source target for the International Linear Collider (ILC) envisions a Ti6Al4V wheel rotating in a large magnetic field (5-10 Tesla) being impacted by a photon beam to produce positrons. One of the many challenges for this system is determining how large a motor will be needed to spin the shaft. The wheel spinning in the magnetic field induces an eddy current in the wheel, which retards the spinning motion of the wheel. Earlier calculations by Mayhall [1] have shown that those eddy forces could be quite large, and resulted in the preliminary design being moved from a solid disk to a rim and spoke design, as shown in Figure 1. A series of experiments with a spinning metal disk were run at the Stanford Linear Accelerator Center (SLAC) to provide experimental validation of the Maxwell 3D simulations. This report will give a brief outline of the experimental setup and results. In addition, earlier work by Smythe [2] will be used to compare with the experimental results

  1. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    Science.gov (United States)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  2. Impact of ocean model resolution on CCSM climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Ben P.; Rousset, Clement; Siqueira, Leo [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Coral Gables, FL (United States); Bitz, Cecilia [Univer