WorldWideScience

Sample records for large deformation change

  1. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  2. Spatiotemporal seismic velocity change in the Earth's subsurface associated with large earthquake: contribution of strong ground motion and crustal deformation

    Science.gov (United States)

    Sawazaki, K.

    2016-12-01

    It is well known that seismic velocity of the subsurface medium changes after a large earthquake. The cause of the velocity change is roughly attributed to strong ground motion (dynamic strain change), crustal deformation (static strain change), and fracturing around the fault zone. Several studies have revealed that the velocity reduction down to several percent concentrates at the depths shallower than several hundred meters. The amount of velocity reduction correlates well with the intensity of strong ground motion, which indicates that the strong motion is the primary cause of the velocity reduction. Although some studies have proposed contributions of coseismic static strain change and fracturing around fault zone to the velocity change, separation of their contributions from the site-related velocity change is usually difficult. Velocity recovery after a large earthquake is also widely observed. The recovery process is generally proportional to logarithm of the lapse time, which is similar to the behavior of "slow dynamics" recognized in laboratory experiments. The time scale of the recovery is usually months to years in field observations, while it is several hours in laboratory experiments. Although the factor that controls the recovery speed is not well understood, cumulative strain change due to post-seismic deformation, migration of underground water, mechanical and chemical reactions on the crack surface could be the candidate. In this study, I summarize several observations that revealed spatiotemporal distribution of seismic velocity change due to large earthquakes; especially I focus on the case of the M9.0 2011 Tohoku earthquake. Combining seismograms of Hi-net (high-sensitivity) and KiK-net (strong motion), geodetic records of GEONET and the seafloor GPS/Acoustic ranging, I investigate contribution of the strong ground motion and crustal deformation to the velocity change associated with the Tohoku earthquake, and propose a gross view of

  3. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  4. Large poroelastic deformation of a soft material

    Science.gov (United States)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  5. Large deformation behavior of fat crystal networks

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Walstra, P.

    2005-01-01

    Compression and wire-cutting experiments on dispersions of fully hydrogenated palm oil in sunflower oil with varying fraction solid fat were carried out to establish which parameters are important for the large deformation behavior of fat crystal networks. Compression experiments showed that the

  6. Remeshing in analysis of large plastic deformations

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    1998-01-01

    Very distorted elements in a finite element computation will affect the results in a negative way. In applications where large plastic deformations are present, the mesh often deteriorates so badly, that remeshing is the only option to avoid a breakdown in the numerical computations. In the present...

  7. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  8. Design of bridges against large tectonic deformation

    Science.gov (United States)

    Anastasopoulos, I.; Gazetas, G.; Drosos, V.; Georgarakos, T.; Kourkoulis, R.

    2008-12-01

    The engineering community has devoted much effort to understanding the response of soil-structure systems to seismic ground motions, but little attention to the effects of an outcropping fault offset. The 1999 earthquakes of Turkey and Taiwan, offering a variety of case histories of structural damage due to faulting, have (re)fueled the interest on the subject. This paper presents a methodology for design of bridges against tectonic deformation. The problem is decoupled in two analysis steps: the first (at the local level) deals with the response of a single pier and its foundation to fault rupture propagating through the soil, and the superstructure is modeled in a simplified manner; and the second (at the global level) investigates detailed models of the superstructure subjected to the support (differential) displacements of Step 1. A parametric study investigates typical models of viaduct and overpass bridges, founded on piles or caissons. Fixed-head piled foundations are shown to be rather vulnerable to faulting-induced deformation. End-bearing piles in particular are unable to survive bedrock offsets exceeding 10 cm. Floating piles perform better, and if combined with hinged pile-to-cap connections, they could survive much larger offsets. Soil resilience is beneficial in reducing pile distress. Caisson foundations are almost invariably successful. Statically-indeterminate superstructures are quite vulnerable, while statically-determinate are insensitive (allowing differential displacements and rotations without suffering any distress). For large-span cantilever-construction bridges, where a statically determinate system is hardly an option, inserting resilient seismic isolation bearings is advantageous as long as ample seating can prevent the deck from falling off the supports. An actual application of the developed method is presented for a major bridge, demonstrating the feasibility of design against tectonic deformation.

  9. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  10. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  11. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  12. Numerical simulation of large deformation polycrystalline plasticity

    International Nuclear Information System (INIS)

    Inal, K.; Neale, K.W.; Wu, P.D.; MacEwen, S.R.

    2000-01-01

    A finite element model based on crystal plasticity has been developed to simulate the stress-strain response of sheet metal specimens in uniaxial tension. Each material point in the sheet is considered to be a polycrystalline aggregate of FCC grains. The Taylor theory of crystal plasticity is assumed. The numerical analysis incorporates parallel computing features enabling simulations of realistic models with large number of grains. Simulations have been carried out for the AA3004-H19 aluminium alloy and the results are compared with experimental data. (author)

  13. Large component deformation studies using videogrammetry

    International Nuclear Information System (INIS)

    Greenwood, J.A.

    1999-01-01

    Fermilab has the responsibility for developing certain components for the Large Hadron Collider (LHC), to be commissioned at CERN in 2005. As part of the development process, a referencing strategy must be created such that the position of internal active components may be known relative to external targeting. One question to be answered is the issue of dimensional stability of a part that will be transported over long distances; another is whether the external framework is coherent. This paper reviews the efforts of the designers of the component and the Lab's Alignment and Metrology Group to understand the behavior of a moderately large part, in this case a pie-shaped CSC chamber of dimensions 2 x 3 x 0.3 m , as it is positioned in various orientations relative to gravity. All measurements were made using a Geodetic Services, Inc. INCA 6.3 camera with an 18 min Nikon lens (Fig. 1) and were processed using GSI's V-STARS 4.1 software. Photogrammetry, more particularly digital videogrammetry, has shown that it can effectively service projects of this nature. When compared to optical tooling and laser tracker approaches, it is hard to imagine the full complement of difficulties videogrammetry allows one to avoid. Certainly the fact that neither the camera nor the part need to be stationary makes, photogrammetry an obvious choice. (author)

  14. Control and large deformations of marginal disordered structures

    Science.gov (United States)

    Murugan, Arvind; Pinson, Matthew; Chen, Elizabeth

    Designed deformations, such as origami patterns, provide a way to make easily controlled mechanical metamaterials with tailored responses to external forces. We focus on an often overlooked regime of origami - non-linear deformations of large disordered origami patterns with no symmetries. We find that practical questions of control in origami have counterintuitive answers, because of intimate connections to spin glasses and neural networks. For example, 1 degree of freedom origami structures are actually difficult to control about the flat state with a single actuator; the actuator is thrown off by an exponential number of `red herring' zero modes for small deformations, all but one of which disappear at larger deformations. Conversely, structures with multiple programmed motions are much easier to control than expected - in fact, they are as easy to control as a dedicated single-motion structure if the number of programmed motions is below a threshold (`memory capacity').

  15. Planar dynamics of large-deformation rods under moving loads

    Science.gov (United States)

    Zhao, X. W.; van der Heijden, G. H. M.

    2018-01-01

    We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.

  16. The physics of large deformation of crystalline solids

    CERN Document Server

    Bell, James F

    1968-01-01

    Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led...

  17. A stochastic large deformation model for computational anatomy

    DEFF Research Database (Denmark)

    Arnaudon, Alexis; Holm, Darryl D.; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation...

  18. Extension of electronic speckle correlation interferometry to large deformations

    Science.gov (United States)

    Sciammarella, Cesar A.; Sciammarella, Federico M.

    1998-07-01

    The process of fringe formation under simultaneous illumination in two orthogonal directions is analyzed. Procedures to extend the applicability of this technique to large deformation and high density of fringes are introduced. The proposed techniques are applied to a number of technical problems. Good agreement is obtained when the experimental results are compared with results obtained by other methods.

  19. Speckle photography applied to measure deformations of very large structures

    Science.gov (United States)

    Conley, Edgar; Morgan, Chris K.

    1995-04-01

    Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.

  20. Large deformation frictional contact analysis with immersed boundary method

    Science.gov (United States)

    Navarro-Jiménez, José Manuel; Tur, Manuel; Albelda, José; Ródenas, Juan José

    2018-01-01

    This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.

  1. A large deformation viscoelastic model for double-network hydrogels

    Science.gov (United States)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  2. Deformation inhomogeneity in large-grained AA5754 sheets

    International Nuclear Information System (INIS)

    Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.

    2011-01-01

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  3. Large scale deformation of the oceanic lithosphere: insights from numerical modeling of the Indo-Australian intraplate deformation

    Science.gov (United States)

    Royer, J.; Brandon, V.

    2011-12-01

    The large-scale deformation observed in the Indo-Australian plate seems to challenge tenets of plate tectonics: plate rigidity and narrow oceanic plate boundaries. Its distribution along with kinematic data inversions however suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries either extensional or compressional. We tested this model using the SHELLS numerical code (Kong & Bird, 1995) where the Indo-Australian plate was meshed into 5281 spherical triangular finite elements. Model boundary conditions are defined only by the plate velocities of the rigid parts of the Indo-Australian plate relative to their neighboring plates. Different plate velocity models were tested. From these boundary conditions, and taking into account the age of the lithosphere, seafloor topography, and assumptions on the rheology of the oceanic lithosphere, SHELLS predicts strain rates within the plate. We also tested the role of fossil fracture zones as potential lithospheric weaknesses. In a first step, we considered different component plate pairs (India/Capricorn, Capricorn/Australia, India/Australia). Since the limits of their respective diffuse boundary (i.e. the limits of the rigid component plates) are not known, we let the corresponding edge free. In a second step, we merged the previous meshes to consider the whole Indo-Australian plate. In this case, the velocities on the model boundaries are all fully defined and were set relative to the Capricorn plate. Our models predict deformation patterns very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses the extensional deformation between the Indian and Capricorn plates. Reactivation of fossil fracture zones may accommodate large part of the deformation both in extensional areas, off

  4. Modeling of 3D Aluminum Polycrystals during Large Deformations

    International Nuclear Information System (INIS)

    Maniatty, Antoinette M.; Littlewood, David J.; Lu Jing; Pyle, Devin

    2007-01-01

    An approach for generating, meshing, and modeling 3D polycrystals, with a focus on aluminum alloys, subjected to large deformation processes is presented. A Potts type model is used to generate statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A procedure for generating a geometric model from the voxel data is developed allowing for adaptive meshing of the generated grain structure. Material behavior is governed by an appropriate crystal, elasto-viscoplastic constitutive model. The elastic-viscoplastic model is implemented in a three-dimensional, finite deformation, mixed, finite element program. In order to handle the large-scale problems of interest, a parallel implementation is utilized. A multiscale procedure is used to link larger scale models of deformation processes to the polycrystal model, where periodic boundary conditions on the fluctuation field are enforced. Finite-element models, of 3D polycrystal grain structures will be presented along with observations made from these simulations

  5. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  6. Deformation behavior of large, high-pressure vessel flanges

    International Nuclear Information System (INIS)

    Spaas, H.A.C.M.; Latzko, D.G.H.

    1975-01-01

    The analysis of the deformation behavior of large high-pressure vessel flanges poses a much more difficult problem than for low-pressure flanges due to their particular geometry. For a particularly narrow flange geometry (typical of PWR flanges) a finite-element analysis (MARC-IBM-program, eight-node, isoparametric ring elements) was used to predict the behavior of the flange rings. The nonlinear elastic problem resulting from the local closing and/or opening of the partial gap between the gasket faces was solved by an incremental technique using gap elements. The resulting deformation behavior of the flange system has been compared to that obtained from an analysis using the refined rigid ring concept for both bolt-tightening and hydro-testing conditions. The elasto-plastic analysis was solved by the same finite element program system as mentioned above. The incremental steps describing the nonlinear material behavior are allowed to be larger than those for the gap-closure mechanism. Besides a comparison with the former elastic analyses an interpretation will be given of the local plasticity effects, which result in a shift in location of the gasket reaction. Experimental data on local gasket face deformation was obtained by a specially developed laser beam apparatus, with the leak detection channel of the flange serving as a beam hole. Additionally strain gauges were used on flanges and bolts, in combination with special sensing pins for the determination of relative flange rotations. Results obtained so far indicate that for high-pressure flanges of the narrow design investigated here the deformation behavior is best described by an elasto-plastic finite element analysis

  7. Strong discontinuity with cam clay under large deformations

    DEFF Research Database (Denmark)

    Katic, Natasa; Hededal, Ole

    2008-01-01

    The work shows simultaneous implementation of Strong discontinuity approach (SDA) by means of Enhanced Assumed Strain (EAS) and Critical State Soil Mechanics CSSM) in large strain regime. The numerical model is based on an additive decomposition of the displacement gradient into a conforming and ...... and an enhanced part. The localized deformations are approximated by means of a discontinuous displacement field. The applied algorithm leads to a predictor/corrector procedure which is formally identical to the returnmapping algorithm of classical (local and continuous) Cam clay model....

  8. Effect of GFRP spacer on local deformation of large superconductor in coil pack

    International Nuclear Information System (INIS)

    Nishimura, Arata; Tamura, Hitoshi; Mito, Toshiyuki; Yamamoto, Junya

    1994-01-01

    Design and construction of the Large Helical Device (LHD) are in progress at the National Institute for Fusion Science (NIFS) in Japan. The LHD has superconducting poloidal and helical coils, and many efforts have been undertaken to develop these large superconductors. When designing a large superconducting magnet, the mechanical behavior of the wound structure becomes a very important factor since the apparent rigidity affects the design of a coil support structure and the superconducting coil needs to endure the large electro-magnetic force it creates. Also, non-linear mechanical behavior should yield the instability of the magnet. In this paper, local deformation in a large conductor caused by GFRP spacers and epoxy adhesives was investigated after compressive rigidity testing. The epoxy adhesive used for attaching the GFRP spacers to the superconductor changed shape from an almost square sheet into a lens-like sheet during deformation, and a dent appeared on the surface of the superconductor. Three-dimensional FEM analysis showed that a compressive stress in the vertical direction of the loading axis existed in the adhesive plane. This stress component makes the adhesive lens-like and it results in the dent created during the compressive testing. This local deformation should yield a part of the permanent deformation observed after the compressive load cycle at 4.2 K

  9. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  10. Long-lived large-scale deformation under Central and Western Europe

    Science.gov (United States)

    Qorbani, Ehsan; Bokelmann, Götz

    2016-04-01

    We investigate the past and present-day deformation pattern under Central and Western Europe through seismic anisotropy. We use all SK(K)S splitting results that have been so far presented for this region and compile an image of upper mantle deformation. A large-scale deformation pattern emerges where NE-SW fast orientations under the Aegean are smoothly changing to NW-SE beneath the Hellenides-Dinarides conjunction. NW-SE is the dominant pattern under the whole Carpathian-Pannonian region. Towards Bohemia, the pattern rotates to E-W. The rotation continues until the Rhine valley, and it continues further within the Alps, all the way to Southern France. Outside the Alpine-deformation-influenced region, we observe a jump in fast orientation, between the Ardennes and the Massif Central in France, where the fast axis orientation is back to NW-SE. That anisotropy pattern may correlate with the arcuate shape of Variscan orogeny. It agrees with the Rheic suture line, and the boarders of two main tectonic units of European Variscides, Saxothuringian and Muldanubian. Previous studies on upper mantle anisotropy have interpreted and related such pattern mainly to frozen-in deformation from the past tectonic episodes. This has so far remained ambiguous though. Here we assess the relation between deformation at depth and shallower structure, as evidenced by stress field and topography. We discuss the presence of a long-lived large-scale upper mantle deformation, which has been acting ever since the Cambrian in different orogenic phases (Caledonian, Variscan, Alpine).

  11. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  13. Deformation regime and long-term precursors to eruption at large calderas: Rabaul, Papua New Guinea

    Science.gov (United States)

    Robertson, Robert M.; Kilburn, Christopher R. J.

    2016-03-01

    Eruptions at large calderas are normally preceded by variable rates of unrest that continue for decades or more. A classic example is the 1994 eruption of Rabaul caldera, in Papua New Guinea, which began after 23 years of surface uplift and volcano-tectonic (VT) seismicity at rates that changed unevenly with time by an order of magnitude. Although the VT event rate and uplift rate peaked in 1983-1985, eruptions only began a decade later and followed just 27 hours of anomalous changes in precursory signal. Here we argue that the entire 23 years of unrest belongs to a single sequence of damage accumulation in the crust and that, in 1991-1992, the crust's response to applied stress changed from quasi-elastic (elastic deformation with minor fault movement) to inelastic (deformation predominantly by fault movement alone). The change in behaviour yields limiting trends in the variation of VT event rate with deformation and can be quantified with a mean-field model for an elastic crust that contains a dispersed population of small faults. The results show that identifying the deformation regime for elastic-brittle crust provides new criteria for using precursory time series to evaluate the potential for eruption. They suggest that, in the quasi-elastic regime, short-term increases in rates of deformation and VT events are unreliable indicators of an imminent eruption, but that, in the inelastic regime, the precursory rates may follow hyperbolic increases with time and offer the promise of developing forecasts of eruption as much as months beforehand.

  14. Validity of scale modeling for large deformations in shipping containers

    International Nuclear Information System (INIS)

    Burian, R.J.; Black, W.E.; Lawrence, A.A.; Balmert, M.E.

    1979-01-01

    The principal overall objective of this phase of the continuing program for DOE/ECT is to evaluate the validity of applying scaling relationships to accurately assess the response of unprotected model shipping containers severe impact conditions -- specifically free fall from heights up to 140 ft onto a hard surface in several orientations considered most likely to produce severe damage to the containers. The objective was achieved by studying the following with three sizes of model casks subjected to the various impact conditions: (1) impact rebound response of the containers; (2) structural damage and deformation modes; (3) effect on the containment; (4) changes in shielding effectiveness; (5) approximate free-fall threshold height for various orientations at which excessive damage occurs; (6) the impact orientation(s) that tend to produce the most severe damage; and (7) vunerable aspects of the casks which should be examined. To meet the objective, the tests were intentionally designed to produce extreme structural damage to the cask models. In addition to the principal objective, this phase of the program had the secondary objectives of establishing a scientific data base for assessing the safety and environmental control provided by DOE nuclear shipping containers under impact conditions, and providing experimental data for verification and correlation with dynamic-structural-analysis computer codes being developed by the Los Alamos Scientific Laboratory for DOE/ECT

  15. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  16. Finite element analysis of large elasto-plastic deformation for sealing ring in nuclear pressure vessel

    International Nuclear Information System (INIS)

    Xiao Xuejian; Chen Ruxin

    1995-02-01

    Based on the R. Hills incremental virtual power principle and the elasto-plastic constitution equation for large deformation and by considering physical nonlinear, geometric nonlinear and thermal effects, a plane and axisymmetric finite element equation for thermal large elasto-plastic deformation has been established in the Euler description. The corresponding analysis program ATLEPD has been also complied for thermal large elasto-plastic deformation process of O-ring in RPV. The variations of stress, strain, contact specific pressure, mesh deformation and the aspects of spring back in upsetting and spring back process have been also investigated. Numerical results are fairly consistent with experimental ones. (5 figs., 4 tabs.)

  17. Multiscale modeling of large deformations in 3-D polycrystals

    International Nuclear Information System (INIS)

    Lu Jing; Maniatty, Antoinette; Misiolek, Wojciech; Bandar, Alexander

    2004-01-01

    An approach for modeling 3-D polycrystals, linking to the macroscale, is presented. A Potts type model is used to generate a statistically representative grain structures with periodicity to allow scale-linking. The grain structures are compared to experimentally observed grain structures to validate that they are representative. A macroscale model of a compression test is compared against an experimental compression test for an Al-Mg-Si alloy to determine various deformation paths at different locations in the samples. These deformation paths are then applied to the experimental grain structure using a scale-bridging technique. Preliminary results from this work will be presented and discussed

  18. Food gels filled with emulsion droplets : linking large deformation properties to sensory perception

    NARCIS (Netherlands)

    Sala, G.

    2007-01-01

    Key words: polymer gels, particle gels, emulsion, large deformation, friction, sensory This thesis reports studies on the large deformation and lubrication properties of emulsion-filled gels and the way these properties are related to the sensory perception of the gels. The design of the studies

  19. Failure mechanism and supporting measures for large deformation of Tertiary deep soft rock

    Institute of Scientific and Technical Information of China (English)

    Guo Zhibiao; Wang Jiong; Zhang Yuelin

    2015-01-01

    The Shenbei mining area in China contains typical soft rock from the Tertiary Period. As mining depths increase, deep soft rock roadways are damaged by large deformations and constantly need to be repaired to meet safety requirements, which is a great security risk. In this study, the characteristics of deformation and failure of typical roadway were analyzed, and the fundamental reason for the roadway deformation was that traditional support methods and materials cannot control the large deformation of deep soft rock. Deep soft rock support technology was developed based on constant resistance energy absorption using constant resistance large deformation bolts. The correlative deformation mechanisms of surrounding rock and bolt were analyzed to understand the principle of constant resistance energy absorption. The new technology works well on-site and provides a new method for the excavation of roadways in Tertiary deep soft rock.

  20. Fabric strain sensor integrated with CNPECs for repeated large deformation

    Science.gov (United States)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  1. Bioinspired legged-robot based on large deformation of flexible skeleton

    International Nuclear Information System (INIS)

    Mayyas, Mohammad

    2014-01-01

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot’s leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot. (paper)

  2. Bioinspired legged-robot based on large deformation of flexible skeleton.

    Science.gov (United States)

    Mayyas, Mohammad

    2014-11-11

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.

  3. Mapping change in large networks.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    2010-01-01

    Full Text Available Change is a fundamental ingredient of interaction patterns in biology, technology, the economy, and science itself: Interactions within and between organisms change; transportation patterns by air, land, and sea all change; the global financial flow changes; and the frontiers of scientific research change. Networks and clustering methods have become important tools to comprehend instances of these large-scale structures, but without methods to distinguish between real trends and noisy data, these approaches are not useful for studying how networks change. Only if we can assign significance to the partitioning of single networks can we distinguish meaningful structural changes from random fluctuations. Here we show that bootstrap resampling accompanied by significance clustering provides a solution to this problem. To connect changing structures with the changing function of networks, we highlight and summarize the significant structural changes with alluvial diagrams and realize de Solla Price's vision of mapping change in science: studying the citation pattern between about 7000 scientific journals over the past decade, we find that neuroscience has transformed from an interdisciplinary specialty to a mature and stand-alone discipline.

  4. Research on the drawing process with a large total deformation wires of AZ31 alloy

    International Nuclear Information System (INIS)

    Bajor, T; Muskalski, Z; Suliga, M

    2010-01-01

    Magnesium and their alloys have been extensively studied in recent years, not only because of their potential applications as light-weight engineering materials, but also owing to their biodegradability. Due to their hexagonal close-packed crystallographic structure, cold plastic processing of magnesium alloys is difficult. The preliminary researches carried out by the authors have indicated that the application of the KOBO method, based on the effect of cyclic strain path change, for the deformation of magnesium alloys, provides the possibility of obtaining a fine-grained structure material to be used for further cold plastic processing with large total deformation. The main purpose of this work is to present research findings concerning a detailed analysis of mechanical properties and changes occurring in the structure of AZ31 alloy wire during the multistage cold drawing process. The appropriate selection of drawing parameters and the application of multistep heat treatment operations enable the deformation of the AZ31 alloy in the cold drawing process with a total draft of about 90%.

  5. Chain dynamics and nanoparticle motion in attractive polymer nanocomposites subjected to large deformations.

    Science.gov (United States)

    Senses, Erkan; Tyagi, Madhusudan; Natarajan, Bharath; Narayanan, Suresh; Faraone, Antonio

    2017-11-08

    The effect of large deformation on the chain dynamics in attractive polymer nanocomposites was investigated using neutron scattering techniques. Quasi-elastic neutron backscattering measurements reveal a substantial reduction of polymer mobility in the presence of attractive, well-dispersed nanoparticles. In addition, large deformations are observed to cause a further slowing down of the Rouse rates at high particle loadings, where the interparticle spacings are slightly smaller than the chain dimensions, i.e. in the strongly confined state. No noticeable change, however, was observed for a lightly confined system. The reptation tube diameter, measured by neutron spin echo, remained unchanged after shear, suggesting that the level of chain-chain entanglements is not significantly affected. The shear-induced changes in the interparticle bridging reflect the slow nanoparticle motion measured by X-ray photon correlation spectroscopy. These results provide a first step for understanding how large shear can significantly affect the segmental motion in nanocomposites and open up new opportunities for designing mechanically responsive soft materials.

  6. Videometric research on deformation measurement of large-scale wind turbine blades

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,c...

  7. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  8. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    Science.gov (United States)

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  9. Small and large deformation behaviour of mixtures of xanthan and enzyme modified galactomannans

    NARCIS (Netherlands)

    Kloek, W.; Luyten, H.; Vliet, van T.

    1996-01-01

    Small and large deformation properties of aqueous mixtures of xanthan with enzyme modified galactomannans at low ionic strength are discussed in terms of the theory of rubber elasticity and the structure of the galactomannans. The linear deformation region of the gels is small indicating that the

  10. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2004-01-01

    Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and

  11. Large inelastic deformation analysis of steel pressure vessels at high temperature

    International Nuclear Information System (INIS)

    Ikonen, K.

    2001-01-01

    This publication describes the calculation methodology developed for a large inelastic deformation analysis of pressure vessels at high temperature. Continuum mechanical formulation related to a large deformation analysis is presented. Application of the constitutive equations is simplified when the evolution of stress and deformation state of an infinitesimal material element is considered in the directions of principal strains determined by the deformation during a finite time increment. A quantitative modelling of time dependent inelastic deformation is applied for reactor pressure vessel steels. Experimental data of uniaxial tensile, relaxation and creep tests performed at different laboratories for reactor pressure vessel steels are investigated and processed. An inelastic deformation rate model of strain hardening type is adopted. The model simulates well the axial tensile, relaxation and creep tests from room temperature to high temperature with only a few fitting parameters. The measurement data refined for the inelastic deformation rate model show useful information about inelastic deformation phenomena of reactor pressure vessel steels over a wide temperature range. The methodology and calculation process are validated by comparing the calculated results with measurements from experiments on small scale pressure vessels. A reasonably good agreement, when taking several uncertainties into account, is obtained between the measured and calculated results concerning deformation rate and failure location. (orig.)

  12. Microstructure Deformation and Fracture Mechanism of Highly Filled Polymer Composites under Large Tensile Deformation

    International Nuclear Information System (INIS)

    Tao Zhangjiang; Ping Songdan; Mei Zhang; Cheng Zhaipeng

    2013-01-01

    The microstructure deformation and fracture mechanisms of particulate-filled polymer composites were studied based on microstructure observations in this paper. By using in-situ tensile test system under scanning electron microscopy, three different composites composed of polymer binder filled by three different types of particles, namely Al particles, AP particles and HMX particles, with the same total filler content were tested. The roles of initial microstructure damage and particle type on the microstructure deformation and damage are highlighted. The results show that microstructure damage starts with the growth of the initial microvoids within the binders or along the binder/particle interfaces. With the increase of strain, the microstructure damages including debonding at the particle/binder interface and tearing of the binder lead to microvoid coalescence, and finally cause an abrupt fracture of the samples. Coarse particles lead to an increase of debonding at the particle/binder interface both in the initial state and during the loading process, and angular particles promote interface debonding during the loading process.

  13. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study

    Science.gov (United States)

    Kim, Junghoon; Avants, Brian; Patel, Sunil; Whyte, John; Coslett, H. Branch; Pluta, John; Detre, John A.; Gee, James C.

    2008-01-01

    Traumatic brain injury (TBI) is one of the most common causes of long-term disability. Despite the importance of identifying neuropathology in individuals with chronic TBI, methodological challenges posed at the stage of inter-subject image registration have hampered previous voxel-based MRI studies from providing a clear pattern of structural atrophy after TBI. We used a novel symmetric diffeomorphic image normalization method to conduct a tensor-based morphometry (TBM) study of TBI. The key advantage of this method is that it simultaneously estimates an optimal template brain and topology preserving deformations between this template and individual subject brains. Detailed patterns of atrophies are then revealed by statistically contrasting control and subject deformations to the template space. Participants were 29 survivors of TBI and 20 control subjects who were matched in terms of age, gender, education, and ethnicity. Localized volume losses were found most prominently in white matter regions and the subcortical nuclei including the thalamus, the midbrain, the corpus callosum, the mid- and posterior cingulate cortices, and the caudate. Significant voxel-wise volume loss clusters were also detected in the cerebellum and the frontal/temporal neocortices. Volume enlargements were identified largely in ventricular regions. A similar pattern of results was observed in a subgroup analysis where we restricted our analysis to the 17 TBI participants who had no macroscopic focal lesions (total lesion volume> 1.5 cm 3). The current study confirms, extends, and partly challenges previous structural MRI studies in chronic TBI. By demonstrating that a large deformation image registration technique can be successfully combined with TBM to identify TBI-induced diffuse structural changes with greater precision, our approach is expected to increase the sensitivity of future studies examining brain-behavior relationships in the TBI population. PMID:17999940

  14. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter

    Science.gov (United States)

    Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing

    2018-03-01

    Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.

  15. Large-Scale Deformation and Uplift Associated with Serpentinization

    Science.gov (United States)

    Germanovich, L. N.; Lowell, R. P.; Smith, J. E.

    2014-12-01

    Geologic and geophysical data suggest that partially serpentinized peridotites and serpentinites are a significant part of the oceanic lithosphere. All serpentinization reactions are exothermic and result in volume expansion as high as 40%. Volume expansion beneath the seafloor will lead to surface uplift and elevated stresses in the neighborhood of the region undergoing serpentinization. The serpentinization-induced stresses are likely to result in faulting or tensile fracturing that promote the serpentinization process by creating new permeability and allowing fluid access to fresh peridotite. To explore these issues, we developed a first-order model of crustal deformation by considering an inclusion undergoing transformation strain in an elastic half-space. Using solutions for inclusions of different shapes, orientations, and depths, we calculate the surface uplift and mechanical stresses generated by the serpentinization processes. We discuss the topographic features at the TAG hydrothermal field (Mid-Atlantic Ridge, 26°N), uplift of the Miyazaki Plain (Southwestern Japan), and tectonic history of the Atlantic Massif (inside corner high of the Mid-Atlantic Ridge, 30°N, and the Atlantis Transform Fault). Our analysis suggests that an anomalous salient of 3 km in diameter and 100 m high at TAG may have resulted from approximately 20% transformational strain in a region beneath the footwall of the TAG detachment fault. This serpentinization process tends to promote slip along some overlying normal faults, which may then enhance fluid pathways to the deeper crust to continue the serpentinization process. The serpentinization also favors slip and seismicity along the antithetic faults identified below the TAG detachment fault. Our solution for the Miyazaki Plain above the Kyushu-Palau subduction zone explains the observed uplift of 120 m, but the transformational strain needs only be 3%. Transformational strains associated with serpentinization in this region may

  16. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  17. Changes in Electrokinetic Coupling Coefficients of Granite under Triaxial Deformation

    Directory of Open Access Journals (Sweden)

    Osamu Kuwano

    2012-01-01

    Full Text Available Electrokinetic phenomena are believed to be the most likely origin of electromagnetic signals preceding or accompanying earthquakes. The intensity of the source current due to the electrokinetic phenomena is determined by the fluid flux and the electrokinetic coupling coefficient called streaming current coefficient; therefore, how the coefficient changes before rupture is essential. Here, we show how the electrokinetic coefficients change during the rock deformation experiment up to failure. The streaming current coefficient did not increase before failure, but continued to decrease up to failure, which is explained in terms of the elastic closure of capillary. On the other hand, the streaming potential coefficient, which is the product of the streaming current coefficient and bulk resistivity of the rock, increased at the onset of dilatancy. It may be due to change in bulk resistivity. Our result indicates that the zeta potential of the newly created surface does not change so much from that of the preexisting fluid rock interface.

  18. Autogenous Deformation and Change of the Relative Humidity in Silica Fume-Modified Cement Paste

    DEFF Research Database (Denmark)

    Jensen, Ole mejlhede; Hansen, Per Freiesleben

    1996-01-01

    Even during sealed curing and at a constant temperature a hardening cement paste will deform and the relative humidity within its pores will lower. This autogenous deformation and autogenous relative humidity change may be so significant that the cement paste cracks if the deformation is restrained....... This article focuses on the influence of silica fume addition on autogenous deformation and autogenous relative humidity change. Continuous measurement of autogenous deformation and autogenous relative humidity change for more than 1 year and 1« years, respectively, was performed. The investigations show...... thatsilica fume addition markedly increases the autogenous shrinkage as well as the autogenous relative humidity change....

  19. An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images

    Science.gov (United States)

    Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.

    2012-03-01

    The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.

  20. 3D scanning applied in the evaluation of large plastic deformation

    Directory of Open Access Journals (Sweden)

    Márcio Eduardo Silveira

    2012-01-01

    Full Text Available Crash test are experimental studies demanded by specialized agencies in order to evaluate the performance of a component (or entire vehicle when subjected to an impact. The results, often highly destructive, produce large deformations in the product. The use of numerical simulation in initial stages of a project is essential to reduce costs. One difficulty in validating numerical results involves the correlation between the level and the deformation mode of the component, since it is a highly nonlinear simulation in which various parameters can affect the results. The main objective of this study was to propose a methodology to correlate the result of crash tests of a fuel tank with the numerical simulations, using an optical 3D scanner. The results are promising, and the methodology implemented would be used for any products that involve large deformations.

  1. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    Science.gov (United States)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  2. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    Science.gov (United States)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  3. In-situ high-P, T X-ray microtomographic imaging during large deformation

    DEFF Research Database (Denmark)

    Wang, Y; Lesher, Charles

    2011-01-01

    We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework–type texture, where the alloy phase (Fe-Ni-S) was pres...

  4. Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219

    Energy Technology Data Exchange (ETDEWEB)

    Murty, S.V.S. Narayana [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum-695 022 (India); Sarkar, Aditya [Department of Materials Science and Engineering, Indian Institute of Technology, Gandhinagar-382 424 (India); Narayanan, P. Ramesh; Venkitakrishnan, P.V. [Materials and Mechanical Entity, Vikram Sarabhai Space Center, Trivandrum-695 022 (India); Mukhopadhyay, J. [Department of Materials Science and Engineering, Indian Institute of Technology, Gandhinagar-382 424 (India)

    2016-11-20

    Aluminium alloy AA2219 is widely used in the fabrication of propellant tanks of cryogenic stages of satellite launch vehicles. These propellant tanks are welded structures and a fine grained microstructure is usually preferred for sheets/plates and ring rolled rings used in their fabrication. In order to study the effect of large strain deformation on the microstructural evolution, hot isothermal plane strain compression (PSC) tests were conducted on AA 2219 in the temperature range of 250 °C–400 °C and at strain rates of 0.01 s{sup −1} and 1 s{sup −1}. Flow curves obtained at different temperatures and strain rates exhibited two types of behavior; one with a clear stress peak followed by softening, occurring below Z=2.5E+15 and steady state flow behavior above it. Electron Back-Scatter Diffraction (EBSD) analysis of the PSC tested samples at the location of maximum strain revealed the presence of lamellar microstructures with very low fraction of transverse high angle boundaries (HABs). The loss of HABs during large strain deformation is attributed to the occurrence of dynamic recovery (DRV) as the ratio of calculated to measured lamellar boundary width is less than unity. Based on detailed microstructure and micro texture analysis, it was concluded that it is very difficult to obtain large fraction of HABs through uniaxial large strain deformation. Therefore, to obtain fine grain microstructure in thermo-mechanically processed AA2219 products, multi-axial deformation is essential.

  5. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    Science.gov (United States)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  6. Ethics of large-scale change

    OpenAIRE

    Arler, Finn

    2006-01-01

      The subject of this paper is long-term large-scale changes in human society. Some very significant examples of large-scale change are presented: human population growth, human appropriation of land and primary production, the human use of fossil fuels, and climate change. The question is posed, which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, th...

  7. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  8. Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations

    Science.gov (United States)

    Hosseini, Seyed Farhad; Hashemian, Ali; Moetakef-Imani, Behnam; Hadidimoud, Saied

    2018-03-01

    In the present paper, the isogeometric analysis (IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables (displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline (NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.

  9. A Study of the Large Deformation Mechanism and Control Techniques for Deep Soft Rock Roadways

    Directory of Open Access Journals (Sweden)

    Xiaojie Yang

    2018-04-01

    Full Text Available Large deformation control of deep soft rock roadways has been a major problem in mining activities worldwide. This paper considers the supporting problem related to large deformation of a deep soft rock roadway in Chao’hua coal mine. The discrete element simulation method (UDEC software is adopted to simulate a tailgate of panel 31041 in Chao’hua coal mine. The failure patterns of unsupported and primary supported roadway are simulated, and these reveal the characteristics of deformation, stress and crack propagation. The excavation of roadway leads to high deviator stress, which exceeds the peak strength of shallow surrounding rock and causes it to enter the post-failure stage. Tensile failures then initiate and develop around the roadway, which causes the fragmentation, dilation and separation of shallow surrounding rock. The compressive capacity of the primary support system is low, which results in serious contraction in the full section of the roadway. An improved control scheme is put forward for the support of a tailgate. The underground test results confirm that the improved support system effectively controlled large deformation of the surrounding rocks, which can provide references for support in the design of roadways excavated in deep soft stratum.

  10. Fault structure analysis by means of large deformation simulator; Daihenkei simulator ni yoru danso kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Y.; Shi, B. [Geological Survey of Japan, Tsukuba (Japan); Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-05-27

    Large deformation of the crust is generated by relatively large displacement of the mediums on both sides along a fault. In the conventional finite element method, faults are dealt with by special elements which are called joint elements, but joint elements, elements microscopic in width, generate numerical instability if large shear displacement is given. Therefore, by introducing the master slave (MO) method used for contact analysis in the metal processing field, developed was a large deformation simulator for analyzing diastrophism including large displacement along the fault. Analysis examples were shown in case the upper basement and lower basement were relatively dislocated with the fault as a boundary. The bottom surface and right end boundary of the lower basement are fixed boundaries. The left end boundary of the lower basement is fixed, and to the left end boundary of the upper basement, the horizontal speed, 3{times}10{sup -7}m/s, was given. In accordance with the horizontal movement of the upper basement, the boundary surface largely deformed. Stress is almost at right angles at the boundary surface. As to the analysis of faults by the MO method, it has been used for a single simple fault, but should be spread to lots of faults in the future. 13 refs., 2 figs.

  11. A large deformation theory of solids subject to electromagnetic loads and its application

    International Nuclear Information System (INIS)

    Nishiguchi, I.; Sasaki, M.

    1993-01-01

    A large deformation theory of deformable solids is proposed in which the interaction with electromagnetic fields is taken into account. Weak forms of the Maxwell's equations in a fixed reference configuration together with the balance of momentum constitute the governing equations for our theory. The weak forms of the Maxwell's equations in a reference configuration can be derived by the direct transformation from spatial weak forms. The results coincide with the weak forms obtained from the local expressions by Lax and Nelson though we made a distinction between the covariant and contravariant vector explicitly. For the deformable body subject to the electromagnetic fields, weak forms of the Ampere's law and/or the Faraday's law, when combined with the weak form of the balance of momentum, can serve as the governing equations of the theory. As is known, however, these equations are not sufficient to describe the response of a specific material due to a given loading. As for the momentum balance, we need the dependency of stress on the deformation and objective constitutive equations of hyperelasticity, hypoelasticity and inelasticity are available. Parallel to these, objective constitutive equations for the electromagnetism are discussed. As an application of the theory, linearized equations for quasi-static deformation under magnetic field is derived based on the vector potential formulation. (author)

  12. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    Science.gov (United States)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  13. Static Pull Testing of a New Type of Large Deformation Cable with Constant Resistance

    Directory of Open Access Journals (Sweden)

    Zhigang Tao

    2017-01-01

    Full Text Available A new type of energy-absorbing cable, Constant-Resistance Large Deformation cable (CRLD cable with three different specifications, has been recently developed and tested. An effective cable should occupy the ability of absorbing deformation energy from these geodisaster loads and additionally must be able to yield with the sliding mass movements and plastic deformation over large distances at high displacement rates. The new cable mainly consists of constant-resistance casing tube and frictional cone unit that transfers the load from the slope. When experiencing a static or dynamic load and especially the load exceeding the constant resistance force (CR-F, a static friction force derived from the movement of frictional cone unit in casing tube of CRLD cable, the frictional cone unit will move in the casing tube along the axis and absorb deformation energy, accordingly. In order to assess the performance of three different specified cables in situ, a series of field static pull tests have been performed. The results showed that the first type of CRLD cable can yield 2000 mm displacement while acting 850 kN static pull load, which is superior to that of other two types, analyzing based on the length of the displacement and the level of static pull load.

  14. Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation

    Science.gov (United States)

    Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong

    2018-05-01

    The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.

  15. Large-deformation and high-strength amorphous porous carbon nanospheres

    Science.gov (United States)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  16. Microstructure and micro-texture evolution during large strain deformation of Inconel alloy IN718

    Energy Technology Data Exchange (ETDEWEB)

    Nayan, Niraj [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Gurao, N.P. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208 016 (India); Narayana Murty, S.V.S., E-mail: susarla.murty@gmail.com [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India); Jha, Abhay K.; Pant, Bhanu; George, Koshy M. [Materials and Mechanical Entity, Vikram Sarabhai Space Centre, Trivandrum 695 022 (India)

    2015-12-15

    The hot deformation behaviour of Inconel alloy IN718 was studied in the temperature range of 950–1100 °C and at strain rates of 0.01 and 1 s{sup −1} with a view to understand the microstructural evolution as a function of strain rate and temperature. For this purpose, a single hit, hot isothermal plane strain compression (PSC) technique was used. The flow curves obtained during PSC exhibited weak flow softening at higher temperatures. Electron backscattered diffraction analysis (EBSD) of the PSC tested samples at the location of maximum strain revealed dynamic recrystallisation occurring at higher temperatures. Based on detailed microstructure and microtexture analyses, it was concluded that single step, large strain deformation has a distinct advantage in the thermo-mechanical processing of Inconel alloy IN718. - Highlights: • Plane strain compression (PSC) on IN718 was conducted. • Evolution of microstructure during large strain deformation was studied. • Flow curves exhibited weak softening at higher temperatures and dipping of the flow curve at a strain rate of 1 s{sup −1}. • Optimization of microstructure and process parameter for hot rolling possible by plane strain compression testing • Dynamic recrystallisation occurs in specimens deformed at higher temperatures and lower strain rates.

  17. A morphing-based scheme for large deformation analysis with stereo-DIC

    Science.gov (United States)

    Genovese, Katia; Sorgente, Donato

    2018-05-01

    A key step in the DIC-based image registration process is the definition of the initial guess for the non-linear optimization routine aimed at finding the parameters describing the pixel subset transformation. This initialization may result very challenging and possibly fail when dealing with pairs of largely deformed images such those obtained from two angled-views of not-flat objects or from the temporal undersampling of rapidly evolving phenomena. To address this problem, we developed a procedure that generates a sequence of intermediate synthetic images for gradually tracking the pixel subset transformation between the two extreme configurations. To this scope, a proper image warping function is defined over the entire image domain through the adoption of a robust feature-based algorithm followed by a NURBS-based interpolation scheme. This allows a fast and reliable estimation of the initial guess of the deformation parameters for the subsequent refinement stage of the DIC analysis. The proposed method is described step-by-step by illustrating the measurement of the large and heterogeneous deformation of a circular silicone membrane undergoing axisymmetric indentation. A comparative analysis of the results is carried out by taking as a benchmark a standard reference-updating approach. Finally, the morphing scheme is extended to the most general case of the correspondence search between two largely deformed textured 3D geometries. The feasibility of this latter approach is demonstrated on a very challenging case: the full-surface measurement of the severe deformation (> 150% strain) suffered by an aluminum sheet blank subjected to a pneumatic bulge test.

  18. Study of structural changes during deformation of polycrystal vanadium

    International Nuclear Information System (INIS)

    Zubets, Yu.E.; Manilov, V.A.; Sarzhan, G.F.; Trefilov, V.I.; Firstov, S.A.

    1978-01-01

    Investigated were the polycrystalline vanadium dislocation structure formed within the range of temperatures between 20 and 1000 deg C and in the interval of deformations between 5 and 94%. The diagram of states was established in the temperature vs. degree of deformation coordinates from electron microscopy data. It was shown that a deformation of 5-7% leads to the appearance in the structure of incorrect shape dislocations with a lot of jogs and kinks. The density of relatively homogeneously distributed dislocations increases with the degree of deformation up to the latter's value of 50%. At a deformation greater than 50%, there forms a cellular structure, there remaining ranges where no cellular structure is formed. Thus, there appears a two-component texture with a different level of internal stresses. Annealing of such a material gives rise to areas of different types of cellular structure

  19. Nuclear moments and deformation changes in the lightest Pt isotopes measured by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J; Duong, H T; Genevey, J; Girod, M; Huber, G; Ibrahim, F; Krieg, M; Le Blanc, F; Lee, J K P; Obert, J; Oms, J; Peru, S; Pinard, J; Putaux, J C; Sauvage, J; Sebastian, V; Zemlyanoi, S G; Forkel-Wirth, Doris; Lettry, Jacques

    1999-01-01

    Laser spectroscopy measurements are performed with the lightest neutron-deficient platinum isotopes using the experimental setup COMPLIS installed at the ISOLDE-Booster facility. The hyperfine spectra of /sup 182-178/Pt and /sup 183m/Pt are recorded for the first time from the optical transition 5d/sup 9/6s/sup 3/D/sub 3/ to 5d/sup 9/6p/sup 3/P/sub 2/. The variation in the mean-square charge radius of these nuclei and the magnetic and quadrupole (for I>or=1) moments of the odd isotope nuclei are found. A large deformation change between the /sup 183g/Pt and /sup 183m/Pt nuclei, quite large inverted odd-even staggering of the charge radius around the neutron midshell N=104, and a nuclear deformation drop in the region A=179 are revealed. All the results are discussed in terms of nuclear shape variation and are compared with the results of Hartree-Fock- Bogoliubov calculations involving the Gogny force. Comparison of the deformation measured from /sup 183g, m/Pt to the odd-odd isotone /sup 184g, m/Au shows that...

  20. Mass deformed ABJM theory on three sphere in large N limit

    Energy Technology Data Exchange (ETDEWEB)

    Nosaka, Tomoki [Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Shimizu, Kazuma; Terashima, Seiji [Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2017-03-23

    In this paper the free energy of the mass deformed ABJM theory on S{sup 3} in the large N limit is studied. We find a new solution of the large N saddle point equation which exists for an arbitrary value of the mass parameter, and compute the free energies for these solutions. We also show that the solution corresponding to an asymptotically AdS{sub 4} geometry is singular at a certain value of the mass parameter and does not exist over this critical value. It is not clear that what is the gravity dual of the mass deformed ABJM theory on S{sup 3} for the mass parameter larger than the critical value.

  1. Large deformation analysis of adhesive by Eulerian method with new material model

    International Nuclear Information System (INIS)

    Maeda, K; Nishiguchi, K; Iwamoto, T; Okazawa, S

    2010-01-01

    The material model to describe large deformation of a pressure sensitive adhesive (PSA) is presented. A relationship between stress and strain of PSA includes viscoelasticity and rubber-elasticity. Therefore, we propose the material model for describing viscoelasticity and rubber-elasticity, and extend the presented material model to the rate form for three dimensional finite element analysis. After proposing the material model for PSA, we formulate the Eulerian method to simulate large deformation behavior. In the Eulerian calculation, the Piecewise Linear Interface Calculation (PLIC) method for capturing material surface is employed. By using PLIC method, we can impose dynamic and kinematic boundary conditions on captured material surface. The representative two computational examples are calculated to check validity of the present methods.

  2. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  3. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  4. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Evaluation of filler effects on SBR in large shearing deformations 1. Utility of differential dynamic modulus as predictor for wet skid resistance

    International Nuclear Information System (INIS)

    Isono, Y.; Oyama, T.; Kawahara, S.

    2003-01-01

    Now the use of silica in tire tread applications is increasing. This is because of not so different rolling resistance for silica (Si) filled and carbon black (CB) filled rubbers, and of higher wet skid resistance for the former than the latter. Such difference should be attributed to the variation in viscoelasticity. It is, however, still unknown what viscoelastic function should be used as a predictor. At the place in contact with the road, a tire tread rubber undergoes a large deformation on which small oscillations are superposed. Hence differential dynamic modulus measured by intermittently superposing small oscillations on a large deformation may provide useful information. In this work, nonlinear viscoelastic properties of CB and Si (with coupling agent) filled SBR vulcanizates were studied in cycles of large shearing deformation (γ = 2) and recovery (γ = 0) on which small shear oscillations (γ osc = 0.005) were superposed. CB filled SBR showed different responses in deformed and recovered states: Values of tanδ are lower in deformed state than in recovered state. However, Si filled one showed no change in tanδ in the two states. In the deformed state, Si system showed higher tanδ than CB system. The results agree with our experience of higher wet skid resistance for Si than for CB, showing validity of differential loss tangent as the predictor. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  6. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    This paper focuses on shear deformation of particle gels. Two different methods of shear deformation are discussed, namely affine and non-affine deformation, the second being novel in simulation studies of gels. Non-affine deformation resulted in a slower increase of the stress at small deformation.

  7. Woods-Saxon potential parametrization at large deformations for plutonium odd isotopes

    International Nuclear Information System (INIS)

    Garcia, F.; Garrote, E.; Yoneama, M.L.; Arruda-Neto, J.D.T.; Mesa, J.; Bringas, F.; Likhachev, V.P.; Rodriguez, O.; Guzman, F.

    1999-01-01

    The structure of single-particle levels in the second minima of 237,239,241 Pu was analyzed with the help of an axially-deformed Woods-Saxon potential. The nuclear shape was parametrized in terms of the cassinian ovaloids. A parametrization of the spin-orbit part of the potential was obtained in the region corresponding to large deformations (second minimum), depending only on the nuclear surface area. With this parametrization, we were able to reproduce successfully the spin, parity and energies of the rotational band built on the 8 μ s isomeric state in 239 Pu and, also, a spin assignment for both isomeric states in 237 Pu and 241 Pu was carried out. (orig.)

  8. Woods-Saxon potential parametrization at large deformations for odd-plutonium nuclei

    International Nuclear Information System (INIS)

    Garcia, F.; Yoneama, M.L.; Arruda Neto, J.D.T.; Mesa, J.; Bringas, F.; Dias, J.F.; Likhachev, V.P.

    1997-01-01

    The structure of the the single-particle levels in the secondary minima of 237,239,241 Pu fissioning nuclei is analysed with the help of an axially-deformed Woods-Saxon potential. The nuclear shape was parametrized in terms of the Cassinian ovaloids. The parametrization of the spin-orbit part of the potential in the region corresponding to large deformations (second minimum), which depends only on the nuclear surface area, B s , was obtained. With this relation we were able to reproduce successfully the spin (parity) and the energies of the rotational band built on the 8μs isomeric rate in 239 Pu and also to make a spin assignment for both isomer states in 237 Pu and 241 Pu. (author)

  9. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    Science.gov (United States)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  10. Effect of large plastic deformation on microstructure and mechanical properties of a TWIP steel

    International Nuclear Information System (INIS)

    Yanushkevich, Z; Belyakov, A; Kaibyshev, R; Molodov, D

    2014-01-01

    The effect of cold rolling on the microstructure evolution and mechanical properties of a cold rolled Fe-0.3C-17Mn-1.5AI TWIP steel was studied. The plate samples were cold rolled with reductions of 20, 40, 60 and 80%. The structural changes were associated with the development of deformation twinning and shear bands. The average spacing between twin boundaries in the transverse section of the rolled plates decreased from ∼190 to 36 nm with an increase in the rolling reduction from 20 to 40%. Upon further rolling to 80% reduction the twin spacing remained at about 30 nm. The cold rolling resulted in significant increase in strength as revealed by tensile tests at an ambient temperature. The offset yield stress approached 1440 MPa, and the ultimate tensile strength increased to 1630 MPa after rolling reduction of 80%. Such significant strengthening was attributed to the development of specific structure consisting of deformation nanotwins with high dislocation density

  11. Rheological behaviour of wheat glutens at small and large deformations. Comparison of two glutens differing in bread making potential

    NARCIS (Netherlands)

    Janssen, A. M.; vanVliet, T; Vereijken, JM

    The rheological characteristics of hydrated cv. Obelisk and Katepwa glutens, with poor and good baking potential, respectively, were studied at small and large deformations. Dynamic (oscillatory) measurements at small deformations over a frequency range of 0.03 to 3 rad/s showed that cv. Katepwa

  12. Deformation-induced structural changes of amorphous Ni0.5Zr0.5 in molecular-dynamic simulations

    International Nuclear Information System (INIS)

    Brinkmann, K.

    2006-01-01

    The present work investigates the plastic deformation of metallic glasses by the aid of molecular-dynamic simulations. The parameters for the model system are adapted to those for a NiZr-alloy. In particular, the composition Ni 0.5 Zr 0.5 is used. The analyzed deformation simulations are conducted for small systems with 5184 atoms and large systems with 17500 atoms in a periodic simulation cell. The deformation simulations of pre-deformed samples are carried out either at constant shear-rate or at constant load, the latter mode modeling a creep experiment. Stress-strain curves for pre-deformed samples show a less pronounced stress-overshoot phenomenon. Creep-simulations of samples deformed beyond the yield region indicate a drastically reduced viscosity in these systems when compared to samples pre-deformed only up to the linear regime of the stress-strain curve. From analyzing the local atomic topology it is found that the transition from the highly viscous, hard-to-deform state of the undeformed or only weakly strained system into the easy-to-deform flow-state, present if the system is strained far beyond the yielding regime of the stress-strain curve, is connected with the formation of a region containing atoms with massive changes in their topology which is oriented along a diagonal plane of the simulation cell. The degree of localization of these deformation bands is influenced by temperature and shear-rate. In subsequent deformations of pre-deformed samples the regions with massive changes in the atomic topology are again susceptible to changes in the local atomic topology. By using methods from statistics, a significant difference in the distribution of atomic properties for the group of atoms with massive topology changes on the one hand and the group of atoms without changes in their topology on the other gets quantitatively ascertainable. From the differences in structural properties, e.g. potential energy, cage volumes, angular order parameters or atomic

  13. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    Science.gov (United States)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  14. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  15. Structural Changes in Deformed Soft Magnetic Ni-Based Metallic Glass

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    The effects of intensive plastic deformation of the soft magnetic metallic glass Ni Si 13 on the structural relaxation were examined. The enthalpy changes studied by differential scanning calorimetry revealed that the intensive plastic deformation was associated with the partial structural

  16. Thermomechanical theory of materials undergoing large elastic and viscoplastic deformation (AWBA development program)

    International Nuclear Information System (INIS)

    Martin, S.E.; Newman, J.B.

    1980-11-01

    A thermomechanical theory of large deformation elastic-inelastic material behavior is developed which is based on a multiplicative decomposition of the strain. Very general assumptions are made for the elastic and inelastic constitutive relations and effects such as thermally-activated creep, fast-neutron-flux-induced creep and growth, annealing, and strain recovery are compatible with the theory. Reduced forms of the constitutive equations are derived by use of the second law of thermodynamics in the form of the Clausius-Duhem inequality. Observer invariant equations are derived by use of an invariance principle which is a generalization of the principle of material frame indifference

  17. Literature survey: Relations between stress change, deformation and transmissivity for fractures and deformation zones based on in situ investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Aasa (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    This literature survey is focused upon relations between stress change, deformation and transmissivity for fractures and deformation zones and aims at compiling and commenting on relevant information and references with focus on data from in situ investigations. Main issues to investigate are: - Impact of normal stress change and deformation on transmissivity, for fractures and deformation zones. - Impact of shear stress and displacement on transmissivity, for fractures and deformation zones for different normal load conditions. Considering the line of research within the area, the following steps in the development can be identified. During the 1970's and 1980's, the fundamentals of rock joint deformation were investigated and identification and description of mechanisms were made in the laboratory. In the 1990's, coupling of stress-flow properties of rock joints were made using hydraulic testing to identify and describe the mechanisms in the field. Both individual fractures and deformation zones were of interest. In situ investigations have also been the topic of interest the last ten years. Further identification and description of mechanisms in the field have been made including investigation and description of system of fractures, different types of fractures (interlocked/mated or mismatched/unmated) and how this is coupled to the hydromechanical behavior. In this report, data from in situ investigations are compiled and the parameters considered to be important to link fracture deformation and transmissivity are normal stiffness, k{sub n} and hydraulic aperture, b{sub h}. All data except for those from one site originate from investigations performed in granitic rock. Normal stiffness, k{sub n}, and hydraulic aperture, b{sub h}, are correlated, even though data are scattered. In general, the largest variation is seen for small hydraulic apertures and high normal stiffness. The increasing number of contact points (areas) and fracture filling are

  18. Large deformation and post-failure simulations of segmental retaining walls using mesh-free method (SPH)

    OpenAIRE

    Bui, H. H.; Kodikara, J. A.; Pathegama, R.; Bouazza, A.; Haque, A.

    2015-01-01

    Numerical methods are extremely useful in gaining insights into the behaviour of reinforced soil retaining walls. However, traditional numerical approaches such as limit equilibrium or finite element methods are unable to simulate large deformation and post-failure behaviour of soils and retaining wall blocks in the reinforced soil retaining walls system. To overcome this limitation, a novel numerical approach is developed aiming to predict accurately the large deformation and post-failure be...

  19. A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    An, Yonghao; Jiang, Hanqing

    2013-01-01

    Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity–plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform. (paper)

  20. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    International Nuclear Information System (INIS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-01-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m −1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP. (paper)

  1. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2015-01-01

    Full Text Available This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs and then identifies scale and translation parameters separately. For three-dimensional (3D images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  2. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de

    2002-11-15

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.

  3. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    International Nuclear Information System (INIS)

    Dombrowski, Stefan von

    2002-01-01

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined

  4. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation

    International Nuclear Information System (INIS)

    Wang, T.S.; Hou, R.J.; Lv, B.; Zhang, M.; Zhang, F.C.

    2007-01-01

    The microstructure evolution and the deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation at room temperature have been studied as a function of the reduction in the range of 20-60%. Experimental results show that with the reduction increasing the microstructure of the deformed sample changes from dislocation substructures into the dominant twins plus dislocations. This suggests that the plastic deformation mechanism changes from the dislocation slip to the dominant deformation twinning. The minimum reduction for deformation twins starting is estimated to be at between 30 and 40%. With the reduction further increases to more than 40%, the deformation twinning is operative and the thickness of deformation twins gradually decreases to nanoscale and shear bands occur. These high-density twins can be curved by the formation of shear bands. In addition, both transmission electron microscopy and X-ray diffraction examinations confirm the inexistence of deformation-induced martensites in these deformed samples

  5. Mapping reservoir volume changes during cyclic steam stimulation using tiltmeter-based surface deformation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Du, J.; Davis, E.J.; Roadarmel, W.H.; Wolhart, S.L.; Marsic, S.; Gusek, R.; Wright, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Pinnacle Technologies Inc., Houston, TX (United States); Brissenden, S.J.; McGillivray, P. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre; Bourne, S.; Hofstra, P. [Shell International E and P, Calgary, AB (Canada)

    2005-11-01

    Surface deformation measurements have been effectively used to monitor production, waterflooding, waste injection and steam flooding in oil fields, and in cyclic steam stimulation (CSS) applications. It was shown that further information can be obtained from this technique by inverting the surface deformation for the volumetric deformation at the reservoir level, so that the aerial distribution of volumetric distribution can be identified. A poroelastic model calculated deformation resulting from volumetric changes in the reservoir. A linear geophysical model was then formulated to invert the reservoir volumetric deformation from the measured surface deformation. Constraints were applied to resolve the inversion problem. Theoretical surface deformation was calculated after each inversion from the inverted volumetric deformation distribution which best fit the measured information data, or tilt, at the surface. The technique was then applied to real data from a CSS injection project at Shell Canada's Peace River development in northern Alberta, where several pads of horizontal wells have been developed. A total of 50 tiltmeters were used to monitor half of Pad A and 70 tiltmeters were used to monitor Pad B. Monitoring was used to identify and characterize any hydraulic fracturing that was contributing to injection mechanisms in the reservoir. It was noted that inverting the measured surface tilt for the volumetric change at reservoir levels improved the ability to interpret reservoir processes. It was observed that volumetric changes can be non-uniform with some pad areas deforming more than others. It was concluded that deformation-based, reservoir-level monitoring has proven helpful in ongoing efforts to optimize such variables as the length of well laterals, injection rates, lateral spacing and cycle times. 10 refs., 32 figs.

  6. Ethics of large-scale change

    DEFF Research Database (Denmark)

    Arler, Finn

    2006-01-01

    , which kind of attitude is appropriate when dealing with large-scale changes like these from an ethical point of view. Three kinds of approaches are discussed: Aldo Leopold's mountain thinking, the neoclassical economists' approach, and finally the so-called Concentric Circle Theories approach...

  7. Coal Matrix Deformation and Pore Structure Change in High-Pressure Nitrogen Replacement of Methane

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ji

    2018-01-01

    Full Text Available Coal matrix deformation is one of the main controlling factors for coal reservoir permeability changes in nitrogen foam fracturing. The characteristics and mechanism of coal matrix deformation during the process of adsorption/desorption were studied by isothermal adsorption/desorption experiments with methane and nitrogen. Based on the free-energy theories, the Langmuir equation, and elastic mechanics, mathematical models of coal matrix deformation were developed and the deformation characteristics in adsorption/desorption processes were examined. From the study, we deduced that the coal matrix swelling, caused by methane adsorption, was a Langmuir-type relationship with the gas pressure, and exponentially increased as the adsorption quantity increased. Then, the deformation rate and amplitude of the coal matrix decreased gradually with the increase of the pressure. At the following stage, where nitrogen replaces methane, the coal matrix swelling continued but the deformation amplitude decreased, which was only 19.60% of the methane adsorption stage. At the mixed gas desorption stage, the coal matrix shrank with the reduction of pressure and the shrinkage amount changed logarithmically with the pressure, which had the hysteresis effect when compared with the swelling in adsorption. The mechanism of coal matrix deformation was discussed through a comparison of the change of micropores, mesopores, and also part macropores in the adsorption process.

  8. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    Science.gov (United States)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  9. Electromechanical stability of electro-active silicone filled with high permittivity particles undergoing large deformation

    International Nuclear Information System (INIS)

    Liu, Liwu; Liu, Yanju; Zhang, Zhen; Leng, Jinsong; Li, Bo

    2010-01-01

    In this paper, an expression for the permittivity of electro-active silicone undergoing large deformation with high permittivity particles filled uniformly has been proposed. Two expressions are proposed for the permittivity, one based on experimental tests and the other based on the theory of composite material. By applying the thermodynamic model incorporating linear dielectric permittivity and nonlinear hyperelastic performance, the mechanical performance and electromechanical stability of the coupling system constituted by silicone filled with PMN–PT have been studied. The results show that the critical electric field decreases, namely the stability performance of the system declines when the content of PMN–PT c(v) increases and the electrostrictive coefficients increase. The results are beneficial for us to understand deeply the influence of the filled particle on the stability performance of silicone and to guide the design and manufacture of actuators and sensors based on dielectric elastomers

  10. Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation

    International Nuclear Information System (INIS)

    Goudreau, G.L.; Hallquist, J.O.

    1979-08-01

    Large deformation engineering analysis at Lawrence Livermore Laboratory has benefited from a synthesis of computational technology from the finite difference hydrocodes of the scientific weapons community and the structural finite element methodology of engineering. Two- and three-dimensional explicit and implicit Lagrangian continuum codes have been developed exploiting the strengths of each. The explicit methodology primarily exploits the primitive constant stress (or one point integration) brick element. Similarity and differences with the integral finite difference method are discussed. Choice of stress and finite strain measures, and selection of hour glass viscosity are also considered. The implicit codes also employ a Cauchy formulation, with Newton iteration and a symmetric tangent matrix. A library of finite strain material routines includes hypoelastic/plastic, hyperelastic, viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element topology and a general slide-line treatment significantly extends Lagrangian hydrocode application. Computational experience spans weapons and non-weapons applications

  11. Geodetic characteristic of the postseismic deformation following the interplate large earthquake along the Japan Trench (Invited)

    Science.gov (United States)

    Ohta, Y.; Hino, R.; Ariyoshi, K.; Matsuzawa, T.; Mishina, M.; Sato, T.; Inazu, D.; Ito, Y.; Tachibana, K.; Demachi, T.; Miura, S.

    2013-12-01

    On March 9, 2011 at 2:45 (UTC), an M7.3 interplate earthquake (hereafter foreshock) occurred ~45 km northeast of the epicenter of the M9.0 2011 Tohoku earthquake. This foreshock preceded the 2011 Tohoku earthquake by 51 hours. Ohta et al., (2012, GRL) estimated co- and postseismic afterslip distribution based on a dense GPS network and ocean bottom pressure gauge sites. They found the afterslip distribution was mainly concentrated in the up-dip extension of the coseismic slip. The coseismic slip and afterslip distribution of the foreshock were also located in the slip deficit region (between 20-40m slip) of the coiseismic slip of the M9.0 mainshock. The slip amount for the afterslip is roughly consistent with that determined by repeating earthquake analysis carried out in a previous study (Kato et al., 2012, Science). The estimated moment release for the afterslip reached magnitude 6.8, even within a short time period of 51 hours. They also pointed out that a volumetric strainmeter time series suggests that this event advanced with a rapid decay time constant (4.8 h) compared with other typical large earthquakes. The decay time constant of the afterslip may reflect the frictional property of the plate interface, especially effective normal stress controlled by fluid. For verification of the short decay time constant of the foreshock, we investigated the postseismic deformation characteristic following the 1989 and 1992 Sanriku-Oki earthquakes (M7.1 and M6.9), 2003 and 2005 Miyagi-Oki earthquakes (M6.8 and M7.2), and 2008 Fukushima-Oki earthquake (M6.9). We used four components extensometer at Miyako (39.59N, 141.98E) on the Sanriku coast for 1989 and 1992 event. For 2003, 2005 and 2008 events, we used volumetric strainmeter at Kinka-zan (38.27N, 141.58E) and Enoshima (38.27N, 141.60E). To extract the characteristics of the postseismic deformation, we fitted the logarithmic function. The estimated decay time constants for each earthquake had almost similar range (1

  12. Numerical modeling of the deformations associated with large subduction earthquakes through the seismic cycle

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Garaud, J.; Vigny, C.; Cailletaud, G.; Simons, W. J.; Satirapod, C.; Shestakov, N.

    2012-12-01

    A 3D finite element code (Zebulon-Zset) is used to model deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes: Sumatra, Japan and Chile. The mesh featuring a broad spherical shell portion with a viscoelastic asthenosphere is refined close to the subduction zones. The model is constrained by 6 years of postseismic data in Sumatra area and over a year of data for Japan and Chile plus preseismic data in the three areas. The coseismic displacements on the subduction plane are inverted from the coseismic displacements using the finite element program and provide the initial stresses. The predicted horizontal postseismic displacements depend upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. Non-dimensionalized by the coseismic displacements, they present an almost uniform value between 500km and 1500km from the trench for elastic plates 80km thick. The time evolution of the velocities is function of the creep law (Maxwell, Burger or power-law creep). Moreover, the forward models predict a sizable far-field subsidence, also with a spatial distribution which varies with the geometry of the asthenosphere and lithosphere. Slip on the subduction interface does not induce such a subsidence. The observed horizontal velocities, divided by the coseismic displacement, present a similar pattern as function of time and distance from trench for the three areas, indicative of similar lithospheric and asthenospheric thicknesses and asthenospheric viscosity. This pattern cannot be fitted with power-law creep in the asthenosphere but indicates a lithosphere 60 to 90km thick and an asthenosphere of thickness of the order of 100km with a burger rheology represented by a Kelvin-Voigt element with a viscosity of 3.1018Pas and μKelvin=μelastic/3. A second Kelvin-Voigt element with very limited amplitude may explain some characteristics of the short time-scale signal. The postseismic subsidence is

  13. Changes in erythrocytic deformability and plasma viscosity in neonatal ictericia.

    Science.gov (United States)

    Bonillo-Perales, A; Muñoz-Hoyos, A; Martínez-Morales, A; Molina-Carballo, A; Uberos-Fernández, J; Puertas-Prieto, A

    1999-01-01

    We studied 45 full-term newborns divided into 3 groups. Group 1: 17 newborns with bilirubin ictericia (bilirubin 11-20 mg/dL) and Group 3: 10 newborns with moderate hemolytic ictericia needing exchange transfusion. The following were studied: erythrocytic deformability, plasma viscosity, plasmatic osmolarity, seric bilirubin, bilirubin/albumin ratio, free fatty acids and corpuscular volume of the erythrocytes. In full-term newborns, the following are risk factors for increased erythrocytic rigidity: neonatal hemolytic illness (p = 0.004, odds ratio: 7.02), increases in total bilirubin (p = 0.02, odds ratio: 4.3) and increases in the bilirubin/albumin ratio (p = 0.025, odds ratio: 4.25). Furthermore, the most important risk factor for high plasma viscosity is also neonatal hemolytic illness (p = 0.01, odds ratio: 2.30). The role of total bilirubin is also important (p = 0.09, odds ratio: 2.10), while that of the bilirubin/albumin ratio (p = 0.012, NS) is less so. The greater the hemolysis, the greater the erythrocytic rigidity and plasma viscosity (p ictericia, hemolytic illness and increases in the bilirubin/albumin ratio are accompanied by rheological alterations that could affect cerebral microcirculation and cause a neurological deficit not exclusively related to the levels of bilirubin in plasma.

  14. Three-Dimensional Dynamics of a Flexible Marine Riser Undergoing Large Elastic Deformations

    International Nuclear Information System (INIS)

    Raman-Nair, W.; Baddour, R.E.

    2003-01-01

    The equations of the three dimensional motion of a marine riser undergoing large elastic deformations are formulated using Kane's formalism. The riser is modeled using lumped masses connected by extensional and rotational springs including structural damping. Surface waves are described by Stokes? second-order wave theory. Fluid-structure coupling is achieved by application of the hydrodynamic loads via Morison's equation and added-mass coefficients using the instantaneous relative velocities and accelerations between the fluid field and the riser segments. In the same way, a model for incorporating the effects of vortex-induced lift forces is included. The effect of internal flow is included in the model. The detailed algorithm is presented and the equations are solved using a robust implementation of the Runge-Kutta method provided in MATLAB. The mathematical model and associated algorithm are validated by comparing the steady-state equilibrium configuration of the riser with special cases of an elastic catenary mooring line and large deflection statics of a cantilever beam. The results of sample simulations are presented

  15. Measurement and correlation of high frequency behaviors of a very flexible beam undergoing large deformation

    International Nuclear Information System (INIS)

    Lee, Jae Wook; Kim, Hyun Woo; Ku, Hi Chun; Yoo, Wan Suk

    2009-01-01

    A correlation method of high frequency behaviors of a very flexible beam undergoing large displacement is presented. The suggested method based on the experimental modal analysis leads to more accurate correlation results because it directly uses the modal parameters of each mode achieved from experiment. First, the modal testing and the parameter identification method are suggested for flexible multibody dynamics. Due to the flexibility of a very thin beam, traditional testing methods such as impact hammer or contact type accelerometer are not working well. The suggested measurement with high speed camera, even though the test beam is very flexible, is working well. Using measurements with a high speed camera, modal properties until the 5th mode are measured. And After measuring each damping ratio until the 5th mode, a generic damping model is constructed using inverse modal transformation technique. It's very interesting that the modal transformation technique can be also applied even in the ANCF simulation which uses the global displacement and finite slope as the nodal coordinates. The results of experiment and simulation are compared until the 5th mode frequency, respectively, by using ANCF forced vibration analysis. Through comparison between numerical simulation and experiment, this study showed that the proposed generic damping matrix, modal testing and parameter identification method is very proper in flexible multibody dynamic problems undergoing large deformation

  16. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    1999-01-01

    This paper deals with autogenous deformation and autogenous relative humidity change (RH change) in hardening cement paste. Theoretical considerations and experimental data are presented, which elucidate the influence of temperature on these properties. This is an important subject in the control...

  17. EBSD-based techniques for characterization of microstructural restoration processes during annealing of metals deformed to large plastic strains

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg; Yu, Tianbo

    2012-01-01

    Some methods for quantitative characterization of the microstructures deformed to large plastic strains both before and after annealing are discussed and illustrated using examples of samples after equal channel angular extrusion and cold-rolling. It is emphasized that the microstructures...... in such deformed samples exhibit a heterogeneity in the microstructural refinement by high angle boundaries. Based on this, a new parameter describing the fraction of regions containing predominantly low angle boundaries is introduced. This parameter has some advantages over the simpler high angle boundary...... on mode of the distribution of dislocation cell sizes is outlined, and it is demonstrated how this parameter can be used to investigate the uniformity, or otherwise, of the restoration processes occurring during annealing of metals deformed to large plastic strains. © (2012) Trans Tech Publications...

  18. Primal-dual convex optimization in large deformation diffeomorphic metric mapping: LDDMM meets robust regularizers

    Science.gov (United States)

    Hernandez, Monica

    2017-12-01

    This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.

  19. Lithological history and ductile deformation: the lessons for long-term stability of large-scales structures in the olkiluoto

    International Nuclear Information System (INIS)

    Wikstrom, L.; Aaltonen, I.; Mattila, J.

    2009-01-01

    The Olkiluoto site has been chosen as a repository site for the high-level nuclear waste in 2001. Investigations in the site have been ongoing since 1987. The basic idea in the crystalline nuclear waste site still is that the solid repository block surrounded by deformation zones can host a safe repository. It is impossible to say that neither the major ductile nor large-scale brittle deformation zones are stable, but it is possible to say that the tectonic processes have been active in a stable way for billions of years by reactivating the old features time after time and there are no signs of new large features formed in the vicinity of the site during the present time including post-glacial period. Understanding the geological history, especially the ductile deformation and over thrusting, begins from the understanding of the lithological features, mainly rock types, in the island. Vice versa, the occurrence and location of the lithological features are interpreted according to ductile deformation. In addition, you cannot study only present brittle deformation but you need to understand also older ductile and lithological features to be able to understand why these brittle features are where they are and to be able to predict them. (authors)

  20. Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes

    Science.gov (United States)

    Trubienko, Olga; Fleitout, Luce; Garaud, Jean-Didier; Vigny, Christophe

    2013-03-01

    The deformations of the overriding and subducting plates during the seismic cycle associated with large subduction earthquakes are modelled using 2D and 3D finite element techniques. A particular emphasis is put on the interseismic velocities and on the impact of the rheology of the asthenosphere. The distance over which the seismic cycle perturbs significantly the velocities depends upon the ratio of the viscosity in the asthenosphere to the period of the seismic cycle and can reach several thousand km for rheological parameters deduced from the first years of deformation after the Aceh earthquake. For a same early postseismic velocity, a Burger rheology of the asthenosphere implies a smaller duration of the postseismic phase and thus smaller interseismic velocities than a Maxwell rheology. A low viscosity wedge (LVW) modifies very significantly the predicted horizontal and vertical motions in the near and middle fields. In particular, with a LVW, the peak in vertical velocity at the end of the cycle is predicted to be no longer above the deep end of the locked section of the fault but further away, above the continentward limit of the LVW. The lateral viscosity variations linked to the presence at depth of the subducting slab affect substantially the results. The north-south interseismic compression predicted by this preliminary 2D model over more than 1500 km within the Sunda block is in good agreement with the pre-2004 velocities with respect to South-China inferred from GPS observations in Thailand, Malaysia and Indonesia. In Japan, before the Tohoku earthquake, the eastern part of northern Honshu was subsiding while the western part was uplifting. This transition from subsidence to uplift so far away from the trench is well fitted by the predictions from our models involving a LVW. Most of the results obtained here in a 2D geometry are shown to provide a good estimate of the displacements for fault segments of finite lateral extent, with a 3D spherical

  1. Mechanical characterization of the P56 mouse brain under large-deformation dynamic indentation

    Science.gov (United States)

    MacManus, David B.; Pierrat, Baptiste; Murphy, Jeremiah G.; Gilchrist, Michael D.

    2016-02-01

    The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 μm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.

  2. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  3. Calorie Changes in Large Chain Restaurants

    Science.gov (United States)

    Bleich, Sara N.; Wolfson, Julia A.; Jarlenski, Marian P.

    2015-01-01

    Introduction Large chain restaurants reduced the number of calories in newly introduced menu items in 2013 by about 60 calories (or 12%) relative to 2012. This paper describes trends in calories available in large U.S. chain restaurants to understand whether previously documented patterns persist. Methods Data (a census of items for included restaurants) were obtained from the MenuStat project. This analysis included 66 of the 100 largest U.S. restaurants that are available in all three 3 of the data (2012–2014; N=23,066 items). Generalized linear models were used to examine: (1) per-item calorie changes from 2012 to 2014 among items on the menu in all years; and (2) mean calories in new items in 2013 and 2014 compared with items on the menu in 2012 only. Data were analyzed in 2014. Results Overall, calories in newly introduced menu items declined by 71 (or 15%) from 2012 to 2013 (p=0.001) and by 69 (or 14%) from 2012 to 2014 (p=0.03). These declines were concentrated mainly in new main course items (85 fewer calories in 2013 and 55 fewer calories in 2014; p=0.01). Although average calories in newly introduced menu items are declining, they are higher than items common to the menu in all 3 years. No differences in mean calories among items on menus in 2012, 2013, or 2014 were found. Conclusions The previously observed declines in newly introduced menu items among large restaurant chains have been maintained, which suggests the beginning of a trend toward reducing calories. PMID:26163168

  4. Dislocation-Disclination Substructures Formed in FCC Polycrystals Under Large Plastic Deformations: Evolution and Association with Flow Stress

    Science.gov (United States)

    Kozlov, É. V.; Koneva, N. A.; Trishkina, L. I.

    2014-06-01

    The evolution of dislocation substructures formed in polycrystalline Cu-Al and Cu-Mn alloys undergoing large plastic deformations is studied, using transmission electron microscopy. Microband and fragmented substructures are examined. The Al and Mn alloying element concentrations for which the substructures are formed have been found. The mechanisms involved in the formation of the substructures during the substructural evolution in the alloys subjected to deformation have been revealed. Parameters describing the substructures under study have been measured. The dependence of the parameters on the flow stress has been established.

  5. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  6. Quantitative description of changes in the structure in austenitic steels after hot temperature deformation

    International Nuclear Information System (INIS)

    Kuc, D.; Rodak, K.; Niewielski, G.; Hetmanczyk, M.

    1998-01-01

    An investigation on the structural changes in austenitic hard deformable Cr-Mn and Cr-Ni steels during dynamic recrystallization has been presented in the paper. The influence of the factors (strain rate, deformation, temperature) on the geometric characteristic of grains has been taken into consideration. Investigation of the structure were performed using metallographic microscope and transmission electron microscope. The results of researched should widen the theoretical background in order to the model of phenomena, which accompany the dynamic recovery and dynamic recrystallization. (author)

  7. Effect of temperature change exerted on plastic deformation of SUS 304

    International Nuclear Information System (INIS)

    Niitsu, Yasushi; Ikegami, Kozo

    1985-01-01

    Under the condition of mechanical load, on which the thermal stress due to temperature change is superposed, the deformation behavior of structural materials is affected by not only loading history but also temperature history. Also at the time of working materials, the case that the relation between plastic deformation and temperature change becomes a problem is not few, such as cold working after hot rolling. In this study, the effect of temperature change exerted on the plastic deformation of SUS 304 stainless steel was examined, as this material has been frequently used as a high temperature structural material. That is, the plastic deformation behavior at a certain temperature after prestrain was applied at a different temperature was experimentally determined under various temperature and load conditions. Moreover, the quantitative evaluation of the results obtained was attempted by using the concept of an equal plastic strain curved surface. The test pieces and the experimental method, the behavior in uniaxial loading and the behavior in combined loading are reported. (Kako, I.)

  8. Microstructural Changes of the Nanostructured Bainitic Steel Induced by Quasi-Static and Dynamic Deformation

    Directory of Open Access Journals (Sweden)

    Marcisz J.

    2017-12-01

    Full Text Available Changes in the microstructure of nanostructured bainitic steel induced by quasi-static and dynamic deformation have been shown in the article. The method of deformation and strain rate have important impact on the microstructure changes especially due to strain localization. Microstructure of nanostructured steel Fe-0.6%C-1.9Mn-1.8Si-1.3Cr-0.7Mo consists of nanometer size carbide-free bainite laths and 20-30% volume fraction of retained austenite. Quasi-static and dynamic (strain rate up to 2×102 s−1 compression tests were realized using Gleeble simulator. Dynamic deformation at the strain rate up to 9×103 s−1 was realized by the Split Hopkinson Pressure Bar method (SHPB. Moreover high energy firing tests of plates made of the nanostructured bainitic steel were carried out to produce dynamically deformed material for investigation. Adiabatic shear bands were found as a result of localization of deformation in dynamic compression tests and in firing tests. Microstructure of the bands was examined and hardness changes in the vicinity of the bands were determined. The TEM examination of the ASBs showed the change from the internal shear band structure to the matrix structure to be gradual. This study clearly resolved that the interior (core of the band has an extremely fine grained structure with grain diameter ranging from 100 nm to 200 nm. Martensitic twins were found within the grains. No austenite and carbide reflections were detected in the diffraction patterns taken from the core of the band. Hardness of the core of the ASBs for examined variants of isothermal heat treatment was higher about 300 HV referring to steel matrix hardness.

  9. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  10. Microstructural change during creep deformation in a 10%Cr martensitic steel

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitic steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  11. Patterns of deformation and volcanic flows associated with lithospheric loading by large volcanoes on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1993-01-01

    Magellan radar imaging and topography data are now available for a number of volcanoes on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Venus, erosion and sediment deposition are negligible, so tectonic evidence of deformation around large volcanoes should be evident except where buried by very young flows. Radar images reveal that most tectonic features and flow units on the flanks of these volcanoes have predominantly radial orientations. However, both Tepev Mons in Bell Regio and Sapas Mons in Atla Regio exhibit circumferential graben on their flanks. In addition, images reveal several flow units with an annular character around the north and west flanks of Tepev Mons. This pattern most likely results from ponding of flows in an annular flexural moat. Maat Mons in Atla Regio and Sif Mons in Eistla Regio are examples of volcanoes that lack circumferential graben and annular flows; discernible flow units and fractures on these constructs appear to be predominantly radial. Altimetry data can also provide evidence of flexural response. Tepev Mons is partially encircled by depressions that may be sections of a flexural moat that has not been completely filled. The locations of these depressions generally coincide with the annular flows described above. There is weaker evidence for such depressions around Maat Mons as well. The lack of circumferential tectonic features around most volcanoes on Venus might be explained by gradual moat filling and coverage by radial flows. The depressions around Tepev (and possible Maat) may indicate that this process is currently continuing. We use analytic models of plate flexure in an axisymmetric geometry to constrain the elastic plate thickness supporting Tepev Mons. If we consider the outer radius of the ponded flows to be the edge of a moat, we find that models with elastic plate thickness of 10-20 km fit best. Finite element

  12. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils - Large Deformation Analysis Via Finite Element Method

    Science.gov (United States)

    Konkol, Jakub; Bałachowski, Lech

    2017-03-01

    In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  13. Influence of Installation Effects on Pile Bearing Capacity in Cohesive Soils – Large Deformation Analysis Via Finite Element Method

    Directory of Open Access Journals (Sweden)

    Konkol Jakub

    2017-03-01

    Full Text Available In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL and Updated Lagrangian (UL. Numerical study consists of installation process, consolidation phase and following pile static load test (SLT. The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12. The results of numerical analysis are compared with corresponding field tests and with so-called “wish-in-place” numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.

  14. Measurements of very large deformations in potash salt in conjunction with an ongoing mining operation

    International Nuclear Information System (INIS)

    Sattler, A.R.; Christensen, C.L.

    1980-01-01

    Room and pillar deformation were measured in conjunction with a relatively new type of mining operation in a southeastern New Mexico potash mine. The extraction ration was approximately 90 percent in a first mining operation. Due to severe deformations encountered, instrumentation had to be developed/modified for these measurements. This paper concentrates on experiment design, design of special instrumentation, field installation of equipment, and presentation of the data. Measurements made include extensometers in the pillar, in the floor and ceiling in the room between pillars, absolute level measurements, floor ceiling closure, and stress (strain) measurements. Associated laboratory rock mechanics measurements of samples from the mine are being done separately. Two separate room pillar complexes were instrumented. In the first complex, floor-ceiling deformations of approximately 1 inch/day and pillar deformations around 1/2 inch/day were measured. In the second complex, instrumentation was installed while the pillar was a part of a long wall and the subsequent sequential mining (long wall-pillar with only one adjoining room on one side - pillar in the middle of room pillar complex) was observed. Data return from this operation was good

  15. Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations

    Science.gov (United States)

    Li, Xiaomin; Guo, Xueli; Guo, Haiyan

    2018-06-01

    Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.

  16. Numerical modeling of deformation and vibrations in the construction of large-size fiberglass cooling tower fan

    Directory of Open Access Journals (Sweden)

    Fanisovich Shmakov Arthur

    2016-01-01

    Full Text Available This paper presents the results of numerical modeling of deformation processes and the analysis of the fundamental frequencies of the construction of large-size fiberglass cooling tower fan. Obtain the components of the stress-strain state structure based on imported gas dynamic and thermal loads and the form of fundamental vibrations. The analysis of fundamental frequencies, the results of which have been proposed constructive solutions to reduce the probability of failure of the action of aeroelastic forces.

  17. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  18. THE CHANGE IN DEFORMATION CHARACTERISTICS OF CONCRETE MONOLITHIC HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. V. Punahin

    2009-03-01

    Full Text Available In the article results of studies of deformation features of concrete on actuate cement for monolithic high-altitude buildings are presented. It is shown that in construction of the high-altitude monolithic buildings in a summer period of a year one should take into account the character of changing the concrete elasticity and plasticity in time, which differs from the same indices for the concrete of normal hardening.

  19. Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations

    International Nuclear Information System (INIS)

    Freund, L.B.; Floro, J.A.; Chason, E.

    1999-01-01

    Two main assumptions which underlie the Stoney formula relating substrate curvature to mismatch strain in a bonded thin film are that the film is very thin compared to the substrate, and the deformations are infinitesimally small. Expressions for the curvature - strain relationship are derived for cases in which these assumptions are relaxed, thereby providing a basis for interpretation of experimental observations for a broader class of film - substrate configurations. copyright 1999 American Institute of Physics

  20. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  1. Comparison of methods for calculation of large cladding deformation in the case of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Fabian, H.; Krugmann, U.; Lassmann, K.; Schwarz, R.

    1975-06-01

    Some results of mechanical computations of cladding deformation are discussed for the case of a loss-of-coolant accident. The models for data-creation realize isothermal and transient conditions. The creep-deformation of the cladding is caused by significant temperature and pressure profiles. In all cases the constitutive creep law of Norton is used. The computations are based on three methods: 1) analytical solution (one-dimensional), 2) finite element solution (two-dimensional), 3) theory of creeping shells (two-dimensional). The differences in the solutions depend on the methods themselves and on computational differences. The influence of the large-deflection theory is discussed. In comparing the results it is evident that the differences in the methods are covered by a small variation of the creep parameters. In conclusion we propose the theory of the creeping shell for extensive computer codes. (orig.) [de

  2. CHANGE IN DEFORMATION PROPERTIES MODELING OF CONCRETE IN PROTECTIVE STRUCTURES OF NUCLEAR REACTOR BY IONIZING RADIATION

    Directory of Open Access Journals (Sweden)

    E. K. Agakhanov

    2016-01-01

    Full Text Available The necessity of studying the effect impact of elementary particles impact on the strength and deformation materials properties used in protective constructions nuclear reactors and reactor technology has been stipulated. A nuclear reactor pressure vessel from prestressed concrete, combining the functions of biological protection is to be considered. The neutron flux problem distribution in the pressure vessel of a nuclear reactor has been solved. The solution is made in axisymmetric with the finite element method using a flat triangular finite element. Computing has been conducted in Matlab package. The comparison with the results has been obtained using the finite difference method, as well as the graphs of changes under the influence of radiation exposure and the elastic modulus of concrete radiation deformations have been constructed. The proposed method allows to simulate changes in the deformation properties of concrete under the influence of neutron irradiation. Results of the study can be used in the calculation of stress-strain state of structures, taking into account indirect heterogeneity caused by the physical fields influence.

  3. Flextensional Microactuators for Large-Aperture Lightweight Cryogenic Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision single crystal flextensional piezoelectric microactuators for cryogenic optic devices such as large...

  4. Co-seismic deformation and gravity changes of the 2011 India-Nepal and Myanmar earthquakes

    Directory of Open Access Journals (Sweden)

    Liu Chengli

    2012-02-01

    Full Text Available Co-seismic deformation and gravity field changes caused by the 2011 Mw6. 8 Myanmar and Mw6. 9 India-Nepal earthquakes are calculated with a finite-element model and an average-slip model, respectively, based on the multi-layered elastic half-space dislocation theory. The calculated maximum horizontal displacement of the Myanmar earthquake is 36 cm, which is larger than the value of 9. 5 cm for the India-Nepal earthquake. This difference is attributed to their different focal depths and our use of different models. Except certain differences in the near field, both models give similar deformation and gravity results for the Myanmar event.

  5. Change of deformation at the backbending in the yrast superdeformed band of {sup 144}Gd

    Energy Technology Data Exchange (ETDEWEB)

    Ur, C.A.; Bolzonella, G.P.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others

    1996-12-31

    A mean lifetime measurement using the Doppler shift attenuation method has been performed at GASP in order to extract the quadrupole moment of the yrast SD band of {sup 144}Gd. The extracted intrinsic quadrupole moments, being Q{sub 0}=13.7 eb above the backbending and Q{sub 0}=11.8 eb below the backbending, are consistent with a change of deformation from {beta}{sub 2}=0.51 (at {beta}{sub 4} {approx} 0.050) to {beta}{sub 2}=0.45 (at {beta}{sub 4} {approx}0.035). The experimental results are in nice agreement with the theoretical predictions, which revealed that the second well in {sup 144}Gd arises essentially from the very favored shell structure at N=80 and Z=64. The occupation at higher frequency of the aligned N=6 proton orbitals drives the nucleus to a slightly more deformed shape.

  6. Study of mechanical deformations and holes of large, asymmetric GE1/1 foils

    CERN Document Server

    Moutinho Goes, Anna Beatriz

    2017-01-01

    A CMS upgrade requires the installation of GEM detectors, namely the GE1/1. Its installation will take place in 2018 during the LS2. However, such a project demands a collaboration of different teams. The part assigned to me was done in collaboration with Chamini SHAMMI and consisted of studying how much deformation there was after stretching the GE1/1 foils. For that, an analysis code was written to calculation the diameter evolution and its deviation, according to the forces applied.

  7. Studies of mechanical deformations and holes of large, asymmetric GE1/1 foils

    CERN Document Server

    Pathiraja Mudiyanselage, Chamini Shammi; Singh, Rajat Pratap; Lakdee, Natthaphop; Moutinho Goes, Anna Beatriz; CERN. Geneva. EP Department

    2017-01-01

    One of the main project undergoing on the CMS department is the GE1/1 project. Under this project as summer students we had to do the study of mechanical deformations and holes diameter. Basically, this was a group project and one part of the project was to develop a structure to obtain the data from the detector. It was decided to use a digital microscope to take pictures of some particular positions and then the other part used some image processing software to analyze the data from each one.

  8. Testing for structural changes in large portfolios

    OpenAIRE

    Posch, Peter N.; Ullmann, Daniel; Wied, Dominik

    2015-01-01

    Model free tests for constant parameters often fail to detect structural changes in high dimensions. In practice, this corresponds to a portfolio with many assets and a reasonable long time series. We reduce the dimensionality of the problem by looking a compressed panel of time series obtained by cluster analysis and the principal components of the data. Using our methodology we are able to extend a test for a constant correlation matrix from a sub portfolio to whole indices a...

  9. Large Parosteal Lipoma without Periosteal Changes

    Directory of Open Access Journals (Sweden)

    Shimpo Aoki, MD, PhD

    2015-01-01

    Full Text Available Summary: Parosteal lipoma is a rare tumor, accounting for approximately 0.3% of all lipomas. Bony lesions are often found in patients with this tumor (59.2%, making the differential diagnosis of malignant tumors important. Our case was a 64-year-old male patient who complained of a 25 × 15-cm mass on his right thigh that had grown rapidly over a 2-month period. On magnetic resonance imaging, a high-intensity lesion was observed on the surface of the femur beneath the vastus medialis muscle on T1 and T2 images, with low intensity on a T1 fat suppression image. No significant bony changes were detected. During total tumor resection, the tumor was found on the femur with tight continuity, with tiny areas of spiculation palpable on the bone surface. The exact tumor size was 18 × 13 × 6 cm. The pathological diagnosis was lipoma, the same result as in the former open biopsy. This case was the largest parosteal lipoma of the femur reported without periosteal changes. In cases of deep parosteal lipomas, the detection of rapidly progressive and growing pseudotumors with ossification or chondromatous changes implies malignancy. A preoperative biopsy is mandatory and must be followed by careful planning and preparation for handling in malignant cases. Plastic surgeons should therefore keep the diagnosis of parosteal lipoma in mind to provide appropriate (not too much or too little surgical treatment.

  10. Analyses of large quasistatic deformations of inelastic bodies by a new hybrid-stress finite element algorithm

    Science.gov (United States)

    Reed, K. W.; Atluri, S. N.

    1983-01-01

    A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is base upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and thg resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.

  11. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  12. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    Science.gov (United States)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  13. On the large Ω-deformations in the Nekrasov-Shatashvili limit of N=2{sup ∗} SYM

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento,Via Arnesano, 73100 Lecce (Italy); INFN,Via Arnesano, 73100 Lecce (Italy)

    2016-07-11

    We study the multi-instanton partition functions of the Ω-deformed N=2{sup ∗}SU(2) gauge theory in the Nekrasov-Shatashvili (NS) limit. They depend on the deformation parameters ϵ{sub 1}, the scalar field expectation value a, and the hypermultiplet mass m. At fixed instanton number k, they are rational functions of ϵ{sub 1},a,m and we look for possible regularities that admit a parametrical description in the number of instantons. In each instanton sector, the contribution to the deformed Nekrasov prepotential has poles for large deformation parameters. To clarify the properties of these singularities we exploit Bethe/gauge correspondence and examine the special ratios m/ϵ{sub 1} at which the associated spectral problem is n-gap. At these special points we illustrate several structural simplifications occurring in the partition functions. After discussing various tools to compute the prepotential, we analyze the non-perturbative corrections up to k=24 instantons and present various closed expressions for the coefficients of the singular terms. Both the regular and singular parts of the prepotential are resummed over all instantons and compared successfully with the exact prediction from the spectral theory of the Lamé equation, showing that the pole singularities are an artifact of the instanton expansion. The analysis is fully worked out in the 1-gap case, but the final pole cancellation is proved for a generic ratio m/ϵ{sub 1} relating it to the gap width of the Lamé equation.

  14. Formulation of stiffness equation for a three-dimensional isoparametric element with elastic-plastic material and large deformation

    International Nuclear Information System (INIS)

    Chang, T.Y.; Prachuktam, S.; Reich, M.

    1975-01-01

    The formulation of the stiffness equation for an 8 to 21 node isoparametric element with elastic-plastic material and large deformation is presented. The formulation has been implemented in a nonlinear finite element program for the analysis of three-dimensional continuums. To demonstrate the utility of the formulation, a thick-walled cylinder was analyzed and the results are compared favorably with a known solution. The element type presented can be applied not only to 3-D continuums, but also to plate or shell structures, for which degenerated isoparametric elements may be used

  15. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  16. The sea-level budget along the Northwest Atlantic coast : GIA, mass changes, and large-scale ocean dynamics

    NARCIS (Netherlands)

    Frederikse, T.; Simon, K.M.; Katsman, C.A.; Riva, R.E.M.

    2017-01-01

    Sea-level rise and decadal variability along the northwestern coast of the North Atlantic Ocean are studied in a self-consistent framework that takes into account the effects of solid-earth deformation and geoid changes due to large-scale mass redistribution processes. Observations of sea and

  17. Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration

    International Nuclear Information System (INIS)

    Lee, Choonik; Langen, Katja M.; Lu, Weiguo; Haimerl, Jason; Schnarr, Eric; Ruchala, Kenneth J.; Olivera, Gustavo H.; Meeks, Sanford L.; Kupelian, Patrick A.; Shellenberger, Thomas D.; Manon, Rafael R.

    2008-01-01

    Background and purpose: To assess and evaluate geometrical changes in parotid glands using deformable image registration and megavoltage CT (MVCT) images. Methods: A deformable registration algorithm was applied to 330 daily MVCT images (10 patients) to create deformed parotid contours. The accuracy and robustness of the algorithm was evaluated through visual review, comparison with manual contours, and precision analysis. Temporal changes in the parotid gland geometry were observed. Results: The deformed parotid contours were qualitatively judged to be acceptable. Compared with manual contours, the uncertainties of automatically deformed contours were similar with regard to geometry and dosimetric endpoint. The day-to-day variations (1 standard deviation of errors) in the center-of-mass distance and volume were 1.61 mm and 4.36%, respectively. The volumes tended to decrease with a median total loss of 21.3% (6.7-31.5%) and a median change rate of 0.7%/day (0.4-1.3%/day). Parotids migrated toward the patient center with a median total distance change of -5.26 mm (0.00 to -16.35 mm) and a median change rate of -0.22 mm/day (0.02 to -0.56 mm/day). Conclusion: The deformable image registration and daily MVCT images provide an efficient and reliable assessment of parotid changes over the course of a radiation therapy

  18. Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation

    Science.gov (United States)

    Tang, Liang; Cheng, Pengle

    2017-01-01

    Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic–plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis. PMID:28746390

  19. Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation.

    Directory of Open Access Journals (Sweden)

    Liang Tang

    Full Text Available Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.

  20. Influence of deformation history on texture change and subsequent yield locus of zircaloy-2 tubing

    International Nuclear Information System (INIS)

    Nagai, Nobuyuki; Kakuma, Tsutomu; Miyamoto, Yoshiyuki

    1981-01-01

    Fully-annealed Zircaloy-2 tubing was strained by balanced axial stress σsub(z) and circumferential stress σsub(theta) (stress ratio: α = σsub(z)/σsub(theta)). Then, texture and subsequent yield loci of these prestrained materials were measured. Results of texture measurement after prestraining showed that (0002) poles tend to move toward the radial tube direction under α = 0, 0.5 and 1, but toward the circumferential tube direction under α = 2 and infinity. Specimens highly prestrained under α = 0 and 0.5 have extremely concentrated texture. Such texture changes can be explained by a deformation model in which type slip system was assumed as one of the deformation system. The yield strength of most prestrained materials is higher than that of starting material, however, the material prestrained under α = infinity shows lower yield strength than starting material under test condition of α = 0. It was observed that the texture change had an important influence on subsequent yield behavior. Typically, the material highly prestrained under α = 0.5, which had concentrated basal poles, gave the yield locus characterized by remarkable ''texture hardening''. (author)

  1. Formulation and integration of constitutive models describing large deformations in thermoplasticity and thermoviscoplasticity

    International Nuclear Information System (INIS)

    Jansohn, W.

    1997-10-01

    This report deals with the formulation and numerical integration of constitutive models in the framework of finite deformation thermomechanics. Based on the concept of dual variables, plasticity and viscoplasticity models exhibiting nonlinear kinematic hardening as well as nonlinear isotropic hardening rules are presented. Care is taken that the evolution equations governing the hardening response fulfill the intrinsic dissipation inequality in every admissible process. In view of the development of an efficient numerical integration procedure, simplified versions of these constitutive models are supposed. In these versions, the thermoelastic strains are assumed to be small and a simplified kinematic hardening rule is considered. Additionally, in view of an implementation into the ABAQUS finite element code, the elasticity law is approximated by a hypoelasticity law. For the simplified onstitutive models, an implicit time-integration algorithm is developed. First, in order to obtain a numerical objective integration scheme, use is made of the HUGHES-WINGET-Algorithm. In the resulting system of ordinary differential equations, it can be distinguished between three differential operators representing different physical effects. The structure of this system of differential equations allows to apply an operator split scheme, which leads to an efficient integration scheme for the constitutive equations. By linearizing the integration algorithm the consistent tangent modulus is derived. In this way, the quadratic convergence of Newton's method used to solve the basic finite element equations (i.e. the finite element discretization of the governing thermomechanical field equations) is preserved. The resulting integration scheme is implemented as a user subroutine UMAT in ABAQUS. The properties of the applied algorithm are first examined by test calculations on a single element under tension-compression-loading. For demonstrating the capabilities of the constitutive theory

  2. Active Deformation in the Overriding Plate Associated with Temporal Changes of the Philippine Sea Plate Motion

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Van Horne, A.

    2015-12-01

    We present detailed geologic evidence linking changes over time in Philippine Sea plate (PHS) motion and intracontinental deformation in central and southwest (SW) Japan during the Pliocene and after. In the early Pliocene, subduction of the PHS plate under SW Japan restarted in a northerly direction after period of deceleration or cessation. Later, motion changed to a more westerly direction. Corresponding geological changes found in the overriding plate include unconformities in the forearc basins, changes in slip sense on faults, depocenter migration, re-organization of drainage systems and volcanism. Quaternary intraplate deformation is prominent north of the Median Tectonic Line (MTL) inactive segment, above a shallow flat slab. In contrast, less Quaternary tectonic activity is found north of the MTL active segment which lies over a steadily-slipping portion of the subducting slab that behaves as a less-deformed rigid block. Depocenters and active thrusting have migrated north/northwestward over the past 5 My above the shallow flat slab segment of the PHS. We reconstructed the Plio-Pleistocene migration history using Neogene stratigraphy and shallow seismic reflection profiles. We see shallow PHS slab contact with the lower continental crust in our deep seismic reflection profiles, which may explain its enhanced downward drag of the overriding plate and synchronous strong compression in the crust. We find evidence of more westerly PHS plate subduction since the middle Pleistocene in (1) unconformities in the Kumano forearc basin deposits in SW Japan, (2) drastic stream captures in Shikoku, and (3) concordant changes in fault slip sense from thrust to dextral slip along the MTL. Oblique subduction could have induced stronger horizontal stress in the overriding plate above the shallow flat slab which could account for the increasing geologic slip rate observed on active structures. During four repetitions of megathrust earthquake sequences since the 17th century

  3. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    International Nuclear Information System (INIS)

    Sheridan, Robert; VonLockette, Paris R; Roche, Juan; Lofland, Samuel E

    2014-01-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a

  4. Fatigue and deformation characteristics of large-aggregate mixes for bases.

    CSIR Research Space (South Africa)

    Verhaeghe, Benoit MJA

    1994-10-01

    Full Text Available for linking mix design parameters with the structural design process is discussed, based on dynamic tests conducted in the laboratory, complemented by Heavy Vehicle Simulator (HVS) tests on pavements containing Large-Aggregate Mixes for Bases (LAMBS). Initial...

  5. Changes in the state of heat-resistant steel induced by repeated hot deformation

    Science.gov (United States)

    Lyubimova, Lyudmila L.; Fisenko, Roman N.; Tashlykov, Alexander A.; Tabakaev, Roman B.

    2018-01-01

    This work deals with the problems of structural regeneration by thermal restoration treatment (TRT). These include the lack of a structural sign showing that TRT is possible, a consensus on TRT modes, the data on the necessary relaxation depth of residual stresses, or criteria of structural restoration. Performing a TRT without solving these problems may deteriorate the properties of steel or even accelerate its destruction. With this in view, the purpose of this work is to determine experimentally how the residual stress state changes under thermal and mechanical loads in order to specify the signs of the restoration of structure and structural stability. The object of this research is unused 12Cr1MoV steel that has been aged naturally for 13 years. Using X-ray dosimetry with X-ray spectral analysis, we study the distribution of internal residual stresses of the first kind during the repeated hot deformation. After repeated thermal deformation, the sample under study transforms from a viscoelastic Maxwell material into a Kelvin-Voigt material, which facilitates structural stabilization. A sign of this is the relaxation limit increase, prevention of continuous decay of an α-solid solution of iron and restoration of the lattice parameter.

  6. Mechanical and structural behaviour of high stacking fault energy materials submitted to large hot deformation

    International Nuclear Information System (INIS)

    Montheillet, F.

    1981-01-01

    The dynamic recovery process is described and compared with dynamic recrystallization, particularly at very large strains obtained by torsion tests. The stress-strain curves are first examined and related to the evolution of the microstructure, consisting essentially of a continuous increase in the misorientation between neighbouring crystals. The relations between the flow stress and the size of crystals are then described. Finally, it is shown that the shear undergone during torsion induces the formation of a strong crystallographic texture [fr

  7. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    Science.gov (United States)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  8. Large deformation contact mechanics of a pressurized long rectangular membrane. II. Adhesive contact

    Science.gov (United States)

    Srivastava, Abhishek; Hui, Chung-Yuen

    2013-01-01

    In part I of this work, we presented a theory for adhesionless contact of a pressurized neo-Hookean plane-strain membrane to a rigid substrate. Here, we extend our theory to include adhesion using a fracture mechanics approach. This theory is used to study contact hysteresis commonly observed in experiments. Detailed analysis is carried out to highlight the differences between frictionless and no-slip contact. Membrane detachment is found to be strongly dependent on adhesion: for low adhesion, the membrane ‘pinches-off’, whereas for large adhesions, it detaches unstably at finite contact (‘pull-off’). Expressions are derived for the critical adhesion needed for pinch-off to pull-off transition. Above a threshold adhesion, the membrane exhibits bistability, two stable states at zero applied pressure. The condition for bistability for both frictionless and no-slip boundary conditions is obtained explicitly. PMID:24353472

  9. Examining the validity of Stoney-equation for in-situ stress measurements in thin film electrodes using a large-deformation finite-element procedure

    Science.gov (United States)

    Wen, Jici; Wei, Yujie; Cheng, Yang-Tse

    2018-05-01

    During the lithiation and delithiation of a thin film electrode, stress in the electrode is deduced from the curvature change of the film using the Stoney equation. The accuracy of such a measurement is conditioned on the assumptions that (a) the mechanical properties of the electrode remain unchanged during lithiation and (b) small deformation holds. Here, we demonstrate that the change in elastic properties can influence the measurement of the stress in thin film electrodes. We consider the coupling between diffusion and deformation during lithiation and delithiation of thin film electrodes and implement the constitutive behavior in a finite-deformation finite element procedure. We demonstrate that both the variation in elastic properties in thin film electrodes and finite-deformation during lithiation and delithiation would challenge the applicability of the Stoney-equation for in-situ stress measurements of thin film electrodes.

  10. Freesurfer-initialized large deformation diffeomorphic metric mapping with application to Parkinson's disease

    Science.gov (United States)

    Chen, Jingyun; Palmer, Samantha J.; Khan, Ali R.; Mckeown, Martin J.; Beg, Mirza Faial

    2009-02-01

    We apply a recently developed automated brain segmentation method, FS+LDDMM, to brain MRI scans from Parkinson's Disease (PD) subjects, and normal age-matched controls and compare the results to manual segmentation done by trained neuroscientists. The data set consisted of 14 PD subjects and 12 age-matched control subjects without neurologic disease and comparison was done on six subcortical brain structures (left and right caudate, putamen and thalamus). Comparison between automatic and manual segmentation was based on Dice Similarity Coefficient (Overlap Percentage), L1 Error, Symmetrized Hausdorff Distance and Symmetrized Mean Surface Distance. Results suggest that FS+LDDMM is well-suited for subcortical structure segmentation and further shape analysis in Parkinson's Disease. The asymmetry of the Dice Similarity Coefficient over shape change is also discussed based on the observation and measurement of FS+LDDMM segmentation results.

  11. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  12. Large-scale innovation and change in UK higher education

    Directory of Open Access Journals (Sweden)

    Stephen Brown

    2013-09-01

    Full Text Available This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ technology to deliver such changes. Key lessons that emerged from these experiences are reviewed covering themes of pervasiveness, unofficial systems, project creep, opposition, pressure to deliver, personnel changes and technology issues. The paper argues that collaborative approaches to project management offer greater prospects of effective large-scale change in universities than either management-driven top-down or more champion-led bottom-up methods. It also argues that while some diminution of control over project outcomes is inherent in this approach, this is outweighed by potential benefits of lasting and widespread adoption of agreed changes.

  13. METHODS FOR LOCAL CHANGES IN THE PLASTIC DEFORMATION DIAGNOSTICS ON THE WORK FUNCTION

    Directory of Open Access Journals (Sweden)

    K. V. Panteleyev

    2015-01-01

    Full Text Available The paper describes the electronic work function measurements by the contact potential difference technique, and experimental demonstration of the possibility of these methods application for the stress-strain state of the surface layer of the metals and alloys. The techniques end examples of their application of localization of plastic deformation studies using the Kelvin probe are developed and present. The study topology of work function the deformed surface possible to determine the type of deformation and dynamics of

  14. Changing Beliefs about Teaching in Large Undergraduate Mathematics Classes

    Science.gov (United States)

    Kensington-Miller, Barbara; Sneddon, Jamie; Yoon, Caroline; Stewart, Sepideh

    2013-01-01

    Many lecturers use teacher-centred styles of teaching in large undergraduate mathematics classes, often believing in the effectiveness of such pedagogy. Changing these beliefs about how mathematics should be taught is not a simple process and many academic staff are reluctant to change their ways of lecturing due to tradition and ease. This study…

  15. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    Science.gov (United States)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  16. Direct observation of radial distribution change during tensile deformation of metallic glass by high energy X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Toshio, E-mail: nasu@kekexafs.kj.yamagata-u.ac.j [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Sasaki, Motokatsu [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Usuki, Takeshi; Sekine, Mai [Faculty of Science, Yamagata University, Yamagata 990-8560 (Japan); Takigawa, Yorinobu; Higashi, Kenji [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Harima Science Garden City, Sayo town, Hyogo 679-5198 (Japan); Sakurai, Masaki; Wei Zhang; Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-08-26

    The purpose of this research is to investigate the micro-mechanism of deformation behavior of metallic glasses. We report the results of direct observations of short-range and medium-range structural change during tensile deformation of metallic glasses by high energy X-ray diffraction method. Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass samples in the ribbon shape (1.5 mm width and 25 mum) were made by using rapid quenching method. Tensile deformation added to the sample was made by using special equipment adopted for measuring the high energy X-ray diffraction. The peaks in pair distribution function g(r) for Cu{sub 50}Zr{sub 50} and N{sub 30}iZr{sub 70} metallic glasses move zigzag into front and into rear during tensile deformation. These results of direct observation on atomic distribution change for Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass ribbons during tensile deformation suggest that the micro-relaxations occur.

  17. Detection of time-varying structures by large deformation diffeomorphic metric mapping to aid reading of high-resolution CT images of the lung.

    Directory of Open Access Journals (Sweden)

    Ryo Sakamoto

    Full Text Available OBJECTIVES: To evaluate the accuracy of advanced non-linear registration of serial lung Computed Tomography (CT images using Large Deformation Diffeomorphic Metric Mapping (LDDMM. METHODS: FIFTEEN CASES OF LUNG CANCER WITH SERIAL LUNG CT IMAGES (INTERVAL: 62.2±26.9 days were used. After affine transformation, three dimensional, non-linear volume registration was conducted using LDDMM with or without cascading elasticity control. Registration accuracy was evaluated by measuring the displacement of landmarks placed on vessel bifurcations for each lung segment. Subtraction images and Jacobian color maps, calculated from the transformation matrix derived from image warping, were generated, which were used to evaluate time-course changes of the tumors. RESULTS: The average displacement of landmarks was 0.02±0.16 mm and 0.12±0.60 mm for proximal and distal landmarks after LDDMM transformation with cascading elasticity control, which was significantly smaller than 3.11±2.47 mm and 3.99±3.05 mm, respectively, after affine transformation. Emerged or vanished nodules were visualized on subtraction images, and enlarging or shrinking nodules were displayed on Jacobian maps enabled by highly accurate registration of the nodules using LDDMM. However, some residual misalignments were observed, even with non-linear transformation when substantial changes existed between the image pairs. CONCLUSIONS: LDDMM provides accurate registration of serial lung CT images, and temporal subtraction images with Jacobian maps help radiologists to find changes in pulmonary nodules.

  18. Change of mechanical properties of irradiated silicon iron in dependence of preliminary deformation

    International Nuclear Information System (INIS)

    Chirkina, L.A.; Okovit, V.S.; Khinkis, B.A.

    1979-01-01

    Presented are the data on the influence of the 225 MeV electron irradiation on flow limit and specific elongation of silicon iron specimens preliminary deformed by slipping and twinning. The irradiaton was carried out at the temperature up to 350 K with integral dose up to 7x10 18 el/cm 2 . The specimens were tested in the temperature range of 4-450 K. It is found that the ductile brittle transition temperature Tsub(c) and plastic deformation mode of the irradiated material heavily depends on the preliminary deformation mode. The irradiation of specimens deformed by slipping leads to the increase in transition temperature (Tsub(c)) by 80 deg and it reaches 420 K. The preliminary deformation by twinning results in the Tsub(c) increase up to 320 K

  19. Large Deformations of Polymers

    DEFF Research Database (Denmark)

    Lindgreen, Britta

    2008-01-01

    I afhandlingen anvendes realistiske materialemodeller for polymerer til at analysere plastiske deformationer af forskellige emner. Da plasticitet i polymerer medfører meget store tøjninger, er det nødvendigt at basere analyserne på generel kontinuumsmekanik med fuld hensyntagen til alle ulinearit...

  20. Influence of changing in sign plastic deformation on shape memory effects in titanium nickelide

    International Nuclear Information System (INIS)

    Belyaev, S.P.; Volkov, A.E.; Evard, M.E.; Leskina, M.L.

    2005-01-01

    The effects of shape memory, martensite transformation plasticity, and two-way shape memory in titanium nickelide (TiNi) prestrained in an alternating-sign mode have been studied. It was ascertained that the reversible deformation and the temperature-dependent deformation kinetics in the temperature interval of martensite transformation were independent of the degree of prestraining. Based on the results the conclusion is made that an increase in the density of dislocations does not influence essentially the deformation behavior of titanium nickelide in the vicinity of the martensite transformation. The results of computer simulation based on the structural analytical theory are in a satisfactory agreement with the experiment [ru

  1. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images

    Directory of Open Access Journals (Sweden)

    Can Ceritoglu

    2010-05-01

    Full Text Available Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1 manual segmentation of white matter (WM, gray matter (GM and cerebrospinal fluid (CSF compartments in histological sections, (2 alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3 registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4 intensity normalization of images via histogram matching and (5 registration of the volumes via intensity based Large Deformation Diffeomorphic Metric (LDDMM image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39±0.13 mm compared to distances after affine registration (0.76±0.41 mm. Similarly, WM/GM distances decreased to 0.28±0.16 mm after LDDMM compared to 0.54±0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, e.g., receptor distributions, gene expression, onto MRI volumes.

  2. Mapping Two-Dimensional Deformation Field Time-Series of Large Slope by Coupling DInSAR-SBAS with MAI-SBAS

    Directory of Open Access Journals (Sweden)

    Liming He

    2015-09-01

    Full Text Available Mapping deformation field time-series, including vertical and horizontal motions, is vital for landslide monitoring and slope safety assessment. However, the conventional differential synthetic aperture radar interferometry (DInSAR technique can only detect the displacement component in the satellite-to-ground direction, i.e., line-of-sight (LOS direction displacement. To overcome this constraint, a new method was developed to obtain the displacement field time series of a slope by coupling DInSAR based small baseline subset approach (DInSAR-SBAS with multiple-aperture InSAR (MAI based small baseline subset approach (MAI-SBAS. This novel method has been applied to a set of 11 observations from the phased array type L-band synthetic aperture radar (PALSAR sensor onboard the advanced land observing satellite (ALOS, spanning from 2007 to 2011, of two large-scale north–south slopes of the largest Asian open-pit mine in the Northeast of China. The retrieved displacement time series showed that the proposed method can detect and measure the large displacements that occurred along the north–south direction, and the gradually changing two-dimensional displacement fields. Moreover, we verified this new method by comparing the displacement results to global positioning system (GPS measurements.

  3. Large diurnal temperature range increases bird sensitivity to climate change

    NARCIS (Netherlands)

    Briga, Michael; Verhulst, Simon

    2015-01-01

    Climate variability is changing on multiple temporal scales, and little is known of the consequences of increases in short-term variability, particularly in endotherms. Using mortality data with high temporal resolution of zebra finches living in large outdoor aviaries (5 years, 359.220 bird-days),

  4. Time simulation of flutter with large stiffness changes

    Science.gov (United States)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  5. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models.......This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can...

  6. Computed tomographic analysis of deformity and dimensional changes in the eyeball

    International Nuclear Information System (INIS)

    Osborne, D.R.; Foulks, G.N.

    1984-01-01

    Computed tomography (CT) was performed in 40 patients with a confirmed ophthalmic diagnosis and a change in the dimensions or configuration of the eyeball. Abnormalities studied included coloboma, microphthalmus, buphthalmos, axial myopia, macrophthalmus, phthisis bulbi, trauma, neoplasm, posterior staphyloma, granuloma, pseudotumor, and surgicalscleral banding for retinal detachment. CT findings could be grouped into three categories depending upon whether the eye was small, large, or normal in size, with the findings in each group allowing distinction of most disease processes

  7. Large capacity storage of integrated objects before change blindness.

    Science.gov (United States)

    Landman, Rogier; Spekreijse, Henk; Lamme, Victor A F

    2003-01-01

    Normal people have a strikingly low ability to detect changes in a visual scene. This has been taken as evidence that the brain represents only a few objects at a time, namely those currently in the focus of attention. In the present study, subjects were asked to detect changes in the orientation of rectangular figures in a textured display across a 1600 ms gray interval. In the first experiment, change detection improved when the location of a possible change was cued during the interval. The cue remained effective during the entire interval, but after the interval, it was ineffective, suggesting that an initially large representation was overwritten by the post-change display. To control for an effect of light intensity during the interval on the decay of the representation, we compared performance with a gray or a white interval screen in a second experiment. We found no difference between these conditions. In the third experiment, attention was occasionally misdirected during the interval by first cueing the wrong figure, before cueing the correct figure. This did not compromise performance compared to a single cue, indicating that when an item is attentionally selected, the representation of yet unchosen items remains available. In the fourth experiment, the cue was shown to be effective when changes in figure size and orientation were randomly mixed. At the time the cue appeared, subjects could not know whether size or orientation would change, therefore these results suggest that the representation contains features in their 'bound' state. Together, these findings indicate that change blindness involves overwriting of a large capacity representation by the post-change display.

  8. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  9. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Yamada, Tomoe; Lu, Hongxu; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2008-01-01

    Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture

  10. Tectonic strain changes affecting the development of deep seated gravitational slope deformations in the Bohemian Massif and Outer Western Carpathians

    Czech Academy of Sciences Publication Activity Database

    Stemberk, Josef; Hartvich, Filip; Blahůt, Jan; Rybář, Jan; Krejčí, O.

    2017-01-01

    Roč. 289, SI (2017), s. 3-17 ISSN 0169-555X R&D Projects: GA MŠk(CZ) LG15007; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985891 Keywords : Deep seated gravitational slope deformations * Displacement monitoring * Tectonic strain changes * Bohemian Massif * Outer Western Carpathians Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.958, year: 2016

  11. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  12. Analysis of Blood Flow Through a Viscoelastic Artery using the Cosserat Continuum with the Large-Amplitude Oscillatory Shear Deformation Model

    DEFF Research Database (Denmark)

    Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.

    2011-01-01

    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....

  13. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    Science.gov (United States)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  14. A multi-electrode and pre-deformed bilayer spring structure electrostatic attractive MEMS actuator with large stroke at low actuation voltage

    International Nuclear Information System (INIS)

    Hu, Fangrong; Li, Zhi; Xiong, Xianming; Niu, Junhao; Peng, Zhiyong; Qian, Yixian; Yao, Jun

    2012-01-01

    This paper presents a multi-electrode and pre-deformed bilayer spring structure electrostatic attractive microelectromechanical systems (MEMS) actuator; it has large stroke at relatively low actuation voltage. Generally, electrostatic-attractive-force-based actuators have small stroke due to the instability resulted from the electrostatic ‘pull-in’ phenomenon. However, in many applications, the electrostatic micro-actuator with large stroke at low voltage is more preferred. By introducing a multi-electrode and a pre-deformed bilayer spring structure, an electrostatic attractive MEMS actuator with large stroke at very low actuation voltage has been successfully demonstrated in this paper. The actuator contains a central plate with a size of 300 µm × 300 µm × 1.5 µm and it is supported by four L-shaped bilayer springs which are pre-deformed due to residual stresses. Each bilayer spring is simultaneously attracted by three adjacent fixed electrodes, and the factors affecting the electrostatic attractive force are analyzed by a finite element analysis method. The prototype of the actuator is fabricated by poly-multi-user-MEMS-process (PolyMUMP) and the static performance is tested using a white light interferometer. The measured stroke of the actuator reaches 2 µm at 13 V dc, and it shows a good agreement with the simulation. (paper)

  15. AIRBORNE LIGHT DETECTION AND RANGING (LIDAR DERIVED DEFORMATION FROM THE MW 6.0 24 AUGUST, 2014 SOUTH NAPA EARTHQUAKE ESTIMATED BY TWO AND THREE DIMENSIONAL POINT CLOUD CHANGE DETECTION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. W. Lyda

    2016-06-01

    Full Text Available Remote sensing via LiDAR (Light Detection And Ranging has proven extremely useful in both Earth science and hazard related studies. Surveys taken before and after an earthquake for example, can provide decimeter-level, 3D near-field estimates of land deformation that offer better spatial coverage of the near field rupture zone than other geodetic methods (e.g., InSAR, GNSS, or alignment array. In this study, we compare and contrast estimates of deformation obtained from different pre and post-event airborne laser scanning (ALS data sets of the 2014 South Napa Earthquake using two change detection algorithms, Iterative Control Point (ICP and Particle Image Velocimetry (PIV. The ICP algorithm is a closest point based registration algorithm that can iteratively acquire three dimensional deformations from airborne LiDAR data sets. By employing a newly proposed partition scheme, “moving window,” to handle the large spatial scale point cloud over the earthquake rupture area, the ICP process applies a rigid registration of data sets within an overlapped window to enhance the change detection results of the local, spatially varying surface deformation near-fault. The other algorithm, PIV, is a well-established, two dimensional image co-registration and correlation technique developed in fluid mechanics research and later applied to geotechnical studies. Adapted here for an earthquake with little vertical movement, the 3D point cloud is interpolated into a 2D DTM image and horizontal deformation is determined by assessing the cross-correlation of interrogation areas within the images to find the most likely deformation between two areas. Both the PIV process and the ICP algorithm are further benefited by a presented, novel use of urban geodetic markers. Analogous to the persistent scatterer technique employed with differential radar observations, this new LiDAR application exploits a classified point cloud dataset to assist the change detection

  16. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  17. Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    Science.gov (United States)

    Phillips, Emrys; Cotterill, Carol; Johnson, Kirstin; Crombie, Kirstin; James, Leo; Carr, Simon; Ruiter, Astrid

    2018-01-01

    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40-50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40-50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a "forward" propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum.

  18. A Paleomagnetic Investigation of Large-Scale Vertical Axis Rotations in Coastal Sonora: Evidence for Transtensional Proto-Gulf Deformation

    Science.gov (United States)

    Herman, S. W.; Gans, P. B.

    2006-12-01

    A paleomagnetic investigation into possible vertical axis rotations has been conducted in the Sierra el Aguaje and Sierra Tinajas del Carmen, Sonora, Mexico, in order assess proposed styles for oblique continental rifting in the Gulf of California. Two styles of rifting have been proposed; (1) strain partitioning (Stock and Hodges, 89), and (2) transtension (Gans, 97), for the Proto-Gulf period of the Gulf of California. The presence of large- scale vertical axis rotations would lend weight to the argument for transtension. The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico. The ranges represent the eastern-rifted margin of the central Gulf of California. This is one of the few areas of that margin which is entirely above water, with new ocean crust of the Guaymas basin lying immediately offshore of the western edge of the ranges. The ranges are composed of volcanic units and their corresponding volcaniclastic units that are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje and Sierra Tinajas del Carmen is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. Existing field relations suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. The results of the paleomagnetic investigation are consistent with the field evidence and show large clockwise rotations between ~30° and

  19. Social Discounting of Large Dams with Climate Change Uncertainty

    Directory of Open Access Journals (Sweden)

    Marc Jeuland

    2010-06-01

    This paper reviews the recent discounting controversy and examines its implications for the appraisal of an illustrative hydropower project in Ethiopia. The analysis uses an integrated hydro-economic model that accounts for how the dam’s transboundary impacts vary with climate change. The real value of the dam is found to be highly sensitive to assumptions about future economic growth. The argument for investment is weakest under conditions of robust global economic growth, particularly if these coincide with unfavourable hydrological or development factors related to the project. If however long-term growth is reduced, the value of the dam tends to increase. There may also be distributional or local arguments favouring investment, if growth in the investment region lags behind that of the rest of the globe. In such circumstances, a large dam can be seen as a form of insurance that protects future vulnerable generations against the possibility of macroeconomic instability or climate shocks.

  20. Hematological changes after single large dose half-body irradiation

    International Nuclear Information System (INIS)

    Herrmann, T.; Friedrich, S.; Jochem, I.; Eberhardt, H.J.; Koch, R.; Knorr, A.

    1981-01-01

    The determination of different peripheral blood parameters aimed at the study of side effects on the hematological cellular system following a 5 - 8 Gy single large dose half-body irradiation in 20 patients. Compared to the initial values the leukocytes between the 6. and 14., the thrombocytes between the 14. and 21. postirradiation day as well as the lymphocytes between 3 hours and 4 weeks postirradiation were significantly decreased without exhibiting complications such as hemorrhages or infections. The hemoglobin, hematocrit and reticulocyte values revealed but a slight decrease normalized within a 28 days postirradiation period. Transfusions were necessary when a tumor-caused anemia was present prior to irradiation. Changes in serum activity of aminotransferases and lactate dehydrogenase occured during the first hours after irradiation and were due to enzyme release from destroyed tumor cells

  1. The Impact of the Rock Mass Deformation on Geometric Changes of a Historical Chimney in the Salt Mine of Bochnia

    Science.gov (United States)

    Szafarczyk, Anna; Gawałkiewicz, Rafał

    2018-03-01

    There are many ways of the geometry measurement of slim objects, with the application of geodetic and photogrammetric methods. A modern solution in the diagnostics of slim objects is the application of laser scanning, with the use of a scanner of a scanning total station. The point cloud, obtained from the surface of the scanned object gives the possibility of generating not only information on structural surface deformations, but also facilitates obtaining the data on the geometry of the axis of the building, as a basic indicator of the characteristics of its deformation. The cause of the change in the geometry of slim objects is the impact of many external and internal factors. These objects are located in the areas of working or closed underground mines. They can be impacted by the ground and they can face the results of the convergence of cavities. A specific structure of the salt rock mass causes subsequent convergence of the post-exploitation cavities, which has the influence on the behaviour of the terrain surface and the related objects. The authors analysed the impact of the changes in the rock mass and the surface on the changes of the industrial chimney in the Bochnia Salt Mine.

  2. Calorie changes in large chain restaurants from 2008 to 2015.

    Science.gov (United States)

    Bleich, Sara N; Wolfson, Julia A; Jarlenski, Marian P

    2017-07-01

    No prior studies examining changes in the calorie content of chain restaurants have included national data before and after passage of federal menu labeling legislation, required by the 2010 Affordable Care Act. This paper describes trends in calories available in large U.S. chain restaurants in 2008 and 2012 to 2015 using data were obtained from the MenuStat project (2012 to 2015) and from the Center for Science in the Public Interest (2008). This analysis included 44 of the 100 largest U.S. restaurants which are available in all years of the data (2008 and 2012-2015) (N=19,391 items). Generalized linear models were used to examine 1) per-item calorie changes from 2008 to 2015 among items on the menu in all years and 2) mean calories in new items in 2012, 2013, 2014 and 2015 compared to items on the menu in 2008 only. We found that Among items common to the menu in all years, overall calories declined from 327kcal in 2008 to 318kcal in 2015 (p-value for trend=0.03). No differences in mean calories among menu items newly introduced in 2012, 2013, 2014, and 2015 relative to items only on the menu in 2008 were found. These results suggest that the federal menu labeling mandate (to be implemented in May 2017) appears to be influencing restaurant behavior towards lower average calories for menu items. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A study of residual stress and plastic deformation of a bar with gap size changes between rolls in a two cross roll straightener

    International Nuclear Information System (INIS)

    Cho, Hyun Soo; Hahm, Ju Hee; Lee Young Ho

    2012-01-01

    Cold drawn(CD) bars feature superb surface roughness, dimensional precision, and straightness. They are used in the manufacture of automotive parts and home electrical appliances. Two cross roll straighteners have been used to manufacture of automotive parts and home electrical appliances. Two cross roll straighteners have been used to manufacture CD bars for these industries. This study investigated the variation of the gap size between the two cross rolls. It was found that changes in the gap size have a large influence on the residual stress and plastic deformation. Finite element method(FEM) simulations were performed to study the influence of the gap size on the residual stress in CD bars, and experiments were performed to verify the FEM results. The residual stresses were measured with X ray diffraction in both the axial and the hoop directions

  4. Large deformation of uniaxially loaded slender microbeams on the basis of modified couple stress theory: Analytical solution and Galerkin-based method

    Science.gov (United States)

    Kiani, Keivan

    2017-09-01

    Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.

  5. Creep deformation behaviour and microstructural changes in Zr-2.5% Nb alloy

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Singh, R.; Ghosh, R.N.; Sinha, T.K.; Banerjee, S.

    2002-01-01

    Cold worked and stress relieved Zr-2.5% Nb alloy is a well-known material used as pressure tubes in Pressurised Heavy Water Reactors. The pressure tubes, made of a typical Zr-alloy, consisting of 2.54% Nb, 0.1175% oxygen and less than 100 ppm impurities, are expected to withstand 9.5 MPa to 12.5 MPa pressure at 250 degC to 310 degC under fast neutron fluxes of 3.5 x 10 17 nm -2 s -1 . These tubes are made by hot extrusion at 780 degC with an extrusion ratio 8.3:1 and 40% cold pilgering followed by annealing at 550 degC for 3 hours and subsequently by 20-30% cold pilgering and stress relieving at 400 degC for 24 hours. The microstructure of such cold worked and stress relieved alloy consists of Β-Zr precipitates in the matrix of elongated Α-Zr grains. Although various factors such as irradiation creep, thermal creep, irradiation growth etc are responsible for limiting the life of pressure tubes; the thermal creep contributes significantly in overall creep deformation. Keeping this in view as well as due to non-availability of adequate published information including creep database on this alloy, an extensive investigation on the thermal creep behaviour of indigenously produced Zr-2.5% Nb alloy was undertaken. The creep tests in air using Mayes' creep testing machines were carried out in the temperature range of 300 degC to 450 degC under stresses in the range of 50 to 550 MPa. Analysis of data revealed that the mechanism of creep deformation remains the same in this range

  6. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    International Nuclear Information System (INIS)

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports

  7. Lithospheric structure of northwest Africa: Insights into the tectonic history and influence of mantle flow on large-scale deformation

    Science.gov (United States)

    Miller, Meghan S.; Becker, Thorsten

    2014-05-01

    Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.

  8. Rendering Future Vegetation Change across Large Regions of the US

    Science.gov (United States)

    Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg

    2015-04-01

    the period 2061 - 2080. The predicted mean annual air temperature change for the three sites ranged from + 1.8°C to + 2.3°C. Precipitation for the three sites changed little. In Oregon, this resulted in a 37% shift of forested areas to shrub vegetation. In New Mexico, shrubs and evergreen vegetation increased by 18% and 5%, respectively. Deciduous and grassland vegetation decreased by 90% and 52%, respectively. In Washington, evergreen vegetation cover decreased by 4.5%. Deciduous vegetation increase by 25%. Shrubs and grasslands increased by 15% and 7%, respectively. Perennial snow cover on mountain tops fell by 46%. Beyond rendering a view of future vegetation cover, we also extracted information regarding the relative controls that climate and topography exert over local vegetation. The three most dominant controls are elevation (most dominant), temperature, and precipitation. In summary, we demonstrate a framework for rendering potential future vegetation in a visually realistic way. Moreover, these machine learning techniques provide a computationally fast framework for exploring the effects of climate change over large-areas and at high-spatial resolution that cannot be accomplished through simulation alone.

  9. Distributed power-law seismicity changes and crustal deformation in the SW Hellenic ARC

    Directory of Open Access Journals (Sweden)

    A. Tzanis

    2003-01-01

    Full Text Available A region of definite accelerating seismic release rates has been identified at the SW Hellenic Arc and Trench system, of Peloponnesus, and to the south-west of the island of Kythera (Greece. The identification was made after detailed, parametric time-to-failure modelling on a 0.1° square grid over the area 20° E – 27° E and 34° N–38° N. The observations are strongly suggestive of terminal-stage critical point behaviour (critical exponent of the order of 0.25, leading to a large earthquake with magnitude 7.1 ± 0.4, to occur at time 2003.6 ± 0.6. In addition to the region of accelerating seismic release rates, an adjacent region of decelerating seismicity was also observed. The acceleration/deceleration pattern appears in such a well structured and organised manner, which is strongly suggestive of a causal relationship. An explanation may be that the observed characteristics of distributed power-law seismicity changes may be produced by stress transfer from a fault, to a region already subjected to stress inhomogeneities, i.e. a region defined by the stress field required to rupture a fault with a specified size, orientation and rake. Around a fault that is going to rupture, there are bright spots (regions of increasing stress and stress shadows (regions relaxing stress; whereas acceleration may be observed in bright spots, deceleration may be expected in the shadows. We concluded that the observed seismic release patterns can possibly be explained with a family of NE-SW oriented, left-lateral, strike-slip to oblique-slip faults, located to the SW of Kythera and Antikythera and capable of producing earthquakes with magnitudes MS ~ 7. Time-to-failure modelling and empirical analysis of earthquakes in the stress bright spots yield a critical exponent of the order 0.25 as expected from theory, and a predicted magnitude and critical time perfectly consistent with the figures given above. Although we have determined an approximate location

  10. Changes in left atrial deformation in hypertrophic cardiomyopathy: Evaluation by vector velocity imaging

    Directory of Open Access Journals (Sweden)

    Hala Mahfouz Badran

    2012-12-01

    Full Text Available Objectives: Hypertrophic cardiomyopathy (HCM represents a generalized myopathic process affecting both ventricular and atrial myocardium. We assessed the global and regional left atrial (LA function and its relation to left ventricular (LV mechanics and clinical status in patients with HCM using Vector Velocity Imaging (VVI. Methods: VVI of the LA and LV was acquired from apical four- and two-chamber views of 108 HCM patients (age 40±19years, 56.5% men and 33 healthy subjects, all had normal LV systolic function. The LA subendocardium was traced to obtain atrial volumes, ejection fraction, velocities, and strain (ɛ/strain rate (SR measurements. Results: Left atrial reservoir (ɛsys,SRsys and conduit (early diastolic SRe function were significantly reduced in HCM compared to controls (P-1.8s-1 was 81% sensitive and 30% specific, SRa>-1.5s-1 was 73% sensitive and 40% specific. By multivariate analysis global LVɛsys and LV septal thickness are independent predictors for LAɛsys, while end systolic diameter is the only independent predictor for SRsys, P<.001. Conclusion: Left atrial reservoir and conduit function as measured by VVI were significantly impaired while contractile function was preserved among HCM patients. Left atrial deformation was greatly influenced by LV mechanics and correlated to severity of phenotype.

  11. Changes in left atrial deformation in hypertrophic cardiomyopathy: Evaluation by vector velocity imaging

    Science.gov (United States)

    Badran, Hala Mahfouz; Soltan, Ghada; Hassan, Hesham; Nazmy, Ahmed; Faheem, Naglaa; Saadan, Haythem; Yacoub, Magdi H.

    2012-01-01

    Abstract: Objectives: Hypertrophic cardiomyopathy (HCM) represents a generalized myopathic process affecting both ventricular and atrial myocardium. We assessed the global and regional left atrial (LA) function and its relation to left ventricular (LV) mechanics and clinical status in patients with HCM using Vector Velocity Imaging (VVI). Methods: VVI of the LA and LV was acquired from apical four- and two-chamber views of 108 HCM patients (age 40 ± 19years, 56.5% men) and 33 healthy subjects, all had normal LV systolic function. The LA subendocardium was traced to obtain atrial volumes, ejection fraction, velocities, and strain (ϵ)/strain rate (SR) measurements. Results: Left atrial reservoir (ϵsys,SRsys) and conduit (early diastolic SRe) function were significantly reduced in HCM compared to controls (P  − 1.8s− 1 was 81% sensitive and 30% specific, SRa> − 1.5s− 1 was 73% sensitive and 40% specific. By multivariate analysis global LVϵsys and LV septal thickness are independent predictors for LAϵsys, while end systolic diameter is the only independent predictor for SRsys, P < .001. Conclusion: Left atrial reservoir and conduit function as measured by VVI were significantly impaired while contractile function was preserved among HCM patients. Left atrial deformation was greatly influenced by LV mechanics and correlated to severity of phenotype. PMID:24688992

  12. Fault Dating in the US Rockies and Large Regional Extent of Deformation Pulses Along the Sevier Orogen of North America.

    Science.gov (United States)

    van der Pluijm, B.; Lynch, E. A.; Pana, D.; Yonkee, A.

    2017-12-01

    Recent Ar dating of clay-rich fault rock in the Canadian Rockies identified multiple orogenic pulses: Late Jurassic (163-146 Ma), Mid-Cretaceous (103-99 Ma), Late Cretaceous (76-72 Ma) and Eocene (54-52 Ma; Pana and van der Pluijm, GSAB 2015). New dating in the US Rockies combined with ages in the most frontal section along an Idaho-Wyoming transect show a remarkably similar age pattern: Meade Thrust, 108-102 Ma; (S)Absaroka Thrust, 73 Ma; Darby-Bear Thrust, 56-50 Ma. These radiometric fault ages in the US Rockies match field and tectono-stratigraphic predictions, analogues to those in the Canadian Rockies. Thus, a remarkably long (>1500km) lateral tract along the North American Sevier orogen is characterized by at least three major orogenic pulses that are structurally contiguous. These orogenic pulses are progressively younger in the direction of easterly thrust fault motion (toward cratonic interior) and are separated by long periods of relative tectonic quiescence. We interpret the extensive regional continuity of deformation pulses and tectonic quiescence along the Sevier Orogen as the result of three plate reorganization events in western North America since the Late Jurassic.

  13. Intereruptive deformation at Three Sisters volcano, Oregon, USA: a strategy for traking volume changes through coupled hydraulic-viscoelastic modeling

    Science.gov (United States)

    Charco, M.; Rodriguez Molina, S.; Gonzalez, P. J.; Negredo, A. M.; Poland, M. P.; Schmidt, D. A.

    2017-12-01

    The Three Sisters volcanic region Oregon (USA) is one of the most active volcanic areas in the Cascade Range and is densely populated with eruptive vents. An extensive area just west of South Sister volcano has been actively uplifting since about 1998. InSAR data from 1992 through 2001 showed an uplift rate in the area of 3-4 cm/yr. Then the deformation rate considerably decreased between 2004 and 2006 as shown by both InSAR and continuous GPS measurements. Once magmatic system geometry and location are determined, a linear inversion of all GPS and InSAR data available is performed in order to estimate the volume changes of the source along the analyzed time interval. For doing so, we applied a technique based on the Truncated Singular Value Decomposition (TSVD) of the Green's function matrix representing the linear inversion. Here, we develop a strategy to provide a cut-off for truncation removing the smallest singular values without too much loose of data resolution against the stability of the method. Furthermore, the strategy will give us a quantification of the uncertainty of the volume change time series. The strength of the methodology resides in allowing the joint inversion of InSAR measurements from multiple tracks with different look angles and three component GPS measurements from multiple sites.Finally, we analyze the temporal behavior of the source volume changes using a new analytical model that describes the process of injecting magma into a reservoir surrounded by a viscoelastic shell. This dynamic model is based on Hagen-Poiseuille flow through a vertical conduit that leads to an increase in pressure within a spherical reservoir and time-dependent surface deformation. The volume time series are compared to predictions from the dynamic model to constrain model parameters, namely characteristic Poiseuille and Maxwell time scales, inlet and outlet injection pressure, and source and shell geometries. The modeling approach used here could be used to

  14. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar–39Ar age of Kap Washington Group volcanics, North Greenland

    DEFF Research Database (Denmark)

    Tegner, Christian; Storey, Michael; Holm, Paul Martin

    2011-01-01

    The High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and has been suggested to include an initial tholeiitic phase (130–80 Ma) and a second alkaline phase (85–60 Ma); second, it was subsequently deformed during the Eurekan Orogeny. New 40Ar–39Ar dating...... of alkaline volcanics from Kap Kane, part of the Kap Washington Group volcanics at the northern tip of Greenland, provides an emplacement age of 71.2±0.5 Ma obtained from amphibole in lapilli tuffs, and a thermal resetting age of 49–47 Ma obtained in feldspar and whole-rocks from trachyte flows. Patch...... in the Labrador Sea and the Baffin Bay, and to eastwards displacement of Greenland relative to North America. The alkaline suite, therefore, may be unrelated to the main tholeiitic phase of the High Arctic Large Igneous Province. The subsequent initiation of continental rifting and ensuing seafloor spreading...

  15. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    Science.gov (United States)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  16. Electrical potential changes and acoustic emissions generated by fracture and fluid flow during experimental triaxial rock deformation

    Science.gov (United States)

    Clint, Oswald Conan

    Natural electrical potential signals have been recorded from numerous seismically active areas around the world and therefore have been proposed as a potential earthquake prediction tool. The streaming potential is being used to locate sub-surface water reservoirs, to monitor steam fronts during enhanced oil recovery techniques, and to delineate the anisotropy of fractures in geothermal and oil reservoirs. The generating mechanism for these signals is still unclear although plausible theories include: - Piezoelectric fields produced through stress changes on piezoelectric materials, such as quartz, found in many rocks. - Electrokinetic currents induced through a pressure gradient and caused by electrical charge transport within a moving fluid. - Less well-established theories for instance involving current carrying mobile O' charges. To investigate the relative significance of these mechanisms, I have measured the direct current electrical potential and acoustic emissions during constant strain rate rock deformation under simulated crustal conditions of pressure and pore fluid pressure. Some sixty-one experiments were done on rock samples of quartz rich Darley Dale and Bentheim sandstone and quartz free basalt from Iceland. A computer and servo-controlled conventional triaxial cell was used to deform dry, water-saturated and brine-saturated rock samples at confining pressures between 20 and 200MPa, pore fluid pressures between 10 and 50MPa and strain rates from 10-4 s-1 to 10-6 s-1 I identify the primary sources of the electrical potential signals as being generated by (i) piezoelectricity in dry sandstone experiments and (ii) electrokinetic effect in saturated basalt experiments. I show that electrical potential signals from the other proposed methods are not detectable above the background noise level. It can therefore be argued that the electrokinetic effect is the main electrical potential generating mechanism within the upper crust.Both precursory and

  17. Perspectives on Instituting Change Management in Large Organisations

    Science.gov (United States)

    Lawler, Alan; Sillitoe, James

    2010-01-01

    Australian universities are currently undergoing significant and deep-seated change to their funding models through their relationship to Federal government social development and research agendas. Consequently, changes are being instituted at all levels of university activity. Such changes are often accompanied by considerable disruption to…

  18. Large capacity storage of integrated objects before change blindness

    NARCIS (Netherlands)

    Lamme, V.A.F.; Spekreijse, H.; Landman, R.

    2003-01-01

    Normal people have a strikingly low ability to detect changes in a visual scene. In the present study, Ss were asked to detect changes in the orientation of rectangular figures in a textured display across a 1600 ms gray interval. In the first experiment, change detection improved when the location

  19. Tracking hydrothermal feature changes in response to seismicity and deformation at Mud Volcano thermal area, Yellowstone

    Science.gov (United States)

    Diefenbach, A. K.; Hurwitz, S.; Murphy, F.; Evans, W.

    2013-12-01

    The Mud Volcano thermal area in Yellowstone National Park comprises many hydrothermal features including fumaroles, mudpots, springs, and thermal pools. Observations of hydrothermal changes have been made for decades in the Mud Volcano thermal area, and include reports of significant changes (the appearance of new features, increased water levels in pools, vigor of activity, and tree mortality) following an earthquake swarm in 1978 that took place beneath the area. However, no quantitative method to map and measure surface feature changes through time has been applied. We present an analysis of aerial photographs from 1954 to present to track temporal changes in the boundaries between vegetated and thermally barren areas, as well as location, extent, color, clarity, and runoff patterns of hydrothermal features within the Mud Volcano thermal area. This study attempts to provide a detailed, long-term (>50 year) inventory of hydrothermal features and change detection at Mud Volcano thermal area that can be used to identify changes in hydrothermal activity in response to seismicity, uplift and subsidence episodes of the adjacent Sour Creek resurgent dome, or other potential causes.

  20. Numerical relationship between surface deformation and a change of groundwater table before and after an earthquake

    International Nuclear Information System (INIS)

    Akao, Yoshihiko

    1995-01-01

    The purpose of this study is to estimate the effect of earthquakes upon a groundwater flow around a repositories for high-level radioactive wastes. Estimation of a groundwater flow change before and after an earthquake or a volcanic eruption is one of the issues for a long-term safety assessment of the repositories. However, almost any systematic investigation about the causality between a groundwater flow change and an earthquake or an eruption was not found, and as well no estimation formula has been published. The authors succeeded in obtaining a primitive relationship between a groundwater change and an earthquake in this study. The study consists of three stages. First, several survey reports which describe field observation results of groundwater anomalies caused by earthquakes or eruptions have been collected. The necessary data have been read from the literature and systematically arranged. Second, source mechanisms of the corresponding earthquakes were inspected and static displacements at the well positions were calculated by the dislocation theory in the seismology. Third, parametric studies among the parameters of groundwater anomalies and earthquakes were carried out to find a numerical relationship between a couple of them. Then, a preliminary relationship between water table change in a well and static displacement at the well position was found. The authors can conclude that temporary change of water table seems to depend on the norm of displacement vector. In this relationship, the maximum value of water table change would be approximately one hundred times of the displacement

  1. Broadscale Postseismic Gravity Change Following the 2011 Tohoku-Oki Earthquake and Implication for Deformation by Viscoelastic Relaxation and Afterslip

    Science.gov (United States)

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2014-01-01

    The analysis of GRACE gravity data revealed post-seismic gravity increase by 6 micro-Gal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40-50% of the co-seismic gravity change. It originates mostly from changes in the isotropic component corresponding to the M(sub rr) moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The post-seismic gravity variation is best modeled by the bi-viscous relaxation with a transient and steady state viscosity of 10(exp 18) and 10(exp 19) Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized post-seismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying.

  2. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  3. Detecting Change in Landscape Greenness over Large Areas: An Example for New Mexico, USA

    Science.gov (United States)

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can potentially detect large-scale, slow changes (e.g., climate change), as well as more local and rapid changes (e.g., fire, land development). A useful indicator for detecting change i...

  4. The Management of Large-Scale Change in Pakistani Education

    Science.gov (United States)

    Razzaq, Jamila; Forde, Christine

    2014-01-01

    This article argues that although there are increasing similarities in priorities across different national education systems, contextual differences raise questions about the replication of sets of change strategies based on particular understandings of the nature of educational change across these different systems. This article begins with an…

  5. Performance through Deformation and Instability

    Science.gov (United States)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  6. Numerical simulation of lead devices for seismic isolation and vibration control on their damping characteristics. Development of lead material model under cyclic large deformation

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de

    2004-01-01

    In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)

  7. Sonographic Analysis of Changes in Skull Shape After Cranial Molding Helmet Therapy in Infants With Deformational Plagiocephaly.

    Science.gov (United States)

    Kwon, Dong Rak

    2016-04-01

    -The purpose of this study was to investigate the changes in skull shape on sonography after cranial molding helmet therapy in infants with deformational plagiocephaly. -Twenty-six infants who were treated with cranial molding helmet therapy were recruited. Caliper and sonographic measurements were performed. The lateral length of the affected and unaffected sides of the skull and cranial vault asymmetry index were measured with calipers. The occipital angle, defined as the angle between lines projected along the lambdoid sutures of the skull, was calculated by sonography. The occipital angle difference and occipital angle ratio were also measured. All caliper and sonographic measurements were performed in each infant twice before and twice after treatment. -The study group included 12 male and 14 female infants with a mean age ± SD of 6.2 ± 3.5 months. The mean treatment duration was 6.0 ± 2.5 months. The difference in lateral length before and after helmet therapy was significantly greater on the affected skull than the unaffected skull (16.7 ± 12.7 versus 9.0 ± 13.4 mm; P skull than the unaffected skull (-5.7° ± 7.3° versus 4.2° ± 7.9°; P < .01). The cranial vault asymmetry index and occipital angle ratio were significantly reduced after helmet therapy (cranial vault asymmetry index, 9.3% ± 2.3% versus 3.5% ± 3.0%; occipital angle ratio, 1.07 ± 0.05 versus 1.01 ± 0.01; P < .05). -These results suggest that occipital angle measurements using sonography, combined with cephalometry, could provide a better understanding of the therapeutic effects of cranial molding helmet therapy in infants with deformational plagiocephaly. © 2016 by the American Institute of Ultrasound in Medicine.

  8. 3D full-field quantification of cell-induced large deformations in fibrillar biomaterials by combining non-rigid image registration with label-free second harmonic generation.

    Science.gov (United States)

    Jorge-Peñas, Alvaro; Bové, Hannelore; Sanen, Kathleen; Vaeyens, Marie-Mo; Steuwe, Christian; Roeffaers, Maarten; Ameloot, Marcel; Van Oosterwyck, Hans

    2017-08-01

    To advance our current understanding of cell-matrix mechanics and its importance for biomaterials development, advanced three-dimensional (3D) measurement techniques are necessary. Cell-induced deformations of the surrounding matrix are commonly derived from the displacement of embedded fiducial markers, as part of traction force microscopy (TFM) procedures. However, these fluorescent markers may alter the mechanical properties of the matrix or can be taken up by the embedded cells, and therefore influence cellular behavior and fate. In addition, the currently developed methods for calculating cell-induced deformations are generally limited to relatively small deformations, with displacement magnitudes and strains typically of the order of a few microns and less than 10% respectively. Yet, large, complex deformation fields can be expected from cells exerting tractions in fibrillar biomaterials, like collagen. To circumvent these hurdles, we present a technique for the 3D full-field quantification of large cell-generated deformations in collagen, without the need of fiducial markers. We applied non-rigid, Free Form Deformation (FFD)-based image registration to compute full-field displacements induced by MRC-5 human lung fibroblasts in a collagen type I hydrogel by solely relying on second harmonic generation (SHG) from the collagen fibrils. By executing comparative experiments, we show that comparable displacement fields can be derived from both fibrils and fluorescent beads. SHG-based fibril imaging can circumvent all described disadvantages of using fiducial markers. This approach allows measuring 3D full-field deformations under large displacement (of the order of 10 μm) and strain regimes (up to 40%). As such, it holds great promise for the study of large cell-induced deformations as an inherent component of cell-biomaterial interactions and cell-mediated biomaterial remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment of climate change impacts on rainfall using large scale ...

    Indian Academy of Sciences (India)

    Many of the applied techniques in water resources management can be directly or indirectly influenced by ... is based on large scale climate signals data around the world. In order ... predictand relationships are often very complex. .... constraints to solve the optimization problem. ..... social, and environmental sustainability.

  10. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals

    International Nuclear Information System (INIS)

    Calais, D.

    1960-04-01

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect α uranium single crystals prepared by a β → α phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the α phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [fr

  11. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    Science.gov (United States)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  12. Investigating the large deformation of the 5 /2+ isomeric state in 73Zn: An indicator for triaxiality

    Science.gov (United States)

    Yang, X. F.; Tsunoda, Y.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Sánchez, R.; Wraith, C.; Xie, L.; Yordanov, D. T.

    2018-04-01

    Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017), 10.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in 73Zn. Additional details relating to the measurement and analysis of the Znm73 hyperfine structure are addressed here to further support its spin-parity assignment 5 /2+ and to estimate its half-life. A systematic investigation of this 5 /2+ isomer indicates that significant collectivity appears due to proton/neutron E 2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole moments with large scale Monte Carlo shell model calculations. In addition, potential energy surface calculations in combination with T plots reveal a triaxial shape for this isomeric state.

  13. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  14. Assessment of climate change impacts on rainfall using large scale

    Indian Academy of Sciences (India)

    In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall ...

  15. Current deformation in the Tibetan Plateau: a stress gauge in the large-scale India-Asia collision tectonics

    Science.gov (United States)

    Capitanio, F. A.

    2017-12-01

    The quantification of the exact tectonic forces budget on Earth has remained thus far elusive. Geodetic velocities provide relevant constraints on the current dynamics of the coupling between collision and continental tectonics, however in the Tibetan plateau these support contrasting, non-unique models. Here, we compare numerical models of coupled India-Asia plate convergence, collision and continent interiors tectonics to the geodetically-constrained motions in the Tibetan Plateau to provide a quantitative assessment of the driving forces of plate tectonics in the area. The models develop a range of long-term evolutions remarkably similar to the Asian tectonics in the Cenozoic, reproducing the current large-scale motions pattern under a range of conditions. Balancing the convergent margin forces, following subduction, and the far-field forcing along the trail of the subducting continent, the geodetic rates in the Tibetan Plateau can be matched. The comparisons support the discussion on the likely processes at work, allowing inferences on the drivers of plateau formation and its role on the plate margin-interiors tectonics. More in general, the outcomes highlight the unique role of the Tibetan Plateau as a pressure gauge for the tectonic forces on Earth.

  16. Collective dynamics of nuclear fusion: deformation changes and heating during the fusion

    International Nuclear Information System (INIS)

    Mikhailov, I.N.; Mikhailova, T.I.; Toro, M. di; Baran, V.; Briancon, C.

    1996-01-01

    The formalism developed elsewhere for the theoretical description of the dynamics involved in the heavy nucleus fusion is applied in this paper to study the history of the fusion of two identical heavy nuclei experiencing central collision. The evolution of the shape and of the temperature of symmetrical fusing systems is studied. The role of the elastoplasticity of nuclear matter in the nonmonotonical changes of the shape is elucidated in this way. A tentative explanation of the ''extra push'' phenomenon is given in terms of the competition between elastic properties of fusing systems driving to the re-separation of colliding nuclei and the dissipative (plastic) properties of nuclear matter transforming the energy of collective motion into the energy of statistical excitation and thus leading to the fusion. The fingerprints of the heavy-nucleus fusion history as it is depicted by the model are traced in the anisotropy of the dipole and quadrupole γ-radiation emitted during the fusion. The parallels in the description of the fusion dynamics given by the simple model used in this paper and by the more fundamental approaches based on the kinetic equation are emphasised. (orig.)

  17. Study of large nonlinear change phase in Hibiscus Sabdariffa

    Science.gov (United States)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  18. Mechanical deformation and glycosaminoglycan content changes in a rabbit annular puncture disc degeneration model.

    Science.gov (United States)

    Chan, Deva D; Khan, Safdar N; Ye, Xiaojing; Curtiss, Shane B; Gupta, Munish C; Klineberg, Eric O; Neu, Corey P

    2011-08-15

    Evaluation of degenerated intervertebral discs from a rabbit annular puncture model by using specialized magnetic resonance imaging (MRI) techniques, including displacement encoding with stimulated echoes and a fast-spin echo (DENSE-FSE) acquisition and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). To evaluate a rabbit disc degeneration model by using various MRI techniques. To determine the displacements and strains, spin-lattice relaxation time (T1), and glycosaminoglycan (GAG) distribution of degenerated discs as compared to normal and adjacent level discs. Annular puncture of the intervertebral disc produces disc degeneration in rabbits. DENSE-FSE has been previously demonstrated in articular cartilage for the measurement of soft tissue displacements and strains. MRI also can measure the T1 of tissue, and dGEMRIC can quantify GAG concentration in cartilage. METHODS.: In eight New Zealand white rabbits, the annulus fibrosis of a lumbar disc was punctured. After 4 weeks, the punctured and cranially adjacent motion segments were isolated for MRI and histology. MRI was used to estimate the disc volume and map T1. DENSE-FSE was used to determine displacements for the estimation of strains. dGEMRIC was then used to determine GAG distributions. Histology and standard MRI indicated degeneration in punctured discs. Disc volume increased significantly at 4 weeks after the puncture. Displacement of the nucleus pulposus was distinct from that of the annulus fibrosis in most untreated discs but not in punctured discs. T1 was significantly higher and GAG concentration significantly lower in punctured discs compared with untreated adjacent level discs. Noninvasive and quantitative MRI techniques can be used to evaluate the mechanical and biochemical changes that occur with animal models of disc degeneration. DENSE-FSE, dGEMRIC, and similar techniques have potential for evaluating the progression of disc degeneration and the efficacy of treatments.

  19. Rheology of Rice Flour Dough with Gum Arabic: Small and Large-Deformation Studies, Sensory Assessment and Modeling.

    Science.gov (United States)

    Shanthilal, J; Bhattacharya, Suvendu

    2015-08-01

    The absence of gluten protein makes the rice flour doughs difficult to handle when flattened/sheeted products are to be prepared. The rheological, sensory and microstructural changes in rice flour doughs having gum Arabic (0% to 5%, w/w) and moisture contents (44% to 50%) were studied for improving the dough handling characteristics. Rheological parameters like storage modulus (G') and complex viscosity (η*) decreased with an increase in moisture content while loss angle (δ) increased. A power-law type equation was suitable to relate angular frequency (ω) with G', G", and η* (0.814 ≤ r ≤ 0.999, P ≤ 0.01). An increase in gum and moisture contents increased δ from 6.9° to 15.5° but decreased the energy required for compression/flattening. The 6-element spring-dashpot model was suitable (r ≥ 0.991, P ≤ 0.01) for creep curves. The sensory panel had the opinion that dough with a low to moderate hardness between 3 and 4, and stickiness of ≤ 3.5 was suitable for the purpose of flattening in relation to the preparation of sheeted/flattened products; the appropriate condition for dough formulation was with the moisture and gum contents of 47.0% to 47.9% and 1.55% to 2.25%, respectively to offer the desirability index between 0.50 and 0.52. The microstructure of the rice flour dough in the absence of gum Arabic appeared to possess loosely bound flour particles. The presence of gum provided a coating on flour particles to yield dough having good cohesive microstructure. © 2015 Institute of Food Technologists®

  20. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-04-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  1. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-06-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  2. Hydrogeochemical modeling of large fluvial basins: impact of climate change

    International Nuclear Information System (INIS)

    Beaulieu, E.

    2011-01-01

    The chemical weathering of continental surfaces represents the one of carbon sinks at the Earth's surface which regulates the climate through feedback mechanism. The weathering intensity is controlled by climate but also by lithology, vegetal cover, hydrology and presence of smectites and acids in soils. In this work, a study at global scale on grid cells highlighted that a CO 2 concentration increase in the atmosphere would involve a decrease of evapotranspiration due to stomatal progressive closure, and a rise of soil acidity related to enhanced bio-spheric productivity. These changes would promote the silicates chemical weathering and as a result, would lead to CO 2 consumption increase by 3% for 100 ppmv of CO 2 concentration rise in the atmosphere. Then, the study on the one of the most important catchments located in arctic environment, the Mackenzie basin (Canada), showed the high sensitivity of chemical weathering to sulfuric acid production. Indeed, the Mackenzie mean CO 2 consumption has decreased by 56%, taking account the pyrite presence in the catchment. In addition, the mean CO 2 consumption of this basin could rise by 53% between today climate and a climatic scenario predicted for the end of century. (author)

  3. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  4. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  5. STRUCTURAL AND MECHANICAL CHARACTERIZATION OF DEFORMED POLYMER USING CONFOCAL RAMAN MICROSCOPY AND DSC

    Directory of Open Access Journals (Sweden)

    Birgit Neitzel

    2016-02-01

    Full Text Available Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.

  6. Early rehabilitation treatment combined with equinovarus foot deformity surgical correction in stroke patients: safety and changes in gait parameters.

    Science.gov (United States)

    Giannotti, Erika; Merlo, Andrea; Zerbinati, Paolo; Longhi, Maria; Prati, Paolo; Masiero, Stefano; Mazzoli, Davide

    2016-06-01

    Equinovarus foot deformity (EVFD) compromises several prerequisites of walking and increases the risk of falling. Guidelines on rehabilitation following EVFD surgery are missing in current literature. The aim of this study was to analyze safety and adherence to an early rehabilitation treatment characterized by immediate weight bearing with an ankle-foot orthosis (AFO) in hemiplegic patients after EVFD surgery and to describe gait changes after EVFD surgical correction combined with early rehabilitation treatment. Retrospective observational cohort study. Inpatient rehabilitation clinic. Forty-seven adult patients with hemiplegia consequent to ischemic or haemorrhagic stroke (L/R 20/27, age 56±15 years, time from lesion 6±5 years). A specific rehabilitation protocol with a non-articulated AFO, used to allow for immediate gait training, started one day after EVFD surgery. Gait analysis (GA) data before and one month after surgery were analyzed. The presence of differences in GA space-time parameters, in ankle dorsiflexion (DF) values and peaks at initial contact (DF at IC), during stance (DF at St) and swing (DF at Sw) were assessed by the Wilcoxon Test while the presence of correlations between pre- and post-operative values by Spearman's correlation coefficient. All patients completed the rehabilitation protocol and no clinical complications occurred in the sample. Ankle DF increased one month after surgery at all investigated gait phases (Wilcoxon Test, Prehabilitation associated with surgical procedure is safe and may be suitable to correct EVFD by restoring both the neutral heel foot-ground contact and the ankle DF peaks during stance and swing at one month from surgery. The proposed protocol is a safe and potentially useful rehabilitative approach after EVFD surgical correction in stroke patients.

  7. Sensing surface mechanical deformation using active probes driven by motor proteins

    Science.gov (United States)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  8. Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels

    International Nuclear Information System (INIS)

    Kim, Sang-Youn; Yeo, Myoung; Shin, Eun-Jae; Park, Won-Hyeong; Jang, Jong-Seok; Nam, Byeong-Uk; Bae, Jin Woo

    2015-01-01

    In this paper, we propose a variable focus microlens module based on a transparent, electroactive, and non-ionic PVC/DBA gel. A non-ionic PVC/DBA (nPVC) gel on an ITO glass was confined beneath a rigid annular electrode, and applied pressure squeezed a bulge of the nPVC gel into the annular electrode, resulting in a hemispherical plano-convex nPVC gel microlens. The proposed nPVC gel microlens was analyzed and optimized. When voltage is applied to the circular perimeter (the annular electrode) of this fabricated microlens, electrically induced creep deformation of the nPVC gel occurs, changing its optical focal length. The focal length remarkably increases from 3.8 mm up to 14.3 mm with increasing applied voltages from 300 V to 800 V. Due to its compact, transparent, and electroactive characteristics, the proposed nPVC gel microlens can be easily inserted into small consumer electronic devices, such as digital cameras, camcorders, cell phones, and other portable optical devices. (paper)

  9. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  10. Effect of self-ion irradiation on the microstructural changes of alloy EK-181 in annealed and severely deformed conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, E. [Texas A& M University, College Station, TX 77840 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chen, T.; Gigax, J.G.; Chen, D.; Wang, X. [Texas A& M University, College Station, TX 77840 (United States); Dzhumaev, P.S.; Emelyanova, O.V.; Ganchenkova, M.G.; Kalin, B.A.; Leontiva-Smirnova, M. [National Research Nuclear University (MEPhI), Moscow (Russian Federation); Valiev, R.Z. [Institute of Physics of Advanced Materials and Nanocenter, Ufa State Aviation Technical University, Ufa (Russian Federation); Saint Petersburg State University, St. Petersburg (Russian Federation); Enikeev, N.A.; Abramova, M.M. [Institute of Physics of Advanced Materials and Nanocenter, Ufa State Aviation Technical University, Ufa (Russian Federation); Wu, Y.; Lo, W.Y.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Short, M. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Maloy, S.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Garner, F.A. [Texas A& M University, College Station, TX 77840 (United States); National Research Nuclear University (MEPhI), Moscow (Russian Federation); Shao, L., E-mail: lshao@tamu.edu [Texas A& M University, College Station, TX 77840 (United States)

    2017-04-15

    EK-181 is a low-activation ferritic/martensitic steel that is an attractive candidate for in-core component materials for both fast reactors and fusion reactors. To assess the effect of microstructural engineering on radiation response, two variants of EK-181 were studied: one in an annealed condition and the other subject to severe plastic deformation. These specimens were irradiated with 3.5 MeV Fe self-ions up to 400 peak displacements per atom (dpa) at temperatures ranging from 400 °C to 500 °C. The deformation did not suppress swelling over the whole irradiated region. Instead, deformed samples showed higher swelling in the near-surface region. Void swelling was found to be correlated with grain boundary instability. Significant grain growth occurred when steady-state void growth started.

  11. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Science.gov (United States)

    2010-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical change...

  12. Deformation-induced structural changes of amorphous Ni{sub 0.5}Zr{sub 0.5} in molecular-dynamic simulations; Verformungsinduzierte Strukturaenderungen bei amorphen Ni{sub 0.5}Zr{sub 0.5} in Molekulardynamik-Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, K

    2006-10-31

    The present work investigates the plastic deformation of metallic glasses by the aid of molecular-dynamic simulations. The parameters for the model system are adapted to those for a NiZr-alloy. In particular, the composition Ni{sub 0.5}Zr{sub 0.5} is used. The analyzed deformation simulations are conducted for small systems with 5184 atoms and large systems with 17500 atoms in a periodic simulation cell. The deformation simulations of pre-deformed samples are carried out either at constant shear-rate or at constant load, the latter mode modeling a creep experiment. Stress-strain curves for pre-deformed samples show a less pronounced stress-overshoot phenomenon. Creep-simulations of samples deformed beyond the yield region indicate a drastically reduced viscosity in these systems when compared to samples pre-deformed only up to the linear regime of the stress-strain curve. From analyzing the local atomic topology it is found that the transition from the highly viscous, hard-to-deform state of the undeformed or only weakly strained system into the easy-to-deform flow-state, present if the system is strained far beyond the yielding regime of the stress-strain curve, is connected with the formation of a region containing atoms with massive changes in their topology which is oriented along a diagonal plane of the simulation cell. The degree of localization of these deformation bands is influenced by temperature and shear-rate. In subsequent deformations of pre-deformed samples the regions with massive changes in the atomic topology are again susceptible to changes in the local atomic topology. By using methods from statistics, a significant difference in the distribution of atomic properties for the group of atoms with massive topology changes on the one hand and the group of atoms without changes in their topology on the other gets quantitatively ascertainable. From the differences in structural properties, e.g. potential energy, cage volumes, angular order parameters

  13. Microscopic study of low-lying yrast spectra and deformation ...

    Indian Academy of Sciences (India)

    73, No. 4. — journal of. October 2009 physics pp. 657–668. Microscopic study of low-lying yrast spectra and deformation systematics in neutron-rich. 98−106Sr isotopes ... with a large and rigid moment of inertia. 98Sr is predicted to have a ... 2 energy as neutron number N changes from 58 to 60. The onset of deformation in ...

  14. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  15. Development of a Standardized Methodology for the Use of COSI-Corr Sub-Pixel Image Correlation to Determine Surface Deformation Patterns in Large Magnitude Earthquakes.

    Science.gov (United States)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2014-12-01

    Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean

  16. Change of residual stresses during plastic deformation under uniaxial tension test; Variacion de las tensiones residuales con la deformacion plastica en el ensayo de traccion

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J. A.; Jorba, J.; Roca, A.

    2001-07-01

    Hang of longitudinal and transverse residual stresses was studied by X Ray diffraction method as the applied plastic deformation, measured as A% was increased in a standard tension test. The starting material, hot rolling Armco iron, has values close to 0 MPa in longitudinal direction. But it reaches 600 MPa with only A=1,5%, this value remains constant until necking is produced. In transverse direction the stating values are 300 MPa, changes are small and residual stresses remain compressive until the end of tension test. In addition, studies of the changes of residual stresses with time and with misalignment between incident X Ray and drawing direction are presented. (Author) 5 refs.

  17. Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes

    International Nuclear Information System (INIS)

    Mohan, Radhe; Zhang Xiaodong; Wang He; Kang Yixiu; Wang Xiaochun; Liu, Helen; Ang, K.; Kuban, Deborah; Dong Lei

    2005-01-01

    Purpose: Recent imaging studies have demonstrated that there can be significant changes in anatomy from day to day and over the course of radiotherapy as a result of daily positioning uncertainties and physiologic and clinical factors. There are a number of strategies to minimize such changes, reduce their impact, or correct for them. Measures to date have included improved immobilization of external and internal anatomy or adjustment of positions based on portal or ultrasound images. Perhaps the most accurate way is to use CT image-guided radiotherapy, for which the possibilities range from simple correction of setup based on daily CT images to on-line near real-time intensity modulated radiotherapy (IMRT) replanning. In addition, there are numerous intermediate possibilities. In this paper, we report the development of one such intermediate method that takes into account anatomic changes by deforming the intensity distributions of each beam based on deformations of anatomy as seen in the beam's-eye-view. Methods and materials: The intensity distribution deformations are computed based on anatomy deformations discerned from the changes in the current image relative to a reference image (e.g., the pretreatment CT scan). First, a reference IMRT plan is generated based on the reference CT image. A new CT image is acquired using an in-room CT for every fraction. The anatomic structure contours are obtained for the new image. (For this article, these contours were manually drawn. When image guided IMRT methods are implemented, anatomic structure contours on subsequent images will likely be obtained with automatic or semiautomatic means. This could be achieved by, for example, first deforming the original CT image to match today's image, and then using the same deformation transformation to map original contours to today's image.) The reference intensity distributions for each beam are then deformed so that the projected geometric relationship within the beam

  18. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  19. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  20. Assessment of Parotid Gland Dose Changes During Head and Neck Cancer Radiotherapy Using Daily Megavoltage Computed Tomography and Deformable Image Registration

    International Nuclear Information System (INIS)

    Lee, Choonik; Langen, Katja M.; Lu Weiguo; Haimerl, Jason; Schnarr, Eric; Ruchala, Kenneth J.; Olivera, Gustavo H.; Meeks, Sanford L.; Kupelian, Patrick A.; Shellenberger, Thomas D.; Manon, Rafael R.

    2008-01-01

    Purpose: To analyze changes in parotid gland dose resulting from anatomic changes throughout a course of radiotherapy in a cohort of head-and-neck cancer patients. Methods and Materials: The study population consisted of 10 head-and-neck cancer patients treated definitively with intensity-modulated radiotherapy on a helical tomotherapy unit. A total of 330 daily megavoltage computed tomography images were retrospectively processed through a deformable image registration algorithm to be registered to the planning kilovoltage computed tomography images. The process resulted in deformed parotid contours and voxel mappings for both daily and accumulated dose-volume histogram calculations. The daily and cumulative dose deviations from the original treatment plan were analyzed. Correlations between dosimetric variations and anatomic changes were investigated. Results: The daily parotid mean dose of the 10 patients differed from the plan dose by an average of 15%. At the end of the treatment, 3 of the 10 patients were estimated to have received a greater than 10% higher mean parotid dose than in the original plan (range, 13-42%), whereas the remaining 7 patients received doses that differed by less than 10% (range, -6-8%). The dose difference was correlated with a migration of the parotids toward the high-dose region. Conclusions: The use of deformable image registration techniques and daily megavoltage computed tomography imaging makes it possible to calculate daily and accumulated dose-volume histograms. Significant dose variations were observed as result of interfractional anatomic changes. These techniques enable the implementation of dose-adaptive radiotherapy

  1. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

    Science.gov (United States)

    Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki

    2018-06-01

    Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase ( f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

  2. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

    Science.gov (United States)

    Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki

    2018-04-01

    Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase (f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

  3. Large scale atmospheric tropical circulation changes and consequences during global warming

    International Nuclear Information System (INIS)

    Gastineau, G.

    2008-01-01

    The changes of the tropical large scale circulation during climate change can have large impacts on human activities. In a first part, the meridional atmospheric tropical circulation was studied in the different coupled models. During climate change, we find, on the one hand, that the Hadley meridional circulation and the subtropical jet are significantly shifted poleward, and on the other hand, that the intensity of the tropical circulation weakens. The slow down of the atmospheric circulation results from the dry static stability changes affecting the tropical troposphere. Secondly, idealized simulations are used to explain the tropical circulation changes. Ensemble simulation using the model LMDZ4 are set up to study the results from the coupled model IPSLCM4. The weakening of the large scale tropical circulation and the poleward shift of the Hadley cells are explained by both the uniform change and the meridional gradient change of the sea surface temperature. Then, we used the atmospheric model LMDZ4 in an aqua-planet configuration. The Hadley circulation changes are explained in a simple framework by the required poleward energy transport. In a last part, we focus on the water vapor distribution and feedback in the climate models. The Hadley circulation changes were shown to have a significant impact on the water vapour feedback during climate change. (author)

  4. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    OpenAIRE

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, P.R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts of small reservoirs are subject to climate change. Using a case-study on North-East Brazil, this paper shows that climate change impacts on water availability may be severe, and impacts on distrib...

  5. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D

    2003-08-28

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s{sup -1}, at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions.

  6. Subgrain and dislocation structure changes in hot-deformed high-temperature Fe-Ni austenitic alloy

    International Nuclear Information System (INIS)

    Ducki, K.J.; Rodak, K.; Hetmanczyk, M.; Kuc, D.

    2003-01-01

    The influence of plastic deformation on the substructure of a high-temperature austenitic Fe-Ni alloy has been presented. Hot-torsion tests were executed at constant strain rates of 0.1 and 1.0 s -1 , at testing temperatures in the range 900-1150 deg. C. The examination of the microstructure was carried out, using transmission electron microscopy. Direct measurements on the micrographs allowed the calculation of structural parameters: the average subgrain area, and the mean dislocation density. A detailed investigation has shown that the microstructure is inhomogeneous, consisting of dense dislocation walls, subgrains and recrystallized regions

  7. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression.

    Science.gov (United States)

    Allario, Thierry; Brumos, Javier; Colmenero-Flores, Jose Manuel; Tadeo, Francisco; Froelicher, Yann; Talon, Manuel; Navarro, Luis; Ollitrault, Patrick; Morillon, Raphaël

    2011-05-01

    Very little is known about the molecular origin of the large phenotypic differentiation between genotypes arising from somatic chromosome set doubling and their diploid parents. In this study, the anatomy and physiology of diploid (2x) and autotetraploid (4x) Rangpur lime (Citrus limonia Osbeck) seedlings has been characterized. Growth of 2x was more vigorous than 4x although leaves, stems, and roots of 4x plants were thicker and contained larger cells than 2x that may have a large impact on cell-to-cell water exchanges. Leaf water content was higher in 4x than in 2x. Leaf transcriptome expression using a citrus microarray containing 21 081 genes revealed that the number of genes differentially expressed in both genotypes was less than 1% and the maximum rate of gene expression change within a 2-fold range. Six up-regulated genes in 4x were targeted to validate microarray results by real-time reverse transcription-PCR. Five of these genes were apparently involved in the response to water deficit, suggesting that, in control conditions, the genome expression of citrus autotetraploids may act in a similar way to diploids under water-deficit stress condition. The sixth up-regulated gene which codes for a histone may also play an important role in regulating the transcription of growth processes. These results show that the large phenotypic differentiation in 4x Rangpur lime compared with 2x is not associated with large changes in genome expression. This suggests that, in 4x Rangpur lime, subtle changes in gene expression may be at the origin of the phenotypic differentiation of 4x citrus when compared with 2x.

  8. Deformation strain inhomogeneity in columnar grain nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Juul Jensen, D.

    2005-01-01

    A method is presented for determination of the local deformation strain of individual grains in the bulk of a columnar grain sample. The method, based on measurement of the change in grain area of each grain, is applied to 12% cold rolled nickel. Large variations are observed in the local strain...... associated with each grain. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  9. Large floods and climatic change during the Holocene on the Ara River, Central Japan

    Science.gov (United States)

    Grossman, Michael J.

    2001-07-01

    A reconstruction of part of the Holocene large flood record for the Ara River in central Japan is presented. Maximum intermediate gravel-size dimensions of terrace and modern floodplain gravels were measured along an 18-km reach of the river and were used in tractive force equations to estimate minimum competent flood depths. Results suggest that the magnitudes of large floods on the Ara River have varied in a non-random fashion since the end of the last glacial period. Large floods with greater magnitudes occurred during the warming period of the post-glacial and the warmer early to middle Holocene (to ˜5500 years BP). A shift in the magnitudes of large floods occurred ˜5500-5000 years BP. From this time, during the cooler middle to late Holocene, large floods generally had lower magnitudes. In the modern period, large flood magnitudes are the largest in the data set. As typhoons are the main cause of large floods on the Ara River in the modern record, the variation in large flood magnitudes suggests that the incidence of typhoon visits to the central Japan changed as the climate changed during the Holocene. Further, significant dates in the large flood record on the Ara River correspond to significant dates in Europe and the USA.

  10. SU-F-T-421: Dosimetry Change During Radiotherapy and Dosimetry Difference for Rigid and Deformed Registration in the Mid-Thoracic Esophageal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tao, C; Liu, T; Chen, J; Zhu, J; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: This study aimed to analyze dosimetry changes during radiotherapy for the mid-thoracic esophageal carcinoma, and investigate dosimetry difference between rigid and deformed registration. Methods: Twelve patients with primary middle thoracic esophageal carcinoma were selected randomly. Based on first CT scanning of each patient, plans-o were generated by experience physicists. After 20 fractions treatment, the corresponding plans-re were created with second CT scanning. And then, these two CT images were rigid and deformed registration respectively, and the dose was accumulated plan-o with plan-re. The dosimetry variation of these plans (plan-o: with 30 fractions, plan-rig: the accumulated dose with rigid registration and plan-def: the accumulated dose with deformed registration) were evaluated by paired T-test. Results: The V20 value of total lung were 32.68%, 30.3% and 29.71% for plan-o, plan-rig and plan-def respectively. The mean dose of total lung was 17.19 Gy, 16.67 Gy and 16.51 Gy for plan-o plan-rig and plan-def respectively. There were significant differences between plan-o and plan-rig or plan-def for both V20 and mean dose of total lung (with p= 0.003, p= 0.000 for V20 and p=0.008, p= 0.000 for mean dose respectively). There was no significant difference between plan-rig and plan-def (with p=0.118 for V20 and p=0.384 for mean dose). The max dose of spinal-cord was 41.95 Gy, 41.48 Gy and 41.4 Gy for plan-o, plan-rig and plan-def respectively. There were no significant differences for the max dose of spinal-cord between these plans. Conclusion: The target volume changes and anatomic position displacement of mid-thoracic esophageal carcinoma should not be neglected in clinics. These changes would cause overdose in normal tissue. Therefore, it is necessary to have another CT scanning and re-plan during the mid-thoracic esophageal carcinoma radiotherapy. And the dosimetry difference between rigid and deformed fusions was not found in this study.

  11. RankExplorer: Visualization of Ranking Changes in Large Time Series Data.

    Science.gov (United States)

    Shi, Conglei; Cui, Weiwei; Liu, Shixia; Xu, Panpan; Chen, Wei; Qu, Huamin

    2012-12-01

    For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.

  12. [Preliminary evaluation on 3-demension changes of facial soft tissue with structure light scanning technique before and after orthognathic surgery of Class III deformities].

    Science.gov (United States)

    Peng, Ju-xiang; Jiang, Jiu-hui; Zhao, Yi-jiao; Wang, Yong; Li, Ze; Wang, Ning-ning; Feng, Zhi-min

    2015-02-18

    To evaluate facial soft tissue 3-deminsion changes of skeletal Class III malocclusion patients after orthognathic surgery using structure light scanning technique. Eight patients [3 males and 5 females, aged (27.08 ± 4.42) years] with Class III dentoskeletal relationship who underwent a bimaxillary orthognathic surgical procedure involving advancement of the maxilla by Le Fort I osteotomy and mandibular setback by bilateral sagittal split ramus osteotomy (BSSO) and genioplasty to correct deformity were included. 3D facial images were obtained by structure light scanner for all the patients 2 weeks preoperatively and 6 months postoperatively. The facial soft tissue changes were evaluated in 3-dimension. The linear distances and angulation changes for facial soft tissue landmarks were analyzed. The soft tissue volumetric changes were assessed too. There were significant differences in the sagittal and vertical changes of soft tissue landmarks. The greatest amount of soft tissue change was close to lips. There were more volumetric changes in the chin than in the maxilla, and fewer in the forehead. After biomaxillary surgery, there were significant facial soft tissue differences mainly in the sagittal and vertical dimension for skeletal Class III patients. The structure light 3D scanning technique can be accurately used to estimate the soft tissue changes in patients who undergo orthognathic surgery.

  13. Gap Acceptance During Lane Changes by Large-Truck Drivers—An Image-Based Analysis

    Science.gov (United States)

    Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J.; Zhao, Ding; Peng, Huei; Pan, Christopher S.

    2016-01-01

    This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing. PMID:26924947

  14. Gap Acceptance During Lane Changes by Large-Truck Drivers-An Image-Based Analysis.

    Science.gov (United States)

    Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J; Zhao, Ding; Peng, Huei; Pan, Christopher S

    2016-03-01

    This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing.

  15. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  16. Automatic Flight Control System Design of Level Change Mode for a Large Aircraft

    Directory of Open Access Journals (Sweden)

    Huajun Gong

    2013-02-01

    Full Text Available The level change mode is an essential part of large civil aircraft automatic flight control systems. In cruise, with the decrease of the plane's weight caused by fuel consumption and the influence of bad weather, such as thunderstorms, the level change mode is required to solve this problem. This work establishes a nonlinear model of large aircraft, takes level changed from 9500m to 10100m as an example to design control laws for the level change mode in cruise. The classical engineering method is used to design longitudinal and lateral control laws synthetically. The flight qualities are considered in the design process. Simulation results indicate the control laws can meet design requirements and have a good anti-gust performance.

  17. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  18. Future changes in large-scale transport and stratosphere-troposphere exchange

    Science.gov (United States)

    Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.

    2017-12-01

    Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.

  19. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  20. Large system change challenges: addressing complex critical issues in linked physical and social domains

    Science.gov (United States)

    Waddell, Steve; Cornell, Sarah; Hsueh, Joe; Ozer, Ceren; McLachlan, Milla; Birney, Anna

    2015-04-01

    Most action to address contemporary complex challenges, including the urgent issues of global sustainability, occurs piecemeal and without meaningful guidance from leading complex change knowledge and methods. The potential benefit of using such knowledge is greater efficacy of effort and investment. However, this knowledge and its associated tools and methods are under-utilized because understanding about them is low, fragmented between diverse knowledge traditions, and often requires shifts in mindsets and skills from expert-led to participant-based action. We have been engaged in diverse action-oriented research efforts in Large System Change for sustainability. For us, "large" systems can be characterized as large-scale systems - up to global - with many components, of many kinds (physical, biological, institutional, cultural/conceptual), operating at multiple levels, driven by multiple forces, and presenting major challenges for people involved. We see change of such systems as complex challenges, in contrast with simple or complicated problems, or chaotic situations. In other words, issues and sub-systems have unclear boundaries, interact with each other, and are often contradictory; dynamics are non-linear; issues are not "controllable", and "solutions" are "emergent" and often paradoxical. Since choices are opportunity-, power- and value-driven, these social, institutional and cultural factors need to be made explicit in any actionable theory of change. Our emerging network is sharing and building a knowledge base of experience, heuristics, and theories of change from multiple disciplines and practice domains. We will present our views on focal issues for the development of the field of large system change, which include processes of goal-setting and alignment; leverage of systemic transitions and transformation; and the role of choice in influencing critical change processes, when only some sub-systems or levels of the system behave in purposeful ways

  1. The potential for agricultural land use change to reduce flood risk in a large watershed

    Science.gov (United States)

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  2. Hierarchical 2.5D scene alignment for change detection with large viewpoint differences

    NARCIS (Netherlands)

    van de Wouw, D.; Dubbelman, G.; de With, P.H.N.

    2016-01-01

    Change detection from mobile platforms is a relevant topic in the field of intelligent vehicles and has many applications, such as countering improvised explosive devices (C-IED). Existing real-time C-IED systems are not robust against large viewpoint differences, which are unavoidable under

  3. Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

    Science.gov (United States)

    Giuliani, Matteo; Anghileri, Daniela; Castelletti, Andrea; Vu, Phuong Nam; Soncini-Sessa, Rodolfo

    2016-03-01

    In a changing climate and society, large storage systems can play a key role for securing water, energy, and food, and rebalancing their cross-dependencies. In this letter, we study the role of large storage operations as flexible means of adaptation to climate change. In particular, we explore the impacts of different climate projections for different future time horizons on the multi-purpose operations of the existing system of large dams in the Red River basin (China-Laos-Vietnam). We identify the main vulnerabilities of current system operations, understand the risk of failure across sectors by exploring the evolution of the system tradeoffs, quantify how the uncertainty associated to climate scenarios is expanded by the storage operations, and assess the expected costs if no adaptation is implemented. Results show that, depending on the climate scenario and the time horizon considered, the existing operations are predicted to change on average from -7 to +5% in hydropower production, +35 to +520% in flood damages, and +15 to +160% in water supply deficit. These negative impacts can be partially mitigated by adapting the existing operations to future climate, reducing the loss of hydropower to 5%, potentially saving around 34.4 million US year-1 at the national scale. Since the Red River is paradigmatic of many river basins across south east Asia, where new large dams are under construction or are planned to support fast growing economies, our results can support policy makers in prioritizing responses and adaptation strategies to the changing climate.

  4. Large potential change induced by pellet injection in JIPP T-IIU tokamak plasmas

    International Nuclear Information System (INIS)

    Hamada, Y.; Sato, K.N.; Sakakita, H.

    1995-05-01

    A large, rapid change in the local plasma potential is found to be induced by off-axis hydrogen ice-pellet injection into a tokamak plasma. The polarity of the rapid change is reversed when the pellet is injected into the upper and lower halves of the poloidal plasma cross-section. This change can be interpreted as being due to the gradient-B drift of particles in the high-density plasmas of the pellet cloud, before the increase of the plasma density due to the ablation becomes uniform on the magnetic surface. (author)

  5. Large rainfall changes consistently projected over substantial areas of tropical land

    Science.gov (United States)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  6. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  7. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-03-31

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  8. The role of large-scale, extratropical dynamics in climate change

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop's University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database

  9. The role of large-scale, extratropical dynamics in climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, T.G. [ed.

    1994-02-01

    The climate modeling community has focused recently on improving our understanding of certain processes, such as cloud feedbacks and ocean circulation, that are deemed critical to climate-change prediction. Although attention to such processes is warranted, emphasis on these areas has diminished a general appreciation of the role played by the large-scale dynamics of the extratropical atmosphere. Lack of interest in extratropical dynamics may reflect the assumption that these dynamical processes are a non-problem as far as climate modeling is concerned, since general circulation models (GCMs) calculate motions on this scale from first principles. Nevertheless, serious shortcomings in our ability to understand and simulate large-scale dynamics exist. Partly due to a paucity of standard GCM diagnostic calculations of large-scale motions and their transports of heat, momentum, potential vorticity, and moisture, a comprehensive understanding of the role of large-scale dynamics in GCM climate simulations has not been developed. Uncertainties remain in our understanding and simulation of large-scale extratropical dynamics and their interaction with other climatic processes, such as cloud feedbacks, large-scale ocean circulation, moist convection, air-sea interaction and land-surface processes. To address some of these issues, the 17th Stanstead Seminar was convened at Bishop`s University in Lennoxville, Quebec. The purpose of the Seminar was to promote discussion of the role of large-scale extratropical dynamics in global climate change. Abstracts of the talks are included in this volume. On the basis of these talks, several key issues emerged concerning large-scale extratropical dynamics and their climatic role. Individual records are indexed separately for the database.

  10. Safety Effect Analysis of the Large-Scale Design Changes in a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan; Lee, Hyun-Gyo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    These activities were predominantly focused on replacing obsolete systems with new systems, and these efforts were not only to prolong the plant life, but also to guarantee the safe operation of the units. This review demonstrates the safety effect evaluation using the probabilistic safety assessment (PSA) of the design changes, system improvements, and Fukushima accident action items for Kori unit 1 (K1). For the large scale of system design changes for K1, the safety effects from the PSA perspective were reviewed using the risk quantification results before and after the system improvements. This evaluation considered the seven significant design changes including the replacement of the control building air conditioning system and the performance improvement of the containment sump using a new filtering system as well as above five system design changes. The analysis results demonstrated that the CDF was reduced by 12% overall from 1.62E-5/y to 1.43E-5/y. The CDF reduction was larger in the transient group than in the loss of coolant accident (LOCA) group. In conclusion, the analysis using the K1 PSA model supports that the plant safety has been appropriately maintained after the large-scale design changes in consideration of the changed operation factors and failure modes due to the system improvements.

  11. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    Science.gov (United States)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  12. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  13. Method to characterize directional changes in Arctic sea ice drift and associated deformation due to synoptic atmospheric variations using Lagrangian dispersion statistics

    Directory of Open Access Journals (Sweden)

    J. V. Lukovich

    2017-07-01

    Full Text Available A framework is developed to assess the directional changes in sea ice drift paths and associated deformation processes in response to atmospheric forcing. The framework is based on Lagrangian statistical analyses leveraging particle dispersion theory which tells us whether ice drift is in a subdiffusive, diffusive, ballistic, or superdiffusive dynamical regime using single-particle (absolute dispersion statistics. In terms of sea ice deformation, the framework uses two- and three-particle dispersion to characterize along- and across-shear transport as well as differential kinematic parameters. The approach is tested with GPS beacons deployed in triplets on sea ice in the southern Beaufort Sea at varying distances from the coastline in fall of 2009 with eight individual events characterized. One transition in particular follows the sea level pressure (SLP high on 8 October in 2009 while the sea ice drift was in a superdiffusive dynamic regime. In this case, the dispersion scaling exponent (which is a slope between single-particle absolute dispersion of sea ice drift and elapsed time changed from superdiffusive (α ∼ 3 to ballistic (α ∼ 2 as the SLP was rounding its maximum pressure value. Following this shift between regimes, there was a loss in synchronicity between sea ice drift and atmospheric motion patterns. While this is only one case study, the outcomes suggest similar studies be conducted on more buoy arrays to test momentum transfer linkages between storms and sea ice responses as a function of dispersion regime states using scaling exponents. The tools and framework developed in this study provide a unique characterization technique to evaluate these states with respect to sea ice processes in general. Application of these techniques can aid ice hazard assessments and weather forecasting in support of marine transportation and indigenous use of near-shore Arctic areas.

  14. Changing undergraduate human anatomy and physiology laboratories: perspectives from a large-enrollment course.

    Science.gov (United States)

    Griff, Edwin R

    2016-09-01

    In the present article, a veteran lecturer of human anatomy and physiology taught several sections of the laboratory component for the first time and shares his observations and analysis from this unique perspective. The article discusses a large-enrollment, content-heavy anatomy and physiology course in relationship to published studies on learning and student self-efficacy. Changes in the laboratory component that could increase student learning are proposed. The author also points out the need for research to assess whether selective curricular changes could increase the depth of understanding and retention of learned material. Copyright © 2016 The American Physiological Society.

  15. Accuracy and Utility of Deformable Image Registration in 68Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Hofman, Michael S.; Hicks, Rodney J.; Callahan, Jason; Kron, Tomas; MacManus, Michael P.; Ball, David L.; Jackson, Price; Siva, Shankar

    2015-01-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: 68 Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration. Conclusions

  16. Accuracy and Utility of Deformable Image Registration in {sup 68}Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas, E-mail: nick.hardcastle@gmail.com [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Hofman, Michael S. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Hicks, Rodney J. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Department of Medicine, University of Melbourne, Melbourne (Australia); Callahan, Jason [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Medical Imaging and Radiation Sciences, Monash University, Clayton (Australia); The Sir Peter MacCallum Department of Oncology, Melbourne University, Victoria (Australia); MacManus, Michael P.; Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne (Australia); Jackson, Price [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia)

    2015-09-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration

  17. Modelling of the deformation of shot peened cylindrical specimens of 42 CrMo4 in uniaxial tension and deformation and of the resulting macro residual stresses

    International Nuclear Information System (INIS)

    Schulze, V.; Voehringer, O.; Macherauch, E.

    1998-01-01

    Tensile and compressive stress-strain-curves of shot peened and unpeened specimens of quenched and tempered 42 CrMo 4 (AISI 4140) with a diameter of 5 mm only differ in the yield strengths and in the Lueders-deformation. In comparison to the core the regions close to the surface of shot peened cylindrical specimens bear relatively large axial and tangential residual stresses and show different deformation properties. A multi-layer-model was developed to describe both the tensile as well as the compressive deformation behaviour of shot peened cylindrical specimens quantitatively. The calculated transitions from the elastic to the elastic-plastic deformation state during tensile and compressive loading agree quite well with the experimental observations. Also the changes of axial and tangential macro residual stresses after distinct tensile or compressive deformations are in best agreement with the measurements. (orig.)

  18. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study

    Science.gov (United States)

    Wei, Xiaohua; Zhang, Mingfang

    2010-12-01

    Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50

  19. Bunionette deformity.

    Science.gov (United States)

    Cohen, Bruce E; Nicholson, Christopher W

    2007-05-01

    The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.

  20. Profile Changes and Stability following Distraction Osteogenesis with Rigid External Distraction in Adult Cleft Lip and Palate Deformities

    Science.gov (United States)

    Painatt, Jaeson M.; Veeraraghavan, Ravi; Puthalath, Ushass; Peter, Sherry; Rao, Latha P.; Kuriakose, Maria

    2017-01-01

    Objectives: The objective of this study is to analyze the hard and soft-tissue profile changes as well as the upper airway changes after distraction osteogenesis (DO) using rigid external distraction device in adult cleft lip and palate (CLP) patients. The study also evaluates the stability of the surgical result. Materials and Methods: Three lateral cephalometric radiographs were taken: Predistraction (T1), postdistraction (T2), and 1 year after distractor removal (T3). The treatment changes (T1 vs. T2) and the stability (T2 vs. T3) were analyzed. The overall treatment changes after 1 year were also evaluated (T1 vs. T3). The lateral cephalograms were digitally analyzed with the help of software named Dolphin. Statistical Analysis Used: Wilcoxon Signed-Ranks test was used, and the probability value (P value) of 0.05 was considered as statistically significant level. Results: Eleven adult patients with CLP were retrospectively analyzed. After distraction, there was a significant mean maxillary advancement of 14 mm (P maxillary relapse of 3.20 mm (P maxillary advancement for CLP patients with DO. There were significant improvements immediately after distraction, but during the 1-year follow-up, some relapse was seen. This stressed on the need for overcorrection of about 35%–40% for adult CLP patients. PMID:28839409

  1. Analytical description of changes in the magnetic states of chromium-nickel steel under uniaxial elastic deformation

    Science.gov (United States)

    Gorkunov, E. S.; Yakushenko, E. I.; Zadvorkin, S. M.; Mushnikov, A. N.

    2017-12-01

    Dependences of magnetization and magnetic permeability of the 15KhN4D structural steel on the value of uniaxial stresses and magnetic field strength are obtained. A polynomial approximation fairly accurately describing the observed changes is proposed on the basis of experimental data.

  2. A change of coordinates on the large phase space of quantum cohomology

    International Nuclear Information System (INIS)

    Kabanov, A.

    2001-01-01

    The Gromov-Witten invariants of a smooth, projective variety V, when twisted by the tautological classes on the moduli space of stable maps, give rise to a family of cohomological field theories and endow the base of the family with coordinates. We prove that the potential functions associated to the tautological ψ classes (the large phase space) and the κ classes are related by a change of coordinates which generalizes a change of basis on the ring of symmetric functions. Our result is a generalization of the work of Manin-Zograf who studied the case where V is a point. We utilize this change of variables to derive the topological recursion relations associated to the κ classes from those associated to the ψ classes. (orig.)

  3. The causality analysis of climate change and large-scale human crisis.

    Science.gov (United States)

    Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-10-18

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.

  4. MR imaging of experimental subdural bleeding. Correlates of brain deformation and tissue water content, and changes in vital physiological parameters

    International Nuclear Information System (INIS)

    Orlin, J.R.; Thuomas, K.Aa.; Ponten, U.; Bergstroem, K.; Zwetnow, N.N.

    1997-01-01

    Purpose: To evaluate morphological and physiological changes during acute lethal subdural bleeding in 2 models of anaesthetized dogs. Material and Methods: In model I, blood from the aorta was led into a collapsed subdural rubber balloon while in model II, the blood was directed into the subdural compartment over the left cerebral frontoparietal lobe. Eight vital physiological parameters were continuously registered. MR imaging visualized the compression and displacement of cerebral tissue, and assessed the dynamic changes in cerebral tissue water. Results: In model I, tissue herniation and compression of cerebral ventricles led to death at a haematoma volume corresponding to 8% of the intracranial volume. In model II, the extravasated blood progressed infratentorially and into the spinal sac with a volume that was 3 times larger than that of the lethal haematoma. Tissue water increased almost linearly during bleeding in both models. (orig.)

  5. Profile changes and stability following distraction osteogenesis with rigid external distraction in adult cleft lip and palate deformities

    Directory of Open Access Journals (Sweden)

    Jaeson M Painatt

    2017-01-01

    Full Text Available Objectives: The objective of this study is to analyze the hard and soft-tissue profile changes as well as the upper airway changes after distraction osteogenesis (DO using rigid external distraction device in adult cleft lip and palate (CLP patients. The study also evaluates the stability of the surgical result. Materials and Methods: Three lateral cephalometric radiographs were taken: Predistraction (T1, postdistraction (T2, and 1 year after distractor removal (T3. The treatment changes (T1 vs. T2 and the stability (T2 vs. T3 were analyzed. The overall treatment changes after 1 year were also evaluated (T1 vs. T3. The lateral cephalograms were digitally analyzed with the help of software named Dolphin. Statistical Analysis Used: Wilcoxon Signed-Ranks test was used, and the probability value (P value of 0.05 was considered as statistically significant level. Results: Eleven adult patients with CLP were retrospectively analyzed. After distraction, there was a significant mean maxillary advancement of 14 mm (P < 0.01 from a T1 value of 73.54 ± 10.38 to a T2 value of 88.2 ± 10.49. The lower facial height and the incisor exposure were significantly increased. The nasolabial angle had a significant improvement of 24.5° (P < 0.01 from a T1 value of 56.6 ± 21.03 to a T2 value of 81.18 ± 14.4.The upper airway was significantly improved by 3.7 mm (P < 0.01 with a T1 value of 13.5 ± 3.8 to a T2 value of 17.2 ± 3.66. After 1-year follow-up, there was a significant maxillary relapse of 3.20 mm (P < 0.05 from a T2 value of 8.29 ± 6.84 to a T3 value of 5.09 ± 5.59. However, the soft-tissue profile and upper airway remained stable. Conclusion: The clinician should have an understanding of the related hard and soft tissues as well as airway changes which may assist him when planning for maxillary advancement for CLP patients with DO. There were significant improvements immediately after distraction, but during the 1-year follow-up, some relapse was

  6. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  7. Implications of the Small Spin Changes Measured for Large Jupiter-Family Comet Nuclei

    Science.gov (United States)

    Kokotanekova, R.; Snodgrass, C.; Lacerda, P.; Green, S. F.; Nikolov, P.; Bonev, T.

    2018-06-01

    Rotational spin-up due to outgassing of comet nuclei has been identified as a possible mechanism for considerable mass-loss and splitting. We report a search for spin changes for three large Jupiter-family comets (JFCs): 14P/Wolf, 143P/Kowal-Mrkos, and 162P/Siding Spring. None of the three comets has detectable period changes, and we set conservative upper limits of 4.2 (14P), 6.6 (143P) and 25 (162P) minutes per orbit. Comparing these results with all eight other JFCs with measured rotational changes, we deduce that none of the observed large JFCs experiences significant spin changes. This suggests that large comet nuclei are less likely to undergo rotationally-driven splitting, and therefore more likely to survive more perihelion passages than smaller nuclei. We find supporting evidence for this hypothesis in the cumulative size distributions of JFCs and dormant comets, as well as in recent numerical studies of cometary orbital dynamics. We added 143P to the sample of 13 other JFCs with known albedos and phase-function slopes. This sample shows a possible correlation of increasing phase-function slopes for larger geometric albedos. Partly based on findings from recent space missions to JFCs, we hypothesise that this correlation corresponds to an evolutionary trend for JFCs. We propose that newly activated JFCs have larger albedos and steeper phase functions, which gradually decrease due to sublimation-driven erosion. If confirmed, this could be used to analyse surface erosion from ground and to distinguish between dormant comets and asteroids.

  8. Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios

    Science.gov (United States)

    Lamontagne, Jonathan R.; Reed, Patrick M.; Link, Robert; Calvin, Katherine V.; Clarke, Leon E.; Edmonds, James A.

    2018-03-01

    An analytic scenario generation framework is developed based on the idea that the same climate outcome can result from very different socioeconomic and policy drivers. The framework builds on the Scenario Matrix Framework's abstraction of "challenges to mitigation" and "challenges to adaptation" to facilitate the flexible discovery of diverse and consequential scenarios. We combine visual and statistical techniques for interrogating a large factorial data set of 33,750 scenarios generated using the Global Change Assessment Model. We demonstrate how the analytic framework can aid in identifying which scenario assumptions are most tied to user-specified measures for policy relevant outcomes of interest, specifically for our example high or low mitigation costs. We show that the current approach for selecting reference scenarios can miss policy relevant scenario narratives that often emerge as hybrids of optimistic and pessimistic scenario assumptions. We also show that the same scenario assumption can be associated with both high and low mitigation costs depending on the climate outcome of interest and the mitigation policy context. In the illustrative example, we show how agricultural productivity, population growth, and economic growth are most predictive of the level of mitigation costs. Formulating policy relevant scenarios of deeply and broadly uncertain futures benefits from large ensemble-based exploration of quantitative measures of consequences. To this end, we have contributed a large database of climate change futures that can support "bottom-up" scenario generation techniques that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  9. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    Science.gov (United States)

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast

  10. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    Science.gov (United States)

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  11. Quasi real-time estimation of the moment magnitude of large earthquake from static strain changes

    Science.gov (United States)

    Itaba, S.

    2016-12-01

    The 2011 Tohoku-Oki (off the Pacific coast of Tohoku) earthquake, of moment magnitude 9.0, was accompanied by large static strain changes (10-7), as measured by borehole strainmeters operated by the Geological Survey of Japan in the Tokai, Kii Peninsula, and Shikoku regions. A fault model for the earthquake on the boundary between the Pacific and North American plates, based on these borehole strainmeter data, yielded a moment magnitude of 8.7. On the other hand, based on the seismic wave, the prompt report of the magnitude which the Japan Meteorological Agency (JMA) announced just after earthquake occurrence was 7.9. Such geodetic moment magnitudes, derived from static strain changes, can be estimated almost as rapidly as determinations using seismic waves. I have to verify the validity of this method in some cases. In the case of this earthquake's largest aftershock, which occurred 29 minutes after the mainshock. The prompt report issued by JMA assigned this aftershock a magnitude of 7.3, whereas the moment magnitude derived from borehole strain data is 7.6, which is much closer to the actual moment magnitude of 7.7. In order to grasp the magnitude of a great earthquake earlier, several methods are now being suggested to reduce the earthquake disasters including tsunami. Our simple method of using static strain changes is one of the strong methods for rapid estimation of the magnitude of large earthquakes, and useful to improve the accuracy of Earthquake Early Warning.

  12. Assessment of the changes in quality of life of patients with class II and III deformities during and after orthodontic-surgical treatment.

    Science.gov (United States)

    Baherimoghaddam, T; Tabrizi, R; Naseri, N; Pouzesh, A; Oshagh, M; Torkan, S

    2016-04-01

    The aim of this longitudinal study was to assess and compare the oral health-related quality of life (OHRQoL) of patients with class II and III deformities during and after orthodontic-surgical treatment. Thirty class III and 28 class II patients were evaluated at baseline (T0), just prior to surgery (T1), at 6 months after surgery (T2), and at 12 months after debonding (T3). OHRQoL was assessed using the Oral Health Impact Profile (OHIP-14). Friedman two-way analysis of variance and the Wilcoxon signed-rank test were performed to compare the relative changes in OHRQoL during treatment. Significant changes in the overall OHIP-14 scores were observed during and after orthodontic-surgical treatment in both groups. During the pre-surgical stage, psychological discomfort and psychological disability decreased in class III patients, and class II patients experienced a significant deterioration in psychological discomfort during the same period. Six months after surgery, patients in both groups showed improvements in psychological discomfort, social disability, and handicap. Physical disability and functional limitation showed further improvement at 12 months after debonding in class II patients. This study reaffirms that orthodontic-surgical treatment has a significant effect on the OHRQoL of class III and class II patients. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, western Cape, South Africa.

    Science.gov (United States)

    Faith, J Tyler

    2013-12-01

    Excavations conducted by H.J. Deacon in the 1970s at Boomplaas Cave (BPA) uncovered a stratified sequence of Middle Stone Age (MSA) and Later Stone Age (LSA) deposits spanning the last >65,000 years. This study provides the first comprehensive and integrated taphonomic and paleoecological analysis of the BPA large mammals, with a focus on its implications for understanding human adaptations and environmental changes in southern Africa's Cape Floristic Region (CFR), an area that features prominently in understanding modern human origins. Taphonomic data indicate a complex history of human, carnivore, and raptor accumulation of the large mammal assemblage. The anthropogenic signal is largely absent from the bottom of the sequence (>65,000 years ago), intermediate in MSA and LSA assemblages from ~50,000 to 20,000 years ago, and strong in LSA deposits post-dating the Last Glacial Maximum (LGM). When viewed in the broader CFR context, the inferred occupation history of BPA is consistent with the hypothesis that both MSA and LSA human populations were concentrated on the submerged coastline from ~60,000 to ~20,000 years ago. Intensive occupation following the LGM parallels an apparent increase in regional population densities, which may have been driven in part by rising sea levels. The BPA ungulate assemblage is characterized by the rise and decline of a taxonomically diverse grazing community, which peaks during the LGM. These changes are not correlated with taphonomic shifts, meaning that they are likely driven by environmental factors, namely the expansion and contraction of grassland habitats. Changes in ungulate diversity indicate that effective precipitation was highest during the LGM, corresponding with an intensified winter rainfall system. This is consistent with recent arguments that the LGM in this region may not have been extremely harsh and arid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  15. Large carnivores, moose, and humans: A changing paradigm of predator management in the 21st century

    Science.gov (United States)

    Schwartz, Charles C.; Swenson, J.E.; Miller, Sterling D.

    2003-01-01

    We compare and contrast the evolution of human attitudes toward large carnivores between Europe and North America. In general, persecution of large carnivores began much earlier in Europe than North America. Likewise, conservation programs directed at restoration and recovery appeared in European history well before they did in North America. Together, the pattern suggests there has been an evolution in how humans perceive large predators. Our early ancestors were physically vulnerable to large carnivores and developed corresponding attitudes of respect, avoidance, and acceptance. As civilization evolved and man developed weapons, the balance shifted. Early civilizations, in particular those with pastoral ways, attempted to eliminate large carnivores as threats to life and property. Brown bears (Ursus arctos) and wolves (Canis lupus) were consequently extirpated from much of their range in Europe and in North America south of Canada. Efforts to protect brown bears began in the late 1880s in some European countries and population reintroductions and augmentations are ongoing. They are less controversial than in North America. On the other hand, there are no wolf introductions, as has occurred in North America, and Europeans have a more negative attitude towards wolves. Control of predators to enhance ungulate harvest varies. In Western Europe, landowners own the hunting rights to ungulates. In the formerly communistic Eastern European countries and North America, hunting rights are held in common, although this is changing in some Eastern European countries. Wolf control to increase harvests of moose (Alces alces) occurs in parts of North America and Russia; bear control for similar reasons only occurs in parts of North America. Surprisingly, bears and wolves are not controlled to increase ungulates where private landowners have the hunting rights in Europe, although wolves were originally exterminated from these areas. Both the inability of scientific research to

  16. Search for Anisotropy Changes Associated with Two Large Earthquakes in Japan and New Zealand

    Science.gov (United States)

    Savage, M. K.; Graham, K.; Aoki, Y.; Arnold, R.

    2017-12-01

    Seismic anisotropy is often considered to be an indicator of stress in the crust, because the closure of cracks due to differential stress leads to waves polarized parallel to the cracks travelling faster than the orthogonal direction. Changes in shear wave splitting have been suggested to result from stress changes at volcanoes and earthquakes. However, the effects of mineral or structural alignment, and the difficulty of distinguishing between changes in anisotropy along an earthquake-station path from distinguishing changes in the path itself, have made such findings controversial. Two large earthquakes in 2016 provide unique datasets to test the use of shear wave splitting for measuring variations in stress because clusters of closely-spaced earthquakes occurred both before and after a mainshock. We use the automatic, objective splitting analysis code MFAST to speed process and minimize unwitting observer bias when determining time variations. The sequence of earthquakes related to the M=7.2 Japanese Kumamoto earthquake of 14 April 2016 includes both foreshocks, mainshocks and aftershocks. The sequence was recorded by the NIED permanent network, which already contributed background seismic anisotropy measurements in a previous study of anisotropy and stress in Kyushu. Preliminary measurements of shear wave splitting from earthquakes that occurred in 2016 show results at some stations that clearly differ from those of the earlier study. They also change between earthquakes recorded before and after the mainshock. Further work is under way to determine whether the changes are more likely due to changes in stress during the observation time, or due to spatial changes in anisotropy combined with changes in earthquake locations. Likewise, background seismicity and also foreshocks and aftershocks in the 2013 Cook Strait earthquake sequence including two M=6.5 earthquakes in 2013 in New Zealand were in the same general region as aftershocks of the M=7.8 Kaikoura

  17. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  18. Changes in the relationship between solar radiation and sunshine duration in large cities of China

    International Nuclear Information System (INIS)

    Liu, Jiandong; Linderholm, Hans; Chen, Deliang; Zhou, Xiuji; Flerchinger, Gerald N.; Yu, Qiang; Du, Jun; Wu, Dingrong; Shen, Yanbo; Yang, Zhenbin

    2015-01-01

    Based on the linear relationship between solar radiation and sunshine duration, the Angstrom model is widely used to estimate solar radiation from routinely observed meteorological variables for energy exploitation. However, the relationship may have changed in quickly developing regions in the recent decades under global “dimming” and “brightening” context, with increasing aerosols due to industrial pollutions. Solar radiation stations under different climate conditions in six large cities in China are selected to test this hypothesis. Analysis of the related meteorological items shows that Guiyang has the lowest solar radiation with the average annual value of 10.5 MJm −2 d −1 , while Lhasa on the Tibetan Plateau has the highest of 20.1 MJm −2 d −1 . Both radiation and sunshine hours decreased from 1961 to 2010, but at different rates. A moving linear regression method is used to investigate the changes in the relationship between radiation and sunshine duration, the results indicate an abrupt change in the correlation coefficients in 1980–1990s, which can be attributed to the aerosol load resulting from air pollution caused by the industrial development in 1980s under China's Open Door Policy. The sky condition has been changing from clean to dirty, thus the relationship between solar radiation and duration changes in the 1980's and has recovered in the recent decades. This finding implies that it might not necessarily be right to use long data sets for model calibration. Further investigation confirms that the Angstrom model performs the best with higher NSE (nash-sutcliffe efficiency) of 0.914 and lower MAPE (mean absolute percentage error) and RMSE (root mean square error) values of 13.7 w/m 2 and 23.9 w/m 2 respectively, when calibrated with a 10-year data set. In contrast, the model performs worst when it is calibrated with a 40-year data set, with NSE, MAPE and RMSE values of 0.891, 15.1 w/m 2 and 25.3 w/m 2 , respectively

  19. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    Science.gov (United States)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2017-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D

  20. Did Large-Scale Vaccination Drive Changes in the Circulating Rotavirus Population in Belgium?

    Science.gov (United States)

    Pitzer, Virginia E.; Bilcke, Joke; Heylen, Elisabeth; Crawford, Forrest W.; Callens, Michael; De Smet, Frank; Van Ranst, Marc; Zeller, Mark; Matthijnssens, Jelle

    2015-01-01

    Vaccination can place selective pressures on viral populations, leading to changes in the distribution of strains as viruses evolve to escape immunity from the vaccine. Vaccine-driven strain replacement is a major concern after nationwide rotavirus vaccine introductions. However, the distribution of the predominant rotavirus genotypes varies from year to year in the absence of vaccination, making it difficult to determine what changes can be attributed to the vaccines. To gain insight in the underlying dynamics driving changes in the rotavirus population, we fitted a hierarchy of mathematical models to national and local genotype-specific hospitalization data from Belgium, where large-scale vaccination was introduced in 2006. We estimated that natural- and vaccine-derived immunity was strongest against completely homotypic strains and weakest against fully heterotypic strains, with an intermediate immunity amongst partially heterotypic strains. The predominance of G2P[4] infections in Belgium after vaccine introduction can be explained by a combination of natural genotype fluctuations and weaker natural and vaccine-induced immunity against infection with strains heterotypic to the vaccine, in the absence of significant variation in strain-specific vaccine effectiveness against disease. However, the incidence of rotavirus gastroenteritis is predicted to remain low despite vaccine-driven changes in the distribution of genotypes. PMID:26687288

  1. Responses of Vegetation Cover to Environmental Change in Large Cities of China

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available Vegetation cover is crucial for the sustainability of urban ecosystems; however, this cover has been undergoing substantial changes in cities. Based on climate data, city statistical data, nighttime light data and the Normalized Difference Vegetation Index (NDVI dataset, we investigate the spatiotemporal variations of climate factors, urban lands and vegetation cover in 71 large cities of China during 1998–2012, and explore their correlations. A regression model between growing-season NDVI (G-NDVI and urban land proportion (PU is built to quantify the impact of urbanization on vegetation cover change. The results indicate that the spatiotemporal variations of temperature, precipitation, PU and G-NDVI are greatly different among the 71 cities which experienced rapid urbanization. The spatial difference of G-NDVI is closely related to diverse climate conditions, while the inter-annual variations of G-NDVI are less sensitive to climate changes. In addition, there is a negative correlation between G-NDVI trend and PU change, indicating vegetation cover in cities have been negatively impacted by urbanization. For most of the inland cities, the urbanization impacts on vegetation cover in urban areas are more severe than in suburban areas. But the opposite occurs in 17 cities mainly located in the coastal areas which have been undergoing the most rapid urbanization. Overall, the impacts of urbanization on G-NDVI change are estimated to be −0.026 per decade in urban areas and −0.015 per decade in suburban areas during 1998–2012. The long-term developments of cities would persist and continue to impact on the environmental change and sustainability. We use a 15-year window here as a case study, which implies the millennia of human effects on the natural biotas and warns us to manage landscapes and preserve ecological environments properly.

  2. MESOSCALE SIMULATIONS OF MICROSTRUCTURE AND TEXTURE EVOLUTION DURING DEFORMATION OF COLUMNAR GRAINS

    International Nuclear Information System (INIS)

    Sarma, G.

    2001-01-01

    In recent years, microstructure evolution in metals during deformation processing has been modeled at the mesoscale by combining the finite element method to discretize the individual grains with crystal plasticity to provide the constitutive relations. This approach allows the simulations to capture the heterogeneous nature of grain deformations due to interactions with neighboring grains. The application of this approach to study the deformations of columnar grains present in solidification microstructures is described. The microstructures are deformed in simple compression, assuming the easy growth direction of the columnar grains to be parallel to the compression axis in one case, and perpendicular in the other. These deformations are similar to those experienced by the columnar zones of a large cast billet when processed by upsetting and drawing, respectively. The simulations show that there is a significant influence of the initial microstructure orientation relative to the loading axis on the resulting changes in grain shape and orientation

  3. Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures [Thermo-mechanical modeling of laser-induced structural relaxation and deformation of SiO2 glass

    Energy Technology Data Exchange (ETDEWEB)

    Vignes, Ryan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Soules, Thomas F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Stolken, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Elhadj, Selim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Matthews, Manyalibo J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility and Photon Sciences; Mauro, J.

    2012-12-17

    In a fully coupled thermomechanical model of the nanoscale deformation in amorphous SiO2 due to laser heating is presented. Direct measurement of the transient, nonuniform temperature profiles was used to first validate a nonlinear thermal transport model. Densification due to structural relaxation above the glass transition point was modeled using the Tool-Narayanaswamy (TN) formulation for the evolution of structural relaxation times and fictive temperature. TN relaxation parameters were derived from spatially resolved confocal Raman scattering measurements of Si–O–Si stretching mode frequencies. These thermal and microstructural data were used to simulate fictive temperatures which are shown to scale nearly linearly with density, consistent with previous measurements from Shelby et al. Volumetric relaxation coupled with thermal expansion occurring in the liquid-like and solid-like glassy states lead to residual stresses and permanent deformation which could be quantified. But, experimental surface deformation profiles between 1700 and 2000 K could only be reconciled with our simulation by assuming a roughly 2 × larger liquid thermal expansion for a-SiO2 with a temperature of maximum density ~150 K higher than previously estimated by Bruckner et al. Calculated stress fields agreed well with recent laser-induced critical fracture measurements, demonstrating accurate material response prediction under processing conditions of practical interest.

  4. Morphological changes connected with irradiation of large fields in dogs and with the effect of automyelotransplantation

    International Nuclear Information System (INIS)

    Klestova, O.V.; Sil'chenko, N.N.; Stanzhevskaya, T.I.; Strelin, G.S.; Vishnyakov, Yu.S.; Gubareva, A.V.; Skripkina, N.S.

    1983-01-01

    Dogs have been used to study the effect of automyelotransplantation on processes of post-radiation recovery of hemopoietic organs in large-field fractionated irradiation and morphological changes in some internal organs irradiated with different doses. Dogs of both sexes were irradiated in the gamma device twice a week alternately from the back and from the stomach with fractions of 8 Gy for the radiation field. The integral dose for all irradiated sections is 48 Gy. Automyelotransplantation of bone marrow is done after irradiation of the upper part of the body of the animal. Morphological changes in bone marrow, spleen, gastrointestinal tract, liver, heart and lungs, are found. It is shown that automyelotransplantation from non-irradiated section in the case of large-field radiation promotes the recovery of bone marrow and other homopoietic organs which is expressed in the intensification of repopulation of bone marrow of breast bone and lymphoid hemopoiesis in spleen. It is noted that such reparation of bone marrow can play a positive role in the recovery of bone marrow syndrome of radiation disease

  5. Mechanical stability of the cell nucleus: roles played by the cytoskeleton in nuclear deformation and strain recovery.

    Science.gov (United States)

    Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu

    2018-05-18

    Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.

  6. Photon density of states for deformed surfaces

    International Nuclear Information System (INIS)

    Emig, T

    2006-01-01

    A new approach to the Helmholtz spectrum for arbitrarily shaped boundaries and a rather general class of boundary conditions is introduced. We derive the boundary induced change of the density of states in terms of the free Green's function from which we obtain both perturbative and non-perturbative results for the Casimir interaction between deformed surfaces. As an example, we compute the lateral electrodynamic Casimir force between two corrugated surfaces over a wide parameter range. Universal behaviour, fixed only by the largest wavelength component of the surface shape, is identified at large surface separations. This complements known short distance expansions which are also reproduced

  7. Small Changes: Using Assessment to Direct Instructional Practices in Large-Enrollment Biochemistry Courses

    Science.gov (United States)

    Xu, Xiaoying; Lewis, Jennifer E.; Loertscher, Jennifer; Minderhout, Vicky; Tienson, Heather L.

    2017-01-01

    Multiple-choice assessments provide a straightforward way for instructors of large classes to collect data related to student understanding of key concepts at the beginning and end of a course. By tracking student performance over time, instructors receive formative feedback about their teaching and can assess the impact of instructional changes. The evidence of instructional effectiveness can in turn inform future instruction, and vice versa. In this study, we analyzed student responses on an optimized pretest and posttest administered during four different quarters in a large-enrollment biochemistry course. Student performance and the effect of instructional interventions related to three fundamental concepts—hydrogen bonding, bond energy, and pKa—were analyzed. After instructional interventions, a larger proportion of students demonstrated knowledge of these concepts compared with data collected before instructional interventions. Student responses trended from inconsistent to consistent and from incorrect to correct. The instructional effect was particularly remarkable for the later three quarters related to hydrogen bonding and bond energy. This study supports the use of multiple-choice instruments to assess the effectiveness of instructional interventions, especially in large classes, by providing instructors with quick and reliable feedback on student knowledge of each specific fundamental concept. PMID:28188280

  8. Dynamical Changes Induced by the Very Large Solar Proton Events in October-November 2003

    Science.gov (United States)

    Jackman, Charles H.; Roble, Raymond G.

    2006-01-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth and impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Mode (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization and changes in the electric field, which led to Joule heating of the mesosphere and lower thermosphere. This heating led to temperature increases up to 4K in the upper mesosphere. The solar proton-induced ionization, as well as dissociation processes, led to the production of odd hydrogen (HO(x)) and odd nitrogen (NO(y)). Substantial (>40%) short-lived ozone decreases followed these enhancements of HO(x) and NO(y) and led to a cooling of the mesosphere and upper stratosphere. This cooling led to temperature decreases up to 2.5K. The solar proton-caused temperature changes led to maximum meridional and zonal wind variations of +/- 2 m/s on background winds up to +/- 30 m/s. The solar proton-induced wind perturbations were computed to taper off over a period of several days past the SPEs. Solar cycle 23 was accompanied by ten very large SPEs between 1998 and 2005, along with numerous smaller events. These solar proton-driven atmospheric variations need to be carefully considered when examining other polar changes.

  9. A Comparative Evaluation of 3 Different Free-Form Deformable Image Registration and Contour Propagation Methods for Head and Neck MRI: The Case of Parotid Changes During Radiotherapy.

    Science.gov (United States)

    Broggi, Sara; Scalco, Elisa; Belli, Maria Luisa; Logghe, Gerlinde; Verellen, Dirk; Moriconi, Stefano; Chiara, Anna; Palmisano, Anna; Mellone, Renata; Fiorino, Claudio; Rizzo, Giovanna

    2017-06-01

    To validate and compare the deformable image registration and parotid contour propagation process for head and neck magnetic resonance imaging in patients treated with radiotherapy using 3 different approaches-the commercial MIM, the open-source Elastix software, and an optimized version of it. Twelve patients with head and neck cancer previously treated with radiotherapy were considered. Deformable image registration and parotid contour propagation were evaluated by considering the magnetic resonance images acquired before and after the end of the treatment. Deformable image registration, based on free-form deformation method, and contour propagation available on MIM were compared to Elastix. Two different contour propagation approaches were implemented for Elastix software, a conventional one (DIR_Trx) and an optimized homemade version, based on mesh deformation (DIR_Mesh). The accuracy of these 3 approaches was estimated by comparing propagated to manual contours in terms of average symmetric distance, maximum symmetric distance, Dice similarity coefficient, sensitivity, and inclusiveness. A good agreement was generally found between the manual contours and the propagated ones, without differences among the 3 methods; in few critical cases with complex deformations, DIR_Mesh proved to be more accurate, having the lowest values of average symmetric distance and maximum symmetric distance and the highest value of Dice similarity coefficient, although nonsignificant. The average propagation errors with respect to the reference contours are lower than the voxel diagonal (2 mm), and Dice similarity coefficient is around 0.8 for all 3 methods. The 3 free-form deformation approaches were not significantly different in terms of deformable image registration accuracy and can be safely adopted for the registration and parotid contour propagation during radiotherapy on magnetic resonance imaging. More optimized approaches (as DIR_Mesh) could be preferable for critical

  10. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    Science.gov (United States)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  11. Characterization of deformed pearlitic rail steel

    Science.gov (United States)

    Nikas, Dimitrios; Meyer, Knut Andreas; Ahlström, Johan

    2017-07-01

    Pearlitic steels are commonly used for railway rails because they combine good strength and wear properties. During service, the passage of trains results in a large accumulation of shear strains in the surface layer of the rail, leading to crack initiation. Knowledge of the material properties in this region is therefore important for fatigue life prediction. As the strain is limited to a thin surface layer, very large strain gradients can be found. This makes it very difficult to quantify changes in material behavior. In this study hardness measurements were performed close to the surface using the Knoop hardness test method. The orientation of the pearlitic lamellas was measured to give an overview of the deformed microstructure in the surface of the rail. Microstructural characterization of the material was done by optical microscopy and scanning electron microscopy to evaluate the changes in the microstructure due to the large deformation. A strong gradient can be observed in the top 50 μm of the rail, while deeper into the rail the microstructure of the base material is preserved.

  12. Large-scale patterns of turnover and Basal area change in Andean forests.

    Directory of Open Access Journals (Sweden)

    Selene Báez

    Full Text Available General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.

  13. Climatological changing effects on wind, precipitation and erosion: Large, meso and small scale analysis

    International Nuclear Information System (INIS)

    Aslan, Z.

    2004-01-01

    The Fourier transformation analysis for monthly average values of meteorological parameters has been considered, and amplitudes, phase angles have been calculated by using ground measurements in Turkey. The first order harmonics of meteorological parameters show large scale effects, while higher order harmonics show the effects of small scale fluctuations. The variations of first through sixth order harmonic amplitudes and phases provide a useful means of understanding the large and local scale effects on meteorological parameters. The phase angle can be used to determine the time of year the maximum or minimum of a given harmonic occurs. The analysis helps us to distinguish different pressure, relative humidity, temperature, precipitation and wind speed regimes and transition regions. Local and large scale phenomenon and some unusual seasonal patterns are also defined near Keban Dam and the irrigation area. Analysis of precipitation based on long term data shows that semi-annual fluctuations are predominant in the study area. Similarly, pressure variations are mostly influenced by semi-annual fluctuations. Temperature and humidity variations are mostly influenced by meso and micro scale fluctuations. Many large and meso scale climate change simulations for the 21st century are based on concentration of green house gases. A better understanding of these effects on soil erosion is necessary to determine social, economic and other impacts of erosion. The second part of this study covers the time series analysis of precipitation, rainfall erosivity and wind erosion at the Marmara Region. Rainfall and runoff erosivity factors are defined by considering the results of field measurements at 10 stations. Climatological changing effects on rainfall erosion have been determined by monitoring meteorological variables. In the previous studies, Fournier Index is defined to estimate the rainfall erosivity for the study area. The Fournier Index or in other words a climatic index

  14. The Ophidia Stack: Toward Large Scale, Big Data Analytics Experiments for Climate Change

    Science.gov (United States)

    Fiore, S.; Williams, D. N.; D'Anca, A.; Nassisi, P.; Aloisio, G.

    2015-12-01

    The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in multiple domains (e.g. climate change). It provides a "datacube-oriented" framework responsible for atomically processing and manipulating scientific datasets, by providing a common way to run distributive tasks on large set of data fragments (chunks). Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes. The project relies on a strong background on high performance database management and On-Line Analytical Processing (OLAP) systems to manage large scientific datasets. The Ophidia analytics platform provides several data operators to manipulate datacubes (about 50), and array-based primitives (more than 100) to perform data analysis on large scientific data arrays. To address interoperability, Ophidia provides multiple server interfaces (e.g. OGC-WPS). From a client standpoint, a Python interface enables the exploitation of the framework into Python-based eco-systems/applications (e.g. IPython) and the straightforward adoption of a strong set of related libraries (e.g. SciPy, NumPy). The talk will highlight a key feature of the Ophidia framework stack: the "Analytics Workflow Management System" (AWfMS). The Ophidia AWfMS coordinates, orchestrates, optimises and monitors the execution of multiple scientific data analytics and visualization tasks, thus supporting "complex analytics experiments". Some real use cases related to the CMIP5 experiment will be discussed. In particular, with regard to the "Climate models intercomparison data analysis" case study proposed in the EU H2020 INDIGO-DataCloud project, workflows related to (i) anomalies, (ii) trend, and (iii) climate change signal analysis will be presented. Such workflows will be distributed across multiple sites - according to the

  15. Quantifying Behaviour Change in reducing environmental impact within large organisations - 3 case studies from the UK

    Directory of Open Access Journals (Sweden)

    Andrew F.G. Smith

    2015-10-01

    over 50% have been achieved. In total, these programmes have saved the organisations substantial amounts of money and avoided CO2 emissions. Analysis has shown that the three universities are currently benefitting by over £320,000 / year and 1,300 tonnes of avoided CO2, as behavioural-led changes have already reduced demand by between 5% and 8%. Figure 1 shows the savings made by one university, and demonstrates a 99kW reduction in electricity demand that has been created through staff behaviour change. CONCLUSIONS Effecting behaviour change within large organisations has always been difficult owing to the large numbers of people involved, the slow speed of feedback and the difficulty in quantifying results. This work shows that well-designed IT systems are a key enabler in overcoming all of these challenges. IT has permitted and facilitated the following: Community building, awareness raising, quantification of savings, feedback on actions, competitive activity and rapid reporting. The results from these programmes have helped three universities to cut their electricity consumption by between 5% and 8%, with potential for greater future cuts. Collectively, as a result of this mechanism, the three universities are reducing their environmental impact by over 1,300 tonnes of CO2 per year. The implications for other areas of behaviour change are significant. Potentially the lessons learned in these IT-enabled environmental impact reduction initiatives can be translated into other fields (eg: other health, organisational change, etc.

  16. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Directory of Open Access Journals (Sweden)

    A. Bozbiyik

    2011-03-01

    Full Text Available CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.

  17. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    Science.gov (United States)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  18. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  19. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    Science.gov (United States)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  20. Economic valuation of the downstream hydrological effects of land use change: Large hydroelectric reservoirs

    Science.gov (United States)

    Aylward, Bruce Allan

    1998-12-01

    Land use change that accompanies economic development and population growth is intended to raise the economic productivity of land. An inevitable by product of this process is the alteration of natural vegetation and downstream hydrological function. This dissertation explores hydrological externalities of land use change in detail, particularly with regard to their economic impact on large hydroelectric reservoirs (LHRs). A review of the linkages between land use, hydrological function and downstream economic activity suggests that on theoretical grounds the net welfare effect of land use change on hydrological function will be indeterminate. Review of the literature suggests that, though the effects of downstream sedimentation will typically be negative, they may often be of little practical significance. The literature on water quantity impacts is sparse at best. This is most surprising in the case of the literature on LHRs where the potentially important and positive effects of increased water yield are typically ignored in favor of simplistic efforts to document the negative effects of reservoir sedimentation. In order to improve the methodological basis for the economic valuation of hydrological externalities, the dissertation considers existing techniques for the evaluation of non-marketed goods and services, clarifying the manner in which they have been and, in the future, may be applied to the topic at hand. A deterministic simulation model is then constructed for the case of LHRs. The model incorporates the effect of changes in water yield, the seasonal pattern of water yield and sedimentation of live and dead storage volumes as they affect reservoir operation and the production of hydroelectricity. The welfare effects of changes in the productivity of the LHR in the short run and changes to the power system expansion plan in the long run are evaluated using the marginal opportunity costs of alternative power sources and power plants, respectively. A case

  1. Numerical modeling of the Indo-Australian intraplate deformation

    Science.gov (United States)

    Brandon, Vincent; Royer, Jean-Yves

    2014-05-01

    The Indo-Australian plate is perhaps the best example of wide intraplate deformation within an oceanic plate. The deformation is expressed by an unusual level of intraplate seismicity, including magnitude Mw > 8 events, large-scale folding and deep faulting of the oceanic lithosphere and reactivation of extinct fracture zones. The deformation pattern and kinematic data inversions suggest that the Indo-Australian plate can be viewed as a composite plate made of three rigid component plates - India, Capricorn, Australia - separated by wide and diffuse boundaries undergoing either extensional or compressional deformation. We tested this model using the SHELLS numerical code (Kong & Bird, 1995). The Indo-Australian plate is modeled by a mesh of 5281 spherical triangular finite elements. Mesh edges parallel the major extinct fracture zones so that they can be reactivated by reducing their friction rates. Strength of the plate is defined by the age of the lithosphere and seafloor topography. Model boundary conditions are only defined by the plate velocities predicted by the rotation vectors between rigid components of the Indo-Australian plate and their neighboring plates. Since the mesh limits all belong to rigid plates with fully defined Euler vectors, no conditions are imposed on the location, extent and limits of the diffuse and deforming zones. Using MORVEL plate velocities (DeMets et al., 2010), predicted deformation patterns are very consistent with that observed. Pre-existing structures of the lithosphere play an important role in the intraplate deformation and its distribution. The Chagos Bank focuses most of the extensional deformation between the Indian and Capricorn plates. Agreement between models and observation improves by weakening fossil fracture zones relative to the surrounding crust; however only limited sections of FZ's accommodate deformation. The reactivation of the Eocene FZ's in the Central Indian Basin (CIB) and Wharton Basin (WB) explains the

  2. Calorie Changes in Large Chain Restaurants: Declines in New Menu Items but Room for Improvement.

    Science.gov (United States)

    Bleich, Sara N; Wolfson, Julia A; Jarlenski, Marian P

    2016-01-01

    Large chain restaurants reduced the number of calories in newly introduced menu items in 2013 by about 60 calories (or 12%) relative to 2012. This paper describes trends in calories available in large U.S. chain restaurants to understand whether previously documented patterns persist. Data (a census of items for included restaurants) were obtained from the MenuStat project. This analysis included 66 of the 100 largest U.S. restaurants that are available in all three of the data years (2012-2014; N=23,066 items). Generalized linear models were used to examine: (1) per-item calorie changes from 2012 to 2014 among items on the menu in all years; and (2) mean calories in new items in 2013 and 2014 compared with items on the menu in 2012 only. Data were analyzed in 2014. Overall, calories in newly introduced menu items declined by 71 (or 15%) from 2012 to 2013 (p=0.001) and by 69 (or 14%) from 2012 to 2014 (p=0.03). These declines were concentrated mainly in new main course items (85 fewer calories in 2013 and 55 fewer calories in 2014; p=0.01). Although average calories in newly introduced menu items are declining, they are higher than items common to the menu in all 3 years. No differences in mean calories among items on menus in 2012, 2013, or 2014 were found. The previously observed declines in newly introduced menu items among large restaurant chains have been maintained, which suggests the beginning of a trend toward reducing calories. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Small Changes: Using Assessment to Direct Instructional Practices in Large-Enrollment Biochemistry Courses.

    Science.gov (United States)

    Xu, Xiaoying; Lewis, Jennifer E; Loertscher, Jennifer; Minderhout, Vicky; Tienson, Heather L

    2017-01-01

    Multiple-choice assessments provide a straightforward way for instructors of large classes to collect data related to student understanding of key concepts at the beginning and end of a course. By tracking student performance over time, instructors receive formative feedback about their teaching and can assess the impact of instructional changes. The evidence of instructional effectiveness can in turn inform future instruction, and vice versa. In this study, we analyzed student responses on an optimized pretest and posttest administered during four different quarters in a large-enrollment biochemistry course. Student performance and the effect of instructional interventions related to three fundamental concepts-hydrogen bonding, bond energy, and pK a -were analyzed. After instructional interventions, a larger proportion of students demonstrated knowledge of these concepts compared with data collected before instructional interventions. Student responses trended from inconsistent to consistent and from incorrect to correct. The instructional effect was particularly remarkable for the later three quarters related to hydrogen bonding and bond energy. This study supports the use of multiple-choice instruments to assess the effectiveness of instructional interventions, especially in large classes, by providing instructors with quick and reliable feedback on student knowledge of each specific fundamental concept. © 2017 X. Xu et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Numerical Analysis of Consolidation Settlement and Creep Deformation of Artificial Island Revetment Structure in a Large-Scale Marine Reclamation Land Project

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-09-01

    Full Text Available In order to analyze the influential factors of soft foundation settlement in a marine reclamation land project, the consolidation settlement and pore pressure dissipation of the entire area are numerically simulated using Soft-Soil- Creep Model, in which the PLAXIS finite element software for professional geotechnical engineering is applied and empirical data of Japanese Kansai’s airport project are used. Moreover, the figures of settlement and pore pressure results in the different basic period are drawn, and the corresponding analysis conclusions are ob-tained based on the comparison among the results from the computational parameters of depth. In addition,, the influence rules of various parameters on settlement results is concluded through running the parameter sensitivity analysis in Soft-Soil-Creep Model, and the experience and conclusions can be for reference in the design and con-struction of similar large-scale marine reclamation land project. Also the empirical value method of the creep index has not been applied widely. Further research needs to be done.

  5. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera.

    Science.gov (United States)

    Prazeres, Martina; Uthicke, Sven; Pandolfi, John M

    2015-03-22

    Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii, we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Large Scale Analyses and Visualization of Adaptive Amino Acid Changes Projects.

    Science.gov (United States)

    Vázquez, Noé; Vieira, Cristina P; Amorim, Bárbara S R; Torres, André; López-Fernández, Hugo; Fdez-Riverola, Florentino; Sousa, José L R; Reboiro-Jato, Miguel; Vieira, Jorge

    2018-03-01

    When changes at few amino acid sites are the target of selection, adaptive amino acid changes in protein sequences can be identified using maximum-likelihood methods based on models of codon substitution (such as codeml). Although such methods have been employed numerous times using a variety of different organisms, the time needed to collect the data and prepare the input files means that tens or hundreds of coding regions are usually analyzed. Nevertheless, the recent availability of flexible and easy to use computer applications that collect relevant data (such as BDBM) and infer positively selected amino acid sites (such as ADOPS), means that the entire process is easier and quicker than before. However, the lack of a batch option in ADOPS, here reported, still precludes the analysis of hundreds or thousands of sequence files. Given the interest and possibility of running such large-scale projects, we have also developed a database where ADOPS projects can be stored. Therefore, this study also presents the B+ database, which is both a data repository and a convenient interface that looks at the information contained in ADOPS projects without the need to download and unzip the corresponding ADOPS project file. The ADOPS projects available at B+ can also be downloaded, unzipped, and opened using the ADOPS graphical interface. The availability of such a database ensures results repeatability, promotes data reuse with significant savings on the time needed for preparing datasets, and effortlessly allows further exploration of the data contained in ADOPS projects.

  7. Electric-field-induced extremely large change in resistance in graphene ferromagnets

    Science.gov (United States)

    Song, Yu

    2018-01-01

    A colossal magnetoresistance (˜100×10^3% ) and an extremely large magnetoresistance (˜1×10^6% ) have been previously explored in manganite perovskites and Dirac materials, respectively. However, the requirement of an extremely strong magnetic field (and an extremely low temperature) makes them not applicable for realistic devices. In this work, we propose a device that can generate even larger changes in resistance in a zero-magnetic field and at a high temperature. The device is composed of graphene under two strips of yttrium iron garnet (YIG), where two gate voltages are applied to cancel the heavy charge doping in the YIG-induced half-metallic ferromagnets. By calculations using the Landauer-Büttiker formalism, we demonstrate that, when a proper gate voltage is applied on the free ferromagnet, changes in resistance up to 305×10^6% (16×10^3% ) can be achieved at the liquid helium (nitrogen) temperature and in a zero magnetic field. We attribute such a remarkable effect to a gate-induced full-polarization reversal in the free ferromagnet, which results in a metal-state to insulator-state transition in the device. We also find that the proposed effect can be realized in devices using other magnetic insulators, such as EuO and EuS. Our work should be helpful for developing a realistic switching device that is energy saving and CMOS-technology compatible.

  8. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.

  9. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    Science.gov (United States)

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John

  10. Large-scale changes in network interactions as a physiological signature of spatial neglect.

    Science.gov (United States)

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio

    2014-12-01

    networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    International Nuclear Information System (INIS)

    Mencarelli, Angelo; Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van; Nico Rasch, Coenraad Robert; Herk, Marcel van; Sonke, Jan-Jakob

    2014-01-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures

  12. Double-trace deformations of conformal correlations

    Science.gov (United States)

    Giombi, Simone; Kirilin, Vladimir; Perlmutter, Eric

    2018-02-01

    Large N conformal field theories often admit unitary renormalization group flows triggered by double-trace deformations. We compute the change in scalar four-point functions under double-trace flow, to leading order in 1/ N. This has a simple dual in AdS, where the flow is implemented by a change of boundary conditions, and provides a physical interpretation of single-valued conformal partial waves. We extract the change in the conformal dimensions and three-point coefficients of infinite families of double-trace composite operators. Some of these quantities are found to be sign-definite under double-trace flow. As an application, we derive anomalous dimensions of spinning double-trace operators comprised of non-singlet constituents in the O( N) vector model.

  13. EBSD characterization of deformed lath martensite in if steel

    DEFF Research Database (Denmark)

    Lv, Z.A.; Zhang, Xiaodan; Huang, Xiaoxu

    2017-01-01

    Rolling deformation results in the transformation of a lath martensite structure to a lamellar structure characteristic to that of IF steel cold-rolled to medium and high strains. The structural transition takes place from low to medium strain, and electron backscatter diffraction analysis shows...... and the strength are characterized for lath martensite rolled to a thickness reduction of 30%, showing that large changes in the misorientation take place, while the strain hardening rate is low....

  14. When the globe is your classroom: teaching and learning about large-scale environmental change online

    Science.gov (United States)

    Howard, E. A.; Coleman, K. J.; Barford, C. L.; Kucharik, C.; Foley, J. A.

    2005-12-01

    Understanding environmental problems that cross physical and disciplinary boundaries requires a more holistic view of the world - a "systems" approach. Yet it is a challenge for many learners to start thinking this way, particularly when the problems are large in scale and not easily visible. We will describe our online university course, "Humans and the Changing Biosphere," which takes a whole-systems perspective for teaching regional to global-scale environmental science concepts, including climate, hydrology, ecology, and human demographics. We will share our syllabus and learning objectives and summarize our efforts to incorporate "best" practices for online teaching. We will describe challenges we have faced, and our efforts to reach different learner types. Our goals for this presentation are: (1) to communicate how a systems approach ties together environmental sciences (including climate, hydrology, ecology, biogeochemistry, and demography) that are often taught as separate disciplines; (2) to generate discussion about challenges of teaching large-scale environmental processes; (3) to share our experiences in teaching these topics online; (4) to receive ideas and feedback on future teaching strategies. We will explain why we developed this course online, and share our experiences about benefits and challenges of teaching over the web - including some suggestions about how to use technology to supplement face-to-face learning experiences (and vice versa). We will summarize assessment data about what students learned during the course, and discuss key misconceptions and barriers to learning. We will highlight the role of an online discussion board in creating classroom community, identifying misconceptions, and engaging different types of learners.

  15. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  16. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  17. Deformations, moduli stabilisation and gauge couplings at one-loop

    Energy Technology Data Exchange (ETDEWEB)

    Honecker, Gabriele; Koltermann, Isabel [PRISMA Cluster of Excellence, MITP & Institut für Physik (WA THEP),Johannes Gutenberg-Universität,Staudingerweg 9, 55128 Mainz (Germany); Staessens, Wieland [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2017-04-05

    We investigate deformations of ℤ{sub 2} orbifold singularities on the toroidal orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 6}) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 2}) with discrete torsion and adapt it to the (ℤ{sub 2}×ℤ{sub 6}×ΩR) point group by modding out the remaining ℤ{sub 3} subsymmetry and the orientifold projection ΩR. We first study the local behaviour of the ℤ{sub 3}×ΩR invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2N) or SO(2N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U(N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in (DOI: 10.1016/j.nuclphysb.2015.10.009; 10.1002/prop.201400066), for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings. Finally, we confront the behaviour of tree-level gauge couplings under non-vanishing deformations along flat directions with the one-loop gauge threshold corrections at the orbifold point and discuss phenomenological implications, in particular on possible LARGE volume scenarios and the corresponding value of the string scale M{sub string}, for the same global D6-brane models.

  18. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  19. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  20. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  1. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han; Yang, Yongliang; Wonka, Peter

    2014-01-01

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  2. Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone

    Science.gov (United States)

    Arnadottir, T.; Jonsson, Sigurjon; Pollitz, F.F.; Jiang, W.; Feigl, K.L.

    2005-01-01

    We observe postseismic deformation on two spatiotemporal scales following Mw = 6.5 earthquakes in the south Iceland seismic zone on 17 and 21 June 2000. We see a rapidly decaying deformation transient lasting no more than 2 months and extending about 5 km away from the two main shock ruptures. This local, month-scale transient is captured by several radar interferograms and is also observed at a few campaign GPS sites located near the faults. A slower transient with a characteristic timescale of about a year is detected only by GPS measurements. The month-scale deformation pattern has been explained by poroelastic rebound due to postearthquake pore pressure changes. In contrast, the year-scale deformation can be explained by either afterslip at 8-14 km depth or viscoelastic relaxation of the lower crust and upper mantle in response to the coseismic stress changes. The optimal viscoelastic models have lower crustal viscosities of 0.5-1 ?? 1019 Pa s and upper mantle viscosity of ???3 ?? 1018 Pa s. Because of the limitations of our GPS campaign data, we consider both afterslip and viscoelastic relaxation as plausible mechanisms explaining the deformation field. Both types of postseismic deformation models suggest that the areas of large coseismic stress increase east of the 17 June and west of the 21 June ruptures continue to be loaded by the postseismic deformation. Copyright 2005 by the American Geophysical Union.

  3. A STUDY OF CHANGES IN DEFORMATION AND METABOLISM IN LEFT VENTRICLE AS A FUNCTION OF HYPERTROPHY IN SPONTANEOUS HYPERTENSIVE RATS USING MICROPET TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant, T; Huesman, Ronald, H; Reutter, Bryan, W; Sitek, Arkadiusz; Veress, Alexander, I; Weiss, Jeffrey, A; Yang, Yongfeng

    2017-06-13

    Problem: In the case of hypertrophy caused by pressure overload (hypertension) there is an increase in cardiac mass and modification cardiac metabolism. Aim: This study was designed to study the changes in glucose metabolism, ejection fraction, and deformation in the left ventricle with the progression of hypertrophy in spontaneous hypertensive rats (SHR). Methods: Dynamic PET data were acquired using the microPET II at UC Davis. Two rats were imaged at 10-week intervals for 18 months. Each time a dose of approximately 1- 1.5 mCi of F-18-FDG was injected into a normotensive Wistar Kyoto (WKY) rat and the same dose was injected into a SHR rat. Each rat was imaged using a gated dynamic acquisition for 80 minutes acquiring list mode data with cardiac gating of approximately 600-900 million total counts. For the analysis of glucose of metabolism, the list mode data were histogrammed into a dynamic sequence (42 frames over 80 mins). For each time frame, projection data of 1203 140x210 sinograms of 0.582 mm bins were formed by summing the last three gates before and one after the R-wave trigger to correspond to the diastolic phase of the cardiac cycle. Dynamic sequences of 128x128x83 matrices of 0.4x0.4x0.582 mm3 voxels in x, y, and z were reconstructed using an iterative MAP reconstruction which used a prior that penalized the high frequency components of the reconstruction using appropriate weighting between 26 nearest neighboring voxels. Time activity curves were generated from the dynamic reconstructed sequence for the blood and left ventricular tissue regions of interest which were fit to a 2-compartment model to obtain a least squares fit for the kinetic parameters. For the analysis of deformation, the list mode data were histogrammed into 8 gates of the cardiac cycle, each gate was the total sum of the later 60 mins of the 80 min acquisition. Images of 128x128x83 matrices for each gate were reconstructed using the same iterative MAP reconstruction used to

  4. Heat-stress increase under climate change twice as large in cities as in rural areas

    Science.gov (United States)

    Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias

    2017-04-01

    Urban areas, being warmer than their surroundings, are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine a 35-year convection-permitting climate model integrations with information from an ensemble of general circulation models to assess heat stress in a typical densely populated mid-latitude maritime region. We show that the heat-stress increase for the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heatwaves, and urban expansion. Cities experience a heat-stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat-stress surpasses everywhere the urban hot spots of today. Our novel insights exemplify the need to combine information from climate models, acting on different scales, for climate-change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.

  5. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    César Augusto F de Oliveira

    2011-10-01

    Full Text Available Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  6. The Climate-G testbed: towards a large scale data sharing environment for climate change

    Science.gov (United States)

    Aloisio, G.; Fiore, S.; Denvil, S.; Petitdidier, M.; Fox, P.; Schwichtenberg, H.; Blower, J.; Barbera, R.

    2009-04-01

    The Climate-G testbed provides an experimental large scale data environment for climate change addressing challenging data and metadata management issues. The main scope of Climate-G is to allow scientists to carry out geographical and cross-institutional climate data discovery, access, visualization and sharing. Climate-G is a multidisciplinary collaboration involving both climate and computer scientists and it currently involves several partners such as: Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Institut Pierre-Simon Laplace (IPSL), Fraunhofer Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI), National Center for Atmospheric Research (NCAR), University of Reading, University of Catania and University of Salento. To perform distributed metadata search and discovery, we adopted a CMCC metadata solution (which provides a high level of scalability, transparency, fault tolerance and autonomy) leveraging both on P2P and grid technologies (GRelC Data Access and Integration Service). Moreover, data are available through OPeNDAP/THREDDS services, Live Access Server as well as the OGC compliant Web Map Service and they can be downloaded, visualized, accessed into the proposed environment through the Climate-G Data Distribution Centre (DDC), the web gateway to the Climate-G digital library. The DDC is a data-grid portal allowing users to easily, securely and transparently perform search/discovery, metadata management, data access, data visualization, etc. Godiva2 (integrated into the DDC) displays 2D maps (and animations) and also exports maps for display on the Google Earth virtual globe. Presently, Climate-G publishes (through the DDC) about 2TB of data related to the ENSEMBLES project (also including distributed replicas of data) as well as to the IPCC AR4. The main results of the proposed work are: wide data access/sharing environment for climate change; P2P/grid metadata approach; production-level Climate-G DDC; high quality tools for

  7. Influence of large changes in public transportation (Transantiago) on the black carbon pollution near streets

    Science.gov (United States)

    Gramsch, E.; Le Nir, G.; Araya, M.; Rubio, M. A.; Moreno, F.; Oyola, P.

    2013-02-01

    In 2006 a large transformation was carried out on the public transportation system in Santiago de Chile. The original system (before 2006) had hundreds of bus owners with about 7000 diesel buses. The new system has only 13 firms with about 5900 buses which operate in different parts of the city with little overlap between them. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. Measurements were carried out during May-July of 2005 (before Transantiago) and June-July of 2007 (after Transantiago). We have used the Wilcoxon rank-sum test to evaluate black carbon concentration in four streets in year 2005 and 2007. The results show that a statistically significant reduction between year 2005 (before Transantiago) and year 2007 (after Transantiago) in Alameda street, which changed from a mean of 18.8 μg m-3 in 2005 to 11.9 μg m-3 in 2007. In this street there was a decrease in the number of buses as well as the number of private vehicles and an improvement in the technology of public transportation between those years. Other two streets (Usach and Departamental) did not change or experienced a small increase in the black carbon concentration in spite of having less flux of buses in 2007. Eliodoro Yañez Street, which did not have public transportation in 2005 or 2007 experienced a 15% increase in the black carbon concentration between those years. Analysis of the data indicates that the change is related to a decrease in the total number of vehicles or the number of other diesel vehicles in the street rather than a decrease in the number of buses only. These results are an indication that in order to decrease pollution near a street is not enough to reduce the number of buses or improve its quality, but to reduce the total number of vehicles.

  8. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    NARCIS (Netherlands)

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, Pieter R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts

  9. Large Deformation Plasticity of Polycrystalline Tantalum

    National Research Council Canada - National Science Library

    Anand, Lallit

    2000-01-01

    .... The model reproduces the data of these researchers rather well. The constitutive model has been implemented in the finite element program ABAQUS Explicit by writing a 'user material' subroutine...

  10. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    Science.gov (United States)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  11. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America

    NARCIS (Netherlands)

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; Eupen, van Michiel; Bloh, von Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-01-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a

  12. Large electrically induced height and volume changes in poly(3,4- ethylenedioxythiophene) /poly(styrenesulfonate) thin films

    NARCIS (Netherlands)

    Charrier, D.S.H.; Janssen, R.A.J.; Kemerink, M.

    2010-01-01

    We demonstrate large, partly reversible height and volume changes of thin films of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) on the anode of interdigitating gold electrodes under ambient conditions by applying an electrical bias. The height and volume changes were monitored

  13. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose

  14. WE-H-202-03: Accounting for Large Geometric Changes During Radiotherapy

    International Nuclear Information System (INIS)

    Hugo, G.

    2016-01-01

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  15. WE-H-202-03: Accounting for Large Geometric Changes During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, G. [Virginia Commonwealth University (United States)

    2016-06-15

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  16. Effects of tectonics and large scale climatic changes on the evolutionary history of Hyalomma ticks.

    Science.gov (United States)

    Sands, Arthur F; Apanaskevich, Dmitry A; Matthee, Sonja; Horak, Ivan G; Harrison, Alan; Karim, Shahid; Mohammad, Mohammad K; Mumcuoglu, Kosta Y; Rajakaruna, Rupika S; Santos-Silva, Maria M; Matthee, Conrad A

    2017-09-01

    -Diva, we also propose that the closure of the Tethyan seaway allowed for the genus to first enter Africa approximately 17.73Mya. In concert, our data supports the notion that tectonic events and large scale global changes in the environment contributed significantly to produce the rich species diversity currently found in the genus Hyalomma. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  18. Giant irreversible positive to large reversible negative magnetic entropy change evolution in Tb-based bulk metallic glass

    International Nuclear Information System (INIS)

    Luo Qiang; Schwarz, Bjoern; Mattern, Norbert; Eckert, Juergen

    2010-01-01

    We study the effects of amorphous structure and random anisotropy on the magnetic entropy change in a series of Tb-based amorphous alloys. The amorphous structure broadens the peak of magnetic entropy change and facilitates the adjustment of properties. The peak magnetic entropy change above the spin freezing temperature first depends on the average magnetic moment approximately linearly and second on the exchange interaction and random anisotropy. Large and broad reversible negative magnetic entropy changes are observed above the spin freezing temperature and giant positive irreversible magnetic entropy changes which associate with the internal entropy production are obtained well below.

  19. Volume changes of extremely large and giant intracranial aneurysms after treatment with flow diverter stents

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Angelo; Byrne, James V. [ohn Radcliffe Hospital, Oxford Neurovascular and Neuroradiology Research Unit, Nuffield Department of Surgical Sciences, Oxford (United Kingdom); Rane, Neil; Kueker, Wilhelm; Cellerini, Martino; Corkill, Rufus [John Radcliffe Hospital, Department of Neuroradiology, Oxford (United Kingdom)

    2014-01-15

    This study assessed volume changes of unruptured large and giant aneurysms (greatest diameter >20 mm) after treatment with flow diverter (FD) stents. Clinical audit of the cases treated in a single institution, over a 5-year period. Demographic and clinical data were retrospectively collected from the hospital records. Aneurysm volumes were measured by manual outlining at sequential slices using computerised tomography (CT) or magnetic resonance (MR) angiography data. The audit included eight patients (seven females) with eight aneurysms. Four aneurysms involved the cavernous segment of the internal carotid artery (ICA), three the supraclinoid ICA and one the basilar artery. Seven patients presented with signs and symptoms of mass effect and one with seizures. All but one aneurysm was treated with a single FD stent; six aneurysms were also coiled (either before or simultaneously with FD placement). Minimum follow-up time was 6 months (mean 20 months). At follow-up, three aneurysms decreased in size, three were unchanged and two increased. Both aneurysms that increased in size showed persistent endosaccular flow at follow-up MR; in one case, failure was attributed to suboptimal position of the stent; in the other case, it was attributed to persistence of a side branch originating from the aneurysm (similar to the endoleak phenomenon of aortic aneurysms). At follow-up, five aneurysms were completely occluded; none of these increased in volume. Complete occlusion of the aneurysms leads, in most cases, to its shrinkage. In cases of late aneurysm growth or regrowth, consideration should be given to possible endoleak as the cause. (orig.)

  20. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    Science.gov (United States)

    Liu, Nian; Lu, Zhenda; Zhao, Jie; McDowell, Matthew T.; Lee, Hyun-Wook; Zhao, Wenting; Cui, Yi

    2014-03-01

    Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (~300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm-3), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm-2).

  1. Diffuse stenotic change in large intracranial arteries following irradiation therapy for medulloblastoma

    International Nuclear Information System (INIS)

    Yamakami, Iwao; Sugaya, Yuichi; Sato, Masanori; Osato, Katunobu; Yamaura, Akira; Makino, Hiroyasu.

    1990-01-01

    We reported a case of a patient who developed a diffuse stenotic change in the large intracranial arteries and repeated episodes of cerebral infarction after irradiation therapy for medulloblastoma. A three-year-old girl underwent the subtotal removal of cerebellar medulloblastoma and the subsequent irradiation therapy in the whole brain and spine (30 Gy in the whole brain, 20 Gy in the local brain, and 25 Gy in the whole spine). Two years later, she again underwent surgery and irradiation therapy because a recurrence of medulloblastoma had manifested itself in the frontal lobe; (40 Gy in the whole brain, 20 Gy in the local brain, and 25 Gy in the whole spine). One and half years after the second irradiation, she started suffering from frequent and refractory cerebral ischemic attacks. Cerebral angiography revealed a diffuse narrowing, and multifocal stenoses in the bilateral anterior and middle cerebral arteries. Computerized tomography demonstrated multiple cerebral infarctions. Her neurological condition deteriorated because of recurring strokes and she died at ten years of age. Most of the reported cases of patients who developed stenotic arteriopathy were children in the first decade of their life, and who were irradiated for parasellar brain tumor of low malignancy. Stenotic arteriopathy after irradiation has rarely been recognized in patients with malignant brain tumor. However, life expectancy is increasing even for those with malignant brain tumor, and it may make stenotic arteriopathy after irradiation recognized more commonly in patients with malignant brain tumor. Careful irradiation and subsequent angiographical examination should be required even in patients with malignant brain tumor. (author)

  2. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  3. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  4. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals; Les mecanismes de deformation et de recristallisation des monocristaux imparfaits d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Calais, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-04-15

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect {alpha} uranium single crystals prepared by a {beta} {yields} {alpha} phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the {alpha} phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [French] Les divers modes de deformation plastique, glissement, maclage et pliage, que provoque la traction de monocristaux d'uranium {alpha} imparfaits prepares par changement de phase {beta} {yields} {alpha} ont ete etudies par rayons X et par examen micrographique. Suivant l'orientation cristallographique par rapport a la direction de l'axe de traction et suivant l'importance de l'allongement, les monocristaux se

  5. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  6. Managing large engineering changes : The case of a high-tech microlithography equipment manufacturer

    NARCIS (Netherlands)

    Alblas, A.A.; Wortmann, J.C.

    2012-01-01

    Purpose - In new product development (NPD), changes to the initial designs are often proposed for on-going design projects due to new insights. These engineering changes belong to a wide range from incremental to radical and, in their impact, even to discontinuous change. Consequently, the actual

  7. Managing large engineering changes : the case of a high-tech microlithography equipment manufacturer

    NARCIS (Netherlands)

    Alblas, A.A.; Wortmann, J.C.

    2012-01-01

    Purpose – In new product development (NPD), changes to the initial designs are often proposed for on-going design projects due to new insights. These engineering changes belong to a wide range from incremental to radical and, in their impact, even to discontinuous change. Consequently, the actual

  8. On the Importance of Morphing Deformation Scheduling for Actuation Force and Energy

    NARCIS (Netherlands)

    De Breuker, R.

    2016-01-01

    Morphing aircraft offer superior properties as compared to non-morphing aircraft. They can achieve this by adapting their shape depending on the requirements of various conflicting flight conditions. These shape changes are often associated with large deformations and strains, and hence dedicated

  9. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    Science.gov (United States)

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  10. Effects of pre-deformation on the martensitic transformation and magnetocaloric property in Ni-Mn-Co-Sn ribbons

    International Nuclear Information System (INIS)

    Ma Sheng-Can; Xuan Hai-Cheng; Zhang Cheng-Liang; Wang Liao-Yu; Cao Qing-Qi; Wang Dun-Hui; Du You-Wei

    2010-01-01

    This paper investigates the martensitic transformation and magnetocaloric effect in pre-deformed Ni-Mn-Co-Sn ribbons. The experimental results show that the reverse martensitic transformation temperature T M increases with the increasing pre-pressure, suggesting that pre-deformation is another effective way to adjust T M in ferromagnetic shape memory alloys. Large magnetic entropy changes and refrigerant capacities are obtained in these ribbons as well. It also discusses the origin of the enhanced martensitic transformation temperature and magnetocaloric property in pre-deformed Ni-Mn-Co-Sn ribbons

  11. THE CHANGES OF LARGE INTESTINE CAVITY’S MICROBIOTA IN PATIENTS WITH HIV INFECTION

    Directory of Open Access Journals (Sweden)

    Savinova O.M.

    2015-12-01

    features of obligate microfloras’ functions (bifidus bacteria, lactobacillus, E.coli, its lack has a negative impact on microecological system of the human body and reduces immunomodulatory effect on humoral and cellular immunity. So one of the issues which will have a positive impact on the health of patients with HIV infection is a normalization of obligate microflora deficit and reducing of opportunistic microflora. The conducted researches point to the need of microbiological analysis of fecal on dysbiosis for the patients with HIV infection and depending on the revealed dysbiotic changes making correction of microflora by biological agents. To correct the number of anaerobic bacteria (bifidus bacteria, lactobacillus use of bacterial preparations is not enough for only one month. It is necessary to continue taking of medicine for at least one month under the control of microbiological studies. The positive dynamics of the microflora of the large intestine points to changes that may be found in the immune system of the person that takes biological preparations. The close interaction between the microbiota of intestinal canal and the immune system leads to the formation of non–specific resistance of the organism. In this regard, the big importance has a modulating effect of intestinal microflora on products of cytokines, which are characterized by a wide range of biological effects. Conclusion. 1. Patients with HIV infection irrespective of the clinical stage of the disease have deficit both anaerobic (bifidobacteria and lactobacilli and facultative anaerobic microorganisms. 2. E.coli is the leading microorganism among the facultative anaerobic intestinal microflora, its amount of has been reduced to levels <106 CFU / mL at 56% at the patients. 3. Correction of patients' microflora by bacterial agents showed that the number of E.coli already in a month have reached the normal level in 100% of cases.

  12. Changing the Peer Review or Changing the Peers--Recent Development in Assessment of Large Research Collaborations

    Science.gov (United States)

    Hansson, Finn; Monsted, Mette

    2012-01-01

    Peer review of research programmes is changing. The problem is discussed through detailed study of a selection process to a call for collaborations in the energy sector for the European Institute of Innovation and Technology. The authors were involved in the application for a Knowledge Innovation Community. Through the analysis of the case the…

  13. What Property of the Contour of a Deforming Region Biases Percepts toward Liquid?

    Directory of Open Access Journals (Sweden)

    Takahiro Kawabe

    2017-06-01

    Full Text Available Human observers can perceive the existence of a transparent surface from dynamic image deformation. They can also easily discriminate a transparent solid material such as plastic and glass from a transparent fluid one such as water and shampoo just by viewing them. However, the image information required for material discrimination of this sort is still unclear. A liquid changes its contour shape non-rigidly. We therefore examined whether additional properties of the contour of a deformation-defined region, which indicated contour non-rigidity, biased percepts of the region toward liquid materials. Our stimuli had a translating circular region wherein a natural texture image was deformed at the spatiotemporal deformation frequency that was optimal for the perception of a transparent layer. In Experiment 1, we dynamically deformed the contour of the circular region and found that large deformation of the contour biased the percept toward liquid. In Experiment 2, we manipulated the blurriness of the contour and observed that a strongly blurred contour biased percepts toward liquid. Taken together, the results suggest that a deforming region lacking a discrete contour biases percepts toward liquid.

  14. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Azarbarmas, M. [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, 1999143344 Tehran (Iran, Islamic Republic of); Aghaie-Khafri, M., E-mail: maghaei@kntu.ac.ir [Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, 1999143344 Tehran (Iran, Islamic Republic of); Cabrera, J.M.; Calvo, J. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2016-12-15

    The hot deformation behavior of an IN718 superalloy was studied by isothermal compression tests under the deformation temperature range of 950–1100 °C and strain rate range of 0.001–1 s{sup −1} up to true strains of 0.05, 0.2, 0.4 and 0.7. Electron backscattered diffraction (EBSD) technique was employed to investigate systematically the effects of strain, strain rate and deformation temperature on the subgrain structures, local and cumulative misorientations and twinning phenomena. The results showed that the occurrence of dynamic recrystallization (DRX) is promoted by increasing strain and deformation temperature and decreasing strain rate. The microstructural changes showed that discontinuous dynamic recrystallization (DDRX), characterized by grain boundary bulging, is the dominant nucleation mechanism in the early stages of deformation in which DRX nucleation occurs by twining behind the bulged areas. Twin boundaries of nuclei lost their ∑3 character with further deformation. However, many simple and multiple twins can be also regenerated during the growth of grains. The results showed that continuous dynamic recrystallization (CDRX) is promoted at higher strains and large strain rates, and lower temperatures, indicating that under certain conditions both DDRX and CDRX can occur simultaneously during the hot deformation of IN718.

  15. Rebound Deformity After Growth Modulation in Patients With Coronal Plane Angular Deformities About the Knee: Who Gets It and How Much?

    Science.gov (United States)

    Leveille, Lise A; Razi, Ozan; Johnston, Charles E

    2017-05-18

    With observed success and increased popularity of growth modulation techniques, there has been a trend toward use in progressively younger patients. Younger age at growth modulation increases the likelihood of complete deformity correction and need for implant removal before skeletal maturity introducing the risk of rebound deformity. The purpose of this study was to quantify magnitude and identify risk factors for rebound deformity after growth modulation. We performed a retrospective review of all patients undergoing growth modulation with a tension band plate for coronal plane deformity about the knee with subsequent implant removal. Exclusion criteria included completion epiphysiodesis or osteotomy at implant removal, ongoing growth modulation, and modulation, before implant removal, and at final follow-up. In total, 67 limbs in 45 patients met the inclusion criteria. Mean age at growth modulation was 9.8 years (range, 3.4 to 15.4 y) and mean age at implant removal was 11.4 years (range, 5.3 to 16.4 y). Mean change in HKA after implant removal was 6.9 degrees (range, 0 to 23 degrees). In total, 52% of patients had >5 degrees rebound and 30% had >10 degrees rebound in HKA after implant removal. Females below 10 years and males below 12 years at time of growth modulation had greater mean change in HKA after implant removal compared with older patients (8.4 vs. 4.7 degrees, P=0.012). Patients with initial deformity >20 degrees had an increased frequency of rebound >10 degrees compared with patients with less severe initial deformity (78% vs. 22%, P=0.002). Rebound deformity after growth modulation is common. Growth modulation at a young age and large initial deformity increases risk of rebound. However, rebound does not occur in all at risk patients, therefore, we recommend against routine overcorrection. Level IV-retrospective study.

  16. Measuring Regional Changes in the Diastolic Deformation of the Left Ventricle of SHR Rats Using microPET Technology and Hyperelastic Warping

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant T; VERESS , ALEXANDER I.; WEISS, JEFFREY A.; HUESMAN, RONALD H.; REUTTER, BRYAN W.; TAYLOR , SCOTT E.; SITEK , AREK; FENG, BING; YANG , YONGFENG; GULLBERG, GRANT T.

    2008-04-04

    The objective of this research was to assess applicability of a technique known as hyperelastic warping for the measurement of local strains in the left ventricle (LV) directly from microPET image data sets. The technique uses differences in image intensities between template (reference) and target (loaded) image data sets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target images. For validation, the template image was defined as the end-systolic microPET image data set from a Wistar Kyoto (WKY) rat. The target image was created by mapping the template image using the deformation results obtained from a FE model of diastolic filling. Regression analysis revealed highly significant correlations between the simulated forward FE solution and image derived warping predictions for fiber stretch (R2 = 0.96), circumferential strain (R2 = 0.96), radial strain (R2 = 0.93), and longitudinal strain (R2 = 0.76) (p<0.001for all cases). The technology was applied to microPET image data of two spontaneously hypertensive rats (SHR) and a WKY control. Regional analysis revealed that, the lateral freewall in the SHR subjects showed the greatest deformation compared with the other wall segments. This work indicates that warping can accurately predict the strain distributions during diastole from the analysis of microPET data sets.

  17. Measuring Regional Changes in the Diastolic Deformation of the Left Ventricle of SHR Rats Using microPET Technology and Hyperelastic Warping

    International Nuclear Information System (INIS)

    Gullberg, Grant T; VERESS, ALEXANDER I.; WEISS, JEFFREY A.; HUESMAN, RONALD H.; REUTTER, BRYAN W.; TAYLOR, SCOTT E.; SITEK, AREK; FENG, BING; YANG, YONGFENG; GULLBERG, GRANT T.

    2008-01-01

    The objective of this research was to assess applicability of a technique known as hyperelastic warping for the measurement of local strains in the left ventricle (LV) directly from microPET image data sets. The technique uses differences in image intensities between template (reference) and target (loaded) image data sets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target images. For validation, the template image was defined as the end-systolic microPET image data set from a Wistar Kyoto (WKY) rat. The target image was created by mapping the template image using the deformation results obtained from a FE model of diastolic filling. Regression analysis revealed highly significant correlations between the simulated forward FE solution and image derived warping predictions for fiber stretch (R2 = 0.96), circumferential strain (R2 = 0.96), radial strain (R2 = 0.93), and longitudinal strain (R2 = 0.76) (p < 0.001 for all cases). The technology was applied to microPET image data of two spontaneously hypertensive rats (SHR) and a WKY control. Regional analysis revealed that, the lateral freewall in the SHR subjects showed the greatest deformation compared with the other wall segments. This work indicates that warping can accurately predict the strain distributions during diastole from the analysis of microPET data sets

  18. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  19. Large-scale geographical variation confirms that climate change causes birds to lay earlier

    NARCIS (Netherlands)

    Both, C; Artemyev, AV; Blaauw, B; Cowie, RJ; Dekhuijzen, AJ; Eeva, T; Enemar, A; Gustafsson, L; Ivankina, EV; Jarvinen, A; Metcalfe, NB; Nyholm, NEI; Potti, J; Ravussin, PA; Sanz, JJ; Silverin, B; Slater, FM; Sokolov, LV; Torok, J; Winkel, W; Wright, J; Zang, H; Visser, ME

    2004-01-01

    Advances in the phenology of organisms are often attributed to climate change, but alternatively, may reflect a publication bias towards advances and may be caused by environmental factors unrelated to climate change. Both factors are investigated using the breeding dates of 25 long-term studied

  20. Changes and Sentiment: A Longitudinal E-Mail Analysis of a Large Design Project

    DEFF Research Database (Denmark)

    Piccolo, Sebastiano; Wilberg, Julian; Lindemann, Udo

    " in emails and study its relation to sentiment. We find that sentiment decreases when problems or changes emerge, and increases when changes are implemented successfully. We discuss the implications of our findings for research and project engineering practice, providing avenues for further work....

  1. A model for managing large-scale change: a higher education ...

    African Journals Online (AJOL)

    In recent years the environment in which higher education has had to operate has become increasingly complex, uncertain and turbulent, and has manifested an ever-increasing rate of change. The environmental changes are due to, for example, growing global competition, shifting stakeholder expectations, technological ...

  2. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  3. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    OpenAIRE

    Wang Hao; Gao Wen; Huang Qingming; Zhao Feng

    2010-01-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matchin...

  4. Deformation properties of lead isotopes

    International Nuclear Information System (INIS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF 0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180 Pb and 184 Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF 0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF 0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  5. Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties.

    Science.gov (United States)

    Takahashi, Toru; Sakata, Takashi

    2002-05-01

    The viscosity of gut contents should influence digestion and absorption. Earlier investigators measured the viscosity of intestinal contents after the removal of solid particles. However, we previously found that removal of solid particles from pig cecal contents dramatically lowered the viscosity of the contents. Accordingly, we examined the contribution of large solid particles to viscoelastic parameters of gut contents in the present study. We removed large particles from pig cecal contents by filtration through surgical gauze. Then, we reconstructed the cecal contents by returning all, one half or none of the original amount of the large particles to the filtrate. We measured the viscosity, shear stress and shear rate of these reconstructed cecal contents using a tube-flow viscometer. The coefficient of viscosity was larger when the large-particle content was higher (P Bingham plastic nature irrespective of large-particle content. We calculated the yield stress of these fluids assuming that the fluids behave as Bingham plastic. The yield stress of the cecal contents was greater (P Bingham plastic characteristics to pig cecal contents.

  6. Cam Deformities and Limited Hip Range of Motion Are Associated With Early Osteoarthritic Changes in Adolescent Athletes: A Prospective Matched Cohort Study.

    Science.gov (United States)

    Wyles, Cody C; Norambuena, Germán A; Howe, Benjamin M; Larson, Dirk R; Levy, Bruce A; Yuan, Brandon J; Trousdale, Robert T; Sierra, Rafael J

    2017-11-01

    measured from radial MRI sequences was 58° in the LROM group versus 44° in the control group ( P hips (50%) had a positive anterior impingement sign, whereas 0 of 26 hips (0%) had a positive anterior impingement sign in the control group. At 5-year follow-up, 18 of 19 hips (95%) in the LROM group had abnormal MRI findings compared with 14 of 26 hips (54%) in the control group (RR, 1.7; 95% CI, 1.1-2.7; P = .014). New or progressive findings were documented on MRI in 15 of 20 hips in the LROM group compared with 8 of 26 hips in the control group (RR, 2.4; 95% CI, 1.2-4.8; P = .011). Six of 22 hips (27%) in the LROM group progressed from Tönnis grade 0 to Tönnis grade 1 in degenerative changes, whereas all 26 hips in the control group remained at Tönnis grade 0 on hip radiographs. In the LROM group, 11 of 22 hips (50%) had a positive anterior impingement sign, whereas 1 of 26 hips (4%) had a positive anterior impingement sign in the control group. A cam deformity (alpha angle >55° on lateral radiographs) was present in 20 of 22 hips (91%) in the LROM group and 12 of 26 hips (46%) in the control group ( P = .0165). The following variables at baseline were associated with an increased risk of degenerative changes at 5-year follow-up for the entire cohort: decreased hip internal rotation, positive anterior impingement sign, decreased hip flexion, increased alpha angle, and presence of a cam lesion. At 5 years, young athletes with LROM of the hip showed increased progressive degenerative changes on MRI and radiographs compared with matched controls. Although the majority of these participants remained asymptomatic, those with features of FAI had radiographic findings consistent with early osteoarthritis. These outcomes suggest that more aggressive screening and counseling of young active patients may be helpful to prevent hip osteoarthritis in those with FAI.

  7. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  8. Sustained Large-Scale Collective Climate Action Supported by Effective Climate Change Education Practice

    Science.gov (United States)

    Niepold, F., III; Crim, H.; Fiorile, G.; Eldadah, S.

    2017-12-01

    Since 2012, the Climate and Energy Literacy community have realized that as cities, nations and the international community seek solutions to global climate change over the coming decades, a more comprehensive, interdisciplinary approach to climate literacy—one that includes economic and social considerations—will play a vital role in knowledgeable planning, decision-making, and governance. City, county and state leaders are now leading the American response to a changing climate by incubating social innovation to prevail in the face of unprecedented change. Cities are beginning to realize the importance of critical investments to support the policies and strategies that will foster the climate literacy necessary for citizens to understand the urgency of climate actions and to succeed in a resilient post-carbon economy and develop the related workforce. Over decade of federal and non-profit Climate Change Education effective methods have been developed that can support municipality's significant educational capabilities for the purpose of strengthening and scaling city, state, business, and education actions designed to sustain and effectively address this significant social change. Looking to foster the effective and innovative strategies that will enable their communities several networks have collaborated to identify recommendations for effective education and communication practices when working with different types of audiences. U.S. National Science Foundation funded Climate Change Education Partnership (CCEP) Alliance, the National Wildlife Federation, NOAA Climate Program Office, Tri-Agency Climate Change Education Collaborative and the Climate Literacy and Energy Awareness Network (CLEAN) are working to develop a new web portal that will highlight "effective" practices that includes the acquisition and use of climate change knowledge to inform decision-making. The purpose of the web portal is to transfer effective practice to support communities to be

  9. Limits of Wave Runup and Corresponding Beach-Profile Change from Large-Scale Laboratory Data

    Science.gov (United States)

    2010-01-01

    A nearly vertical scarp developed after 40 min of wave action, with the upper limit of beach change identified at the toe of the dune scarp. and...change UL was found to approximately equal the vertical excursion of total wave runup, Rtw. An exception was runs where beach or dune scarps were...approximately equal the vertical excursion of total wave runup, Rtw. An exception was runs where beach or dune scarps were produced, which substantially limit the

  10. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  11. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia: Analyzing Regional Land Use Change Effects.

    Science.gov (United States)

    Michael Keller; Maria Assunção Silva-Dias; Daniel C. Nepstad; Meinrat O. Andreae

    2004-01-01

    The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multi-disciplinary, multinational scientific project led by Brazil. LBA researchers seek to understand Amazonia in its global context especially with regard to regional and global climate. Current development activities in Amazonia including deforestation, logging, cattle ranching, and agriculture...

  12. How to Measure and Explain Achievement Change in Large-Scale Assessments: A Rejoinder

    Science.gov (United States)

    Hickendorff, Marian; Heiser, Willem J.; van Putten, Cornelis M.; Verhelst, Norman D.

    2009-01-01

    In this rejoinder, we discuss substantive and methodological validity issues of large-scale assessments of trends in student achievement, commenting on the discussion paper by Van den Heuvel-Panhuizen, Robitzsch, Treffers, and Koller (2009). We focus on methodological challenges in deciding what to measure, how to measure it, and how to foster…

  13. The analysis of long-term changes in plant communities using large databases: the effect of stratified resampling.

    NARCIS (Netherlands)

    Haveman, R.; Janssen, J.A.M.

    2008-01-01

    Question: Releves in large phytosociological databases used for analysing long-term changes in plant communities are biased towards easily accessible places and species-rich stands. How does this bias influence trend analysis of floristic composition within a priori determined vegetation types and

  14. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  15. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  16. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  17. Numerical Study on Deformation and Interior Flow of a Droplet Suspended in Viscous Liquid under Steady Electric Fields

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2014-07-01

    Full Text Available A model based on the volume of fluid (VOF method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.

  18. The decomposition of deformation: New metrics to enhance shape analysis in medical imaging.

    Science.gov (United States)

    Varano, Valerio; Piras, Paolo; Gabriele, Stefano; Teresi, Luciano; Nardinocchi, Paola; Dryden, Ian L; Torromeo, Concetta; Puddu, Paolo E

    2018-05-01

    In landmarks-based Shape Analysis size is measured, in most cases, with Centroid Size. Changes in shape are decomposed in affine and non affine components. Furthermore the non affine component can be in turn decomposed in a series of local deformations (partial warps). If the extent of deformation between two shapes is small, the difference between Centroid Size and m-Volume increment is barely appreciable. In medical imaging applied to soft tissues bodies can undergo very large deformations, involving large changes in size. The cardiac example, analyzed in the present paper, shows changes in m-Volume that can reach the 60%. We show here that standard Geometric Morphometrics tools (landmarks, Thin Plate Spline, and related decomposition of the deformation) can be generalized to better describe the very large deformations of biological tissues, without losing a synthetic description. In particular, the classical decomposition of the space tangent to the shape space in affine and non affine components is enriched to include also the change in size, in order to give a complete description of the tangent space to the size-and-shape space. The proposed generalization is formulated by means of a new Riemannian metric describing the change in size as change in m-Volume rather than change in Centroid Size. This leads to a redefinition of some aspects of the Kendall's size-and-shape space without losing Kendall's original formulation. This new formulation is discussed by means of simulated examples using 2D and 3D platonic shapes as well as a real example from clinical 3D echocardiographic data. We demonstrate that our decomposition based approaches discriminate very effectively healthy subjects from patients affected by Hypertrophic Cardiomyopathy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  20. Seasonal changes in the optical properties of dissolved organic matter (DOM) in large Arctic rivers

    DEFF Research Database (Denmark)

    Walker, S.A.; Amon, R.M.; Stedmon, Colin

    Arctic rivers deliver over 10% of the annual global river discharge yet little is known about the seasonal fluctuations in the quantity and quality of terrigenous dissolved organic matter (tDOM). A good constraint on such fluctuations is paramount to understand the role that climate change may have...... on tDOM input to the Arctic Ocean. To understand such changes the optical properties of colored tDOM (tCDOM) were studied. Samples were collected over several seasonal cycles from the six largest Arctic Rivers as part of the PARTNERS project. This unique dataset is the first of its kind capturing...

  1. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    Science.gov (United States)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  2. Large scale parallel FEM computations of far/near stress field changes in rocks

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Byczanski, Petr; Jakl, Ondřej; Kohut, Roman; Kolcun, Alexej; Krečmer, Karel; Starý, Jiří

    2006-01-01

    Roč. 22, č. 4 (2006), s. 449-459 ISSN 0167-739X R&D Projects: GA ČR(CZ) GA105/02/0492; GA AV ČR(CZ) 1ET400300415 Institutional research plan: CEZ:AV0Z30860518 Keywords : large scale finite element analysis Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2006

  3. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  4. Is the uncertainty about climate change too large for expected cost-benefit analysis?

    NARCIS (Netherlands)

    Tol, R.S.J.

    2003-01-01

    Cost-benefit analysis is only applicable if the variances of both costs and benefits are finite. In the case of climate change, the variances of the net present marginal costs and benefits of greenhouse gas emission reduction need to be finite. Finiteness is hard, if not impossible to prove. The

  5. Impacts of climate change on the water balance of a large nonhumid natural basin in China

    Science.gov (United States)

    Liu, Qiang; Liang, Liqiao

    2015-08-01

    Water resources are contingent on the combined effects of climate change and watershed characteristics. An analytical model devised from the Budyko framework was used to investigate the partitioning of precipitation ( P) into actual evapotranspiration ( E) and streamflow ( Q) parameters for the Yellow River Basin (YRB), a water-limited basin, to estimate the response of E and Q to P and potential evapotranspiration ( E p ). Although a steady state was assumed, the analytical model, incorporating an adjustable parameter characteristic of catchment conditions ( ω), can be run to analyze the sensitivity of catchment characteristics on water resources. The theory predicts that Q and E are more sensitive to P than to E p . For example, a 10 % increase in P will result in a 22.8 % increase in Q, while a 10 % increase in E p will decrease Q by 13.2 %. The model shows that, to some extent, water balance is governed by changing catchment characteristics (such as changes in vegetation on annual scales). These findings indicate that additional elucidative data can be drawn from the Budyko framework when taking into account catchment characteristics. Furthermore, the model can analyze the response of water resources to climate change on different temporal and spatial scales.

  6. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    Science.gov (United States)

    Ralph J. Alig; Brett J. Butler

    2004-01-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest...

  7. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    Science.gov (United States)

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  8. Small, medium and large scale strategies: cases of social response and change in Greenland

    DEFF Research Database (Denmark)

    Rasmussen, Rasmus Ole

    2005-01-01

    Greenland has experienced several socio-economic shifts during the 20th century, characterised by interations between natural systems, climate change and the socio-economic and socio-technical systemm of resource exploitation. The focus is on the socio-economic characteristics of the two recent s...

  9. Infrastructures and societal change. A view from the large technical systems field

    NARCIS (Netherlands)

    Vleuten, van der E.B.A.

    2004-01-01

    Infrastructural and societal changes intertwine in multiple ways. This makes the societal implications of infrastructural projects difficult to assess and anticipate. Yet in present day network societies this task is particularly urgent. This paper first identifies two positions that tend to

  10. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate.

    Science.gov (United States)

    Kibret, Solomon; Lautze, Jonathan; McCartney, Matthew; Nhamo, Luxon; Wilson, G Glenn

    2016-09-05

    Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected

  11. Ecological thresholds in the savanna landscape: developing a protocol for monitoring the change in composition and utilisation of large trees.

    Directory of Open Access Journals (Sweden)

    Dave J Druce

    Full Text Available BACKGROUND: Acquiring greater understanding of the factors causing changes in vegetation structure -- particularly with the potential to cause regime shifts -- is important in adaptively managed conservation areas. Large trees (> or =5 m in height play an important ecosystem function, and are associated with a stable ecological state in the African savanna. There is concern that large tree densities are declining in a number of protected areas, including the Kruger National Park, South Africa. In this paper the results of a field study designed to monitor change in a savanna system are presented and discussed. METHODOLOGY/PRINCIPAL FINDINGS: Developing the first phase of a monitoring protocol to measure the change in tree species composition, density and size distribution, whilst also identifying factors driving change. A central issue is the discrete spatial distribution of large trees in the landscape, making point sampling approaches relatively ineffective. Accordingly, fourteen 10 m wide transects were aligned perpendicular to large rivers (3.0-6.6 km in length and eight transects were located at fixed-point photographic locations (1.0-1.6 km in length. Using accumulation curves, we established that the majority of tree species were sampled within 3 km. Furthermore, the key ecological drivers (e.g. fire, herbivory, drought and disease which influence large tree use and impact were also recorded within 3 km. CONCLUSIONS/SIGNIFICANCE: The technique presented provides an effective method for monitoring changes in large tree abundance, size distribution and use by the main ecological drivers across the savanna landscape. However, the monitoring of rare tree species would require individual marking approaches due to their low densities and specific habitat requirements. Repeat sampling intervals would vary depending on the factor of concern and proposed management mitigation. Once a monitoring protocol has been identified and evaluated, the next

  12. Changes is genes coding for laccases 1 and 2 may contribute to deformation and reduction of wings in apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) from the isolated population in Pieniny National Park (Poland).

    Science.gov (United States)

    Łukasiewicz, Kinga; Węgrzyn, Grzegorz

    2016-01-01

    An isolated population of apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) occurs in Pieniny National Park (Poland). Deformations and reductions of wings in a relatively large number of individuals from this population is found, yet the reasons for these defects are unknown. During studies devoted to identify cause(s) of this phenomenon, we found that specific regions of genes coding of enzymes laccases 1 and 2 could not be amplified from DNA samples isolated from large fractions of malformed insects while expected PCR products were detected in almost all (with one exception) normal butterflies. Laccases (p-diphenol:dioxygen oxidoreductases) are oxidases containing several copper atoms. They catalyse single-electron oxidations of phenolic or other compounds with concomitant reduction of oxygen to water. In insects, their enzymatic activities were found previously in epidermis, midgut, Malpighian tubules, salivary glands, and reproductive tissues. Therefore, we suggest that defects in genes coding for laccases might contribute to deformation and reduction of wings in apollo butterflies, though it seems obvious that deficiency in these enzymes could not be the sole cause of these developmental improperties in P. apollo from Pieniny National Park.

  13. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  14. Large structures and temporal change in the Azores Front during the SEMAPHORE experiment

    Science.gov (United States)

    Tychensky, A.; Le Traon, P.-Y.; Hernandez, F.; Jourdan, D.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) mesoscale experiment took place from July to November 1993 in the northern Canary Basin, where the circulation is dominated by the eastward flowing Azores Current (AC). A large data set was acquired from three hydrographic arrays (phases 1, 2, 3), current meter moorings, surface drifters drogued at 150 m, and 2000 m deep RAFOS floats. The analysis confirmed the large-scale observations previously made in this region but also provided new insights into fine-scale dynamics of the AC. The front was observed over the 6-month period. It was narrow (100 km) and mostly surface intensified (velocities reaching 40-50 cm s-1). Whereas at the beginning of the experiment (phase 1) the AC was mainly zonal with weak oscillations, large meridional meanders were observed from phase 2 until the end of the experiment. They seem to be related to the arrival of two Mediterranean eddies (Meddies), which interacted with the AC [Käse and Zenk, 1996; Tychensky and Carton, this issue]. The front had a deep dynamical signature (down to 2000 m), with a 16-18 sverdrup (Sv) volume transport (0-2000 m depth integrated). The southward recirculation branch of the AC near 22°-23°W [Klein and Siedler, 1989] corresponds to meridional transport of 5-6 Sv. Then, 4.5 Sv of these waters are recirculating westward (along 31°-32°N). Some interesting new oceanographic results were obtained by examining the RAFOS float trajectories over the abyssal plain. The circulation is similar to that observed at the surface, with mean velocities of about 1-3 cm s-1 and eddy kinetic energy <4 cm2 s-2. In agreement with the analysis of current meter data this reveals a significant barotropic component in the Azores-Madeira flow field of roughly 3-3.5 cm s-1.

  15. Relationship of fish indices with sampling effort and land use change in a large Mediterranean river.

    Science.gov (United States)

    Almeida, David; Alcaraz-Hernández, Juan Diego; Merciai, Roberto; Benejam, Lluís; García-Berthou, Emili

    2017-12-15

    Fish are invaluable ecological indicators in freshwater ecosystems but have been less used for ecological assessments in large Mediterranean rivers. We evaluated the effects of sampling effort (transect length) on fish metrics, such as species richness and two fish indices (the new European Fish Index EFI+ and a regional index, IBICAT2b), in the mainstem of a large Mediterranean river. For this purpose, we sampled by boat electrofishing five sites each with 10 consecutive transects corresponding to a total length of 20 times the river width (European standard required by the Water Framework Directive) and we also analysed the effect of sampling area on previous surveys. Species accumulation curves and richness extrapolation estimates in general suggested that species richness was reasonably estimated with transect lengths of 10 times the river width or less. The EFI+ index was significantly affected by sampling area, both for our samplings and previous data. Surprisingly, EFI+ values in general decreased with increasing sampling area, despite the higher observed richness, likely because the expected values of metrics were higher. By contrast, the regional fish index was not dependent on sampling area, likely because it does not use a predictive model. Both fish indices, but particularly the EFI+, decreased with less forest cover percentage, even within the smaller disturbance gradient in the river type studied (mainstem of a large Mediterranean river, where environmental pressures are more general). Although the two fish-based indices are very different in terms of their development, methodology, and metrics used, they were significantly correlated and provided a similar assessment of ecological status. Our results reinforce the importance of standardization of sampling methods for bioassessment and suggest that predictive models that use sampling area as a predictor might be more affected by differences in sampling effort than simpler biotic indices. Copyright

  16. Impact of climate change on large scale coastal currents of South Africa

    CSIR Research Space (South Africa)

    Meyer, A

    2010-09-01

    Full Text Available of temperature trends in the southern indian ocean. Geophysical Research Letters, 34, L14611, doi:10.1029/2007gL030380. • De Ruijter, W.P.M., van Aken, H.M., Beier, E.J., Lutjeharms, J.R.E., Matano, R.P. Schouten, M.W. 2004. eddies and dipoles around South... Madagascar: formation, pathways and large- scale impact. Deep-Sea Research I, 51, 383-400. • Lutjeharms, J. R. E. and van Ballegooyen, R. C. 1988. Anomalous upstream retroflection in the agulhas current. Science, 240, 1770-1772. • Rouault, M., Penven...

  17. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    Science.gov (United States)

    Xie, Rou-Gang; Chu, Wen-Guang; Hu, San-Jue; Luo, Ceng

    2018-01-01

    Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics. PMID:29303989

  18. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    2018-01-01

    Full Text Available Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.

  19. Hydrodynamic changes due to large seabed installations in coastal waters off west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ilangovan, D.; Naik, K.A.; Anil, A.C.

    and further estimate or predict their influence on the environment. In the present context the physical environment is considered and termed in general as marine environment. Scaled physical models or numerical models are used both to understand... the prevailing marine environment as well as to predict changes in environment due to perturbations in the prevailing conditions. Though both physical modeling and numerical modeling have proved to provide reliable and reasonable results, numerical models...

  20. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Science.gov (United States)

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  1. Registering coherent change detection products associated with large image sets and long capture intervals

    Science.gov (United States)

    Perkins, David Nikolaus; Gonzales, Antonio I

    2014-04-08

    A set of co-registered coherent change detection (CCD) products is produced from a set of temporally separated synthetic aperture radar (SAR) images of a target scene. A plurality of transformations are determined, which transformations are respectively for transforming a plurality of the SAR images to a predetermined image coordinate system. The transformations are used to create, from a set of CCD products produced from the set of SAR images, a corresponding set of co-registered CCD products.

  2. Cognitive Trajectory Changes Over 20 Years Before Dementia Diagnosis: A Large Cohort Study.

    Science.gov (United States)

    Li, Ge; Larson, Eric B; Shofer, Jane B; Crane, Paul K; Gibbons, Laura E; McCormick, Wayne; Bowen, James D; Thompson, Mary Lou

    2017-12-01

    Longitudinal studies have shown an increase in cognitive decline many years before clinical diagnosis of dementia. We sought to estimate changes, relative to "normal" aging, in the trajectory of scores on a global cognitive function test-the Cognitive Abilities Screening Instrument (CASI). A prospective cohort study. Community-dwelling members of a U.S. health maintenance organization. Individuals aged 65 and older who had no dementia diagnosis at baseline and had at least two visits with valid CASI test score (N = 4,315). Average longitudinal trajectories, including changes in trajectory before clinical diagnosis in those who would be diagnosed with dementia, were estimated for CASI item response theory (IRT) scores. The impact of sex, education level, and APOE genotype on cognitive trajectories was assessed. Increased cognitive decline relative to "normal" aging was evident in CASI IRT at least 10 years before clinical diagnosis. Male gender, lower education, and presence of ≥1 APOE ε4 alleles were associated with lower average IRT scores. In those who would be diagnosed with dementia, a trajectory change point was estimated at an average of 3.1 years (95% confidence interval 3.0-3.2) before clinical diagnosis, after which cognitive decline appeared to accelerate. The change point did not differ by sex, education level, or APOE ε4 genotype. There were subtle differences in trajectory slopes by sex and APOE ε4 genotype, but not by education. Decline in average global cognitive function was evident at least 10 years before clinical diagnosis of dementia. The decline accelerated about 3 years before clinical diagnosis. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  3. Forecasting climate change impacts on plant populations over large spatial extents

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  4. Characterizing Agricultural Impacts of Recent Large-Scale US Droughts and Changing Technology and Management

    Science.gov (United States)

    Elliott, Joshua; Glotter, Michael; Ruane, Alex C.; Boote, Kenneth J.; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia; Smith, Leonard A.; Foster, Ian

    2017-01-01

    Process-based agricultural models, applied in novel ways, can reproduce historical crop yield anomalies in the US, with median absolute deviation from observations of 6.7% at national-level and 11% at state-level. In seasons for which drought is the overriding factor, performance is further improved. Historical counterfactual scenarios for the 1988 and 2012 droughts show that changes in agricultural technologies and management have reduced system-level drought sensitivity in US maize production by about 25% in the intervening years. Finally, we estimate the economic costs of the two droughts in terms of insured and uninsured crop losses in each US county (for a total, adjusted for inflation, of $9 billion in 1988 and $21.6 billion in 2012). We compare these with cost estimates from the counterfactual scenarios and with crop indemnity data where available. Model based measures are capable of accurately reproducing the direct agro-economic losses associated with extreme drought and can be used to characterize and compare events that occurred under very different conditions. This work suggests new approaches to modeling, monitoring, forecasting, and evaluating drought impacts on agriculture, as well as evaluating technological changes to inform adaptation strategies for future climate change and extreme events.

  5. Effects of conversion ratio change on the core performances in medium to large TRU burning reactors

    International Nuclear Information System (INIS)

    Song, Hoon; Kim, Sang-Ji; Yoo, Jae-Woon; Kim, Yeong-Il

    2009-01-01

    Conceptual fast reactor core designs with sodium coolant are developed at 1,500, 3,000 and 4,500 MWt which are configured to transmute recycled transuranics (TRU) elements with external feeds consisting of LWR spent fuel. Even at each pre-determined power level, the performance parameters, reactivity coefficients and their implications on the safety analysis can be different when the target TRU conversion ratio changes. In order to address this aspect of design, a study on TRU conversion ratio change was performed. The results indicate that it is feasible to design a TRU burner core to accommodate a wide range of conversion ratios by employing different fuel cladding thicknesses. The TRU consumption rate is found to be proportional to the core power without any significant deterioration in the core performance at higher power levels. A low conversion ratio core has an increased TRU consumption rate and much faster burnup reactivity loss, which calls for appropriate means for reactivity compensation. As for the reactivity coefficients related with the conversion ratio change, the core with a low conversion ratio has a less negative Doppler coefficient, a more negative axial expansion coefficient, a more negative control rod worth per rod, a more negative radial expansion coefficient, a less positive sodium density coefficient and a less positive sodium void worth. A slight decrease in the delayed neutron fraction is also noted, reflecting the fertile U-238 fraction reduction. (author)

  6. Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.

    Science.gov (United States)

    Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D

    2016-01-01

    Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation. © The Author(s) 2015.

  7. Characterizing agricultural impacts of recent large-scale US droughts and changing technology and management

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Joshua [Univ. of Chicago, IL (United States). Computation Inst.; Argonne National Lab. (ANL), Lemont, IL (United States); Glotter, Michael [Univ. of Chicago, IL (United States). Dept. of the Geophysical Sciences; Ruane, Alex C. [NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States); Boote, Kenneth J. [Univ. of Florida, Gainesville, FL (United States). Agricultural and Biological Engineering Dept.; Hatfield, Jerry L. [US Dept. of Agriculture (USDA)., Ames, IA (United States). National Lab. for Agriculture and the Environment; Jones, James W. [Univ. of Florida, Gainesville, FL (United States). Agricultural and Biological Engineering Dept.; Rosenzweig, Cynthia [NASA Goddard Inst. for Space Studies (GISS), New York, NY (United States); Smith, Leonard A. [London School of Economics, London (United Kingdom). Center for Analysis of Time Series; Foster, Ian [Univ. of Chicago, IL (United States). Computation Inst.; Computation Inst.; Argonne National Lab. (ANL), Lemont, IL (United States)

    2018-01-01

    Process-based agricultural models, applied in novel ways, can reproduce historical crop yield anomalies in the US, with median absolute deviation from observations of 6.7% at national-level and 11% at state-level. In seasons for which drought is the overriding factor, performance is further improved. Historical counterfactual scenarios for the 1988 and 2012 droughts show that changes in agricultural technologies and management have reduced system-level drought sensitivity in US maize production by about 25% in the intervening years. Finally, we estimate the economic costs of the two droughts in terms of insured and uninsured crop losses in each US county (for a total, adjusted for inflation, of $9 billion in 1988 and $21.6 billion in 2012). We compare these with cost estimates from the counterfactual scenarios and with crop indemnity data where available. Model-based measures are capable of accurately reproducing the direct agro-economic losses associated with extreme drought and can be used to characterize and compare events that occurred under very different conditions. This work suggests new approaches to modeling, monitoring, forecasting, and evaluating drought impacts on agriculture, as well as evaluating technological changes to inform adaptation strategies for future climate change and extreme events.

  8. Large differences in regional precipitation change between a first and second 2 K of global warming

    Science.gov (United States)

    Good, Peter; Booth, Ben B. B.; Chadwick, Robin; Hawkins, Ed; Jonko, Alexandra; Lowe, Jason A.

    2016-12-01

    For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. Here using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. We show that, although the two routes to a first 2 K give very similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. The results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally.

  9. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  10. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  11. Redesigning a large school-based clinical trial in response to changes in community practice

    Science.gov (United States)

    Gerald, Lynn B; Gerald, Joe K; McClure, Leslie A; Harrington, Kathy; Erwin, Sue; Bailey, William C

    2011-01-01

    Background Asthma exacerbations are seasonal with the greatest risk in elementary-age students occurring shortly after returning to school following summer break. Recent research suggests that this seasonality in children is primarily related to viral respiratory tract infections. Regular hand washing is the most effective method to prevent the spread of viral respiratory infections; unfortunately, achieving hand washing recommendations in schools is difficult. Therefore, we designed a study to evaluate the effect of hand sanitizer use in elementary schools on exacerbations among children with asthma. Purpose To describe the process of redesigning the trial in response to changes in the safety profile of the hand sanitizer as well as changes in hand hygiene practice in the schools. Methods The original trial was a randomized, longitudinal, subject-blinded, placebo-controlled, community-based crossover trial. The primary aim was to evaluate the incremental effectiveness of hand sanitizer use in addition to usual hand hygiene practices to decrease asthma exacerbations in elementary-age children. Three events occurred that required major modifications to the original study protocol: (1) safety concerns arose regarding the hand sanitizer’s active ingredient; (2) no substitute placebo hand sanitizer was available; and (3) community preferences changed regarding hand hygiene practices in the schools. Results The revised protocol is a randomized, longitudinal, community-based crossover trial. The primary aim is to evaluate the incremental effectiveness of a two-step hand hygiene process (hand hygiene education plus institutionally provided alcohol-based hand sanitizer) versus usual care to decrease asthma exacerbations. Enrollment was completed in May 2009 with 527 students from 30 schools. The intervention began in August 2009 and will continue through May 2011. Study results should be available at the end of 2011. Limitations The changed design does not allow us to

  12. Redesigning a large school-based clinical trial in response to changes in community practice.

    Science.gov (United States)

    Gerald, Lynn B; Gerald, Joe K; McClure, Leslie A; Harrington, Kathy; Erwin, Sue; Bailey, William C

    2011-06-01

    Asthma exacerbations are seasonal with the greatest risk in elementary-age students occurring shortly after returning to school following summer break. Recent research suggests that this seasonality in children is primarily related to viral respiratory tract infections. Regular hand washing is the most effective method to prevent the spread of viral respiratory infections; unfortunately, achieving hand washing recommendations in schools is difficult. Therefore, we designed a study to evaluate the effect of hand sanitizer use in elementary schools on exacerbations among children with asthma. To describe the process of redesigning the trial in response to changes in the safety profile of the hand sanitizer as well as changes in hand hygiene practice in the schools. The original trial was a randomized, longitudinal, subject-blinded, placebo-controlled, community-based crossover trial. The primary aim was to evaluate the incremental effectiveness of hand sanitizer use in addition to usual hand hygiene practices to decrease asthma exacerbations in elementary-age children. Three events occurred that required major modifications to the original study protocol: (1) safety concerns arose regarding the hand sanitizer's active ingredient; (2) no substitute placebo hand sanitizer was available; and (3) community preferences changed regarding hand hygiene practices in the schools. The revised protocol is a randomized, longitudinal, community-based crossover trial. The primary aim is to evaluate the incremental effectiveness of a two-step hand hygiene process (hand hygiene education plus institutionally provided alcohol-based hand sanitizer) versus usual care to decrease asthma exacerbations. Enrollment was completed in May 2009 with 527 students from 30 schools. The intervention began in August 2009 and will continue through May 2011. Study results should be available at the end of 2011. The changed design does not allow us to directly measure the effectiveness of hand

  13. Grasping and manipulation of deformable objects based on internal force requirements

    Directory of Open Access Journals (Sweden)

    Sohil Garg

    2008-11-01

    Full Text Available In this paper an analysis of grasping and manipulation of deformable objects by a three finger robot hand has been carried out. It is proved that the required fingertip grasping forces and velocities vary with change in object size due to deformation. The variation of the internal force with the change in fingertip and object contact angle has been investigated in detail. From the results it is concluded that it is very difficult to manipulate an object if the finger contact angle is not between 30 o and 70 o, as the internal forces or velocities become very large outside this range. Hence even if the object is inside the work volume of the three fingers it would still not be possible to manipulate it. A simple control model is proposed which can control the grasping and manipulation of a deformable object. Experimental results are also presented to prove the proposed method.

  14. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    Science.gov (United States)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  15. Compensation of deformations in 3D cone beam tomography

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Roux, S.; Grangeat, P.

    2006-01-01

    In dynamic tomography, the measured objects or organs are no-longer supposed to be static in the scanner during the acquisition but are supposed to move or to be deformed. Our approach is the analytic deformation compensation during the reconstruction. Our work concentrates on 3-dimensional cone beam tomography. We introduce a new large class of deformations preserving the 3-dimensional cone beam geometry. We show that deformations from this class can be analytically compensated. We present numerical experiments on phantoms showing the compensation of these deformations in 3-dimensional cone beam tomography. (authors)

  16. Treatment of hallux valgus deformity.

    Science.gov (United States)

    Fraissler, Lukas; Konrads, Christian; Hoberg, Maik; Rudert, Maximilian; Walcher, Matthias

    2016-08-01

    Hallux valgus deformity is a very common pathological condition which commonly produces painful disability. It is characterised as a combined deformity with a malpositioning of the first metatarsophalangeal joint caused by a lateral deviation of the great toe and a medial deviation of the first metatarsal bone.Taking the patient's history and a thorough physical examination are important steps. Anteroposterior and lateral weight-bearing radiographs of the entire foot are crucial for adequate assessment in the treatment of hallux valgus.Non-operative treatment of the hallux valgus cannot correct the deformity. However, insoles and physiotherapy in combination with good footwear can help to control the symptoms.There are many operative techniques for hallux valgus correction. The decision on which surgical technique is used depends on the degree of deformity, the extent of degenerative changes of the first metatarsophalangeal joint and the shape and size of the metatarsal bone and phalangeal deviation. The role of stability of the first tarsometatarsal joint is controversial.Surgical techniques include the modified McBride procedure, distal metatarsal osteotomies, metatarsal shaft osteotomies, the Akin osteotomy, proximal metatarsal osteotomies, the modified Lapidus fusion and the hallux joint fusion. Recently, minimally invasive percutaneous techniques have gained importance and are currently being evaluated more scientifically.Hallux valgus correction is followed by corrective dressings of the great toe post-operatively. Depending on the procedure, partial or full weight-bearing in a post-operative shoe or cast immobilisation is advised. Post-operative radiographs are taken in regular intervals until osseous healing is achieved. Cite this article: Fraissler L, Konrads C, Hoberg M, Rudert M, Walcher M. Treatment of hallux valgus deformity. EFORT Open Rev 2016;1:295-302. DOI: 10.1302/2058-5241.1.000005.

  17. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe

    Directory of Open Access Journals (Sweden)

    A. P. van Ulden

    2006-01-01

    Full Text Available The quality of global sea level pressure patterns has been assessed for simulations by 23 coupled climate models. Most models showed high pattern correlations. With respect to the explained spatial variance, many models showed serious large-scale deficiencies, especially at mid-latitudes. Five models performed well at all latitudes and for each month of the year. Three models had a reasonable skill. We selected the five models with the best pressure patterns for a more detailed assessment of their simulations of the climate in Central Europe. We analysed observations and simulations of monthly mean geostrophic flow indices and of monthly mean temperature and precipitation. We used three geostrophic flow indices: the west component and south component of the geostrophic wind at the surface and the geostrophic vorticity. We found that circulation biases were important, and affected precipitation in particular. Apart from these circulation biases, the models showed other biases in temperature and precipitation, which were for some models larger than the circulation induced biases. For the 21st century the five models simulated quite different changes in circulation, precipitation and temperature. Precipitation changes appear to be primarily caused by circulation changes. Since the models show widely different circulation changes, especially in late summer, precipitation changes vary widely between the models as well. Some models simulate severe drying in late summer, while one model simulates significant precipitation increases in late summer. With respect to the mean temperature the circulation changes were important, but not dominant. However, changes in the distribution of monthly mean temperatures, do show large indirect influences of circulation changes. Especially in late summer, two models simulate very strong warming of warm months, which can be attributed to severe summer drying in the simulations by these models. The models differ also

  18. Very large amounts of radiation are needed to change cancer frequency

    International Nuclear Information System (INIS)

    Brooks, A.; Couch, L.

    2006-01-01

    Full text: A marked radio-phobia or excessive fear of radiation exposure is shared by the general public. A major factor in this fear is that the perception that each and every radiation-induced ionization increases the risk for cancer, thus even the smallest radiation exposure needs to be avoided. It is important to realize that this is not the case. It requires very large amounts of radiation delivered to large populations to produce an increase in cancer frequency. This has been demonstrated in many in experimental systems, animal studies and in human populations. If either the population size or the dose is reduced it is not possible to detect an increase in cancer frequency. This paper deals with real radiation-induced increases in cancer frequency that are statistically significant, rather than in extrapolated or calculated small increases in radiation-induced risks using linear models. Further, it demonstrates that there are barriers below which increases in cancer cannot be detected. Finally, the manuscript helps explain that there are transitions in the mechanisms of biological action as a function of radiation dose with very different mechanisms being triggered at high and at low doses. These transitions suggest the need for paradigm shifts. Concepts such as hit theory, independence in individual cellular responses and single mutations being responsible for cancer need to be re-evaluated. New paradigms such as b ystander effects , showing that the size of the responding target is much larger than the hit target, adaptive response demonstrating that cell/cell communication modifies individual cellular responses and genomic instability that is not dependent on radiation induced mutations in individual cells

  19. Tides of change: improving glucometrics in a large multihospital health care system.

    Science.gov (United States)

    Mulla, Christopher M; Lieb, David C; McFarland, Raymie; Aloi, Joseph A

    2015-05-01

    This study explores the relationship between education for inpatient diabetes providers and the utilization of insulin order sets, inpatient glucometrics, and length of stay in a large health care system. The study included patients with and without the diagnosis of diabetes. An education campaign included provider-directed diabetes education administered via online learning modules and in-person presentations by trained individuals. Relationships among provider-attended diabetes education, order set usage, and inpatient glucometrics (hypo- and hyperglycemia) were analyzed, as well as length of stay. Insulin use knowledge scores for all providers averaged 52%, and improved significantly to 93% (P < .001) by the end of the education intervention period. Likewise utilization of electronic basal-bolus order sets increased from a baseline of 20% for patients receiving insulin to 86% within 6 weeks (P < .01) of introduction of order sets. During the study, the incidence of hypoglycemia and hyperglycemia declined from 1.47% to 1.27% and from 23.21% to 17.80%, respectively. However, these improvements were not sustained beyond the completion of the education campaign. Education of diabetes health care providers was provided in a large, multihospital system through the use of online learning modules. Adoption of standardized insulin order sets was associated with an improvement in glucometrics. This educational and quality initiative resulted in overall improvements in insulin knowledge, adherence to recommended order sets, inpatient glucometrics, and patient length of stay. These improvements were not sustained, reinforcing the need for repeated educational interventions for those involved in providing inpatient diabetes care. © 2014 Diabetes Technology Society.

  20. Investigating Changes in the High-Latitude Topside Ionosphere During Large Magnetic Storms

    Science.gov (United States)

    Fainberg, Joseph; Benson, Robert F.; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Fung, Shing; Bilitza, Dieter

    2009-01-01

    A search was conducted to locate periods of nearly simultaneous solar-wind and high latitude topside-ionospheric data during magnetic storms. The focus was on the 20-yr interval from 1965 to 1985 when both solar-wind and Alouette/ISIS topside-sounder data are potentially available. The search yielded 125 large magnetic storms (minimum Dst less than 100) and 280 moderate magnetic storms (minimum Dst between -60 and -100). Solar wind data were available for most, but not all, of these storms. A search of the available high-latitude topside electron-density Ne(h) profiles available from the National Space Science Data Center (NSSDC), both from manual inspection of 35-mm film ionograms in the 1960s and more recent auto-processing of ISIS-2 topside digital ionograms using the TOPIST software, during 9-day intervals associated with the 125 large magnetic storm minimum Dst times yielded the following results: 31 intervals had 10 or more manual-scaled profiles (21 intervals had more than 100 profiles and 5 of these had more than 1,000 profiles), and 34 intervals had 10 or more TOPIST profiles (2 intervals had more than 100 profiles). In addition, a search of the available Alouette-2, ISIS-1 and ISIS-2 digital ionograms during the above periods has yielded encouraging initial results in that many ISIS-1 ionograms were found for the early time intervals. Future work will include the search for 35-mm film ionograms during selected intervals. This presentation will illustrate the results of this investigation to date.

  1. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    Science.gov (United States)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years.

  2. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  3. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    Science.gov (United States)

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Large flux change due to the intervening cold absorbers in NGC 3516

    International Nuclear Information System (INIS)

    Nogami, K.; Negoro, H.; Hong, S.; Mihara, T.

    2004-01-01

    NGC3516 in the low flux state shows a flat energy spectrum (photon index ∼1) and an intense narrow iron line. Such spectra are also observed in other Seyfert galaxies, and a broad bump structure around 6 keV above the 'flat' power-law spectrum has been interpreted as the gravitationally red-shifted iron line, disk reflection, or cold and/or warm absorbers. However, six years if BeppoSAX observations, including our latest three ones in 2001, clearly demonstrate that energy spectra above 20 keV always exhibit steep power-laws with photon indices ∼2, and the flux changes only by a factor of 2, while the soft X-ray flux by a factor of ∼10. From this fact, using BeppoSAX and ASCA data, we have concluded that the flat spectrum results from reprocessed, and partially covered power-laws with Γ∼1.8 by warm matter nearby the central source and a cold absorber moved in the line of sight, respectively, and that the broad iron line and disk reflection components are less significant than one ever thought. Thus, the long-term spectral variations can be considered by intervening absorbers rather than changes in the accretion rate

  5. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...... to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field " hot spots" in the cortex. However, these maxima were...

  6. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    Science.gov (United States)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  7. Implementation of a change management solution based on a product lifecycle management system for a large international project

    International Nuclear Information System (INIS)

    Luehr, Anneke

    2011-08-01

    This Thesis describes the implementation of a Change Management solution based on a Product Lifecycle Management System (PLM System) for a large international project. The objective of Change Management is to ensure a systematic line of action for approving and implementing changes in the project. The Deutsches Elektronen-Synchrotron DESY is one of the world's leading accelerator centres with locations in Hamburg and Zeuthen. Currently, DESY participates in the realization of the international research facility European X-Ray Free-Electron Laser (XFEL) at the Hamburg site. DESY was responsible for the planning of the XFEL. When the project entered the construction phase it was internationalized and now comprises project groups in 12 countries. Thus the requirements on Change Management have changed, as participants from several labs at many different locations are now involved. First the project scope is described and then a target process for the Change Management solution is developed by a requirement analysis. Afterwards the technical implementation of this process in DESY's PLM System is described and the Change Management solution is tested. The process is visualized using the Unified Modeling Language (UML). Finally a description is given of how to transfer the solution to the project

  8. Annual changes in abundance of non-indigenous marine benthos on a very large spatial scale

    DEFF Research Database (Denmark)

    Thomsen, Mads S.; Wernberg, Thomas; Stæhr, Peter Anton

    2008-01-01

    to quantify annual nation-wide changes in abundance of non-indigenous soft-bottom invertebrates (from grab samples) and hard-bottom macroalgae (from diver based percent cover values) in Denmark. Based on criteria of being either abundant (constituting >1% of the entire Danish assemblages) or increasing...... in abundance, NIMS of particular interest were found to be Mya arenaria and Bonemaissonia hamifera (abundant), Crepidula fornicata, Ensis americanus, Neanthes succinea (a cryptogenic species), Marenzelleria spp. (increasing), and Sargassum muticum (abundant and increasing). In addition, new and/or warm......-water eurohaline NIMS such as Gracilaria vermiculophylla and Crassostrea gigas, should be given attention as these species are expected to increase in the future. Finally, species not included in existing monitoring programs (hard-bottom estuarine invertebrates, fish, parasites, highly mobile species) should also...

  9. Large resistance change on magnetic tunnel junction based molecular spintronics devices

    Science.gov (United States)

    Tyagi, Pawan; Friebe, Edward

    2018-05-01

    Molecular bridges covalently bonded to two ferromagnetic electrodes can transform ferromagnetic materials and produce intriguing spin transport characteristics. This paper discusses the impact of molecule induced strong coupling on the spin transport. To study molecular coupling effect the octametallic molecular cluster (OMC) was bridged between two ferromagnetic electrodes of a magnetic tunnel junction (Ta/Co/NiFe/AlOx/NiFe/Ta) along the exposed side edges. OMCs induced strong inter-ferromagnetic electrode coupling to yield drastic changes in transport properties of the magnetic tunnel junction testbed at the room temperature. These OMCs also transformed the magnetic properties of magnetic tunnel junctions. SQUID and ferromagnetic resonance studies provided insightful data to explain transport studies on the magnetic tunnel junction based molecular spintronics devices.

  10. Large magnetic entropy change in melt-spun LaFe11.5Si1.5 ribbons

    International Nuclear Information System (INIS)

    Xie Kun; Song Xiaoping; Zhu Yaoming; Lv Weipeng; Sun Zhanbo

    2004-01-01

    The microstructure transformation and the magnetic entropy change of LaFe 11.5 Si 1.5 melt-spun ribbons were investigated. The melt-spun ribbons show a homogeneous distribution of elements, and the homogeneity develops further after 5 h annealing. XRD results show that the ribbons are composed of NaZn 13 -type LaFe 11.5 Si 1.5 compounds and an α-Fe phase. After annealing, the ribbons crystallize well in the NaZn 13 -type structure and exhibit a very large magnetic entropy change. A first-order magnetic transition is observed in the annealed ribbons, and this is believed to be the origin of the large magnetic entropy. These results suggest that NaZn 13 -type LaFe 11.5 Si 1.5 compounds with a large magnetic entropy change can be produced by melt-spinning, the annealing time can be shortened significantly and the production cost of the magnetic refrigerant will be cut down accordingly

  11. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  12. 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China

    Science.gov (United States)

    Li, Siyue; Ye, Chen; Zhang, Quanfa

    2017-08-01

    Danjiangkou Reservoir, an important drinking water source, has become a hot spot internationally due to its draining catchment has been increasingly affected by anthropogenic activities. However, its natural water chemistry (major elements) received little attention though it is crucial for water quality and aquatic ecology. Major ions during 2004-2014 were determined using stoichiometry to explore their shifts and the driving factors in the Danjiangkou Reservoir. Results show significant differences in monthly, spatial and annual concentrations of major ions. Waters are controlled by carbonate weathering with the dominant ions of Ca2+ and HCO3- total contributing 74% to the solutes, which are consistent with regional geography. Carbonate dissolution was produced by sulfuric acid and carbonic acid in particular. The relative abundance of Ca2+ gradually decreases, Na+ + K+ abundance, however, has doubled in the recent 11 years. Population and human activities were the major drivers for several major ions, i.e., Cl- and Na+ concentrations were explained by population and GDP, and SO42- by GDP, industrial sewage and energy consumption. Estimation indicated that domestic salts and atmospheric deposition contributed 56% and 22% to Cl-, respectively. We conclude waters in the Reservoir are naturally controlled by rock weathering whilst some key elements largely contributed by anthropogenic activities.

  13. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    Science.gov (United States)

    Jiao, Tong; Williams, Christopher A.; Ghimire, Bardan; Masek, Jeffrey; Gao, Feng; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  14. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  15. Cyclic deformation of bidisperse two-dimensional foams

    Science.gov (United States)

    Fátima Vaz, M.; Cox, S. J.; Teixeira, P. I. C.

    2011-12-01

    In-plane deformation of foams was studied experimentally by subjecting bidisperse foams to cycles of traction and compression at a prescribed rate. Each foam contained bubbles of two sizes with given area ratio and one of three initial arrangements: sorted perpendicular to the axis of deformation (iso-strain), sorted parallel to the axis of deformation (iso-stress), or randomly mixed. Image analysis was used to measure the characteristics of the foams, including the number of edges separating small from large bubbles N sl , the perimeter (surface energy), the distribution of the number of sides of the bubbles, and the topological disorder μ2(N). Foams that were initially mixed were found to remain mixed after the deformation. The response of sorted foams, however, depended on the initial geometry, including the area fraction of small bubbles and the total number of bubbles. For a given experiment we found that (i) the perimeter of a sorted foam varied little; (ii) each foam tended towards a mixed state, measured through the saturation of N sl ; and (iii) the topological disorder μ2(N) increased up to an "equilibrium" value. The results of different experiments showed that (i) the change in disorder, ? decreased with the area fraction of small bubbles under iso-strain, but was independent of it under iso-stress; and (ii) ? increased with ? under iso-strain, but was again independent of it under iso-stress. We offer explanations for these effects in terms of elementary topological processes induced by the deformations that occur at the bubble scale.

  16. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    Science.gov (United States)

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  17. The Changing Role of Sound-Symbolism for Small Versus Large Vocabularies.

    Science.gov (United States)

    Brand, James; Monaghan, Padraic; Walker, Peter

    2017-12-12

    Natural language contains many examples of sound-symbolism, where the form of the word carries information about its meaning. Such systematicity is more prevalent in the words children acquire first, but arbitrariness dominates during later vocabulary development. Furthermore, systematicity appears to promote learning category distinctions, which may become more important as the vocabulary grows. In this study, we tested the relative costs and benefits of sound-symbolism for word learning as vocabulary size varies. Participants learned form-meaning mappings for words which were either congruent or incongruent with regard to sound-symbolic relations. For the smaller vocabulary, sound-symbolism facilitated learning individual words, whereas for larger vocabularies sound-symbolism supported learning category distinctions. The changing properties of form-meaning mappings according to vocabulary size may reflect the different ways in which language is learned at different stages of development. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  18. A nonaffine network model for elastomers undergoing finite deformations

    Science.gov (United States)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  19. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-05-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Plateau with a size of 24 000 km2. Due to its strategic significance, severe historic deforestation and high sensitivity to climate change, the watershed has long been one of the highest priority watersheds in China for scientific research and resource management. The purpose of this review paper is to provide a state-of-the-art summary on what we have learned from several recently-completed research programs (one of them known as "973 of the China National Major Fundamental Science" with funding of 3.5 million USD in 2002 to 2008). This summary paper focused on how land cover or forest change affected hydrology at both forest stand and watershed scales in this large watershed. Inclusion of two different spatial scales is useful because the results from a small spatial scale (e.g. forest stand level) can help interpret the findings at a large spatial scale. Our review suggests that historic forest harvesting or land cover change has caused significant water increase due to reduction of forest canopy interception and evapotranspiration caused by removal of forest vegetation at both spatial scales. The impact magnitudes caused by forest harvesting indicate that the hydrological effects of forest or land cover changes can be as important as those caused by climate change, while the opposite impact directions suggest their offsetting effects on water yields in the Minjiang River watershed. In addition, different types of forests have different magnitudes of ET with old-growth natural

  20. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    Science.gov (United States)

    Zhao, Feng; Huang, Qingming; Wang, Hao; Gao, Wen

    2010-12-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  1. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2010-01-01

    Full Text Available Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  2. Bedform migration in steep channels: from local avalanches to large scale changes

    Science.gov (United States)

    Mettra, F.; Heyman, J.; Ancey, C.

    2013-12-01

    Many studies have emphasized the strength of bedload transport fluctuations in steep streams, especially at low and intermediate transport conditions (relative to the threshold of incipient motion). The origins of these fluctuations, which appear on a wide range of time scales, are still not well understood. In this study, we present the data obtained from a 2D idealized laboratory experiment with the objective of simultaneously recording the channel bed evolution and bedload transport rate at a high temporal resolution. A 3-m long by 8-cm wide transparent flume filled with well-sorted natural gravel (d50=6.5 mm) was used. An efficient technique using accelerometers has been developed to record the arrival time of every particle at the outlet of the flume for long experimental durations (up to a few days). In addition, bed elevation was monitored using cameras filming from the side of the channel, allowing the observation of global aggradation/degradation as well as bedform migration. The experimental parameters were the water discharge, the flume inclination (from 2° to 5°) and the constant feeding rate of sediments. Large-scale bed evolution showed successive aggradation and rapid degradation periods. Indeed, the measured global channel slope, i.e. mean slope over the flume length, fluctuated continuously within a range sometimes wider than 1° (experimental parameters were constant over the entire run). The analysis of these fluctuations provides evidence that steep channels behave like metastable systems, similarly to grain piles. The metastable effects increased for steeper channels and lower transport conditions. In this measurement campaign, we mainly observed upstream-migrating antidunes. For each run, various antidune heights and celerities were measured. On average, the mean antidune migration rate increased with decreasing channel slope and increasing sediment feeding rate. Relatively rare tall and fast-moving antidunes appeared more frequently at high

  3. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

    Directory of Open Access Journals (Sweden)

    Stephen P Rubin

    Full Text Available The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth. Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  4. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    Science.gov (United States)

    Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  5. A new method for large-scale assessment of change in ecosystem functioning in relation to land degradation

    Science.gov (United States)

    Horion, Stephanie; Ivits, Eva; Verzandvoort, Simone; Fensholt, Rasmus

    2017-04-01

    Ongoing pressures on European land are manifold with extreme climate events and non-sustainable use of land resources being amongst the most important drivers altering the functioning of the ecosystems. The protection and conservation of European natural capital is one of the key objectives of the 7th Environmental Action Plan (EAP). The EAP stipulates that European land must be managed in a sustainable way by 2020 and the UN Sustainable development goals define a Land Degradation Neutral world as one of the targets. This implies that land degradation (LD) assessment of European ecosystems must be performed repeatedly allowing for the assessment of the current state of LD as well as changes compared to a baseline adopted by the UNCCD for the objective of land degradation neutrality. However, scientifically robust methods are still lacking for large-scale assessment of LD and repeated consistent mapping of the state of terrestrial ecosystems. Historical land degradation assessments based on various methods exist, but methods are generally non-replicable or difficult to apply at continental scale (Allan et al. 2007). The current lack of research methods applicable at large spatial scales is notably caused by the non-robust definition of LD, the scarcity of field data on LD, as well as the complex inter-play of the processes dri