Structure Transformation and Coherent Interface in Large Lattice-Mismatched Nanoscale Multilayers
Directory of Open Access Journals (Sweden)
J. Y. Xie
2013-01-01
Full Text Available Nanoscale Al/W multilayers were fabricated by DC magnetron sputtering and characterized by transmission electron microscopy and high-resolution electron microscopy. Despite the large lattice mismatch and significantly different lattice structures between Al and W, a structural transition from face-centered cubic to body-centered cubic in Al layers was observed when the individual layer thickness was reduced from 5 nm to 1 nm, forming coherent Al/W interfaces. For potential mechanisms underlying the observed structure transition and forming of coherent interfaces, it was suggested that the reduction of interfacial energy and high stresses induced by large lattice-mismatch play a crucial role.
Hussain, A. K. M. F.
1980-01-01
Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.
International Nuclear Information System (INIS)
Mahmood, A.; Rohde, M.; Hagen, T.H.J.J. van der; Mudde, R.F.
2009-01-01
Single phase cross flow through a gap region joining two vertical channels has been investigated experimentally for Reynolds numbers, based on the channels hydraulic diameter, ranging from 850 to 21000. The flow field in the gap region is investigated by 2D-PIV and the inter channel mass transfer is quantified by the tracer injection method. Experiments carried out for variable gap heights and shape show the existence of a street of large-scale counter rotating vortices on either side of the channel-gap interface, resulting from the mean velocity gradient in the gap and the main channel region. The appearance of the coherent vortices is subject to a threshold associated with the difference between the maximum and the minimum average stream wise velocities in the channel and the gap region, respectively. The auto power spectral density of the cross velocity component in the gap region exhibits a slope of -3 in the inertial range, indicating the 2D nature of these vortices. The presence of the large-scale vortices enhances the mass transfer through the gap region by approximately 63% of the mass transferred by turbulent mixing alone. The inter-channel mass transfer, due to cross flow, is found to be dependent not only on the large-scale vortices characteristics, but also on the gap geometry. (author)
International Nuclear Information System (INIS)
Reinink, Shawn K.; Yaras, Metin I.
2015-01-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
Nuclear structure with coherent states
Raduta, Apolodor Aristotel
2015-01-01
This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.
Coherent structures in tokamak plasmas workshop: Proceedings
International Nuclear Information System (INIS)
Koniges, A.E.; Craddock, G.G.
1992-08-01
Coherent structures have the potential to impact a variety of theoretical and experimental aspects of tokamak plasma confinement. This includes the basic processes controlling plasma transport, propagation and efficiency of external mechanisms such as wave heating and the accuracy of plasma diagnostics. While the role of coherent structures in fluid dynamics is better understood, this is a new topic for consideration by plasma physicists. This informal workshop arose out of the need to identify the magnitude of structures in tokamaks and in doing so, to bring together for the first time the surprisingly large number of plasma researchers currently involved in work relating to coherent structures. The primary purpose of the workshop, in addition to the dissemination of information, was to develop formal and informal collaborations, set the stage for future formation of a coherent structures working group or focus area under the heading of the Tokamak Transport Task Force, and to evaluate the need for future workshops on coherent structures. The workshop was concentrated in four basic areas with a keynote talk in each area as well as 10 additional presentations. The issues of discussion in each of these areas was as follows: Theory - Develop a definition of structures and coherent as it applies to plasmas. Experiment - Review current experiments looking for structures in tokamaks, discuss experimental procedures for finding structures, discuss new experiments and techniques. Fluids - Determine how best to utilize the resource of information available from the fluids community both on the theoretical and experimental issues pertaining to coherent structures in plasmas. Computation - Discuss computational aspects of studying coherent structures in plasmas as they relate to both experimental detection and theoretical modeling
A fast BDD algorithm for large coherent fault trees analysis
International Nuclear Information System (INIS)
Jung, Woo Sik; Han, Sang Hoon; Ha, Jaejoo
2004-01-01
Although a binary decision diagram (BDD) algorithm has been tried to solve large fault trees until quite recently, they are not efficiently solved in a short time since the size of a BDD structure exponentially increases according to the number of variables. Furthermore, the truncation of If-Then-Else (ITE) connectives by the probability or size limit and the subsuming to delete subsets could not be directly applied to the intermediate BDD structure under construction. This is the motivation for this work. This paper presents an efficient BDD algorithm for large coherent systems (coherent BDD algorithm) by which the truncation and subsuming could be performed in the progress of the construction of the BDD structure. A set of new formulae developed in this study for AND or OR operation between two ITE connectives of a coherent system makes it possible to delete subsets and truncate ITE connectives with a probability or size limit in the intermediate BDD structure under construction. By means of the truncation and subsuming in every step of the calculation, large fault trees for coherent systems (coherent fault trees) are efficiently solved in a short time using less memory. Furthermore, the coherent BDD algorithm from the aspect of the size of a BDD structure is much less sensitive to variable ordering than the conventional BDD algorithm
Multiscale coherent structures in tokamak plasma turbulence
International Nuclear Information System (INIS)
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-01-01
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state
Layered Ultrathin Coherent Structures (LUCS)
International Nuclear Information System (INIS)
Schuller, I.K.; Falco, C.M.
1979-01-01
A new class of superconducting materials, Layered Ultrathin Coherent Structures (LUCS) are described. These materials are produced by sequentially depositing ultrathin layers of materials using high rate magnetron sputtering or thermal evaporation. Strong evidence is presented that layers as thin as 10 A can be prepared in this fashion. Resistivity data indicates that the mean free path is layer thickness limited. A strong disagreement is found between the experimentally measured transition temperatures T/sub c/ and the T/sub c/'s calculated using the Cooper limit approximation. This is interpreted as a change in the band structure or the phonon structure of the material due to layering or to surfaces
Coherent structures and dynamical systems
Jimenez, Javier
1987-01-01
Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.
Coherent structures in compressible free-shear-layer flows
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center
1997-08-01
Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.
Coherent structures in wall-bounded turbulence
Jiménez, Javier
2018-05-01
This article discusses the description of wall-bounded turbulence as a deterministic high-dimensional dynamical system of interacting coherent structures, defined as eddies with enough internal dynamics to behave relatively autonomously from any remaining incoherent part of the flow. The guiding principle is that randomness is not a property, but a methodological choice of what to ignore in the flow, and that a complete understanding of turbulence, including the possibility of control, requires that it be kept to a minimum. After briefly reviewing the underlying low-order statistics of flows at moderate Reynolds numbers, the article examines what two-point statistics imply for the decomposition of the flow into individual eddies. Intense eddies are examined next, including their temporal evolution, and shown to satisfy many of the properties required for coherence. In particular, it is shown that coherent structures larger than the Corrsin scale are a natural consequence of the shear. In wall-bounded turbulence, they can be classified into coherent dispersive waves and transient bursts. The former are found in the viscous layer near the wall and as very-large structures spanning the boundary layer thickness. Although they are shear-driven, these waves have enough internal structure to maintain a uniform advection velocity. Conversely, bursts exist at all scales, are characteristic of the logarithmic layer, and interact almost linearly with the shear. While the waves require a wall to determine their length scale, the bursts are essentially independent from it. The article concludes with a brief review of our present theoretical understanding of turbulent structures, and with a list of open problems and future perspectives.
Coherent Structures in Numerically Simulated Plasma Turbulence
DEFF Research Database (Denmark)
Kofoed-Hansen, O.; Pécseli, H.L.; Trulsen, J.
1989-01-01
Low level electrostatic ion acoustic turbulence generated by the ion-ion beam instability was investigated numerically. The fluctuations in potential were investigated by a conditional statistical analysis revealing propagating coherent structures having the form of negative potential wells which...
A Study of Coherent Structures using Wavelet Analysis
Energy Technology Data Exchange (ETDEWEB)
Kaspersen, J H
1996-05-01
Turbulence is important in many fields of engineering, for example in estimating drag or minimizing drag on surfaces. It is known that turbulent flows contain coherent structures, which implies that a turbulent shear flow can be decomposed into coherent structures and random motion. It is generally accepted that coherent structures are responsible for significant transport of mass, heat and momentum. This doctoral thesis presents and discusses a new algorithm to detect coherent structures based on Wavelet transformations, a transform similar to the Fourier transform but providing information on both frequency and scale. The new detection scheme does not require any predefined threshold or integration time, and its general performance is found to be very good. Wind tunnel experiments were performed to obtain data for analysis. Scalograms resulting from the Wavelet transform show clearly that coherent structures exist in turbulent flows. These structures are shown to contribute considerably to the shear stresses. The contribution from the organized motion to the normal stresses close to the wall appears to be considerably smaller. Direct Navier Stokes (DNS) channel flow seems to be more organized than Zero Pressure Gradient (ZPG) flows. The topology of ZPG flows was studied using a multiple hot wire arrangement and conditionally averaged streamlines based on detections from the Wavelet method are presented. It is shown that the coherent structures produce large amounts of both vorticity and strain at the detection point. 56 refs., 92 figs., 3 tabs.
Connecting coherent structures and strange attractors
Keefe, Laurence R.
1990-01-01
A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.
Coherent Structures and Entropy in Constrained, Modulationally Unstable, Nonintegrable Systems
International Nuclear Information System (INIS)
Rumpf, Benno; Newell, Alan C.
2001-01-01
Many studies have shown that nonintegrable systems with modulational instabilities constrained by more than one conservation law exhibit universal long time behavior involving large coherent structures in a sea of small fluctuations. We show how this behavior can be explained in detail by simple thermodynamic arguments
Lagrangian motion, coherent structures, and lines of persistent material strain.
Samelson, R M
2013-01-01
Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.
The Coherent Structure of Hafez's Ghazals (Sonnets
Directory of Open Access Journals (Sweden)
Dr. Teimour Malmir
2010-01-01
Full Text Available Hafez's poetry, despite its structural coherence, appears to be incoherent and fragmented. Some opponents, then, based on this surface appearance have criticized Hafez since each line of his ghazals contains an independent point; some have also used this quality as a pretext to invalidate his main themes; or they have separated the lines to diminish and neutralize the stinging bitterness of his critical comments. However, today, regardless of such controversial views, this independence of the lines has been considered as Hafez's craft and art. The present article, after discussing the roots of emergence of such diverse criticism, has dealt with the vital structural coherence of Hafez' ghazals interpretively posing one example from each of his mystic, witty love ghazals and clarifying the co-relationship among those lines.
Coherent Structures and Intermittency in Plasma Turbulence
International Nuclear Information System (INIS)
Das, Amita; Kaw, Predhiman; Sen, Abhijit
2008-01-01
The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.
Optical coherence tomography of dental structures
Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.
1998-04-01
In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.
Nano structured materials studied by coherent X-ray diffraction
International Nuclear Information System (INIS)
Gulden, Johannes
2013-03-01
Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the
Nano structured materials studied by coherent X-ray diffraction
Energy Technology Data Exchange (ETDEWEB)
Gulden, Johannes
2013-03-15
Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the
Lagrangian based methods for coherent structure detection
Energy Technology Data Exchange (ETDEWEB)
Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2015-09-15
There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.
Numerical study of jet noise radiated by turbulent coherent structures
Energy Technology Data Exchange (ETDEWEB)
Bastin, F.
1995-08-01
a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)
Schlueter-Kuck, Kristy L.; Dabiri, John O.
2017-09-01
We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.
Coherent structures in the Es layer and neutral middle atmosphere
Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina
2015-12-01
The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.
Symmetric structures of coherent states in superfluid helium-4
International Nuclear Information System (INIS)
Ahmad, M.
1981-02-01
Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)
Coherent structures in a supersonic complex nozzle
Magstadt, Andrew; Berry, Matthew; Glauser, Mark
2016-11-01
The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.
Coherent and radiative couplings through two-dimensional structured environments
Galve, F.; Zambrini, R.
2018-03-01
We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.
Nonlinear coherent structures in granular crystals
Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.
2017-10-01
The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.
Coherent inflation for large quantum superpositions of levitated microspheres
Romero-Isart, Oriol
2017-12-01
We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.
D-branes and coherent topological charge structure in QCD
Thacker, Hank
2006-12-01
Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co- herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent topological charge structure in 4-dimensional gauge theory and provide a possible interpretation of the observed structure. I begin with Luscher's "Wilson bag" integral over the 3-index Chern- Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CP N-1 sigma models suggests that the Wilson bag surface represents the world volume of a physical membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of multiple "k-vacuum" states with discontinuous transitions between k-vacua at θ = odd multi- ples of π. The domain walls between these vacua have the properties of a Wilson bag surface. Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be- tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory suggests that the coherent topological charge sheets observed on the lattice are the holographic image of wrapped D6 branes.
International Nuclear Information System (INIS)
Eliassen, Lene; Andersen, Søren
2016-01-01
The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines. (paper)
Visual coherence for large-scale line-plot visualizations
Muigg, Philipp
2011-06-01
Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s).
Visual coherence for large-scale line-plot visualizations
Muigg, Philipp; Hadwiger, Markus; Doleisch, Helmut; Grö ller, Eduard M.
2011-01-01
Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s).
Special Properties of Coherence Scanning Interferometers for large Measurement Volumes
International Nuclear Information System (INIS)
Bauer, W
2011-01-01
In contrast to many other optical methods the uncertainty of Coherence Scanning Interferometer (CSI) in vertical direction is independent from the field of view. Therefore CSIs are ideal instruments for measuring 3D-profiles of larger areas (36x28mm 2 , e.g.) with high precision. This is of advantage for the determination of form parameters like flatness, parallelism and steps heights within a short time. In addition, using a telecentric beam path allows measurements of deep lying surfaces (<70mm) and the determination of form parameters with large step-heights. The lateral and spatial resolution, however, are reduced. In this presentation different metrological characteristics together with their potential errors are analyzed for large-scale measuring CSIs. Therefore these instruments are ideal tools in quality control for good/bad selections, e.g. The consequences for the practical use in industry and for standardization are discussed by examples of workpieces of automotive suppliers or from the steel industry.
Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.
Ecke, Robert E
2015-09-01
The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.
Particle transport across a circular shear layer with coherent structures
International Nuclear Information System (INIS)
Nielsen, A.H.; Lynov, J.P.; Juul Rasmussen, J.
1998-01-01
In the study of the dynamics of coherent structures, forced circular shear flows offer many desirable features. The inherent quantisation of circular geometries due to the periodic boundary conditions makes it possible to design experiments in which the spatial and temporal complexity of the coherent structures can be accurately controlled. Experiments on circular shear flows demonstrating the formation of coherent structures have been performed in different physical systems, including quasi-neutral plasmas, non-neutral plasmas and rotating fluids. In this paper we investigate the evolution of such coherent structures by solving the forced incompressible Navier-Stokes equations numerically using a spectral code. The model is formulated in the context of a rotating fluid but apply equally well to low frequency electrostatic oscillations in a homogeneous magnetized plasma. In order to reveal the Lagrangian properties of the flow and in particular to investigate the transport capacity in the shear layer, passive particles are traced by the velocity field. (orig.)
Coherent structures amidst chaos: Solitons, fronts, and vortices
International Nuclear Information System (INIS)
Campbell, D.K.
1996-01-01
I introduce the concept of open-quote open-quote coherent structures close-quote close-quote emdash localized, persistent, propagating nonlinear waves emdash and argue that they are ubiquitous in spatially extended nonlinear systems. I discuss various specific forms of coherent structures emdash solitons, wave fronts, vortices emdash and illustrate how they arise in physics, chemistry, biology, and physiology. copyright 1996 American Institute of Physics
Nonlinear Coherent Structures, Microbursts and Turbulence
Lakhina, G. S.
2015-12-01
Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.
Schlueter-Kuck, Kristy; Dabiri, John
2017-11-01
In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Ergodic Theory, Open Dynamics, and Coherent Structures
Bose, Christopher; Froyland, Gary
2014-01-01
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.
Coherent vortex structures in fluids and plasmas
Tur, Anatoli
2017-01-01
This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?
Data-driven sensor placement from coherent fluid structures
Manohar, Krithika; Kaiser, Eurika; Brunton, Bingni W.; Kutz, J. Nathan; Brunton, Steven L.
2017-11-01
Optimal sensor placement is a central challenge in the prediction, estimation and control of fluid flows. We reinterpret sensor placement as optimizing discrete samples of coherent fluid structures for full state reconstruction. This permits a drastic reduction in the number of sensors required for faithful reconstruction, since complex fluid interactions can often be described by a small number of coherent structures. Our work optimizes point sensors using the pivoted matrix QR factorization to sample coherent structures directly computed from flow data. We apply this sampling technique in conjunction with various data-driven modal identification methods, including the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). In contrast to POD-based sensors, DMD demonstrably enables the optimization of sensors for prediction in systems exhibiting multiple scales of dynamics. Finally, reconstruction accuracy from pivot sensors is shown to be competitive with sensors obtained using traditional computationally prohibitive optimization methods.
Coherent Structure Phenomena in Drift Wave-Zonal Flow Turbulence
International Nuclear Information System (INIS)
Smolyakov, A. I.; Diamond, P. H.; Malkov, M.
2000-01-01
Zonal flows are azimuthally symmetric plasma potential perturbations spontaneously generated from small-scale drift-wave fluctuations via the action of Reynolds stresses. We show that, after initial linear growth, zonal flows can undergo further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers. Such coherent zonal flow structures constitute dynamical paradigms for intermittency in drift-wave turbulence that manifests itself by the intermittent distribution of regions with a reduced level of anomalous transport. (c) 2000 The American Physical Society
Tracking coherent structures in massively-separated and turbulent flows
Rockwood, Matthew; Huang, Yangzi; Green, Melissa
2018-01-01
Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.
Relaxation Mechanisms, Structure and Properties of Semi-Coherent Interfaces
Directory of Open Access Journals (Sweden)
Shuai Shao
2015-10-01
Full Text Available In this work, using the Cu–Ni (111 semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes. This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes. The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. The various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.
Coherent magnetic structures in terbium/holmium superlattices
DEFF Research Database (Denmark)
Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.
1997-01-01
to 230 K, two samples retain this magnetic structure while the third undergoes a transition first to a mixed phase of helically and ferromagnetically ordered Tb moments, then to a phase with only helically ordered To moments. Ln all cases, the magnetic ordering is found to be long ranged, with coherence...
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
International Nuclear Information System (INIS)
Froyland, Gary
2015-01-01
The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume.The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer–Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian.Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation. (paper)
[INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures
Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang
2018-05-01
Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.
Shock modon: a new type of coherent structure in rotating shallow water.
Lahaye, Noé; Zeitlin, Vladimir
2012-01-27
We show that a new type of coherent structure, a shock modon, exists in a rotating shallow water model at large Rossby numbers. It is a combination of an asymmetric vortex dipole with a stationary hydraulic jump. The structure is long living, despite the energy dissipation by the hydraulic jump, and moving along a circular path. Collisions of shock modons can be elastic, or lead to formation of shock tripoles.
Characterization of turbulent coherent structures in square duct flow
Atzori, Marco; Vinuesa, Ricardo; Lozano-Durán, Adrián; Schlatter, Philipp
2018-04-01
This work is aimed at a first characterization of coherent structures in turbulent square duct flows. Coherent structures are defined as connected components in the domain identified as places where a quantity of interest (such as Reynolds stress or vorticity) is larger than a prescribed non-uniform threshold. Firstly, we qualitatively discuss how a percolation analysis can be used to assess the effectiveness of the threshold function, and how it can be affected by statistical uncertainty. Secondly, various physical quantities that are expected to play an important role in the dynamics of the secondary flow of Prandtl’s second kind are studied. Furthermore, a characterization of intense Reynolds-stress events in square duct flow, together with a comparison of their shape for analogous events in channel flow at the same Reynolds number, is presented.
Spatial Dynamics of Coherent Structures in a Thermal Plasma Jet
Czech Academy of Sciences Publication Activity Database
Hlína, Jan; Sekerešová, Zuzana; Šonský, Jiří
2008-01-01
Roč. 36, č. 4 (2008), s. 1066-1067 ISSN 0093-3813 R&D Projects: GA ČR GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : charge-coupled-device (CCD) camera * coherent structure * thermal plasma jet * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008
Characterising the large coherence length at diamond’s beamline I13L
International Nuclear Information System (INIS)
Wagner, U. H.; Parsons, A.; Rahomaki, J.; Vogt, U.; Rau, C.
2016-01-01
I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.
Characterising the large coherence length at diamond’s beamline I13L
Energy Technology Data Exchange (ETDEWEB)
Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Rahomaki, J.; Vogt, U. [KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44 (Sweden); Rau, C. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Northwestern University, Chicago, IL 60611-3008 (United States)
2016-07-27
I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.
International Nuclear Information System (INIS)
Hayden, C.C.; Chandler, D.W.
1995-01-01
Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics
QCD coherence in the structure function and associated distributions at small x
International Nuclear Information System (INIS)
Marchesini, G.
1995-01-01
We recall the origin of angular ordering in soft parton emission and show that at small x this coherent structure is masked in the structure function while it can be detected in the associated distributions. This is due to the fact that collinear singularities cancel completely in the structure function at fixed transverse momentum for x →0. In this limit the dependence on the hard scale is lost, the angular ordered region becomes equivalent to the multi-Regge region in which all transverse momenta are of the same order, and one derives the BFKL equation. For the associated distributions at small x such a complete cancellation of collinear singularities does not hold in general, thus large singular contributions are neglected if angular ordering is replaced by multi-Regge phase space. The deduction of these features requires an analysis without any collinear approximations which is done by extending to small x the soft gluon factorization techniques typically used in the region of large x. Since the coherent structure of parton emission is the same in the small and large x regions, one can formulate a unified evolution equation for the structure function, a unified coherent branching and jet algorithm which allows the calculation of associated distributions in all x regions. Such a unified formulation, valid for all x, is presented and compared with usual treatments. ((orig.))
Spatial coherence and large-scale drivers of drought
Svensson, Cecilia; Hannaford, Jamie
2017-04-01
Drought is a potentially widespread and generally multifaceted natural phenomenon affecting all aspects of the hydrological cycle. It mainly manifests itself at seasonal, or longer, time scales. Here, we use seasonal river flows across the climatologically and topographically diverse UK to investigate the spatial coherence of drought, and explore its oceanic and atmospheric drivers. A better understanding of the spatial characteristics and drivers will improve forecasting and help increase drought preparedness. The location of the UK in the mid-latitude belt of predominantly westerly winds, together with a pronounced topographical divide running roughly from north to south, produce strong windward and leeward effects. Weather fronts associated with storms tracking north-eastward between Scotland and Iceland typically lead to abundant precipitation in the mountainous north and west, while the south and east remain drier. In contrast, prolonged precipitation in eastern Britain tends to be associated with storms on a more southerly track, producing precipitation in onshore winds on the northern side of depressions. Persistence in the preferred storm tracks can therefore result in periods of wet/dry conditions across two main regions of the UK, a mountainous northwest region exposed to westerly winds and a more sheltered, lowland southeast region. This is reflected in cluster analyses of monthly river flow anomalies. A further division into three clusters separates out a region of highly permeable, slowly responding, catchments in the southeast. An expectation that the preferred storm tracks over seasonal time scales can be captured by atmospheric airflow indices, which in turn may be related to oceanic conditions, suggests that statistical methods may be used to describe the relationships between UK regional streamflows, and oceanic and atmospheric drivers. Such relationships may be concurrent or lagged, and the longer response time of the group of permeable
Search for coherent structure within tokamak plasma turbulence
International Nuclear Information System (INIS)
Zweben, S.J.
1985-01-01
Two-dimensional tokamak edge density turbulence data are examined for possible coherent or organized structure. The spatial patterns of density fluctuations n appear to consist of localized ''blobs'' of relatively high or low density which can move irregularly both radially and poloidally through the edge region. However, a statistical analysis of the lifetime, area, direction, speed, and amplitude of these blobs does not as yet suggest any organized structure associated with the blobs beyond that which can be described by time-averaged correlation functions
Time-resolved measurements of coherent structures in the turbulent boundary layer
LeHew, J. A.; Guala, M.; McKeon, B. J.
2013-04-01
Time-resolved particle image velocimetry was used to examine the structure and evolution of swirling coherent structure (SCS), one interpretation of which is a marker for a three-dimensional coherent vortex structure, in wall-parallel planes of a turbulent boundary layer with a large field of view, 4.3 δ × 2.2 δ. Measurements were taken at four different wall-normal locations ranging from y/ δ = 0.08-0.48 at a friction Reynolds number, Re τ = 410. The data set yielded statistically converged results over a larger field of view than typically observed in the literature. The method for identifying and tracking swirling coherent structure is discussed, and the resulting trajectories, convection velocities, and lifespan of these structures are analyzed at each wall-normal location. The ability of a model in which the entirety of an individual SCS travels at a single convection velocity, consistent with the attached eddy hypothesis of Townsend (The structure of turbulent shear flows. Cambridge University Press, Cambridge, 1976), to describe the data is investigated. A methodology for determining whether such structures are "attached" or "detached" from the wall is also proposed and used to measure the lifespan and convection velocity distributions of these different structures. SCS were found to persist for longer periods of time further from the wall, particularly those inferred to be "detached" from the wall, which could be tracked for longer than 5 eddy turnover times.
Large floating structures technological advances
Wang, BT
2015-01-01
This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.
Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits
Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas
2018-04-01
Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.
Passive control of coherent structures in a modified backwards-facing step flow
Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.
2018-05-01
We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.
Drift wave coherent vortex structures in inhomogeneous plasmas
International Nuclear Information System (INIS)
Su, X.N.
1992-01-01
Nonlinear drift wave vortex structures in magnetized plasmas are studied theoretically and numerically in the various physical environments. The effects of density and temperature gradients on drift wave vortex dynamics are analyzed using a fully nonlinear model with the Boltzmann density distribution. The equation, based on the full Boltzmann relation, possess no localized monopole solution in the short wavelength (∼ρ s ) region, while in the longer wavelength (∼(ρ s (r) n ) 1/2 ) region the density profile governs the existence of monopole-like solutions. In the longer wavelength regime, however, the monopoles cannot be localized sufficiently to avoid coupling to propagating drift waves due to the inhomogeneity of the plasma. Thus, the monopole vortex is a long lived coherent structure, but it is not precisely a stationary structure since the coupling results in a open-quote flapping close-quote tail. The tail causes energy of the vortex to leak out, but the effect of the temperature gradient is to reduce the leaking of this energy. Nonlinear coherent structures governing by the coupled drift wave-ion acoustic mode equations in sheared magnetic field are studied analytically and numerically. A solitary vortex equation that includes the effects of density and temperature gradients and magnetic shear is derived and analyzed. The results show that for a plasma in a sheared magnetic field, there exist the solitary vortex solutions. The new vortex structures are dipole-like in their symmetry, but not the modon type of dipoles. The numerical simulations are performed in 2-D with the coupled vorticity and parallel mass flow equations. The vortex structures in an unstable drift wave system driven by parallel shear flow are studied. The nonlinear solitary vortex solutions are given and the formation of the vortices from a turbulent state is observed from the numerical simulations
Flow and coherent structures around circular cylinders in shallow water
Zeng, Jie; Constantinescu, George
2017-06-01
Eddy-resolving numerical simulations are conducted to investigate the dynamics of the large-scale coherent structures around a circular cylinder in an open channel under very shallow flow conditions where the bed friction significantly affects the wake structure. Results are reported for three test cases, for which the ratio between the cylinder diameter, D, and the channel depth, H, is D/H = 10, 25, and 50, respectively. Simulation results show that a horseshoe vortex system forms in all test cases and the dynamics of the necklace vortices is similar to that during the breakaway sub-regime observed for cases when a laminar horseshoe vortex forms around the base of the cylinder. Given the shallow conditions and turbulence in the incoming channel flow, the necklace vortices occupy a large fraction of the flow depth (they penetrate until the free surface in the shallower cases with D/H = 25 and 50). The oscillations of the necklace vortices become less regular with increasing polar angle magnitude and can induce strong amplification of the bed shear stress beneath their cores. Strong interactions are observed between the legs of the necklace vortices and the eddies shed in the separated shear layers in the cases with D/H = 25 and 50. In these two cases, a vortex-street type wake is formed and strong three-dimensional effects are observed in the near-wake flow. A secondary instability in the form of arrays of co-rotating parallel horizontal vortices develops. Once the roller vortices get away from the cylinder, the horizontal vortices in the array orient themselves along the streamwise direction. This instability is not present for moderately shallow conditions (e.g., D/H ≈ 1) nor for very shallow cases when the wake changes to an unsteady bubble type (e.g., D/H = 50). For cases when this secondary instability is present, the horizontal vortices extend vertically over a large fraction of the flow depth and play an important role in the vertical mixing of fluid
Large scale structure and baryogenesis
International Nuclear Information System (INIS)
Kirilova, D.P.; Chizhov, M.V.
2001-08-01
We discuss a possible connection between the large scale structure formation and the baryogenesis in the universe. An update review of the observational indications for the presence of a very large scale 120h -1 Mpc in the distribution of the visible matter of the universe is provided. The possibility to generate a periodic distribution with the characteristic scale 120h -1 Mpc through a mechanism producing quasi-periodic baryon density perturbations during inflationary stage, is discussed. The evolution of the baryon charge density distribution is explored in the framework of a low temperature boson condensate baryogenesis scenario. Both the observed very large scale of a the visible matter distribution in the universe and the observed baryon asymmetry value could naturally appear as a result of the evolution of a complex scalar field condensate, formed at the inflationary stage. Moreover, for some model's parameters a natural separation of matter superclusters from antimatter ones can be achieved. (author)
Role of coherent structures in supersonic impinging jetsa)
Kumar, Rajan; Wiley, Alex; Venkatakrishnan, L.; Alvi, Farrukh
2013-07-01
This paper describes the results of a study examining the flow field and acoustic characteristics of a Mach 1.5 ideally expanded supersonic jet impinging on a flat surface and its control using steady microjets. Emphasis is placed on two conditions of nozzle to plate distances (h/d), of which one corresponds to where the microjet based active flow control is very effective in reducing flow unsteadiness and near-field acoustics and the other has minimal effectiveness. Measurements include unsteady pressures, nearfield acoustics using microphone and particle image velocimetry. The nearfield noise and unsteady pressure spectra at both h/d show discrete high amplitude impinging tones, which in one case (h/d = 4) are significantly reduced with control but in the other case (h/d = 4.5) remain unaffected. The particle image velocimetry measurements, both time-averaged and phase-averaged, were used to better understand the basic characteristics of the impinging jet flow field especially the role of coherent vortical structures in the noise generation and control. The results show that the flow field corresponding to the case of least control effectiveness comprise well defined, coherent, and symmetrical vortical structures and may require higher levels of microjet pressure supply for noise suppression when compared to the flow field more responsive to control (h/d = 4) which shows less organized, competing (symmetrical and helical) instabilities.
Determination of scattering structures from spatial coherence measurements.
Zarubin, A M
1996-03-01
A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.
A heating mechanism of ions due to large amplitude coherent ion acoustic wave
International Nuclear Information System (INIS)
Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.
1978-05-01
Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)
Coherent structures in the boundary plasma of EAST Tokamak
DEFF Research Database (Denmark)
Yan, Ning
In recent years, with the application of fast camera in fusion plasma, as well as other diagnostic of spatial-temporal resolution such as Langmuir probe, it has become generally clear that the turbulence transport is mostly dominant by cross-field propagation of coherent structures, namely blobs...... or filaments in low-confinement mode (L-mode). Analogously, the fine structures associated with the edge-localized modes (ELMs), i.e., ELM filaments, have been shown to be the main carriers of the transport in the high-confinement mode (H-mode). The filaments carry particles and heat, impinging upon the plasma......-facing material, leading to intensive transient heat load and particle load on the local areas of both the divertor target plates and the first wall, which damages the material and causes enhanced recycling and impurity generation, then further pollutes the core plasma. In this project, we carried out experiment...
Coherent structures in wave boundary layers. Part 1. Oscillatory motion
DEFF Research Database (Denmark)
Carstensen, Stefan; Sumer, B. Mutlu; Fredsøe, Jørgen
2010-01-01
This work concerns oscillatory boundary layers over smooth beds. It comprises combined visual and quantitative techniques including bed shear stress measurements. The experiments were carried out in an oscillating water tunnel. The experiments reveal two significant coherent flow structures: (i......) Vortex tubes, essentially two-dimensional vortices close to the bed extending across the width of the boundary-layer flow, caused by an inflectional-point shear layer instability. The imprint of these vortices in the bed shear stress is a series of small, insignificant kinks and dips. (ii) Turbulent...... spots, isolated arrowhead-shaped areas close to the bed in an otherwise laminar boundary layer where the flow ‘bursts’ with violent oscillations. The emergence of the turbulent spots marks the onset of turbulence. Turbulent spots cause single or multiple violent spikes in the bed shear stress signal...
Generalized synchronization and coherent structures in spatially extended systems
International Nuclear Information System (INIS)
Basnarkov, Lasko; Duane, Gregory S.; Kocarev, Ljupco
2014-01-01
We study the synchronization of a coupled pair of one-dimensional Kuramoto–Sivashinsky systems, with equations augmented by a third-space-derivative term. With two different values of a system parameter, the two systems synchronize in the generalized sense. The phenomenon persists even in the extreme case when one of the equations is missing the extra term. Master–slave synchronization error is small, so the generalized synchronization relationship is useful for predicting the state of the master from that of the slave, or conversely, for controlling the slave. The spatial density of coupling points required to bring about generalized synchronization appears to be related to the wavelength of traveling wave solutions, and more generally to the width of coherent structures in the separate systems
Large scale nuclear structure studies
International Nuclear Information System (INIS)
Faessler, A.
1985-01-01
Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)
Coherent vortical structures in two-dimensional plasma turbulence
DEFF Research Database (Denmark)
Pécseli, H.L.; Coutsias, E.A.; Huld, T.
1992-01-01
A laboratory experiment was carried out in order to study the nonlinear saturated stage of the cross-field electrostatic Kelvin-Helmholtz instability in a strongly magnetized plasma. The presence of large vortex-like structures in a background of wide-band turbulent fluctuations was demonstrated...... simulations. The importance of the large scale structures for the turbulent plasma transport across magnetic field lines was analyzed in detail....
Phase Coherence of Large Amplitude MHD Waves in the Earth's Foreshock: Geotail Observations
International Nuclear Information System (INIS)
Hada, Tohru; Koga, Daiki; Yamamoto, Eiko
2003-01-01
Large amplitude MHD turbulence is commonly found in the earth's foreshock region. It can be represented as a superposition of Fourier modes with characteristic frequency, amplitude, and phase. Nonlinear interactions between the Fourier modes are likely to produce finite correlation among the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in quasi-linear theories) or they have a finite coherence. However, naive inspection of wave phases does not reveal anything, as the wave phase is sensitively related to the choice of origin of the coordinate, which should be arbitrary. Using a method based on a surrogate data technique and a fractal analysis, we analyzed Geotail magnetic field data to evaluate the phase coherence among the MHD waves in the earth's foreshock region. We show that the correlation of wave phases does exist, indicating that the nonlinear interactions between the waves is in progress. Furthermore, by introducing an index to represent the degree of the phase coherence, we discuss that the wave phases become more coherent as the turbulence amplitude increases, and also as the propagation angle of the most dominant wave mode becomes oblique. Details of the analysis as well as implications of the present results to transport processes of energetic particles will be discussed
ALOS PALSAR Winter Coherence and Summer Intensities for Large Scale Forest Monitoring in Siberia
Thiel, Christian; Thiel, Carolin; Santoro, Maurizio; Schmullius, Christiane
2008-11-01
In this paper summer intensity and winter coherence images are used for large scale forest monitoring. The intensities (FBD HH/HV) have been acquired during summer 2007 and feature the K&C intensity stripes [1]. The processing consisted of radiometric calibration, orthorectification, and topographic normalisation. The coherence has been estimated from interferometric pairs with 46-days repeat-pass intervals. The pairs have been acquired during the winters 2006/2007 and 2007/2008. During both winters suited weather conditions have been reported. Interferometric processing consisted of SLC co-registration at sub-pixel level, common-band filtering in range and azimuth and generation of a differential interferogram, which was used in the coherence estimation procedure based on adaptive estimation. All images were geocoded using SRTM data. The pixel size of the final SAR products is 50 m x 50 m. It could already be demonstrated, that by using PALSAR intensities and winter coherence forest and non-forest can be clearly separated [2]. By combining both data types hardly any overlap of the class signatures was detected, even though the analysis was conducted on pixel level and no speckle filter has been applied. Thus, the delineation of a forest cover mask could be executed operationally. The major hitch is the definition of a biomass threshold for regrowing forest to be distinguished as forest.
Coherent structures induced by dielectric barrier discharge plasma actuator
Zhang, Xin; Li, Huaxing; Choi, Kwing So; Song, Longfei
2017-11-01
The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.
Coherent structures in two-dimensional plasma turbulence
DEFF Research Database (Denmark)
Huld, T.; Nielsen, A.H.; Pécseli, H.L.
1991-01-01
-band turbulent fluctuations is demonstrated by a conditional sampling technique. Depending on plasma parameters, the dominant structures can appear as monopole or multipole vortices, dipole vortices in particular. The importance of large structures for the turbulent plasma diffusion is discussed. A statistical...... analysis of the randomly varying plasma flux is presented....
Formation of coherent structures in a class of realistic 3D unsteady flows
Speetjens, M.F.M.; Clercx, H.J.H.; Klapp, J.; Medina, A.; Cros, A.; Vargas, C.
2013-01-01
The formation of coherent structures in three-dimensional (3D) unsteady laminar flows in a cylindrical cavity is reviewed. The discussion concentrates on two main topics: the role of symmetries and fluid inertia in the formation of coherent structures and the ramifications for the Lagrangian
Oygur, Tunc; Unal, Gazanfer
Shocks, jumps, booms and busts are typical large fluctuation markers which appear in crisis. Models and leading indicators vary according to crisis type in spite of the fact that there are a lot of different models and leading indicators in literature to determine structure of crisis. In this paper, we investigate structure of dynamic correlation of stock return, interest rate, exchange rate and trade balance differences in crisis periods in Turkey over the period between October 1990 and March 2015 by applying wavelet coherency methodologies to determine nature of crises. The time period includes the Turkeys currency and banking crises; US sub-prime mortgage crisis and the European sovereign debt crisis occurred in 1994, 2001, 2008 and 2009, respectively. Empirical results showed that stock return, interest rate, exchange rate and trade balance differences are significantly linked during the financial crises in Turkey. The cross wavelet power, the wavelet coherency, the multiple wavelet coherency and the quadruple wavelet coherency methodologies have been used to examine structure of dynamic correlation. Moreover, in consequence of quadruple and multiple wavelet coherence, strongly correlated large scales indicate linear behavior and, hence VARMA (vector autoregressive moving average) gives better fitting and forecasting performance. In addition, increasing the dimensions of the model for strongly correlated scales leads to more accurate results compared to scalar counterparts.
Reaction enhancement of initially distant scalars by Lagrangian coherent structures
International Nuclear Information System (INIS)
Pratt, Kenneth R.; Crimaldi, John P.; Meiss, James D.
2015-01-01
Turbulent fluid flows have long been recognized as a superior means of diluting initial concentrations of scalars due to rapid stirring. Conversely, experiments have shown that the structures responsible for this rapid dilution can also aggregate initially distant reactive scalars and thereby greatly enhance reaction rates. Indeed, chaotic flows not only enhance dilution by shearing and stretching but also organize initially distant scalars along transiently attracting regions in the flow. To show the robustness of this phenomenon, a hierarchical set of three numerical flows is used: the periodic wake downstream of a stationary cylinder, a chaotic double gyre flow, and a chaotic, aperiodic flow consisting of interacting Taylor vortices. We demonstrate that Lagrangian coherent structures (LCS), as identified by ridges in finite time Lyapunov exponents, are directly responsible for this coalescence of reactive scalar filaments. When highly concentrated filaments coalesce, reaction rates can be orders of magnitude greater than would be predicted in a well-mixed system. This is further supported by an idealized, analytical model that was developed to quantify the competing effects of scalar dilution and coalescence. Chaotic flows, known for their ability to efficiently dilute scalars, therefore have the competing effect of organizing initially distant scalars along the LCS at timescales shorter than that required for dilution, resulting in reaction enhancement
Coherent Exciton Dynamics in GaAs-Based Semiconductor Structures
Colocci, M.; Bogani, F.; Ceccherini, S.; Gurioli, M.
We show that a very powerful tool in the investigation of the coherent exciton dynamics in semiconductors is provided by the study of the emitted light after resonant excitation from pairs of phase-locked femtosecond pulses. Under these conditions, not only the full dynamics of the coherent transients (dephasing times, quantum beat periods, etc.) can be obtained from linear experiments, but it can also be obtained a straightforward discrimination between the coherent or incoherent character of the emission by means of spectral filtering.
Coherent drift wave structures in sheared magnetic fields
International Nuclear Information System (INIS)
Morrison, P.J.; Horton, W.
1993-01-01
For the problem of calculating the coherent drift wave structures in sheared magnetic fields, the authors have found it useful to derive the governing nonlinear pde from a variational principle. The variational principle is based on the free energy functional F[var-phi] = ∫ V F(var-phi, ∇ var-phi, x)dx dy. The method is applied to the vortex with speed u derived in Su et al., given by ∇ 2 var-phi = (1 - v d /u) var-phi - S m 2 /u 2 (x - var-phi/u) (x - var-phi/2u) var-phi where space is measured in units of ρ s , var-phi = (eΦ/T e )(L n /ρ s ) and the magnetic shear parameter is S m . While the linearized problem (var-phi much-lt ux) describes the usual shear induced damping, nonlinear solutions with trapped flow (var-phi > ur 0 ) form nonlinear self-bound states, which are maxima of the free energy F. The authors discuss the analytic properties and the numerical procedures for solving these types of nonlinear pde's
A coherent polarimeter array for the Large Scale Polarization Explorer balloon experiment
Bersanelli, M.; Mennella, A.; Morgante, G.; Zannoni, M.; Addamo, G.; Baschirotto, A.; Battaglia, P.; Baù, A.; Cappellini, B.; Cavaliere, F.; Cuttaia, F.; Del Torto, F.; Donzelli, S.; Farooqui, Z.; Frailis, M.
2012-01-01
We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a $\\sim 0.6$ meter telescope prov...
Francois, N; Xia, H; Punzmann, H; Shats, M
2013-05-10
We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].
Structuring very large domain models
DEFF Research Database (Denmark)
Störrle, Harald
2010-01-01
View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...
The dynamics of coherent flow structures within a submerged permeable bed
Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.
2009-12-01
flow within the permeable bed, which allowed visualisation of coherent vortices in the pore space, and investigation of their formative mechanisms and spatio-temporal evolution. The spatial scale of these structures is found to be of the order of the pore space, with jet flows occurring between interconnected pores and interacting with the spherical particles constituting the solid matrix. Such jets are hypothesized to be triggered by the interstitial pressure gradients between interconnected pores, which in turn are linked to large-scale coherent flow structures in the free-flow that advect and propagate through the permeable bed. As the jet flow interacts with the matrix around the pore space, coherent flow structures are generated with both clockwise and anticlockwise rotation. The nature of these subsurface turbulent flow patterns will be presented, which allows new insight into flows within permeable beds and the hydrodynamic processes triggering the motion of sediment.
Kalligeris, Nikos; Lynett, Patrick
2017-11-01
Numerous historical accounts describe the formation of ``whirpools'' inside ports and harbors during tsunami events, causing port operation disruptions. Videos from the Japan 2011 tsunami revealed complex nearshore flow patters, resulting from the interaction of tsunami-induced currents with the man-made coastline, and the generation of large eddies (or turbulent coherent structures) in numerous ports and harbors near the earthquake epicenter. The aim of this work is to study the generation and evolution of tsunami-induced turbulent coherent structures (TCS) in a well-controlled environment using realistic scaling. A physical configuration is created in the image of a port entrance at a scale of 1:27 and a small-amplitude, long period wave creates a transient flow through the asymmetric harbor channel. A separated region forms, which coupled with the transient flow, leads to the formation of a stable monopolar TCS. The surface flow is examined through mono- and stereo-PTV techniques to extract surface velocity vectors. Surface velocity maps and vortex flow profiles are used to study the experimental TCS generation and evolution, and characterize the TCS structure. Analytical tools are used to describe the TCS growth rate and kinetic energy decay. This work was funded by the National Science Foundation NEES Research program, with Award Number 1135026.
Directory of Open Access Journals (Sweden)
Kartik V. Bulusu
2015-09-01
Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.
Challenges in Scale-Resolving Simulations of turbulent wake flows with coherent structures
Pereira, Filipe S.; Eça, Luís; Vaz, Guilherme; Girimaji, Sharath S.
2018-06-01
The objective of this work is to investigate the challenges encountered in Scale-Resolving Simulations (SRS) of turbulent wake flows driven by spatially-developing coherent structures. SRS of practical interest are expressly intended for efficiently computing such flows by resolving only the most important features of the coherent structures and modelling the remainder as stochastic field. The success of SRS methods depends upon three important factors: i) ability to identify key flow mechanisms responsible for the generation of coherent structures; ii) determine the optimum range of resolution required to adequately capture key elements of coherent structures; and iii) ensure that the modelled part is comprised nearly exclusively of fully-developed stochastic turbulence. This study considers the canonical case of the flow around a circular cylinder to address the aforementioned three key issues. It is first demonstrated using experimental evidence that the vortex-shedding instability and flow-structure development involves four important stages. A series of SRS computations of progressively increasing resolution (decreasing cut-off length) are performed. An a priori basis for locating the origin of the coherent structures development is proposed and examined. The criterion is based on the fact that the coherent structures are generated by the Kelvin-Helmholtz (KH) instability. The most important finding is that the key aspects of coherent structures can be resolved only if the effective computational Reynolds number (based on total viscosity) exceeds the critical value of the KH instability in laminar flows. Finally, a quantitative criterion assessing the nature of the unresolved field based on the strain-rate ratio of mean and unresolved fields is examined. The two proposed conditions and rationale offer a quantitative basis for developing "good practice" guidelines for SRS of complex turbulent wake flows with coherent structures.
Chronic stress disrupts neural coherence between cortico-limbic structures
Directory of Open Access Journals (Sweden)
João Filipe Oliveira
2013-02-01
Full Text Available Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP and the medial prefrontal cortex (mPFC in rats subjected to short term (STS and chronic unpredictable stress (CUS. CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.
A coherent structure approach for parameter estimation in Lagrangian Data Assimilation
Maclean, John; Santitissadeekorn, Naratip; Jones, Christopher K. R. T.
2017-12-01
We introduce a data assimilation method to estimate model parameters with observations of passive tracers by directly assimilating Lagrangian Coherent Structures. Our approach differs from the usual Lagrangian Data Assimilation approach, where parameters are estimated based on tracer trajectories. We employ the Approximate Bayesian Computation (ABC) framework to avoid computing the likelihood function of the coherent structure, which is usually unavailable. We solve the ABC by a Sequential Monte Carlo (SMC) method, and use Principal Component Analysis (PCA) to identify the coherent patterns from tracer trajectory data. Our new method shows remarkably improved results compared to the bootstrap particle filter when the physical model exhibits chaotic advection.
Using co-occurrence to evaluate belief coherence in a large non clinical sample.
Directory of Open Access Journals (Sweden)
Rachel Pechey
Full Text Available Much of the recent neuropsychological literature on false beliefs (delusions has tended to focus on individual or single beliefs, with few studies actually investigating the relationship or co-occurrence between different types of co-existing beliefs. Quine and Ullian proposed the hypothesis that our beliefs form an interconnected web in which the beliefs that make up that system must somehow "cohere" with one another and avoid cognitive dissonance. As such beliefs are unlikely to be encapsulated (i.e., exist in isolation from other beliefs. The aim of this preliminary study was to empirically evaluate the probability of belief co-occurrence as one indicator of coherence in a large sample of subjects involving three different thematic sets of beliefs (delusion-like, paranormal & religious, and societal/cultural. Results showed that the degree of belief co-endorsement between beliefs within thematic groupings was greater than random occurrence, lending support to Quine and Ullian's coherentist account. Some associations, however, were relatively weak, providing for well-established examples of cognitive dissonance.
A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation
Chapelier, J.-B.; Wasistho, B.; Scalo, C.
2018-04-01
This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.
Energy Technology Data Exchange (ETDEWEB)
Cunha Galeazzo, Flavio Cesar
2016-07-01
The analysis of turbulent mixing in complex turbulent flows is a challenging task. The effective mixing of entrained fluids to a molecular level is a vital part of the dynamics of turbulent flows, especially when combustion is involved. The work has shown the limitations of the steady-state simulations and acknowledged the need of applying high-fidelity unsteady methods for the calculation of flows with pronounced unsteadiness promoted by large-scale coherent structures or other sources.
Directory of Open Access Journals (Sweden)
R. C. Cruz Gómez
2007-03-01
Full Text Available The North Brazil Current Rings (NBCR penetration into the Caribbean Sea is being investigated by employing a merged altimeter-derived sea height anomaly (TOPEX/Poseidon, Jason-1 and ERS-1, 2, the ocean surface color data (SeaWiFS and Global Drifter Program information. Four strategies are being applied to process the data: (1 calculations of the Okubo-Weiss parameter for NBCR identification, (2 longitude-time plots (also known as Hovmöller diagrams, (3 two-dimensional Radon transforms and (4 two-dimensional Fourier transforms.
A twofold NBCR structure has been detected in the region under investigation. The results have shown that NBC rings mainly propagate into the Caribbean Sea along two principal pathways (near 12° N and 17° N in the ring translation corridor. Thus, rings following the southern pathway in the fall-winter period can enter through very shallow southern straits as non-coherent structures. A different behavior is observed near the northern pathway (~17° N, where NBC rings are thought to have a coherent structure during their squeezing into the eastern Caribbean, i.e. conserving the principal characteristics of the incident rings. We attribute this difference in the rings' behavior to the vertical scales of the rings and to the bottom topography features in the vicinity of the Lesser Antilles.
International Nuclear Information System (INIS)
Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui
2011-01-01
We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.
Influence of coherent structures on the evolution of an axisymmetric turbulent jet
Breda, Massimiliano; Buxton, Oliver R. H.
2018-03-01
The role of initial conditions in affecting the evolution toward self-similarity of an axisymmetric turbulent jet is examined. The jet's near-field coherence was manipulated by non-circular exit geometries of identical open area, De2, including a square and a fractal exit, for comparison with a classical round orifice jet. Hot-wire anemometry and 2D-planar particle image velocimetry experiments were performed between the exit and a location 26De downstream, where the Reynolds stress profiles are self-similar. This study shows that a fractal geometry significantly changes the near-field structure of the jet, breaking up the large-scale coherent structures, thereby affecting the entrainment rate of the background fluid into the jet stream. It is found that many of the jet's turbulent characteristics scale with the number of eddy turnover times rather than simply the streamwise coordinate, with the entrainment rate (amongst others) found to be comparable across the different jets after approximately 3-4 eddies have been overturned. The study is concluded by investigating the jet's evolution toward a self-similar state. No differences are found for the large-scale spreading rate of the jets in the weakly self-similar region, so defined as the region for which some, but not all of the terms of the mean turbulent kinetic energy equation are self-similar. However, the dissipation rate of the turbulent kinetic energy was found to vary more gradually in x than predicted according to the classical equilibrium theories of Kolmogorov. Instead, the dissipation was found to vary in a non-equilibrium fashion for all three jets tested.
Emergence of the Coherent Structure of Liquid Water
Directory of Open Access Journals (Sweden)
Ivan Bono
2012-07-01
Full Text Available We examine in some detail the interaction of water molecules with the radiative electromagnetic field and find the existence of phase transitions from the vapor phase to a condensed phase where all molecules oscillate in unison, in tune with a self-trapped electromagnetic field within extended mesoscopic space regions (Coherence Domains. The properties of such a condensed phase are examined and found to be compatible with the phenomenological properties of liquid water. In particular, the observed value of critical density is calculated with good accuracy.
International Nuclear Information System (INIS)
Bolzani, M.J.A.; Guarnieri, F.L.; Vieira, Paulo Cesar
2009-01-01
Nowadays, wavelet analysis of turbulent flows have become increasingly popular. However, the study of geometric characteristics from wavelet functions is still poorly explored. In this work we compare the performance of two wavelet functions in extracting the coherent structures from solar wind velocity time series. The data series are from years 1996 to 2002 (except 1998 and 1999). The wavelet algorithm decomposes the annual time-series in two components: the coherent part and non-coherent one, using the daubechies-4 and haar wavelet function. The threshold assumed is based on a percentage of maximum variance found in each dyadic scale. After the extracting procedure, we applied the power spectral density on the original time series and coherent time series to obtain spectral indices. The results from spectral indices show higher values for the coherent part obtained by daubechies-4 than those obtained by the haar wavelet function. Using the kurtosis statistical parameter, on coherent and non-coherent time series, it was possible to conjecture that the differences found between two wavelet functions may be associated with their geometric forms. (author)
Xi, Teli; Dou, Jiazhen; Di, Jianglei; Li, Ying; Zhang, Jiwei; Ma, Chaojie; Zhao, Jianlin
2017-06-01
Short-coherence in-line phase-shifting digital holographic microscopy based on Michelson interferometer is proposed to measure internal structure in silicon. In the configuration, a short-coherence infrared laser is used as the light source in order to avoid the interference formed by the reference wave and the reflected wave from the front surface of specimen. At the same time, in-line phase-shifting configuration is introduced to overcome the problem of poor resolution and large pixel size of the infrared camera and improve the space bandwidth product of the system. A specimen with staircase structure is measured by using the proposed configuration and the 3D shape distribution are given to verify the effectiveness and accuracy of the method.
Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah
2017-09-01
Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-11-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES
International Nuclear Information System (INIS)
Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.
2013-01-01
In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.
Topological bifurcations in the evolution of coherent structures in a convection model
DEFF Research Database (Denmark)
Dam, Magnus; Rasmussen, Jens Juul; Naulin, Volker
2017-01-01
Blob filaments are coherent structures in a turbulent plasma flow. Understanding the evolution of these structures is important to improve magnetic plasma confinement. Three state variables describe blob filaments in a plasma convection model. A dynamical systems approach analyzes the evolution...
Fractal patterns on the onset of coherent structures in a coupled map ...
Indian Academy of Sciences (India)
We report the formation of Cantor set-like fractals during the development of coherent structures in a coupled map lattice (CML). The dependence of these structures on the size of the lattice as well as the ﬁrst three dimensions of the associated fractal patterns are analyzed numerically.
Optimization of Large-Scale Structural Systems
DEFF Research Database (Denmark)
Jensen, F. M.
solutions to small problems with one or two variables to the optimization of large structures such as bridges, ships and offshore structures. The methods used for salving these problems have evolved from being classical differential calculus and calculus of variation to very advanced numerical techniques...
a Theoretical Study of Coherent Structures in Nonneutral Plasma Columns
Lund, Steven M.
A ubiquitous feature of experimental and computer simulation studies of magnetically confined pure electron plasmas in cylindrical confinement devices is the formation of nonaxisymmetric (partial/partial theta ne 0) rotating equilibria. In this dissertation, nonaxisymmetric rotating equilibria are investigated theoretically for strongly magnetized, low-density (omega_sp{pe} {2}/omega_sp{ce}{2 } guiding-center model in the cold-fluid limit (the continuity and Poisson equations) that treats the electrons as a massless fluid (m_{e} to 0) with E times B flow velocity V _{e} = -(c/B_0)nablaphi times {bf e}_{z}. Within this model, general rotating equilibria with electron density (n_{e} equiv n_{R}(r,theta-omega _{r}t) and electrostatic potential phi equiv phi_{R }(r,theta-omega_{r}t) have the property that the electron density is functionally related to the streamfunction psi _{R} = -ephi_{R} + omega_{r}(eB_0/2c)r^2 by n_{R} = n_{R }(psi_{R}). The streamfunction psi_{R} satisfies the nonlinear equilibrium equation nabla ^2psi_{R} = -4pi e^2n _{R}(psi_{R}) + 2omega_{r}eB_0/c with psi_{R} = omega _{r}(eB_0/2c)r_sp{w }{2} equiv psi_{w } = const. on the cylindrical wall at r = r_{w}. A general methodology for the solution of this equilibrium system is presented and several properties of rotating equilibria are analyzed. Following this analysis, two classes of nonaxisymmetric equilibria are investigated. These two classes of equilibria can have large amplitude (strongly nonaxisymmetric). First, a class of vortex-like rotating equilibria is analyzed that is characterized by a structured density profile that fills a confinement geometry with an inner conducting cylinder at radius r = r_{I} Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
Using Co-Occurrence to Evaluate Belief Coherence in a Large Non Clinical Sample
Pechey, Rachel; Halligan, Peter
2012-01-01
Much of the recent neuropsychological literature on false beliefs (delusions) has tended to focus on individual or single beliefs, with few studies actually investigating the relationship or co-occurrence between different types of co-existing beliefs. Quine and Ullian proposed the hypothesis that our beliefs form an interconnected web in which the beliefs that make up that system must somehow “cohere” with one another and avoid cognitive dissonance. As such beliefs are unlikely to be encapsulated (i.e., exist in isolation from other beliefs). The aim of this preliminary study was to empirically evaluate the probability of belief co-occurrence as one indicator of coherence in a large sample of subjects involving three different thematic sets of beliefs (delusion-like, paranormal & religious, and societal/cultural). Results showed that the degree of belief co-endorsement between beliefs within thematic groupings was greater than random occurrence, lending support to Quine and Ullian’s coherentist account. Some associations, however, were relatively weak, providing for well-established examples of cognitive dissonance. PMID:23155383
Chatterjee, Tanmoy; Peet, Yulia T.
2018-03-01
Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.
Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II
National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...
Bertocchi, F.; Rohde, M.; Kloosterman, J.L.
2018-01-01
The enhancement of heat transfer from fuel rods to coolant of a Liquid Metal Fast Reactor (LMFR) decreases the fuel temperature and, thus, improves the safety margin of the reactor. One of the mechanisms that increases heat transfer consists of large coherent structures that can occur across the
Hruszkewycz, Stephan; Cha, Wonsuk; Ulvestad, Andrew; Fuoss, Paul; Heremans, F. Joseph; Harder, Ross; Andrich, Paolo; Anderson, Christopher; Awschalom, David
The nitrogen-vacancy center in diamond has attracted considerable attention for nanoscale sensing due to unique optical and spin properties. Many of these applications require diamond nanoparticles which contain large amounts of residual strain due to the detonation or milling process used in their fabrication. Here, we present experimental, in-situ observations of changes in morphology and internal strain state of commercial nanodiamonds during high-temperature annealing using Bragg coherent diffraction imaging to reconstruct a strain-sensitive 3D image of individual sub-micron-sized crystals. We find minimal structural changes to the nanodiamonds at temperatures less than 650 C, and that at higher temperatures up to 750 C, the diamond-structured volume fraction of nanocrystals tend to shrink. The degree of internal lattice distortions within nanodiamond particles also decreases during the anneal. Our findings potentially enable the design of efficient processing of commercial nanodiamonds into viable materials suitable for device design. We acknowledge support from U.S. DOE, Office of Science, BES, MSE.
Controlling the development of coherent structures in high speed jets and the resultant near field
Speth, Rachelle
This work uses Large-Eddy Simulations to examine the effect of actuator parameters and jet exit properties on the evolution of coherent structures and their impact on the near-acoustic field without and with control. For the controlled cases, Localized Arc Filament Plasma Actuators (LAFPAs) are considered, and modeled with a simple heating approach that successfully reproduces the main observations and trends of experiments. A parametric study is first conducted, using the flapping mode (m = +/-1), to investigate the sensitivity of the results to various actuator parameters including: actuator model temperature, actuator duty cycle, and excitation frequency. It is shown by considering a Mach 1.3 jet at Reynolds number of 1 x 106 that the response of the jet is relatively insensitive to actuator model temperature within the limits of the experimentally measured temperature values. Furthermore, duty cycles in the range of 20%--90% were observed to be effective in reproducing the characteristic coherent structures of the flapping mode. Next, jet flow parameters were explored to determine the control authority under different operating conditions. To begin, the effect of the laminar nozzle exit boundary layer thickness was examined by varying its value from essentially uniform flow to 25% of the diameter. In the absence of control, the distance between the nozzle lip and the initial appearance of breakdown is proportional to the boundary-layer thickness, which is consistent with theory and previous results obtained by other researchers at Mach 0.9. The second flow parameter studied was the effect of Reynolds number on a Mach 1.3 jet controlled by the flapping mode at an excitation Strouhal number of 0.3. The higher Reynolds number (Re=1,100,000) jet exhibited reduced control authority compared to the Re=100,000 jet. Like the effect of increasing the nozzle exit boundary layer thickness, increasing the Reynolds number cause a reduction in spreading on the flapping plane
Electron vortex magnetic holes: A nonlinear coherent plasma structure
Energy Technology Data Exchange (ETDEWEB)
Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)
2015-01-15
We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.
Islam, M.S.; Oliveira, M.C.; Wang, Y.; Henry, F.P.; Randolph, M.A.; Park, B. H.; de Boer, J.F.
2012-01-01
We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT,
Large coil program support structure conceptual design
International Nuclear Information System (INIS)
Litherland, P.S.
1977-01-01
The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed
The origin of large scale cosmic structure
International Nuclear Information System (INIS)
Jones, B.J.T.; Palmer, P.L.
1985-01-01
The paper concerns the origin of large scale cosmic structure. The evolution of density perturbations, the nonlinear regime (Zel'dovich's solution and others), the Gott and Rees clustering hierarchy, the spectrum of condensations, and biassed galaxy formation, are all discussed. (UK)
Hybrid Laser Welding of Large Steel Structures
DEFF Research Database (Denmark)
Farrokhi, Farhang
Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....
Large-scale structure of the Universe
International Nuclear Information System (INIS)
Doroshkevich, A.G.
1978-01-01
The problems, discussed at the ''Large-scale Structure of the Universe'' symposium are considered on a popular level. Described are the cell structure of galaxy distribution in the Universe, principles of mathematical galaxy distribution modelling. The images of cell structures, obtained after reprocessing with the computer are given. Discussed are three hypothesis - vortical, entropic, adiabatic, suggesting various processes of galaxy and galaxy clusters origin. A considerable advantage of the adiabatic hypothesis is recognized. The relict radiation, as a method of direct studying the processes taking place in the Universe is considered. The large-scale peculiarities and small-scale fluctuations of the relict radiation temperature enable one to estimate the turbance properties at the pre-galaxy stage. The discussion of problems, pertaining to studying the hot gas, contained in galaxy clusters, the interactions within galaxy clusters and with the inter-galaxy medium, is recognized to be a notable contribution into the development of theoretical and observational cosmology
Coherent structural trapping through wave packet dispersion during photoinduced spin state switching
DEFF Research Database (Denmark)
Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert
2017-01-01
The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...
Tangible 3D modeling of coherent and themed structures
DEFF Research Database (Denmark)
Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik
2016-01-01
We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect......, this turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform......, allows the user to tangibly build structures of greater details than the blocks provide in and of themselves. We show a number of shapes that have been modeled by users and are indicative of the expressive power of the system. Furthermore, we demonstrate the scalability of the tangible interface which...
Maiuri, Margherita; Ostroumov, Evgeny E.; Saer, Rafael G.; Blankenship, Robert E.; Scholes, Gregory D.
2018-02-01
Femtosecond pulsed excitation of light-harvesting complexes creates oscillatory features in their response. This phenomenon has inspired a large body of work aimed at uncovering the origin of the coherent beatings and possible implications for function. Here we exploit site-directed mutagenesis to change the excitonic level structure in Fenna-Matthews-Olson (FMO) complexes and compare the coherences using broadband pump-probe spectroscopy. Our experiments detect two oscillation frequencies with dephasing on a picosecond timescale—both at 77 K and at room temperature. By studying these coherences with selective excitation pump-probe experiments, where pump excitation is in resonance only with the lowest excitonic state, we show that the key contributions to these oscillations stem from ground-state vibrational wavepackets. These experiments explicitly show that the coherences—although in the ground electronic state—can be probed at the absorption resonances of other bacteriochlorophyll molecules because of delocalization of the electronic excitation over several chromophores.
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
Challenges for Large Scale Structure Theory
CERN. Geneva
2018-01-01
I will describe some of the outstanding questions in Cosmology where answers could be provided by observations of the Large Scale Structure of the Universe at late times.I will discuss some of the theoretical challenges which will have to be overcome to extract this information from the observations. I will describe some of the theoretical tools that might be useful to achieve this goal.
Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach
Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.
2018-03-01
Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.
Modeling, Analysis, and Optimization Issues for Large Space Structures
Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)
1983-01-01
Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.
Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi
2017-07-04
BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.
Characterization of network structure in stereoEEG data using consensus-based partial coherence.
Ter Wal, Marije; Cardellicchio, Pasquale; LoRusso, Giorgio; Pelliccia, Veronica; Avanzini, Pietro; Orban, Guy A; Tiesinga, Paul He
2018-06-06
Coherence is a widely used measure to determine the frequency-resolved functional connectivity between pairs of recording sites, but this measure is confounded by shared inputs to the pair. To remove shared inputs, the 'partial coherence' can be computed by conditioning the spectral matrices of the pair on all other recorded channels, which involves the calculation of a matrix (pseudo-) inverse. It has so far remained a challenge to use the time-resolved partial coherence to analyze intracranial recordings with a large number of recording sites. For instance, calculating the partial coherence using a pseudoinverse method produces a high number of false positives when it is applied to a large number of channels. To address this challenge, we developed a new method that randomly aggregated channels into a smaller number of effective channels on which the calculation of partial coherence was based. We obtained a 'consensus' partial coherence (cPCOH) by repeating this approach for several random aggregations of channels (permutations) and only accepting those activations in time and frequency with a high enough consensus. Using model data we show that the cPCOH method effectively filters out the effect of shared inputs and performs substantially better than the pseudo-inverse. We successfully applied the cPCOH procedure to human stereotactic EEG data and demonstrated three key advantages of this method relative to alternative procedures. First, it reduces the number of false positives relative to the pseudo-inverse method. Second, it allows for titration of the amount of false positives relative to the false negatives by adjusting the consensus threshold, thus allowing the data-analyst to prioritize one over the other to meet specific analysis demands. Third, it substantially reduced the number of identified interactions compared to coherence, providing a sparser network of connections from which clear spatial patterns emerged. These patterns can serve as a starting
Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans
Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas
2018-03-01
Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.
Perkins, David Nikolaus; Gonzales, Antonio I
2014-04-08
A set of co-registered coherent change detection (CCD) products is produced from a set of temporally separated synthetic aperture radar (SAR) images of a target scene. A plurality of transformations are determined, which transformations are respectively for transforming a plurality of the SAR images to a predetermined image coordinate system. The transformations are used to create, from a set of CCD products produced from the set of SAR images, a corresponding set of co-registered CCD products.
Cooling pipeline disposing structure for large-scaled cryogenic structure
International Nuclear Information System (INIS)
Takahashi, Hiroyuki.
1996-01-01
The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)
Directory of Open Access Journals (Sweden)
Brent Knutson
2015-01-01
Full Text Available We present a study of three-dimensional Lagrangian coherent structures (LCS near the Hong Kong International Airport and relate to previous developments of two-dimensional (2D LCS analyses. The LCS are contrasted among three independent models and against 2D coherent Doppler light detection and ranging (LIDAR data. Addition of the velocity information perpendicular to the LIDAR scanning cone helps solidify flow structures inferred from previous studies; contrast among models reveals the intramodel variability; and comparison with flight data evaluates the performance among models in terms of Lagrangian analyses. We find that, while the three models and the LIDAR do recover similar features of the windshear experienced by a landing aircraft (along the landing trajectory, their Lagrangian signatures over the entire domain are quite different—a portion of each numerical model captures certain features resembling those LCS extracted from independent 2D LIDAR analyses based on observations.
Meta-Structures: The Search of Coherence in Collective Behaviours (without Physics
Directory of Open Access Journals (Sweden)
Eliano Pessa
2013-09-01
Full Text Available This contribution shortly outlines and reviews a theoretical and computational approach for a theory of change concerning systems where it is not possible to apply the laws of motion ab initio. The concept of meta-structure relates to the emergence of forms of spatiotemporal coherences in collective behaviours intended as coherent sequences of multiple structures. The essential difference compared with traditional methods is the role of the cognitive design by the observer when identifying multiple mesoscopic variables. The goal is both to study the "change without physics" of the dynamics of change and to design non-catastrophic interventions having the purpose to induce, change, keep or restore collective behaviours by influencing -at the mesoscopic level -and not prescribing explicit rules and changes.
Analysis of the Impact Caused by Coherent Structures in Swirling Flow Combustion Systems
Directory of Open Access Journals (Sweden)
Valera-Medina A.
2012-04-01
Full Text Available Amongst the technologies used in the energy and propulsion generation for the reduction of emissions, the use of swirling flows has demonstrated its high performance in anchoring the flame inside of the combustion systems. This, added to the use of premixing in the pre-chambers, has created one of the most innovative methods for the reduction of highly polluting particles such as NOx. However, the lack of understanding of these flows makes it necessary to increase the research on the topic in order to clarify themes as complex as the role of the coherent structures inside of the system. This paper explains some of the phenomena produced by some of the coherent structures observed in the system. The results showed the existence of complex Recirculation Zones (RZ, Precessing Vortex Core (PVC and Combustion Induced Vortex Breakdown (CIVB.
Wavelet tree structure based speckle noise removal for optical coherence tomography
Yuan, Xin; Liu, Xuan; Liu, Yang
2018-02-01
We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.
Neutrinos and large-scale structure
International Nuclear Information System (INIS)
Eisenstein, Daniel J.
2015-01-01
I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos
Puzzles of large scale structure and gravitation
International Nuclear Information System (INIS)
Sidharth, B.G.
2006-01-01
We consider the puzzle of cosmic voids bounded by two-dimensional structures of galactic clusters as also a puzzle pointed out by Weinberg: How can the mass of a typical elementary particle depend on a cosmic parameter like the Hubble constant? An answer to the first puzzle is proposed in terms of 'Scaled' Quantum Mechanical like behaviour which appears at large scales. The second puzzle can be answered by showing that the gravitational mass of an elementary particle has a Machian character (see Ahmed N. Cantorian small worked, Mach's principle and the universal mass network. Chaos, Solitons and Fractals 2004;21(4))
Neutrinos and large-scale structure
Energy Technology Data Exchange (ETDEWEB)
Eisenstein, Daniel J. [Daniel J. Eisenstein, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS #20, Cambridge, MA 02138 (United States)
2015-07-15
I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.
Directory of Open Access Journals (Sweden)
F. S. Rodrigues
2008-10-01
Full Text Available The 30 MHz coherent backscatter radar located at the equatorial observatory in São Luís, Brazil (2.59° S, 44.21° W, −2.35° dip lat has been upgraded to perform coherent backscatter radar imaging. The wide field-of-view of this radar makes it well suited for radar imaging studies of ionospheric irregularities. Radar imaging observations were made in support to the spread F Experiment (SpreadFEx campaign. This paper describes the system and imaging technique and presents results from a bottom-type layer that preceded fully-developed radar plumes on 25 October 2005. The radar imaging technique was able to resolve decakilometric structures within the bottom-type layer. These structures indicate the presence of large-scale waves (~35 km in the bottomside F-region with phases that are alternately stable and unstable to wind-driven gradient drift instabilities. The observations suggest that these waves can also cause the initial perturbation necessary to initiate the Generalized Rayleigh-Taylor instability leading to spread F. The electrodynamic conditions and the scale length of the bottom-type layer structures suggest that the waves were generated by the collisional shear instability. These results indicate that monitoring bottom-type layers may provide helpful diagnostics for spread F forecasting.
Coherent structures at ion scales in fast and slow solar wind: Cluster observations
Perrone, D.; Alexandrova, O.; Zouganelis, Y.; Roberts, O.; Lion, S.; Escoubet, C. P.; Walsh, A. P.; Maksimovic, M.; Lacombe, C.
2017-12-01
Spacecraft measurements generally reveal that solar wind electromagnetic fluctuations are in a state of fully-developed turbulence. Turbulence represents a very complex problem in plasmas since cross-scale coupling and kinetic effects are present. Moreover, the intermittency phenomenon, i.e. the manifestation of the non-uniform and inhomogeneous energy transfer and dissipation in a turbulent system, represents a very important aspect of the solar wind turbulent cascade. Here, we study coherent structures responsible for solar wind intermittency around ion characteristic scales. We find that, in fast solar wind, intermittency is due to Alfvén vortex-like structures and current sheets. In slow solar wind, we observe as well compressive structures like magnetic solitons, holes and shocks. By using high-time resolution magnetic field data of multi-point measurements of Cluster spacecraft, we characterize the observed coherent structures in terms of topology and propagation speed. We show that all structures around ion characteristic scales, both in fast and slow solar wind, are characterized by a strong wave-vector anisotropy in the perpendicular direction with respect to the local magnetic field. Moreover, some of them propagate in the plasma rest frame in the direction perpendicular to the local field. Finally, a further analysis on the electron and ion velocity distributions shows a high variability; in particular, close to coherent structures the electron and ion distribution functions appear strongly deformed and far from the thermodynamic equilibrium. Possible interpretations of the observed structures and their role in the heating process of the plasma are also discussed.
Critical joints in large composite aircraft structure
Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.
1983-01-01
A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.
Dipolar modulation of Large-Scale Structure
Yoon, Mijin
For the last two decades, we have seen a drastic development of modern cosmology based on various observations such as the cosmic microwave background (CMB), type Ia supernovae, and baryonic acoustic oscillations (BAO). These observational evidences have led us to a great deal of consensus on the cosmological model so-called LambdaCDM and tight constraints on cosmological parameters consisting the model. On the other hand, the advancement in cosmology relies on the cosmological principle: the universe is isotropic and homogeneous on large scales. Testing these fundamental assumptions is crucial and will soon become possible given the planned observations ahead. Dipolar modulation is the largest angular anisotropy of the sky, which is quantified by its direction and amplitude. We measured a huge dipolar modulation in CMB, which mainly originated from our solar system's motion relative to CMB rest frame. However, we have not yet acquired consistent measurements of dipolar modulations in large-scale structure (LSS), as they require large sky coverage and a number of well-identified objects. In this thesis, we explore measurement of dipolar modulation in number counts of LSS objects as a test of statistical isotropy. This thesis is based on two papers that were published in peer-reviewed journals. In Chapter 2 [Yoon et al., 2014], we measured a dipolar modulation in number counts of WISE matched with 2MASS sources. In Chapter 3 [Yoon & Huterer, 2015], we investigated requirements for detection of kinematic dipole in future surveys.
High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure
International Nuclear Information System (INIS)
Lund, M.W.
1989-01-01
The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane
Chen, Aixi
2014-11-03
In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.
Coherent Structure Dynamics and Turbulent Effects of Horizontal Axis Marine Energy Devices
Gajardo, D. I.; Escauriaza, C. R.; Ingram, D.
2016-12-01
Harnessing the energy available in the oceans constitutes one of the most promising alternatives for generating clean electricity. There are vast amounts of energy present both in waves and tidal currents so it is anticipated that marine energy will have a major role in non-conventional renewable energy generation in the near to mid future. Nevertheless, before marine hydrokinetic (MHK) devices can be installed in large numbers a better understanding of the physical, social and environmental implications of their operation is needed. This includes understanding the: hydrodynamic processes, interaction with bathymetry, and the local flow characteristics. This study is focused on the effects horizontal axis MHK devices have on flow turbulence and coherent structures. This is especially relevant considering that sites with favourable conditions for MHK devices are tidal channels where a delicate balance exists between the strong tidal currents and the ecosystems. Understanding how MHK devices influence flow conditions, turbulence and energy flux is essential for predicting and assessing the environmental implications of deploying MHK technologies. We couple a Blade Element Momentum Actuator Disk (BEM-AD) model to a Detached Eddy Simulation (DES) flow solver in order to study flow conditions for different configurations of horizontal axis MHK turbines. In this study, we contribute to the understanding of the hydrodynamic behaviour of MHK technologies, and give insights into the effects devices will have on their environment, with emphasis in ambient turbulence and flow characteristics, while keeping in mind that these effects can alter electricity quality and device performance. Work supported by CONICYT grant 80160084, Fondecyt grant 1130940, Chile's Marine Energy Research & Innovation Center (MERIC) CORFO project 14CEI2-28228, and the collaboration between the Pontificia Universidad Católica de Chile and the University of Edinburgh, UK, partially supported by the RC
Grid sensitivity capability for large scale structures
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Numerical studies of unsteady coherent structures and transport in two-dimensional flows
Energy Technology Data Exchange (ETDEWEB)
Hesthaven, J.S.
1995-08-01
The dynamics of unsteady two-dimensional coherent structures in various physical systems is studied through direct numerical solution of the dynamical equations using spectral methods. The relation between the Eulerian and the Lagrangian auto-correlation functions in two-dimensional homogeneous, isotropic turbulence is studied. A simple analytic expression for the Eulerian and Lagrangian auto-correlation function for the fluctuating velocity field is derived solely on the basis of the one-dimensional power spectrum. The long-time evolution of monopolar and dipolar vortices in anisotropic systems relevant for geophysics and plasma physics is studied by direct numerical solution. Transport properties and spatial reorganization of vortical structures are found to depend strongly on the initial conditions. Special attention is given to the dynamics of strong monopoles and the development of unsteady tripolar structures. The development of coherent structures in fluid flows, incompressible as well as compressible, is studied by novel numerical schemes. The emphasis is on the development of spectral methods sufficiently advanced as to allow for detailed and accurate studies of the self-organizing processes. (au) 1 ill., 94 refs.
International Nuclear Information System (INIS)
Su Jiqiang; Sun Zhongning; Fan Guangming; Wang Shiming
2013-01-01
The long stripe coherent structure of the turbulent boundary layer in a small- scale vertical rectangular channel was observed by using hydrogen bubble flow trace visualization technique. The statistical properties of the long stripe in the experimental channel boundary layer were compared with that in the smooth flat plate boundary layer. The pitch characteristics were explained by the formation mechanism of the long stripe. It was analyzed that how the change of y + affected the distribution of the long stripe. In addition, the frequency characteristics of the long stripe were also investigated, and the correlation of the long stripe frequency in such a flow channel was obtained. (authors)
Mirror dark matter and large scale structure
International Nuclear Information System (INIS)
Ignatiev, A.Yu.; Volkas, R.R.
2003-01-01
Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter
Modification of near-wall coherent structures in polymer drag reduced flow: simulation
Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva
2002-11-01
Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.
Influence of Plasma Biasing on Coherent Structures in TJ-K
Ramisch, M.; Greiner, F.; Lechte, C.; Mahdizadeh, N.; Rahbarnia, K.; Stroth, U.
2003-10-01
Poloidal shear flows play an important role in the improvement of plasma confinement in fusion devices. They limit the radial correlation length via the shear decorrelation mechanism [1] and can trigger transitions into transport barriers. External biasing can be used to drive poloidal shear flows [2] in order to study the decorrelation mechanism. The torsatron TJ-K is operated with low-temperature plasmas produced by ECRH. Coherent and quasi-coherent structures have been observed [3]. Their structure size varies according to the drift scale ρ_s. The influence of biasing on these structures is investigated by means of electrostatic probes. Electron density fluctuations as well as fluctuations of the floating potential tend to decrease in the presence of a positively biased probe. The evolution of radial electric field, poloidal flow and radial transport are investigated for different plasma parameters using a 2D Langmuir probe array with 64 tips in comparison with two-point correlation measurements. First results are presented. [1] H. Biglari et al., Phys. Fluids B 2, p. 1 (1990); [2] R. J. Taylor et al., Phys. Rev. Lett. 63, 21, p. 2365 (1989); [3] C. Lechte, PhD-Thesis, CAU Kiel (2003)
Worsnop, Rochelle P.; Bryan, George H.; Lundquist, Julie K.; Zhang, Jun A.
2017-10-01
Offshore wind-energy development is planned for regions where hurricanes commonly occur, such as the USA Atlantic Coast. Even the most robust wind-turbine design (IEC Class I) may be unable to withstand a Category-2 hurricane (hub-height wind speeds >50 m s^{-1}). Characteristics of the hurricane boundary layer that affect the structural integrity of turbines, especially in major hurricanes, are poorly understood, primarily due to a lack of adequate observations that span typical turbine heights (wind profiles of an idealized Category-5 hurricane at high spatial (10 m) and temporal (0.1 s) resolution. By comparison with unique flight-level observations from a field project, we find that a relatively simple configuration of the Cloud Model I model accurately represents the properties of Hurricane Isabel (2003) in terms of mean wind speeds, wind-speed variances, and power spectra. Comparisons of power spectra and coherence curves derived from our hurricane simulations to those used in current turbine design standards suggest that adjustments to these standards may be needed to capture characteristics of turbulence seen within the simulated hurricane boundary layer. To enable improved design standards for wind turbines to withstand hurricanes, we suggest modifications to account for shifts in peak power to higher frequencies and greater spectral coherence at large separations.
Liu, Xuan; Zaki, Farzana; Wang, Yahui; Huang, Qiongdan; Mei, Xin; Wang, Jiangjun
2017-03-10
Optical coherence tomography (OCT) allows noncontact acquisition of fingerprints and hence is a highly promising technology in the field of biometrics. OCT can be used to acquire both structural and microangiographic images of fingerprints. Microangiographic OCT derives its contrast from the blood flow in the vasculature of viable skin tissue, and microangiographic fingerprint imaging is inherently immune to fake fingerprint attack. Therefore, dual-modality (structural and microangiographic) OCT imaging of fingerprints will enable more secure acquisition of biometric data, which has not been investigated before. Our study on fingerprint identification based on structural and microangiographic OCT imaging is, we believe, highly innovative. In this study, we performed OCT imaging study for fingerprint acquisition, and demonstrated the capability of dual-modality OCT imaging for the identification of fake fingerprints.
Directory of Open Access Journals (Sweden)
Kang Ma
2017-01-01
Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.
Automated measurement of CT noise in patient images with a novel structure coherence feature
International Nuclear Information System (INIS)
Chun, Minsoo; Kim, Jong Hyo; Choi, Young Hun
2015-01-01
While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC = 0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCC within = 0.75, PCC between = 0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine. (paper)
Emergence of coherent localized structures in shear deformations of temperature dependent fluids
Katsaounis, Theodoros
2016-11-25
Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.
Structure and motion of junctions between coherent and incoherent twin boundaries in copper
Energy Technology Data Exchange (ETDEWEB)
Brown, J.A. [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States); Ghoniem, N.M., E-mail: ghoniem@ucla.edu [Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095 (United States)
2009-09-15
The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent {Sigma}=3[110](112) twin boundary (ITB), pinned between two {Sigma}=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.
Structure and motion of junctions between coherent and incoherent twin boundaries in copper
International Nuclear Information System (INIS)
Brown, J.A.; Ghoniem, N.M.
2009-01-01
The atomic mechanisms of twin boundary migration in copper under externally applied mechanical loads and during thermal annealing are investigated utilizing molecular dynamics computer simulations. The migration dynamics of the incoherent Σ=3[110](112) twin boundary (ITB), pinned between two Σ=3[110](111) twin boundaries, is determined. A three-dimensional structural model is described for the junction between intersecting coherent and incoherent twin boundaries, and migration velocities are calculated under thermal annealing conditions. It is shown that the coherent twin boundary (CTB)/ITB junction results in breaking the crystal symmetry by creation of either an edge dislocation or a mixed (edge/screw) at the intersection. These two types of defects can lead to pronounced differences in the observed migration (and hence annealing) rates of ICT/CTB junctions. The annealing rate resulting from the migration of ITBs with a mixed dislocation is found to be more than twice that of the edge dislocation. The mechanism of ITB motion is shown to be governed by successive kink-like motion of neighboring atomic columns, each of which is shifted by 1/4[1 1 0], followed by structural relaxation to accommodate boundary motion.
Coherent structures in ablatively compressed ICF targets and Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Pant, H.C.; Desai, T.
1996-01-01
One of the major issues in laser induced inertial confinement fusion (ICF) is a stable ablative compression of spherical fusion pellets. The main impediment in achievement of this objective is Rayleigh-Taylor instability at the pellet's ablation front. Under sufficiently high acceleration this instability can grow out of noise. However, it can also arise either due to non-uniform laser intensity distribution over the pellet surface or due to pellet wall areal mass irregularity. Coherent structures in the dense target behind the ablation front can be effectively utilised for stabilisation of the Rayleigh-Taylor phenomenon. Such coherent structures in the form of a super lattice can be created by doping the pellet pusher with high atomic number (Z) micro particles. A compressed-cool pusher under laser irradiation behaves like a strongly correlated non ideal plasma when compressed to sufficiently high density such that the non ideality parameter exceeds unity. Moreover, the nonideality parameter for high Z microinclusions may exceed a critical value of 180 and as a consequence they remain in the form of intact clusters, maintaining the superlattice intact during ablative acceleration. Micro-hetrogeneity and its superlattice plays an important role in stabilization of Rayleigh-Taylor instability, through a variety of mechanisms. (orig.)
Emergence of coherent localized structures in shear deformations of temperature dependent fluids
Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios
2016-01-01
Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\cite{KT}.
DEFF Research Database (Denmark)
Zhang, Jingdong; Kuznetsov, A.M.; Ulstrup, Jens
2003-01-01
Theories of in situ scanning tunnelling microscopy (STM) of molecules with redox levels near the substrate and tip Fermi levels point to 'spectroscopic' current-overpotential features. Prominent features require a narrow 'probing tip', i.e. a small bias voltage, eV(bias), compared...... a broad tunnelling current-overpotential range at a constant (large) bias voltage of +0.2 V. The current is found to be constant over a 0.25 V overpotential range, which covers roughly the range where the oxidised and reduced redox levels are located within the energy tip. STM contrast and apparent...... of previous theoretical work on in situ STM of redox molecules, to large bias voltages, \\eV(bias)\\ > E-r. Large bias voltages give tunnelling contrasts independent of the overpotential over a broad range, as both the oxidised and reduced redox levels are located within the 'energy tip' between the substrate...
Pietarinen, Janne; Pyhältö, Kirsi; Soini, Tiina
2017-01-01
The study aims to gain a better understanding of the national large-scale curriculum process in terms of the used implementation strategies, the function of the reform, and the curriculum coherence perceived by the stakeholders accountable in constructing the national core curriculum in Finland. A large body of school reform literature has shown…
Im, Jong Chan; Kim, Jong Ho; Park, Dong Ho; Shin, Jae Pil
2017-01-01
This study aimed to evaluate the relationship between macular structural changes and visual prognosis after pars plana vitrectomy (PPV) for proliferative diabetic retinopathy. The study included 60 eyes that had undergone PPV. Macular optical coherence tomography (OCT) findings were classified into 5 groups preoperatively and 10 groups postoperatively. Best-corrected visual acuity (BCVA) were analyzed according to pre- and postoperative OCT. From the preoperative OCT, normal fovea with/without traction, normal fovea with preretinal hemorrhage, and tractional retinal detachment involving fovea showed an increase in BCVA after PPV (all p 20/50). Subfoveal fibrosis, macular hole, loss of foveal depression, and serous foveal detachment showed poor visual prognosis (BCVA <20/100). Macular structural changes were various after PPV, and visual prognosis correlated with these changes. © 2017 S. Karger AG, Basel.
Bernas, Antoine; Barendse, Evelien M; Zinger, Svitlana; Aldenkamp, Albert P.
Neurodynamics is poorly understood and has raised interest of neuroscientists over the past decade. When a brain pathology cannot be described through structural or functional brain analyses, neurodynamics based descriptors might be the only option to understand a pathology and maybe predict its
UHPFRC in large span shell structures
Ter Maten, R.N.; Grunewald, S.; Walraven, J.C.
2013-01-01
Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC) is an innovative concrete type with a high compressive strength and a far more durable character compared to conventional concrete. UHPFRC can be applied in structures with aesthetic appearance and high material efficiency. Shell structures
International Nuclear Information System (INIS)
Khabbouchi, Imed; Guellouz, Mohamed Sadok; Tavoularis, Stavros
2009-01-01
Synchronised hot-film and hot-wire measurements were made in the narrower region of a rectangular channel containing a cylindrical rod. The hot-film probe was mounted flush with the channel bottom wall to measure the wall shear stress, while the hot-wire probe was placed at a fixed position, selected in order to easily detect the passage of coherent structures. Mean and rms profiles of the wall shear stress show the influence of the gap to diameter ratio on their respective distributions. The latter presented peculiarities that could only be explained by the presence of coherent structures in the flow between the rod and the wall. Evidence of this presence is seen in the velocity power spectra. The strong influence of the coherent structures on the wall shear stress spatial and temporal distributions is established through velocity-wall shear stress cross-correlations functions and through conditionally sampled measurements
Exact coherent structures in an asymptotically reduced description of parallel shear flows
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith
2015-02-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
Exact coherent structures in an asymptotically reduced description of parallel shear flows
International Nuclear Information System (INIS)
Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P; Julien, Keith
2015-01-01
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows. (paper)
Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.
2008-12-01
In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.
Baños, Rocío; Pastor, Daniel; Amaya, Waldimar; Garcia-Munoz, Victor
2012-06-18
We have proposed, fabricated and demonstrated experimentally a set of Coherent Direct Sequence-OCDMA en/decoders based on Super Structured Fiber Bragg Gratings (SSFBGs) which are able to compensate the fiber chromatic dispersion at the same time that they perform the en/decoding task. The proposed devices avoid the use of additional dispersion compensation stages reducing system complexity and losses. This performance was evaluated for 5.4, 11.4 and 16.8 km of SSMF. The twofold performance was verified in Low Reflectivity regime employing only one GVD compensating device at decoder or sharing out the function between encoder and decoder devices. Shared functionality requires shorter SSFBGs designs and also provides added flexibility to the optical network design. Moreover, dispersion compensated en/decoders were also designed into the High Reflectivity regime employing synthesis methods achieving more than 9 dB reduction of insertion loss for each device.
Energy Technology Data Exchange (ETDEWEB)
Tsujimura, S.; Iida, O.; Nagano, Y. [Nagoya Institute of Technology, Nagoya (Japan)
1998-10-25
The coherent structure and relevant heat transport in geostrophic flows under various density stratification has been studied by using both direct numerical simulation and rapid distortion theory. It is found that in a neutrally stratified flow under system rotation, the temperature fluctuations become very close to two-dimensional and their variation is very small in the direction parallel to the axis of rotation. Under the stable stratification, the velocity and temperature fluctuations tend to oscillate with the Brunt-Vaisala frequency. Under the unstable stratification, on the other hand, vortex columns are formed in the direction parallel to the axis of rotation. However, the generation of the elongated vortex columns cannot be predicted by the rapid distortion theory. The non-linear term is required to generate these characteristic vortex columns. 11 refs., 18 figs., 1 tab.
Feng, Kairui; Zhou, Kanheng; Ling, Yuting; O'Mahoney, Paul; Ewan, Eadie; Ibbotson, Sally H.; Li, Chunhui; Huang, Zhihong
2018-02-01
Ablative fractional skin laser is widely applied for various skin conditions, especially for cosmetic repairing and promoting the located drug delivery. Although the influence of laser treatment over the skin has been explored before in means of excision and biopsy with microscopy, these approaches are invasive, only morphological and capable of distorting the skin. In this paper the authors use fresh porcine skin samples irradiated by the lasers, followed by detected by using Optical Coherence Tomography (OCT). This advanced optical technique has the ability to present the high resolution structure image of treated sample. The results shows that laser beams can produce holes left on the surface after the irradiation. The depth of holes can be affected by changes of laser energy while the diameter of holes have no corresponding relation. Plus, OCT, as a valuable imaging technology, is capable of monitoring the clinical therapy procedure and assisting the calibration.
Lumpkin, Alex H; Rule, D W
2001-01-01
We report the initial measurements of subpicosecond electron beam structure using a nonintercepting technique based on the autocorrelation of coherent diffraction radiation (CDR). A far infrared (FIR) Michelson interferometer with a Golay detector was used to obtain the autocorrelation. The radiation was generated by a thermionic rf gun beam at 40 MeV as it passed through a 5-mm-tall slit/aperture in a metal screen whose surface was at 45 deg. to the beam direction. For the observed bunch lengths of about 450 fs (FWHM) with a shorter time spike on the leading edge, peak currents of about 100 A are indicated. Also a model was developed and used to calculate the CDR from the back of two metal strips separated by a 5-mm vertical gap. The demonstrated nonintercepting aspect of this method could allow on-line bunch length characterizations to be done during free-electron laser experiments.
Chong, Christopher
2018-01-01
This book summarizes a number of fundamental developments at the interface of granular crystals and the mathematical and computational analysis of some of their key localized nonlinear wave solutions. The subject presents a blend of the appeal of granular crystals as a prototypical engineering tested for a variety of diverse applications, the novelty in the nonlinear physics of its coherent structures, and the tractability of a series of mathematical and computational techniques to analyse them. While the focus is on principal one-dimensional solutions such as shock waves, traveling waves, and discrete breathers, numerous extensions of the discussed patterns, e.g., in two dimensions, chains with defects, heterogeneous settings, and other recent developments are discussed. The book appeals to researchers in the field, as well as for graduate and advanced undergraduate students. It will be of interest to mathematicians, physicists and engineers alike.
International Nuclear Information System (INIS)
Gigante, G.E.; Sciuti, S.
1985-01-01
In this paper, experiments and related theoretical deductions on coherent/Compton scattering of 59.5-keV Am241 gamma line by bonelike materials are described. In particular, the authors demonstrate that a photon scattering mineralometer (PSM) can attain the best working conditions when it operates in a backscattering geometry mode. In fact, the large scattering angle they chose, theta = 135 degrees, allowed them to assemble a very compact source-detector device. Further, the relative sensitivity at 135 degrees turns out to be congruent to 1.7 and congruent to 6 times bigger than at 90 degrees and 45 degrees, respectively. The performances of the theta = 135 degrees PSM were experimentally investigated; i.e., in a measuring time of 10(3) s, a congruent to 5% statistical precision for bonelike materials, such as K 2 HPO 4 -water solutions, was obtained. The large-angle PSM device seems to be very promising for trabecular bone mineral density measurements in vivo in peripheral anatomic sites
Wall-based identification of coherent structures in wall-bounded turbulence
Sanmiguel Vila, C.; Flores, O.
2018-04-01
During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.
Control of large flexible space structures
Vandervelde, W. E.
1986-01-01
Progress in robust design of generalized parity relations, design of failure sensitive observers using the geometric system theory of Wonham, computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management features, and the design and evaluation od control systems for structures having nonlinear joints are described.
Inflation, large scale structure and particle physics
Indian Academy of Sciences (India)
Logo of the Indian Academy of Sciences ... Hybrid inflation; Higgs scalar field; structure formation; curvation. ... We then discuss a particle physics model of supersymmetric hybrid inflation at the intermediate scale in which ... May 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board ...
Lattice models for large-scale simulations of coherent wave scattering
Wang, Shumin; Teixeira, Fernando L.
2004-01-01
Lattice approximations for partial differential equations describing physical phenomena are commonly used for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of Maxwell’s equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost because of the so-called grid dispersion. Since it is a cumulative effect, grid dispersion is particularly harmful for the accuracy of results of large-scale simulations of scattering problems. Grid dispersion is usually combated by either increasing the lattice resolution or by employing higher-order schemes with larger stencils for the space and time derivatives. Both alternatives lead to increased computational cost to simulate a problem of a given physical size. Here, we introduce a general approach to develop lattice approximations with reduced grid dispersion error for a given stencil (and hence at no additional computational cost). The present approach is based on first obtaining stencil coefficients in the Fourier domain that minimize the maximum grid dispersion error for wave propagation at all directions (minimax sense). The resulting coefficients are then expanded into a Taylor series in terms of the frequency variable and incorporated into time-domain (update) equations after an inverse Fourier transformation. Maximally flat (Butterworth) or Chebyshev filters are subsequently used to minimize the wave speed variations for a given frequency range of interest. The use of such filters also allows for the adjustment of the grid dispersion characteristics so as to minimize not only the local dispersion error but also the accumulated phase error in a frequency range of interest.
Testing for structural changes in large portfolios
Posch, Peter N.; Ullmann, Daniel; Wied, Dominik
2015-01-01
Model free tests for constant parameters often fail to detect structural changes in high dimensions. In practice, this corresponds to a portfolio with many assets and a reasonable long time series. We reduce the dimensionality of the problem by looking a compressed panel of time series obtained by cluster analysis and the principal components of the data. Using our methodology we are able to extend a test for a constant correlation matrix from a sub portfolio to whole indices a...
Large Scale Testing of Drystone Retaining Structures
Mundell, Chris
2009-01-01
Drystone walls have been used extensively around the world as earth retaining structures wherever suitable stone is found. Commonly about 0.6m thick (irrespective of height), there are about 9000km of drystone retaining walls on the UK road network alone, mostly built in the 19th and early 20th centuries, with an estimated replacement value in excess of £1 billion[1]. Drystone wall design is traditionally empirical, based on local knowledge of what has worked in the past. Methods vary from re...
Measuring structural similarity in large online networks.
Shi, Yongren; Macy, Michael
2016-09-01
Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences. Copyright © 2016 Elsevier Inc. All rights reserved.
Saarinen, Jukka; Sözeri, Erkan; Fraser-Miller, Sara J; Peltonen, Leena; Santos, Hélder A; Isomäki, Antti; Strachan, Clare J
2017-05-15
We have used coherent anti-Stokes Raman scattering (CARS) microscopy as a novel and rapid, label-free and non-destructive imaging method to gain structural insights into live intestinal epithelial cell cultures used for drug permeability testing. Specifically we have imaged live Caco-2 cells in (bio)pharmaceutically relevant conditions grown on membrane inserts. Imaging conditions were optimized, including evaluation of suitable membrane materials and media solutions, as well as tolerable laser powers for non-destructive imaging of the live cells. Lipid structures, in particular lipid droplets, were imaged within the cells on the insert membranes. The size of the individual lipid droplets increased substantially over the 21-day culturing period up to approximately 10% of the volume of the cross section of individual cells. Variation in lipid content has important implications for intestinal drug permeation testing during drug development but has received limited attention to date due to a lack of suitable analytical techniques. CARS microscopy was shown to be well suited for such analysis with the potential for in situ imaging of the same individual cell-cultures that are used for permeation studies. Overall, the method may be used to provide important information about cell monolayer structure to better understand drug permeation results. Copyright © 2017 Elsevier B.V. All rights reserved.
Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.
2016-09-01
An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner
2015-12-01
The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.
Responses in large-scale structure
Energy Technology Data Exchange (ETDEWEB)
Barreira, Alexandre; Schmidt, Fabian, E-mail: barreira@MPA-Garching.MPG.DE, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ''bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients , which are only a function of the hard wavenumber k . Further, the responses up to n -th order completely describe the ( n +2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance Cov{sup NG}{sub ℓ=0}( k {sub 1}, k {sub 2}), in the limit where one of the modes, say k {sub 2}, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k {sub 2} ∼< 0.06 h Mpc{sup −1}, and for any k {sub 1} ∼> 2 k {sub 2}. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
Responses in large-scale structure
Barreira, Alexandre; Schmidt, Fabian
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
Probes of large-scale structure in the Universe
International Nuclear Information System (INIS)
Suto, Yasushi; Gorski, K.; Juszkiewicz, R.; Silk, J.
1988-01-01
Recent progress in observational techniques has made it possible to confront quantitatively various models for the large-scale structure of the Universe with detailed observational data. We develop a general formalism to show that the gravitational instability theory for the origin of large-scale structure is now capable of critically confronting observational results on cosmic microwave background radiation angular anisotropies, large-scale bulk motions and large-scale clumpiness in the galaxy counts. (author)
Structure of Sn1−xGex random alloys as obtained from the coherent potential approximation
Pulikkotil, J. J.; Chroneos, A.; Schwingenschlö gl, Udo
2011-01-01
The structure of the Sn1−xGex random alloys is studied using density functional theory and the coherent potential approximation. We report on the deviation of the Sn1−xGex alloys from Vegard’s law, addressing their full compositional range
Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.
2018-04-01
High-quality OCT structural images reconstruction algorithm for endoscopic optical coherence tomography of biological tissue is described. The key features of the presented algorithm are: (1) raster scanning and averaging of adjacent Ascans and pixels; (2) speckle level minimization. The described algorithm can be used in the gastroenterology, urology, gynecology, otorhinolaryngology for mucous membranes and skin diagnostics in vivo and in situ.
Clark, Douglas B.; D'Angelo, Cynthia M.; Schleigh, Sharon P.
2011-01-01
This study investigates the ongoing debate in the conceptual change literature between unitary and elemental perspectives on students' knowledge structure coherence. More specifically, the current study explores two potential explanations for the conflicting results reported by Ioannides and Vosniadou (2002)and diSessa, Gillespie, and Esterly…
Czech Academy of Sciences Publication Activity Database
Horáček, Jaromír; Šidlof, Petr; Uruba, Václav; Veselý, Jan; Radolf, Vojtěch; Bula, Vítězslav
2010-01-01
Roč. 55, č. 4 (2010), s. 327-343 ISSN 0001-7043 R&D Projects: GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : biomechanics of voice * voice production modeling * PIV method * coherent structures Subject RIV: BI - Acoustics
Nonlinear wave forces on large ocean structures
Huang, Erick T.
1993-04-01
This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.
Directory of Open Access Journals (Sweden)
Pearse A Keane
Full Text Available To describe an approach to the use of optical coherence tomography (OCT imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness.In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon. Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL. This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion.67,321 participants (134,642 eyes in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days.We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate
Mordant, Nicolas; Miquel, Benjamin
2017-10-01
We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
Directory of Open Access Journals (Sweden)
Masaki Tanito
2017-01-01
Full Text Available Introduction. Intraoperative observation of ocular structures using microscope-integrated optical coherence tomography (iOCT has been adopted recently. I report my initial feasibility assessment of iOCT for the incised trabecular meshwork observation during microhook ab interno trabeculotomy. Case Series. Both the nasal and temporal sides or either side of the trabecular meshwork/inner wall of Schlemm’s canal was incised more than 3 clock hours. After then, under observation using a Swan-Jacob gonioprism lens with the real-time 5-line scan mode, OCT images of the area were successfully acquired in 10 (83% of 12 sides in nine eyes. Based on the appearance of the acquired images of the 10 sides, the trabeculotomy cleft could be classified into three incisional patterns, that is, six (60% anterior-opening patterns (posterior-based flap, three (30% middle-opening patterns (posterior- and anterior-based flaps, and one (10% posterior-opening pattern (anterior-based flap, according to the predominant locations of the trabecular meshwork flaps. Conclusion. Intraoperative observation of the gonio structures including the trabeculotomy cleft was feasible using the RESCAN 700 in combination with a gonioprism.
Determine Age-structure of Gelatinous Zooplankton Using Optical Coherence Tomography
Bi, H.; Shahrestani, S.; He, Y.
2016-02-01
Gelatinous are delicate and transparent by nature, but are conspicuous in many ecosystems when in bloom. Their proliferations are a bothersome and costly nuisance and influencing important food webs and species interactions. More importantly, gelatinous zooplankton respond to climate change rapidly and understanding their upsurge needs information on their recruitment and population dynamics which in turn require their age-structure. However, ageing gelatinous zooplankton is often restricted by the fact that they shrink under unfavorable conditions. In the present study, we examine the potential of using optical coherence tomography (OCT) to age gelatinous zooplankton. OCT is a non-invasive imaging technique that uses light waves to examine 2D or 3D structure of target objects at a resolution of 3-5 µm. We were able to successfully capture both 3D and 2D images of sea nettle muscle fibers. Preliminary results on ctenophores will be discussed. Overall, this non-destructive sampling allows us to scan and capture images of mesoglea from jellyfish cultured in the lab, using the same individual repeatedly through time, documenting its growth which will provide precise measurements to construct an age key that will be applied to gelatinous zooplankton captured in the field. Coupled with information on abundance, we can start to quantify their recruitment timing and success rate.
International Nuclear Information System (INIS)
Ishitsuka, Shota; Motozawa, Masaaki; Kawaguchi, Yasuo; Iwamoto, Kaoru; Ando, Hirotomo; Senda, Tetsuya
2011-01-01
Coherent vortex structure in turbulent drag-reducing channel flow with blown polymer solution from the wall was investigated. As a statistical analysis, we carried out Galilean decomposition, swirling strength and linear stochastic estimation of the PIV data obtained by the PIV measurement in x – y plane. Reynolds number based on bulk velocity and channel height was set to 40000. As a result, the angle of shear layer that cleared up by using Galilean decomposition becomes small in the drag-reducing flow. Q3 events were observed near the shear layer. In addition, as a result of linear stochastic estimation (LSE) based on swirling strength, we confirmed that the velocity under the vortex core is strong in the water flow. This result shows Q2 (ejection) are dominant in the water flow. However, in the drag-reducing flow with blown polymer solution, the velocity above the vortex core become strong, that is, Q4 (sweep) events are relatively strong around the vortex core. This is the result of Q4 events to come from the channel center region because the polymer solution does not exist in this region. The typical structure like this was observed in the drag -reducing flow with blown polymer solution from the wall.
International Nuclear Information System (INIS)
Bettencourt, João H; López, Cristóbal; Hernández-García, Emilio
2013-01-01
In this paper, we use the finite-size Lyapunov exponent (FSLE) to characterize Lagrangian coherent structures in three-dimensional (3D) turbulent flows. Lagrangian coherent structures act as the organizers of transport in fluid flows and are crucial to understand their stirring and mixing properties. Generalized maxima (ridges) of the FSLE fields are used to locate these coherent structures. 3D FSLE fields are calculated in two phenomenologically distinct turbulent flows: a wall-bounded flow (channel flow) and a regional oceanic flow obtained by the numerical solution of the primitive equations where two-dimensional (2D) turbulence dominates. In the channel flow, autocorrelations of the FSLE field show that the structure is substantially different from the near wall to the mid-channel region and relates well to the more widely studied Eulerian coherent structure of the turbulent channel flow. The ridges of the FSLE field have complex shapes due to the 3D character of the turbulent fluctuations. In the oceanic flow, strong horizontal stirring is present and the flow regime is similar to that of 2D turbulence where the domain is populated by coherent eddies that interact strongly. This in turn results in the presence of high FSLE lines throughout the domain leading to strong non-local mixing. The ridges of the FSLE field are quasi-vertical surfaces, indicating that the horizontal dynamics dominates the flow. Indeed, due to rotation and stratification, vertical motions in the ocean are much less intense than horizontal ones. This suppression is absent in the channel flow, as the 3D character of the FSLE ridges shows. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Spin-relaxation without coherence loss: Fine-structure splitting of localized excitons
DEFF Research Database (Denmark)
Langbein, Wolfgang; Zimmermann, R.; Runge, E.
2000-01-01
We investigate the polarization dynamics of the secondary emission from a disordered quantum well after resonant excitation. Using the speckle analysis technique we determine the coherence degree of the emission, and find that the polarization-relaxed emission has a coherence degree comparable to...
Chi, Yu-Tien; Yang, Chang-Hao; Cheng, Cheng-Kuo
2017-12-01
Investigating the quantitative 3-dimensional (3-D) anatomy of polypoidal complex is important for a better understanding of the pathogenesis of polypoidal choroidal vasculopathy (PCV). To quantitatively evaluate the 3-D characteristics of polypoidal structures, branching vascular networks (BVNs), and origin of PCV using optical coherence tomography angiography (OCTA) and multiple image systems. A prospective, observational study was conducted in 47 consecutive Taiwanese patients (47 eyes) from May 21, 2015, to April 30, 2017. All participants were scanned with the Optovue-RTVue-XR-Avanti OCTA system. Patients in whom PCV was identified on OCTA were examined to define characteristics and structures of the original spouting vessels (stalks) from the choroid, polypoidal structures, and BVNs on OCTA. Quantitative analysis of 3-D structures of the polypoidal complex. Among the 47 patients, the mean (SD) patient age was 68.9 (8.0) years, and 28 (59.6%) men were included. Clear images of polypoidal structures could be detected in 17 eyes (36.2%, 22 polypoidal structures), BVNs in 26 eyes (55.3%, 26 tufts of BVNs), and stalks of origin from the choroid in 26 eyes (55.3%, 26 stalks) on the en face plane on OCTA. All polypoidal structures were found at a mean (SD) height of 45.3 (36.1) μm above the retinal pigment epithelium (RPE) reference plane that was preset by the machine, while the BVNs were found at a mean (SD) depth of 28.6 (14.2) μm below the RPE reference plane and the choroidal stalks at 80.4 (24.4) μm below RPE reference plane. The mean (SD) thickness of polypoidal structures was 38.4 (15.5) μm and of BVNs, 60.2 (25.0) μm. The polypoidal structures were all above the Bruch membrane within the dome of the RPE detachment, the choroidal stalks were all in the choroid layer. The BVNs could be either above (up to 18 μm), within, or below (up to 28 μm) the Bruch membrane and were in proximity to the double layers of flattened RPE detachment. These results
BozorgMagham, Amir E.; Ross, Shane D.; Schmale, David G.
2013-09-01
The language of Lagrangian coherent structures (LCSs) provides a new means for studying transport and mixing of passive particles advected by an atmospheric flow field. Recent observations suggest that LCSs govern the large-scale atmospheric motion of airborne microorganisms, paving the way for more efficient models and management strategies for the spread of infectious diseases affecting plants, domestic animals, and humans. In addition, having reliable predictions of the timing of hyperbolic LCSs may contribute to improved aerobiological sampling of microorganisms with unmanned aerial vehicles and LCS-based early warning systems. Chaotic atmospheric dynamics lead to unavoidable forecasting errors in the wind velocity field, which compounds errors in LCS forecasting. In this study, we reveal the cumulative effects of errors of (short-term) wind field forecasts on the finite-time Lyapunov exponent (FTLE) fields and the associated LCSs when realistic forecast plans impose certain limits on the forecasting parameters. Objectives of this paper are to (a) quantify the accuracy of prediction of FTLE-LCS features and (b) determine the sensitivity of such predictions to forecasting parameters. Results indicate that forecasts of attracting LCSs exhibit less divergence from the archive-based LCSs than the repelling features. This result is important since attracting LCSs are the backbone of long-lived features in moving fluids. We also show under what circumstances one can trust the forecast results if one merely wants to know if an LCS passed over a region and does not need to precisely know the passage time.
Kassem, Hachem; Thompson, Charlotte E. L.; Amos, Carl L.; Townend, Ian H.
2015-10-01
The suspension of sediments by oscillatory flows is a complex case of fluid-particle interaction. The aim of this study is to provide insight into the spatial (time) and scale (frequency) relationships between wave-generated boundary layer turbulence and event-driven sediment transport beneath irregular shoaling and breaking waves in the nearshore of a prototype sandy barrier beach, using data collected through the Barrier Dynamics Experiment II (BARDEX II). Statistical, quadrant and spectral analyses reveal the anisotropic and intermittent nature of Reynolds' stresses (momentum exchange) in the wave boundary layer, in all three orthogonal planes of motion. The fractional contribution of coherent turbulence structures appears to be dictated by the structural form of eddies beneath plunging and spilling breakers, which in turn define the net sediment mobilisation towards or away from the barrier, and hence ensuing erosion and accretion trends. A standing transverse wave is also observed in the flume, contributing to the substantial skewness of spanwise turbulence. Observed low frequency suspensions are closely linked to the mean flow (wave) properties. Wavelet analysis reveals that the entrainment and maintenance of sediment in suspension through a cluster of bursting sequence is associated with the passage of intermittent slowly-evolving large structures, which can modulate the frequency of smaller motions. Outside the boundary layer, small scale, higher frequency turbulence drives the suspension. The extent to which these spatially varied perturbation clusters persist is associated with suspension events in the high frequency scales, decaying as the turbulent motion ceases to supply momentum, with an observed hysteresis effect.
Energy Technology Data Exchange (ETDEWEB)
Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V [Present address: JSC ' Saratovneftegeophysics' , Saratov (Russian Federation)
2004-04-07
Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence {delta}n is (6.0 {+-} 0.2) x 10{sup -3} at a wavelength of 1.3 {mu}m. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, {delta}n = (6.0 {+-} 0.6) x 10{sup -3} at 1.3 {mu}m. The nucleus pulposus does not display birefringence, the measured apparent value of {delta}n = (0.39 {+-} 0.01) x 10{sup -3} being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.
International Nuclear Information System (INIS)
Matcher, Stephen J; Winlove, C Peter; Gangnus, Sergei V
2004-01-01
Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Δn is (6.0 ± 0.2) x 10 -3 at a wavelength of 1.3 μm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Δn = (6.0 ± 0.6) x 10 -3 at 1.3 μm. The nucleus pulposus does not display birefringence, the measured apparent value of Δn = (0.39 ± 0.01) x 10 -3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease
Chhetri, Raghav K.; Carpenter, Jerome; Superfine, Richard; Randell, Scott H.; Oldenburg, Amy L.
2010-02-01
Cystic fibrosis (CF) is a genetic defect in the cystic fibrosis transmembrane conductance regulator protein and is the most common life-limiting genetic condition affecting the Caucasian population. It is an autosomal recessive, monogenic inherited disorder characterized by failure of airway host defense against bacterial infection, which results in bronchiectasis, the breakdown of airway wall extracellular matrix (ECM). In this study, we show that the in vitro models consisting of human tracheo-bronchial-epithelial (hBE) cells grown on porous supports with embedded magnetic nanoparticles (MNPs) at an air-liquid interface are suitable for long term, non-invasive assessment of ECM remodeling using magnetomotive optical coherence elastography (MMOCE). The morphology of ex vivo CF and normal lung tissues using OCT and correlative study with histology is also examined. We also demonstrate a quantitative measure of normal and CF airway elasticity using MMOCE. The improved understanding of pathologic changes in CF lung structure and function and the novel method of longitudinal in vitro ECM assessment demonstrated in this study may lead to new in vivo imaging and elastography methods to monitor disease progression and treatment in cystic fibrosis.
Araya, Guillermo; Jansen, Kenneth
2017-11-01
DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.
Kuhn, Alexander
2013-12-05
Lagrangian coherent structures (LCSs) have become a widespread and powerful method to describe dynamic motion patterns in time-dependent flow fields. The standard way to extract LCS is to compute height ridges in the finite-time Lyapunov exponent field. In this work, we present an alternative method to approximate Lagrangian features for 2D unsteady flow fields that achieve subgrid accuracy without additional particle sampling. We obtain this by a geometric reconstruction of the flow map using additional material constraints for the available samples. In comparison to the standard method, this allows for a more accurate global approximation of LCS on sparse grids and for long integration intervals. The proposed algorithm works directly on a set of given particle trajectories and without additional flow map derivatives. We demonstrate its application for a set of computational fluid dynamic examples, as well as trajectories acquired by Lagrangian methods, and discuss its benefits and limitations. © 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Joe, Soo Geun; Kim, Yoon Jeon; Chae, Ju Byung; Yang, Sung Jae; Lee, Joo Yong; Kim, June-Gone; Yoon, Young Hee
2013-06-01
To investigate correlations between preoperative and postoperative foveal microstructures in patients with macula-off rhegmatogenous retinal detachment (RRD). We reviewed the records of 31 eyes from 31 patients with macula-off RRD who had undergone successful re-attachment surgery. We analyzed data obtained from complete ophthalmologic examinations and optical coherence tomography (OCT) before and 9 to 12 months after surgery. All postoperative OCT measurements were taken with spectral-domain OCT, but a subset of preoperative OCT measurements were taken with time-domain OCT. The mean duration of macular detachment was 15.5 ± 15.2 days, and mean preoperative best-corrected visual acuity (BCVA, logarithm of the minimum angle of resolution) was 1.03 ± 0.68. Preoperative visual acuity was correlated with retinal detachment height (p macula-off duration. The final BCVA was significantly correlated with integrity of the junction between the photoreceptor inner and outer segments (IS/OS) combined with the continuity of external limiting membrane (ELM) (p = 0.025). The presence of IRS and OLU on a detached macula were highly correlated with the final postoperative integrity of the IS/OS junction and the ELM (p = 0.017). Eyes preoperatively exhibiting IRS and OLU showed a higher incidence of disruption to the photoreceptor IS/OS junction and the ELM at final follow-up. Such a close correlation between preoperative and postoperative structural changes may explain why ultimate visual recovery in such eyes is poor.
Lagrangian coherent structures in the left ventricle in the presence of aortic valve regurgitation
di Labbio, Giuseppe; Vetel, Jerome; Kadem, Lyes
2017-11-01
Aortic valve regurgitation is a rather prevalent condition where the aortic valve improperly closes, allowing filling of the left ventricle of the heart to occur partly from backflow through the aortic valve. Although studies of intraventricular flow are rapidly gaining popularity in the fluid dynamics research community, much attention has been given to the left ventricular vortex and its potential for early detection of disease, particularly in the case of dilated cardiomyopathy. Notably, the subsequent flow in the left ventricle in the presence of aortic valve regurgitation ought to be appreciably disturbed and has yet to be described. Aortic valve regurgitation was simulated in vitro in a double-activation left heart duplicator and the ensuing flow was captured using two-dimensional time-resolved particle image velocimetry. Further insight into the regurgitant flow is obtained by computing attracting and repelling Lagrangian coherent structures. An interesting interplay between the two inflowing jets and their shear layer roll-up is observed for various grades of regurgitation. This study highlights flow features which may find use in further assessing regurgitation severity.
Optical coherence tomography for the structural changes detection in aging skin
Cheng, Chih-Ming; Chang, Yu-Fen; Chiang, Hung-Chih; Chang, Chir-Weei
2018-01-01
Optical coherence tomography (OCT) technique is an extremely powerful tool to detect numerous ophthalmological disorders, such as retinal disorder, and can be applied on other fields. Thus, many OCT systems are developed. For assessment of the skin textures, a cross-sectional (B-scan) spectra domain OCT system is better than an en-face one. However, this kind of commercial OCT system is not available. We designed a brand-new probe of commercial OCT system for evaluating skin texture without destroying the original instrument and it can be restored in 5 minutes. This modification of OCT system retains the advantages of commercial instrument, such as reliable, stable, and safe. Furthermore, the structural changes in aging skin are easily obtained by means of our probe, including larger pores, thinning of the dermis, collagen volume loss, vessel atrophy and flattening of dermal-epidermal junction. We can use this OCT technique in the field of cosmetic medicine such as detecting the skin textures and skin care product effect followup.
The roll-up and merging of coherent structures in shallow mixing layers
International Nuclear Information System (INIS)
Lam, M. Y.; Ghidaoui, M. S.; Kolyshkin, A. A.
2016-01-01
The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onset and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.
Coherent vs Incoherent Emission from Semiconductor Structures after Resonant Femtosecond Excitation
Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello
1997-04-01
We show that an interferometric correlation measurement with fs time resolution provides an unambiguous discrimination between coherent and incoherent emission after resonant femtosecond excitation. The experiment directly probes the most important difference between the two emissions, that is, the phase correlation with the excitation pulse. The comparison with cw frequency resolved measurements demonstrates that the relationship between coherent and incoherent emission is similar under femtosecond and steady-state excitation.
Environmental Disturbance Modeling for Large Inflatable Space Structures
National Research Council Canada - National Science Library
Davis, Donald
2001-01-01
Tightening space budgets and stagnating spacelift capabilities are driving the Air Force and other space agencies to focus on inflatable technology as a reliable, inexpensive means of deploying large structures in orbit...
Large-Scale Structure and Hyperuniformity of Amorphous Ices
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
Displacement and deformation measurement for large structures by camera network
Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu
2014-03-01
A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.
Review of Large Spacecraft Deployable Membrane Antenna Structures
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
The photon structure function at large Q2
International Nuclear Information System (INIS)
Cordier, A.
1987-01-01
LEP II offers the unique opportunity to measure the photon structure function over a large Q 2 range up to ∼ 2000 GeV 2 . Two crucial predictions of QCD can be tested in this experiment: the linear rise in log Q 2 as a consequence of asymptotic freedom, and the large renormalization O(1) of the shape of the structure function due to gluon bremsstrahlung, unperturbed by higher-twist effects
Structural design of superconducting magnets for the large coil program
International Nuclear Information System (INIS)
Gray, W.H.; Long, C.J.; Stoddart, W.C.T.
1979-09-01
The Large Coil Program (LCP) is a research, development, and demonstration effort specifically for the advancement of the technologies involved in the production of large superconducting magnets. This paper presents a review of the status of the structural designs, analysis methods, and verification tests being performed by the participating LCP design teams in the USA, Switzerland, Japan, and the Federal Republic of Germany. The significant structural mechanics concerns that are being investigated with the LCP are presented
Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe
2010-12-01
To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.
Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography.
Directory of Open Access Journals (Sweden)
M Dominik Fischer
Full Text Available BACKGROUND: Optical coherence tomography (OCT is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis, retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical
Coherent structures and turbulence evolution in magnetized non-neutral plasmas
Romé, M.; Chen, S.; Maero, G.
2018-01-01
The evolution of turbulence of a magnetized pure electron plasma confined in a Penning-Malmberg trap is investigated by means of a two-dimensional particle-in-cell numerical code. The transverse plasma dynamics is studied both in the case of free evolution and under the influence of non-axisymmetric, multipolar radio-frequency drives applied on the circular conducting boundary. In the latter case the radio-frequency fields are chosen in the frequency range of the low-order azimuthal (diocotron) modes of the plasma in order to investigate their effect on the insurgence of azimuthal instabilities and the formation and evolution of coherent structures, possibly preventing the relaxation to a fully-developed turbulent state. Different initial density distributions (rings and spirals) are considered, so that evolutions characterized by different levels of turbulence and intermittency are obtained. The time evolution of integral and spectral quantities of interest are computed using a multiresolution analysis based on a wavelet decomposition of density maps. Qualitative features of turbulent relaxation are found to be similar in conditions of both free and forced evolution, but the analysis allows one to highlight fine details of the flow beyond the self-similarity turbulence properties, so that the influence of the initial conditions and the effect of the external forcing can be distinguished. In particular, the presence of small inhomogeneities in the initial density configuration turns out to lead to quite different final states, especially in the presence of competing unstable diocotron modes characterized by similar growth rates.
Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S
2016-01-01
To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.
Structuring and assessing large and complex decision problems using MCDA
DEFF Research Database (Denmark)
Barfod, Michael Bruhn
This paper presents an approach for the structuring and assessing of large and complex decision problems using multi-criteria decision analysis (MCDA). The MCDA problem is structured in a decision tree and assessed using the REMBRANDT technique featuring a procedure for limiting the number of pair...
Sadeghi, S M
2014-09-01
When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.
Some Statistics for Measuring Large-Scale Structure
Brandenberger, Robert H.; Kaplan, David M.; A, Stephen; Ramsey
1993-01-01
Good statistics for measuring large-scale structure in the Universe must be able to distinguish between different models of structure formation. In this paper, two and three dimensional ``counts in cell" statistics and a new ``discrete genus statistic" are applied to toy versions of several popular theories of structure formation: random phase cold dark matter model, cosmic string models, and global texture scenario. All three statistics appear quite promising in terms of differentiating betw...
Directory of Open Access Journals (Sweden)
Karen May-Newman
2016-11-01
Full Text Available A thrombus is a blood clot that forms on a surface, and can grow and detach, presenting a high risk for stroke and pulmonary embolism. This risk increases with blood-contacting medical devices, due to the immunological response to foreign surfaces and altered flow patterns that activate the blood and promote thromboembolism (TE. Abnormal blood transport, including vortex behavior and regional stasis, can be assessed from Lagrangian Coherent Structures (LCS. LCS are flow structures that bound transport within a flow field and divide the flow into regions with maximally attracting/repelling surfaces that maximize local shear. LCS can be identified from finite time Lyapunov exponent (FTLE fields, which are computed from velocity field data. In this study, the goal was to use FTLE analysis to evaluate LCS in the left ventricle (LV using velocity data obtained from flow visualization of a mock circulatory loop. A model of dilated cardiomyopathy (DCM was used to investigate the effect of left ventricular assist device (LVAD support on diastolic filling and transport in the LV. A small thrombus in the left ventricular outflow tract was also considered using data from a corresponding LV model. The DCM LV exhibited a direct flow of 0.8 L/cardiac cycle, which was tripled during LVAD support Delayed ejection flow was doubled, further illustrating the impact of LVAD support on blood transport. An examination of the attracting LCS ridges during diastolic filling showed that the increase is due primarily to augmentation of A wave inflow, which is associated with increased vortex circulation, kinetic energy and Forward FTLE. The introduction of a small thrombus in the left ventricular outflow tract (LVOT of the LV had a minimal effect on diastolic inflow, but obstructed systolic outflow leading to decreased transport compared with the unobstructed LVOT geometry. Localized FTLE in the LVOT increased dramatically with the small thrombus model, which reflects
International Nuclear Information System (INIS)
Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J
2005-01-01
Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components
Energy Technology Data Exchange (ETDEWEB)
Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)
2005-08-07
Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.
International Nuclear Information System (INIS)
Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J
2011-01-01
The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.
Energy Technology Data Exchange (ETDEWEB)
Drobniak, S.; Elsner, J.W. [Tech. Univ. of Czestochowa (Poland). Inst. of Thermal Machinary; El-Kassem, E.S.A. [Cairo University, Faculty of Engineering, Giza (Egypt)
1998-03-19
This paper describes an experimental study of the relationship between coherent vortical structures and the intensity of heat transport in the initial region of a round, free jet. Simultaneous measurements of velocity and temperature were taken with a four-wire combined probe in a jet that was acoustically stimulated with a frequency corresponding to the jet-column mode. The obtained results suggest that the mutual phase relations between oscillatory and random components of velocity and temperature lead to substantial intensification of the radial heat transport. Due to the same reason the longitudinal heat flux does not reveal a significant change in the presence of coherent structures and, as a result, a much wider spread of the temperature field in comparison with velocity may be observed as a characteristic feature of this flow. It was also observed that heat transfer processes are realized in substantial part by random turbulence generated due to the action of coherent motion. (orig.) With 13 figs., 27 refs.
International Nuclear Information System (INIS)
Dremin, I.M.
1981-01-01
The process of the coherent production of hadrons analogous to Cherenkov radiation of photons is considered. Its appearence and qualitative treatment are possible now because it is known from experiment that the real part of the πp (and pp) forward elastic scattering amplitude is positive at high energies. The threshold behaviour of the process as well as very typical angular and psub(T)-distributions where psub(t)-transverse momentum corresponding to the ring structure of the target diagram at rather large angles and to high-psub(T) jet production are emphasized [ru
Directory of Open Access Journals (Sweden)
Suranga Dharmarathne
2018-02-01
Full Text Available Direct numerical simulations of a turbulent channel flow with a passive scalar at R e τ = 394 with blowing perturbations is carried out. The blowing is imposed through five spanwise jets located near the upstream end of the channel. Behind the blowing jets (about 1 D , where D is the jet diameter, we observe regions of reversed flow responsible for the high temperature region at the wall: hot spots that contribute to further heating of the wall. In between the jets, low pressure regions accelerate the flow, creating long, thin, streaky structures. These structures contribute to the high temperature region near the wall. At the far downstream of the jet (about 3 D , flow instabilities (high shear created by the blowing generate coherent vortical structures. These structures move hot fluid near the wall to the outer region of the channel; thereby, these are responsible for cooling of the wall. Thus, for engineering applications where cooling of the wall is necessary, it is critical to promote the generation of coherent structures near the wall.
Large-scale structure observables in general relativity
International Nuclear Information System (INIS)
Jeong, Donghui; Schmidt, Fabian
2015-01-01
We review recent studies that rigorously define several key observables of the large-scale structure of the Universe in a general relativistic context. Specifically, we consider (i) redshift perturbation of cosmic clock events; (ii) distortion of cosmic rulers, including weak lensing shear and magnification; and (iii) observed number density of tracers of the large-scale structure. We provide covariant and gauge-invariant expressions of these observables. Our expressions are given for a linearly perturbed flat Friedmann–Robertson–Walker metric including scalar, vector, and tensor metric perturbations. While we restrict ourselves to linear order in perturbation theory, the approach can be straightforwardly generalized to higher order. (paper)
Trends in large-scale testing of reactor structures
International Nuclear Information System (INIS)
Blejwas, T.E.
2003-01-01
Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)
Traveling wave accelerating structures with a large phase advance
International Nuclear Information System (INIS)
Paramonov, V.V.
2012-01-01
The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.
Structural materials for large superconducting magnets for tokamaks
International Nuclear Information System (INIS)
Long, C.J.
1976-12-01
The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly
Large-Scale Structure of the Carina Nebula.
Smith; Egan; Carey; Price; Morse; Price
2000-04-01
Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.
Topological Properties of Spatial Coherence Function
International Nuclear Information System (INIS)
Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan
2008-01-01
The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function
Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto
2018-04-01
Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.
Directory of Open Access Journals (Sweden)
Buhl Stefan
2016-01-01
Full Text Available Cycle-to-Cycle Variations (CCV in IC engines is a well-known phenomenon and the definition and quantification is well-established for global quantities such as the mean pressure. On the other hand, the definition of CCV for local quantities, e.g. the velocity or the mixture distribution, is less straightforward. This paper proposes a new method to identify and calculate cyclic variations of the flow field in IC engines emphasizing the different contributions from large-scale energetic (coherent structures, identified by a combination of Proper Orthogonal Decomposition (POD and conditional averaging, and small-scale fluctuations. Suitable subsets required for the conditional averaging are derived from combinations of the the POD coefficients of the second and third mode. Within each subset, the velocity is averaged and these averages are compared to the ensemble-averaged velocity field, which is based on all cycles. The resulting difference of the subset-average and the global-average is identified as a cyclic fluctuation of the coherent structures. Then, within each subset, remaining fluctuations are obtained from the difference between the instantaneous fields and the corresponding subset average. The proposed methodology is tested for two data sets obtained from scale resolving engine simulations. For the first test case, the numerical database consists of 208 independent samples of a simplified engine geometry. For the second case, 120 cycles for the well-established Transparent Combustion Chamber (TCC benchmark engine are considered. For both applications, the suitability of the method to identify the two contributions to CCV is discussed and the results are directly linked to the observed flow field structures.
Origin of large-scale cell structure in the universe
International Nuclear Information System (INIS)
Zel'dovich, Y.B.
1982-01-01
A qualitative explanation is offered for the characteristic global structure of the universe, wherein ''black'' regions devoid of galaxies are surrounded on all sides by closed, comparatively thin, ''bright'' layers populated by galaxies. The interpretation rests on some very general arguments regarding the growth of large-scale perturbations in a cold gas
The Large-Scale Structure of Scientific Method
Kosso, Peter
2009-01-01
The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…
Fractals and the Large-Scale Structure in the Universe
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Fractals and the Large-Scale Structure in the Universe - Is the Cosmological Principle Valid? A K Mittal T R Seshadri. General Article Volume 7 Issue 4 April 2002 pp 39-47 ...
DEFF Research Database (Denmark)
Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas
2004-01-01
A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....
International Nuclear Information System (INIS)
Jian-Hua, Liu; Nan, Jiang
2008-01-01
We experimentally investigate the frequency response of near-wall coherent structures to localized periodic blowing and suction through a spanwise slot in a turbulent boundary layer by changing the frequency of periodic disturbance at similar velocities of free stream. The effects of blowing and suction disturbance on energy redistribution, turbulent intensity u' rms + , over y + and waveforms of phase-averaged velocity during sweeping process are respectively discussed under three frequencies of periodic blowing and suction in near-wall region of turbulent boundary layer, compared with those in a standard turbulent boundary layer. The most effective disturbance frequency is figured out in this system. (fundamental areas of phenomenology (including applications))
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Modeling and analysis of a large deployable antenna structure
Chu, Zhengrong; Deng, Zongquan; Qi, Xiaozhi; Li, Bing
2014-02-01
One kind of large deployable antenna (LDA) structure is proposed by combining a number of basic deployable units in this paper. In order to avoid vibration caused by fast deployment speed of the mechanism, a braking system is used to control the spring-actuated system. Comparisons between the LDA structure and a similar structure used by the large deployable reflector (LDR) indicate that the former has potential for use in antennas with up to 30 m aperture due to its lighter weight. The LDA structure is designed to form a spherical surface found by the least square fitting method so that it can be symmetrical. In this case, the positions of the terminal points in the structure are determined by two principles. A method to calculate the cable network stretched on the LDA structure is developed, which combines the original force density method and the parabolic surface constraint. Genetic algorithm is applied to ensure that each cable reaches a desired tension, which avoids the non-convergence issue effectively. We find that the pattern for the front and rear cable net must be the same when finding the shape of the rear cable net, otherwise anticlastic surface would generate.
Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.
2015-03-01
Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.
Kinematic morphology of large-scale structure: evolution from potential to rotational flow
International Nuclear Information System (INIS)
Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.
2014-01-01
As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.
Kinematic morphology of large-scale structure: evolution from potential to rotational flow
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
2014-09-20
As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.
Challenges in parameter identification of large structural dynamic systems
International Nuclear Information System (INIS)
Koh, C.G.
2001-01-01
In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the
Similitude and scaling of large structural elements: Case study
Directory of Open Access Journals (Sweden)
M. Shehadeh
2015-06-01
Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.
Geophysical mapping of complex glaciogenic large-scale structures
DEFF Research Database (Denmark)
Høyer, Anne-Sophie
2013-01-01
This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...
Large-scale structure in the universe: Theory vs observations
International Nuclear Information System (INIS)
Kashlinsky, A.; Jones, B.J.T.
1990-01-01
A variety of observations constrain models of the origin of large scale cosmic structures. We review here the elements of current theories and comment in detail on which of the current observational data provide the principal constraints. We point out that enough observational data have accumulated to constrain (and perhaps determine) the power spectrum of primordial density fluctuations over a very large range of scales. We discuss the theories in the light of observational data and focus on the potential of future observations in providing even (and ever) tighter constraints. (orig.)
Short Large-Amplitude Magnetic Structures (SLAMS) at Venus
Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.
2012-01-01
We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.
Quasiparticle structure and coherent propagation in the t-Jz-Jperpendicular model
International Nuclear Information System (INIS)
Gan, J.; Hedegard, P.
1996-01-01
Numerical studies, from variational calculation to exact diagonalization, all indicate that the quasiparticle generated by introducing one hole into a two-dimensional quantum antiferromagnet has the same nature as a string state in the t-J z model. Based on this observation, we attempt to visualize the quasiparticle formation and subsequent coherent propagation at low energy by studying the generalized t-J z -J perpendicular model in which we first diagonalize the t-J z model and then perform a degenerate perturbation in J perpendicular . We construct the quasiparticle state and derive an effective Hamiltonian describing the coherent propagation of the quasiparticle and its interaction with the spin wave excitations in the presence of the Nacute eel order. We expect that qualitative properties of the quasiparticle remain intact when analytically continuing J perpendicular from the anisotropic J perpendicular z to the isotropic J perpendicular =J z limit, despite the fact that the spin wave excitations change from gapful to gapless. Extrapolating to J perpendicular =J z , our quasiparticle dispersion and spectral weight compare well with the exact numerical results for small clusters. copyright 1996 The American Physical Society
Lagrangian space consistency relation for large scale structure
International Nuclear Information System (INIS)
Horn, Bart; Hui, Lam; Xiao, Xiao
2015-01-01
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space
Nuclear structure at high-spin and large-deformation
International Nuclear Information System (INIS)
Shimizu, Yoshifumi R.
2000-01-01
Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)
Large-scale structures in turbulent Couette flow
Kim, Jung Hoon; Lee, Jae Hwa
2016-11-01
Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Complex modular structure of large-scale brain networks
Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.
2009-06-01
Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.
Structural Quality of Service in Large-Scale Networks
DEFF Research Database (Denmark)
Pedersen, Jens Myrup
, telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...
BigSUR: large-scale structured urban reconstruction
Kelly, Tom; Femiani, John; Wonka, Peter; Mitra, Niloy J.
2017-01-01
The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.
Cryogenic expansion joint for large superconducting magnet structures
Brown, Robert L.
1978-01-01
An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.
BigSUR: large-scale structured urban reconstruction
Kelly, Tom
2017-11-22
The creation of high-quality semantically parsed 3D models for dense metropolitan areas is a fundamental urban modeling problem. Although recent advances in acquisition techniques and processing algorithms have resulted in large-scale imagery or 3D polygonal reconstructions, such data-sources are typically noisy, and incomplete, with no semantic structure. In this paper, we present an automatic data fusion technique that produces high-quality structured models of city blocks. From coarse polygonal meshes, street-level imagery, and GIS footprints, we formulate a binary integer program that globally balances sources of error to produce semantically parsed mass models with associated facade elements. We demonstrate our system on four city regions of varying complexity; our examples typically contain densely built urban blocks spanning hundreds of buildings. In our largest example, we produce a structured model of 37 city blocks spanning a total of 1,011 buildings at a scale and quality previously impossible to achieve automatically.
Control and large deformations of marginal disordered structures
Murugan, Arvind; Pinson, Matthew; Chen, Elizabeth
Designed deformations, such as origami patterns, provide a way to make easily controlled mechanical metamaterials with tailored responses to external forces. We focus on an often overlooked regime of origami - non-linear deformations of large disordered origami patterns with no symmetries. We find that practical questions of control in origami have counterintuitive answers, because of intimate connections to spin glasses and neural networks. For example, 1 degree of freedom origami structures are actually difficult to control about the flat state with a single actuator; the actuator is thrown off by an exponential number of `red herring' zero modes for small deformations, all but one of which disappear at larger deformations. Conversely, structures with multiple programmed motions are much easier to control than expected - in fact, they are as easy to control as a dedicated single-motion structure if the number of programmed motions is below a threshold (`memory capacity').
Novel large deployable antenna backing structure concepts for foldable reflectors
Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.
2013-12-01
This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.
Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2017-07-04
Periodic structures of alternating amorphous-crystalline fringes have been fabricated in silicon using repetitive femtosecond laser exposure (800 nm wavelength and 120 fs duration). The method is based on the interference of the incident laser light with far- and near-field scattered light, leading to local melting at the interference maxima, as demonstrated by femtosecond microscopy. Exploiting this strategy, lines of highly regular amorphous fringes can be written. The fringes have been characterized in detail using optical microscopy combined modelling, which enables a determination of the three-dimensional shape of individual fringes. 2D micro-Raman spectroscopy reveals that the space between amorphous fringes remains crystalline. We demonstrate that the fringe period can be tuned over a range of 410 nm - 13 µm by changing the angle of incidence and inverting the beam scan direction. Fine control over the lateral dimensions, thickness, surface depression and optical contrast of the fringes is obtained via adjustment of pulse number, fluence and spot size. Large-area, highly homogeneous gratings composed of amorphous fringes with micrometer width and millimeter length can readily be fabricated. The here presented fabrication technique is expected to have applications in the fields of optics, nanoelectronics, and mechatronics and should be applicable to other materials.
Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio
2011-11-01
Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.
Characterization of Large Structural Genetic Mosaicism in Human Autosomes
Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.
2015-01-01
Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358
Reyes, D R; Halter, M; Hwang, J
2015-07-01
The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in-house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser-scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three-dimensional metrology of critical internal structures in lab-on-a-chip devices because scans can be performed rapidly and noninvasively prior to their use. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Reliability-Based Optimal Design for Very Large Floating Structure
Institute of Scientific and Technical Information of China (English)
ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko
2003-01-01
Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.
BAND STRUCTURE OF NON-STEIOCHIOMETRIC LARGE-SIZED NANOCRYSTALLITES
Directory of Open Access Journals (Sweden)
I.V.Kityk
2004-01-01
Full Text Available A band structure of large-sized (from 20 to 35nm non-steichiometric nanocrystallites (NC of the Si2-xCx (1.04 < x < 1.10 has been investigated using different band energy approaches and a modified Car-Parinello molecular dynamics structure optimization of the NC interfaces. The non-steichiometric excess of carbon favors the appearance of a thin prevailingly carbon-contained layer (with thickness of about 1 nm covering the crystallites. As a consequence, one can observe a substantial structure reconstruction of boundary SiC crystalline layers. The numerical modeling has shown that these NC can be considered as SiC reconstructed crystalline films with thickness of about 2 nm covering the SiC crystallites. The observed data are considered within the different one-electron band structure methods. It was shown that the nano-sized carbon sheet plays a key role in a modified band structure. Independent manifestation of the important role played by the reconstructed confined layers is due to the experimentally discovered excitonic-like resonances. Low-temperature absorption measurements confirm the existence of sharp-like absorption resonances originating from the reconstructed layers.
The seam visual tracking method for large structures
Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong
2017-10-01
In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.
Origin of the large scale structures of the universe
International Nuclear Information System (INIS)
Oaknin, David H.
2004-01-01
We revise the statistical properties of the primordial cosmological density anisotropies that, at the time of matter-radiation equality, seeded the gravitational development of large scale structures in the otherwise homogeneous and isotropic Friedmann-Robertson-Walker flat universe. Our analysis shows that random fluctuations of the density field at the same instant of equality and with comoving wavelength shorter than the causal horizon at that time can naturally account, when globally constrained to conserve the total mass (energy) of the system, for the observed scale invariance of the anisotropies over cosmologically large comoving volumes. Statistical systems with similar features are generically known as glasslike or latticelike. Obviously, these conclusions conflict with the widely accepted understanding of the primordial structures reported in the literature, which requires an epoch of inflationary cosmology to precede the standard expansion of the universe. The origin of the conflict must be found in the widespread, but unjustified, claim that scale invariant mass (energy) anisotropies at the instant of equality over comoving volumes of cosmological size, larger than the causal horizon at the time, must be generated by fluctuations in the density field with comparably large comoving wavelength
Reliability analysis of large scaled structures by optimization technique
International Nuclear Information System (INIS)
Ishikawa, N.; Mihara, T.; Iizuka, M.
1987-01-01
This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)
Raibstein, A. I.; Kalev, I.; Pipano, A.
1976-01-01
A procedure for the local stiffness modifications of large structures is described. It enables structural modifications without an a priori definition of the changes in the original structure and without loss of efficiency due to multiple loading conditions. The solution procedure, implemented in NASTRAN, involved the decomposed stiffness matrix and the displacement vectors of the original structure. It solves the modified structure exactly, irrespective of the magnitude of the stiffness changes. In order to investigate the efficiency of the present procedure and to test its applicability within a design environment, several real and large structures were solved. The results of the efficiency studies indicate that the break-even point of the procedure varies between 8% and 60% stiffness modifications, depending upon the structure's characteristics and the options employed.
Divergence of perturbation theory in large scale structures
Pajer, Enrico; van der Woude, Drian
2018-05-01
We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.
Speckle photography applied to measure deformations of very large structures
Conley, Edgar; Morgan, Chris K.
1995-04-01
Fundamental principles of mechanics have recently been brought to bear on problems concerning very large structures. Fields of study include tectonic plate motion, nuclear waste repository vault closure mechanisms, the flow of glacier and sea ice, and highway bridge damage assessment and residual life prediction. Quantitative observations, appropriate for formulating and verifying models, are still scarce however, so the need to adapt new methods of experimental mechanics is clear. Large dynamic systems often exist in environments subject to rapid change. Therefore, a simple field technique that incorporates short time scales and short gage lengths is required. Further, the measuring methods must yield displacements reliably, and under oft-times adverse field conditions. Fortunately, the advantages conferred by an experimental mechanics technique known as speckle photography nicely fulfill this rather stringent set of performance requirements. Speckle seemed to lend itself nicely to the application since it is robust and relatively inexpensive. Experiment requirements are minimal -- a camera, high resolution film, illumination, and an optically rough surface. Perhaps most important is speckle's distinct advantage over point-by-point methods: It maps the two dimensional displacement vectors of the whole field of interest. And finally, given the method's high spatial resolution, relatively short observation times are necessary. In this paper we discuss speckle, two variations of which were used to gage the deformation of a reinforced concrete bridge structure subjected to bending loads. The measurement technique proved to be easily applied, and yielded the location of the neutral axis self consistently. The research demonstrates the feasibility of using whole field techniques to detect and quantify surface strains of large structures under load.
Nonlinear evolution of large-scale structure in the universe
International Nuclear Information System (INIS)
Frenk, C.S.; White, S.D.M.; Davis, M.
1983-01-01
Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r 0 = 5.1; its expected value in a neutrino dominated universe is 4(Ωh) -1 (H 0 = 100h km s -1 Mpc -1 ). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Lyα absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with Ω<1
Cosmological parameters from large scale structure - geometric versus shape information
Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y
2010-01-01
The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\
Testing Inflation with Large Scale Structure: Connecting Hopes with Reality
International Nuclear Information System (INIS)
Alvarez, Marcello; Baldauf, T.; Bond, J. Richard; Dalal, N.; Putter, R. D.; Dore, O.; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C.; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meeburg, Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anze; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; Engelen, Alexander van
2014-01-01
The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude floc\
Optimal control of large space structures via generalized inverse matrix
Nguyen, Charles C.; Fang, Xiaowen
1987-01-01
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given.
Extremely large magnetoresistance and electronic structure of TmSb
Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long
2018-02-01
We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.
Two-phase flow structure in large diameter pipes
International Nuclear Information System (INIS)
Smith, T.R.; Schlegel, J.P.; Hibiki, T.; Ishii, M.
2012-01-01
Highlights: ► Local profiles of various quantities measured in large diameter pipe. ► Database for interfacial area in large pipes extended to churn-turbulent flow. ► Flow regime map confirms previous models for flow regime transitions. ► Data will be useful in developing interfacial area transport models for large pipes. - Abstract: Flow in large pipes is important in a wide variety of applications. In the nuclear industry in particular, understanding of flow in large diameter pipes is essential in predicting the behavior of reactor systems. This is especially true of natural circulation Boiling Water Reactor (BWR) designs, where a large-diameter chimney above the core provides the gravity head to drive circulation of the coolant through the reactor. The behavior of such reactors during transients and during normal operation will be predicted using advanced thermal–hydraulics analysis codes utilizing the two-fluid model. Essential to accurate two-fluid model calculations is reliable and accurate computation of the interfacial transfer terms. These interfacial transfer terms can be expressed as the product of one term describing the potential driving the transfer and a second term describing the available surface area for transfer, or interfacial area concentration. Currently, the interfacial area is predicted using flow regime dependent empirical correlations; however the interfacial area concentration is best computed through the use of the one-dimensional interfacial area transport equation (IATE). To facilitate the development of IATE source and sink term models in large-diameter pipes a fundamental understanding of the structure of the two-phase flow is essential. This understanding is improved through measurement of the local void fraction, interfacial area concentration and gas velocity profiles in pipes with diameters of 0.102 m and 0.152 m under a wide variety of flow conditions. Additionally, flow regime identification has been performed to
Large-scale structuring of a rotating plasma due to plasma macroinstabilities
International Nuclear Information System (INIS)
Kikuchi, Toshinori; Ikehata, Takashi; Sato, Naoyuki; Watahiki, Takeshi; Tanabe, Toshio; Mase, Hiroshi
1995-01-01
The formation of coherent structures during plasma macroinstabilities have been of interest in view of the nonlinear plasma physics. In the present paper, we have investigated in detail, the mechanism and specific features of large-scale structuring of a rotating plasma. In the case of weak magnetic field, the plasma ejected from a plasma gun has a high beta value (β > 1) so that it expands rapidly across the magnetic field excluding a magnetic flux from its interior. Then, the boundary between the expanding plasma and the magnetic field becomes unstable against Rayleigh-Taylor instability. This instability has the higher growth rate at the shorter wavelength and the mode appears as flute. These features of the instability are confirmed by the observation of radial plasma jets with the azimuthal mode number m=20-40 in the early time of the plasma expansion. In the case of strong magnetic field, on the other hand, the plasma little expands and rotates at two times the ion sound speed. Especially, we observe spiral jets of m=2 instead of short-wavelength radial jets. This mode appears only when a glass target is installed or a dense neutral gas is introduced around the plasma to give the plasma a frictional force. From these results and with reference to the theory of plasma instabilities, the centrifugal instability caused by a combination of the velocity shear and centrifugal force is concluded to be responsible for the formation of spiral jets. (author)
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Structure of Sn1−xGex random alloys as obtained from the coherent potential approximation
Pulikkotil, J. J.
2011-08-09
The structure of the Sn1−xGex random alloys is studied using density functional theory and the coherent potential approximation. We report on the deviation of the Sn1−xGex alloys from Vegard’s law, addressing their full compositional range. The findings are compared to the related Si1−xGex alloys and to experimental results. Interestingly, the deviation from Vegard’s law is quantitatively and qualitatively different between the Sn1−xGex and Si1−xGex alloys. An almost linear dependence of the bulk modulus as a function of composition is found for Si1−xGex, whereas for Sn1−xGex the dependence is strongly nonlinear.
International Nuclear Information System (INIS)
Švanda, Michal; Roudier, Thierry; Rieutord, Michel; Burston, Raymond; Gizon, Laurent
2013-01-01
We compare measurements of horizontal flows on the surface of the Sun using helioseismic time-distance inversions and coherent structure tracking of solar granules. Tracking provides two-dimensional horizontal flows on the solar surface, whereas the time-distance inversions estimate the full three-dimensional velocity flows in the shallow near-surface layers. Both techniques use Helioseismic and Magnetic Imager observations as input. We find good correlations between the various measurements resulting from the two techniques. Further, we find a good agreement between these measurements and the time-averaged Doppler line-of-sight velocity, and also perform sanity checks on the vertical flow that resulted from the three-dimensional time-distance inversion.
WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings.
Amaya, Waldimar; Pastor, Daniel; Baños, Rocio; Garcia-Munoz, Victor
2011-11-21
We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes. © 2011 Optical Society of America
International Nuclear Information System (INIS)
Marmodoro, A; Staunton, J B
2011-01-01
Over the last few years the Non-Local Coherent Potential Approximation (NL-CPA) has been shown to provide an effective way to describe the electronic structure and related properties of disordered systems, where short-range order (SRO) and other local environment effects are important. Here we present its generalization to materials with multi-atom per unit cell lattices. The method is described using a Green function formalism and illustrated by an implementation for a simplified one-dimensional tight-binding model with substitutional disorder. This development paves the way for a natural reimplementation of the Korringa-Kohn-Rostoker (KKR) multiple scattering solution of Kohn-Sham equations for ab-initio calculations of real materials.
Miranda, Rodrigo A; Rempel, Erico L; Chian, Abraham C-L; Seehafer, Norbert; Toledo, Benjamin A; Muñoz, Pablo R
2013-09-01
We study a transition to hyperchaos in the two-dimensional incompressible Navier-Stokes equations with periodic boundary conditions and an external forcing term. Bifurcation diagrams are constructed by varying the Reynolds number, and a transition to hyperchaos (HC) is identified. Before the onset of HC, there is coexistence of two chaotic attractors and a hyperchaotic saddle. After the transition to HC, the two chaotic attractors merge with the hyperchaotic saddle, generating random switching between chaos and hyperchaos, which is responsible for intermittent bursts in the time series of energy and enstrophy. The chaotic mixing properties of the flow are characterized by detecting Lagrangian coherent structures. After the transition to HC, the flow displays complex Lagrangian patterns and an increase in the level of Lagrangian chaoticity during the bursty periods that can be predicted statistically by the hyperchaotic saddle prior to HC transition.
Fiorentino, L A; Olascoaga, M J; Reniers, A
2014-06-15
Four popular, recreational beaches in Miami, FL are Hobie Beach, Virginia Key Beach, Crandon Park Beach, and Bill Baggs Cape Florida State Park. While all of the beaches are within a few miles of each other in Biscayne Bay, they have greatly differing water qualities, as determined by the testing for fecal indicator bacteria performed by the Florida Department of Health. Using the geodesic theory of transport barriers, we identify Lagrangian Coherent Structures (LCSs) in each area. We show how these material curves, which shape circulation and mixing patterns, can be used to explain the incongruous states of the water at beaches that should be comparable. The LCSs are computed using a hydrodynamic model and verified through field experimentation at each beach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dreszer, C.; Wexler, Adam D.; Drusová , S.; Overdijk, T.; Zwijnenburg, Arie; Flemming, Hans Curt; Kruithof, Joop C.; Vrouwenvelder, Johannes S.
2014-01-01
Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s-1) and permeate flux (20 L m-2h-1).In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m-2h-1). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure.Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.
Dreszer, C.
2014-12-01
Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s-1) and permeate flux (20 L m-2h-1).In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m-2h-1). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure.Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.
Argentine Population Genetic Structure: Large Variance in Amerindian Contribution
Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.
2011-01-01
Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183
The effective field theory of cosmological large scale structures
Energy Technology Data Exchange (ETDEWEB)
Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
2012-09-20
Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c^{2}_{s} ≈ 10^{–6}c^{2} and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)^{4}. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc^{–1}.
Solving large scale structure in ten easy steps with COLA
Energy Technology Data Exchange (ETDEWEB)
Tassev, Svetlin [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Zaldarriaga, Matias [School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu [Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)
2013-06-01
We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.
Chiral dynamics and partonic structure at large transverse distances
Energy Technology Data Exchange (ETDEWEB)
Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center
2009-12-30
In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲M_{π}/M_{N} and transverse distances b~1/M_{π}. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, R_{core}=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b^{2})_{q+q¯}>(b^{2})_{g}, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general N_{c}-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-N_{c} limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.
LARGE-SCALE FILAMENTARY STRUCTURES AROUND THE VIRGO CLUSTER REVISITED
Energy Technology Data Exchange (ETDEWEB)
Kim, Suk; Rey, Soo-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Daejeon 305-764 (Korea, Republic of); Bureau, Martin [Sub-department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Yoon, Hyein; Chung, Aeree [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Jerjen, Helmut [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Lisker, Thorsten [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg (ZAH), Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Jeong, Hyunjin; Sung, Eon-Chang, E-mail: screy@cnu.ac.kr, E-mail: star4citizen@kasi.re.kr [Korea Astronomy and Space Science institute, 776 Daedeokdae-ro, Daejeon 305-348 (Korea, Republic of)
2016-12-20
We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4 h {sup −1} Mpc < SGY < 16 h {sup −1} Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16 h {sup −1} Mpc < SGY < 27 h {sup −1} Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W–M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W–M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z ≈ 0.
Towards a 'standard model' of large scale structure formation
International Nuclear Information System (INIS)
Shafi, Q.
1994-01-01
We explore constraints on inflationary models employing data on large scale structure mainly from COBE temperature anisotropies and IRAS selected galaxy surveys. In models where the tensor contribution to the COBE signal is negligible, we find that the spectral index of density fluctuations n must exceed 0.7. Furthermore the COBE signal cannot be dominated by the tensor component, implying n > 0.85 in such models. The data favors cold plus hot dark matter models with n equal or close to unity and Ω HDM ∼ 0.2 - 0.35. Realistic grand unified theories, including supersymmetric versions, which produce inflation with these properties are presented. (author). 46 refs, 8 figs
Testing Inflation with Large Scale Structure: Connecting Hopes with Reality
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Marcello [Univ. of Toronto, ON (Canada); Baldauf, T. [Inst. of Advanced Studies, Princeton, NJ (United States); Bond, J. Richard [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Dalal, N. [Univ. of Illinois, Urbana-Champaign, IL (United States); Putter, R. D. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Dore, O. [Jet Propulsion Lab., Pasadena, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Green, Daniel [Univ. of Toronto, ON (Canada); Canadian Inst. for Advanced Research, Toronto, ON (Canada); Hirata, Chris [The Ohio State Univ., Columbus, OH (United States); Huang, Zhiqi [Univ. of Toronto, ON (Canada); Huterer, Dragan [Univ. of Michigan, Ann Arbor, MI (United States); Jeong, Donghui [Pennsylvania State Univ., University Park, PA (United States); Johnson, Matthew C. [York Univ., Toronto, ON (Canada); Perimeter Inst., Waterloo, ON (Canada); Krause, Elisabeth [Stanford Univ., CA (United States); Loverde, Marilena [Univ. of Chicago, IL (United States); Meyers, Joel [Univ. of Toronto, ON (Canada); Meeburg, Daniel [Univ. of Toronto, ON (Canada); Senatore, Leonardo [Stanford Univ., CA (United States); Shandera, Sarah [Pennsylvania State Univ., University Park, PA (United States); Silverstein, Eva [Stanford Univ., CA (United States); Slosar, Anze [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Kendrick [Perimeter Inst., Waterloo, Toronto, ON (Canada); Zaldarriaga, Matias [Univ. of Toronto, ON (Canada); Assassi, Valentin [Cambridge Univ. (United Kingdom); Braden, Jonathan [Univ. of Toronto, ON (Canada); Hajian, Amir [Univ. of Toronto, ON (Canada); Kobayashi, Takeshi [Perimeter Inst., Waterloo, Toronto, ON (Canada); Univ. of Toronto, ON (Canada); Stein, George [Univ. of Toronto, ON (Canada); Engelen, Alexander van [Univ. of Toronto, ON (Canada)
2014-12-15
The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude f$loc\\atop{NL}$ (f$eq\\atop{NL}$), natural target levels of sensitivity are Δf$loc, eq\\atop{NL}$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.
Cosmological perturbations from quantum fluctuations to large scale structure
International Nuclear Information System (INIS)
Bardeen, J.M.
1988-01-01
Classical perturbation theory is developed from the 3 + 1 form of the Einstein equations. A somewhat unusual form of the perturbation equations in the synchronous gauge is recommended for carrying out computations, but interpretation is based on certain hypersurface-invariant combinations of the variables. The formalism is used to analyze the origin of density perturbations from quantum fluctuations during inflation, with particular emphasis on dealing with 'double inflation' and deviations from the Zel'dovich spectrum. The evolution of the density perturbation to the present gives the final density perturbation power spectrum, whose relationship to observed large scale structure is discussed in the context of simple cold-dark-matter biasing schemes. 86 refs
Spin-flavor structure of large Nc baryons
International Nuclear Information System (INIS)
Dashen, R.F.; Jenkins, E.; Manohar, A.V.
1995-01-01
The spin-flavor structure of large N c baryons is described in the 1/N c expansion of QCD using quark operators. The complete set of quark operator identities is obtained, and used to derive an operator reduction rule which simplifies the 1/N c expansion. The operator reduction rule is applied to the axial vector currents, masses, magnetic moments, and hyperon nonleptonic decay amplitudes in the SU(3) limit, to first order in SU(3) breaking, and without assuming SU(3) symmetry. The connection between the Skyrme and quark operator representations is discussed. An explicit formula is given for the quark model operators in terms of the Skyrme model operators to all orders in 1/N c for the two flavor case
Energy Technology Data Exchange (ETDEWEB)
Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)
2017-09-20
We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.
Large-Scale Structure Behind The Milky Way with ALFAZOA
Sanchez Barrantes, Monica; Henning, Patricia A.; Momjian, Emmanuel; McIntyre, Travis; Minchin, Robert F.
2018-06-01
The region of the sky behind the Milky Way (the Zone of Avoidance; ZOA) is not well studied due to high obscuration from gas and dust in our galaxy as well as stellar confusion, which results in low detection rate of galaxies in this region. Because of this, little is known about the distribution of galaxies in the ZOA, and other all sky redshift surveys have incomplete maps (e.g. the 2MASS Redshift survey in NIR has a gap of 5-8 deg around the Galactic plane). There is still controversy about the dipole anisotropy calculated from the comparison between the CMB and galaxy and redshift surveys, in part due to the incomplete sky mapping and redshift depth of these surveys. Fortunately, there is no ZOA at radio wavelengths because such wavelengths can pass unimpeded through dust and are not affected by stellar confusion. Therefore, we can detect and make a map of the distribution of obscured galaxies that contain the 21cm neutral hydrogen emission line, and trace the large-scale structure across the Galactic plane. The Arecibo L-Band Feed Array Zone of Avoidance (ALFAZOA) survey is a blind HI survey for galaxies behind the Milky Way that covers more than 1000 square degrees of the sky, conducted in two phases: shallow (completed) and deep (ongoing). We show the results of the finished shallow phase of the survey, which mapped a region between the galactic longitude l=30-75 deg, and latitude b <|10 deg|, and detected 418 galaxies to about 12,000 km/s, including galaxy properties and mapped large-scale structure. We do the same for new results from the deep phase, which is ongoing and covers 30 < l < 75 deg and b < |2| deg for the inner galaxy and 175 < l < 207 deg, with -2 < b < 1 for the outer galaxy.
On soft limits of large-scale structure correlation functions
International Nuclear Information System (INIS)
Sagunski, Laura
2016-08-01
Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the
On soft limits of large-scale structure correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sagunski, Laura
2016-08-15
Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the
Systematic renormalization of the effective theory of Large Scale Structure
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico
2016-01-01
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.
EFT of large scale structures in redshift space
Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun
2018-03-01
We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
Energy Technology Data Exchange (ETDEWEB)
Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)
2009-07-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
The structure functions of the photon at large x
International Nuclear Information System (INIS)
Chase, M.K.
1981-01-01
We derive 'improved' perturbative results in QCD for the structure functions of the photon at large Bjorken x by (a) using a correct phase-space treatment of the leading mass-singularity logarithms and (b) summing the leading logarithms of (1-x) associated with the wave function of the final state. We obtain explicit results in three kinematic regimes: (i) Q 2 low enough for logarithmic QCD corrections to the parton model to be negligible; we estimate that this is the case for all presently realistic values of Q 2 (approx. 2 ). (ii) Q 2 high enough (at fixed x) for the effects of the leading mass-singularity logarithms to be important; we discuss the modifications to Witten's result at large x due to the correct kinematical treatment of the leading logarithms. (iii) Q 2 /s → infinite, where we sum the wave-function logarithms of (1-x); we show that F 2 sup(γ) → finite constant as Q 2 /s → infinite and that there is a close inclusive-exclusive connection in this limit. (orig.)
DEMNUni: massive neutrinos and the bispectrum of large scale structures
Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano
2018-03-01
The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.
Large scale structures in liquid crystal/clay colloids
van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.
2005-04-01
Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.
Large scale structures in liquid crystal/clay colloids
International Nuclear Information System (INIS)
Duijneveldt, Jeroen S van; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M
2005-01-01
Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods
Detection for flatness of large surface based on structured light
He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang
2016-09-01
In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.
Multipodal Structure and Phase Transitions in Large Constrained Graphs
Kenyon, Richard; Radin, Charles; Ren, Kui; Sadun, Lorenzo
2017-07-01
We study the asymptotics of large, simple, labeled graphs constrained by the densities of two subgraphs. It was recently conjectured that for all feasible values of the densities most such graphs have a simple structure. Here we prove this in the special case where the densities are those of edges and of k-star subgraphs, k≥2 fixed. We prove that under such constraints graphs are "multipodal": asymptotically in the number of vertices there is a partition of the vertices into M < ∞ subsets V_1, V_2, \\ldots , V_M, and a set of well-defined probabilities g_{ij} of an edge between any v_i \\in V_i and v_j \\in V_j. For 2≤ k≤ 30 we determine the phase space: the combinations of edge and k-star densities achievable asymptotically. For these models there are special points on the boundary of the phase space with nonunique asymptotic (graphon) structure; for the 2-star model we prove that the nonuniqueness extends to entropy maximizers in the interior of the phase space.
Xu, Zhenfeng; Ding, Zhimin; Liang, Bo
2018-03-01
The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/ γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: (\\bar{1}1\\bar{1})_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}1\\bar{1})_{γ } , (\\bar{1}11)_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}11)_{γ } ,[ 1 10]_{{{M}_{ 2 3} {C}_{ 6} }} //[ 1 10]_{γ } . The flat M23C6/ γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/ γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/ γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.
Reconstructing Information in Large-Scale Structure via Logarithmic Mapping
Szapudi, Istvan
We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out
Alignment between galaxies and large-scale structure
International Nuclear Information System (INIS)
Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie
2009-01-01
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference
Observations of IMF coherent structures and their relationship to SEP dropout events
Directory of Open Access Journals (Sweden)
L. Trenchi
2013-08-01
Full Text Available The solar energetic particle (SEP events from impulsive solar flares are often characterized by short-timescale modulations affecting, at the same time, particles with different energies. Several models and simulations suggest that these modulations are observed when SEPs propagate through magnetic structures with a different connection with the flare site. However, in situ observations rarely showed clear magnetic signatures associated with these modulations. In this paper we used the Grad–Shafranov reconstruction to perform a detailed analysis of the local magnetic field topology during the SEP event of 9–10 January 1999, characterized by several SEP dropouts. An optimization procedure is used to identify, during this SEP event, the magnetic structures which better satisfy the Grad–Shafranov assumptions and to evaluate the direction of their invariant axis. We found that these two-dimensional structures, which are flux ropes or current sheets with a more complex field topology, are generally associated with the maxima in the SEP counts. This association suggests that the SEPs propagate within these structures and, since their gyration radii is much smaller than the transverse dimension of these structure, cannot escape from them.
Cryogenic structural material and design of support structures for the Large Helical Device
International Nuclear Information System (INIS)
Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi
1997-01-01
This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)
International Nuclear Information System (INIS)
Bystrenko, O; Bystrenko, T
2010-01-01
The properties of non-equilibrium magnetized plasmas confined in planar geometry are studied on the basis of first-principle microscopic Langevin dynamics computer simulations. The non-equilibrium state of plasmas is maintained due to the recombination and generation of charges. The intrinsic microscopic structure of non-equilibrium steady-state magnetized plasmas, in particular the inter-particle correlations and self-organization of vortex structures, are examined. The simulations have been performed for a wide range of parameters including strong plasma coupling, high charge recombination and generation rates and intense magnetic field. As is shown in simulations, the non-equilibrium recombination and generation processes trigger the formation of ordered dissipative or coherent drift vortex states in 2D plasmas with distinctly spatially separated components, which are far from thermal equilibrium. This is evident from the unusual properties of binary distributions and behavior of the Coulomb energy of the system, which turn out to be quite different from the ones typical for the equilibrium state of plasmas under the same conditions.
Lindsay, W. R.; Steptoe, L.; Hogue, T. E.; Mooney, P.; Taylor, J. L.; Morrissey, C.
2009-01-01
Background: Little research has been conducted investigating the way in which personality constructs relate to people with intellectual disabilities. The small amount of research that does exist suggests that underlying personality structure may be considerably different to that found in mainstream research. This hypothesis is, however, untested…
Coherent application of a contact structure to formulate Classical Non-Equilibrium Thermodynamics
Knobbe, E; Roekaerts, D.J.E.M.
2017-01-01
This contribution presents an outline of a new mathematical formulation for
Classical Non-Equilibrium Thermodynamics (CNET) based on a contact
structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of
Drawing the Line Between Constituent Structure and Coherence Relations in Visual Narratives
Cohn, Neil; Bender, Patrick
2017-01-01
Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic
Jung, Jae Hoon; Park, Ji-Hye; Yoo, Chungkwon; Kim, Yong Yeon
2018-03-01
The purpose of this article is to compare the locations of localized retinal nerve fiber layer (RNFL) defects in red-free fundus photographs and optical coherence tomography (OCT) en face images. We performed a retrospective, comparative study on 46 eyes from 46 glaucoma patients with localized RNFL defects observed in red-free fundus photographs. En face structural images were obtained in the superficial and whole retinal layers using OCT and were overlaid on the corresponding red-free fundus photographs. The proximal/distal angular locations and angular width of each RNFL defect in red-free photos (red-free defects) and in en face structural images (en face defects) were compared. In the superficial retinal layer, there were no significant differences between red-free and en face defects on the proximal/distal angular location and angular width. In the whole retinal layer, the degree of the distal angular location of the en face defects was significantly larger than that of the red-free defects (71.85±18.26 vs. 70.87±17.90 degrees, P=0.003). The correlations of clinical variables with the differences in angular parameters between red-free and en face defects were not significant in the superficial retinal layer. The average RNFL thickness was negatively correlated with the difference in the distal angular location in the whole retinal layer (Pearson correlation coefficient=-0.401, P=0.006). Localized RNFL defects detected in OCT en face structural images of the superficial retinal layer showed high topographic correlation with defects detected in red-free photographs. OCT en face structural images in the superficial layer may be an alternative to red-free fundus photography for the identification of localized RNFL defects in glaucomatous eyes.
Gao, Wei; Zakharov, Valery P.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Kornilin, Dmitry V.
2015-07-01
Optical coherence tomography (OCT) is usually employed for the measurement of retinal thickness characterizing the structural changes of tissue. However, fractal dimension (FD) could also character the structural changes of tissue. Therefore, fractal dimension changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in fractal dimension from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (Controls, n = 74 eyes). Fractal dimension was calculated using the differentiate box counting methodology. We evaluated the usefulness of quantifying fractal dimension of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject intereye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of fractal dimension to discriminate between the eyes of DM, MDR and healthy eyes. Significant decreases of fractal dimension were observed in all layers in the MDR eyes compared with controls except in the inner nuclear layer (INL). Significant decreases of fractal dimension were also observed in all layers in the MDR eyes compared with DM eyes. The highest area under receiver operating characteristic curve (AUROC) values estimated for fractal dimension were observed for the outer plexiform layer (OPL) and outer segment photoreceptors (OS) when comparing MDR eyes with controls. The highest AUROC value estimated for fractal dimension were also observed for the retinal nerve fiber layer (RNFL) and OS when comparing MDR eyes with DM eyes. Our results suggest that fractal dimension of the intraretinal layers may provide useful
Inflationary tensor fossils in large-scale structure
Energy Technology Data Exchange (ETDEWEB)
Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail: ema@physics.umn.edu, E-mail: mrf65@case.edu, E-mail: duj13@psu.edu, E-mail: kamion@jhu.edu [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)
2014-12-01
Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.
Directory of Open Access Journals (Sweden)
Duffy Frank H
2012-06-01
Full Text Available Abstract Background The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Methods Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD; 571 children were neuro-typical controls (C. After artifact management, principal components analysis (PCA identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984. Discriminant function analysis (DFA determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Results Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P Conclusions Classification success suggests a stable coherence loading pattern that differentiates ASD- from C-group subjects. This might constitute an EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range
Characterizing unknown systematics in large scale structure surveys
International Nuclear Information System (INIS)
Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Pâris, Isabelle; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.
2014-01-01
Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study
A Simple Instrumentation System for Large Structure Vibration Monitoring
Directory of Open Access Journals (Sweden)
Didik R. Santoso
2010-12-01
Full Text Available Traditional instrumentation systems used for monitoring vibration of large-scale infrastructure building such as bridges, railway, and others structural building, generally have a complex design. Makes it simple would be very useful both in terms of low-cost and easy maintenance. This paper describes how to develop the instrumentation system. The system is built based on distributed network, with field bus topology, using single-master multi-slave architecture. Master is a control unit, built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave was built by integrating a 3-axis vibration sensor with a microcontroller based data acquisition system. Vibration sensor is designed using the main components of a MEMS accelerometer. While the software is developed for two functions: as a control system hardware and data processing. To verify performance of the developed instrumentation system, several laboratory tests have been performed. The result shows that the system has good performance.
Inflation and large scale structure formation after COBE
International Nuclear Information System (INIS)
Schaefer, R.K.; Shafi, Q.
1992-06-01
The simplest realizations of the new inflationary scenario typically give rise to primordial density fluctuations which deviate logarithmically from the scale free Harrison-Zeldovich spectrum. We consider a number of such examples and, in each case we normalize the amplitude of the fluctuations with the recent COBE measurement of the microwave background anisotropy. The predictions for the bulk velocities as well as anisotropies on smaller (1-2 degrees) angular scales are compared with the Harrison-Zeldovich case. Deviations from the latter range from a few to about 15 percent. We also estimate the redshift beyond which the quasars would not be expected to be seen. The inflationary quasar cutoff redshifts can vary by as much as 25% from the Harrison-Zeldovich case. We find that the inflationary scenario provides a good starting point for a theory of large scale structure in the universe provided the dark matter is a combination of cold plus (10-30%) hot components. (author). 27 refs, 1 fig., 1 tab
Auxiliary basis expansions for large-scale electronic structure calculations.
Jung, Yousung; Sodt, Alex; Gill, Peter M W; Head-Gordon, Martin
2005-05-10
One way to reduce the computational cost of electronic structure calculations is to use auxiliary basis expansions to approximate four-center integrals in terms of two- and three-center integrals, usually by using the variationally optimum Coulomb metric to determine the expansion coefficients. However, the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. Hence it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.
Characterizing unknown systematics in large scale structure surveys
Energy Technology Data Exchange (ETDEWEB)
Agarwal, Nishant; Ho, Shirley [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ross, Ashley J. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Bahcall, Neta [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Brinkmann, Jonathan [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Muna, Demitri [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Palanque-Delabrouille, Nathalie; Yèche, Christophe [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Pâris, Isabelle [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, Patrick [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Streblyanska, Alina [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Weaver, Benjamin A., E-mail: nishanta@andrew.cmu.edu [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)
2014-04-01
Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.
Resin infusion of large composite structures modeling and manufacturing process
Energy Technology Data Exchange (ETDEWEB)
Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)
2006-07-01
The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)
Cost-efficient foundation structures for large offshore wind farms
International Nuclear Information System (INIS)
Birch, C.; Gormsen, C.; Lyngesen, S.; Rasmussen, J. L.; Juhl, H.
1997-01-01
This paper presents the results of the development of a cost-efficient foundation for large (1.5 MW) offshore wind farms at water depth of 5 to 11 m. Previously, medium sized wind turbines (500 kW) in Denmark have been installed offshore at water depths of approximately 5 m on concrete gravity foundations. The installation of larger turbines at greater depth does, however, hold great promise in terms of wind environment and environmental considerations. The costs of a traditional gravity foundation at these increased water depths is expected to be prohibitive, and the aim of the project has been to reduce the foundations costs in general. This paper describes the theoretical basis for the geotechnical and structural design of three alternative concepts and presents an optimised layout of each based on a research and development project. The basis has been a wind farm consisting of 100 turbines. The R and D project has been undertaken by the consulting engineers Nellemann, Nielsen and Rauschenberger A/S (Gravity foundation), LICengineering A/S (Mono pile) and Ramboell (Tripod) in co-operation with the Danish utility engineering companies Elkraft and Elsamprojekt A/S. The project was partly financed by the participants and by the Danish Energy Agency through their 1996 Energy Research Programme (EFP-96). (au) 18 refs
Zhu, Lu; Xi, Li
2018-04-01
Drag reduction induced by polymer additives in wall-bounded turbulence has been studied for decades. A small dosage of polymer additives can drastically reduce the energy dissipation in turbulent flows and alter the flow structures at the same time. As the polymer-induced fluid elasticity increases, drag reduction goes through several stages of transition with drastically different flow statistics. While much attention in the area of polymer-turbulence interactions has been focused on the onset and the asymptotic stage of maximum drag reduction, the transition between the two intermediate stages – low-extent drag reduction (LDR) and high-extent drag reduction (HDR) – likely reflects a qualitative change in the underlying vortex dynamics according to our recent study [1]. In particular, we proposed that polymers start to suppress the lift-up and bursting of vortices at HDR, leading to the localization of turbulent structures. To test our hypothesis, a statistically robust conditional sampling algorithm, based on Jenong and Hussain [2]’s work, was adopted in this study. The comparison of conditional eddies between the Newtonian and the highly elastic turbulence shows that (i) the lifting “strength” of vortices is suppressed by polymers as reflected by the decreasing lifting angle of the conditional eddy and (ii) the curvature of vortices is also eliminated as the orientation of the head of the conditional eddy changes. In summary, the results of conditional sampling support our hypothesis of polymer-turbulence interactions during the LDR-HDR transition.
Coherence of structural visual cues and pictorial gravity paves the way for interceptive actions.
Zago, Myrka; La Scaleia, Barbara; Miller, William L; Lacquaniti, Francesco
2011-09-20
Dealing with upside-down objects is difficult and takes time. Among the cues that are critical for defining object orientation, the visible influence of gravity on the object's motion has received limited attention. Here, we manipulated the alignment of visible gravity and structural visual cues between each other and relative to the orientation of the observer and physical gravity. Participants pressed a button triggering a hitter to intercept a target accelerated by a virtual gravity. A factorial design assessed the effects of scene orientation (normal or inverted) and target gravity (normal or inverted). We found that interception was significantly more successful when scene direction was concordant with target gravity direction, irrespective of whether both were upright or inverted. This was so independent of the hitter type and when performance feedback to the participants was either available (Experiment 1) or unavailable (Experiment 2). These results show that the combined influence of visible gravity and structural visual cues can outweigh both physical gravity and viewer-centered cues, leading to rely instead on the congruence of the apparent physical forces acting on people and objects in the scene.
Topological bifurcations of coherent structures and dimension reduction of plasma convection models
DEFF Research Database (Denmark)
Dam, Magnus
in an overall neutral gaseous state of negatively charged free electrons and positively charged ions. This state of matter is called plasma. To achieve and maintain fusion temperatures, the plasma must avoid direct contact with any solid material. Since the plasma consists of charged particles, it can......Research in fusion energy seeks to develop a green, safe, and sustainable energy source. Nuclear fusion can be achieved by heating a hydrogen gas to temperatures of millions of kelvin. At fusion temperatures, some or all the electrons leave the atomic nucleus of the hydrogen atom. This results...... mode (H-mode). H-mode is the preferred operating mode for a fusion reactor. The transition from L-mode to H-mode is called the L–H transition. The conﬁnement properties of a plasma are largely determined by the physics near the edge of the conﬁnement region of the plasma. The edge transport...
Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.
2009-01-01
This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.
Wei, Xing; Zhan, Haigang; Cai, Shuqun; Zhan, Weikang; Ni, Peitong
2018-05-01
Knowledge of horizontal transport pathways is important for the protection of the marine ecosystem in coastal areas. In this paper, we develop a 3D model to simulate hydrodynamics and particle transport in the Pearl River Estuary (PRE), Southern China, to study the barriers to transport in the PRE. Specifically, we use the flow velocity produced by the model to locate Lagrangian coherent structures (LCSs) hidden in ocean surface currents. Our findings show that a remarkable LCS begins upstream near the Humen inlet, extends to the Wanshan Islands via Neilingding Island, and can act as a transport barrier in the estuary. This LCS appeared 1-2 h after high tide and was persistent for 6-7 h during every ebb tide. Particles released on the west side of the LCS moved downstream, exited the estuary by Daxi Channel, and seldom spread to the east side, especially the Hong Kong Sea area. An analysis of several scenarios suggested that the formation of this LCS was due to topography restrictions and tidal forces.
Pinto, Giuliana; Tarchi, Christian; Bigozzi, Lucia
2015-12-01
The relationship between oral language and the writing process at early acquisition stages and the ways the former can enhance or limit the latter has not been researched extensively. The predictive relationship between kindergarten oral narrative competence and the first- and second-grade written narrative competence was explored in a 3-year longitudinal study. Among the first and second graders, the relationship between orthographic competence and narrative competence in written productions was also analysed. One hundred and nine Italian children participated in this study. Kindergarteners produced an oral narrative, whereas the first and second graders produced a written narrative. The oral and written narratives were analysed in terms of cohesion, coherence, and structure. The first-grade orthographic competence was assessed via a dictation task. Multiple linear regression and mediational analyses were performed. Kindergarten oral narrative competence affected the first- and second-grade written narrative competence via a mediational effect of orthographic competence. The results suggest the importance of practicing oral narrative competence in kindergarten and first grade and the value of composition quality independent of orthographic text accuracy. © 2015 The British Psychological Society.
DEFF Research Database (Denmark)
Fercher, A.F.; Andersen, Peter E.
2017-01-01
Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...
Quantum coherence: Reciprocity and distribution
Energy Technology Data Exchange (ETDEWEB)
Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)
2017-03-18
Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.
Stoica, Florina; Chirita-Emandi, Adela; Andreescu, Nicoleta; Stanciu, Alina; Zimbru, Cristian G; Puiu, Maria
2018-03-01
We aimed to assess the macular anatomy using spectral domain optical coherence tomography (SD-OCT), in children born preterm who had laser-treated retinopathy of prematurity (ROP), and to investigate the relationship between structural changes in macula and visual function. Thirty-seven 3-8 years old children were included in the study in two groups: 20 children born preterm [(<34 weeks of gestation, birthweight (BW) <2000 g)] who had laser-treated ROP in the Neonatology Department, Municipal Clinical Emergency Hospital of Timisoara, Romania; and 17 controls (children born at term, without eye disease, matched for age and gender). Spectral domain optical coherence tomography (SD-OCT) imaging (Spectralis OCT) was performed at central fovea and 1 mm nasally. In the ROP group (total 34 eyes), we included both eyes in 14 children, and on one eye in six other children. In the control group, both eyes for all 17 children were included. Central fovea thickness (CFT) was significantly higher in children born preterm and with laser-treated ROP as compared to controls (275 ± 34.8 μm versus 224 ± 27.2 μm; p < 0.001). The laser-treated eyes with ROP had mean best-corrected visual acuity (BCVA) = 0.19 logMAR (20/31 Snellen); 35% had BCVA ≥0.3 logMAR (20/40 Snellen). In receiver operating characteristic curve (ROC) analysis, with BCVA as static variable (category 0 = BCVA ≤0.3 logMAR), the CFT cut-off was 257 μm (sensitivity: 0.917; specificity: 0.661; area under the curve: 0.810, p = 0.001). Years after the laser intervention, central fovea was significantly thicker in ROP laser-treated children born preterm when compared to controls. Central fovea thickness (CFT) correlated strongly and inversely with BW and gestational age (GA) at birth, while a CFT value above 257 μm was suggestive for suboptimal visual acuity. The proposed cut-off value needs to be validated in future larger studies. © 2017 Acta Ophthalmologica Scandinavica Foundation
International Nuclear Information System (INIS)
Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E
2009-01-01
Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.
Energy Technology Data Exchange (ETDEWEB)
Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)
2009-03-01
Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.
Duffy, Frank H; Als, Heidelise
2012-06-26
The autism rate has recently increased to 1 in 100 children. Genetic studies demonstrate poorly understood complexity. Environmental factors apparently also play a role. Magnetic resonance imaging (MRI) studies demonstrate increased brain sizes and altered connectivity. Electroencephalogram (EEG) coherence studies confirm connectivity changes. However, genetic-, MRI- and/or EEG-based diagnostic tests are not yet available. The varied study results likely reflect methodological and population differences, small samples and, for EEG, lack of attention to group-specific artifact. Of the 1,304 subjects who participated in this study, with ages ranging from 1 to 18 years old and assessed with comparable EEG studies, 463 children were diagnosed with autism spectrum disorder (ASD); 571 children were neuro-typical controls (C). After artifact management, principal components analysis (PCA) identified EEG spectral coherence factors with corresponding loading patterns. The 2- to 12-year-old subsample consisted of 430 ASD- and 554 C-group subjects (n = 984). Discriminant function analysis (DFA) determined the spectral coherence factors' discrimination success for the two groups. Loading patterns on the DFA-selected coherence factors described ASD-specific coherence differences when compared to controls. Total sample PCA of coherence data identified 40 factors which explained 50.8% of the total population variance. For the 2- to 12-year-olds, the 40 factors showed highly significant group differences (P EEG coherence-based phenotype of childhood autism. The predominantly reduced short-distance coherences may indicate poor local network function. The increased long-distance coherences may represent compensatory processes or reduced neural pruning. The wide average spectral range of factor loadings may suggest over-damped neural networks.
Zooming in on vibronic structure by lowest-value projection reconstructed 4D coherent spectroscopy
Harel, Elad
2018-05-01
A fundamental goal of chemical physics is an understanding of microscopic interactions in liquids at and away from equilibrium. In principle, this microscopic information is accessible by high-order and high-dimensionality nonlinear optical measurements. Unfortunately, the time required to execute such experiments increases exponentially with the dimensionality, while the signal decreases exponentially with the order of the nonlinearity. Recently, we demonstrated a non-uniform acquisition method based on radial sampling of the time-domain signal [W. O. Hutson et al., J. Phys. Chem. Lett. 9, 1034 (2018)]. The four-dimensional spectrum was then reconstructed by filtered back-projection using an inverse Radon transform. Here, we demonstrate an alternative reconstruction method based on the statistical analysis of different back-projected spectra which results in a dramatic increase in sensitivity and at least a 100-fold increase in dynamic range compared to conventional uniform sampling and Fourier reconstruction. These results demonstrate that alternative sampling and reconstruction methods enable applications of increasingly high-order and high-dimensionality methods toward deeper insights into the vibronic structure of liquids.
Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J
2018-03-15
Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
International Nuclear Information System (INIS)
Jana, Sayanee; Chakrabarti, Nikhil; Ghosh, Samiran
2016-01-01
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Cinematic Characterization of Convected Coherent Structures Within an Continuous Flow Z-Pinch
Underwood, Thomas; Rodriguez, Jesse; Loebner, Keith; Cappelli, Mark
2017-10-01
In this study, two separate diagnostics are applied to a plasma jet produced from a coaxial accelerator with characteristic velocities exceeding 105 m/s and timescales of 10 μs. In the first of these, an ultra-high frame rate CMOS camera coupled to a Z-type laser Schlieren apparatus is used to obtain flow-field refractometry data for the continuous flow Z-pinch formed within the plasma deflagration jet. The 10 MHz frame rate for 256 consecutive frames provides high temporal resolution, enabling turbulent fluctuations and plasma instabilities to be visualized over the course of a single pulse. The unique advantage of this diagnostic is its ability to simultaneously resolve both structural and temporal evolution of instabilities and density gradients within the flow. To allow for a more meaningful statistical analysis of the resulting wave motion, a multiple B-dot probe array was constructed and calibrated to operate over a broadband frequency range up to 100 MHz. The resulting probe measurements are incorporated into a wavelet analysis to uncover the dispersion relation of recorded wave motion and furthermore uncover instability growth rates. Finally these results are compared with theoretical growth rate estimates to identify underlying physics. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program in addition to the National Defense Science Engineering Graduate Fellowship.
Nonlinear coherent structures of Alfvén wave in a collisional plasma
Energy Technology Data Exchange (ETDEWEB)
Jana, Sayanee; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India)
2016-07-15
The Alfvén wave dynamics is investigated in the framework of two-fluid approach in a compressible collisional magnetized plasma. In the finite amplitude limit, the dynamics of the nonlinear Alfvén wave is found to be governed by a modified Korteweg-de Vries Burgers equation (mKdVB). In this mKdVB equation, the electron inertia is found to act as a source of dispersion, and the electron-ion collision serves as a dissipation. The collisional dissipation is eventually responsible for the Burgers term in mKdVB equation. In the long wavelength limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped nonlinear Schrödinger equation. Furthermore, these nonlinear equations are analyzed by means of analytical calculation and numerical simulation to elucidate the various aspects of the phase-space dynamics of the nonlinear wave. Results reveal that nonlinear Alfvén wave exhibits the dissipation mediated shock, envelope, and breather like structures. Numerical simulations also predict the formation of dissipative Alfvénic rogue wave, giant breathers, and rogue wave holes. These results are discussed in the context of the space plasma.
Elaborating a coherent and adequate financial structure for a post Kyoto framework
International Nuclear Information System (INIS)
Bassi, A M; Magnoni, S
2009-01-01
The present paper reviews the international climate change financial framework and aims at providing insights on its future post-2012 development. This study offers an overview of the good attributes and distortions of the current regime, while investigating the work currently done by many countries and international organisation, in proposing unique and original financial schemes for a post-Kyoto agreement. The objective is to define potential strengths and shortcomings of the current (or projected) financial regime, and put this in relation with the creation of an improved new financing scheme, that could transfer sufficient resources from North to South in an efficient, transparent and participatory way. Indeed, international climate change negotiations are now working in this direction, and the regular submissions from Parties and civil society to the UNFCCC's AWG-LCA witness the desire of governments and organisations to achieve an innovative climate change agreement that could overcome existing weaknesses in the global financial structure, while providing nations with suitable tools to handle the adverse consequences of climatic modifications. The paper will additionally focus on the role of CDM and credit-based mechanisms in a new future financial framework, in consideration of needed improvements in the current international credit system and country visions and AWG-LCA submissions.
Soft-Pion theorems for large scale structure
International Nuclear Information System (INIS)
Horn, Bart; Hui, Lam; Xiao, Xiao
2014-01-01
Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS
Pollet-Villard, Frédéric; Chiquet, Christophe; Romanet, Jean-Paul; Noel, Christian; Aptel, Florent
2014-05-02
To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.
Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai
2017-01-01
The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.
International Nuclear Information System (INIS)
Hooper, J.D.
1984-01-01
Experimental studies of developed axial single-phase flow through closely spaced rod arrays have shown, with reducing p/d ratio, the development of high axial and azimuthal turbulence intensities in the rod gap region. Associated with this is the existence of very high levels of the azimuthal Reynolds shear stress component either side of the rod gap centre. Spatial correlation analysis of the three turbulent velocity components has shown a large scale coherent and almost periodic structure in the rod gap region. The structure is markedly different to the currently accepted secondary flow model. 14 references
Review of the research on “structural bionic” method of large sculpture
Yin, Jiang; Yang, Wenchang
2017-09-01
This paper presented the basic concept of bionic sculpture and summarized the application status of “structural bionic”theory in large bionic sculpture field. Introduced the development trend and challenges of large bionic sculpture and pointed out that the sculpture's “structural bionic” can bring higher mechanical performance of the new structure and system, The evaluation method and structure design for large bionic sculpture are urgently needed.Finally prospected the market of the large bionic sculpture.
Structural Flexibility of Large Direct Drive Generators for Wind Turbines
Shrestha, G.
2013-01-01
The trend in wind energy is towards large offshore wind farms. This trend has led to the demand for high reliability and large single unit wind turbines. Different energy conversion topologies such as multiple stage geared generators, single stage geared generators and gearless (direct drive)
RNA secondary structure diagrams for very large molecules: RNAfdl
DEFF Research Database (Denmark)
Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.
2013-01-01
There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...
Chaperonin Structure - The Large Multi-Subunit Protein Complex
Directory of Open Access Journals (Sweden)
Irena Roterman
2009-03-01
Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.
Ultra-Lightweight Large Aperture Support Structures, Phase I
National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...
An improved method to characterise the modulation of small-scale turbulent by large-scale structures
Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta
2015-11-01
A key aspect of turbulent boundary layer dynamics is ``modulation,'' which refers to degree to which the intensity of coherent large-scale structures (LS) cause an amplification or attenuation of the intensity of the small-scale structures (SS) through large-scale-linkage. In order to identify the variation of the amplitude of the SS motion, the envelope of the fluctuations needs to be determined. Mathis et al. (2009) proposed to define this latter by low-pass filtering the modulus of the analytic signal built from the Hilbert transform of SS. The validity of this definition, as a basis for quantifying the modulated SS signal, is re-examined on the basis of DNS data for a channel flow. The analysis shows that the modulus of the analytic signal is very sensitive to the skewness of its PDF, which is dependent, in turn, on the sign of the LS fluctuation and thus of whether these fluctuations are associated with sweeps or ejections. The conclusion is that generating an envelope by use of a low-pass filtering step leads to an important loss of information associated with the effects of the local skewness of the PDF of the SS on the modulation process. An improved Hilbert-transform-based method is proposed to characterize the modulation of SS turbulence by LS structures
Castiglioni, Carlo A.; Rabuffetti, Angelo S.; Chiarelli, Gian P.; Brambilla, Giovanni; Georgi, Julia
2017-09-01
This paper summarizes the experience gained in the structural assessment of an existing Thermal Power Plant (TPP) located near Pristina, focusing on the cooling tower and the flue gas stack, which are the main structures of the TPP. Scope of the work was the evaluation of the actual conditions of the structures and to identify the eventual repair measures in order to guarantee a safe and reliable operation of the TPP in view of the extension of its operational lifetime for the next 30 years. With this aim, a sequence of different activities was performed, like: a topographic survey to compare the actual geometrical configuration with the design one, an investigation of the material properties, an in depth visual inspection in order to detect any visible existing damage. Due to the very high elevations of the constructions and to the lack of appropriate structures aimed to their inspections and maintenance, this activity could not be performed without using Unmanned Aerial Vehicle (UAV). This resulted the safest, most economical and less time-consuming solution identified to map the surface damage in the reinforced concrete elements of these large structures including zones that could not be inspected because out of reach by other means.
Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)
Horne, Michael R.; Juarez, Peter D.
2016-01-01
In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).
Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays
Ventosa, S.; Romanowicz, B. A.
2015-12-01
Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe
Measuring Cosmic Expansion and Large Scale Structure with Destiny
Benford, Dominic J.; Lauer, Tod R.
2007-01-01
Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4Destiny will be used in its third year as a high resolution, wide-field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.
Mid-frequency Band Dynamics of Large Space Structures
Coppolino, Robert N.; Adams, Douglas S.
2004-01-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Algorithms for Electromagnetic Scattering Analysis of Electrically Large Structures
DEFF Research Database (Denmark)
Borries, Oscar Peter
Accurate analysis of electrically large antennas is often done using either Physical Optics (PO) or Method of Moments (MoM), where the former typically requires fewer computational resources but has a limited application regime. This study has focused on fast variants of these two methods, with t...
Structure-Based Partitioning of Large Concept Hierarchies
Stuckenschmidt, Heiner; Klein, Michel
2004-01-01
The increasing awareness of the benefits of ontologies for information processing has lead to the creation of a number of large ontologies about real-world domains. The size of these ontologies and their monolithic character cause serious problems in handling them. In other areas, e.g. software
Structural analysis of the large coil segment test
International Nuclear Information System (INIS)
Cain, W.D.; Gray, W.H.; Hendrich, W.R.; Nelson, B.E.; Stoddart, W.C.T.
1977-01-01
In the analysis of the LCS, it has been demonstrated that it is possible to design complex structures utilizing existing hardware in a highly reliable and efficient manner. It has also been shown that GIFTS is very useful for aiding in the design and analysis of these complex structures. GIFTS' element generation and graphics display capabilities allow for on-line structural analysis to be performed and permit the incorporation and analysis of major design changes in short periods of time. This flexibility means that more design iterations can be analyzed, and thus a better design can often be achieved instead of just an adequate design. The on-line nature of GIFTS allows for continuity of thought and its visual displays highlight trouble areas which can usually be redesigned in an efficient manner. For the LCS, GIFTS was used to generate a working design of the complete system in a logical and efficient manner in a relatively short period of time
An Evaluation Framework for Large-Scale Network Structures
DEFF Research Database (Denmark)
Pedersen, Jens Myrup; Knudsen, Thomas Phillip; Madsen, Ole Brun
2004-01-01
structure is a matter of trade-offs between different desired properties, and given a specific case with specific known or expected demands and constraints, the parameters presented will be weighted differently. The decision of such a weighting is supported by a discussion of each parameter. The paper...
High resolution soil moisture radiometer. [large space structures
Wilheit, T. T.
1978-01-01
An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.
Structure and properties of copper after large strain deformation
Energy Technology Data Exchange (ETDEWEB)
Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew
2010-05-15
Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Seismic soil-structure interaction of foundations with large piles
International Nuclear Information System (INIS)
Zeevaert, L.
1996-01-01
In seismic regions with soft soil deposits subjected to ground surface subsidence, there is the necessity to support the weight of constructions on large diameter piles or piers hearing on deep firm strata. To justify the action of these elements working under flexo compression and shear, it is necessary to perform calculations of soil pile interaction from a practical engineering point of view and estimate the order of magnitude of the forces and displacements to which these elements will be subjected during the seismic action assigned to the foundation. In this paper we defined a pier as a large diameter pile constructed on site. Furthermore, in the seismic analysis it is necessary to evaluate the seismic pore water pressure to learn on the effective seismic soil stresses close to the ground surface. (author)
Large-scale density structures in the outer heliosphere
Belcher, J. W.; Lazarus, A. J.; Mcnutt, R. L., Jr.; Gordon, G. S., Jr.
1993-01-01
The Plasma Science experiment on the Voyager 2 spacecraft has measured the solar wind density from 1 to 38 AU. Over this distance, the solar wind density decreases as the inverse square of the heliocentric distance. However, there are large variations in this density at a given radius. Such changes in density are the dominant cause of changes in the solar wind ram pressure in the outer heliosphere and can cause large perturbations in the location of the termination shock of the solar wind. Following a simple model suggested by Suess, we study the non-equilibrium, dynamic location of the termination shock as it responds to these pressure changes. The results of this study suggest that the termination shock is rarely if ever at its equilibrium distance and may depart from that distance by as much as 50 AU at times.
Large Eddy Simulation of stratified flows over structures
Brechler J.; Fuka V.
2013-01-01
We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
Large Eddy Simulation of stratified flows over structures
Directory of Open Access Journals (Sweden)
Brechler J.
2013-04-01
Full Text Available We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
Large Eddy Simulation of stratified flows over structures
Fuka, V.; Brechler, J.
2013-04-01
We tested the ability of the LES model CLMM (Charles University Large-Eddy Microscale Model) to model the stratified flow around three dimensional hills. We compared the quantities, as the height of the dividing streamline, recirculation zone length or length of the lee waves with experiments by Hunt and Snyder[3] and numerical computations by Ding, Calhoun and Street[5]. The results mostly agreed with the references, but some important differences are present.
Approximating spectral impact of structural perturbations in large networks
Milanese, A; Nishikawa, Takashi; Sun, Jie
2010-01-01
Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ran...
Risk Management of Large RC Structures within Spatial Information System
DEFF Research Database (Denmark)
Qin, Jianjun; Faber, Michael Havbro
2012-01-01
Abstract: The present article addresses the development of a spatial information system (SIS), which aims to facilitate risk management of large‐scale concrete structures. The formulation of the SIS is based on ideas developed in the context of indicator‐based risk modeling for concrete structures...... subject to corrosion and geographical information system based risk modeling concerning large‐scale risk management. The term “risk management” here refers in particular to the process of condition assessment and optimization of the inspection and repair activities. The SIS facilitates the storage...... and handling of all relevant information to the risk management. The probabilistic modeling utilized in the condition assessment takes basis in a Bayesian hierarchical modeling philosophy. It facilitates the updating of risks as well as optimizing inspection plans whenever new information about the condition...
Electronic Structure of Large-Scale Graphene Nanoflakes
Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong
2014-01-01
With the help of the recently developed SIESTA-PEXSI method [J. Phys.: Condens. Matter \\textbf{26}, 305503 (2014)], we perform Kohn-Sham density functional theory (DFT) calculations to study the stability and electronic structure of hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, HOMO-LUMO energy gap, edge states and aromaticity, depend sensitively on the type of edges (ACGNFs and ZZGNFs), size and the n...
On Soft Limits of Large-Scale Structure Correlation Functions
Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura
2014-01-01
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literat...
Fabrication of large area woodpile structure in polymer
Gupta, Jaya Prakash; Dutta, Neilanjan; Yao, Peng; Sharkawy, Ahmed S.; Prather, Dennis W.
2009-02-01
A fabrication process of three-dimensional Woodpile photonic crystals based on multilayer photolithography from commercially available photo resist SU8 have been demonstrated. A 6-layer, 2 mm × 2mm woodpile has been fabricated. Different factors that influence the spin thickness on multiple resist application have been studied. The fabrication method used removes, the problem of intermixing, and is more repeatable and robust than the multilayer fabrication techniques for three dimensional photonic crystal structures that have been previously reported. Each layer is developed before next layer photo resist spin, instead of developing the whole structure in the final step as used in multilayer process. The desired thickness for each layer is achieved by the calibration of spin speed and use of different photo resist compositions. Deep UV exposure confinement has been the defining parameter in this process. Layer uniformity for every layer is independent of the previous developed layers and depends on the photo resist planarizing capability, spin parameters and baking conditions. The intermixing problem, which results from the previous layers left uncrossed linked photo resist, is completely removed in this process as the previous layers are fully developed, avoiding any intermixing between the newly spun and previous layers. Also this process gives the freedom to redo every spin any number of times without affecting the previously made structure, which is not possible in other multilayer process where intermediate developing is not performed.
New integrable structures in large-N QCD
International Nuclear Information System (INIS)
Ferretti, Gabriele; Heise, Rainer; Zarembo, Konstantin
2004-01-01
We study the anomalous dimensions of single trace operators composed of field strengths F μν in large-N QCD. The matrix of anomalous dimensions is the Hamiltonian of a compact spin chain with two spin one representations at each vertex corresponding to the self-dual and anti-self-dual components of F μν . Because of the special form of the interaction it is possible to study separately renormalization of purely self-dual components. In this sector the Hamiltonian is integrable and can be exactly solved by Bethe ansatz. Its continuum limit is described by the level two SU(2) Wess-Zumino-Witten model
Structural design of the Large Deployable Reflector (LDR)
Satter, Celeste M.; Lou, Michael C.
1991-01-01
An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.
Structural design of the Large Deployable Reflector (LDR)
Satter, Celeste M.; Lou, Michael C.
1991-09-01
An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.
Large-Scale Unsupervised Hashing with Shared Structure Learning.
Liu, Xianglong; Mu, Yadong; Zhang, Danchen; Lang, Bo; Li, Xuelong
2015-09-01
Hashing methods are effective in generating compact binary signatures for images and videos. This paper addresses an important open issue in the literature, i.e., how to learn compact hash codes by enhancing the complementarity among different hash functions. Most of prior studies solve this problem either by adopting time-consuming sequential learning algorithms or by generating the hash functions which are subject to some deliberately-designed constraints (e.g., enforcing hash functions orthogonal to one another). We analyze the drawbacks of past works and propose a new solution to this problem. Our idea is to decompose the feature space into a subspace shared by all hash functions and its complementary subspace. On one hand, the shared subspace, corresponding to the common structure across different hash functions, conveys most relevant information for the hashing task. Similar to data de-noising, irrelevant information is explicitly suppressed during hash function generation. On the other hand, in case that the complementary subspace also contains useful information for specific hash functions, the final form of our proposed hashing scheme is a compromise between these two kinds of subspaces. To make hash functions not only preserve the local neighborhood structure but also capture the global cluster distribution of the whole data, an objective function incorporating spectral embedding loss, binary quantization loss, and shared subspace contribution is introduced to guide the hash function learning. We propose an efficient alternating optimization method to simultaneously learn both the shared structure and the hash functions. Experimental results on three well-known benchmarks CIFAR-10, NUS-WIDE, and a-TRECVID demonstrate that our approach significantly outperforms state-of-the-art hashing methods.
On the origin of large-scale cosmological structure
International Nuclear Information System (INIS)
Fry, J.N.
1987-01-01
It should be emphasized that the authors do not know at this point with any certainty what is the ultimate origin of cosmological structure. There is a collection of assumptions that make up a more or less standard model, wherein a broad spectrum of quantum fluctuations from an early epoch, modulated by physical effects that depend on the nature of the dominant component of the mass of the universe, provide the seeds that are amplified by gravitational attraction into the structures that they see today. This at least allows some statement on what this origin is not. Although all of the individual choices involved are relatively plausible, there are many steps along the way, and the resulting construct should by no means be taken to be the only possible version of the truth. The author summarizes the more commonly held beliefs and outlines what has come to be the standard model. This paper outlines main points, with most details left to the references (which also contains some visual representations of the results of numerical simulations
Shell structures and chaos in nuclei and large metallic clusters
International Nuclear Information System (INIS)
Heiss, W.D.; University of the Witwatersrand, Johannesburg; Nazmitdinov, R.G.; Radu, S.; University of the Witwatersrand, Johannesburg
1995-01-01
A reflection-asymmetric deformed oscillator potential is analyzed from the classical and quantum mechanical point of view. The connection between occurrence of shell structures and classical periodic orbits is studied using the ''removal of resonances method'' in a classical analysis. In this approximation, the effective single particle potential becomes separable and the frequencies of the classical trajectories are easily determined. It turns out that the winding numbers calculated in this way are in good agreement with the ones found from the corresponding quantum mechanical spectrum using the particle number dependence of the fluctuating part of the total energy. When the octupole term is switched on it is found that prolate shapes are stable against chaos and can exhibit shells where spherical and oblate cases become chaotic. An attempt is made to explain this difference in the quantum mechanical context by looking at the distribution of exceptional points which results from the matrix structure of the respective Hamiltonians. In a similar way we analyze the modified Nilsson model and discuss its consequences for metallic clusters. (orig.)
Large p sub( t) phenomena and the structure of jets
International Nuclear Information System (INIS)
Sosnowski, R.
1979-01-01
The modern history of high transverse momentum phenomena started in 1972 when it was found that the spectrum of the transverse momentum p sub(T) of secondaries produced in hadronic collisions did not drop as fast as expected from its behavior at low transverse momentum. Now it is possible to study the production of secondaries at transverse momenta as high as 16 GeV/c. The aim of this review is to systematize the existing experimental knowledge in this field. It is believed that the production of objects with high transverse momenta in the collision of two hadrons is due to the hard scattering of their constituents. According to this hard scattering picture, in the collision causing hard scattering, two scattered constituents with high transverse momenta should show up as two jets of hadrons, trigger jet and away jet. Two incoming hadrons, one constituent is removed by hard scattering from each, are expected to create two spectator jets. The present review is made through the four-jet world. The experimental studies of high p sub(T) phenomena in hadronic collision showed this four-jet structure. The observed structure is consistent with the assumption that high p sub(T) objects originate from scattered hadronic constituents. Many aspects of the collision indicate that the scattering constituents are quarks. (Kako, I.)
Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.
Quantum cosmological origin of large scale structures of the universe
International Nuclear Information System (INIS)
Anini, Y.
1989-07-01
In this paper, the initial quantum state of matter perturbations about de Sitter minisuperspace model is found. For a large class of boundary conditions (bcs), including those of Hartle-Hawking and Vilenkin, the resulting quantum state is the de Sitter invariant vacuum. This result is found to depend only on the regularity requirement at the euclidean origin of spacetime which is common to all reasonable (bcs). The initial value of the density perturbations implied by these quantum fluctuations are found and evaluated at the initial horizon crossing. The perturbations are found to have an almost scale independent spectrum, and an amplitude which depends on the scale at which inflation took place. The amplitude would have the right value if the scale of inflation is H ≤ 10 15 Gev. (author). 9 refs
Cosmological Parameter Estimation with Large Scale Structure Observations
Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien
2014-01-01
We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.
Isolating relativistic effects in large-scale structure
Bonvin, Camille
2014-12-01
We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.
International Nuclear Information System (INIS)
Deri, E; Braza, M; Cazin, S; Cid, E; Harran, G; Ouvrard, H; Hoarau, Y; Hunt, J
2011-01-01
The present study aims at a physical analysis of the coherent and chaotic vortex dynamics in the near wake around a flat plate at incidence, to provide new elements in respect of the flow physics turbulence modelling for high-Reynolds number flows around bodies. This constitutes nowadays a challenge in the aeronautics design. A special attention is paid to capture the thin shear layer interfaces downstream of the separation, responsible for aeroacoustics phenomena related to noise reduction and directly linked to an accurate prediction of the aerodynamic forces. The experimental investigation is carried out by means of tomographic PIV. The interaction of the most energetic coherent structures with the random turbulence is discussed. Furthermore, the POD analysis allowed evaluation of 3D phase averaged dynamics as well as the influence of higher modes associated with the finer-scale turbulence. The numerical study by means of the Organised Eddy Simulation, OES approach ensured a reduced turbulence diffusion that allowed development of the von Karman instability and of capturing of the thin shear-layer interfaces, by using appropriate criteria based on vorticity and dissipation rate of kinetic energy. A comparison between the experiments and the simulations concerning the coherent vortex pattern is carried out.
Coherence and Sense of Coherence
DEFF Research Database (Denmark)
Dau, Susanne
2014-01-01
Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...
Structural fatigue test results for large wind turbine blade sections
Faddoul, J. R.; Sullivan, T. L.
1982-01-01
In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).
Hierarchical Cantor set in the large scale structure with torus geometry
Energy Technology Data Exchange (ETDEWEB)
Murdzek, R. [Physics Department, ' Al. I. Cuza' University, Blvd. Carol I, Nr. 11, Iassy 700506 (Romania)], E-mail: rmurdzek@yahoo.com
2008-12-15
The formation of large scale structures is considered within a model with string on toroidal space-time. Firstly, the space-time geometry is presented. In this geometry, the Universe is represented by a string describing a torus surface. Thereafter, the large scale structure of the Universe is derived from the string oscillations. The results are in agreement with the cellular structure of the large scale distribution and with the theory of a Cantorian space-time.
Stochastic structure of annual discharges of large European rivers
Directory of Open Access Journals (Sweden)
Stojković Milan
2015-03-01
Full Text Available Water resource has become a guarantee for sustainable development on both local and global scales. Exploiting water resources involves development of hydrological models for water management planning. In this paper we present a new stochastic model for generation of mean annul flows. The model is based on historical characteristics of time series of annual flows and consists of the trend component, long-term periodic component and stochastic component. The rest of specified components are model errors which are represented as a random time series. The random time series is generated by the single bootstrap model (SBM. Stochastic ensemble of error terms at the single hydrological station is formed using the SBM method. The ultimate stochastic model gives solutions of annual flows and presents a useful tool for integrated river basin planning and water management studies. The model is applied for ten large European rivers with long observed period. Validation of model results suggests that the stochastic flows simulated by the model can be used for hydrological simulations in river basins.
The large-scale structure of the universe
International Nuclear Information System (INIS)
Silk, J.
1999-01-01
The Big Bang is a highly predictive theory, and one that has been systematically refined as the observational data base grows. We assume that the laws an constants of physics are unchanged throughout cosmic time. Einstein's theory of gravitation and the Planck-inspired quantum theory tell us all that we need to know to describe space and time. The local universe is observed to be highly inhomogeneous. Yet if one filters the observed structure, homogeneity appears once the filter bandpass exceeds a few tens of Mpc. The universe is approximately homogeneous. It is also isotropic, there being no apparent preferred direction. Of course, these observations are made from out vantage point. The cosmological principle generalizes the appearance of homogeneity and isotropy to a set of observers distributed through the universe. One motivation behind the cosmological principle is the need to dethrone US as being privileged observers from the vantage point of the earth. The universe is assumed to be statistically isotropic at all times for sets of fundamental observers. One consequence is that the universe must be statistically homogeneous. Observations of the cosmic microwave background have vindicated the cosmological principle, originally applied by Einstein in high first derivation of a static universe, originally applied by Einstein in his first derivation of a static universe. The cosmic microwave background is isotropic to approximately 1 part in 10 5 . It originates from the early universe, and demonstrates that the matter distribution satisfied a similar level of homogeneity during the first million years of cosmic history. (author)
On soft limits of large-scale structure correlation functions
International Nuclear Information System (INIS)
Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura
2014-11-01
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we rederive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.
1997-01-01
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...
Energy Technology Data Exchange (ETDEWEB)
Morris, R; Albanese, K; Lakshmanan, M; Greenberg, J; Kapadia, A [Duke University Medical Center, Durham, NC, Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)
2015-06-15
Purpose: This study intends to characterize the spectral and spatial resolution limits of various fan beam geometries for differentiation of normal and neoplastic breast structures via coded aperture coherent scatter spectral imaging techniques. In previous studies, pencil beam raster scanning methods using coherent scatter computed tomography and selected volume tomography have yielded excellent results for tumor discrimination. However, these methods don’t readily conform to clinical constraints; primarily prolonged scan times and excessive dose to the patient. Here, we refine a fan beam coded aperture coherent scatter imaging system to characterize the tradeoffs between dose, scan time and image quality for breast tumor discrimination. Methods: An X-ray tube (125kVp, 400mAs) illuminated the sample with collimated fan beams of varying widths (3mm to 25mm). Scatter data was collected via two linear-array energy-sensitive detectors oriented parallel and perpendicular to the beam plane. An iterative reconstruction algorithm yields images of the sample’s spatial distribution and respective spectral data for each location. To model in-vivo tumor analysis, surgically resected breast tumor samples were used in conjunction with lard, which has a form factor comparable to adipose (fat). Results: Quantitative analysis with current setup geometry indicated optimal performance for beams up to 10mm wide, with wider beams producing poorer spatial resolution. Scan time for a fixed volume was reduced by a factor of 6 when scanned with a 10mm fan beam compared to a 1.5mm pencil beam. Conclusion: The study demonstrates the utility of fan beam coherent scatter spectral imaging for differentiation of normal and neoplastic breast tissues has successfully reduced dose and scan times whilst sufficiently preserving spectral and spatial resolution. Future work to alter the coded aperture and detector geometries could potentially allow the use of even wider fans, thereby making coded
1984-01-01
The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.
Directory of Open Access Journals (Sweden)
Sanjay KHER
2010-05-01
Full Text Available In this work, we report a simple and easily adaptable technique of lateral micro-machining of Photonic Crystal fibers (PCFs using modulated CO2-laser in conjunction with electrical arc system. The technique is controlled, convenient and precise over wide dimensions (50-250 mm. Lateral access to the holes of PCF provides additional flexibility for sensitive real time detection of gases such as green-house gases. Long period gratings are made in PCF through inscription of micro-grooves for sensitive detection of longitudinal strain. A unique and versatile PCF based probe for possible endoscopic Optical Coherence Tomography (OCT applications is reported.
Coherence in quantum estimation
Giorda, Paolo; Allegra, Michele
2018-01-01
The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.
VerHulst, Claire; Meneveau, Charles
2014-02-01
In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative
International Nuclear Information System (INIS)
Iovane, G.; Giordano, P.
2005-01-01
In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe
Garbrecht, B; Schmidt, M G; Garbrecht, Bjorn; Prokopec, Tomislav; Schmidt, Michael G.
2004-01-01
We propose a new baryogenesis scenario based on coherent production and mixing of different fermionic species. The mechanism is operative during phase transitions, at which the fermions acquire masses via Yukawa couplings to scalar fields. Baryon production is efficient when the mass matrix is nonadiabatically varying, nonsymmetric and when it violates CP and B-L directly, or some other charges that are eventually converted to B-L. We first consider a toy model, which involves two mixing fermionic species, and then a hybrid inflationary scenario embedded in a supersymmetric Pati-Salam GUT. We show that, quite generically, a baryon excess in accordance with observation can result.
Structural concepts for very large (400-meter-diameter) solar concentrators
Mikulas, Martin M., Jr.; Hedgepeth, John M.
1989-01-01
A general discussion of various types of large space structures is presented. A brief overview of the history of space structures is presented to provide insight into the current state-of-the art. Finally, the results of a structural study to assess the viability of very large solar concentrators are presented. These results include weight, stiffness, part count, and in-space construction time.
Coherence in electron energy loss spectrometry
International Nuclear Information System (INIS)
Schattschneider, P.; Werner, W.S.M.
2005-01-01
Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism
Non-superconducting magnet structures for near-term, large fusion experimental devices
International Nuclear Information System (INIS)
File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.
1980-10-01
This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design
Soni, Rahul Kumar; De, Ashoke
2018-05-01
The present study primarily focuses on the effect of the jet spacing and strut geometry on the evolution and structure of the large-scale vortices which play a key role in mixing characteristics in turbulent supersonic flows. Numerically simulated results corresponding to varying parameters such as strut geometry and jet spacing (Xn = nDj such that n = 2, 3, and 5) for a square jet of height Dj = 0.6 mm are presented in the current study, while the work also investigates the presence of the local quasi-two-dimensionality for the X2(2Dj) jet spacing; however, the same is not true for higher jet spacing. Further, the tapered strut (TS) section is modified into the straight strut (SS) for investigation, where the remarkable difference in flow physics is unfolded between the two configurations for similar jet spacing (X2: 2Dj). The instantaneous density and vorticity contours reveal the structures of varying scales undergoing different evolution for the different configurations. The effect of local spanwise rollers is clearly manifested in the mixing efficiency and the jet spreading rate. The SS configuration exhibits excellent near field mixing behavior amongst all the arrangements. However, in the case of TS cases, only the X2(2Dj) configuration performs better due to the presence of local spanwise rollers. The qualitative and quantitative analysis reveals that near-field mixing is strongly affected by the two-dimensional rollers, while the early onset of the wake mode is another crucial parameter to have improved mixing. Modal decomposition performed for the SS arrangement sheds light onto the spatial and temporal coherence of the structures, where the most dominant structures are found to be the von Kármán street vortices in the wake region.
International Nuclear Information System (INIS)
Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K
2011-01-01
We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)
Double inflation: A possible resolution of the large-scale structure problem
International Nuclear Information System (INIS)
Turner, M.S.; Villumsen, J.V.; Vittorio, N.; Silk, J.; Juszkiewicz, R.
1986-11-01
A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Ω = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of ∼100 Mpc, while the small-scale structure over ≤ 10 Mpc resembles that in a low density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations. 38 refs., 6 figs
Energy Technology Data Exchange (ETDEWEB)
Choi, Eun Seo [Chosun University, Gwangju (Korea, Republic of); Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il [Chonnam National University Hospital, Gwangju (Korea, Republic of)
2010-06-15
We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.
International Nuclear Information System (INIS)
Choi, Eun Seo; Choi, Woo June; Ryu, Seon Young; Lee, Byeong Ha; Lee, Jae Hyuk; Bom, Hee Seung; Lee, Byeong Il
2010-01-01
We demonstrated the imaging feasibility of full-field optical coherence microscopy (FF-OCM) in pathological diagnosis of human colon tissues. FF-OCM images with high transverse resolution were obtained at different depths of the samples without any dye staining or physical slicing, and detailed microstructures of human colon tissues were visualized. Morphological differences in normal tissues, cancer tissues, and tissues under transition were observed and matched with results seen in conventional optical microscope images. The optical biopsy based on FF-OCM could overcome the limitations on the number of physical cuttings of tissues and could perform high-throughput mass diagnosis of diseased tissues. The proved utility of FF-OCM as a comprehensive and efficient imaging modality of human tissues showed it to be a good alternative to conventional biopsy.
Tavakolian, Pantea; Sfarra, Stefano; Gargiulo, Gianfranco; Sivagurunathan, Koneshwaran; Mandelis, Andreas
2018-06-01
The aim of this research is to investigate the suitability of truncated correlation photothermal coherence tomography (TC-PCT) for the non-destructive imaging of a replica of a real inlay to identify subsurface features that often are invisible areas of vulnerability and damage. Defects of inlays involve glue-rich areas, glue-starved areas, termite attack, insect damage, and laminar splitting. These defects have the potential to result in extensive damage to the art design layers of inlays. Therefore, there is a need for an imaging technique to visualize and determine the location of defects within the sample. The recently introduced TC-PCT modality proved capable of providing 3-D images of specimens with high axial resolution, deep subsurface depth profiling capability, and high signal-to-noise ratio (SNR). Therefore, in this study the authors used TC-PCT to image a fabricated inlay sample with various natural and artificial defects in the middle and top layers. The inlay in question reproduces to scale a piece of art preserved in the "Mirror room" of the Castle Laffitte in France. It was built by a professional restorer following the ancient procedure named element by element. Planar TC-PCT images of the inlay were stacked coherently to provide 3-D visualization of areas with known defects in the sample. The experimental results demonstrated the identification of defects such as empty holes, a hole filled with stucco, subsurface delaminations and natural features such as a wood knot and wood grain in different layers of the sample. For this wooden sample that has a very low thermal diffusivity, a depth range of 2 mm was achieved.
Generalized hypergeometric coherent states
International Nuclear Information System (INIS)
Appl, Thomas; Schiller, Diethard H
2004-01-01
We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions
Energy Technology Data Exchange (ETDEWEB)
Zaraket, H
2000-06-01
This work is devoted to photon and dilepton production in a quark gluon plasma. The theoretical framework in which the study is carried out is Thermal Field Theory, more precisely the hard thermal loop effective theory. Several features of the observables preclude a straightforward application of the effective theory and new tools had to be developed such as the counter term method to avoid double counting. The first part of my study concerns static virtual photon production where I show that important physical contributions are missing in the effective theory at one loop level and hence a two loop calculation is indispensable. Furthermore I give an analytic leading logarithmic estimate of this two loop result showing clearly the insufficiency of the effective theory. The second part of the work focuses on real and quasi real photon production. Again, important contributions arise at two loop level due to collinear divergences. For high mass dilepton the two loop calculation is sufficient. On the other hand, near the light cone photon production rate is non perturbative. Getting closer to the light cone coherent scattering effects (Landau-Pomeranchuk-Migdal effect) arise, which imply the resummation of an infinite series of diagrams. Still nearer the light cone we found a dependence on the non perturbative magnetic mass due to infrared singularities. (author)
Decoupling local mechanics from large-scale structure in modular metamaterials
Yang, Nan; Silverberg, Jesse L.
2017-04-01
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Initial condition effects on large scale structure in numerical simulations of plane mixing layers
McMullan, W. A.; Garrett, S. J.
2016-01-01
In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.
Frisch, Jerome; Gao, Ruiping; Mundani, Ralf-Peter; Wang, Chien Ming; Rank, Ernst
2012-01-01
Very large floating structures (VLFSs) have been used for broad applications such as floating storage facilities, floating piers, floating bridges, floating airports, entertainment facilities, even habitation, and other purposes. Owing to its small
Co-Cure-Ply Resins for High Performance, Large-Scale Structures
National Aeronautics and Space Administration — Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint...
The Space Station as a Construction Base for Large Space Structures
Gates, R. M.
1985-01-01
The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.
On the universal character of the large scale structure of the universe
International Nuclear Information System (INIS)
Demianski, M.; International Center for Relativistic Astrophysics; Rome Univ.; Doroshkevich, A.G.
1991-01-01
We review different theories of formation of the large scale structure of the Universe. Special emphasis is put on the theory of inertial instability. We show that for a large class of initial spectra the resulting two point correlation functions are similar. We discuss also the adhesion theory which uses the Burgers equation, Navier-Stokes equation or coagulation process. We review the Zeldovich theory of gravitational instability and discuss the internal structure of pancakes. Finally we discuss the role of the velocity potential in determining the global characteristics of large scale structures (distribution of caustics, scale of voids, etc.). In the last chapter we list the main unsolved problems and main successes of the theory of formation of large scale structure. (orig.)
Hydro-structural issues in the design of ultra large container ships
Directory of Open Access Journals (Sweden)
Sime Malenica
2014-12-01
Full Text Available The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m which leads to the lower structural natural frequencies, very large operational speed (20 knots and large bow flare (increased slamming loads. The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.
Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex
International Nuclear Information System (INIS)
Fidler, Andrew F; Caram, Justin R; Hayes, Dugan; Engel, Gregory S
2012-01-01
Observations of long-lived coherence between excited states in several photosynthetic antenna complexes has motivated interest in developing a more detailed understanding of the role of the protein matrix in guiding the underlying dynamics of the system. These experiments suggest that classical rate laws may not provide an adequate description of the energy transfer process and that quantum effects must be taken into account to describe the near unity transfer efficiency in these systems. Recently, it has been shown that coherences between different pairs of excitons dephase at different rates. These details should provide some insight about the underlying electronic structure of the complex and its coupling to the protein bath. Here we show that a simple model can account for the different dephasing rates as well as the most current available experimental evidence of excitonic coherences in the Fenna–Matthews–Olson complex. The differences in dephasing rates can be understood as arising largely from differences in the delocalization and shared character between the underlying electronic states. We also suggest that the anomalously low dephasing rate of the exciton 1–2 coherence is enhanced by non-secular effects. (paper)
Quantum probability, choice in large worlds, and the statistical structure of reality.
Ross, Don; Ladyman, James
2013-06-01
Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.
Tezuka, Kyoichi; Taguchi, Tatsuhiko; Alavi, Saman; Sum, Amadeu K.; Ohmura, Ryo
2012-01-01
This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the ...
Ravicz, Michael E.; Cho, Nam-Hyun; Maftoon, Nima; Puria, Sunil
2018-05-01
Recent developments in Optical Coherence Tomography (OCT) allow measurements of cochlear motions through the bony cochlear wall without holes at spatial resolutions approaching about 10 µm. Measurements to date have been made with custom OCT systems with long development times. We present measurements made with a commercial OCT system driven by custom software (VibOCT) that facilitates near real-time frequency response measurements. The 905-nm wavelength laser and high-speed (100 kHz) camera provide higher axial resolution (3 µm in air) and temporal resolution than previous studies and a sub-nanometer noise floor in air. We gathered anatomical images of the gerbil cochlear apex in vivo at higher resolution than available previously, sufficient to resolve individual outer hair cells, pillar cells, tunnel of Corti and inner sulcus regions. Images from the 3rd apical turn show a bulging of Reissners membrane in vivo that flattened post-mortem with a concomitant reduction in the distance between the Henson cell border and the stria vascularis wall. Vibrometry of the organ of Corti shows a low-pass characteristic in-vivo and post-mortem with a traveling wave-like phase delay similar to a recent study rather than the sharp tuning seen more basally. This system can provide valuable information on cochlear function, which is also useful for the development of detailed cochlear models of the passive and active gerbil apex.
Non-linear finite element analyses applicable for the design of large reinforced concrete structures
Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik
2017-01-01
In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises
Large scale electronic structure calculations in the study of the condensed phase
van Dam, H.J.J.; Guest, M.F.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; van Lingen, J.N.J.; Bailey, C.L.; Bush, I.J.
2006-01-01
We consider the role that large-scale electronic structure computations can now play in the modelling of the condensed phase. To structure our analysis, we consider four distict ways in which today's scientific targets can be re-scoped to take advantage of advances in computing resources: 1. time to
Significance of Operating Environment in Condition Monitoring of Large Civil Structures
Alampalli, Sreenivas
1999-01-01
Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to bas...
Energy Technology Data Exchange (ETDEWEB)
Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)
2012-11-01
We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.
Smith, P. J.; Thomson, L. W.; Wilson, R. D.
1986-01-01
NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.
A wireless sensor network design and evaluation for large structural strain field monitoring
International Nuclear Information System (INIS)
Qiu, Zixue; Wu, Jian; Yuan, Shenfang
2011-01-01
Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring
Doubly stochastic coherence in complex neuronal networks
Gao, Yang; Wang, Jianjun
2012-11-01
A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular, small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections. At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases considerably with the increase of the network topology randomness. The network topology randomness plays more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in the neuronal network research study.
Significance of Operating Environment in Condition Monitoring of Large Civil Structures
Directory of Open Access Journals (Sweden)
Sreenivas Alampalli
1999-01-01
Full Text Available Success of remote long-term condition monitoring of large civil structures and developing calibrated analytical models for damage detection, depend significantly on establishing accurate baseline signatures and their sensitivity. Most studies reported in the literature concentrated on the effect of structural damage on modal parameters without emphasis on reliability of modal parameters. Thus, a field bridge structure was studied for the significance of operating conditions in relation to baseline signatures. Results indicate that in practice, civil structures should be monitored for at least one full cycle of in-service environmental changes before establishing baselines for condition monitoring or calibrating finite-element models. Boundary conditions deserve special attention.
Said, Azza Mohamed Ahmed; Elbayomi, Ahmed Mohamed; Shaat, Ashraf Abdelsalam Kandeel
2017-12-16
To describe objectively the possible structural changes of the macula and optic nerve head in the free eyes of unilateral cured retinoblastoma patients and, also after enucleation using spectral domain optical coherence tomography. A cross sectional study involving 60 patients subdivided into three groups; 15 unilateral RB patients in whom enucleation was indicated as a sole treatment performed earlier in life [(study group (I)], 15 unilateral RB patients who had completely regressed disease with a preserved eye [(study group (II)] and 30 age and sex matched healthy controls. The remaining and free eyes in study groups and right eyes of control group had full ophthalmological examination, static automated perimetry and optical coherence tomography of the macula and optic nerve head. In study group (II); a significant thinning of total macula, central fovea, ganglion cell layer (GCL), ganglion cell complex (GCC), and some sectors of outer nuclear layer (P- values ≤0.05) was found with no significant difference in peripapillary nerve fiber layer (pRNFL) thickness and optic nerve head parameters compared to the control group and the study group (I). A significantly thickened total macula, GCL, GCC, and pRNFL in study group (I) compared to study group (II). Thickened pRNFL was significantly correlated to standard automated perimetry pattern deviations. No significant difference was found between study group (I) and control group. Retinoblastoma eyes characterized by thinning of central fovea, GCL, GCC compared to the control group. After unilateral enucleation, increased GCC and pRNFL thicknesses were detected compared to retinoblastoma group.
Legault, Boris A.; Lopez-Lopez, Arantxa; Alba-Casado, Jose Carlos; Doolittle, W. Ford; Bolhuis, Henk; Rodriguez-Valera, Francisco; Papke, R. Thane
2006-01-01
Background: Mature saturated brine (crystallizers) communities are largely dominated (> 80% of cells) by the square halophilic archaeon "Haloquadratum walsbyi". The recent cultivation of the strain HBSQ001 and thesequencing of its genome allows comparison with the metagenome of this taxonomically
Levitin, Daniel J; Menon, Vinod
2003-12-01
The neuroanatomical correlates of musical structure were investigated using functional magnetic neuroimaging (fMRI) and a unique stimulus manipulation involving scrambled music. The experiment compared brain responses while participants listened to classical music and scrambled versions of that same music. Specifically, the scrambled versions disrupted musical structure while holding low-level musical attributes constant, including the psychoacoustic features of the music such as pitch, loudness, and timbre. Comparing music to its scrambled counterpart, we found focal activation in the pars orbitalis region (Brodmann Area 47) of the left inferior frontal cortex, a region that has been previously closely associated with the processing of linguistic structure in spoken and signed language, and its right hemisphere homologue. We speculate that this particular region of inferior frontal cortex may be more generally responsible for processing fine-structured stimuli that evolve over time, not merely those that are linguistic.
International Nuclear Information System (INIS)
Finkelstein, D.
1987-01-01
The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex
Wilson, D
1992-01-01
Hospitals developed over the period of time when positivism become a predominant world view. Positivism was founded by four Western trends: preponderance of hierarchy and autocracy, popularization of bureaucracy, extensive application of a machine orientation to work and predominance of "scientific" inquiry. Organizational theory developed largely from quantitative research findings arising from a positivistic world view. A case study, analyzing a current nursing organizational structure at one large hospital, is presented. Nursing management was found to be based upon the positivistic paradigm. The predominance of a machine orientation, and an autocratic and bureaucratic structure are evidence of this. A change to shared governance had been attempted, indicating a shift to a more modern organizational structure based on a different paradigm. The article concludes by emphasizing that managers are largely responsible for facilitating change; change that will meet internal human resource needs and the cost-effectiveness crises of hospitals today through more effective use of human resources.
Electromagnetic and structural coupled analysis with the effect of large deflection
International Nuclear Information System (INIS)
Horie, Tomoyoshi; Niho, Tomoya
1997-01-01
In the designs of future fusion reactors and magnetic levitated vehicles, thin shell conducting structures are located in a high electromagnetic field. The transient magnetic field induces the eddy current on the conductive structure. While the Lorentz force by the eddy current and the magnetic field is loaded to the thin shell structure, the electromotive force by the deflection velocity and magnetic field reduces the eddy current. Therefore, the electromagnetic and structural coupled analysis is required for the design of these components. This paper describes a coupled finite element analysis for the eddy current and the structure. A formulation is presented considering the effect of the large deflection of shell structures by the total Lagrangian formulation. Both matrix equations for the eddy current and the structure are solved simultaneously using coupling sub-matrices. A coupled problem of a cantilever bending plate is analyzed. Based on the analysis results, the influence of the large deflection on the coupling effect is discussed. The condition that the large deflection analysis is required is examined through some parametric analyses
An algebraic sub-structuring method for large-scale eigenvalue calculation
International Nuclear Information System (INIS)
Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.
2004-01-01
We examine sub-structuring methods for solving large-scale generalized eigenvalue problems from a purely algebraic point of view. We use the term 'algebraic sub-structuring' to refer to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to provide approximate solutions to the original problem. We are interested in the question of which spectral components one should extract from each sub-structure in order to produce an approximate solution to the original problem with a desired level of accuracy. Error estimate for the approximation to the smallest eigenpair is developed. The estimate leads to a simple heuristic for choosing spectral components (modes) from each sub-structure. The effectiveness of such a heuristic is demonstrated with numerical examples. We show that algebraic sub-structuring can be effectively used to solve a generalized eigenvalue problem arising from the simulation of an accelerator structure. One interesting characteristic of this application is that the stiffness matrix produced by a hierarchical vector finite elements scheme contains a null space of large dimension. We present an efficient scheme to deflate this null space in the algebraic sub-structuring process
Accelerating large-scale protein structure alignments with graphics processing units
Directory of Open Access Journals (Sweden)
Pang Bin
2012-02-01
Full Text Available Abstract Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs. As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU.
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud
2016-01-01
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France)
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
Directory of Open Access Journals (Sweden)
Luciana Silva Carneiro
Full Text Available AIM: The study of the patterns and mechanisms of temporal coherence of ecological variables among lakes has become an important area of limnology. However, no study to date has experimentally tested whether and how resource subsidies and food web configuration affect the patterns and mechanisms of temporal coherence of limnological variables. We conducted a field mesocosm experiment to test the following hypotheses: (i nutrient enrichment would reduce the temporal coherence of system variables; (ii fish predation would enhance the temporal coherence of system variables; and (iii the strength of temporal coherence decreases from physical (water transparency, to chemical (dissolved oxygen concentration [DO] to biological variables (total zooplankton biomass. METHODS: For 11 weeks, we manipulated fish presence and nutrient (N and P concentration in a 2 × 2 factorial design in sixteen within-lake enclosures installed in a tropical coastal lagoon. Coherence was estimated by pair-to-pair Pearson's moment correlations of the temporal trajectories of each response variable among enclosures of the same treatment. RESULTS: Fish presence only enhanced the temporal coherence of zooplankton biomass, whereas contrary to our expectations, nutrient addition enhanced the temporal coherence of [DO]. The strength of the individual effects of fish and nutrients on temporal coherence was affected by variable identity, but this variation did not occur in a consistent pattern across variables. However, the interactive effects of fish and nutrients on the temporal coherence of the three variables monitored were not statistically significant. CONCLUSIONS: Our results indicate that local factors, such as fish presence and nutrient availability, may affect the temporal coherence of several system variables, but these effects are better predicted by the strength of direct interactions between the local factor and the variable than by the identity of the variable itself
Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan
International Nuclear Information System (INIS)
Ueshima, T.; Kokusho, T.; Okamoto, T.
1995-01-01
It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)
Interactive computer graphics and its role in control system design of large space structures
Reddy, A. S. S. R.
1985-01-01
This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.
Primordial Non-Gaussianity in the Large-Scale Structure of the Universe
Directory of Open Access Journals (Sweden)
Vincent Desjacques
2010-01-01
generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.
Development of the simulation package 'ELSES' for extra-large-scale electronic structure calculation
International Nuclear Information System (INIS)
Hoshi, T; Fujiwara, T
2009-01-01
An early-stage version of the simulation package 'ELSES' (extra-large-scale electronic structure calculation) is developed for simulating the electronic structure and dynamics of large systems, particularly nanometer-scale and ten-nanometer-scale systems (see www.elses.jp). Input and output files are written in the extensible markup language (XML) style for general users. Related pre-/post-simulation tools are also available. A practical workflow and an example are described. A test calculation for the GaAs bulk system is shown, to demonstrate that the present code can handle systems with more than one atom species. Several future aspects are also discussed.
DEFF Research Database (Denmark)
Quaglia, Alberto; Sarup, Bent; Sin, Gürkan
2013-01-01
structure for efficient formulation of enterprise-wide optimization problems is presented. Through the integration of the described data structure in our synthesis and design framework, the problem formulation workflow is automated in a software tool, reducing time and resources needed to formulate large......The formulation of Enterprise-Wide Optimization (EWO) problems as mixed integer nonlinear programming requires collecting, consolidating and systematizing large amount of data, coming from different sources and specific to different disciplines. In this manuscript, a generic and flexible data...... problems, while ensuring at the same time data consistency and quality at the application stage....
Replication fidelity assessment of large area sub-μm structured polymer surfaces using scatterometry
International Nuclear Information System (INIS)
Calaon, M; Hansen, H N; Tosello, G; Madsen, M H; Weirich, J; Hansen, P E; Garnaes, J; Tang, P T
2015-01-01
The present study addresses one of the key challenges in the product quality control of transparent structured polymer substrates, the replication fidelity of sub-μm structures over a large area. Additionally the work contributes to the development of new techniques focused on in-line characterization of large nanostructured surfaces using scatterometry. In particular an approach to quantify the replication fidelity of high volume manufacturing processes such as polymer injection moulding is presented. Both periodic channels and semi-spherical structures were fabricated on nickel shims used for later injection moulding of Cyclic-olefin-copolymer (COC) substrate were the sub-μm features where ultimately transferred. The scatterometry system was validated using calibrated atomic force microscopy measurements and a model based on scalar diffraction theory employed to calculate the expected angular distribution of the reflected and the transmitted intensity for the nickel surfaces and structured COC and, respectively. (paper)
International Nuclear Information System (INIS)
Ashwin, U; Raja, S; Dwarakanathan, D
2009-01-01
A substructuring based design analysis procedure is presented for large smart structural system using the Craig–Bampton method. The smart structural system is distinctively characterized as an active substructure, modelled as a design problem, and a passive substructure, idealized as an analysis problem. Furthermore, a novel thought has been applied by introducing the electro–elastic coupling into the reduction scheme to solve the global structural control problem in a local domain. As an illustration, a smart composite box beam with surface bonded actuators/sensors is considered, and results of the local to global control analysis are presented to show the potential use of the developed procedure. The present numerical scheme is useful for optimally designing the active substructures to study their locations, coupled structure–actuator interaction and provide a solution to the global design of large smart structural systems
Structure of exotic nuclei by large-scale shell model calculations
International Nuclear Information System (INIS)
Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio
2006-01-01
An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component
Evaluation of linear DC motor actuators for control of large space structures
Ide, Eric Nelson
1988-01-01
This thesis examines the use of a linear DC motor as a proof mass actuator for the control of large space structures. A model for the actuator, including the current and force compensation used, is derived. Because of the force compensation, the actuator is unstable when placed on a structure. Relative position feedback is used for actuator stabilization. This method of compensation couples the actuator to the mast in a feedback configuration. Three compensator designs are prop...
Seismic analysis of a large LMFBR with fluid-structure interactions
International Nuclear Information System (INIS)
Ma, D.C.
1985-01-01
The seismic analysis of a large LMFBR with many internal components and structures is presented. Both vertical and horizontal seismic excitations are considered. The important hydrodynamic phenomena such as fluid-structure interaction, sloshing, fluid coupling and fluid inertia effects are included in the analysis. The results of this study are discussed in detail. Information which is useful to the design of future reactions under seismic conditions is also given. 4 refs., 12 figs
Infrared structure and large Psub(T) behavior of quantum chromodynamics
International Nuclear Information System (INIS)
Rafael, Eduardo de.
1977-09-01
The study of the infrared structure of QCD in perturbation theory is an interesting problem per se regardless of its relationship to the confinement problem. The ultimate motivation for the study of the large transverse momentum behavior of QCD is to provide a field theoretic framework to the large Psub(T)-phenomena in hadronic interactions. As a first step towards that aim it is of interest to explore the possibility that the QCD Green's functions in 'some' regions of exceptional momenta, like the large-Psub(T) regime, may still obey some kind of renormalization group type equations
Structure design of the Westinghouse superconducting magnet for the Large Coil Program
International Nuclear Information System (INIS)
Domeisen, F.N.; Hackworth, D.T.; Stuebinger, L.R.
1978-01-01
In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin
Multi-channel coherent perfect absorbers
Bai, Ping
2016-05-18
The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.
Multi-channel coherent perfect absorbers
Bai, Ping; Wu, Ying; Lai, Yun
2016-01-01
The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.
Directory of Open Access Journals (Sweden)
O. W. Roberts
2014-12-01
Full Text Available Recent observations of astrophysical magnetic fields have shown the presence of fluctuations being wave-like (propagating in the plasma frame and those described as being structure-like (advected by the plasma bulk velocity. Typically with single-spacecraft missions it is impossible to differentiate between these two fluctuations, due to the inherent spatio-temporal ambiguity associated with a single point measurement. However missions such as Cluster which contain multiple spacecraft have allowed for temporal and spatial changes to be resolved, using techniques such as k filtering. While this technique does not assume Taylor's hypothesis it requires both weak stationarity of the time series and that the fluctuations can be described by a superposition of plane waves with random phases. In this paper we test whether the method can cope with a synthetic signal which is composed of a combination of non-random-phase coherent structures with a mean radius d and a mean separation λ, as well as plane waves with random phase.
Latour, Gaël; Echard, Jean-Philippe; Soulier, Balthazar; Emond, Isabelle; Vaiedelich, Stéphane; Elias, Mady
2009-11-20
Optical coherence tomography (OCT) is especially attractive for the study of cultural heritage artifacts because it is noninvasive and nondestructive. We have developed an original full-field time-domain OCT system dedicated to the investigation of varnished and painted artifacts: an interferometric Mirau objective allows one to perform the scan without moving the works of art. The axial and transverse high resolution (respectively, 1.5 and 1 microm) are well adapted to the detection of the investigated structures (pigment grains, wood fibers, etc.). The illumination spectrum is in the visible range (centered at 630 nm, 150 nm wide) to potentially allow us to perform spectroscopic OCT on pigment particles. The examination of wood samples coated with a traditional finish, demonstrates the ability of the system to detect particles, characterize layers thickness, and image the three-dimensional wood structures below the varnishes. OCT has finally been applied to study in situ the coated wood surface of an 18th century Italian violin and provides important information for its conservation treatment.
Koulen, Peter; Gallimore, Gary; Vincent, Ryan D.; Sabates, Nelson R.; Sabates, Felix N.
2011-06-01
Conventional perimeters are used routinely in various eye disease states to evaluate the central visual field and to quantitatively map sensitivity. However, standard automated perimetry proves difficult for retina and specifically macular disease due to the need for central and steady fixation. Advances in instrumentation have led to microperimetry, which incorporates eye tracking for placement of macular sensitivity values onto an image of the macular fundus thus enabling a precise functional and anatomical mapping of the central visual field. Functional sensitivity of the retina can be compared with the observed structural parameters that are acquired with high-resolution spectral domain optical coherence tomography and by integration of scanning laser ophthalmoscope-driven imaging. Findings of the present study generate a basis for age-matched comparison of sensitivity values in patients with macular pathology. Microperimetry registered with detailed structural data performed before and after intervention treatments provides valuable information about macular function, disease progression and treatment success. This approach also allows for the detection of disease or treatment related changes in retinal sensitivity when visual acuity is not affected and can drive the decision making process in choosing different treatment regimens and guiding visual rehabilitation. This has immediate relevance for applications in central retinal vein occlusion, central serous choroidopathy, age-related macular degeneration, familial macular dystrophy and several other forms of retina related visual disability.
Brown, Shoshana D.; Babbitt, Patricia C.
2014-01-01
Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. PMID:25210038
Brown, Shoshana D; Babbitt, Patricia C
2014-10-31
Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Tang, Jau
2008-04-28
In this study, we examine the ultrafast structural dynamics of metals induced by a femtosecond laser-heating pulse as probed by time-resolved electron diffraction. Using the two-temperature model and the Grüneisen relationship we calculate the electron temperature, phonon temperature, and impulsive force at each atomic site in the slab. Together with the Fermi-Pasta-Ulam anharmonic chain model we calculate changes of bond distance and the peak shift of Bragg spots or Laue rings. A laser-heated thin slab is shown to exhibit "breathing" standing-wave behavior, with a period equal to the round-trip time for sound wave and a wavelength twice the slab thickness. The peak delay time first increases linearly with the thickness (linear thermal expansion due to lattice temperature jump are shown to contribute to the overall structural changes. Differences between these two mechanisms and their dependence on film thickness and other factors are discussed.
The Impact of Ownership Structure on Firm Performance : Evidence From a Large Emerging Market
Douma, S.W.; George, R.; Kabir, M.R.
2002-01-01
We examine how ownership structure affects the performance of firms using firm level data from a large emerging market, India.We specifically focus on a previously unexplored phenomenon, namely the differential role played by foreign institutional and foreign corporate shareholders.An examination of
Material model for non-linear finite element analyses of large concrete structures
Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.
2016-01-01
A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including
Large-scale structural alteration of brain in epileptic children with SCN1A mutation
Directory of Open Access Journals (Sweden)
Yun-Jeong Lee
2017-01-01
Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.
Richards, William D., Jr.
Previous methods for determining the communication structure of organizations work well for small or simple organizations, but are either inadequate or unwieldy for use with large complex organizations. An improved method uses a number of different measures and a series of successive approximations to order the communication matrix such that…
Direct evaluation of free energy for large system through structure integration approach.
Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka
2015-09-30
We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.
Teller, Romney P.
2011-01-01
The researcher utilized a qualitative approach to conduct a program evaluation of the organization where he is employed. The study intended to serve as a program evaluation for the structured in-house mentoring program at a large aerospace corporation (A-Corp). This program evaluation clarified areas in which the current mentoring program is…
Lancellotti, V.; Hon, de B.P.; Tijhuis, A.G.
2009-01-01
Linear embedding via Green's operators (LEGO) is a computational method in which the multiple scattering between adjacent objects - forming a large composite structure - is determined through the interaction of simple-shaped building domains, whose electromagnetic (EM) behavior is accounted for by
Hierarchical formation of large scale structures of the Universe: observations and models
International Nuclear Information System (INIS)
Maurogordato, Sophie
2003-01-01
In this report for an Accreditation to Supervise Research (HDR), the author proposes an overview of her research works in cosmology. These works notably addressed the large scale distribution of the Universe (with constraints on the scenario of formation, and on the bias relationship, and the structuring of clusters), the analysis of galaxy clusters during coalescence, mass distribution within relaxed clusters [fr
Reference Management Methodologies for Large Structural Models at Kennedy Space Center
Jones, Corey; Bingham, Ryan; Schmidt, Rick
2011-01-01
There have been many challenges associated with modeling some of NASA KSC's largest structures. Given the size of the welded structures here at KSC, it was critically important to properly organize model struc.ture and carefully manage references. Additionally, because of the amount of hardware to be installed on these structures, it was very important to have a means to coordinate between different design teams and organizations, check for interferences, produce consistent drawings, and allow for simple release processes. Facing these challenges, the modeling team developed a unique reference management methodology and model fidelity methodology. This presentation will describe the techniques and methodologies that were developed for these projects. The attendees will learn about KSC's reference management and model fidelity methodologies for large structures. The attendees will understand the goals of these methodologies. The attendees will appreciate the advantages of developing a reference management methodology.
Fabrication of Large Area Fishnet Optical Metamaterial Structures Operational at Near-IR Wavelengths
Directory of Open Access Journals (Sweden)
Dennis W. Prather
2010-12-01
Full Text Available In this paper, we demonstrate a fabrication process for large area (2 mm × 2 mm fishnet metamaterial structures for near IR wavelengths. This process involves: (a defining a sacrificial Si template structure onto a quartz wafer using deep-UV lithography and a dry etching process (b deposition of a stack of Au-SiO2-Au layers and (c a ‘lift-off’ process which removes the sacrificial template structure to yield the fishnet structure. The fabrication steps in this process are compatible with today’s CMOS technology making it eminently well suited for batch fabrication. Also, depending on area of the exposure mask available for patterning the template structure, this fabrication process can potentially lead to optical metamaterials spanning across wafer-size areas.
Mobile work station concept for assembly of large space structures (zero gravity simulation tests)
Heard, W. L., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.
1982-03-01
The concept presented is intended to enhance astronaut assembly of truss structure that is either too large or complex to fold for efficient Shuttle delivery to orbit. The potential of augmented astronaut assembly is illustrated by applying the result of the tests to a barebones assembly of a truss structure. If this structure were assembled from the same nestable struts that were used in the Mobile Work Station assembly tests, the spacecraft would be 55 meters in diameter and consist of about 500 struts. The struts could be packaged in less than 1/2% of the Shuttle cargo bay volume and would take up approximately 3% of the mass lift capability. They could be assembled in approximately four hours. This assembly concept for erectable structures is not only feasible, but could be used to significant economic advantage by permitting the superior packaging feature of erectable structures to be exploited and thereby reduce expensive Shuttle delivery flights.
Simplified DFT methods for consistent structures and energies of large systems
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY
International Nuclear Information System (INIS)
Wang Xin; Chen Xuelei; Park, Changbom
2012-01-01
The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.
Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics
Directory of Open Access Journals (Sweden)
Anjani Ragothaman
2014-01-01
Full Text Available While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.
Fekete, Tamás
2018-05-01
Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well
Coherent Radiation of Electron Cloud
International Nuclear Information System (INIS)
Heifets, S.
2004-01-01
The electron cloud in positron storage rings is pinched when a bunch passes by. For short bunches, the radiation due to acceleration of electrons of the cloud is coherent. Detection of such radiation can be used to measure the density of the cloud. The estimate of the power and the time structure of the radiated signal is given in this paper
Novel material and structural design for large-scale marine protective devices
International Nuclear Information System (INIS)
Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong
2015-01-01
Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance
Robust stability analysis of large power systems using the structured singular value theory
Energy Technology Data Exchange (ETDEWEB)
Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)
2005-07-01
This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)
Collinear factorization for deep inelastic scattering structure functions at large Bjorken xB
International Nuclear Information System (INIS)
Accardi, Alberto; Qiu, Jian-Wei
2008-01-01
http://dx.doi.org/10.1088/1126-6708/2008/07/090 We examine the uncertainty of perturbative QCD factorization for hadron structure functions in deep inelastic scattering at a large value of the Bjorken variable xB. We analyze the target mass correction to the structure functions by using the collinear factorization approach in the momentum space. We express the long distance physics of structure functions and the leading target mass corrections in terms of parton distribution functions with the standard operator definition. We compare our result with existing work on the target mass correction. We also discuss the impact of a final-state jet function on the extraction of parton distributions at large fractional momentum x.
A European collaboration research programme to study and test large scale base isolated structures
International Nuclear Information System (INIS)
Renda, V.; Verzeletti, G.; Papa, L.
1995-01-01
The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs
Cohering power of quantum operations
Energy Technology Data Exchange (ETDEWEB)
Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)
2017-05-18
Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V.; Fox, Ronald F.
2005-01-01
A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory
GrowYourIC: A Step Toward a Coherent Model of the Earth's Inner Core Seismic Structure
Lasbleis, Marine; Waszek, Lauren; Day, Elizabeth A.
2017-11-01
A complex inner core structure has been well established from seismic studies, showing radial and lateral heterogeneities at various length scales. Yet no geodynamic model is able to explain all the features observed. One of the main limits for this is the lack of tools to compare seismic observations and numerical models successfully. We use here a new Python tool called GrowYourIC to compare models of inner core structure. We calculate properties of geodynamic models of the inner core along seismic raypaths, for random or user-specified data sets. We test kinematic models which simulate fast lateral translation, superrotation, and differential growth. We explore first the influence on a real inner core data set, which has a sparse coverage of the inner core boundary. Such a data set is however able to successfully constrain the hemispherical boundaries due to a good sampling of latitudes. Combining translation and rotation could explain some of the features of the boundaries separating the inner core hemispheres. The depth shift of the boundaries, observed by some authors, seems unlikely to be modeled by a fast translation but could be produced by slow translation associated with superrotation.
Energy Technology Data Exchange (ETDEWEB)
Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong
2017-02-24
Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.