WorldWideScience

Sample records for large aperture optics

  1. Development of large aperture composite adaptive optics

    Science.gov (United States)

    Kmetik, Viliam; Vitovec, Bohumil; Jiran, Lukas; Nemcova, Sarka; Zicha, Josef; Inneman, Adolf; Mikulickova, Lenka; Pavlica, Richard

    2015-01-01

    Large aperture composite adaptive optics for laser applications is investigated in cooperation of Institute of Plasma Physic, Department of Instrumentation and Control Engineering FME CTU and 5M Ltd. We are exploring opportunity of a large-size high-power-laser deformable-mirror production using a lightweight bimorph actuated structure with a composite core. In order to produce a sufficiently large operational free aperture we are developing new technologies for production of flexible core, bimorph actuator and deformable mirror reflector. Full simulation of a deformable-mirrors structure was prepared and validated by complex testing. A deformable mirror actuation and a response of a complicated structure are investigated for an accurate control of the adaptive optics. An original adaptive optics control system and a bimorph deformable mirror driver were developed. Tests of material samples, components and sub-assemblies were completed. A subscale 120 mm bimorph deformable mirror prototype was designed, fabricated and thoroughly tested. A large-size 300 mm composite-core bimorph deformable mirror was simulated and optimized, fabrication of a prototype is carried on. A measurement and testing facility is modified to accommodate large sizes optics.

  2. Very large aperture optics for space applications

    Science.gov (United States)

    Horwath, T. G.; Smith, J. P.; Johnson, M. T.

    1994-09-01

    A new type of space optics technology is presented which promises the realization of very large apertures (tens of meters), while packagable into lightweight, small volume containers compatible with conventional launch vehicles. This technology makes use of thin foils of circular shape which are uniformly mass loaded around the perimeter. Once unfurled and set into rapid rotation about the transversal axis, the foil is stretched into a perfectly flat plane by the centrifugal forces acting on the peripheral masses. The simplest applications of this novel technology are optically flat reflectors, using metallized foils of Mylar, Kevlar, or Kapton. Other more complex optical components can be realized by use of binary optics techniques, such as depositing holograms by selective local microscale removal of the reflective surface. Electrostatic techniques, in conjunction with an auxiliary foil, under local, distributed real-time control of the optical parameters, allow implementation of functions like beam steering and focal length adjustments. Gas pressurization allows stronger curvatures and thus smaller focal ratios for non-imaging applications. Limits on aperture are imposed primarily by manufacturing capabilities. Applications of such large optics in space are numerous. They range from military, such as space based lasers, to the civilian ones of power beaming, solar energy collection, and astronomy. This paper examines this simple and innovative concept in detail, discusses deployment and attitude control issues and presents approaches for realization.

  3. Large-aperture, high-damage-threshold optics for beamlet

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; Atherton, L.J.; DeYoreo, J.J. [and others

    1996-06-01

    Beamlet serves as a test bed for the proposed National Ignition Facility (NIF) laser design and components. Therefore, its optics are similar in size and quality to those proposed for the NIF. In general, the optics in the main laser cavity and transport section of Beamlet are larger and have higher damage thresholds than the optics manufactured for any of the previous laser systems. In addition, the quality of the Beamlet optical materials is higher, leading to better wavefront quality, higher optical transmission, and lower-intensity modulation of the output laser beam than, for example, that typically achieved on Nova. In this article, the authors discuss the properties and characteristics of the large-aperture optics used on Beamlet.

  4. Development of large aperture elements for active and adaptive optics

    Directory of Open Access Journals (Sweden)

    Stranakova E.

    2013-05-01

    Full Text Available Large-aperture elements for laser active and adaptive optics are investigated in collaboration within IOP AcSci CR, FEng CTU and 5M. A bimorph deformable mirror for high-power lasers based on a lightweight structure with a composite core is currently in development. In order to realize a sufficiently large working aperture we are using new technologies for production of core, bimorph actuator and DM reflector. Detailed simulation of components and structure is validated by measurement and testing. A research of DM actuation and response of a complicated mirror structure needed for an accurate control of a deformation is performed. Testing of samples and subscale measurements are currently performed, measurement of a complete structure is in preparation.

  5. Structural-optical integrated analysis on the large aperture mirror with active mounting

    Science.gov (United States)

    Ren, Zhiyuan; Zhu, Jianqiang; Liu, Zhigang

    2016-11-01

    Deformation of the large aperture mirror caused by the external environment load seriously affects the optical performance of the optical system, and there is a limit to develop the shape quality of large aperture mirror with traditional mounting method. It is effective way to reduce the optical mirror distortion with active support method, and the structural-optical integrated method is the effective means to assess the merits of the mounting for large aperture mirror. Firstly, we proposes a new support scheme that uses specific boundary constraints on the large lens edges and imposes flexible torque to resist deformation induced by gravity to improve surface quantity of large aperture mirror. We calculate distortion of the large aperture mirror at the edges of the flexible torque respectively with the finite element method; secondly, we extract distortion value within clear aperture of the mirror with MATLAB, solve the corresponding Zernike polynomial coefficients; lastly, we obtain the peak-valley value (PV) and root mean square value (RMS) with optical-structural integrated analysis . The results for the 690x400x100mm mirror show that PV and RMS values within the clear aperture with 0.4MPa torques than the case without applying a flexible torque reduces 82.7% and 72.9% respectively. The active mounting on the edge of the large aperture mirror can greatly improve the surface quality of the large aperture mirror.

  6. Aperture optical antennas

    CERN Document Server

    Wenger, Jerome

    2014-01-01

    This contribution reviews the studies on subwavelength aperture antennas in the optical regime, paying attention to both the fundamental investigations and the applications. Section 2 reports on the enhancement of light-matter interaction using three main types of aperture antennas: single subwavelength aperture, single aperture surrounded by shallow surface corrugations, and subwavelength aperture arrays. A large fraction of nanoaperture applications is devoted to the field of biophotonics to improve molecular sensing, which are reviewed in Section 3. Lastly, the applications towards nano-optics (sources, detectors and filters) are discussed in Section 4.

  7. SUPERPOLISHED SI COATED SIC OPTICS FOR RAPID MANUFACTURE OF LARGE APERTURE UV AND EUV TELESCOPES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG/Tinsley proposes an innovative optical manufacturing process that will allow the advancement of state-of-the-art Silicon Carbide (SiC) mirrors for large aperture...

  8. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage threshold but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite

  9. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    Science.gov (United States)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  10. Large-aperture space optical system testing based on the scanning Hartmann.

    Science.gov (United States)

    Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun

    2017-03-10

    Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.

  11. Optical slicing of large scenes by synthetic aperture integral imaging

    Science.gov (United States)

    Navarro, Héctor; Saavedra, Genaro; Molina, Ainhoa; Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Javidi, Bahram

    2010-04-01

    Integral imaging (InI) technology was created with the aim of providing the binocular observers of monitors, or matrix display devices, with auto-stereoscopic images of 3D scenes. However, along the last few years the inventiveness of researches has allowed to find many other interesting applications of integral imaging. Examples of this are the application of InI in object recognition, the mapping of 3D polarization distributions, or the elimination of occluding signals. One of the most interesting applications of integral imaging is the production of views focused at different depths of the 3D scene. This application is the natural result of the ability of InI to create focal stacks from a single input image. In this contribution we present new algorithm for this optical slicing application, and show that it is possible the 3D reconstruction with improved lateral resolution.

  12. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  13. Development of atmospheric pressure plasma processing machine tool for large aperture optics

    Science.gov (United States)

    Su, Xing; Wu, Yangong; Zhang, Peng; Xin, Qiang; Wang, Bo

    2016-10-01

    In recent years, major projects, such as National Ignition Facility and Laser Mégajoule, have generated great demands for large aperture optics with high surface accuracy and low Subsurface Damage (SSD) at the mean time. In order to remove SSD and improve surface quality, optics is fabricated by sub-aperture polishing. However, the efficiency of the sub-aperture polishing has been a bottleneck step for the optics manufacturing. Atmospheric Pressure Plasma Processing (APPP) as an alternate method offers high potential for speeding up the polishing process. This technique is based on chemical etching, hence there is no physical contact and no damage is induced. In this paper, a fast polishing machine tool is presented which is designed for fast polishing of the large aperture optics using APPP. This machine tool employs 3PRS-XY hybrid structure as its framework. There is a platform in the 3PRS parallel module to support the plasma generating system. And the large work piece is placed on the XY stage. In order to realize the complex motion trajectory for polishing the freeform optics, five axis of the tool operate simultaneously. To overcome the complexity of inverse kinematics calculation, a dedicated motion control system is also designed for speeding up the motion response. For high removal rate, the individual influence of several key processing parameters is investigated. And under specific production condition, this machine tool offers a high material over 30mm3/min for fused silica substrates. This results shows that APPP machine tool has a strong potential for fast polishing large optics without introducing SSD.

  14. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage threshold but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite

  15. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  16. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  17. A low-cost large-aperture optical receiver for remote sensing and imaging applications

    Science.gov (United States)

    Hanes, Stephen A.

    2003-03-01

    An inexpensive large aperture (10 m class) receiver for optical wavelength imaging and remote sensing applications is discussed. The design was developed for active (laser illumination) imaging of remote objects using pupil plane measurement techniques, where relatively low optical quality collecting elements can be used. The approach is also well suited for conventional imaging at lower resolutions when light collection capability is of primary importance. The approach relies on a large aperture heliostat consisting of an array of flat mirror segments, like those used in solar collector systems, to collect light from the region of interest. The heliostat segments are tilted in a manner to concentrate the light, by making the light from all segments overlap at a common point, resulting in a region of higher intensity about the size of a segment at the heliostat "focus". A smaller secondary collector, consisting of a concave mirror located at the overlap point, further concentrates the light and forms a pupil image of the heliostat. Additional optics near the pupil image collimate the light for efficient transmission though a narrow band interference filter used to reduce sky background, and focus the light onto a PMT, or other sensor, for detection. Several design approaches for the collimating optics are discussed as well as system performance and limitations.

  18. End-to-end assessment of a large aperture segmented ultraviolet optical infrared (UVOIR) telescope architecture

    Science.gov (United States)

    Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Olivier; Stark, Chris; Arenberg, Jon

    2016-07-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield exo-earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an exo-earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and exo-earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling these missions.

  19. End-to-End Assessment of a Large Aperture Segmented Ultraviolet Optical Infrared (UVOIR) Telescope Architecture

    Science.gov (United States)

    Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon

    2016-01-01

    Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.

  20. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  1. Path-average rainfall estimation from optical extinction measurements using a large-aperture scintillometer

    NARCIS (Netherlands)

    Uijlenhoet, R.; Cohard, J.M.; Gosset, M.

    2011-01-01

    The potential of a near-infrared large-aperture boundary layer scintillometer as path-average rain gauge is investigated. The instrument was installed over a 2.4-km path in Benin as part of the African Monsoon Multidisciplinary Analysis (AMMA) Enhanced Observation Period during 2006 and 2007. Measur

  2. Measuring parameters of large-aperture crystals used for generating optical harmonics

    Energy Technology Data Exchange (ETDEWEB)

    English, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hibbard, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Michie, R. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegner, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Auerbach, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Norton, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Summers, M. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perfect, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1999-02-23

    The purpose of this project was to develop tools for understanding the influence of crystal quality and crystal mounting on harmonic-generation efficiency at high irradiance. Measuring the homogeneity of crystals interferometrically, making detailed physics calculations of conversion efficiency, performing finite- element modeling of mounted crystals, and designing a new optical metrology tool were key elements in obtaining that understanding. For this work, we used the following frequency-tripling scheme: type I second- harmonic generation followed by type II sum-frequency mixing of the residual fundamental and the second harmonic light. The doubler was potassium dihydrogen phosphate (KDP), and the tripler was deuterated KDP (KD*P). With this scheme, near-infrared light (1053 nm) can be frequency tripled (to 351 nm) at high efficiency (theoretically >90%) for high irradiance (>3 GW/cm²). Spatial variations in the birefringence of the large crystals studied here (37 to 41 cm square by about 1 cm thick) imply that the ideal phase-matching orientation of the crystal with respect to the incident laser beam varies across the crystal. We have shown that phase-measuring interferometry can be used to measure these spatial variations. We observed transmitted wavefront differences between orthogonally polarized interferograms of {lambda}/50 to {lambda}/100, which correspond to index variations of order 10-6. On some plates that we measured, the standard deviation of angular errors is 22-23 µrad; this corresponds to a 1% reduction in efficiency. Because these conversion crystals are relatively thin, their surfaces are not flat (deviate by k2.5 urn from flat). A crystal is mounted against a precision-machined surface that supports the crystal on four edges. This mounting surface is not flat either (deviates by +2.5 µm from flat). A retaining flange presses a compliant element against the crystal. The load thus applied near the edges of the crystal surface holds

  3. Apertures

    CERN Document Server

    Hansen, R C

    2014-01-01

    Microwave Scanning Antennas, Volume I: Apertures is a comprehensive account of phased arrays, multiple beam arrays, time domain and synthetic apertures, and adaptive antennas. Advances in continuous apertures and near field theory are discussed. Low noise and monopulse apertures, optical scanners, and large radomes are also covered, along with radio astronomy instruments and associated theory.Comprised of five chapters, this volume begins with an overview of aperture theory as well as aperture distributions and near field theory. The second and third chapters deal with mechanically steered and

  4. A conceptual design for a Cassegrain-mounted high-resolution optical spectrograph for large-aperture telescopes

    Science.gov (United States)

    Froning, Cynthia S.; Osterman, Steven; Burgh, Eric; Beasley, Matthew; Scowen, Paul; Veach, Todd; Jordan, Steven; Ebbets, Dennis; Lieber, Michael; deCino, James; Castilho, Bruno Vaz; Gneiding, Clemens; César de Oliveira, Antonio

    2013-09-01

    We present a conceptual design for a high-resolution optical spectrograph appropriate for mounting at Cassegrain on a large aperture telescope. The design is based on our work for the Gemini High Resolution Optical Spectrograph (CUGHOS) project. Our design places the spectrograph at Cassegrain focus to maximize throughput and blue wavelength coverage, delivering R=40,000 resolving power over a continuous 320-1050 nm waveband with throughputs twice those of current instruments. The optical design uses a two-arm, cross-dispersed echelle format with each arm optimized to maximize efficiency. A fixed image slicer is used to minimize optics sizes. The principal challenge for the instrument design is to minimize flexure and degradation of the optical image. To ensure image stability, our opto-mechanical design combines a cost-effective, passively stable bench employing a honeycomb aluminum structure with active flexure control. The active flexure compensation consists of hexapod mounts for each focal plane with full 6-axis range of motion capability to correct for focus and beam displacement. We verified instrument performance using an integrated model that couples the optical and mechanical design to image performance. The full end-to-end modeling of the system under gravitational, thermal, and vibrational perturbations shows that deflections of the optical beam at the focal plane are active control to meet the stability requirement. The design elements and high fidelity modeling process are generally applicable to instruments requiring high stability under a varying gravity vector.

  5. Rapid growth of a large-scale(600 mm aperture) KDP crystal and its optical quality

    Institute of Scientific and Technical Information of China (English)

    Guohui; Li; Guozong; Zheng; Yingkun; Qi; Peixiu; Yin; En; Tang; Fei; Li; Jing; Xu; Taiming; Lei; Xiuqin; Lin; Min; Zhang; Junye; Lu; Jinbo; Ma; Youping; He; Yuangen; Yao

    2014-01-01

    Potassium dihydrogen phosphate(KDP) single crystals are the only nonlinear crystals currently used for electro-optic switches and frequency converters in inertial confinement fusion research, due to their large dimension and exclusive physical properties. Based on the traditional solution-growth process, large bulk KDP crystals, usually with sizes up to600 × 600 mm2 so as to make a frequency doubler for the facility requirement loading highly flux of power laser, can be grown in standard Holden-type crystallizers, without spontaneous nucleation and visible defects, one to two orders of magnitude faster than by conventional methods. Pure water and KDP raw material with a few ion impurities such as Fe,Cr, and Al(less than 0.1 ppm) were used. The rapid-growth method includes extreme conditions such as temperature range from 60 to 35℃ , overcooling up to 5℃ , growth rates exceeding 10 mm/day, and crystal size up to 600 mm. The optical parameters of KDP crystals were determined. The optical properties of crystals determined indicate that they are of favorable quality for application in the facility.

  6. Performance Evaluation of Large Aperture 'Polished Panel' Optical Receivers Based on Experimental Data

    Science.gov (United States)

    Vilnrotter, Victor

    2013-01-01

    Recent interest in hybrid RF/Optical communications has led to the development and installation of a "polished-panel" optical receiver evaluation assembly on the 34-meter research antenna at Deep-Space Station 13 (DSS-13) at NASA's Goldstone Communications Complex. The test setup consists of a custom aluminum panel polished to optical smoothness, and a large-sensor CCD camera designed to image the point-spread function (PSF) generated by the polished aluminum panel. Extensive data has been obtained via realtime tracking and imaging of planets and stars at DSS-13. Both "on-source" and "off-source" data were recorded at various elevations, enabling the development of realistic simulations and analytic models to help determine the performance of future deep-space communications systems operating with on-off keying (OOK) or pulse-position-modulated (PPM) signaling formats with photon-counting detection, and compared with the ultimate quantum bound on detection performance for these modulations. Experimentally determined PSFs were scaled to provide realistic signal-distributions across a photon-counting detector array when a pulse is received, and uncoded as well as block-coded performance analyzed and evaluated for a well-known class of block codes.

  7. Interdisciplinary science with large aperture detectors

    Directory of Open Access Journals (Sweden)

    Wiencke Lawrence

    2013-06-01

    Full Text Available Large aperture detector systems to measure high energy cosmic rays also offer unique opportunities in other areas of science. Disciplines include geophysics such as seismic and volcanic activity, and atmospheric science ranging from clouds to lightning to aerosols to optical transients. This paper will discuss potential opportunities based on the ongoing experience of the Pierre Auger Observatory.

  8. Very Large Aperture Diffractive Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Roderick Allen

    1998-04-20

    A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

  9. Parallel optical nanolithography using nanoscale bowtie apertures

    Science.gov (United States)

    Uppuluri, Sreemanth M. V.

    needed to bring an array of bowtie apertures into intimate contact with the photoresist surface we present an optical interference based alignment system that aligns the mask and photoresist surfaces to within 0.1 mrad of parallelism. In this work we show that bowtie apertures can be used to produce patterns in the photoresist of dimensions in the order of 85-90 nm. We also demonstrate parallel optical nanolithography using an array of bowtie apertures that opens up the possibility of using arrays of bowtie apertures to produce a large number of nanoscale light spots for parallel nano-manufacturing.

  10. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    Science.gov (United States)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  11. Durable Silver Mirror Coating Via Ion Assisted, Electron Beam Evaporation For Large Aperture Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I research, Surface Optics Corporation (SOC) demonstrated a durable silver mirror coating based an ion assisted, thermal evaporation process. The recipe...

  12. Durable Silver Mirror Coating Via Ion Assisted, Electron Beam Evaporation For Large Aperture Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Highly reflective optical coatings with low scatter properties are needed to image very faint objects such as extra-solar planets. Silver has the highest...

  13. Weak scratch detection and defect classification methods for a large-aperture optical element

    Science.gov (United States)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  14. Distributed Bragg reflector ring oscillators: A large aperture source of high single-mode optical power

    Energy Technology Data Exchange (ETDEWEB)

    Dzurko, K.M.; Hardy, A.; Scifres, D.R.; Welch, D.F.; Waarts, R.G.; Lang, R.J. (Spectra Diode Labs., San Jose, CA (United States))

    1993-06-01

    Distributed Bragg reflector (DBR) ring oscillators are the first monolithic semiconductor lasers containing broad-area active regions which operate in a single mode to several times their threshold current. Orthogonally oriented diffraction gratings surrounding an unpatterned active region select a single spatial and temporal mode of oscillation. This paper presents both analytic and experimental verification of single mode operation for active dimensions up to 368 [times] 1000 [mu]m. Threshold current densities under 200 A/cm[sup 2] and total differential efficiencies greater than 60% have been measured. DBR ring oscillators have demonstrated over 1 W of single frequency output power, 460 mW of spatially coherent, single frequency output power, and nearly circular diffraction limited output to 4 [times] I[sub th]. The performance potential of these devices is enormous, considering that the output apertures are nearly two orders of magnitude wider than conventional single mode sources which generate up to 0.2 W of coherent output.

  15. Cleaning mechanism of particle contaminants on large aperture optical components by using air knife sweeping technology

    Science.gov (United States)

    Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin

    2017-05-01

    The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.

  16. Performance Impacts for Actuator Misalignments and Failures in Large- Aperture Adaptive-Optic Telescopes

    Science.gov (United States)

    1993-12-01

    reconstitution operations after the Loma Prieta earthquake of 1989. Along with his wife, Mary Ann, and daughters, Kelly Ann and Melissa, he entered the...Block Diagram of Adaptive Optics Simulation ...................................................... 3-3 4-1 Misalignment Effects on Radial-Averaged OTF...r0 = 13, ph = 2x10 6 , vT = 0). 4-10 4-2 Misalignment Effects on Change in OTF (r0 = 13, ph = 2xl0 6 , vt = 0) ............ 4-10 4-3 Misalignment

  17. Sub-aperture stitching test of a cylindrical mirror with large aperture

    Science.gov (United States)

    Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng

    2016-09-01

    Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.

  18. Advanced Optics Experiments Using Nonuniform Aperture Functions

    CERN Document Server

    Wood, Lowell T

    2012-01-01

    A method to create instructive, nonuniform aperture functions using spatial frequency filtering is described. The diffraction from a single slit in the Fresnel limit and the interference from a double slit in the Fraunhofer limit are spatially filtered to create electric field distributions across an aperture to produce apodization, inverse apodization or super-resolution, and apertures with phase shifts across their widths. The diffraction effects from these aperture functions are measured and calculated. The excellent agreement between the experimental results and the calculated results makes the experiment ideal for use in an advanced undergraduate or graduate optics laboratory to illustrate experimentally several effects in Fourier optics.

  19. Optical Transmission Properties of Dielectric Aperture Arrays

    Science.gov (United States)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  20. Ultrasound Beamforming Methods for Large Coherent Apertures

    Science.gov (United States)

    Bottenus, Nick

    This dissertation investigates the use of large coherent ultrasound apertures to improve diagnostic image quality for deep clinical targets. The current generation of ultrasound scanners restrict aperture size and geometry based on hardware limitations and field of view requirements at the expense of image quality. This work posits that, without these restrictions, ultrasound could be used for higher quality non-invasive imaging. To support this claim, an experimental device was constructed to acquire in vivo liver images with a synthetic aperture spanning at least 35 degrees at a radius of 10.2 cm with a scan time under one second. Using a 2.5 MHz commercial matrix array with the device, a lateral resolution of 0.45 mm at a depth of 11.6 cm was achieved, surpassing the capabilities of existing commercial systems. This work formed the basis for an in-depth investigation of the clinical promise of large aperture imaging. Ex vivo study of volumetric imaging through the human abdominal wall demonstrated the ability of large apertures to improve target detectability at depth by significantly increasing lateral resolution, even in the presence of tissue-induced aberration and reverberation. For various abdominal wall samples studied, full-width at half-maximum resolution was increased by 1.6 to 4.3 times using a 6.4 cm swept synthetic aperture compared to conventional imaging. Harmonic plane wave imaging was shown to limit the impact of reverberation clutter from the tissue layer and produce images with the highest target detectability, up to a 45.9% improvement in contrast-to-noise ratio (CNR) over fundamental imaging. This study was corroborated by simulation of a 10 cm concave matrix array imaging through an abdominal wall based on the Visible Human Project data set. The large aperture data were processed in several ways, including in their entirety as a fully populated large array as well as mimicking the swept synthetic aperture configuration. Image quality

  1. ELID Grinding of Large Aspheric Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture aspheric optics are among the most susceptible optical surfaces to the accumulation of periodic surface artifacts during fabrication. Periodic...

  2. Experimental and numerical investigation of ADP square crystal with large aperture in the new Final Optics Assembly under the non-critical phase matching

    Science.gov (United States)

    Sun, Fuzhong; Zhang, Peng; Bai, Qingshun; Lu, Lihua; Xiang, Yong

    2016-04-01

    This paper presented a new Final Optics Assembly (FOA) of ammonium dihydrogen phosphate (ADP) square crystal with large aperture under the non-critical phase matching (NCPM), which controlled by the constant temperature water, and the temperature distribution was analyzed by simulation and experiment. Firstly, thermal analysis was carried out, as well as the temperature distribution of the cavity only heated under different velocities was analyzed. Then, the temperature distributions of ADP square crystal in the cavity were achieved using the Finite Volume Method (FVM), and this prediction was validated by the experiment results when the velocity is 0.1 m/s and 0.5 m/s. Finally, the optimal FHG conversion efficiency was obtained and the comparison of different heating methods was also highlighted.

  3. OpTIIX: An ISS-Based Testbed Paving the Roadmap Toward a Next Generation Large Aperture UV/Optical Space Telescope

    Science.gov (United States)

    Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim; hide

    2012-01-01

    The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.

  4. Design of large aperture focal plane shutter

    Science.gov (United States)

    Hu, Jia-wen; Ma, Wen-li; Huang, Jin-long

    2012-09-01

    To satisfy the requirement of large telescope, a large aperture focal plane shutter with aperture size of φ200mm was researched and designed to realize, which could be started and stopped in a relative short time with precise position, and also the blades could open and close at the same time at any orientation. Timing-belts and stepper motors were adopted as the drive mechanism. Velocity and position of the stepper motors were controlled by the PWM pulse generated by DSP. Exponential curve is applied to control the velocity of the stepper motors to make the shutter start and stop in a short time. The closing/open time of shutter is 0.2s, which meets the performance requirements of large telescope properly.

  5. Large-aperture hybrid photo-detector

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Y. [Institute for Particle and Nuclear Studies, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan)], E-mail: kawaiy@post.kek.jp; Nakayama, H.; Kusaka, A.; Kakuno, H.; Abe, T.; Iwasaki, M.; Aihara, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tanaka, M. [Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shiozawa, M. [Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205 (Japan); Kyushima, H.; Suyama, M. [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City 438-0193, Shizuoka (Japan)

    2007-08-21

    We have developed the first complete large-aperture (13-inch diameter) hybrid photo-detector (HPD). The withstanding voltage problem has been overcome and we were able to attain an HPD operating voltage of +20 kV. Adoption of our newly developed backside illumination avalanche diode (AD) was also critical in successfully countering the additional problem of an increase in AD leakage after the activation process. We observed single photon signal timing jitter of under 450 ps in FWHM, electron transit time of {approx}12 ns, and clear pulse height separation up to several photoelectron peaks, all greatly superior to the performance of any conventional large-aperture photomultiplier tubes (PMTs). In addition, our HPD has a much simpler structure than conventional large-aperture PMTs, which simplifies mass production and lowers manufacturing cost. We believe that these attributes position our HPD as the most suitable photo-detector for the next generation mega-ton class water-Cherenkov detector, which is expected to be more than 20x larger than the Super-Kamiokande (SK) detector.

  6. Lyot coronagraph design study for large, segmented space telescope apertures

    Science.gov (United States)

    Zimmerman, Neil T.; N'Diaye, Mamadou; St. Laurent, Kathryn E.; Soummer, Rémi; Pueyo, Laurent; Stark, Christopher C.; Sivaramakrishnan, Anand; Perrin, Marshall; Vanderbei, Robert J.; Kasdin, N. J.; Shaklan, Stuart; Carlotti, Alexis

    2016-07-01

    Recent efforts combining the optimization techniques of apodized pupil Lyot coronagraphs (APLC) and shaped pupils have demonstrated the viability of a binary-transmission mask architecture for extremely high contrast (10-10) exoplanet imaging. We are now building on those innovations to carry out a survey of Lyot coronagraph performance for large, segmented telescope apertures. These apertures are of the same kind under considera- tion for NASA's Large UV/Optical/IR (LUVOIR) observatory concept. To map the multi-dimensional design parameter space, we have developed a software toolkit to manage large sets of mask optimization programs and execute them on a computing cluster. Here we summarize a preliminary survey of 500 APLC solutions for 4 reference hexagonal telescope apertures. Several promising designs produce annular, 10-10 contrast dark zones down to inner working angle 4λ0=D over a 15% bandpass, while delivering a half-max PSF core throughput of 18%. We also report our progress on devising solutions to the challenges of Lyot stop alignment/fabrication tolerance that arise in this contrast regime.

  7. Towards Very Large Aperture Massive MIMO

    DEFF Research Database (Denmark)

    Oliveras Martínez, Àlex; De Carvalho, Elisabeth; Nielsen, Jesper Ødum

    2014-01-01

    on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO...

  8. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    Science.gov (United States)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2017-03-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  9. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    Science.gov (United States)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2016-11-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  10. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  11. Optical nanolithography with λ/15 resolution using bowtie aperture array

    Science.gov (United States)

    Wen, Xiaolei; Traverso, Luis M.; Srisungsitthisunti, Pornsak; Xu, Xianfan; Moon, Euclid E.

    2014-10-01

    We report optical parallel nanolithography using bowtie apertures with the help of the interferometric-spatial-phase-imaging (ISPI) technique. The ISPI system can detect and control the distance between the bowtie aperture, and photoresist with a resolution of sub-nanometer level. It overcomes the difficulties brought by the light divergence of bowtie apertures. Parallel nanolithography with feature size of 22 ± 5 nm is achieved. This technique combines high resolution, parallel throughput, and low cost, which is promising for practical applications.

  12. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  13. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture antennas are of interest to NASA for applications in establishing high-speed communication relays for interplanetary missions. Design goals include 20...

  14. Foamed Antenna Support for Very Large Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program will demonstrate the feasibility of the in-space production of large aperture antenna structures. The use of a novel open cell foam,...

  15. Ultra-Lightweight Large Aperture Support Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultra-lightweight membranes may prove to be very attractive for large aperture systems, but their value will be fully realized only if they are mated with equally...

  16. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  17. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  18. Adaptive Techniques for Large Space Apertures.

    Science.gov (United States)

    1980-03-01

    frequencies (A20 criterion very small). The penality occurs in requiring long focal length optics to match the ob- ject (target) displacement to the...GP Anitern, 200l de or,~,’rn, receiner/ proceso 1"’ - requires enternal !titude deter- minationr such as a star tracker Increased mechanizatio’ Sensor

  19. NST: Thermal Modeling for a Large Aperture Solar Telescope

    Science.gov (United States)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  20. Metrology measurements for large-aperture VPH gratings

    Science.gov (United States)

    Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen

    2013-09-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.

  1. Large Aperture, Scanning, L-Band SAR

    Science.gov (United States)

    Moussessian, Alina; DelCastillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array

  2. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers.

    Science.gov (United States)

    Murray, J E; Downs, D C; Hunt, J T; Hermes, G L; Warren, W E

    1981-03-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage.

  3. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    Science.gov (United States)

    Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  4. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST

    CERN Document Server

    Pascale, E; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Marsden, G; Martin, P G; Martin, T G; Mauskopf, P; Netterfield, C B; Olmi, L; Patanchon, G; Rex, M; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Wiebe, D V

    2007-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital survey-experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between 3 arrays, observes simultaneously in broad-band (30%) spectral-windows at 250, 350, and 500 micron. The optical design is based on a 2m diameter Cassegrain telescope, providing a diffraction-limited resolution of 30" at 250 micron. The gondola pointing system enables raster-like maps of arbitrary geometry, with a repeatable positional accuracy of ~30" post-flight pointing reconstruction to ~<5" rms is also achieved. The on-board telescope control software permits autonomous execution of a pre-selected set of maps, with the option of manual intervention. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. Since a test-flight in ...

  5. Method of off-loading supporting for large aperture light weighted reflect mirror at optical axis horizontal situation%大口径轻质反射镜光轴水平卸载支撑方法

    Institute of Scientific and Technical Information of China (English)

    周于鸣; 赵野; 王海超; 闻广泉

    2013-01-01

      大口径轻质反射镜的重力环境下高精度检测是目前的一个难点,由于其轻量化程度高,绝对刚度低,在重力环境下,支撑形式的不同对光学检测结果影响巨大。提出了一种以提供提拉牵引力的方法实现光轴水平支撑测试的解决方案,通过一系列的滑轮组的自适应调整,获得预定义的力学支撑,实现轻质反射镜光轴水平状态重力环境下的高精度面形测试。有限元力学分析结果表明,依据本方法开展的光轴水平状态检测,能够有效减少重力引起的光轴竖直和光轴水平两种状态下的面形变化RMS值差异,其差异值小于0.003(=632.8 nm)。文中所提出的方法具有良好的可实施性,它可推广应用到其他大口径轻质反射镜的检测支撑的设计中,为此类大口径相机的研制提供技术基础。%  The precise testing of large aperture light weighted reflecting mirror in gravity environment is a difficult problem at present. In view of the high rate of light weighting and the absolute low stiffness, in this situation, different forms of support have huge impacts on optical test results in gravity environment. In this paper, a solution was suggested that pre-defining of supporting force was achieved through a series of pulley blocks self-adapting to solve large aperture mirror testing in gravity environment. The result of mechanics model analysis shows that the testing of optical axis horizontal can reduce the Rams variation of surface shape effectively, which is caused by gravity in vertical and horizontal state, and the variation less than 0.003 ( =632.8 nm). The method can be extended and applied to the design of testing supporting for other large aperture light weighted reflect mirror, and provid; technology foundation for large aperture mirror.

  6. Absorption tomography of laser induced plasmas with a large aperture

    CERN Document Server

    Shabanov, Sergei V

    2010-01-01

    An emission tomography of laser-induced plasmas employed in the laser induced breakdown spectroscopy (LIBS) requires long signal integration times during which the plasma cannot be considered stationary. To reduce the integration time, it is proposed to measure a plasma absorption in parallel rays with an aperture that collects light coming from large fractions of the plasma plume at each aperture position. The needed spatial resolution is achieved by a special numerical data processing. Another advantage of the proposed procedure is that inexpensive linear CCD or non-discrete (PMT, photodiode) detectors can be used instead of costly 2-dimensional detectors.

  7. Optical Field Measurement of Nano-Apertures with a Scanning Near-Field Optical Microscope

    Institute of Scientific and Technical Information of China (English)

    XU Tie-Jun; XU Ji-Ying; WANG Jia; TIAN Qian

    2004-01-01

    @@ We investigate optical near-field distributions of the unconventional C-apertures and the conventional square apertures in preliminary experiment with an aperture scanning near-field optical microscope. These nano-apertures are fabricated in Au film on a glass substrate with focused ion beam technology. The experimental results indicate the uptrend of output light intensity that a C-aperture enables the intensity maximum to increase at least 10times more than a square aperture with same unit length. The measured near-field light spot sizes of C-apertureand square aperture with 200-nm unit length are 439nm × 500nm and 245nm × 216nm, respectively.

  8. Improved design of support for large aperture space lightweight mirror

    Science.gov (United States)

    Wang, Chao; Ruan, Ping; Liu, Qimin

    2013-08-01

    In order to design a kind of rational large aperture space mirror which can adapt to the space gravity and thermal environment, by taking the choice of material, the lightweight of the mirror and the design of support into account in detail, a double-deck structure with traditional flexible hinge was designed, then the analytical mathematical model of the mirror system was established. The design adopts six supports on back. in order to avoid the constraints, mirror is connected to three middle transition pieces through six flexible hinges, and then the three transition pieces are connected to support plate through another three flexible hinges. However, the initial structure is unable to reach the expected design target and needs to be made further adjustments. By improving and optimizing the original structure, a new type of flexible hinge in the shape of the letter A is designed finally. Compared with the traditional flexible hinge structure, the new structure is simpler and has less influence on the surface figure accuracy of mirror. By using the finite element analysis method, the static and dynamic characteristics as well as the thermal characteristics of the mirror system are analyzed. Analysis results show that the maximum PV value is 37 nm and the maximum RMS value is 10.4 nm when gravity load is applied. Furthermore, the maximum PV value is 46 nm and the maximum RMS value is 10.5 nm under the load case of gravity coupled with 4℃ uniform temperature rise. The results satisfy the index of optical design. The first order natural frequency of the mirror component is 130 Hz according to the conclusion obtained by modal analytical solution, so the mirror structure has high enough fundamental frequency. And, the structural strength can meet the demand under the overload and the random vibration environment respectively. It indicates that the mirror component structure has enough dynamic, static stiffness and thermal stability, meeting the design requirements.

  9. Advanced Technology Large-Aperture Space Telescope (ATLAST): Characterizing Habitable Worlds

    CERN Document Server

    Postman, M; Krist, J; Stapelfeldt, K; Brown, R; Oegerle, W; Lo, A; Clampin, M; Soummer, R; Wiseman, J; Mountain, M

    2009-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation UV-Optical-Near Infrared space telescope with an aperture size of 8 to 16 meters. ATLAST, using an internal coronagraph or an external occulter, can characterize the atmosphere and surface of an Earth-sized exoplanet in the Habitable Zone of long-lived stars at distances up to ~45 pc, including its rotation rate, climate, and habitability. ATLAST will also allow us to glean information on the nature of the dominant surface features, changes in cloud cover and climate, and, potentially, seasonal variations in surface vegetation. ATLAST will be able to visit up to 200 stars in 5 years, at least three times each, depending on the technique used for starlight suppression and the telescope aperture. More frequent visits can be made for interesting systems.

  10. Low-stress mounting configuration design for large aperture laser transport mirror

    Science.gov (United States)

    Zhang, Zheng; Quan, Xusong; Yao, Chao; Wang, Hui

    2016-10-01

    TM1-6S1 large aperture laser transport mirror is a crucial optical unit of high power solid-state laser in the Inertial Confinement Fusion (ICF) facility. This article focuses on the low-stress and precise mounting method of large-aperture mirror. Based on the engineering practice of SG-III, the state-of-the-art and key problems of current mounting configuration are clarified firstly. Subsequently, a brand new low-stress mounting configuration with flexure supports is proposed. Opto-mechanical model of the mirror under mounting force is built up with elastic mechanics theory. Further, numerical methods and field tests are employed to verify the favorable load uniform capacity and load adjust capacity of flexure supports. With FEM, the relation between the mounting force from new configuration and the mirror surface distortion (wavefront error) is clarified. The novel mounting method of large aperture optics could be not only used on this laser transport mirror, but also on the other transmission optics and large crystals in ICF facilities.

  11. Optimization Design of Long Focal Distance and Large Aperture Infrared Optical System%长焦距大口径红外光学系统的优化设计

    Institute of Scientific and Technical Information of China (English)

    付学志; 王日胜; 胡兵; 李岩

    2015-01-01

    针对某长焦距大口径光电设备的特殊要求,基于卡塞格林光学折反系统达到了较好的红外成像质量和紧凑的结构尺寸。首先通过计算对红外光学系统进行了初步焦距分配;然后对卡塞格林反射组件和红外组件进行了分段优化设计,特别是为克服温度变化对焦距和像质的影响,在后组设计三片透镜作为调焦组,保证了成像质量;最后,为了消除杂光的影响,分别对轴上、轴外光线进行追迹并设计了主、次镜遮光罩。设计结果分析表明主要指标均满足设计要求。%According to the special requirements of a large aperture and long focal length optical equipment, better quality of infrared imaging and compact structure was achieved based on Cassegrain optical catadioptric system. Firstly, focal length assignment was calculated. Then, Cassegrain reflect component and infrared component was optimized respectively. Specially, in order to overcome the impact of temperature’s change on focal length and image quality, designed three lenses as focus group. Lastly, the main and subordinate lens’s hoods were designed to eliminate the influence of stray light. The design results show that the main indexes meet the design requirements.

  12. Aperture Synthesis Methods and Applications to Optical Astronomy

    CERN Document Server

    Saha, Swapan Kumar

    2011-01-01

    Over the years long baseline optical interferometry has slowly gained in importance and today it is a powerful tool. This timely book sets out to highlight the basic principles of long baseline optical interferometry. The book addresses the fundamentals of stellar interferometry with emphasis on aperture synthesis using an array of telescopes particularly at optical/IR wavelengths. It discusses the fundamentals of electromagnetic fields, wave optics, interference, diffraction, and imaging at length. There is a chapter dedicated to radio and intensity interferometry corroborating with basic mathematical steps. The basic principle of optical interferometry and its requirements, its limitations and the technical challenges it poses, are also covered in depth. Assisted by illustrations and footnotes, the book examines the basic tricks of the trade, current trends and methods, and it points to the potential of true interferometry both from the ground and space.

  13. Preliminary comparison of monolithic and aperture optics for XRMF

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, G.J.; Worley, C.G.

    1997-08-01

    Comparisons between standard aperture optics and a custom designed monolithic capillary x-ray optic for the Kevex Omicron are presented. The results demonstrate the feasibility of retrofitting an Omicron with a monolithic capillary. Increased flux is observed especially at lower energies which results in an increase in sensitivity and potentially an increase in spatial resolution. Alignment is a critical factor in achieving optimal performance of the monolithic capillary. Further improvements in flux output, spot size and overall sensitivity are expected with better alignment.

  14. Annular sub-aperture stitching interferometry testing for large-caliber aspheric

    Science.gov (United States)

    Wu, Pengfei; Yang, Shuming; Sun, Lin; Zhao, Pu; Jiang, Zhuangde

    2016-09-01

    An annular sub-aperture stitching interferometry testing is proposed for large-caliber aspheric lens testing, expanding the dynamic range of the interferometer, broadening the scope of the measurement, and reducing the cost of the measurement to a large extent without the use of compensating elements. The large-caliber aspheric is divided into several annular sub-apertures, and there are some overlapping areas between each two adjacent sub-apertures. When testing, the test aspheric is moved along the optical axis according to path planning so that the reference spherical shape and the test aspheric interest at points of common tangency to reduce the fringe density of the sub-aperture. However, in the process of moving the test optic, six DOF (degrees of freedom) misalignment errors will occur. According to the rigid body kinematics theory, the misalignment error separation model is established so that the misalignment factors can be calculated by the information of each overlapping regions. Then all sub-apertures are unified to the same reference with proper algorithm, and subsequently, misalignment error of the reference is removed by Zernike polynomial fitting, and the whole surface error is recovered. Simulation results are shown to demonstrate the feasibility of the method we developed. By analyzing the influence of the six DOF on the stitching result, the most important factor is obtained, and some measures are taken, that is, a measurement system combining two interferometers is designed, one of which is to measure the departures between the reference and the aspheric, and another to test the piston errors to be transmitted to the control system to improve the accuracy.

  15. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    Science.gov (United States)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  16. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    Science.gov (United States)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  17. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    Science.gov (United States)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  18. Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    CERN Document Server

    Postman, Marc

    2009-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary s...

  19. Limitations of synthetic aperture laser optical feedback imaging

    CERN Document Server

    Glastre, Wilfried; Hugon, Olivier; De Chatellus, Hugues Guillet; Lacot, Eric

    2012-01-01

    In this paper we present the origin and the effect of amplitude and phase noise on Laser Optical Feedback Imaging (LOFI) associated with Synthetic Aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise, it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce it by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (Radar, Laser or Terahertz), especially when raw holograms are acquired point by point.

  20. Improved Large Segmented Optics Fabrication Using Magnetorheological Finishing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary mirrors for large aperture telescopes (>10m) are collections of smaller (1-2m), typically hexagonal, often aspheric, optical segments. NASA?s next...

  1. Improved Large Segmented Optics Fabrication Using Magnetorheological Finishing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Primary mirrors for large aperture telescopes (> 10 m) are collections of smaller (1-2 m), typically hexagonal, often aspheric, optical segments. NASA's next...

  2. High numerical aperture imaging by using multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2014-01-01

    Controlling light propagation into multimode optical fibers through spatial light modulators provides highly miniaturized endoscopes and optical micromanipulation probes. We increase the numerical aperture up to nearly 1 by micro-optics fabricated on the fiber-end.

  3. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  4. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  5. Factors affecting the performance of large-aperture microphone arrays.

    Science.gov (United States)

    Silverman, Harvey F; Patterson, William R; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m x 8 m x 3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  6. Partial feedback unstable resonator on small scale supersonic large aperture chemical laser

    Science.gov (United States)

    Wang, Hongyan; Wang, Rui; Li, Lei

    2015-05-01

    There is always a challenge on large aperture medium power laser's resonator design, stable resonator would supports significant higher order transverse modes, folded and telescope stable resonator are too complex and not preferred by engineers, unstable resonator need rather large round trip gain to compensate its high geometric out-coupling, which is difficult for this kind of laser since its gain length is limited due to the power level and large aperture. Partial feedback unstable resonator had been proposed to tackle this difficulty since the early days of laser development, however, the debates of its effect never stopped even with those distinguished optical resonator scientists such as Siegman, Anan'ev, and Weber. Recently integrated partial feedback unstable resonator design had been successfully demonstrated on a medium size chemical oxygen iodine laser. In this paper, we carry this resonator configuration on a small scale discharge driven supersonic nozzle array Hydrogen Fluoride chemical laser, a typical large aperture short gain length device. With magnification equals 4/3, we successfully get ten Watts level ring beam output.

  7. ATLAST-9.2m: a Large-Aperture Deployable Space Telescope

    Science.gov (United States)

    Oergerle, William; Feinberg, Lee D.; Purves, Lloyd R.; Hyde, T. Tupper; Thronson, Harley A.; Townsend, Jacqueline A.; Postman, Marc; Bolear, Matthew R.; Budinoff, Jason G.; Dean, Bruce H.; hide

    2010-01-01

    We present results of a study of a deployable version of the Advanced Technology Large-Aperture Space Telescope (ATLAST), designed to operate in a Sun-Earth L2 orbit. The primary mirror of the segmented 9.2-meter aperture has 36 hexagonal 1.315 m (flat to flat) glass mirrors. The architecture and folding of the telescope is similar to JWST, allowing it to fit into the 6.5 m fairing of a modest upgrade to the Delta-IV Heavy version of the Evolved Expendable Launch Vehicle (EELV). We discuss the overall observatory design, optical design, instruments, stray light, wavefront sensing and control, pointing and thermal control, and in-space servicing options.

  8. Cavity-excited Huygens' metasurface antennas: near-unity aperture efficiency from arbitrarily-large apertures

    CERN Document Server

    Epstein, Ariel; Eleftheriades, George V

    2015-01-01

    One of the long-standing problems in antenna engineering is the realization of highly-directive beams using low-profile devices. In this paper we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source cavity excitation is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectrum typical to standard partially-reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern. As shown, a single semianalytical formalism can be followed to achieve control of a variety of radiation features, such as the d...

  9. Fabrication of bowtie aperture antennas for producing sub-20 nm optical spots.

    Science.gov (United States)

    Chen, Yang; Chen, Jianfeng; Xu, Xianfan; Chu, Jiaru

    2015-04-01

    Bowtie aperture antennas are known to generate sub-diffraction limited optical spots in the visible and near-infrared frequencies, which can be applied to many areas. Regular bowtie apertures fabricated by FIB suffer from tapered sidewall and rounded corner, which degrade its optical enhancement and localization. In this work, a new fabrication method is demonstrated to manufacture bowtie aperture antennas which can produce optical spots with lateral size smaller than 20 nm. We also employ numerical simulations to compute the near-field distribution on the surface of the bowtie aperture with topography extracted from the fabrication antennas. The near-field distribution measured by s-NSOM agrees well with the simulation and confirms the improved near-field localization of our bowtie aperture. This new fabrication method can be applied to other types of ridged apertures, which promises wide applications of deep sub-diffraction limited optical spots in many areas.

  10. Subwavelength-thick Lenses with High Numerical Apertures and Large Efficiency Based on High Contrast Transmitarrays

    CERN Document Server

    Arbabi, Amir; Ball, Alexander J; Bagheri, Mahmood; Faraon, Andrei

    2014-01-01

    We report subwavelength-thick, polarization insensitive micro-lenses operating at telecom wavelength with focal spots as small as 0.57 wavelengths and measured focusing efficiency up to 82%. The lens design is based on high contrast transmitarrays that enable control of optical phase fronts with subwavelength spatial resolution. A rigorous method for ultra-thin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The transmitarrays, composed of silicon nano-posts on glass, could be fabricated by high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.

  11. A large aperture reflective wave-plate for high-intensity short-pulse laser experiments

    CERN Document Server

    Aurand, Bastian; Zhao, Huanyu; Kuschel, Stephan; Wünsche, Martin; Jäckel, Oliver; Heyer, Martin; Wunderlich, Frank; Kaluza, Malte C; Paulus, Gerhard G; Kuehl, Thomas

    2012-01-01

    We report on a reflective wave-plate system utilizing phase-shifting mirrors (PSM) for a continuous variation of elliptical polarization without changing the beam position and direction. The scalability of multilayer optics to large apertures and the suitability for high-intensity broad-bandwidth laser beams make reflective wave-plates an ideal tool for experiments on relativistic laser-plasma interaction. Our measurements confirm the preservation of the pulse duration and spectrum when a 30-fs Ti:Sapphire laser beam passes the system.

  12. Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells

    Science.gov (United States)

    Stocker, Michael T.; Barnes, Bryan M.; Sohn, Martin; Stanfield, Eric; Silver, Richard M.

    2017-10-01

    Widespread commercialization of proton exchange membrane fuel cells remains curbed by various manufacturing and infrastructure challenges. One such technical barrier identified by the U. S. Department of Energy is the need for high-speed, in-line process control of platinum-based catalyst layers in the membrane electrode assembly of the fuel cell. Using multiple reflectivity-based optical methods, such as optical scatterometry and large aperture projection scatterometry, we demonstrate in-line-capable catalyst loading measurements of carbon-supported Pt nanoparticle and Pt-alloy nanostructured thin film catalyst coated membranes. Large aperture projection scatterometry is a new high-throughput approach developed at the National Institute of Standards and Technology specifically for fuel cell manufacturing metrology. Angle- and wavelength-resolved measurements of these fuel cell soft goods validate the ability of reflectivity-based measurements to produce industrially relevant sensitivities to changes in Pt and Pt-alloy loading. The successful application of these optical methods to fuel cell manufacturing metrology directly addresses the shortage of high-throughput process control approaches needed to facilitate performance improvements and manufacturing cost-reductions required to make fuel cells commercially viable.

  13. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field.

    Science.gov (United States)

    Wen, X; Datta, A; Traverso, L M; Pan, L; Xu, X; Moon, E E

    2015-11-03

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  14. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field

    Science.gov (United States)

    Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.

    2015-11-01

    Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.

  15. Research on new-style flexure supports method for large-aperture transport mirror mounting

    Science.gov (United States)

    Quan, Xusong; Zhang, Zheng; Xiong, Zhao; Wang, Hui; Yuan, Xiaodong; Liu, Changchun

    2016-10-01

    In high-power solid-state laser facility (SG-III), focusing laser beams into the target center with precision better than 50 microns (RMS) is dependent on the stringent specifications of thousands of large-aperture transport mirror units and is a huge challenge on the surface aberration control of mirrors. The current mirror's mounting techniques with screw fastening loads has several engineering conundrums - low control precision for loads (higher scatter even +/-30%), and low assembly-rectification efficiency ( 100 screws). To improve the current screw-fastening method, a new-style flexure supports method, which has a wonderful performance on uniform control of the external loads and only uses 30 screws, is proposed to mount the mirror (size: 610mm×440mm×85mm). With theoretical modeling and FEM analysis, the impacts of mounting loads on mirror's surface aberrations are analyzed and discussed in detail, and the flexure supports system is designed. Finally, with experimental research and case studies, the proposed flexure supports method shows a powerful performance on even control precision of external loads with scatter even less than +/-10%, which is a promising mounting process to replace the threaded fasteners mounting the large-aperture optics. These improvements can lay a foundation for mounting process consistency, robustness, and assembly-rectification efficiency of large optical component.

  16. BLAST: A balloon-borne, large-aperture, submillimetre telescope

    Science.gov (United States)

    Wiebe, Donald Victor

    BLAST is a balloon-borne large-aperture, submillimetre telescope, which makes large area (1--200 square degree) surveys of Galactic and extragalactic targets. Since BLAST observes in the stratosphere, it is able to make broad-band observations between 200 mum and 550 mum which are difficult or impossible to perform from the ground. BLAST has been designed to probe star formation both in the local Galaxy and in the high redshift (z = 1--4) universe. Because BLAST is flown on an unmanned stratospheric balloon platform, it has been designed to be able to operate autonomously, without needing operator intervention to perform its scientific goals. This thesis includes an overview of the design of the BLAST platform, with emphasis on the command and control systems used to operate the telescope. BLAST has been flown on two long-duration balloon flights. The first of these, from Esrange, Sweden in June of 2005, acquired ˜70 hours of primarily Galactic data. During the second flight, from Willy Field, Antarctica in December of 2006, BLAST acquired ˜225 hours of both Galactic and extragalactic data. Operational performance of the platform during these two flights is reviewed, with the goal of providing insight on how future flights can be improved. Reduction of the data acquired by these large-format bolometer arrays is a challenging procedure, and techniques developed for BLAST data reduction are reviewed. The ultimate goal of this reduction is the generation of high quality astronomical maps which can be used for subsequent portions of data analysis. This thesis treats, in detail, the iterative, maximum likelihood map maker developed for BLAST. Results of simulations performed on the map maker to characterise its ability to reconstruct astronomical signals are presented. Finally, astronomical maps produced by this map maker using real data acquired by BLAST are presented, with a discussion on non-physical map pathologies resulting from the data reduction pipeline and

  17. LAGOVirtual: A Collaborative Environment for the Large Aperture GRB Observatory

    CERN Document Server

    Camacho, R; Diaz, G; Guada, C; Hamar, V; Hoeger, H; Melfo, A; Nunez, L A; Perez, Y; Quintero, C; Rosales, M; Torrens, R

    2009-01-01

    We present the LAGOVirtual Project: an ongoing project to develop platform to collaborate in the Large Aperture GRB Observatory (LAGO). This continental-wide observatory is devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts, by using the single particle technique in arrays of Water Cherenkov Detectors (WCD) at high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). This platform will allow LAGO collaboration to share data, and computer resources through its different sites. This environment has the possibility to generate synthetic data by simulating the showers through AIRES application and to store/preserve distributed data files collected by the WCD at the LAGO sites. The present article concerns the implementation of a prototype of LAGO-DR adapting DSpace, with a hierarchical structure (i.e. country, institution, followed by collections that contain the metadata and data files), for the captured/simulate...

  18. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility

    Institute of Scientific and Technical Information of China (English)

    Lili; Hu; Shubin; Chen; Jingping; Tang; Biao; Wang; Tao; Meng; Wei; Chen; Lei; Wen; Junjiang; Hu; Shunguang; Li; Yongchun; Xu; Yasi; Jiang; Junzhou; Zhang; Zhonghong; Jiang

    2014-01-01

    Large aperture Nd:phosphate laser glass is a key optical element for an inertial confinement fusion(ICF) facility. N31,one type of neodymium doped phosphate glasses, was developed for high peak power laser facility applications in China. The composition and main properties of N31 glass are given, together with those of LHG-8, LG-770, and KGSS-0180 Nd:phosphate laser glasses, from Hoya and Schott, and from Russia. The technologies of pot melting, continuous melting, and edge cladding of large size N31 phosphate laser glass are briefly described. The small signal gain profiles of N31 glass slabs from both pot melting and continuous melting at various values of the pumping energy of the xenon lamp are presented. N31 glass is characterized by a stimulated emission cross section of 3.8 × 10-20cm2 at 1053 nm,an absorption coefficient of 0.10–0.15% cm-1at laser wavelength, small residual stress around the interface between the cladding glass and the laser glass, optical homogeneity of ~2 × 10-6in a 400 mm aperture, and laser damage threshold larger than 42 J/cm2 for a 3 ns pulse width at 1064 nm wavelength.

  19. Large- and Small-Aperture Fixed-Point Cells of Cu, Pt C, and Re C

    Science.gov (United States)

    Anhalt, Klaus; Wang, Yunfen; Yamada, Yoshiro; Hartmann, Jürgen

    2008-06-01

    Extending the application of metal (carbide) carbon eutectic fixed-point cells to radiometry, e.g., for measurements in irradiance mode, requires fixed-point cells with large apertures. In order to make large-aperture cells more readily usable in furnace systems with smaller furnace tubes commonly used for small-aperture fixed-point cells, a novel cell design was developed. For each of Cu, Pt C, and Re C fixed points, two types of fixed-point cells were manufactured, the small- and large-aperture cell. For Pt C and Re C, the large-aperture cells were filled with a hyper-eutectic metal carbon mixture; for the small cells, a hypo-eutectic mixture was used for filling. For each material, the small and large cells were compared with respect to radiometric differences. Whereas plateau shape and melting temperature are in good agreement for the small- and large-aperture Cu cells, a larger difference was observed between small- and large-aperture cells of Pt C and Re C, respectively. The origin of these observations, attributed to the temperature distribution inside the furnace, ingot contamination during manufacture, and non-uniform ingot formation for the larger cells, is discussed. The comparison of measurements by a radiation thermometer and filter radiometer of the Re C and Pt C large-aperture cells showed large differences that could be explained only by a strong radiance distribution across the cavity bottom. Further investigations are envisaged to clarify the cause.

  20. Dynamic aperture computation for the as-built CERN Large Hadron Collider and impact of main dipoles sorting

    Science.gov (United States)

    Fartoukh, S.; Giovannozzi, M.

    2012-04-01

    During the design phase of the CERN Large Hadron Collider the dynamic aperture, i.e. the amplitude of the domain in phase space where the particle motion is stable, was used as one of the most important figures-of-merit to specify the field quality of the various types of superconducting magnets and to quantify the machine performance. The programme of magnetic measurements performed during the production and acceptance testing of the magnets generated a large amount of information, which was used to obtain a best estimate of the dynamic aperture of the actual machine. In this paper the results of massive numerical simulations based on the measured field quality of several optical configurations and beam energies, are presented and discussed. The effect of the sorting of the main dipoles on the final value of the dynamic aperture has also been studied and the results are reviewed in detail.

  1. Dynamic aperture computation for the AS-built CERN Large Hadron Collider and impact of main dipoles sorting

    CERN Document Server

    Fartoukh, S

    2012-01-01

    During the design phase of the CERN Large Hadron Collider the dynamic aperture, i.e., the amplitude of the domain in phase space where the particle motion is stable, was used as one of the most important figures-of-merit to specify the field quality of the various types of superconducting magnets and to quantify the machine performance. The programme of magnetic measurements performed during the production and acceptance testing of the magnets generated a large amount of information, which was used to obtain a best estimate of the dynamic aperture of the actual machine. In this paper the results of massive numerical simulations based on the measured field quality of several optical configurations and beam energies, are presented and discussed. The effect of the sorting of the main dipoles on the final value of the dynamic aperture has also been studied and the results are reviewed in detail.

  2. Numerical aperture characteristics of angle-ended plastic optical fiber

    Science.gov (United States)

    Gao, Cheng; Farrell, Gerard

    2003-03-01

    With the increasing information rates demanded in consumer, automotive and aeronautical applications, a low cost and high performance physical transmission medium is required. Compared with Silica Optical Fiber, Plastic Optical Fiber (POF) offers an economic solution for a range of high-capacity, short-haul applications in industrial and military environments. Recently, a new type of POF, the perfluorinated graded-index plastic optical fiber (PF GI-POF), has been introduced that has low losses and high bandwidth at the communication wavelengths 850 nm and 1300nm. POF is normally terminated perpendicular to the fiber axis. We propose an angle-ended POF, which is terminated at non-perpendicular angles to the fiber axis. The aim of the research is to investigate the numerical aperture (NA) characteristics of angle-ended POF along the major axis of the elliptical endface. A theoretical model indicates that the NA of the angle-ended POF will increase nonlinearly with tilt-angle and the acceptance cone will be deflected with the angle of the deflection increasing nonlinearly with tilt-angle. We present results for the measured NA and the measured deflection angle using the far-field radiation method. Results are presented for 13 angle-ended SI-POF tilt-angles. We also present results for theoretical value of NA and deflection angle as a function of tilt-angle. The agreement between the measured and theoretical value is good up to tilt-angles of about 15 degrees, beyond which deviation occurs.

  3. Optical Ground Terminals Using Multi Aperture Digital Coherent Combining

    Science.gov (United States)

    2017-10-01

    from four parallel receiver chains. II. SYSTEM ARCHITECTURE Figure 1 shows an example multi-aperture receiver architec- ture that uses digital coherent...apertures by a distance much greater than r0, the received signals experience statistically independent fading processes. After summing the signals the...lossless combining of four apertures. These results show lossless combining down to the lowest tested power level of -15 dB PPB/receiver. An important next

  4. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    Science.gov (United States)

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-05

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

  5. Optical Phase Imaging Using Synthetic Aperture Illumination and Phase Retrieval

    CERN Document Server

    Lee, Dennis J

    2016-01-01

    We perform quantitative phase imaging using phase retrieval to implement synthetic aperture imaging. Compared to digital holography, the developed technique is simpler, less expensive, and more stable.

  6. A Circular aperture-array structure optical system for digital sun sensor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the first type of Rayleigh Sommerfeld diffraction formula, an imaging model of circular aperture-array structure digital sun sensor optical system is developed. Then a 6×6 circular aperture-array structure optical system is designed. The results of numerical simulation show that the optical system is designed well and is conformed to the requirements of miniaturization and high accuracy of sun sensor.

  7. Large optics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baisden, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advanced optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.

  8. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    Science.gov (United States)

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  9. A compact, large-aperture tunable lens with adaptive spherical correction

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2014-01-01

    In this paper, we present the proof of concept of a very fast adaptive glass membrane lens with a large aperture/diameter ratio, spherical aberration correction and integrated actuation. The membrane is directly deformed using two piezo actuators that can tune the focal length and the conical parameter. This operating principle allows for a usable aperture of the whole membrane diameter. Together with the efficient actuation mechanism, the aperture is around 2/3 of the total system diameter - at a thickness of less than 2mm. The response time is a few milliseconds at 12mm aperture, which is fast compared to similar systems.

  10. Optimum linear array of an optical aperture synthesis telescope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Measuring out successively the degree of coherence of the source produced by any couple of the small apertures via rotating an array composed of the small aperture telescopes, and synthesizing them into the (u, v) coverage of the source, the brightness distribution of the source can be obtained by the inverse Fourier transform of the degree of coherence with much higher resolution than from a single telescope. This article discusses the arrangements of the small apertures in the linear array, and found a method to decide the quality of the arrangements. the judgment factor ? is introduced to calculate the arrangements in quantity. There are 1.5×1011 possibilities for 11 apertures. Therefore, the computer procedures are programmed to select the optimum arrangements. The effect of the simulation of the aperture synthesis is given for the linear array. The simulation method can also be used in the nonlinear arrays.

  11. Designs for a large-aperture telescope to map the CMB 10× faster.

    Science.gov (United States)

    Niemack, Michael D

    2016-03-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 10⁴ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 10⁵-10⁶ detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >10⁵ detectors in a next generation CMB telescope.

  12. Study on supporting force sensing and control during large aperture space mirror test

    Science.gov (United States)

    Zhang, Long; Hu, Wenqi; Zheng, Liehua; Hao, Peiming

    2016-10-01

    During the machining of large aperture lightweight space mirror, the mirror figure consistency between ground test and space mission is a problem. In order to effectively control the supporting deformation effect on test results in gravity environment, in view of a 1.2-m space mirror with back blind holes, a supporting method for optical axis horizontal test is proposed, with this method, mirror under test is positioned by three center hole surfaces and supported by six external hole surfaces. The effect of deformation caused by different supporting force value, area and position is analyzed by finite element method, the simulation results show that this supporting method can control the mirror supporting deformation within PV0.035λ rms0.005λ. The actual supporting system uses soft expansion mandrel to control the mirror position and pneumatic lever to realize the floating support. In order to ensure that the support force can evenly distribute on the contact surface, a pressure mapping system is adopted to measure the interface pressure between the mirror blind holes and the soft supporting pads for the first time. This method can meet the test requirements of rms=1/40λ mirror and provides a technical support for high precision test of large aperture space mirror with back blind holes.

  13. Focussed ion beam machined cantilever aperture probes for near-field optical imaging.

    Science.gov (United States)

    Jin, E X; Xu, X

    2008-03-01

    Near-field optical probe is the key element of a near-field scanning optical microscopy (NSOM) system. The key innovation in the first two NSOM experiments (Pohl et al., 1984; Lewis et al., 1984) is the fabrications of a sub-wavelength optical aperture at the apex of a sharply pointed transparent probe tip with a thin metal coating. This paper discusses the routine use of focussed ion beam (FIB) to micro-machine NSOM aperture probes from the commercial silicon nitride cantilevered atomic force microscopy probes. Two FIB micro-machining approaches are used to form a nanoaperture of controllable size and shape at the apex of the tip. The FIB side slicing produces a silicon nitride aperture on the flat-end tips with controllable sizes varying from 120 nm to 30 nm. The FIB head-on drilling creates holes on the aluminium-coated tips with sizes down to 50 nm. Nanoapertures in C and bow tie shapes can also be patterned using the FIB head-on milling method to possibly enhance the optical transmission. A transmission-collection NSOM system is constructed from a commercial atomic force microscopy to characterize the optical resolution of FIB-micro-machined aperture tips. The optical resolution of 78 nm is demonstrated by an aperture probe fabricated by FIB head-on drilling. Simultaneous topography imaging can also be realized using the same probe. By mapping the optical near-field from a bow-tie aperture, optical resolution as small as 59 nm is achieved by an aperture probe fabricated by the FIB side slicing method. Overall, high resolution and reliable optical imaging of routinely FIB-micro-machined aperture probes are demonstrated.

  14. A pump driving liquid cooling circuit method for the aperture of an infrared cold optical system

    Science.gov (United States)

    Xie, RongJian

    2017-06-01

    To enhance the optical recognition and wavelength filtering of an infrared cold optical system, some lens need to be maintained within a certain temperature range, which requires specific thermal management of the aperture. A 250K liquid cooling circuit designed for this purpose is introduced, and the experimental results established and operated in a vacuum environmental simulation chamber is carried out and analyzed. A practical cooling power source of radiation cooling equipment is adopted and the sun exposure heat load is imitated by array of planar membrane heaters attached on the specific designed structure of the aperture. Controlling the aperture temperature and improving the optical system performance are proved effective. Numerical optimization of the cooling circuit and simulation of the aperture are performed , and the factors affect the optical system performance in the mean time are also investigated.

  15. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  16. Large Optics Technology.

    Science.gov (United States)

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  17. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  18. A cryogenic rotation stage with a large clear aperture for a half-wave plate

    CERN Document Server

    Bryan, Sean; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J Richard; Chiang, H Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C Barth; Rahlin, Alexandra S; Reintsema, Carl; Riley, Daniel C; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of 0.1 degrees. The system performed well in Spider during its successful 16 day flight.

  19. A large-aperture telescope to map the CMB 10X faster

    CERN Document Server

    Niemack, Michael D

    2015-01-01

    Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly $10^4$ detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. This paper introduces new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by over an order of magnitude to enable high efficiency illumination of $>10^5$ detectors in a next generation CMB telescope.

  20. The scaling relationship between telescope cost and aperture size for very large telescopes

    Science.gov (United States)

    van Belle, Gerard T.; Meinel, Aden Baker; Meinel, Marjorie Pettit

    2004-01-01

    Cost data for ground-based telescopes of the last century are analyzed for trends in the relationship between aperture size and cost. We find that for apertures built prior to 1980, costs scaled as aperture size to the 2.8 power, which is consistent with the precious finding of Meinel (1978). After 1980, 'traditional' monolithic mirror telescope costs have scaled as aperture to the 2.5 power. The large multiple mirror telescopes built or in construction during this time period (Keck, LBT, GTC) appear to deviate from this relationship with significant cost savings as a result, although it is unclear what power law such structures follow. We discuss the implications of the current cost-aperture size data on the proposed large telescope projects of the next ten to twenty years. Structures that naturally tend towards the 2.0 power in the cost-aperture relationship will be the favorable choice for future extremely large apertures; out expectation is that space-based structures will ultimately gain economic advantage over ground-based ones.

  1. Analysis and simulation of aperture-sizing strategies with partial adaptive optics

    Science.gov (United States)

    Tyson, Robert K.

    1994-05-01

    The central core intensity of a stellar image observed by a ground-based telescope can be maximized by a judicious balancing of the adaptive optics system and the size of the telescope entrance aperture. For a given aperture, increasing the number of degrees of adaptive optics turbulence compensation will maximize the brightness of the central core. However, for an observatory using an adaptive optics system with a fixed number of degrees-of-freedom, the largest aperture available will not necessarily result in a maximized image central core. The negative effects of atmospheric turbulence, roughly proportional to e(superscript -(D/r(subscript o))(superscript 5/3)), cannot always be compensated by the increased light gathering ability of a larger aperture (proportional to D(superscript 2)). It is shown and verified through simulation that the optimum aperture diameter is a function of N(superscript p) r(subscript o) where N is the number of adaptive optics degrees of freedom and r(subscript o) is the seeing cell size. The simulations show that the exponent p is related to the control algorithm or, more precisely, the figure-of-merit used to drive the deformable mirror actuators. Optimizing the useful aperture of the telescope/adaptive optics system is a strategy that can make use of the variation in site seeing conditions and benefit the astronomer by increasing the available number of observable science objects or reducing the observing time.

  2. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    Science.gov (United States)

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine.

  3. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    Science.gov (United States)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; hide

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is I.3l5m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  4. ATLAST-9.2: A Deployable Large Aperture UVOIR Space Telescope

    Science.gov (United States)

    Oegerle, William R.; Feinberg, L.; Purves, L.; Hyde, T.; Thronson, H.; Townsend, J.; Postman, M.; Bolcar, M.; Budinoff, J.; Dean, B.; Clampin, M.; Ebbets, D.; Gong, Q.; Gull, T.; Howard, J.; Jones, A.; Lyon, R.; Pasquale, B.; Perrygo, C.; Smith, S.; Thompson, P.; Woodgate, B.

    2010-01-01

    We present the results of a study of a deployable version of the Advanced Technology Large Aperture Space Telescope (ATLAST) that could be launched on an Evolved Expendable Launch Vehicle (EELV). ATLAST is a concept for a next-generation UVOIR observatory to follow HST and JWST. The observatory retains significant heritage from JWST, thereby taking advantage of technologies and engineering already developed for that mission. At the same time, we have identified several design changes to the JWST architecture, some of which are required due to the demanding wavefront error requirements at visible wavelengths. The optical telescope assembly has a segmented 9.2-meter aperture and consists of 36 hexagonal glass mirrors, each of which is 1.315m in size (flat-to-flat). The telescope can be folded to fit in the 6.5m fairing on the planned upgrade to the Delta-IV heavy launch vehicle. Near-real time wavefront sensing and control is performed on-board the telescope using stars in the field of view to deliver diffraction limited imaging performance at 500nm wavelength. The optical design of the telescope provides an 8x20 arcmin FOV in which 4-5 instruments can be accommodated, plus fine guidance and wavefront sensors. Unlike JWST, the OTA sits at the end of a multi-gimbaled arm, allowing pitch and roll motion, and is isolated from the sunshield and spacecraft bus by an active isolation system. Our design permits servicing in order to extend the life of the observatory.

  5. Large-aperture wide-bandwidth antireflection-coated silicon lenses for millimeter wavelengths

    CERN Document Server

    Datta, R; Niemack, M D; McMahon, J J; Britton, J; Wollack, E J; Beall, J; Devlin, M J; Fowler, J; Gallardo, P; Hubmayr, J; Irwin, K; Newburgh, L; Nibarger, J P; Page, L; Quijada, M A; Schmitt, B L; Staggs, S T; Thornton, R; Zhang, L

    2013-01-01

    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 degrees with low cross-polarization. We describe the design, tolerance, m...

  6. Parasitic suppression in large aperture disk lasers employing liquid edge claddings.

    Science.gov (United States)

    Guch, S

    1976-06-01

    A liquid edge cladding system for parasitic suppression in large aperture, high gain disk laser amplifiers has been developed and tested. A near-saturated aqueous solution of Znl(2) was employed for index-matching. Adequate fluorescence absorption was demonstrated using either dissolved NiCl(2) or chrome black oxide coating applied to the disk holder. Application of liquid cladding to a 20-cm aperture disk laser amplifier increased energy storage capability by approximately 20% over conventional solder glass claddings.

  7. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    Science.gov (United States)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  8. Large-Aperture, Three Mirror Telescopes for Near-Earth

    Science.gov (United States)

    Ackermann, M.; McGraw, J.

    In this era when Space Situational Awareness (SSA) is a national priority and optical-infrared telescopic sensor development is underway, cost-benefit analyses of competing approaches are necessary and appropriate. The DOD is presently investing in a new three-mirror telescope for SSA. At the same time, the Air Force, various universities and private research organizations are either studying or building wide-field telescopes with similar capabilities, but in most cases, at a significantly lower cost. Much of the expense for the DOD system appears driven by certain design choices which were advertised as necessary to fulfill the mission. Design details which would allow an independent analysis have not been published and no public comparison with other approaches is known to exist. Most telescope designs however, can be closely approximated from their optical configuration and imaging performance specifications. An optical designer will tell you that field curvature is one of the five monochromatic aberrations which they try to eliminate. The fact that one DOD development effort considers field curvature a design feature immediately draws attention to the project. This coupled with the paucity of published information and the very high development cost makes this program irresistible for comparison with competing approaches. This paper examines the likely design and performance of a proxy telescope intended to find NEOs, compares and contrasts that telescope with similar, but lower cost on-going projects, and examines the predictable impacts of reproducing such a telescope and placing multiple copies around the globe. The study primarily concentrates on performance measured in terms of search rate in square degrees per hour vs. object visual magnitude. Other considerations such as cost, transportability, availability of replacement components and ease of installation are also considered.

  9. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2014-04-29

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  10. RF/optical shared aperture for high availability wideband communication RF/FSO links

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul

    2015-03-24

    An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.

  11. Large aperture freeform VIS telescope with smart alignment approach

    Science.gov (United States)

    Beier, Matthias; Fuhlrott, Wilko; Hartung, Johannes; Holota, Wolfgang; Gebhardt, Andreas; Risse, Stefan

    2016-07-01

    The development of smart alignment and integration strategies for imaging mirror systems to be used within astronomical instrumentation are especially important with regard to the increasing impact of non-rotationally symmetric optics. In the present work, well-known assembly approaches preferentially applied in the course of infrared instrumentation are transferred to visible applications and are verified during the integration of an anamorphic imaging telescope breadboard. The four mirror imaging system is based on a modular concept using mechanically fixed arrangements of each two freeform surfaces, generated by servo assisted diamond machining and corrected using Magnetorheological Finishing as a figuring and smoothing step. Surface testing include optical CGH interferometry as well as tactile profilometry and is conducted with respect to diamond milled fiducials at the mirror bodies. A strict compliance of surface referencing during all significant fabrication steps allow for an easy integration and direct measurement of the system's wave aberration after initial assembly. The achievable imaging performance, as well as influences of the tight tolerance budget and mid-spatial frequency errors, are discussed and experimentally evaluated.

  12. Large-aperture $Nb_{3}Sn$ quadrupoles for $2^{nd}$ generation LHC IRs

    CERN Document Server

    Zlobin, A V; Chichili, D R; Huang Yu; Kashikhin, V V; Lamm, M J; Limon, P J; Mokhov, N V; Novitski, I; Peterson, T; Strait, J B; Yadav, S

    2002-01-01

    The 1/sup st/ generation of low-beta quadrupoles for the LHC interaction region (IR) was designed to achieve the nominal LHC luminosity of 10/sup 34/ cm/sup -2/s/sup -1/. Given that the lifetime of the 1/sup st/ generation IR quadrupoles is limited by ionizing radiation to 6-7 years, the 2/sup nd/ generation of IR quadrupoles has to be developed with the goal to achieve the ultimate luminosity up to 10/sup 35/ cm/sup -2/s/sup -1/. The IR quadrupole parameters such as nominal gradient, dynamic aperture and physical aperture, operation margins are the main factors limiting the machine performance. Conceptual designs of 90-mm aperture high-gradient quadrupoles, suitable for use in 2/sup nd/ generation high-luminosity LHC IRs with the similar optics, are presented. The issues related to the field gradient, field quality and operation margins are discussed. (5 refs).

  13. NIF Large Optics Metrology Software: Description and Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W H

    2002-10-15

    Several software packages have been developed for use by NIF large optics vendors during production of NIF optics. These packages allow specific comparison of the interferometer measurements done on optics against the wavefront requirements for those optics, as given on relevant drawings. This document outlines the various packages, and their specific applications, and describes in some detail the calculational algorithms used. It is intended as the primary reference document for the codes (aside from the source codes themselves). In order to ensure good laser beam quality, NIF requires that all large optics be measured with an interferometer to monitor how that optic will affect beam wavefront quality and focusability. Various specifications for transmitted wavefront (TWF) and reflected wavefront (RWF) for the full-aperture parts, and for various sub-apertures, are given on the large optics drawings. For reference, a summary of the various specifications for the NIF large optics is given in Figure 1. Each large optic in production will be measured against some of these specifications. Other specifications will be monitored in a 'process validation' fashion by measuring a representative sample of parts to assure the process is yielding parts which pass specification. This document will focus on the specifications requiring measurements on every part. This document will not go into detail concerning the procedures and limitations of the measurements themselves.

  14. A Future Large-Aperture UVOIR Space Observatory: Key Technologies and Capabilities

    Science.gov (United States)

    Bolcar, Matthew Ryan; Stahle, Carl M.; Balasubramaniam, Kunjithapatham; Clampin, Mark; Feinberg, Lee D.; Mosier, Gary E.; Quijada, Manuel A.; Rauscher, Bernard J.; Redding, David C.; Rioux, Norman M.; hide

    2015-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 20 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  15. The Advanced Technology Large-Aperture Space Telescope (ATLAST) Technology Roadmap

    Science.gov (United States)

    Stahle, Carl; Balasubramanian, K.; Bolcar, M.; Clampin, M.; Feinberg, L.; Hartman, K.; Mosier, C.; Quijada, M.; Rauscher, B.; Redding, D.; hide

    2014-01-01

    We present the key technologies and capabilities that will enable a future, large-aperture ultravioletopticalinfrared (UVOIR) space observatory. These include starlight suppression systems, vibration isolation and control systems, lightweight mirror segments, detector systems, and mirror coatings. These capabilities will provide major advances over current and near-future observatories for sensitivity, angular resolution, and starlight suppression. The goals adopted in our study for the starlight suppression system are 10-10 contrast with an inner working angle of 40 milliarcsec and broad bandpass. We estimate that a vibration and isolation control system that achieves a total system vibration isolation of 140 dB for a vibration-isolated mass of 5000 kg is required to achieve the high wavefront error stability needed for exoplanet coronagraphy. Technology challenges for lightweight mirror segments include diffraction-limited optical quality and high wavefront error stability as well as low cost, low mass, and rapid fabrication. Key challenges for the detector systems include visible-blind, high quantum efficiency UV arrays, photon counting visible and NIR arrays for coronagraphic spectroscopy and starlight wavefront sensing and control, and detectors with deep full wells with low persistence and radiation tolerance to enable transit imaging and spectroscopy at all wavelengths. Finally, mirror coatings with high reflectivity ( 90), high uniformity ( 1) and low polarization ( 1) that are scalable to large diameter mirror substrates will be essential for ensuring that both high throughput UV observations and high contrast observations can be performed by the same observatory.

  16. The Balloon-borne Large-Aperture Submillimeter Telescope for Polarization: BLAST-pol

    CERN Document Server

    Marsden, G; Bock, J J; Chapin, E L; Chung, J; Devlin, M J; Dicker, S; Griffin, M; Gundersen, J O; Halpern, M; Hargrave, P C; Hughes, D H; Klein, J; MacTavish, C J; Martin, P G; Martin, T G; Matthews, T G; Mauskopf, P; Moncelsi, L; Netterfield, C B; Novak, G; Pascale, E; Olmi, L; Patanchon, G; Rex, M; Savini, G; Scott, D; Semisch, C; Thomas, N; Truch, M D P; Tucker, C; Tucker, G S; Viero, M P; Ward-Thompson, D; Wiebe, D V

    2008-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a sub-orbital experiment designed to study the process of star formation in local galaxies (including the Milky Way) and in galaxies at cosmological distances. Using a 2-m Cassegrain telescope, BLAST images the sky onto a focal plane, which consists of 270 bolometric detectors split between three arrays, observing simultaneously in 30% wide bands, centered at 250, 350, and 500 microns. The diffraction-limited optical system provides a resolution of 30" at 250 microns. The pointing system enables raster-like scans with a positional accuracy of ~30", reconstructed to better than 5" rms in post-flight analysis. BLAST had two successful flights, from the Arctic in 2005, and from Antarctica in 2006, which provided the first high-resolution and large-area (~0.8-200 deg^2) submillimeter surveys at these wavelengths. As a pathfinder for the SPIRE instrument on Herschel, BLAST shares with the ESA satellite similar focal plane technology and scientific...

  17. The balloon-borne large-aperture submillimeter telescope for polarimetry: BLAST-Pol

    CERN Document Server

    Fissel, Laura M; Angile, Francesco E; Benton, Steven J; Chapin, Edward L; Devlin, Mark J; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Hughes, David H; Klein, Jeffrey; Korotkov, Andrei L; Marsden, Galen; Matthews, Tristan G; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, C Barth; Novak, Giles; Olmi, Luca; Pascale, Enzo; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek; Wiebe, Donald V

    2010-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLAST-Pol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLAST-Pol is the reconstructed BLAST telescope, with the addition of linear polarization capability. Using a 1.8 m Cassegrain telescope, BLAST-Pol images the sky onto a focal plane that consists of 280 bolometric detectors in three arrays, observing simultaneously at 250, 350, and 500 um. The diffraction-limited optical system provides a resolution of 30'' at 250 um. The polarimeter consists of photolithographic polarizing grids mounted in front of each bolometer/detector array. A rotating 4 K achromatic half-wave plate provides additional polarization modulation. With its unprecedented mapping speed and resolution, BLAST-Pol will produce three-color polarization maps for a large number of molecular clouds. The instrument provides a much needed bridge in spatial coverage between larger-scale, coarse resolutio...

  18. Metrological characterization of a large aperture Fizeau for x-ray mirrors measurement

    Science.gov (United States)

    Vannoni, Maurizio; Freijo Martín, Idoia

    2015-06-01

    The European XFEL is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale) and high average brilliance (1.61025 photons / s / mm2 / mrad2/ 0.1% bandwidth). Due to the very short wavelength and very high pulse energy, all the mirrors need to have high quality surface, to be very long, and at the same time to implement an effective cooling system. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. In order to measure the mirrors and to characterize their interaction with the mechanical mounts, we equipped a Metrology Laboratory with a Large Aperture Fizeau. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter. Despite the commercial nature of the system, special care has been done in the polishing of the reference flats and in the expander quality. In this report, we show the preparation of the instrument, the calibration and the performance characterization, together with some preliminary results. We also describe the approach that we want to follow for the x-rays mirrors measurements. The final goal will be to characterize very long mirrors, almost 1 meter long, with nanometer accuracy.

  19. Imaging properties of photon sieve with a large aperture

    Science.gov (United States)

    Gao, Zhong; Luo, Xiangang; Ma, Junxian; Fu, Yongqi; Du, Chunlei

    2008-06-01

    We report the optimization design and experimental results for the imaging properties of a photon sieve, which is formed on a layer of metal film supported by a thin glass substrate. As an example, we considered a micro-optical element with parameters of diameter D=50 mm, 3,564,290 hole number, and 10 μm minimum micro-hole diameter, which was designed and fabricated by means of surface machining technique in the lab. To evaluate its imaging performance, both on-axis and off-axis imaging experiments were carried out using the element. Compared to a Fresnel zone plate lens with the same feature size, the photon sieve has super imaging performance. Some quantitative analyses and initial qualitative explanations were given for the imaging characteristics.

  20. Three-dimensional reconstruction of far and large objects using synthetic aperture integral imaging

    Science.gov (United States)

    Piao, Yongri; Xing, Luyan; Zhang, Miao; Lee, Byung-Gook

    2017-01-01

    In this paper, we present a three-dimensional reconstruction of far and large objects in a synthetic aperture integral imaging system. In the proposed method, the far and large size objects are recorded as a set of elemental images by using an additional Plano-concave lens in the synthetic aperture integral imaging system. Due to the use of the Plano-concave lens, the reconstruction distance can be significantly reduced. This enables us to computationally reconstruct the objects in the far-field region. Experimental results are carried out, and the feasibility of the proposed method is verified.

  1. Study on fine annealing process of the large-aperture K9 glasses

    Science.gov (United States)

    Gang, Wang; Bin, Liu Yi; Zheng, Li Li; Hui, Zhang; Lei, Xie; Min, Qiu Fu; Ping, Ma; Yao, Yan Ding

    2016-10-01

    Study on fine annealing process of the large-aperture K9 glasses was carried out in the report. The process parameters of glass placed way, fan speed and design of the cavity for keeping temperature uniformity were attained. By the fine annealing experiment, the stress distribution was improved evidently. The stress changed from Irregular distribution to consistency symmetric distribution and the stress max was reduced. The surface profile accuracy of the large-aperture K9 glasses was controlled steadily during CNC polishing.

  2. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics

    KAUST Repository

    Bianchi, Silvio

    2013-01-01

    The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated. © 2013 Optical Society of America.

  3. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift.

    Science.gov (United States)

    Peng, Sun; Jin, Guo; Tingfeng, Wang

    2013-07-01

    Based on the generalized Huygens-Fresnel diffraction integral (Collins' formula), the propagation equation of Hermite-Gauss beams through a complex optical system with a limiting aperture is derived. The elements of the optical system may be all those characterized by an ABCD ray-transfer matrix, as well as any kind of apertures represented by complex transmittance functions. To obtain the analytical expression, we expand the aperture transmittance function into a finite sum of complex Gaussian functions. Thus the limiting aperture is expressed as a superposition of a series of Gaussian-shaped limiting apertures. The advantage of this treatment is that we can treat almost all kinds of apertures in theory. As application, we define the width of the beam and the focal plane using an encircled-energy criterion and calculate the intensity distribution of Hermite-Gauss beams at the actual focus of an aperture lens.

  4. Beamforming Techniques for Large-N Aperture Arrays

    CERN Document Server

    Faulkner, A J; de Vaate, J G Bij; Kant, G W; Pickard, P

    2010-01-01

    Beamforming is central to the processing function of all phased arrays and becomes particularly challenging with a large number of antenna element (e.g. >100,000). The ability to beamform efficiently with reasonable power requirements is discussed in this paper. Whilst the most appropriate beamforming technology will change over time due to semiconductor and processing developments, we present a hierarchical structure which is technology agnostic and describe both Radio-Frequency (RF) and digital hierarchical beamforming approaches. We present implementations of both RF and digital beamforming systems on two antenna array demonstrators, namely the Electronic Multi Beam Radio Astronomy ConcEpt (EMBRACE) and the dualpolarisation all-digital array (2-PAD). This paper will compare and contrast both digital and analogue implementations without considering the deep system design of these arrays.

  5. Design of a Large Single-Aperture Dipole Magnet for HL-LHC Upgrade

    CERN Document Server

    Qingjin, Xu; Iio, Masami; Ogitsu, Toru; Sasaki, Kenichi; Yamamoto, Akira; Todesco, Ezio

    2013-01-01

    An upgrade of the low-beta insertion system for the ATLAS and Compact Muon Solenoid experiments is proposed in the high luminosity Large Hadron Collider upgrade project. It includes final beam focusing quadrupoles, beam separation and recombination dipoles, and larger aperture matching section quadrupoles. KEK is in charge of the conceptual design of the large aperture separation dipole D1. The latest design parameters are a main field of ~ 5 T at 1.9 K with Nb-Ti superconducting technology, a coil aperture of 160 mm, and a cos-theta one-layer coil with Large Hadron Collider dipole cable. Because the new D1 is expected to be operated in a very high radiation environment, radiation resistance and a cooling scheme are being carefully considered. The collaring-yoke structure is adopted to provide the mechanical support for the single-layer Nb-Ti coil. We summarize the design study of this magnet, including i) the very large iron saturation effect on field quality due to the large aperture and limited size of the...

  6. NPT: a large-aperture telescope for high dynamic range astronomy

    Science.gov (United States)

    Joseph, Robert D.; Kuhn, Jeff R.; Tokunaga, Alan T.; Coulter, Roy; Ftaclas, Christo; Graves, J. Elon; Hull, Charles L.; Jewitt, D.; Mickey, Donald L.; Moretto, Gilberto; Neill, Doug; Northcott, Malcolm J.; Roddier, Claude A.; Roddier, Francois J.; Siegmund, Walter A.; Owen, Tobias C.

    2000-06-01

    All existing night-time astronomical telescopes, regardless of aperture, are blind to an important part of the universe - the region around bright objects. Technology now exist to build an unobscured 6.5 m aperture telescope which will attain coronagraphic sensitivity heretofore unachieved. A working group hosted by the University of Hawaii Institute for Astronomy has developed plans for a New Planetary Telescope which will permit astronomical observations which have never before ben possible. In its narrow-field mode the off-axis optical design, combined with adaptive optics, provides superb coronagraphic capabilities, and a very low thermal IR background. These make it ideal for studies of extra-solar planets and circumstellar discs, as well as for general IR astronomy. In its wide-field mode the NPT provides a 2 degree diameter field for surveys of Kuiper Belt Objects and Near-Earth Objects, surveys central to current intellectual interests in solar system astronomy.

  7. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    Science.gov (United States)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  8. Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis

    Science.gov (United States)

    Bo, En; Liu, Linbo

    2016-10-01

    We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.

  9. Position measurement of the direct drive motor of Large Aperture Telescope

    Science.gov (United States)

    Li, Ying; Wang, Daxing

    2010-07-01

    Along with the development of space and astronomy science, production of large aperture telescope and super large aperture telescope will definitely become the trend. It's one of methods to solve precise drive of large aperture telescope using direct drive technology unified designed of electricity and magnetism structure. A direct drive precise rotary table with diameter of 2.5 meters researched and produced by us is a typical mechanical & electrical integration design. This paper mainly introduces position measurement control system of direct drive motor. In design of this motor, position measurement control system requires having high resolution, and precisely aligning the position of rotor shaft and making measurement, meanwhile transferring position information to position reversing information corresponding to needed motor pole number. This system has chosen high precision metal band coder and absolute type coder, processing information of coders, and has sent 32-bit RISC CPU making software processing, and gained high resolution composite coder. The paper gives relevant laboratory test results at the end, indicating the position measurement can apply to large aperture telescope control system. This project is subsidized by Chinese National Natural Science Funds (10833004).

  10. R and D status of a large-aperture hybrid avalanche photo-detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Toshinori, E-mail: toshi@hep.phys.s.u-tokyo.ac.j [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, Hiroaki; Iwasaki, Masako; Fujimori, Hiroki; Kasimura, Keizo; Mineo, Sogo; Uchida, Tomohisa [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tanaka, Manobu [Institute for Particle and Nuclear Studies, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kawai, Yoshihiko; Kyushima, Hiroyuki; Suyama, Motohiro [Electron Tube Division, Hamamatsu Photonics K.K., 314-5 Shimokanzo, Iwata City, Shizuoka 438-0193 (Japan); Shiozawa, Masato [Kamioka Observatory, Institute for Cosmic Ray Research ICRR, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida City, Gifu 506-1205 (Japan)

    2010-11-01

    This paper reports on the R and D status of a large-aperture Hybrid Avalanche Photo-Detector (HAPD). We have developed a 13-inch aperture HAPD and its readout system. The HAPD is a photo-detector expected to replace the photomultiplier tube (PMT) in next-generation imaging water Cherenkov detectors such as Hyper Kamiokande. We will present the recent progress made in readout system development. The readout system involves a fast sampling device. The sampling depth (number of cells) has been extended to 256 from 64 in order to measure longer waveform length. The variation in AC gain is now fixed and the input analog bandwidth improved.

  11. Large optical glass blanks for the ELT generation

    Science.gov (United States)

    Jedamzik, Ralf; Petzold, Uwe; Dietrich, Volker; Wittmer, Volker; Rexius, Olga

    2016-07-01

    The upcoming extremely large telescope projects like the E-ELT, TMT or GMT telescopes require not only large amount of mirror blank substrates but have also sophisticated instrument setups. Common instrument components are atmospheric dispersion correctors that compensate for the varying atmospheric path length depending on the telescope inclination angle. These elements consist usually of optical glass blanks that have to be large due to the increased size of the focal beam of the extremely large telescopes. SCHOTT has a long experience in producing and delivering large optical glass blanks for astronomical applications up to 1 m and in homogeneity grades up to H3 quality in the past. The most common optical glass available in large formats is SCHOTT N-BK7. But other glass types like F2 or LLF1 can also be produced in formats up to 1 m. The extremely large telescope projects partly demand atmospheric dispersion components even in sizes beyond 1m up to a range of 1.5 m diameter. The production of such large homogeneous optical glass banks requires tight control of all process steps. To cover this demand in the future SCHOTT initiated a research project to improve the large optical blank production process steps from melting to annealing and measurement. Large optical glass blanks are measured in several sub-apertures that cover the total clear aperture of the application. With SCHOTT's new stitching software it is now possible to combine individual sub-aperture measurements to a total homogeneity map of the blank. In this presentation first results will be demonstrated.

  12. Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale

    Science.gov (United States)

    Gollub, J. N.; Yurduseven, O.; Trofatter, K. P.; Arnitz, D.; F. Imani, M.; Sleasman, T.; Boyarsky, M.; Rose, A.; Pedross-Engel, A.; Odabasi, H.; Zvolensky, T.; Lipworth, G.; Brady, D.; Marks, D. L.; Reynolds, M. S.; Smith, D. R.

    2017-02-01

    We demonstrate a low-profile holographic imaging system at millimeter wavelengths based on an aperture composed of frequency-diverse metasurfaces. Utilizing measurements of spatially-diverse field patterns, diffraction-limited images of human-sized subjects are reconstructed. The system is driven by a single microwave source swept over a band of frequencies (17.5–26.5 GHz) and switched between a collection of transmit and receive metasurface panels. High fidelity image reconstruction requires a precise model for each field pattern generated by the aperture, as well as the manner in which the field scatters from objects in the scene. This constraint makes scaling of computational imaging systems inherently challenging for electrically large, coherent apertures. To meet the demanding requirements, we introduce computational methods and calibration approaches that enable rapid and accurate imaging performance.

  13. Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler

    CERN Document Server

    Chapman, J J; Streed, E W; Kielpinski, D

    2007-01-01

    The focusing properties of three aspheric lenses with numerical aperture (NA) between 0.53 and 0.68 were directly measured using an interferometrically referenced scanning knife-edge beam profiler with sub-micron resolution. The results obtained for two of the three lenses tested were in agreement with paraxial gaussian beam theory. It was also found that the highest NA aspheric lens which was designed for 830nm was not diffraction limited at 633nm. This process was automated using motorized translation stages and provides a direct method for testing the design specifications of high numerical aperture optics.

  14. Large optics inspection, tilting, and washing stand

    Science.gov (United States)

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  15. Flextensional Microactuators for Large-Aperture Lightweight Cryogenic Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision single crystal flextensional piezoelectric microactuators for cryogenic optic devices such as large...

  16. Computer generated hologram null test of a freeform optical surface with rectangular aperture

    Science.gov (United States)

    Su, Ping; Ma, Jianshe; Tan, Qiaofeng; Kang, Guoguo; Liu, Yi; Jin, Guofan

    2012-02-01

    In null computed generated hologram (CGH) test of optical elements, fitting method is needed in null CGH design to generate continuous phase function from the ray-traced discrete phase data. The null CGH for freeform testing usually has a deformed aperture and a high order phase function, because of the aberrations introduced by freeform wavefront propagation. With traditional Zernike polynomial fitting method, selection of an orthogonal basis set and choosing number of terms are needed before fitting. Zernike polynomial fitting method is not suitable in null CGH design for freeform testing; a novel CGH design method with cubic B-spline interpolation is developed. For a freeform surface with 18×18 mm2 rectangular aperture and 630 μm peak-to-valley undulation, the null CGH with a curved rectangular aperture is designed by using the method proposed. Simulation and experimental results proved the feasibility of the novel CGH design method.

  17. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    Science.gov (United States)

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  18. High numerical aperture large-core photonic crystal fiber for a broadband infrared transmission

    Science.gov (United States)

    Pniewski, J.; Stepniewski, G.; Kasztelanic, R.; Siwicki, B.; Pierscinska, D.; Pierscinski, K.; Pysz, D.; Borzycki, K.; Stepien, R.; Bugajski, M.; Buczynski, R.

    2016-11-01

    In this paper we present a large mode area photonic crystal fiber made of the heavy metal oxide glass CS-740, dedicated for a broadband light guidance in the visible, near- and mid-infrared regions of wavelengths from 0.4 to 4.7 μm. The fiber is effectively multi-mode in the considered wavelength range. It is composed of a ring of air-holes surrounding the core, with a high linear filling factor of 0.97. The fiber was made using a standard stack-and-draw technique. Each hole has a size of approx. 2.5 × 3.0 μm and diameter of core is 80 μm. Fiber attenuation is below 3 dB/m in the 0.9-1.7 μm wavelength range, while at 4.4 μm (mid-IR) it is approx. 5 dB/cm. Bending loss at the 1.55 μm wavelength is 0.45 dB per loop of 8 mm radius. Fiber numerical aperture is 0.53 at 1.55 μm. The effective mode area of the fundamental mode is approx. 2400 μm2 in the wavelength range of 0.8-1.7 μm. We present a proof-of-concept demonstration that our large core photonic crystal fiber is able to efficiently collect light directly from a mid-IR quantum cascade laser without use of additional optics and can be used for pigtailing mid-IR sources and detectors.

  19. Experiment on cleaning side of large-aperture optics in high power laser system%高功率激光装置大口径光学元件侧面清洗实验

    Institute of Scientific and Technical Information of China (English)

    苗心向; 程晓锋; 王洪彬; 秦朗; 叶亚云; 袁晓东; 贺少勃; 郑万国

    2013-01-01

    针对高功率激光装置内部最易产生受激布里渊散射(SBS)效应的大口径取样光栅(BSG)元件,测试了经过化学刻蚀、紫外激光清洗作用处理后,大口径光学元件BSG侧面在355 nm激光辐照下的损伤阈值、损伤形态以及产生的石英颗粒气溶胶对环境污染程度的分析.结果表明:经过化学刻蚀,BSG侧面的损伤阈值提高78%,基本与通光面的损伤阈值相当,而经过紫外激光处理后的损伤阈值提升不高,仅为通光面损伤阈值的56%.侧面对比分析了相同激光能量辐照下样片侧面产生的气溶胶污染状况,结果表明紫外激光处理同样可以提高光学元件侧面产生污染物的阈值,且对光学元件性能没有影响.通过微观形貌和对通光口径影响分析表明,紫外激光清洗处理比化学刻蚀具有更好的安全性和适用性.%Boron carbide films were deposited on Si and Ge substrates using KrF eximer laser. Influences of laser energy, distance between the target and substrate, and bias voltage were studied. A Fourier transform infrared spectroscope and a nano-indenter were used to test the optical transmission and hardness of the samples. Furthermore, the adhesion performance of the film and substrate was tested according to the common criterion of optical films. The largest transmission of Si and Ge advanced 10% after only one surface of substrates was coated by boron carbide films. The nano-hardness of the coated substrates reached more than 3 times that of the uncoated substrates and the adhesion was also satisfactory. The results show that boron carbide films are useful as anti-reflective and protective films for optical substrates.

  20. The optical synthetic aperture image restoration based on the improved maximum-likelihood algorithm

    Science.gov (United States)

    Geng, Zexun; Xu, Qing; Zhang, Baoming; Gong, Zhihui

    2012-09-01

    Optical synthetic aperture imaging (OSAI) can be envisaged in the future for improving the image resolution from high altitude orbits. Several future projects are based on optical synthetic aperture for science or earth observation. Comparing with equivalent monolithic telescopes, however, the partly filled aperture of OSAI induces the attenuation of the modulation transfer function of the system. Consequently, images acquired by OSAI instrument have to be post-processed to restore ones equivalent in resolution to that of a single filled aperture. The maximum-likelihood (ML) algorithm proposed by Benvenuto performed better than traditional Wiener filter did, but it didn't work stably and the point spread function (PSF), was assumed to be known and unchanged in iterative restoration. In fact, the PSF is unknown in most cases, and its estimation was expected to be updated alternatively in optimization. Facing these limitations of this method, an improved ML (IML) reconstruction algorithm was proposed in this paper, which incorporated PSF estimation by means of parameter identification into ML, and updated the PSF successively during iteration. Accordingly, the IML algorithm converged stably and reached better results. Experiment results showed that the proposed algorithm performed much better than ML did in peak signal to noise ratio, mean square error and the average contrast evaluation indexes.

  1. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    Science.gov (United States)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  2. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.

    Science.gov (United States)

    Mo, Jianhua; de Groot, Mattijs; de Boer, Johannes F

    2015-02-23

    Optical coherence tomography (OCT) has proven to be able to provide three-dimensional (3D) volumetric images of scattering biological tissues for in vivo medical diagnostics. Unlike conventional optical microscopy, its depth-resolving ability (axial resolution) is exclusively determined by the laser source and therefore invariant over the full imaging depth. In contrast, its transverse resolution is determined by the objective's numerical aperture and the wavelength which is only approximately maintained over twice the Rayleigh range. However, the prevailing laser sources for OCT allow image depths of more than 5 mm which is considerably longer than the Rayleigh range. This limits high transverse resolution imaging with OCT. Previously, we reported a novel method to extend the depth-of-focus (DOF) of OCT imaging in Mo et al.Opt. Express 21, 10048 (2013)]. The approach is to create three different optical apertures via pupil segmentation with an annular phase plate. These three optical apertures produce three OCT images from the same sample, which are encoded to different depth positions in a single OCT B-scan. This allows for correcting the defocus-induced curvature of wave front in the pupil so as to improve the focus. As a consequence, the three images originating from those three optical apertures can be used to reconstruct a new image with an extended DOF. In this study, we successfully applied this method for the first time to both an artificial phantom and biological tissues over a four times larger depth range. The results demonstrate a significant DOF improvement, paving the way for 3D high resolution OCT imaging beyond the conventional Rayleigh range.

  3. Novel optical super-resolution pattern with upright edges diffracted by a tiny thin aperture.

    Science.gov (United States)

    Wu, Jiu Hui; Zhou, Kejiang

    2015-08-24

    In the past decade numerous efforts have been concentrated to achieve optical imaging resolution beyond the diffraction limit. In this letter a thin microcavity theory of near-field optics is proposed by using the power flow theorem firstly. According to this theory, the near-field optical diffraction from a tiny aperture whose diameter is less than one-tenth incident wavelength embedded in a thin conducting film is investigated by considering this tiny aperture as a thin nanocavity. It is very surprising that there exists a kind of novel super-resolution diffraction patterns showing resolution better than λ/80 (λ is the incident wavelength), which is revealed for the first time to our knowledge in this letter. The mechanism that has allowed the imaging with this kind of super-resolution patterns is due to the interaction between the incident wave and the thin nanocavity with a complex wavenumber. More precisely, these super-resolution patterns with discontinuous upright peaks are formed by one or three items of the integration series about the cylindrical waves according to our simulation results. This novel optical super-resolution with upright edges by using the thin microcavity theory presented in the study could have potential applications in the future semiconductor lithography process, nano-size laser-drilling technology, microscopy, optical storage, optical switch, and optical information processing.

  4. Challenges in optics for Extremely Large Telescope instrumentation

    CERN Document Server

    Span`o, P; Norrie, C J; Cunningham, C R; Strassmeier, K G; Bianco, A; Blanche, P A; Bougoin, M; Ghigo, M; Hartmann, P; Zago, L; Atad-Ettedgui, E; Delabre, B; Dekker, H; Melozzi, M; Snyders, B; Takke, R; Walker, D D

    2006-01-01

    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide...

  5. The co-phasing detection method for sparse optical synthetic aperture systems

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng; Wang Sheng-Qian; Rao Chang-Hui

    2012-01-01

    Co-phasing between different sub-apertures is important for sparse optical synthetic aperture telescope systems to achieve high-resolution imaging.For co-phasing detection in such a system,a new aspect of the system's far-field interferometry is analysed and used to construct a novel method to detect piston errors.An optical setup is built to demonstrate the efficacy of this method.Experimental results show that the relative differences between measurements by this method and the criterion are less than 4%,and their residual detecting errors are about 0.01 λ for different piston errors,which makes the use of co-phasing detection within such a system promising.

  6. Single-molecule detection at high concentrations with optical aperture nanoantennas

    Science.gov (United States)

    Alam, Md Shah; Karim, Farzia; Zhao, Chenglong

    2016-05-01

    Single-molecule detection has become an indispensable technology in life science, and medical research. In order to get meaningful information on many biological processes, single-molecule analysis is required in micro-molar concentrations. At such high concentrations, it is very challenging to isolate a single molecule with conventional diffraction-limited optics. Recently, optical aperture nanoantennas (OANs) have emerged as a powerful tool to enhance the single-molecule detection under a physiological environment. The OANs, which consist of nano-scale apertures on a metallic film, have the following unique properties: (1) nanoscale light confinement; (2) enhanced fluorescence emission; (3) tunable radiation pattern; (4) reduced background noise; and (5) massive parallel detection. This review presents the fundamentals, recent developments and future perspectives in this emerging field.

  7. Large-mode-area leaky optical fibre fabricated by MCVD

    OpenAIRE

    Dussardier, Bernard; Trzesien, Stanislaw; Ude, Michèle; Rastogi, Vipul; Kumar, Ajeet; Monnom, Gérard

    2008-01-01

    International audience; A large mode area single-mode optical fibre based on leaky mode filtering was prepared by MCVD. The cladding structure discriminates the fundamental mode from the higher order ones. A preliminary version has 25-µm core diameter and 0.11 numerical aperture. A Gaussian-like mode with 22-µm MFD is observed after 3-m propagation, in agreement with modeling.

  8. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    Science.gov (United States)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  9. Dual-band co-aperture infrared optical system design for irradiance measurement

    Science.gov (United States)

    Mu, Da; Mi, Shilong; Mu, Meng

    2014-11-01

    Irradiance is a basic parameter in radiation measurement and play a big role in the research of radiation source.Since infrared target simulator is difficult to precisely calibrate itself and the irradiance value of standard blackbody is infinitely small,besides,some other objective environment factors like dust,dirty spot,vapour,especially the temperature lay worse effect on common infrared system,so it's crucial to decrease energy deficiency and various aberrations throughout integrated elements of optical system to increase measurement precision. Therefore,in this paper, a relatively precise imaging system is designed to measure the irradiance of the simulator itself--the dual-band co-aperture infrared optical system,it can work well under bad conditions said above,particularly when the target isn't fill up with the FOV(field of view). Generally infrared optical system needs big clear aperture, as for the objective of this system,an improved Cassegrain optical system as the co-aperture can be used to receive middle-wave infrared(MWIR3~5μm) and long-wave infrared(LWIR8~12μm) from standard blackbody radiation.As we all know that Cassegrain system has a satisfying relatively bigger aperture and reflective system has no chromatic aberration problem, a proper obstruction ratio of second lens and a hole in the centre of primary lens of the original system must be changed reasonably .So the radiation with least energy deficiency and aberration can be received successfully now. The two beams depart from the hole of primary lens separated by a coated (reflect MWIR and transmit LWIR film or vice versa) beam splitter, then the two different wavelength waves can be divided into two different optical path and finally received by MWIR and LWIR detectors respectively.The design result shows that the distortions of system are both small and the curves of modulation transfer function (MTF) approach the diffraction limit simultaneously in MWIR( 3~5μm) and LWIR( 8~12

  10. Adaptive Optics for Large Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  11. Spectral resolution enhancement of hyperspectral imagery by a multiple-aperture compressive optical imaging system

    Directory of Open Access Journals (Sweden)

    Hoover Fabian Rueda Chacon

    2014-11-01

    Full Text Available The Coded Aperture Snapshot Spectral Imaging (CASSI system captures the three-dimensional (3D spatio-spectral information of a scene using a set of two-dimensional (2D random-coded Focal Plane Array (FPA measurements. A compressive sensing reconstruc-tion algorithm is then used to recover the underlying spatio-spectral 3D data cube. The quality of the reconstructed spectral images depends exclusively on the CASSI sensing matrix, which is determined by the structure of a set of random coded apertures. In this paper, the CASSI system is generalized by developing a multiple-aperture optical imaging system such that spectral resolution en-hancement is attainable. In the proposed system, a pair of high-resolution coded apertures is introduced into the CASSI system, allow-ing it to encode both spatial and spectral characteristics of the hyperspectral image. This approach allows the reconstruction of super-resolved hyperspectral data cubes, where the number of spectral bands is significantly increased and the quality in the spatial domain is greatly improved. Extensively simulated experiments show a gain in the peak-signal-to-noise ratio (PSNR, along with a better fit of the reconstructed spectral signatures to the original spectral data.  

  12. Laser-Induced Damage Growth on Larger-Aperture Fused Silica Optical Components at 351 nm

    Institute of Scientific and Technical Information of China (English)

    HUANG Wan-Qing; ZHANG Xiao-Min; HAN Wei; WANG Fang; XIANG Yong; LI Fu-Quan; FENG Bin; JING Feng; WEI Xiao-Feng; ZHENG Wan-Guo

    2009-01-01

    Laser-induced damage is a key lifetime limiter for optics in high-power laser facility. Damage initiation and growth under 351 nm high-fluence laser irradiation are observed on larger-aperture fused silica optics. The input surface of one fused silica component is damaged most severely and an explanation is presented. Obscurations and the area of a scratch on it are found to grow exponentially with the shot number. The area of damage site grows linearly. Micrographs of damage sites support the micro-explosion damage model which could be used to qualitatively explain the phenomena.

  13. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  14. High-numerical-aperture microlensed tip on an air-clad optical fiber.

    Science.gov (United States)

    Kato, Shinya; Chonan, Sho; Aoki, Takao

    2014-02-15

    We show that a hemispherically shaped tip on an air-clad optical fiber simultaneously works as a high-numerical-aperture lens and efficiently collects photons from an emitter placed near the beam waist into the fundamental guided mode. Numerical simulations show that the coupling efficiency reaches about 25%. We have constructed a confocal microscope with such a lensed fiber. The measurements are in good agreement with the numerical simulation. The monolithic structure with a high-photon-collection efficiency will provide a flexible substitute for a conventional lens system in various experiments such as single-atom trapping with a tightly focused optical trap.

  15. Full Aperture CO2 Laser Process to Improve Laser Damage Resistance of Fused Silica Optical Surface

    Directory of Open Access Journals (Sweden)

    Wei Liao

    2014-01-01

    Full Text Available An improved method is presented to scan the full-aperture optical surface rapidly by using galvanometer steering mirrors. In contrast to the previous studies, the scanning velocity is faster by several orders of magnitude. The velocity is chosen to allow little thermodeposition thus providing small and uniform residual stress. An appropriate power density is set to obtain a lower processing temperature. The proper parameters can help to prevent optical surface from fracturing during operation at high laser flux. S-on-1 damage test results show that the damage threshold of scanned area is approximately 40% higher than that of untreated area.

  16. Detection of and compensation for blocked elements using large coherent apertures: ex vivo studies

    Science.gov (United States)

    Jakovljevic, Marko; Bottenus, Nick; Kuo, Lily; Kumar, Shalki; Dahl, Jeremy; Trahey, Gregg

    2016-04-01

    When imaging with ultrasound through the chest wall, it is not uncommon for parts of the array to get blocked by ribs, which can limit the acoustic window and significantly impede visualization of the structures of interest. With the development of large-aperture, high-element-count, 2-D arrays and their potential use in transthoracic imaging, detecting and compensating for the blocked elements is becoming increasingly important. We synthesized large coherent 2-D apertures and used them to image a point target through excised samples of canine chest wall. Blocked elements are detected based on low amplitude of their signals. As a part of compensation, blocked elements are turned off on transmit (Tx) and receive (Rx), and point-target images are created using: coherent summation of the remaining channels, compounding of intercostal apertures, and adaptive weighting of the available Tx/Rx channel-pairs to recover the desired k-space response. The adaptive compensation method also includes a phase aberration correction to ensure that the non-blocked Tx/Rx channel pairs are summed coherently. To evaluate the methods, we compare the point-spread functions (PSFs) and near-field clutter levels for the transcostal and control acquisitions. Specifically, applying k-space compensation to the sparse aperture data created from the control acquisition reduces sidelobes from -6.6 dB to -12 dB. When applied to the transcostal data in combination with phase-aberration correction, the same method reduces sidelobes only by 3 dB, likely due to significant tissue induced acoustic noise. For the transcostal acquisition, turning off blocked elements and applying uniform weighting results in maximum clutter reduction of 5 dB on average, while the PSF stays intact. Compounding reduces clutter by about 3 dB while the k-space compensation increases clutter magnitude to the non-compensated levels.

  17. The design of common aperture and multi-band optical system based on day light telescope

    Science.gov (United States)

    Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng

    2017-02-01

    As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.

  18. Deployable large aperture optics system for remote sensing applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sumali, Anton Hartono; Martin, Jeffrey W.; Main, John A. (University of Kentucky, Lexington, KY); Macke, Benjamin T.; Massad, Jordan Elias; Chaplya, Pavel Mikhail

    2004-04-01

    This report summarizes research into effects of electron gun control on piezoelectric polyvinylidene fluoride (PVDF) structures. The experimental apparatus specific to the electron gun control of this structure is detailed, and the equipment developed for the remote examination of the bimorph surface profile is outlined. Experiments conducted to determine the optimum electron beam characteristics for control are summarized. Clearer boundaries on the bimorphs control output capabilities were determined, as was the closed loop response. Further controllability analysis of the bimorph is outlined, and the results are examined. In this research, the bimorph response was tested through a matrix of control inputs of varying current, frequency, and amplitude. Experiments also studied the response to electron gun actuation of piezoelectric bimorph thin film covered with multiple spatial regions of control. Parameter ranges that yielded predictable control under certain circumstances were determined. Research has shown that electron gun control can be used to make macrocontrol and nanocontrol adjustments for PVDF structures. The control response and hysteresis are more linear for a small range of energy levels. Current levels needed for optimum control are established, and the generalized controllability of a PVDF bimorph structure is shown.

  19. A comparative study on dual colour soft aperture cascaded second-order mode-locking with different nonlinear optical crystals

    Indian Academy of Sciences (India)

    Shyamal Mondal; Satya Pratap Singh; Sourabh Mukhopadhyay; Aditya Date; Kamal Hussain; Shouvik Mukherjee; Prasanta Kumar Datta

    2014-02-01

    A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.

  20. Combining rotating-coil measurements of large-aperture accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  1. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    Science.gov (United States)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  2. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Toronto, ON M5S 3H4 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Fukui, Yasuo [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca [University of Puerto Rico, Rio Piedras Campus, Physics Department, Box 23343, UPR station, San Juan (Puerto Rico); and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  3. Relationship between the external aperture and hearing loss in large vestibular aqueduct syndrome

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Backgroud Large vestibular aqueduct syndrome (LVAS) is a major cause of hearing loss in childhood. This study aimed at measuring external aperture of enlargement of the vestibular aqueduct (EVA) and analyzing relationship between the size of external aperture and hearing loss.Methods Diagnostic criteria of LVAS were based on hearing loss and CT images. CT images of temporal bone of 100 LVAS patients were collected and 60 control subjects were reviewed retrospectively in the past 10 years. A battery of audiometric and vestibular function tests were performed. The width of the vestibular aqueduct (VA) was measured on axial CT images of the temporal bone.Results One hundred patients (65 men, 35 women) were diagnosed as having the isolated EVA. Hearing loss mostly occurred in early childhood. The diagnosis age of LVAS was 7.7 years on average. The causes of hearing loss could not be confirmed by initial consult. Typically, audiometric curve is the high-frequency down-sloping configuration. 92% of the cases had severe or profound sonsorineural hearing loss (SNHL). The mean size of the external aperture was (7.5±1.2) mm in present LVAS. Statistical analysis showed that the degree of hearing loss is unrelated to the width of VA. Conclusions LVAS is a distinct clinical entity characterized by fluctuating, progressive SNHL. The degree of hearing loss is unrelated to the size of external aperture of VA. The protective management and hearing aid have become the main therapies. The cochlear implantation might be performed if the hearing loss affected learning at school.

  4. Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device.

    Science.gov (United States)

    Ishizuki, Hideki; Taira, Takunori

    2008-10-13

    Mg-doped congruent composition LiTaO(3) (MgLT) crystal, which can be grown by a conventional Czochralski method, has improved properties such as transparent range, thermal conductivity, and coercive field compared to conventional undoped congruent LiTaO(3). In this paper, various properties of MgLT including Mg-doping dependence are characterized, and also compared to that of undoped congruent LiTaO(3), LiNbO(3), and Mg-doped congruent LiNbO(3), as a material of high power quasi-phase matching (QPM) device. Up to 3-mm-thick periodically poled MgLT crystal is shown to demonstrate the possibility of large-aperture QPM-MgLT devices. Subsequently, optical parametric oscillation experiments by using periodically poled MgLT are demonstrated to discuss an efficient QPM condition.

  5. Note: Computer controlled rotation mount for large diameter optics

    CERN Document Server

    Rakonjac, Ana; Deb, Amita B; Kjærgaard, Niels

    2012-01-01

    We describe the construction of a motorized optical rotation mount with a 40 mm clear aperture. The device is used to remotely control the power of large diameter laser beams for a magneto-optical trap (MOT). A piezo-electric ultrasonic motor on a printed circuit board (PCB) provides rotation with a precision better than 0.03 deg and allows for a very compact design. The rotation unit is controlled from a computer via serial communication, making integration into most software control platforms straightforward.

  6. Effects of truncated Gaussian beam on the performance of fiber optical synthetic aperture system

    Institute of Scientific and Technical Information of China (English)

    LIU Li; WANG Chang-wei; JIANG Yue-song

    2012-01-01

    In the fiber optical synthetic aperture (FOSA) system,the diffraction of the Gaussian beam limited by the aperture in exit pupil plane of fiber collimator is studied theoretically,and the axial and transverse irradiance distributions are obtained.The point spread function (PSF) and modulation transfer function (MTF) of the truncated Gaussian beam array are computed numerically with different truncation factors.The results show that the diffraction of the truncated Gaussian beam array agrees with the uniform-beam Rayleigh diffraction when the truncation factor is less than 0.5,but little power is transmitted.The PSF and MTF are degraded,but more power can be contained when the truncation factor is larger.The selection of the truncation factor is a trade-off between the loss of transmission and the qualities of PSF and MTF in practical application.

  7. EXPERIMENTAL STUDIES OF ERROR COMPENSATION FOR OPTICAL SIGNAL COORDINATE DETERMINATION BY DOUBLE SYNTHESIZED APERTURE

    Directory of Open Access Journals (Sweden)

    A. G. Obolenskov

    2016-09-01

    Full Text Available Subject of Research. The paper presents theoretical and experimental analysis of dependence of the determination error of a modulated optical signal under intense background illumination on the value of mutual shift of two current-voltage characteristics if using a double synthesized aperture on multiscan position-sensitive detector. Method. The studies have been carried out on a specially designed setup, that allows scanning photosensitive area of multiscan position-sensitive detector by an optical beam that imitates intense solar illumination. At the same time the position error of determination of weak modulated optical signal coordinate is measured at different relative position of signal and background illumination, and background power. Main Results. Experimental studies have confirmed the theoretical conclusions. It is shown that the use of double synthesized aperture of multiscan position-sensitive detector with the voltage shift of the current-voltage characteristics equal to 0.4 V enables to reduce position determination error of a weak modulated signal by an order of magnitude. Practical Relevance. Research results have opened the opportunity of accuracy increase for position-sensitive systems operating under background illuminations exceeding the level of information optical signal.

  8. A novel hybrid surface micromachined segmented mirror for large aperture laser applications

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Haiqing Chen; Hongbin Yu

    2006-01-01

    @@ A novel hybrid surface micromachined segmented mirror array is described. This device is capable of scaling to large apertures for correcting time-varying aberrations in laser applications. Each mirror is composed of bottom electrode, support part, and mirror plate, in which a T-shaped beam structure is used to support the mirror plate. It can provide mirror with vertical movement and rotation around two horizontal axes. The test results show that the maximum deflection along the vertical direction of the mirror plate is 2μm, while the rotation angles around x and y axes are ±2.3° and ±1.45°, respectively.

  9. Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.

    2005-03-01

    In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

  10. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  11. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    CERN Document Server

    Matthews, Tristan G; Angilè, Francesco E; Benton, Steven J; Chapin, Edward L; Chapman, Nicholas L; Devlin, Mark J; Fissel, Laura M; Fukui, Yasuo; Gandilo, Natalie N; Gundersen, Joshua O; Hargrave, Peter C; Klein, Jeffrey; Korotkov, Andrei L; Moncelsi, Lorenzo; Mroczkowski, Tony K; Netterfield, Calvin B; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E; Truch, Matthew D P; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek

    2013-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 {\\mu}m. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry (The optical data were published in 1998 by J. Rizzo and collaborators.). The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I,...

  12. Pattern transfer on large samples using a sub-aperture reactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Miessler, Andre; Mill, Agnes; Gerlach, Juergen W.; Arnold, Thomas [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany)

    2011-07-01

    In comparison to sole Ar ion beam sputtering Reactive Ion Beam Etching (RIBE) reveals the main advantage of increasing the selectivity for different kind of materials due to chemical contributions during the material removal. Therefore RIBE is qualified to be an excellent candidate for pattern transfer applications. The goal of the present study is to apply a sub-aperture reactive ion beam for pattern transfer on large fused silica samples. Concerning this matter, the etching behavior in the ion beam periphery plays a decisive role. Using CF{sub 4} as reactive gas, XPS measurements of the modified surface exposes impurities like Ni, Fe and Cr, which belongs to chemically eroded material of the plasma pot as well as an accumulation of carbon (up to 40 atomic percent) in the beam periphery, respectively. The substitution of CF{sub 4} by NF{sub 3} as reactive gas reveals a lot of benefits: more stable ion beam conditions in combination with a reduction of the beam size down to a diameter of 5 mm and a reduced amount of the Ni, Fe and Cr contaminations. However, a layer formation of silicon nitride handicaps the chemical contribution of the etching process. These negative side effects influence the transfer of trench structures on quartz by changing the selectivity due to altered chemical reaction of the modified resist layer. Concerning this we investigate the pattern transfer on large fused silica plates using NF{sub 3}-sub-aperture RIBE.

  13. Recent developments in wafer-level fabrication of micro-optical multi-aperture imaging systems

    Science.gov (United States)

    Leitel, R.; Dannberg, P.; Brückner, A.; Bräuer, A.

    2011-10-01

    Micro-optical systems, that utilize multiple channels for imaging instead of a single one, are frequently discussed for ultra-compact applications such as digital cameras. The strategy of their fabrication differs due to different concepts of image formation. Illustrated by recently implemented systems for multi-aperture imaging, typical steps of wafer-level fabrication are discussed in detail. In turn, the made progress may allow for additional degrees of freedom in optical design. Pressing ahead with very short overall lengths and multiple diaphragm array layers, results in the use of extremely thin glass substrates down to 100 microns in thickness. The desire for a wide field of view for imaging has led to chirped arrays of microlenses and diaphragms. Focusing on imaging quality, aberrations were corrected by introducing toroidal lenslets and elliptical apertures. Such lenslets had been generated by thermal reflow of lithographic patterned photoresist and subsequent molding. Where useful, the system's performance can be further increased by applying aspheric microlenses from reactive ion etching (RIE) transfer or by achromatic doublets from superimposing two moldings with different polymers. Multiple diaphragm arrays prevent channel crosstalk. But using simple metal layers may lead to multiple reflections and an increased appearance of ghost images. A way out are low reflecting black matrix polymers that can be directly patterned by lithography. But in case of environmental stability and high resolution, organic coatings should be replaced by patterned metal coatings that exhibit matched antireflective layers like the prominent black chromium. The mentioned components give an insight into the fabrication process of multi-aperture imaging systems. Finally, the competence in each step decides on the overall image quality.

  14. Diffractive imaging analysis of large-aperture segmented telescope based on partial Fourier transform

    Science.gov (United States)

    Dong, Bing; Qin, Shun; Hu, Xinqi

    2013-09-01

    Large-aperture segmented primary mirror will be widely used in next-generation space-based and ground-based telescopes. The effects of intersegment gaps, obstructions, position and figure errors of segments, which are all involved in the pupil plane, on the image quality metric should be analyzed using diffractive imaging theory. Traditional Fast Fourier Transform (FFT) method is very time-consuming and costs a lot of memory especially in dealing with large pupil-sampling matrix. A Partial Fourier Transform (PFT) method is first proposed to substantially speed up the computation and reduce memory usage for diffractive imaging analysis. Diffraction effects of a 6-meter segmented mirror including 18 hexagonal segments are simulated and analyzed using PFT method. The influence of intersegment gaps and position errors of segments on Strehl ratio is quantitatively analyzed by computing the Point Spread Function (PSF). By comparing simulation results with theoretical results, the correctness and feasibility of PFT method is confirmed.

  15. A free-air ionization chamber with a large aperture diaphragm

    Energy Technology Data Exchange (ETDEWEB)

    Takata, N., E-mail: n.takata@aist.go.j [Ionizing Radiation Section, NMIJ, AIST, Tsukuba, Ibaraki 305-8568 (Japan)

    2010-07-21

    Calculations of the electric field distributions in free-air ionization chambers reveal that the distortion of the charge collection volume is small even for wide X-ray beam passage if the diaphragm and the X-ray shielding box are kept at a potential equal to half that applied to the high-voltage electrode. Applying this potential to the diaphragm and the shielding box permits a larger aperture diaphragm to be used. This will allow a wider X-ray beam to enter the chamber, thus generating a larger signal. In addition, the distance between the diaphragm and the charge collection volume can be shortened to reduce the amount of X-ray attenuation. It is also possible to calibrate a dosimeter against a free-air ionization chamber that has a diaphragm whose aperture size is equal to the size of the dosimeter in an X-ray field that is collimated to the same size. This is important since free-air ionization chambers are not sensitive to X-rays that are incident at large angles, such as those scattered by the collimator, filters and air.

  16. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    . Once again the conclusion drawn by the author in March, 2000 [11] is confirmed: there is no common sense to create telescopes of land basing with a diameter of the main mirror more than 25 m to register images of extremely remote astronomical objects. And creation of telescopes with diameters from 30 to 100 m, as it is seen from calculations, does not give any advantages over telescopes of smaller diameter, and only extremely complicates and raises the price of a problem.It is shown that introduction of new concept of an invariant of informational content for large-size optical telescopes will allow to have a new look at the development process of complicated optic-electronic complexes. The informational content invariant as a criterion of efficiency enables an assessment and comparison of various technical solutions at the stage of search for optimum ways of increasing informational content of telescopes.Besides, and it is quite essential, the invariant of informational content will disable the misapprehension regarding a possibility to increase amount of information by increasing a mirror diameter of the telescope and will prevent the scientific-and technological community from unsuccessful projects and unjustified material inputs.In the early 1990’s when design and implementation of the fourth generation of optical telescopes of a 10-meter class were under development scientists and engineers already started being engaged in problems of creating the super telescopes of the 5-th generation (25-meter and more. In recent years of the XX century when implementation of the main projects of telescopes of the fourth generation entered the finishing phase, these researches started extending and going deep. Despite the complicated problems the offers of 25-meter telescopes were followed by the avant-projects of telescopes with an aperture of 50 meters, and even 100 meters:- influence of laser radiation on design elements and propagation medium and, as consequence, the

  17. Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory

    CERN Document Server

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01

    Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

  18. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) and BLASTPol

    Science.gov (United States)

    Pascale, Enzo; Pascale

    2013-01-01

    Balloon observations from Antarctica have proven an effective and efficient way to address open Cosmological questions as well as problems in Galactic astronomy. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) is a sub-orbital mapping experiment which uses 270 bolometric detectors to image the sky in three wavebands centred at 250, 350 and 500 μm with a 1.8 m telescope. In the years before Herschel launched, BLAST provided data of unprecedented angular and spectral coverage in frequency bands close to the peak of dust emission in star forming regions in our Galaxy, and in galaxies at cosmological distances. More recently, BLASTPol was obtained by reconfiguring the BLAST focal plane as a submillimetric polarimeter to study the role that Galactic magnetic fields have in regulating the processes of star-formation. The first and successful BLASTPol flight from Antarctica in 2010 is followed by a second flight, currently scheduled for the end of 2012.

  19. Development of a large aperture Nb$_{3}$ Sn racetrack quadrupole magnet

    CERN Document Server

    Ferracin, Paolo; Caspi, Shlomo; Dietderich, D R; Gourlay, Stephen A; Hafalia, Aurelio R; Hannaford, C R; Lietzke, A F; Mattafirri, Sara; McInturff, A D; Nyman, M A; Sabbi, Gianluca

    2005-01-01

    The U.S. LHC Accelerator Research Program (LARP), a collaboration between BNL, FNAL, LBNL, and SLAC, has among its major objectives the development of advanced magnet technology for an LHC luminosity upgrade. The LBNL Superconducting Magnet Group supports this program with a broad effort involving design studies, Nb/sub 3/Sn conductor development, mechanical models, and basic prototypes. This paper describes the development of a large aperture Nb/sub 3/Sn racetrack quadrupole magnet using four racetrack coils from the LBNL Subscale Magnet (SM) Program. The magnet provides a gradient of 95 T/m in a 110 mm bore, with a peak field in the conductor of 11.2 T. The coils are pre-stressed by a mechanical structure based on a pre-tensioned aluminum shell, and axially supported with aluminum rods. The mechanical behavior has been monitored with strain gauges and the magnetic field has been measured. Results of the test are reported and analyzed.

  20. Large aperture discharge-pumped KrF laser for picosecond amplification

    CERN Document Server

    Yuan Xiao; LiuJingRu; Goldhar, J

    2002-01-01

    A large aperture discharge-pumped KrF laser module with simple spark gaps was developed. The laser beam cross section of 4 cm x 3 cm and the maximum laser output energy of 1.3J in 20ns were obtained at the charging voltage of 30 kV and gas mixtures of [F sub 2] : [Kr] : [Ne] = 0.1 : 2 : 97.9. The gain and absorption coefficients at different gas mixtures were measured with a frequency doubled dye laser pumped by a XeCl laser. Using this laser module as a ps amplifier, the output energy of 140 mJ in 10 ps was obtained

  1. Large Aperture Scintillometer Used Over A Homogeneous Irrigated Area, Partly Affected By Regional Advection

    Science.gov (United States)

    Hoedjes, J. C. B.; Zuurbier, R. M.; Watts, C. J.

    Scintillometer measurements were collected over an irrigated wheat field ina semi-arid region in northwest Mexico. Conditions were unstable in the morning andstable during the afternoon, while latent heat fluxes remained high throughout the day.Regional advection was observed during near-neutral conditions. Monin-Obukhovsimilarity relationships for the structure parameter of temperature were verified in both unstable and stable conditions, but were violated close to near-neutral conditions. We found that, using additional measurements of radiation, soil heat flux and windspeed, areally averages of both sensible and latent heat fluxes can be reliably predicted by large aperture scintillometer measurements, as long as the net radiation is greater than zero.

  2. Energy measurement system of a large-aperture high power laser experiment platform

    Institute of Scientific and Technical Information of China (English)

    Yanwen; Xia; Yue; Liang; Sen; Li; Junpu; Zhao; Zhitao; Peng; Hongguang; Li; Hua; Liu; Zhihong; Sun; Kuixing; Zheng; Xiaofeng; Wei

    2013-01-01

    An energy measurement system in a large-aperture high power laser experiment platform is introduced. The entire measurement system includes five calorimeters, which carry out the energy measurement of the fundamental frequency before the frequency conversion unit, remaining fundamental frequency, remaining second-harmonics, third-harmonics,as well as the energy balance measurement after the frequency conversion unit. Combinational indirect calibration and direct calibration are employed to calibrate the sampling coefficients of the calorimeters. The analysis of the data showed that, regarding the energy balance coefficients, combinational calibration approach gives a higher precision, and leads to an energy balance with 1%; and regarding the energy sampling coefficients for the various wavelengths after the frequency conversion, the results from direct and combinational calibration are consistent. The uncertainties for all energy sampling coefficients are within 3%, which guarantees the reliability of the energy measurement for the laser facility.

  3. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    CERN Document Server

    Soler, J D; Angilè, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Galitzki, N; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Mroczkowski, A; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Thomas, N E; Truch, M D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully flown in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  4. Terahertz Radiation from Large Aperture Bulk Semi-insulating GaAs Photoconductive Dipole Antenna

    Institute of Scientific and Technical Information of China (English)

    施卫; 贾婉丽; 侯磊; 许景周; 张希成

    2004-01-01

    We report the experimental results of a large-aperture biased semi-insulating GaAs photoconductive dipole antenna, with a gap of 3mm between two Au/Ge/Ni electrodes, triggered by 800nm Ti-sapphire laser pulses with 82 MHz repetition rate. A direct comparison is made between insulated GaAs dipole antenna with a Si3N4 layer and bare GaAs dipole antenna. Both the current in the antenna and the radiation amplitude present as linear to the exciting power when the applied voltage is fixed. The Si3N4 insulated GaAs dipole antenna can hold higher biased voltage than a normal GaAs dipole antenna; its terahertz radiation generation efficiency is significantly higher than that of a normal GaAs dipole antenna.

  5. CLASSIFIER FUSION OF HIGH-RESOLUTION OPTICAL AND SYNTHETIC APERTURE RADAR (SAR SATELLITE IMAGERY FOR CLASSIFICATION IN URBAN AREA

    Directory of Open Access Journals (Sweden)

    T. Alipour Fard

    2014-10-01

    Full Text Available This study concerned with fusion of synthetic aperture radar and optical satellite imagery. Due to the difference in the underlying sensor technology, data from synthetic aperture radar (SAR and optical sensors refer to different properties of the observed scene and it is believed that when they are fused together, they complement each other to improve the performance of a particular application. In this paper, two category of features are generate and six classifier fusion operators implemented and evaluated. Implementation results show significant improvement in the classification accuracy.

  6. 地基大口径望远镜系统结构技术综述%Overview of structure technologies of large aperture ground-based telescopes

    Institute of Scientific and Technical Information of China (English)

    张景旭

    2012-01-01

    The developing status of large aperture ground-based telescopes is reviewed in this paper.The significance of bigger apertures for telescopes and their main technological approaches are expatiated and the summary on appliance values of modern large aperture telescopes is given.Then,it introduces five kinds of modern typical large telescope systems,which represent the topmost technological level.The key structures and technologies of large telescopes about mount,telescope tubes,primary mirror supports and secondary mirror assemblies are disscussed.Finally,it summarizes the developing trends of the large aperture ground-based telescopes and points out that some of the optical systems in the telescopes have been changed from coaxial systems to off-axial systems,while they are better application prospects.%概述了地基大口径望远镜的发展状况,阐述了口径变大的意义及实现的关键技术途径。概括了当前大口径望远镜的应用价值。介绍了国外5种典型的大口径望远镜系统,它们代表了当前地基大口径望远镜发展的最高技术水平。从跟踪架、主望远镜筒、主镜支撑及次镜支撑调整几个方面论述了大口径望远镜的结构特点及关键技术。最后,总结了大口径望远镜系统的发展趋势,指出其光学系统已从同轴系统向离轴系统发展并极具应用前景。

  7. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence on the geo......Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...

  8. Challenges in optics for Extremely Large Telescope instrumentation

    Science.gov (United States)

    Spanò, P.; Zerbi, F. M.; Norrie, C. J.; Cunningham, C. R.; Strassmeier, K. G.; Bianco, A.; Blanche, P. A.; Bougoin, M.; Ghigo, M.; Hartmann, P.; Zago, L.; Atad-Ettedgui, E.; Delabre, B.; Dekker, H.; Melozzi, M.; Snÿders, B.; Takke, R.

    2006-08-01

    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60 m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide exploratory descriptions of ``old'' and ``new'' optical technologies together with suggestions to instrument designers to overcome some of the challenges placed by ELT instrumentation.

  9. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    Science.gov (United States)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  10. Large-aperture ground glass surface profile measurement using coherence scanning interferometry.

    Science.gov (United States)

    Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2017-01-23

    We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

  11. Are Large-Aperture NbTi Magnets Compatible with 1e35?

    CERN Document Server

    Wildner, E; Laface, E; Sterbini, G

    2008-01-01

    To protect magnets in the insertion region, we have some degrees of freedom to use for optimal performance. Aperture, distance from the IP, the length of the magnets and the design of absorption systems are important parameters for the optimization. We look exclusively here at the effects of the collision debris, which give the major contribution to the heat deposition in the insertion magnets. To answer the challenging question in the title of this contribution, the approach was to use the baseline upgrade scenario for phase 1 and simply imagine higher particle fluxes from the higher luminosity (no change in optics). From this, a simple approach of magnet shielding using a liner in the cold bore tube gave us the answer: NbTi technology may be compatible with a luminosity of 1035. This gives also the interesting possibility to extract heat from this liner at a higher cryogenic temperature. However the final demonstration needs a detailed model. We have also made some parameter variations (crossing angle, TAS ...

  12. Resonant bowtie aperture nano-antenna for the control of optical nanocavities resonance

    CERN Document Server

    Baida, Fadi Issam

    2015-01-01

    Scanning Near-field Optical Microscopy (SNOM) has been successful in finely tuning the optical properties of photonic crystal (PC) nanocavities. The SNOM nanoprobes proposed so far allowed for either redshifting or blueshifting the resonance peak of the PC structures. In this Letter, we theoretically demonstrate the possibility of redshifting (up to +0.65nm) and blueshifting (up to $-5$~nm) PC cavity resonance with a single SNOM probe. This probe is obtained by opening a bowtie-aperture nano-antenna (BNA) at the apex of a metal-coated tip. This double-way PC tunability is the result of a competition between the effects of the BNA resonance (induced electric dipole leading to a redshift) and the metal-coated tip (induced magnetic dipole giving rise to a blueshift) onto the PC mode volume. The sign of the spectral shift is modified by simply controlling the tip-to-PC distance. This study opens the way to the full postproduction control of the resonance wavelength of high quality factor optical cavities.

  13. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry, E-mail: thierry.grosjean@univ-fcomte.fr [Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, Département d' Optique P.M. Duffieux, 15B avenue des Montboucons, 25030 Besançon cedex (France); Nedeljkovic, Dusan [Lovalite s.a.s., 7 rue Xavier Marmier, 25000 Besançon (France); Tannous, Tony [Department of Physics, University of Balamand, P.O. Box 100 Tripoli (Lebanon)

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  14. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Science.gov (United States)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I.; Grosjean, Thierry

    2015-04-01

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of "remote" (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  15. Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould

    NARCIS (Netherlands)

    Kim, G.M.; Kim, B.J.; Have, ten E.S.; Segerink, F.; Hulst, van N.F.; Brugger, J.

    2003-01-01

    Polymers have the ability to conform to surface contours down to a few nanometres. We studied the filling of transparent epoxy-type EPON SU-8 into nanoscale apertures made in a thin metal film as a new method for polymer/metal near-field optical structures. Mould replica processes combining silicon

  16. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light

    CERN Document Server

    Byrnes, Steven J; Aieta, Francesco; Capasso, Federico

    2015-01-01

    A metasurface lens (meta-lens) is a lens that bends light with an array of nanostructures on a flat surface, rather than by refraction. Macroscopic meta-lenses (mm- to cm-scale diameter) have been quite difficult to simulate and optimize, due to the large area, the lack of periodicity, and the billions of adjustable parameters. We describe a method for designing a large-area meta-lens that allows not only prediction of the efficiency and far-field, but also optimization of the shape and position of each individual nanostructure, with a computational cost that is almost independent of the lens size. Loosely speaking, the technique consists of designing a series of metasurface beam deflectors (blazed gratings), and then gluing them together. As a test of this framework, we design some high-numerical-aperture (NA=0.94) meta-lenses for visible light, based on TiO2 nano-pillars on a glass substrate. One of our designs is predicted to focus unpolarized 580nm light with 79% predicted efficiency; another focuses 580n...

  17. The Large Aperture Gamma Ray Observatory as an Observational Alternative at High Altitude

    Science.gov (United States)

    Rosales, M.

    2011-10-01

    Although satellite observations have revealed some mysteries about the origin and location of cosmic rays at low energies, questions remain to be resolved in higher energy ranges (>1 GeV). However, the flow of particles at high energies is very low, large sensitive areas are necessary, so that the detection of secondary particles from observatories on the surface of the earth is a technically viable solution. While the Pierre Auger Observatory has such capacity given its 16000 m^2 of detectors, low height above sea level greatly reduces its detection capability. The Large Aperture Gamma Ray Observatory (LAGO) is an observational alternative that attempts to overcome this limitation. This project was started in 2005, placing water Cherenkov Detectors at high altitude. Observation sites have been selected with some basic requirements: altitude, academic and technical infrastructure, existence of a research group responsible for assembly and maintenance of the detectors and the analysis, visualization, divulgation and data storage. This paper presents the general status of the observatories of Sierra Negra-México, Chacaltaya-Bolívia, Marcapomacocha-Perú, Mérida-Venezuela and Bucaramanga-Colombia.

  18. Estimation of catchment averaged sensible heat fluxes using a large aperture scintillometer

    Directory of Open Access Journals (Sweden)

    Samain Bruno

    2012-05-01

    Full Text Available Evapotranspiration rates at the catchment scale are very difficult to quantify. One possible manner to continuously observe this variable could be the estimation of sensible heat fluxes (H across large distances (in the order of kilometers using a large aperture scintillometer (LAS, and inverting these observations into evapotranspiration rates, under the assumption that the LAS observations are representative for the entire catchment. The objective of this paper is to assess whether measured sensible heat fluxes from a LAS over a long distance (9.5 km can be assumed to be valid for a 102.3 km2 heterogeneous catchment. Therefore, a fully process-based water and energy balance model with a spatial resolution of 50 m has been thoroughly calibrated and validated for the Bellebeek catchmentin Belgium. A footprint analysis has been performed. In general, the sensible heat fluxes from the LAS compared well with the modeled sensible heat fluxes within the footprint. Moreover, as the modeled Hwithin the footprint has been found to be almost equal to the modeled catchment averaged H, it can be concluded that the scintillometer measurements over a distance of 9.5 km and an effective heightof 68 m are representative for the entire catchment.

  19. Large-area Fabry-Perot modulator based on electro-optic polymers

    DEFF Research Database (Denmark)

    Benter, Nils; Bertram, Ralph Peter; Soergel, Elisabeth

    2006-01-01

    We present a large-area electro-optic Fabry-Perot modulator utilizing a photoaddressable bis-azo polymer placed between two dielectric mirrors with an open aperture of 2 cm. A modulation efficientcy of 1% at an effective modulation voltage of 20 V for a wavelength of 1.55 mymeter is demonstrated...

  20. The ExaVolt Antenna: A Large-Aperture, Balloon-embedded Antenna for Ultra-high Energy Particle Detection

    CERN Document Server

    Gorham, P W; Allison, P; Liewer, K M; Miki, C; Hill, B; Varner, G S

    2011-01-01

    We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASA's suborbital super-pressure balloon program in Antarctica. EVA will improve over ANITA's integrated totals - the current state-of-the-art in UHE suborbital payloads - by 1-2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVA's instantaneous antenna aperture is estimated to be several hundred square meters for detection of these events...

  1. A scalable multi-chip architecture to realise large-format microshutter arrays for coded aperture applications

    Science.gov (United States)

    McNie, Mark E.; King, David O.; Smith, Gilbert W.; Stone, Steven M.; Brown, Alan G.; Gordon, Neil T.; Slinger, Christopher W.; Cannon, Kevin; Riches, Stephen; Rogers, Stanley

    2009-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously we reported on the realization of a 2x2cm single chip mask in the mid-IR based on polysilicon micro-opto-electro-mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. The MOEMS architecture employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we present the latest transmission results in the mid-IR band (3-5μm) and report on progress in developing a scalable architecture based on a tiled approach using multiple 2 x 2cm MOEMS chips with associated control ASICs integrated using flip chip technology. Initial work has focused on a 2 x 2 tiled array as a stepping stone towards an 8 x 8 array.

  2. Optical phase distortion due to turbulent-fluid density fields - Quantification using the small-aperture beam technique

    Science.gov (United States)

    Jumper, E. J.; Hugo, R. J.

    1992-07-01

    This paper discusses the small-aperture beam technique, a relatively new way of experimentally quantifying optically-active, turbulent-fluid-flow-induced optical degradation. The paper lays out the theoretical basis for the technique, and the relationship of the measured jitter of the beam to optical path difference. A numerical simulation of a two-dimensional heated jet is used to explore the validity of beam jitter to obtain optical path difference in a flow region where eddy production constitutes the major character of the 'turbulent' flow field.

  3. Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface

    NARCIS (Netherlands)

    Beyrich, F.; DeBruin, H.A.R.; Meijninger, W.M.L.; Schipper, J.W.; Lohse, H.

    2002-01-01

    A large-aperture scintillometer (LAS) was operated continuously during a period of more than one year over a heterogeneous land surface in Central Europe at the transition between marine and continental climates. The LAS measurements of the refractive index structure parameter, C N2, were used to es

  4. Validation of fluxes of an extra large aperture scintillometer at Cabauw using Sky Arrow aircraft flux measurements

    NARCIS (Netherlands)

    Moene, A.F.; Meijninger, W.M.L.; Kohsiek, W.; Gioli, B.; Miglietta, F.; Bosveld, F.C.

    2006-01-01

    An extra-large aperture scintillometer (XLAS) has been operated at the Cabauw tower for several years over a path of 9.8 kilometers, at an average height of 43 meters (Kohsiek et al., 2002). This yields a long term record of the area-averaged sensible heat flux. During the RECAB summer campaign on J

  5. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a SNOM fiber tip

    CERN Document Server

    Atie, Elie M; Eter, Ali El; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I; Grosjean, Thierry

    2015-01-01

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nano-meter scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e. in contact to the nano-structures. In these paper, We demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of 'remote' (non contact) sensing on the nano-meter scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM fiber tip, we introduce an ultra-compact, move-able and background-free optical nano-sensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nano-meter accuracy. This work paves the way towards a new class of nano-po...

  6. Ray-tracing and physical-optics analysis of the aperture efficiency in a radio telescope.

    Science.gov (United States)

    Olmi, Luca; Bolli, Pietro

    2007-07-01

    The performance of telescope systems working at microwave or visible-IR wavelengths is typically described in terms of different parameters according to the wavelength range. Most commercial ray-tracing packages have been specifically designed for use with visible-IR systems and thus, though very flexible and sophisticated, do not provide the appropriate parameters to fully describe microwave antennas and to compare with specifications. We demonstrate that the Strehl ratio is equal to the phase efficiency when the apodization factor is taken into account. The phase efficiency is the most critical contribution to the aperture efficiency of an antenna and the most difficult parameter to optimize during the telescope design. The equivalence between the Strehl ratio and the phase efficiency gives the designer/user of the telescope the opportunity to use the faster commercial ray-tracing software to optimize the design. We also discuss the results of several tests performed to check the validity of this relationship that we carried out using a ray-tracing software, ZEMAX, and a full Physical Optics software, GRASP9.3, applied to three different telescope designs that span a factor of approximately 10 in terms of D/lambda. The maximum measured discrepancy between phase efficiency and Strehl ratio varies between approximately 0.4% and 1.9% up to an offset angle of >40 beams, depending on the optical configuration, but it is always less than 0.5% where the Strehl ratio is >0.95.

  7. Measuring large optical reflection matrices of turbid media

    CERN Document Server

    Yu, Hyeonseung; Park, YongKeun

    2015-01-01

    We report the measurement of a large optical reflection matrix (RM) of a highly disordered medium. Incident optical fields onto a turbid sample are controlled by a spatial light modulator, and the corresponding fields reflected from the sample are measured using full-field Michelson interferometry. The number of modes in the measured RM is set to exceed the number of resolvable modes in the scattering media. We successfully study the subtle intrinsic correlations in the RM which agrees with the theoretical prediction by random-matrix theory when the effect of the limited numerical aperture on the eigenvalue distribution of the RM is taken into account. The possibility of the enhanced delivery of incident energy into scattering media is also examined from the eigenvalue distribution which promises efficient light therapeutic applications.

  8. APERTURE: a precise extremely large reflective telescope using re-configurable elements

    Science.gov (United States)

    Ulmer, M. P.; Coverstone, V. L.; Cao, J.; Chung, Y.-W.; Corbineau, M.-C.; Case, A.; Murchison, B.; Lorenz, C.; Luo, G.; Pekosh, J.; Sepulveda, J.; Schneider, A.; Yan, X.; Ye, S.

    2016-07-01

    One of the pressing needs for the UV-Vis is a design to allow even larger mirrors than the JWST primary at an affordable cost. We report here the results of a NASA Innovative Advanced Concepts phase 1 study. Our project is called A Precise Extremely large Reflective Telescope Using Reconfigurable Elements (APERTURE). The idea is to deploy a continuous membrane-like mirror. The mirror figure will be corrected after deployment to bring it into better or equal lambda/20 deviations from the prescribed mirror shape. The basic concept is not new. What is new is to use a different approach from the classical piezoelectric-patch technology. Instead, our concept is based on a contiguous coating of a so called magnetic smart material (MSM). After deployment a magnetic write head will move on the non-reflecting side of the mirror and will generate a magnetic field that will produce a stress in the MSM that will correct the mirror deviations from the prescribed shape.

  9. Distribution-dependent total exoplanet yield for a large aperture space telescope

    Science.gov (United States)

    Morris, Evan; Schiminovich, David

    2017-01-01

    A major scientific goal for future large aperture space telescopes is the discovery and characterization of habitable earth-like planets around FGK+M stars out to 10-20 pc. Using the design and observing plan for such a mission, we calculated the total exoplanet yield of a direct imaging survey, with detections including but not limited to potential earth analogs. In light of uncertainty of exoplanet occurrence rates, we used several of the best available exoplanetary distribution functions and assumed architectures to produce a Monte Carlo simulation of nearby planetary systems and observational parameters, and assessed detectability across the sample. Our calculations show a range of yields depending on the assumed distribution functions. We also compare our predictions to those of other detection methods in order to identify areas of parameter space (e.g. radius, period) uniquely constrained by direct imaging. In general, our calculations suggest that a higher completeness can be achieved with direct imaging, which will allow for calculation of a more accurate occurrence rate in local space.

  10. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch

    2016-05-11

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  11. Origins of high-frequency scattered waves near PKKP from large aperture seismic array data

    Science.gov (United States)

    Earle, P.S.

    2002-01-01

    This article identifies the likely origin of 1-Hz scattered waves in the vicinity of PKKP by comparing measurements of slowness and onset time to ray-theoretical predictions. The measurements are obtained from slant stacks of Large Aperture Seismic Array (LASA) data from 36 earthquakes and six explosions in the range 30??-116??. Three types of scattered waves explain the main features seen in the stacks, including: P scattered to PKP near the Earth's surface (P.PKP), PKKP scattered near its core-mantle-boundary (CMB) reflection point (PK.KP), and SKKP scattered near its CMB reflection point (SK.KP). The LASA stacks image the amplitude and slowness variations of the scattered waves with time. They also show where these waves can be detected and where they are free from contaminating arrivals. SK.KP waves rise above the noise approximately 100 sec before the onset time of the main SKKP arrival near 113??. Observations of PK.KP span 30??-100??. However, at distances greater than 50?? they suffer from P.PKP contamination. At distances less than 40?? the PK.KP last for about 280 sec. This is approximately 130 sec longer than the maximum ray-theoretical prediction for waves scattered at the CMB, indicating a possible combination of near-surface scattering and contributions from the overlying mantle.

  12. Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer.

    Science.gov (United States)

    Rambikur, Evan H; Chávez, José L

    2014-01-01

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  13. Tracking marine mammals and ships with small and large-aperture hydrophone arrays

    Science.gov (United States)

    Gassmann, Martin

    Techniques for passive acoustic tracking in all three spatial dimensions of marine mammals and ships were developed for long-term acoustic datasets recorded continuously over months using custom-designed arrays of underwater microphones (hydrophones) with spacing ranging from meters to kilometers. From the three-dimensional tracks, the acoustical properties of toothed whales and ships, such as sound intensity and directionality, were estimated as they are needed for the passive acoustic abundance estimation of toothed whales and for a quantitative description of the contribution of ships to the underwater soundscape. In addition, the tracks of the toothed whales reveal their underwater movements and demonstrate the potential of the developed tracking techniques to investigate their natural behavior and responses to sound generated by human activity, such as from ships or military SONAR. To track the periodically emitted echolocation sounds of toothed whales in an acoustically refractive environment in the upper ocean, a propagation-model based technique was developed for a hydrophone array consisting of one vertical and two L-shaped subarrays deployed from the floating instrument platform R/P FLIP. The technique is illustrated by tracking a group of five shallow-diving killer whales showing coordinated behavior. The challenge of tracking the highly directional echolocation sounds of deep-diving (whales, in particular Cuvier's beaked whales, was addressed by embedding volumetric small-aperture (≈ 1 m element spacing) arrays into a large-aperture (≈ 1 km element spacing) seafloor array to reduce the minimum number of required receivers from five to two. The capabilities of this technique are illustrated by tracking several groups of up to three individuals over time periods from 10 min to 33 min within an area of 20 km2 in the Southern California Bight. To track and measure the underwater radiated sound of ships, a frequency domain beamformer was implemented for

  14. Flexible T/R Modules for Large-Aperture, Space-Based SAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SI2 Technologies, Inc (SI2) proposes to develop membrane compatible transmit/receive (T/R) modules for flexible, space-deployable synthetic aperture radar (SAR)...

  15. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    Science.gov (United States)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~ 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  16. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    CERN Document Server

    Alexander, J P; Conolly, C; Edwards, E; Ehrlichman, M P; Flanagan, J W; Fontes, E; Heltsley, B K; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Seeley, R; Shanks, J

    2014-01-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of $10-100~\\mu$m on a turn-by-turn, bunch-by-bunch basis at $e^\\pm$ beam energies of $\\sim2-5~$GeV. X-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  17. Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams.

    Science.gov (United States)

    Gökçe, Muhsin Caner; Baykal, Yahya; Uysal, Murat

    2016-06-01

    Multiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens-Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices.

  18. BLAST-TNG: A Next Generation Balloon-borne Large Aperture Submillimeter Polarimeter

    Science.gov (United States)

    Fissel, Laura M.; Ade, Peter; Angilè, Francesco E.; Campbell Ashton, Peter; Austermann, Jason Edward; Billings, Tashalee; Che, George; Cho, Hsiao-Mei; Cunningham, Maria R.; Davis, Kristina; Devlin, Mark J.; Dicker, Simon; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; gao, jiansong; Gordon, Sam; Groppi, Christopher E.; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Jones, Paul; Klein, Jeffrey; li, dale; Li, Zhi-Yun; lourie, nathan; Lowe, Ian; Mani, Hamdi; Martin, Peter G.; Mauskopf, Philip; McKenney, Christopher; Nati, Federico; Novak, Giles; Pascale, Enzo; pisano, giampaolo; Pereira Santos, Fábio; Scott, Douglas; Sinclair, Adrian; Diego Diego Soler, Juan; tucker, carole; Underhill, Matthew; Vissers, Michael; Williams, Paul

    2017-01-01

    Measurements of polarized thermal dust emission can be used to map magnetic fields in the interstellar medium. Recently, BLASTPol, the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, has published the most detailed map ever made of a giant molecular cloud forming high-mass stars. I will present an overview of The Next Generation BLAST polarimeter (BLAST-TNG), the successor telescope to BLASTPol, which maps linearly polarized dust emission at 250, 350 and 500 μm. BLAST-TNG utilizes a 2.5-meter carbon-fiber primary mirror that illuminates focal plane arrays containing over 3,000 microwave kinetic inductance detectors. This new polarimeter has an order of magnitude increase in mapping speed and resolution compared to BLASTPol and we expect to make over 500,000 measurements of magnetic field orientation per flight. BLAST-TNG will have the sensitivity to map entire molecular cloud complexes as well as regions of diffuse high Galactic latitude dust. It also has the resolution (FWHM = 25’’ at 250 μm) necessary to trace magnetic fields in prestellar cores and dense filaments. BLAST-TNG will thus provide a crucial link between the low resolution Planck all-sky maps and the detailed but narrow field of view polarimetry capabilities of ALMA. For our first Antarctic flight in December 2017 we are putting out a call for shared-risk proposals to fill 25% of the available science time. In addition, BLAST-TNG data will be publicly released within a year of the publication of our first look papers, leaving a large legacy data set for the study of the role played by magnetic fields in the star formation process and the properties of interstellar dust.

  19. Determining suitability of Large Aperture Scintillometer for validating remote sensing based evapotranspiration maps

    Science.gov (United States)

    Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.

    2013-12-01

    Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The

  20. Experimental measurement of a time-varying optical path difference using the small-aperture beam technique

    Science.gov (United States)

    Hugo, Ronald J.; Jumper, Eric J.

    1993-12-01

    This paper discusses the use of time series of the jitter angle of multiple, small-aperture probe beams as they emerge from a turbulent, optically-active flow field to quantify the time-varying optical path difference (OPD). Techniques to reconstruct a complete time series of instantaneous realizations of the OPD are first applied to a numerically-generated flow field and then to an experimental flow field. The flow field studied was that for the transitionally- turbulent region of a heated, two-dimensional jet. From these OPD histories spatial and temporal frequencies characterizing the OPD's are extracted. The relevance of these results to adaptive-optic devices is discussed.

  1. New Aperture Partitioning Element

    Science.gov (United States)

    Griffin, S.; Calef, B.; Williams, S.

    Postprocessing in an optical system can be aided by adding an optical element to partition the pupil into a number of segments. When imaging through the atmosphere, the recorded data are blurred by temperature-induced variations in the index of refraction along the line of sight. Using speckle imaging techniques developed in the astronomy community, this blurring can be corrected to some degree. The effectiveness of these techniques is diminished by redundant baselines in the pupil. Partitioning the pupil reduces the degree of baseline redundancy, and therefore improves the quality of images that can be obtained from the system. It is possible to implement the described approach on an optical system with a segmented primary mirror, but not very practical. This is because most optical systems do not have segmented primary mirrors, and those that do have relatively low bandwidth positioning of segments due to their large mass and inertia. It is much more practical to position an active aperture partitioning element at an aft optics pupil of the optical system. This paper describes the design, implementation and testing of a new aperture partitioning element that is completely reflective and reconfigurable. The device uses four independent, annular segments that can be positioned with a high degree of accuracy without impacting optical wavefront of each segment. This mirror has been produced and is currently deployed and working on the 3.6 m telescope.

  2. Assessing Inter-Sensor Variability and Sensible Heat Flux Derivation Accuracy for a Large Aperture Scintillometer

    Directory of Open Access Journals (Sweden)

    Evan H. Rambikur

    2014-01-01

    Full Text Available The accuracy in determining sensible heat flux (H of three Kipp and Zonen large aperture scintillometers (LAS was evaluated with reference to an eddy covariance (EC system over relatively flat and uniform grassland near Timpas (CO, USA. Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  3. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres.

    Science.gov (United States)

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-12-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher.

  4. Testing of the large bore single aperture 1-meter superconducting dipoles made with phenolic inserts

    CERN Document Server

    Boschmann, H; Dubbeldam, R L; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Taylor, T M; Vanenkov, I; Weterings, W

    1998-01-01

    Two identical single aperture 1-metre superconducting dipoles have been built in collaboration with HMA Power Systems and tested at CERN. The 87.8 mm aperture magnets feature a single layer coil wound using LHC main dipole outer layer cable, phenolic spacer type collars, and a keyed two part structural iron yoke. The magnets are designed as models of the D1 separation dipole in the LHC experimental insertions, whose nominal field is 4.5 T at 4.5 K. In this report we present the test results of the two magnets at 4.3 K and 1.9 K.

  5. Towards a Network of Small Aperture Telescopes with Adaptive Optics Correction Capability

    Science.gov (United States)

    Cegarra Polo, M.; Lambert, A.

    2016-09-01

    A low cost and compact Adaptive Optics (AO) system for a small aperture telescope (Meade LX200ACF 16") has been developed at UNSW Canberra, where its performance is currently being evaluated. It is based on COTS components, with the exception of a real time control loop implemented in a Field Programmable Gate Array (FPGA), populated in a small form factor board which also includes the wavefront image sensor. A Graphical User Interface (GUI) running in an external computer connected to the FPGA imaging board provides the operator with control of different parameters of the AO system; results registration; and log of gradients, Zernike coefficients and deformable mirror voltages for later troubleshooting. The U.S. Air Force Academy Falcon Telescope Network (USAFA FTN) is an international network of moderate aperture telescopes (20 inches) that provides raw imagery to FTN partners [1]. The FTN supports general purpose use, including astronomy, satellite imaging and STEM (Science, Technology, Engineering and Mathematics) support. Currently 5 nodes are in operation, operated on-site or remotely, and more are to be commissioned over the next few years. One of the network nodes is located at UNSW Canberra (Australia), where the ground-based space surveillance team is currently using it for research in different areas of Space Situational Awareness (SSA). Some current and future SSA goals include geostationary satellite characterization through imaging modalities like polarimetry and real time image processing of Low Earth Orbit (LEO) objects. The fact that all FTN nodes have the same configuration facilitates the collaborative work between international teams of different nodes, so improvements and lessons learned at one site can be extended to the rest of nodes. With respect to this, preliminary studies of the imagery improvement that would be achieved with the AO system developed at UNSW, installed on a second 16 inch Meade LX200ACF telescope and compared to the

  6. Experimental measurement of a time-varying optical path difference by the small-aperture beam technique

    Science.gov (United States)

    Hugo, Ronald J.; Jumper, Eric J.

    1996-08-01

    We discuss the use of time series of the jitter angle of multiple, small-aperture probe beams (the small-aperture beam technique, or SABT) as they emerge from a turbulent, optically active flow-field to quantify the time-varying optical path difference (OPD). The flow field studied is that for the transitionally turbulent region of a two-dimensional heated jet. Techniques to construct a complete time series of instantaneous realizations of the OPD are first applied to a numerically generated flow field and then to an experimental flow field. The SABT sensor's measurement accuracy is assessed, and its application to flow fields that differ from the numerical heated jet is discussed.

  7. Large Optical Telescope Based on High Efficiency Thin Film Planar Diffractive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In future ground-based receivers for deep-space optical communications with spacecraft, aperture diameters of the order of 10 meters are required even with the most...

  8. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  9. Surface Water Detection Using Fused Synthetic Aperture Radar, Airborne LiDAR and Optical Imagery

    Science.gov (United States)

    Braun, A.; Irwin, K.; Beaulne, D.; Fotopoulos, G.; Lougheed, S. C.

    2016-12-01

    Each remote sensing technique has its unique set of strengths and weaknesses, but by combining techniques the classification accuracy can be increased. The goal of this project is to underline the strengths and weaknesses of Synthetic Aperture Radar (SAR), LiDAR and optical imagery data and highlight the opportunities where integration of the three data types can increase the accuracy of identifying water in a principally natural landscape. The study area is located at the Queen's University Biological Station, Ontario, Canada. TerraSAR-X (TSX) data was acquired between April and July 2016, consisting of four single polarization (HH) staring spotlight mode backscatter intensity images. Grey-level thresholding is used to extract surface water bodies, before identifying and masking zones of radar shadow and layover by using LiDAR elevation models to estimate the canopy height and applying simple geometry algorithms. The airborne LiDAR survey was conducted in June 2014, resulting in a discrete return dataset with a density of 1 point/m2. Radiometric calibration to correct for range and incidence angle is applied, before classifying the points as water or land based on corrected intensity, elevation, roughness, and intensity density. Panchromatic and multispectral (4-band) imagery from Quickbird was collected in September 2005 at spatial resolutions of 0.6m and 2.5m respectively. Pixel-based classification is applied to identify and distinguish water bodies from land. A classification system which inputs SAR-, LiDAR- and optically-derived water presence models in raster formats is developed to exploit the strengths and weaknesses of each technique. The total percentage of water detected in the sample area for SAR backscatter, LiDAR intensity, and optical imagery was 27%, 19% and 18% respectively. The output matrix of the classification system indicates that in over 72% of the study area all three methods agree on the classification. Analysis was specifically targeted

  10. Afocal three-mirror anastigmat with zigzag optical axis for widened field of view and enlarged aperture

    Science.gov (United States)

    Li, Qi; Han, Lin; Jin, Yangming; Shen, Weimin

    2016-10-01

    In order to improve the detection accuracy and range of new generation of Forward Looking Infra-Red (FLIR) system for distant targets, its optical system, which usually consists of a fore afocal telescope and rear imaging lenses, is required to has wide spectral range, large entrance pupil aperture, and wide field of view (FOV). In this paper, a new afocal Three-Mirror Anastigmat (TMA) with widened field of view and high demagnification is suggested. Its mechanical structure remains coaxial, but it has zigzag optical axis through properly and slightly decentering and tilting of the three mirrors to avoid its secondary obscuration due to the third mirror as FOV increase. Compared with conventional off-axis TMA, the suggested zigzag-axis TMA is compact, easy-alignment and low-cost. The design method and optimum result of the suggested afocal TMA is presented. Its initial structural parameters are determined with its first-order relationship and primary aberration theory. Slight and proper decentration and tilt of each mirror is leaded in optimization so that its coaxial mechanical structure is held but attainable FOV and demagnification are respectively as wide and as high as possible. As an example, a 5.5-demagnification zigzag-axis afocal TMA with a wavelength range, an entrance pupil diameter, and FOV respectively from 3μm to 12μm, of 320mm, and 2×3.2 degrees and with a real exit pupil, is designed. Its imaging quality is diffraction limited. It is suitable for fore afocal telescope of the so-called third generation FLIR.

  11. Diffraction by a small aperture in conical geometry: Application to metal coated tips used in near-field scanning optical microscopy

    CERN Document Server

    Drezet, A; Huant, S; 10.1103/PhysRevE.65.046611

    2010-01-01

    Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal. The topological properties of the diffracted field are discussed in detail and compared to those of the field diffracted through a small aperture in a flat screen, i. e. the Bethe problem. The model is applied to coated, conically tapered optical fiber tips that are used in Near-Field Scanning Optical Microscopy. It is demonstrated that such tips behave over a large portion of space like a simple combination of two effective dipoles located in the apex plane (an electric dipole and a magnetic dipole parallel to the incident fields at the apex) whose exact expressions are determined. However, the large "backward" emission in the P plane - a salient experimen...

  12. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  13. Design of high gain OPCPA for multiterawatt and petawatt class systems on large aperture LBO crystals

    Science.gov (United States)

    Pestryakov, E. V.; Petrov, V. V.; Trunov, V. I.; Frolov, S. A.; Kirpichnikov, A. V.; Bagayev, S. N.; Kokh, A. E.

    2011-02-01

    Comparative analysis of optimal scheme of non-collinear optical chirped-pulse parametric amplification of fewcycle femtosecond pulses from Ti:Sa laser in LBO and DKDP crystals pumped by picosecond pulses up to petawatt level is presented. A flexible code, based on the extended model of parametric amplification, which takes into account the large set of effects such as saturation, phase self-modulation, influence of beam divergence, thermal effects, and amplification of spontaneous emission was realized. A way of creating nearly 1 PW system based on LBO crystals with transform-limited pulse duration about 9 fs has been demonstrated. Comparison between DKDP and LBO crystal showed that the latter is much better for OPCPA petawatt system design than DKDP.

  14. A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission

    Science.gov (United States)

    Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.

    2010-01-01

    Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.

  15. Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker

    Science.gov (United States)

    Hagopian, John; Connelly, Joseph

    2011-01-01

    The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.

  16. Optimum synthetic-aperture imaging of extended astronomical objects

    NARCIS (Netherlands)

    Van der Avoort, C.; Pereira, S.F.; Braat, J.J.M.; Den Herder, J.W.

    2007-01-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demon

  17. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    Science.gov (United States)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  18. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing.

    Science.gov (United States)

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-07-27

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application.

  19. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    Directory of Open Access Journals (Sweden)

    Qianghui Zhang

    2016-07-01

    Full Text Available Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS, which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD based on Stolt interpolation. Finally, a modified TSP (MTSP is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application.

  20. Integrated opto-mechanical optimization analysis of large-aperture primary mirror's support position

    Science.gov (United States)

    Ke, Ding; Bo, Qi; Jiang, Bian

    2016-10-01

    Large mirror's support position plays a very important role in optical system's wave-front error. This paper took a Φ1.2m diameter primary mirror as an example and introduced the method of integrated opto-mechanical optimization analysis, then structure's parametric model in Proe, finite element's parametric model in Patran, structure analysis in Nastran and opto-mechanical coupling analysis in Sigfit were integrated as a fully automatic process in Isight by use of command streams and result documents produced by these soft wares. After the process was established and verified, automatic gradient searches of primary mirror's optimal support position were conducted using optimizer embedded in Isight. The optimization objective is the minimum of surface error's RMS and the optimization variables are support positions. New searches can easily be conducted repeatedly after mirror's model is modified in the structure parameter document. Because of the search process is fully automatic, manpower and computing time are greatly saved. This example also provides a good reference for problems in opto-mechanical fields.

  1. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    Science.gov (United States)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  2. Design, Fabrication and Initial Testing of a Large Bore Single Aperture 1 m Long Superconducting Dipole Made with Phenolic Inserts

    CERN Document Server

    Boschmann, H; Kirby, G A; Lucas, J; Ostojic, R; Russenschuck, Stephan; Siemko, A; Vanenkov, I; Weterings, W

    1997-01-01

    In the framework of the LHC magnet development programme, a large bore single aperture 1-meter long superconducting dipole has been built in collaboration with HOLEC. The magnet features a single layer coil wound using the LHC main dipole outer layer cable, phenolic inserts, and a keyed two part structural iron yoke. This paper presents the magnetic and mechanical design and optimisation of the magnet. We describe the coil winding and curing, and present the construction and assembly procedures. Finally we report on the mechanical behaviour during assembly and cooling, and present the magnet training behaviour.

  3. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D. [APC, CNRS et Universite Paris 7 (France); Allekotte, I. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Alvarez, C. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Asorey, H. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Barros, H. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Bertou, X. [Centro Atomico Bariloche, Instituto Balseiro (Argentina)], E-mail: bertou@cab.cnea.gov.ar; Burgoa, O. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Gomez Berisso, M. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Martinez, O. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Miranda Loza, P. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Murrieta, T.; Perez, G. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Rivera, H. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Rovero, A. [Instituto de Astronomia y Fisica del Espacio (Argentina); Saavedra, O. [Dipartimento di Fisica Generale and INFN, Torino (Italy); Salazar, H. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Tello, J.C. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Ticona Peralda, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Villasenor, L. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Instituto de Fisica y Matematicas, Universidad de Michoacan (Mexico)

    2008-09-21

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  4. Optical aperture synthesis : a comparison of techniques for wide-field interferometric imaging

    NARCIS (Netherlands)

    Van der Avoort, C.

    2006-01-01

    The research described in this thesis provides onsets for research in several areas of interest related to aperture synthesis and guidelines concerning the design of synthetic telescopes for imaging. As such, this research contributes to the improvement of instrumentation for observational astronomy

  5. Use of scanning near-field optical microscope with an aperture probe for detection of luminescent nanodiamonds

    Science.gov (United States)

    Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    The suitability of scanning near-field optical microscopy (SNOM) to image photoluminescent diamond nanoparticles with nanoscale resolution is demonstrated. Isolated diamond nanocrystals with an average size of 100 nm, containing negatively charged nitrogen-vacancy (NV-) centers, were chosen as tested material. The NV- luminescence was stimulated by continuous 532 nm laser light. Sizes of analyzed crystallites were monitored by an atomic force microscope. The lateral resolution of the order of 100 nm was reached in SNOM imaging of diamond nanoparticles using 150 nm square aperture of the probe.

  6. Parametric Transverse Patterns in Broad Aperture Lasers

    DEFF Research Database (Denmark)

    Grigorieva, E.V.; Kashchenko, S.A.; Mosekilde, Erik

    1998-01-01

    Parametrically generated optical patterns are investigated for finite and large-scale transverse aperture lasers. Standing and rotating patterns as well as periodic and chaotic pattern alternations are described in the framework of the amplitude equation formalism. Sensitive dependence...... on the geometrical size of the system is demonstrated even in the case of large-scale systems....

  7. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  8. The design, construction and testing of the optics for a 147-cm-aperture telescope

    Science.gov (United States)

    Buchroeder, R. A.; Elmore, L. H.; Shack, R. V.; Slater, P. N.

    1972-01-01

    Geodetic optics research for the Air Force Cambridge Research Laboratories (AFCRL) is described. The work consisted mainly of the fabrication of the optical components for a telescope with a 152-cm-diam (60-in.) primary mirror masked down to 147-cm-diam for use by the AFCRL for a lunar ranging experiment. Among the achievements of this contract were the following: completion of the primary and secondary mirrors for a high-quality 147-cm-diam telescope system in eight months from the start of edging the primary; manufacture and testing of a unique center mount for the primary according to an AFCRL design that allowed for a thin-edged and therefore less-massive mirror; and development of a quantitative analysis of the wire test for calculating the departure of the mirror figure from the design figure quickly and accurately after each polishing step. This analysis method in conjunction with a knowledge of polishing rates for given weights and diameters of tools, mirror, and polishing materials should considerably reduce the polishing time required for future large mirrors.

  9. Theoretical study on optical storage of the transmitted-aperture type super-RENS

    Science.gov (United States)

    Shen, Quanhong; Xu, Duanyi; Ma, Jianshe; Liu, Rong; Qi, Guosheng

    2005-09-01

    In this paper, theoretical work on the transmitted-aperture (TA) type super-RENS was introduced. Firstly, the forming of transmitted-aperture in the mask layer was studied based on laser-induced thermal model with Gauss assumption. A numerical simulation was carried out by FEMLAB. The simulation results showed that transmitted aperture would not be formed until the exposure power exceeded a threshold within a certain pulse time and vice versa. Secondly, a calculation model of electromagnetic field of TA type super-RENS disk was presented based on the three-dimensional finite-difference time-domain method (3D-FDTD) together with a vector method of Gaussian beam. Lorenz dispersive model was employed for mask layer and reflective layer. The distributions of electric field for TA type super-RENS were theoretically analyzed. Lastly, the static writing experiment for TA type Super-RENS was carried out with different power and pulse time, as well as for conventional CD-R/W. The experiment results well satisfied the simulation.

  10. Sensitivity of Large-Aperture Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights

    CERN Document Server

    Gruber, Matthew A; Hartogensis, Oscar K

    2013-01-01

    Scintillometers measure $C_n^2$ over large areas of turbulence in the atmospheric surface layer. Turbulent fluxes of heat and momentum are inferred through coupled sets of equations derived from the Monin-Obukhov similarity hypothesis. One-dimensional sensitivity functions have been produced which relate the sensitivity of heat fluxes to uncertainties in single values of beam height over homogeneous and flat terrain. Real field sites include variable topography and heterogeneous surface properties such as roughness length. We develop here the first analysis of the sensitivity of scintillometer derived sensible heat fluxes to uncertainties in spacially distributed topographic measurements. For large-aperture scintillometers and independent $u_\\star$ measurements, sensitivity is shown to be concentrated in areas near the center of the beam and where the underlying topography is closest to the beam height. Uncertainty may be greatly reduced by focusing precise topographic measurements in these areas. The new two...

  11. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.

    Science.gov (United States)

    Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2016-12-10

    By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550  μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be -3  dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100  dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.

  12. Precision Membrane Optical Shell (PMOS) Technology for Lightweight LIDAR Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision membrane optical shell (PMOS) technology is an innovative combination of 1) ultra lightweight optically smooth membrane thin films, 2) advanced mold based...

  13. Precision Membrane Optical Shell (PMOS) Technology for RF/Microwave to Lightweight LIDAR Apertures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Membrane Optical Shell Technology (MOST) is an innovative combination of 1) very low areal density (40 to 200g/m2) optically smooth (<20 nm rms), metallic coated...

  14. A 2x2 multi-chip reconfigurable MOEMS mask: a stepping stone to large format microshutter arrays for coded aperture applications

    Science.gov (United States)

    McNie, Mark E.; Brown, Alan G.; King, David O.; Smith, Gilbert W.; Gordon, Neil T.; Riches, Stephen; Rogers, Stanley

    2010-08-01

    Coded aperture imaging has been used for astronomical applications for several years. Typical implementations used a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. Recently applications have emerged in the visible and infra red bands for low cost lens-less imaging systems and system studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. Previously reported work focused on realising a 2x2cm single chip mask in the mid-IR based on polysilicon micro-optoelectro- mechanical systems (MOEMS) technology and its integration with ASIC drive electronics using conventional wire bonding. It employs interference effects to modulate incident light - achieved by tuning a large array of asymmetric Fabry-Perot optical cavities via an applied voltage and uses a hysteretic row/column scheme for addressing. In this paper we report on the latest results in the mid-IR for the single chip reconfigurable MOEMS mask, trials in scaling up to a mask based on a 2x2 multi-chip array and report on progress towards realising a large format mask comprising 44 MOEMS chips. We also explore the potential of such large, transmissive IR spatial light modulator arrays for other applications and in the current and alternative architectures.

  15. Broadband light funneling in ultrasubwavelength channels having periodic connected unfilled apertures

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, Ganapathi Subramanian; Brener, Igal; Foteinopoulou, Stavroula

    2017-08-01

    A structure for broadband light funneling comprises a two-dimensional periodic array of connected ultrasubwavelength apertures, each aperture comprising a large sub-aperture that aids in the coupling of the incoming incident light and a small sub-aperture that funnels a significant fraction of the incident light power. The structure possesses all the capabilities of prior extraordinary optical transmission platforms, yet operates nonresonantly on a distinctly different mechanism. The structure demonstrates efficient ultrabroadband funneling of optical power confined in an area as small as .about.(.lamda./500).sup.2, where optical fields are enhanced, thus exhibiting functional possibilities beyond resonant platforms.

  16. Optical very large array (OVLA) prototype telescope: status report and perspective for large mosaic mirrors

    Science.gov (United States)

    Dejonghe, Julien; Arnold, Luc; Lardiere, Olivier; Berger, Jean-Pierre; Cazale, C.; Dutertre, S.; Kohler, D.; Vernet, D.

    1998-08-01

    The OVLA will be a kilometric-size interferometric array of N equals 27 or more 1.5 m telescopes. It is expected to provide visible to infra-red snap-shot images, containing in densified pupil mode N(superscript 2) 10(superscript -4) arc-second wide resolved elements in yellow light. The prototype telescope is under construction at Observatoire de Haute Provence and will be connected in 2000 to the GI2T, Grand Interferometre a 2 Telescopes, thus upgraded to a GI3T. The prototype telescope has a spherical mount, well suited for multi- aperture interferometric work, and a thin active 1.5 m f/1.7 mirror weighting only 180 kg with the active cell. This meniscus-shaped mirror, made of low-cost ordinary window glass, is only 24 mm thick and supported by 32 actuators. We describe the telescope optical concept with emphasis on opto-mechanical aspects and the test results of the active optics system. We also discuss the application of this mirror concept to large mosaic mirrors of moderate cost.

  17. Cryogenic Piezo Actuators for Lightweight, Large Aperture, Deployable Membrane Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric actuators are proposed to enable large stroke, high precision, shape control for cryogenic lightweight deployable membrane mirror...

  18. Design, development and performance characteristics of a large aperture disc amplifier for high power Nd: Glass laser chain

    Indian Academy of Sciences (India)

    M P Kamath; P K Tripathi; A P Kulkarni; R Chandra; A S Joshi; C P Navathe; P D Gupta

    2008-08-01

    A large aperture disc amplifier has been designed, set-up and characterized for its performance on small signal gain, spatial variation of gain, and thermal recovery time. This amplifier, consisting of three elliptical Nd: phosphate glass discs of size 214 × 114 × 20 mm mounted at Brewster angle and pumped by ten xenon filled flash lamps of 600 mm arc length, provided a small signal gain of 6 at electrical pump energy of 36 kJ (in a pulse of 450 s) using an in-house developed dual-polarity capacitor bank based power supply. It was coupled to a high power Nd: phosphate glass laser chain and a maximum output pulse energy exceeding 100 J in a 1·5 ns (FWHM) pulse has been measured. A dry nitrogen gas based cooling system was developed for cooling the glass discs with a thermal recovery time of ∼ 20 minutes.

  19. The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry-BLASTPol: Performance and results from the 2012 Antarctic flight

    CERN Document Server

    Galitzki, N; Angilé, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Soler, J D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment, designed to study the role played by magnetic fields in the star formation process. BLASTPol observes polarized light using a total power instrument, photolithographic polarizing grids, and an achromatic half-wave plate to modulate the polarization signal. During its second flight from Antarctica in December 2012, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands, centered at 250, 350, and 500 microns. The instrumental performance was an improvement over the 2010 BLASTPol flight, with decreased systematics resulting in a higher number of confirmed polarization vectors. The resultant dataset allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes.

  20. The study on servo-control system in the large aperture telescope

    Science.gov (United States)

    Hu, Wei; Zhenchao, Zhang; Daxing, Wang

    2008-08-01

    Large astronomical telescope or extremely enormous astronomical telescope servo tracking technique will be one of crucial technology that must be solved in researching and manufacturing. To control technique feature of large astronomical telescope or extremely enormous astronomical telescope, this paper design a sort of large astronomical telescope servo tracking control system. This system composes a principal and subordinate distributed control system, host computer sends steering instruction and receive slave computer functional mode, slave computer accomplish control algorithm and execute real-time control. Large astronomical telescope servo control use direct drive machine, and adopt DSP technology to complete direct torque control algorithm, Such design can not only increase control system performance, but also greatly reduced volume and costs of control system, which has a significant occurrence. The system design scheme can be proved reasonably by calculating and simulating. This system can be applied to large astronomical telescope.

  1. Output characteristics of misaligned resonator for large-aperture thin disk laser%大口径薄片激光器失调输出特性

    Institute of Scientific and Technical Information of China (English)

    朱海涛; 冯国英; 阴明; 高翔; 杨火木; 张凯; 陈念江; 周寿桓

    2011-01-01

    The output characteristics of misaligned resonator for large-aperture thin disk laser have been studied experimentally and theoretically. A plane output coupler S1 . a concave mirror S2 and an aperture stop are arranged to define the V-shape resonator. The misalignment sensitivities of the output power are given by means of matrix optics and the misalignment diffraction integral equation. The misalignment effects of the resonator having a variable aperture stop diameter on output power and beam quality have been measured by tilt -angle measurement technique at 200 Hz pump frequency, as well as the output power relationship with the misalignments of mirror S1 and mirror S2 at 300 Hz pump frequency. The experimental results show that the output power is a quadratic function of the tilt angle, the misalignment tolerance is directly proportional to mirror diameter and the beam quality factor decreases as the tilt angle increases.%对大口径的薄片激光器的失调输出特性进行了理论和实验研究,V-型腔由平而输出耦合镜和凹面反射镜及孔径光阑组成.基于矩阵光学和失调衍射积分方程得到了激光器的功率失调曲线.实验测量了在200Hz泵浦频率下加入不同孔径光阑后谐振腔失调对输出功率的影响和谐振腔失调对光束质量的影响,以及在300Hz泵浦频率下输出功率分别与平面输出耦合镜和凹面反射镜失调的关系.实验结果表明:失调输出功率和失调角度成二次函数关系,失调容限和腔镜口径成正比,光束质量因子随失调角度的增大而变小.

  2. Application of Multifractal Analysis to Segmentation of Water Bodies in Optical and Synthetic Aperture Radar Satellite Images

    CERN Document Server

    Martin, Victor Manuel San

    2016-01-01

    A method for segmenting water bodies in optical and synthetic aperture radar (SAR) satellite images is proposed. It makes use of the textural features of the different regions in the image for segmentation. The method consists in a multiscale analysis of the images, which allows us to study the images regularity both, locally and globally. As results of the analysis, coarse multifractal spectra of studied images and a group of images that associates each position (pixel) with its corresponding value of local regularity (or singularity) spectrum are obtained. Thresholds are then applied to the multifractal spectra of the images for the classification. These thresholds are selected after studying the characteristics of the spectra under the assumption that water bodies have larger local regularity than other soil types. Classifications obtained by the multifractal method are compared quantitatively with those obtained by neural networks trained to classify the pixels of the images in covered against uncovered b...

  3. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    Science.gov (United States)

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  4. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    Science.gov (United States)

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  5. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    Science.gov (United States)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  6. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    Science.gov (United States)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  7. New paradigm for rapid production of large precision optics: frozen membrane mirror technology

    Science.gov (United States)

    Lieber, Mike; Kendrick, Stephen; Lipscy, Sarah; Ebbets, Dennis; Acton, Scott; Knight, Scott

    2013-09-01

    Traditional mirror manufacturing, particularly for astronomical purposes, requires substantial lead time, due to the nature of the materials and the grinding/polishing process. We propose a new technique for rapid, low-cost production of large, lightweight precision optics by fusing several technologies which in combination we call frozen membrane mirror technology (FMMT). FMMT combines well-understood subsystem technologies, including electrostatic control of membrane mirrors, adaptive optics, wavefront sensing and control, and inflatable structures technology to shorten production time. The basic technique is to control the surface of a reflective coated membrane mirror with electrostatic actuation and wavefront sensor feedback and freeze the membrane shape. We discuss the details of the concept and present results of early lab testing. We focus on the optical regime, but this technology has applicability from the microwave to x-ray spectral bands. Starting with a flexible membrane mirror, one can envision techniques for deployment of large apertures in space.

  8. Optical encryption for large-sized images

    Science.gov (United States)

    Sanpei, Takuho; Shimobaba, Tomoyoshi; Kakue, Takashi; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Hasegawa, Satoki; Nagahama, Yuki; Sano, Marie; Oikawa, Minoru; Sugie, Takashige; Ito, Tomoyoshi

    2016-02-01

    We propose an optical encryption framework that can encrypt and decrypt large-sized images beyond the size of the encrypted image using our two methods: random phase-free method and scaled diffraction. In order to record the entire image information on the encrypted image, the large-sized images require the random phase to widely diffuse the object light over the encrypted image; however, the random phase gives rise to the speckle noise on the decrypted images, and it may be difficult to recognize the decrypted images. In order to reduce the speckle noise, we apply our random phase-free method to the framework. In addition, we employ scaled diffraction that calculates light propagation between planes with different sizes by changing the sampling rates.

  9. Large aperture cube corner interferometer with a resolution of 0.001 cm(-1).

    Science.gov (United States)

    Kauppinen, J; Horneman, V M

    1991-06-20

    The interferometer of the Fourier transform spectrometer at the University of Oulu has been modified so that the maximum instrumental resolution is better than 10(-3) cm(-1). The resolution of the previous interferometer was 4.5 x 10(-3) cm(-1). The present interferometer consists of large cube corner mirrors and a large Mylar beam splitter. Each corner mirror has been made with three flat mirrors on an adjustable supporting frame. The interferometer was already in practical use in 1985. The first spectra (H(2)O, CO(2), N(2)O, OCS) recorded on this interferometer have been presented in HANDBOOK OF INFRARED STANDARDS WITH SPECTRAL MAPS AND TRANSITION ASSIGNMENTS BETWEEN 3 AND 2600 microm, G. Guelachvili and K. Narahari Rao, Eds. (Academic, New York, 1986).

  10. OPTICAL FIBRE WITH HIGH NUMERICAL APERTURE, METHOD OF ITS PRODUCTION, AND USE THEREOF

    DEFF Research Database (Denmark)

    2003-01-01

    An article comprising an optical fibre, the fibre comprising at least one core surrounded by a first outer cladding region, the first outer cladding region being surrounded by a second outer cladding region, the first outer cladding region in the cross-section comprising a number of first outer...... an optical wavelength of light guided through the fibre when in use; a method of its production, and use thereof...

  11. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip.

    Science.gov (United States)

    El Eter, Ali; Hameed, Nyha M; Baida, Fadi I; Salut, Roland; Filiatre, Claudine; Nedeljkovic, Dusan; Atie, Elie; Bole, Samuel; Grosjean, Thierry

    2014-04-21

    We propose a new concept of fiber-integrated optical nano-tweezer on the basis of a single bowtie-aperture nano-antenna (BNA) fabricated at the apex of a metal-coated SNOM tip. We demonstrate 3D optical trapping of 0.5 micrometer latex beads with input power which does not exceed 1 mW. Optical forces induced by the BNA on tip are then analyzed numerically. They are found to be 10(3) times larger than the optical forces of a circular aperture of the same area. Such a fiber nanostructure provides a new path for manipulating nano-objects in a compact, flexible and versatile architecture and should thus open promising perspectives in physical, chemical and biomedical domains.

  12. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J

    2003-11-26

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method is shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro

  13. Sensitivity of large-aperture scintillometer measurements of area-average heat fluxes to uncertainties in topographic heights

    Directory of Open Access Journals (Sweden)

    M. A. Gruber

    2014-01-01

    Full Text Available Scintillometer measurements allow for estimations of the refractive index structure parameter Cn2 over large areas in the atmospheric surface layer. Turbulent fluxes of heat and momentum are inferred through coupled sets of equations derived from the Monin–Obukhov similarity hypothesis. One-dimensional sensitivity functions have been produced that relate the sensitivity of heat fluxes to uncertainties in single values of beam height over homogeneous and flat terrain. However, real field sites include variable topography and heterogeneous surfaces. We develop here the first analysis of the sensitivity of scintillometer derived sensible heat fluxes to uncertainties in spatially distributed topographic measurements. For large-aperture scintillometers and independent friction velocity u* measurements, sensitivity is shown to be concentrated in areas near the center of the beam path and where the underlying topography is closest to the beam height. Uncertainty may be greatly reduced by focusing precise topographic measurements in these areas. A new two-dimensional variable terrain sensitivity function is developed for quantitative error analysis. This function is compared with the previous one-dimensional sensitivity function for the same measurement strategy over flat and homogeneous terrain. Additionally, a new method of solution to the set of coupled equations is produced that eliminates computational error. The results are produced using a new methodology for error analysis involving distributed parameters that may be applied in other disciplines.

  14. Wavefront alignment research of segmented mirror synthetic aperture optical (SAO) system

    Science.gov (United States)

    Deng, Jian; An, Xiaoqiang; Tian, Hao

    2010-05-01

    Wavefront control technology and imaging experiment are introduced for a segmented mirror SAO system with deformable sub-mirrors. This system is a RC style with 300mm aperture, 4.5 F#, +/-0.4°FOV, 0.45~0.75μm wave band, and diffraction-limit design MTF. The primary mirror is composed by three sub-mirrors, with parabolic shape, and each deformable sub-mirror has 19 actuators to control and keep the surface shape, and 5 actuators to align sub-mirrors location in 5 degree of freedom. Interferometer is used to feed back and control exit wavefront error, and base on measurement and finite element analysis, location and quanitity of actuators are optimized, making the surface shape and misadjustment errors interact and compensate each other, and the synthetic system exit pupil wavefront error is controlled. The integrated exit pupil wavefront errors are gotten by ZYGO interferometer, and central FOV is 0.077λRMS, and edge FOV is 0.093λRMS. At the end, an imaging experiment is executed, and good results are obtained, which proves, the deformable sub-mirrors have the ability to meliorate alignment and the latter can retroact the former, and this relationship iterate make system exit pupil wavefront error convergence and improve segmented mirror SAO system imaging ability.

  15. Active optics in Large Synoptic Survey Telescope

    Science.gov (United States)

    Liang, Ming; Krabbendam, Victor; Claver, Charles F.; Chandrasekharan, Srinivasan; Xin, Bo

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) has a 3.5º field of view and F/1.2 focus that makes the performance quite sensitive to the perturbations of misalignments and mirror surface deformations. In order to maintain the image quality, LSST has an active optics system (AOS) to measure and correct those perturbations in a closed loop. The perturbed wavefront errors are measured by the wavefront sensors (WFS) located at the four corners of the focal plane. The perturbations are solved by the non-linear least square algorithm by minimizing the rms variation of the measured and baseline designed wavefront errors. Then the correction is realized by applying the inverse of the perturbations to the optical system. In this paper, we will describe the correction processing in the LSST AOS. We also will discuss the application of the algorithm, the properties of the sensitivity matrix and the stabilities of the correction. A simulation model, using ZEMAX as a ray tracing engine and MATLAB as an analysis platform, is set up to simulate the testing and correction loop of the LSST AOS. Several simulation examples and results are presented.

  16. Determination of area averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment

    NARCIS (Netherlands)

    Meijninger, W.M.L.; Green, A.E.; Hartogensis, O.K.; Kohsiek, W.; Hoedjes, J.C.B.; Zuurbier, R.M.; DeBruin, H.A.R.

    2002-01-01

    A large aperture scintillometer (LAS) and radio wave scintillometer (RWS) were installed over a heterogeneous area to test the applicability of the scintillation method. The heterogeneity in the area, which consisted of many plots, was mainly caused by differences in thermal properties of the crops;

  17. Comparison of large aperture scintillometer and eddy covariance measurements: Can thermal infrared data be used to capture footprint-induced differences?

    NARCIS (Netherlands)

    Hoedjes, J.C.B.; Chehbouni, A.; Ezzahar, J.; Escadafal, R.; Bruin, de H.A.R.

    2007-01-01

    Eddy covariance (EC) and large aperture scintillometer (LAS) measurements were collected over an irrigated olive orchard near Marrakech, Morocco. The tall, sparse vegetation in the experimental site was relatively homogeneous, but during irrigation events spatial variability in soil humidity was lar

  18. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    Science.gov (United States)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  19. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  20. Land cover classification accuracy from electro-optical, X, C, and L-band Synthetic Aperture Radar data fusion

    Science.gov (United States)

    Hammann, Mark Gregory

    The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted

  1. Large optical field enhancement for nanotips with large opening angles

    Science.gov (United States)

    Thomas, Sebastian; Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter

    2015-06-01

    We theoretically investigate the dependence of the enhancement of optical near-fields at nanometric tips on the shape, size, and material of the tip. We confirm the strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a surprisingly strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature ≥slant 5 nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ∼ 35 for Au and ∼ 12 for W for large opening angles. We confirm this strong dependence on the opening angle for many other materials featuring a wide variety in their dielectric response. For dielectrics, the opening angle dependence is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement and shifts the maximum field enhancement to smaller opening angles.

  2. Spaceborne Microwave Instrument for High Resolution Remote Sensing of the Earth's Surface Using a Large-Aperture Mesh Antenna

    Science.gov (United States)

    Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.

    2001-01-01

    This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.

  3. Seasonal variability of turbulent fluxes over a vegetated subtropical coastal wetland measured by large aperture scintillometry and eddy covariance

    Science.gov (United States)

    Guyot, Adrien; Gray, Michael; Riesenkamp, Michiel; Lockington, David; McGowan, Hamish

    2016-04-01

    Subtropical coastal wetlands are particularly susceptible to the impacts of climate variability: their recharge rates strongly depend on rainfall, and the occurrence of prolonged droughts or wet periods have direct consequences for wetland health and bio-diversity. There is therefore a need to close the water budget of these ecosystems and this requires the quantification of rates of evaporation/evapotranspiration. However, few studies have documented land-atmosphere exchanges over wetlands for which water level varies considerably during a typical annual cycle. Here, we present a year of turbulent flux observations over a wetland on the subtropical coast of eastern Australia. Large Aperture Scintillometry and Eddy Covariance are used to derive sensible heat fluxes. Latent heat fluxes are also derived through an energy balance for both instruments' observations and also directly through Eddy Covariance. Careful sensitivity analysis of the instrumental footprints, seasonal variations of land surface parameters such as roughness length and displacement height are examined and subsequent uncertainties in the derived turbulent fluxes are discussed. Finally we show how these observations can also help better understand hydrological processes at the catchment scale.

  4. CONSTRUCTION METHOD FOR LARGE-APERTURE DEWATERING WELL SEALING%大孔降水井封井工法

    Institute of Scientific and Technical Information of China (English)

    刘勇; 顾冠忠

    2012-01-01

    目前大压力水的降水井封闭一般由专业队伍施工,费用较高.采用大孔降水井封井工法,利用千斤顶压住地下水,用膨胀橡胶止水条填塞钢板与井管间的缝隙,再焊接钢板与导管的横缝,将地下水封在井下.该做法简便易行,经济实用.%At present, sealing of high-pressure dewatering well is usually carried out by professionals and the construction cost is high. Large -aperture dewatering well sealing method could successfully seal the groundwater in well by using jack to press down the groundwater and expansion rubber strip to fill the clearance between steel sheet and well tube before welding the cross joint between steel sheet and pipeline. This is a simple, economic, practical and feasible method.

  5. Nonlinear optics and spectroscopy at the nanoscale with a hollow-pyramid aperture SNOM

    Energy Technology Data Exchange (ETDEWEB)

    Biagioni, P [Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Celebrano, M [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Polli, D [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Labardi, M [PolyLab CNR-INFM, largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Zavelani-Rossi, M [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy); Duo, L [Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2007-03-15

    We report on a novel near-field microscope in which ultrashort laser pulses are coupled into hollow-pyramid cantilever probes. The high throughput, absence of polarization pinning and absence of chirping, which are premium features of such probes, enable obtaining sufficient peak power in the near-field to perform nonlinear optical experiments. We show experimental results on second-harmonic generation from metal nanostructures and two-photon excitation of fluorescent conjugated polymers on the subwavelength scale.

  6. KAPAO: A Natural Guide Star Adaptive Optics System for Small Aperture Telescopes

    Science.gov (United States)

    Severson, Scott A.; Choi, P. I.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Morrison, W. A.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The system will offer simultaneous dual-band, diffraction-limited imaging at visible and near-infrared wavelengths and will deliver an order-of-magnitude improvement in point source sensitivity and angular resolution relative to the current TMO seeing limits. We have adopted off-the-shelf core hardware components to ensure reliability, minimize costs and encourage replication efforts. These components include a MEMS deformable mirror, a Shack-Hartmann wavefront sensor and a piezo-electric tip-tilt mirror. We present: project motivation, goals and milestones; the instrument optical design; the instrument opto-mechanical design and tolerances; and an overview of KAPAO Alpha, our on-the-sky testbed using off-the-shelf optics. Beyond the expanded scientific capabilities enabled by AO-enhanced resolution and sensitivity, the interdisciplinary nature of the instrument development effort provides an exceptional opportunity to train a broad range of undergraduate STEM students in AO technologies and techniques. The breadth of our collaboration, which includes both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges) undergraduate institutions has enabled us to engage students ranging from physics, astronomy, engineering and computer science in the all stages of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  7. KAPAO-Alpha: An On-The-Sky Testbed for Adaptive Optics on Small Aperture Telescopes

    Science.gov (United States)

    Morrison, Will; Choi, P. I.; Severson, S. A.; Spjut, E.; Contreras, D. S.; Gilbreth, B. N.; McGonigle, L. P.; Rudy, A. R.; Xue, A.; Baranec, C.; Riddle, R.

    2012-05-01

    We present initial in-lab and on-sky results of a natural guide star adaptive optics instrument, KAPAO-Alpha, being deployed on Pomona College’s 1-meter telescope at Table Mountain Observatory. The instrument is an engineering prototype designed to help us identify and solve design and integration issues before building KAPAO, a low-cost, dual-band, natural guide star AO system currently in active development and scheduled for first light in 2013. The Alpha system operates at visible wavelengths, employs Shack-Hartmann wavefront sensing, and is assembled entirely from commercially available components that include: off-the-shelf optics, a 140-actuator BMC deformable mirror, a high speed SciMeasure Lil’ Joe camera, and an EMCCD for science image acquisition. Wavefront reconstruction operating at 1-kHz speeds is handled with a consumer-grade computer running custom software adopted from the Robo-AO project. The assembly and integration of the Alpha instrument has been undertaken as a Pomona College undergraduate thesis. As part of the larger KAPAO project, it is supported by the National Science Foundation under Grant No. 0960343.

  8. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    Science.gov (United States)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  9. Micro-lensed single-mode optical fiber with high numerical aperture

    CERN Document Server

    Kato, Shinya; Aoki, Takao

    2013-01-01

    We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemispherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62\\lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29\\lambda for \\lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.

  10. Sub-nanometer interferometry and precision turning for large optical fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  11. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem

    Directory of Open Access Journals (Sweden)

    S. M. Liu

    2011-04-01

    Full Text Available We analyzed the seasonal variations of energy balance components over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy balance components were measured using eddy covariance (EC systems and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site and discussed the differences between the sensible heat fluxes measured with EC and LAS at AR. The results show that the main EC source areas were within a radius of 250 m at all of the sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed with the season at each site, and there were characteristic seasonal variations in the energy balance components at all of the sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the so-called energy imbalance phenomenon, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  12. Surface error modeling of mounted large optics in high power laser system

    Science.gov (United States)

    Wang, Hui; Xiong, Zhao; Yuan, Xiaodong

    2016-10-01

    The surface form of mounted large optics has a very important impact on the laser beam performance in high power laser system. To make the surface form to the minimized distortion and keep with the design specifications is always a difficult challenge in China's SG-III laser system which is made up of thousands meter-sized large optical units and requires to focus all 48 laser beams into nearly 600 μm-diameter spot better than 50 μm (RMS) within a few picoseconds. In this paper, a methodology integrated both 3D finite elements modeling method and nanometer-level precision metrology is proposed to evaluate the surface performance. According to various spatial frequencies, the wavefront characters of large aperture optical component are measured and provided to analyze its mounted surface characters. Assembly and mounting process will be adjusted to meet for the surface wavefront requirements both of with the data both of measured when pre-alignment and predicted for installation. By a case study of large transport mirror, the proposed approach has shown a good performance on obtaining precise surface features and guiding the optical mounting.

  13. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  14. Holographically Correcting Synthetic Aperture Aberrations.

    Science.gov (United States)

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  15. Assessment of large aperture scintillometry for large-area surface energy fluxes over an irrigated cropland in north India

    Indian Academy of Sciences (India)

    Abhishek Danodia; V K Sehgal; N R Patel; R Dhakar; J Mukherjee; S K Saha; A Senthil Kumar

    2017-07-01

    Amount of available net energy and its partitioning into sensible, latent and soil heat fluxes over an agricultural landscape are critical to improve estimation of evapotranspiration and modelling parse (ecosystem modelling, hydrological and meteorological modelling). Scintillometry is a peculiar and robust methodology to provide structure parameter of refractive index and energy balance. Scintillometer has proven for assessment of sensible and latent heat flux, which is based on the principle of Monin–Obukhov similarity theory. Scintillometer has been installed in the agricultural experimental farm of ICAR-Indian Agricultural Research Institute, New Delhi, with a spatial covering path length of 990 m of irrigated and cultivable agricultural landscape. This paper discusses the patterns of energy flux as diurnal and seasonal basis at scintillometer path which was mainly covered by maize in Kharif and wheat in Rabi season during a crop growing seasons of 2014–2015. The biophysical parameters (leaf area, soil moisture, crop height) were recorded at a temporal resolution of fortnight basis along the path length at usual sampling distance. The Bowen ratio value for both Kharif and Rabi season was 0.76 and 0.88, respectively by scintillometer. Leaf area index had a significantly positive correlation with latent heat flux ($R^{2} =0.80$) while a significantly negative correlation with sensible heat flux ($R^{2}{=}-0.79$). Soil moisture had a significant negative correlation with sensible heat flux ($R^{2}{=}-0.68$). The average evapotranspiration from crop land was 1.58 mm d−1 and total evapotranspiration was 543 mm over the 12 months study period. This study defines that large aperture scintillometer is robust instrument which can evaluate energy flux over a large area with a long term series time domain. Moreover, further studied should be conducted to use in crop simulation modelling, developing of new model with calibration and validation of remote sensing

  16. Estimating Evapotranspiration over Heterogeneously Vegetated Surfaces using Large Aperture Scintillometer, LiDAR, and Airborne Multispectral Imagery

    Science.gov (United States)

    Geli, H. M.; Neale, C. M.; Pack, R. T.; Watts, D. R.; Osterberg, J.

    2011-12-01

    Estimates of evapotranspiration (ET) over heterogeneous areas is challenging especially in water-limited sparsely vegetated environments. New techniques such as airborne full-waveform LiDAR (Light Detection and Ranging) and high resolution multispectral and thermal imagery can provide enough detail of sparse canopies to improve energy balance model estimations as well as footprint analysis of scintillometer data. The objectives of this study were to estimate ET over such areas and develop methodologies for the use of these airborne data technologies. Because of the associated heterogeneity, this study was conducted over the Cibola National wildlife refuge, southern California on an area dominated with tamarisk (salt cedar) forest (90%) interspersed with arrowweed and bare soil (10%). A set of two large aperture scintillometers (LASs) were deployed over the area to provide estimates of sensible heat flux (HLAS). The LASs were distributed over the area in a way that allowed capturing different surface spatial heterogeneity. Bowen ratio systems were used to provide hydrometeorological variables and surface energy balance fluxes (SEBF) (i.e. Rn, G, H, and LE) measurements. Scintillometer-based estimates of HLAS were improved by considering the effect of the corresponding 3D footprint and the associated displacement height (d) and the roughness length (z0) following Geli et al. (2011). The LiDAR data were acquired using the LASSI Lidar developed at Utah State University (USU). The data was used to obtain 1-m spatial resolution DEM's and vegetation canopy height to improve the HLAS estimates. The BR measurements of Rn and G were combined with LAS estimates, HLAS, to provide estimates of LELASas a residual of the energy balance equation. A thermal remote sensing model namely the two source energy balance (TSEB) of Norman et al. (1995) was applied to provide spatial estimates of SEBF. Four airborne images at 1-4 meter spatial resolution acquired using the USU airborne

  17. Research progress of large optics in the TMT MOBIE

    Science.gov (United States)

    Liu, Shijie; Xu, Longbo; Zhou, You; Zhang, Weili; Lu, Qi; Gao, Wenlan; Wang, Jianguo; Wei, Zhaoyang; Xu, Xueke; He, Hongbo; Shao, Jianda

    2016-10-01

    The multi-object broadband imaging echellette (MOBIE) is the seeing-limited, visible-wavelength imaging multi-object spectrograph (MOS) planned for first-light use on the thirty meter telescope (TMT). The current MOBIE optical design provides two color channels, spanning the 310nm-550nm and 550nm-1000nm passbands. The involved large optics includes an atmospheric dispersion corrector (ADC) prism (1.4m in diameter), a collimator (1.7mx1.0m), a dichroic(680 mm x500 mm x 30 mm), a red folding mirror and two corrector lenses(570mm in diameter) for different channels. In the past two years, Shanghai Institute of Optics and Fine Mechanics (SIOM) has been included in the preliminary study of folding mirror sub-system in MOBIE, especially the study on the large optics manufacture techniques. The research progress of these large optics will be reviewed in this paper. The influence of optical quality of the large optics on the MOBIE is analyzed in order to define the specifications of the large optics. The manufacture methods are designed for different large optics. In order to testify the effectiveness of the manufacture methods, some samples have been processed and the final performance including wavefront error and spectral properties are tested. Finally, the future work including remaining problems and possible solutions are introduced.

  18. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors.

    Science.gov (United States)

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei

    2016-01-01

    Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.

  19. Alternatives for Ground-Based, Large-Aperture Optical Space Surveillance Systems

    Science.gov (United States)

    2013-09-01

    developed and curved to match the radius of the focal surface. The net result is a unique, complex and expensive camera that cannot easily be...partly depends upon the observation strategy [23]. To detect moving targets and reject image artifacts such as cosmic ray hits, a minimum of three

  20. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    Science.gov (United States)

    Kojima, A.; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K.; Yamano, Y.; Grisham, L. R.

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  1. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A., E-mail: kojima.atsushi@jaea.go.jp; Hanada, M.; Tobari, H.; Nishikiori, R.; Hiratsuka, J.; Kashiwagi, M.; Umeda, N.; Yoshida, M.; Ichikawa, M.; Watanabe, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Yamano, Y. [Saitama University, Saitama, Saitama-ken 338-8570 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-02-15

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  2. Development of design technique for vacuum insulation in large size multi-aperture multi-grid accelerator for nuclear fusion.

    Science.gov (United States)

    Kojima, A; Hanada, M; Tobari, H; Nishikiori, R; Hiratsuka, J; Kashiwagi, M; Umeda, N; Yoshida, M; Ichikawa, M; Watanabe, K; Yamano, Y; Grisham, L R

    2016-02-01

    Design techniques for the vacuum insulation have been developed in order to realize a reliable voltage holding capability of multi-aperture multi-grid (MAMuG) accelerators for fusion application. In this method, the nested multi-stage configuration of the MAMuG accelerator can be uniquely designed to satisfy the target voltage within given boundary conditions. The evaluation of the voltage holding capabilities of each acceleration stages was based on the previous experimental results about the area effect and the multi-aperture effect. Since the multi-grid effect was found to be the extension of the area effect by the total facing area this time, the total voltage holding capability of the multi-stage can be estimated from that per single stage by assuming the stage with the highest electric field, the total facing area, and the total apertures. By applying these consideration, the analysis on the 3-stage MAMuG accelerator for JT-60SA agreed well with the past gap-scan experiments with an accuracy of less than 10% variation, which demonstrated the high reliability to design MAMuG accelerators and also multi-stage high voltage bushings.

  3. APT: Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ

    2012-08-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It has a graphical user interface (GUI) which allows the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. Mouse-clicking on a source in the displayed image draws a circular or elliptical aperture and sky annulus around the source and computes the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs, including image histogram, and aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has functions for customizing calculations, including outlier rejection, pixel “picking” and “zapping,” and a selection of source and sky models. The radial-profile-interpolation source model, accessed via the radial-profile-plot panel, allows recovery of source intensity from pixels with missing data and can be especially beneficial in crowded fields.

  4. Large optical field enhancement for nanotips with large opening angles

    CERN Document Server

    Thomas, Sebastian; Lemell, Christoph; Burgdörfer, Joachim; Hommelhoff, Peter

    2014-01-01

    We theoretically investigate optical near-fields at nanometric tips. We systematically study the dependence of field enhancement on the shape, size, and material of the tip. We confirm a strong dependence of the field enhancement factor on the radius of curvature. In addition, we find a remarkably strong increase of field enhancement with increasing opening angle of the nanotips. For gold and tungsten nanotips in the experimentally relevant parameter range (radius of curvature $\\geq 5\\,$nm at 800 nm laser wavelength), we obtain field enhancement factors of up to ${\\sim}35$ (Au) and ${\\sim}12$ (W) for wide opening angles. We confirm this strong dependence on the opening angle for many other materials studying the dependence of the field enhancement at nanotips on the dielectric response function. For dielectrics, the increase in field enhancement is traced back to the electrostatic force of the induced surface charge at the tip shank. For metals, the plasmonic response strongly increases the field enhancement ...

  5. GSMT Education: Teaching about Adaptive Optics and Site Selection Using Extremely Large Telescopes

    Science.gov (United States)

    Sparks, R. T.; Pompea, S. M.

    2010-08-01

    Giant Segmented Mirror Telescopes (GSMT) represents the next generation of extremely large telescopes (ELT). Currently there are three active ELT projects, all established as international partnerships to build telescopes of greater than 20 meters aperture. Two of these have major participation by U.S. institutions: the Giant Magellan Telescope and the Thirty Meter Telescope. The ESO-ELT is under development by the European Southern Observatory and other European institutions. We have developed educational activities to accompany the design phase of these projects. The current activities focus on challenges faced in the design and site selection of a large telescope. The first module is on site selection. This online module is based on the successful Astronomy Village program model. Students evaluate several potential sites to decide where to build the GSMT. They must consider factors such as weather, light pollution, seeing, logistics, and geography. The second project has developed adaptive optics teaching units suitable for high school.

  6. Instruments on large optical telescopes -- A case study

    CERN Document Server

    Kulkarni, S R

    2016-01-01

    In the distant past, telescopes were known, first and foremost, for the sizes of their apertures. Advances in technology (not merely those related to astronomical detectors) are now enabling astronomers to build extremely powerful instruments to the extent that instruments have now achieved importance comparable or even exceeding the usual importance accorded to the apertures of the telescopes. However, the cost of successive generations of instruments has risen at a rate far above that of the rate of inflation. Here, given the vast sums of money now being expended on optical telescopes and their instrumentation, I argue that astronomers must undertake "cost-benefit" analysis for future planning. I use the scientific output of the first two decades of the W. M. Keck Observatory as a laboratory for this purpose. I find, in the absence of upgrades, that the time to reach peak paper production for an instrument is about six years. The prime lifetime of instruments (sans upgrades), as measured by citations return...

  7. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  8. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  9. Advanced Multiple Aperture Seeing Profiler

    Science.gov (United States)

    Ren, Deqing; Zhao, Gang

    2016-10-01

    Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements.

  10. Propagation of Single-Mode Fibre Laser Beams through an Optical ABCD System with Circular Aperture at the Fibre Output End

    Institute of Scientific and Technical Information of China (English)

    DUAN Sai-Liang; LI Jian-Feng; ZHAO Wei; WANG Yi-Shan

    2008-01-01

    @@ Based on the expansion expression of the fundamental mode of a single-mode fibre in terms of Laguerre-Gauss modes, the propagation of a beam of a weakly guiding fibre laser through an optical ABCD system with a circular aperture at the fibre end is studied. The results show that there is much difference between the propagation of the laser beam described by the expansion expression and by the Gaussian mode approximation. The depth of focus of the laser beam is longer than that of the Gaussian modes.

  11. Plane-polar Fresnel and far-field computations using the Fresnel-Wilcox and Jacobi-Bessel expansions. [for large aperture antennas

    Science.gov (United States)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1981-01-01

    It is pointed out that the computation of the Fresnel fields for large aperture antennas is significant for many applications. The present investigation is concerned with an approach for the effective utilization of the coefficients of the Jacobi-Bessel series for the far-field to obtain an analytically continuous representation of the antenna field which is valid from the Fresnel region into the far field. Attention is given to exact formulations and closed form solutions, Fresnel and Fresnel small angle approximations, aspects of field expansion, the accuracy of the Fresnel and Fresnel small angle approximations, and the Jacobi-Bessel expansion applied to the Fresnel small angle approximation.

  12. High efficiency, high energy second-harmonic generation of Nd glass laser radiation in large aperture CsLiB sub 6 O sub 1 sub 0 crystals

    CERN Document Server

    Kiriyama, H; Yamakawa, K

    2002-01-01

    We have demonstrated the generation of a high-energy green laser pulse using large aperture CsLiB sub 6 O sub 1 sub 0 (CLBO) crystals. A pulsed energy of 25 J at 532-nm was generated using the 1064-nm incident Nd:glass laser radiation with an energy of 34 J. High conversion efficiency of 74% at intensities of only 370 MW/cm sup 2 was obtained using a two-stage crystal architecture. This result represents the highest green pulse energy ever reported using the CLBO crystals. We discuss in detail the design and performance of SHG using CLBO crystals.

  13. Optical correlation filters for large-class OCR applications

    Science.gov (United States)

    Casasent, David P.; Iyer, Anand K.; Gopalaswamy, Srinivasan

    1991-08-01

    The performance of two new optical correlation filters (G-MACE and MINACE) for large class (many fonts and true class words) OCR (optical character recognition) applications is considered. We consider filters that can recognize many key words in upper case (UC) and mixed case (MC) and various point sizes in the presence of OCR scanner sampling errors. New results are presented and guidelines for large class filters are advanced.

  14. Sub-surface damage issues for effective fabrication of large optics

    Science.gov (United States)

    Tonnellier, X.; Shore, P.; Morantz, P.; Baldwin, A.; Walker, D.; Yu, G.; Evans, R.

    2008-07-01

    A new ultra precision large optics grinding machine, BoX® has been developed at Cranfield University. BoX® is located at the UK's Ultra Precision Surfaces laboratory at the OpTIC Technium. This machine offers a rapid and economic solution for grinding large off-axis aspherical and free-form optical components. This paper presents an analysis of subsurface damage assessments of optical ground materials produced using diamond resin bonded grinding wheels. The specific materials used, Zerodur® and ULE® are currently under study for making extremely large telescope (ELT) segmented mirrors such as in the E-ELT project. The grinding experiments have been conducted on the BoX® grinding machine using wheels with grits sizes of 76 μm, 46 μm and 25 μm. Grinding process data was collected using a Kistler dynamometer platform. The highest material removal rate (187.5 mm3/s) used ensures that a 1 metre diameter optic can be ground in less than 10 hours. The surface roughness and surface profile were measured using a Form Talysurf. The subsurface damage was revealed using a sub aperture polishing process in combination with an etching technique. These results are compared with the targeted form accuracy of 1 μm p-v over a 1 metre part, surface roughness of 50-150 nm RMS and subsurface damage in the range of 2-5 μm. This process stage was validated on a 400 mm ULE® blank and a 1 metre hexagonal Zerodur® part.

  15. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  16. Variable optofluidic slit aperture

    Institute of Scientific and Technical Information of China (English)

    Stefan Schuhladen; Kaustubh Banerjee; Moritz Stürmer; Philipp Müller; Ulrike Wallrabe; Hans Zappe

    2016-01-01

    The shape of liquid interfaces can be precisely controlled using electrowetting,an actuation mechanism which has been widely used for tunable optofluidic micro-optical components such as lenses or irises.We have expanded the considerable flexibility inherent in electrowetting actuation to realize a variable optofluidic slit,a tunable and reconfigurable two-dimensional aperture with no mechanically moving parts.This optofluidic slit is formed by precisely controlled movement of the liquid interfaces of two highly opaque ink droplets.The 1.5 mm long slit aperture,with controllably variable discrete widths down to 45 μm,may be scanned across a length of 1.5 mm with switching times between adjacent slit positions of less than 120 ms.In addition,for a fixed slit aperture position,the width may be tuned to a minimum of 3 μm with high uniformity and linearity over the entire slit length.This compact,purely fluidic device offers an electrically controlled aperture tuning range not achievable with extant mechanical alternatives of a similar size.

  17. Research on sub-surface damage and its stress deformation in the process of large aperture and high diameter-to-thickness ratio TMT M3MP

    Science.gov (United States)

    Hu, Hai-xiang; Qi, Erhui; Cole, Glen; Hu, Hai-fei; Luo, Xiao; Zhang, Xue-jun

    2016-10-01

    Large flat mirrors play important roles in large aperture telescopes. However, they also introduce unpredictable problems. The surface errors created during manufacturing, testing, and supporting are all combined during measurement, thus making understanding difficult for diagnosis and treatment. Examining a high diameter-to-thickness ratio flat mirror, TMT M3MP, and its unexpected deformation during processing, we proposed a strain model of subsurface damage to explain the observed phenomenon. We designed a set of experiment, and checked the validity of our diagnosis. On that basis, we theoretical predicted the trend of this strain and its scale effect on Zerodur®, and checked the validity on another piece experimentally. This work guided the grinding-polishing process of M3MP, and will be used as reference for M3M processing as well.

  18. Large Optic Drying Station: Summary of Dryer Certification Tests

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T W; Ayers, S L; Ayers, M J

    2009-08-28

    The purpose of this document is to outline the methodology used to baseline and maintain the cleanliness status of the newly built and installed Large Optic Cleaning Station (LOCS). The station has currently been in use for eleven months; and after many cleaning studies and implementation of resulting improvements appears to be cleaning optics to a level that is acceptable for the fabrication of Nano-Laminates.

  19. Geometrical optics approximation of light scattering by large air bubbles

    Institute of Scientific and Technical Information of China (English)

    Haitao Yu; Jianqi Shen; Yuehuan Wei

    2008-01-01

    For large spherical bubbles in water,geometrical optics approximation is considered a better method for calculating light scattering patterns.In this paper,the basic theory of geometrical optics approximation is clarified.The change of phase for bubbles is calculated when total reflection occurs,which is different from particles with relative refractive indices larger than 1.Verification of the method was achieved by assuming a spherical particle and comparing present results to Mie scattering and Debye calculation.Agreement with the Mie theory was excellent in all directions when the dimensionless size parameter is larger than 50.Limitations of the geometrical optics approximation are also discussed.

  20. Aperture Photometry Tool

    Science.gov (United States)

    Laher, Russ R.; Gorjian, Varoujan; Rebull, Luisa M.; Masci, Frank J.; Fowler, John W.; Helou, George; Kulkarni, Shrinivas R.; Law, Nicholas M.

    2012-07-01

    Aperture Photometry Tool (APT) is software for astronomers and students interested in manually exploring the photometric qualities of astronomical images. It is a graphical user interface (GUI) designed to allow the image data associated with aperture photometry calculations for point and extended sources to be visualized and, therefore, more effectively analyzed. The finely tuned layout of the GUI, along with judicious use of color-coding and alerting, is intended to give maximal user utility and convenience. Simply mouse-clicking on a source in the displayed image will instantly draw a circular or elliptical aperture and sky annulus around the source and will compute the source intensity and its uncertainty, along with several commonly used measures of the local sky background and its variability. The results are displayed and can be optionally saved to an aperture-photometry-table file and plotted on graphs in various ways using functions available in the software. APT is geared toward processing sources in a small number of images and is not suitable for bulk processing a large number of images, unlike other aperture photometry packages (e.g., SExtractor). However, APT does have a convenient source-list tool that enables calculations for a large number of detections in a given image. The source-list tool can be run either in automatic mode to generate an aperture photometry table quickly or in manual mode to permit inspection and adjustment of the calculation for each individual detection. APT displays a variety of useful graphs with just the push of a button, including image histogram, x and y aperture slices, source scatter plot, sky scatter plot, sky histogram, radial profile, curve of growth, and aperture-photometry-table scatter plots and histograms. APT has many functions for customizing the calculations, including outlier rejection, pixel "picking" and "zapping," and a selection of source and sky models. The radial-profile-interpolation source model

  1. Prediction of nonlinear optical properties of large organic molecules

    Science.gov (United States)

    Cardelino, Beatriz H.

    1992-01-01

    The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.

  2. Technological Aspects of Creating Large-size Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    Full Text Available A concept of the telescope creation, first of all, depends both on a choice of the optical scheme to form optical radiation and images with minimum losses of energy and information and on a choice of design to meet requirements for strength, stiffness, and stabilization characteristics in real telescope operation conditions. Thus, the concept of creating large-size telescopes, certainly, involves the use of adaptive optics methods and means.The level of technological capabilities to realize scientific and engineering ideas define a successful development of large-size optical telescopes in many respects. All developers pursue the same aim that is to raise an amount of information by increasing a main mirror diameter of the telescope.The article analyses the adaptive telescope designs developed in our country. Using a domestic ACT-25 telescope as an example, it considers creation of large-size optical telescopes in terms of technological aspects. It also describes the telescope creation concept features, which allow reaching marginally possible characteristics to ensure maximum amount of information.The article compares a wide range of large-size telescopes projects. It shows that a domestic project to create the adaptive ACT-25 super-telescope surpasses its foreign counterparts, and there is no sense to implement Euro50 (50m and OWL (100m projects.The considered material gives clear understanding on a role of technological aspects in development of such complicated optic-electronic complexes as a large-size optical telescope. The technological criteria of an assessment offered in the article, namely specific informational content of the telescope, its specific mass, and specific cost allow us to reveal weaknesses in the project development and define a reserve regarding further improvement of the telescope.The analysis of results and their judgment have shown that improvement of optical largesize telescopes in terms of their maximum

  3. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for intergrated tools in the optimization process

    Science.gov (United States)

    Arnold, William R.

    2015-09-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as

  4. Large stroke MOEMS actuators for optical path length modulation in miniaturized FTIR spectrometers

    Science.gov (United States)

    Sandner, Thilo; Drabe, Christian; Schenk, Harald; Kenda, Andreas

    2009-05-01

    In this paper we present a novel translatory MOEMS device with extraordinary large stroke especially designed for fast optical path modulation in an improved miniaturized Fourier-transform infrared (FTIR) spectrometer capable to perform time resolved measurements from NIR to MIR. Recently, we presented a first MOEMS based FTIR system using a different translatory MOEMS actuator with bending suspensions of the mirror plate and +/-100μm oscillation amplitude resulting in a limited spectral resolution of 30 cm-1. For the novel MOEMS actuator an advanced pantograph suspension of the mirror plate was used to guarantee an extraordinary large stroke of up to 500 μm required for an improved spectral resolution. To optimize the optical throughput of the spectrometer the mirror aperture was increased to 7 mm2. The MOEMS actuators are driven electro statically resonant using out-of-plane comb drives and operate at a resonant frequency of 500 (1000) Hz, respectively. Hence, this enables to realize an improved MOEMS based FTIR-spectrometer with a spectral resolution of up to 10 cm-1, a SNR of > 1000:1 and an acquisition time of 1 ms per spectrum of the miniaturized FTIR-system. In this article we discuss in detail the design and the experimental characteristics of the novel large stroke translatory MOEMS device. The application and system integration, especially the optical vacuum packaging, of this MOEMS device in an improved miniaturized MOEMS based FTIR spectrometer enabling ultra rapid measurements in the NIRMIR spectral region with 12cm-1 spectral resolution is discussed in a separate paper submitted to this conference.

  5. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals

    Science.gov (United States)

    Zhang, F. H.; Wang, S. F.; An, C. H.; Wang, J.; Xu, Q.

    2017-06-01

    Large-aperture potassium dihydrogen phosphate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machining errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China.

  6. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    Energy Technology Data Exchange (ETDEWEB)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. The IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.

  7. Unsupervised polarimetric synthetic aperture radar classification of large-scale landslides caused by Wenchuan earthquake in hue-saturation-intensity color space

    Science.gov (United States)

    Li, Ning; Wang, Robert; Deng, Yunkai; Liu, Yabo; Li, Bochen; Wang, Chunle; Balz, Timo

    2014-01-01

    A simple and effective approach for unsupervised classification of large-scale landslides caused by the Wenchuan earthquake is developed. The data sets used were obtained by a high-resolution fully polarimetric airborne synthetic aperture radar system working at X-band. In the proposed approach, Pauli decomposition false-color RGB imagery is first transformed to the hue-saturation-intensity (HSI) color space. Then, a good combination of k-means clustering and HSI imagery in different channels is used stage-by-stage for automatic landslides extraction. Two typical case studies are presented to evaluate the feasibility of the proposed scheme. Our approach is an important contribution to the rapid assessment of landslide hazards.

  8. Science drivers and requirements for an Advanced Technology Large Aperture Space Telescope (ATLAST): Implications for technology development and synergies with other future facilities

    CERN Document Server

    Postman, Marc; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R Michael; Stahl, H Phillip; Tumlinson, Jason; Mountain, Matt; Soummer, Rémi; Hyde, Tupper; 10.1117/12.857044

    2010-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astronphysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 {\\mu}m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 {\\mu}m to 2.4 {\\mu}m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.

  9. Large optical 3D MEMS switches in access networks

    Science.gov (United States)

    Madamopoulos, Nicholas; Kaman, Volkan; Yuan, Shifu; Jerphagnon, Olivier; Helkey, Roger; Bowers, John E.

    2007-09-01

    Interest is high among residential customers and businesses for advanced, broadband services such as fast Internet access, electronic commerce, video-on-demand, digital broadcasting, teleconferencing and telemedicine. In order to satisfy such growing demand of end-customers, access technologies such as fiber-to-the-home/building (FTTH/B) are increasingly being deployed. Carriers can reduce maintenance costs, minimize technology obsolescence and introduce new services easily by reducing active elements in the fiber access network. However, having a passive optical network (PON) also introduces operational and maintenance challenges. Increased diagnostic monitoring capability of the network becomes a necessity as more and more fibers are provisioned to deliver services to the end-customers. This paper demonstrates the clear advantages that large 3D optical MEMS switches offer in solving these access network problems. The advantages in preventative maintenance, remote monitoring, test and diagnostic capability are highlighted. The low optical insertion loss for all switch optical connections of the switch enables the monitoring, grooming and serving of a large number of PON lines and customers. Furthermore, the 3D MEMS switch is transparent to optical wavelengths and data formats, thus making it easy to incorporate future upgrades, such higher bit rates or DWDM overlay to a PON.

  10. Monte Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Science.gov (United States)

    Basden, A. G.; Morris, T. J.

    2016-12-01

    The performance of a wide-field adaptive optics (AO) system depends on input design parameters. Here we investigate the performance of a multi-object AO system design for the European Extremely Large Telescope, using an end-to-end Monte Carlo AO simulation tool, Durham adaptive optics simulation platform, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcsec per pixel, and a field of view of at least 7 arcsec, that electron multiplying CCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that AO correction can be maintained across a wide field of view, up to 7 arcmin in diameter. We also recommend the use of at least four laser guide stars, and include ground-layer and multi-object AO performance estimates.

  11. Large nonlocal nonlinear optical response of castor oil

    Science.gov (United States)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  12. Antenna Optics and Receiver Concept for the Next Generation Very Large Array

    Science.gov (United States)

    McKinnon, Mark M.; Srikanth, Sivasankaran; Grammer, Wes; Pospieszalski, Marian; Sturgis, Silver

    2017-01-01

    The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and 10 times higher spatial resolution than the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require about 300 antennas of nominally 18m diameter on baselines of 300km. Options for the optical configuration of the antennas and possible receiver configurations to cover the ngVLA frequency range are presented. The options for the antenna optics take into account performance, cost, receiver accessibility for maintenance purposes, and receiver distribution in the focal plane. Both on-axis and off-axis configurations are considered. The off-axis design has the advantages of higher gain, low near-in sidelobes, lower antenna temperature, and reduced standing waves. The main advantage of the on-axis configuration is its lower cost. The trade-off between subreflector opening angle and feed size is presented. The performance of different dual-offset reflector geometries is summarized. The ngVLA receivers will be cryogenically-cooled with cryostats integrating multiple receiver bands for reduced maintenance and operating costs. The total number of bands required depends on their fractional bandwidth: maximizing this reduces the band count and number of cryostats, but with a penalty in sensitivity. For the higher frequencies, waveguide-bandwidth receivers are proposed to cover 11-50 GHz and 70-116 GHz in four separate bands, possibly integrated into a single cryostat. Corrugated conical feeds will be used, providing good aperture efficiency and symmetric, uniform beam shape. For 1.2-11 GHz, waveguide-bandwidth receivers are not practical due to the large number of receiver/feed combinations needed to cover the ~9:1 frequency range. Also, the large size of the feeds and polarizers mandates individual cryostats for each band. A possible compromise is two 3:1-bandwidth receivers with smooth

  13. Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes

    NARCIS (Netherlands)

    Gruber, M.A.; Fochesatto, G.J.; Hartogensis, O.K.; Lysy, M.

    2014-01-01

    Scintillometer measurements allow for estimations of the refractive index structure parameter Cn2 over large areas in the atmospheric surface layer. Turbulent fluxes of heat and momentum are inferred through coupled sets of equations derived from the Monin–Obukhov similarity hypothesis. One-dimensio

  14. Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm.

    Science.gov (United States)

    Ren, Hongwu; Dekany, Richard; Britton, Matthew

    2005-05-01

    We propose a new recursive filtering algorithm for wave-front reconstruction in a large-scale adaptive optics system. An embedding step is used in this recursive filtering algorithm to permit fast methods to be used for wave-front reconstruction on an annular aperture. This embedding step can be used alone with a direct residual error updating procedure or used with the preconditioned conjugate-gradient method as a preconditioning step. We derive the Hudgin and Fried filters for spectral-domain filtering, using the eigenvalue decomposition method. Using Monte Carlo simulations, we compare the performance of discrete Fourier transform domain filtering, discrete cosine transform domain filtering, multigrid, and alternative-direction-implicit methods in the embedding step of the recursive filtering algorithm. We also simulate the performance of this recursive filtering in a closed-loop adaptive optics system.

  15. Large light X-ray optics: basic ideas and concepts

    Science.gov (United States)

    Citterio, O.; Ghigo, M.; Mazzoleni, F.; Pareschi, G.; Aschenbach, B.; Braeuninger, H.; Friedrich, P.; Hasinger, G.; Parodi, G.

    2004-01-01

    One of the main guidelines for future X-ray astronomy projects like, e.g., XEUS (ESA) and Generation-X (NASA) is to utilize grazing-incidence focusing optics with extremely large telescopes (several tens of m 2 at 1 keV), with a dramatic increase in collecting area of about two order of magnitude compared to the current X-ray telescopes. In order to avoid the problem of the source's confusion limit at low fluxes, the angular resolution required for these optics should be superb (a few arcsec at most). The enormous mirror dimensions together with the high imaging performances give rise to a number of manufacturing problems. It is basically impossible to realize so large mirrors from closed Wolter I shells which benefit from high mechanical stiffness. Instead the mirrors need to be formed as rectangular segments and a series of them will be assembled in a petal. Taking into account the realistic load capabilities of space launchers, to be able to put in orbit so large mirror modules the mass/geometric-area ratio of the optics should be very small. Finally, with a so large optics mass it would be very difficult to provide the electric power for an optics thermal active control, able to maintain the mirrors at the usual temperature of 20 °C. Therefore, very likely, the optics will instead operate in extreme thermal conditions, with the mirror temperature oscillating between -30 and -40 °C, that tends to exclude the epoxy replication approach (the mismatch between the CTE of the substrate and that of the resin would cause prohibitively large deformations of the mirror surface profiles). From these considerations light weight materials with high thermal-mechanical properties such as glass or ceramics become attractive to realize the mirrors of future Xray telescopes. In this paper, we will discuss a segments manufacturing method based on Borofloat TM glass. A series of finite element analysis concerning different aspects of the production, testing and integration of

  16. Measuring Large Optical Transmission Matrices of Disordered Media

    Science.gov (United States)

    Choi, Wonshik; Lee, Ji Oon; Feld, Michael S.; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements. PMID:24160602

  17. Measuring large optical transmission matrices of disordered media.

    Science.gov (United States)

    Yu, Hyeonseung; Hillman, Timothy R; Choi, Wonshik; Lee, Ji Oon; Feld, Michael S; Dasari, Ramachandra R; Park, YongKeun

    2013-10-11

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements.

  18. Design of optical systems for large space telescopes

    Science.gov (United States)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    On the basis of long-term experience of LOMO PLC in creating large optical systems for ground and space telescopes, with diameter of primary mirror from 1 to 6 meters, the following issues should be considered: principles of constructing optical systems for space telescopes and selecting their optimum design in respect of dimensions/mass and performance criteria; ensuring the fulfillment of image quality requirements in the process of manufacturing optical systems for controlling ground telescope elements in operating conditions; providing automatic adjustment of telescope secondary mirror, automatic focusing, interferometric control of image quality by means of stellar interferometer with radial shift and internal control with Gartman's test. Description of space telescope equipped with primary mirror of diameter 1.5 m, manufactured in LOMO PLC, is given.

  19. Pixelized Device Control Actuators for Large Adaptive Optics

    Science.gov (United States)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  20. Large Space Optics: From Hubble to JWST and Beyond

    Science.gov (United States)

    Stahl, H. Philip

    2008-01-01

    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of

  1. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  2. Lensless image scanner using multilayered aperture array for noncontact imaging

    Science.gov (United States)

    Kawano, Hiroyuki

    2016-10-01

    We propose a new imaging system of a simple structure that uses a set of layered aperture arrays above a linear image sensor instead of an imaging lens. The image scanner transfers the image information by detecting the scattering rays from the object directly without any collecting power, as if it were an optical stamp. Since the aperture arrays shield the stray rays propagating obliquely, the image information can be read with high resolution even if the object floats within a few millimeters. The aperture arrays with staggered alignment in two lines widen the space with the adjacent pixel without decimating information. We manufactured a prototype model of 300-dpi resolution, whose height is as little as 5 mm. The experimental result shows that ghost images can be restricted sufficiently, and our scanner can clearly read an object within a space of <3.5 mm, meaning that it has a large depth of field of 3.5 mm.

  3. Optimum synthetic-aperture imaging of extended astronomical objects.

    Science.gov (United States)

    van der Avoort, Casper; Pereira, Silvania F; Braat, Joseph J M; den Herder, Jan-Willem

    2007-04-01

    In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable.

  4. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser

    Science.gov (United States)

    Vannoni, M.; Freijo Martín, I.

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ṡ 1025 (photons s-1 mm-2 mrad-2)/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  5. Large aperture Fizeau interferometer commissioning and preliminary measurements of a long x-ray mirror at European X-ray Free Electron Laser.

    Science.gov (United States)

    Vannoni, M; Freijo Martín, I

    2016-05-01

    The European XFEL (X-ray Free Electron Laser) is a large facility under construction in Hamburg, Germany. It will provide a transversally fully coherent x-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 ms long pulse train at 10 Hz), short wavelength (down to 0.05 nm), short pulse (in the femtoseconds scale), and high average brilliance (1.6 ⋅ 10(25) (photons s(-1) mm(-2) mrad(-2))/0.1% bandwidth). The beam has very high pulse energy; therefore, it has to be spread out on a relatively long mirror (about 1 m). Due to the very short wavelength, the mirrors need to have a high quality surface on their entire length, and this is considered very challenging even with the most advanced polishing methods. In order to measure the mirrors and to characterize their interaction with the mechanical mount, we equipped a metrology laboratory with a large aperture Fizeau interferometer. The system is a classical 100 mm diameter commercial Fizeau, with an additional expander providing a 300 mm diameter beam. Despite the commercial nature of the system, special care has been taken in the polishing of the reference flats and in the expander quality. We report the first commissioning of the instrument, its calibration, and performance characterization, together with some preliminary results with the measurement of a 950 mm silicon substrate. The intended application is to characterize the final XFEL mirrors with nanometer accuracy.

  6. LIGHT MODULATION: Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    Science.gov (United States)

    Magdich, L. N.; Yushkov, K. B.; Voloshinov, V. B.

    2009-04-01

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 μm.

  7. Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Science.gov (United States)

    Basden, A. G.; Morris, T. J.

    2016-09-01

    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that adaptive optics correction can be maintained across a wide field of view, up to 7 arcminutes in diameter. We also recommend the use of at least 4 laser guide stars, and include ground-layer and multi-object adaptive optics performance estimates.

  8. Efficient Topology Estimation for Large Scale Optical Mapping

    CERN Document Server

    Elibol, Armagan; Garcia, Rafael

    2013-01-01

    Large scale optical mapping methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that low-cost ROVs usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predefined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This book contributes to the state-of-art in large area image mosaicing methods for underwater surveys using low-cost vehicles equipped with a very limited sensor suite. The main focus has been on global alignment...

  9. L-band Synthetic Aperture Radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs

    Science.gov (United States)

    Naidoo, Laven; Mathieu, Renaud; Main, Russell; Wessels, Konrad; Asner, Gregory P.

    2016-10-01

    Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study's objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.

  10. Fast figuring of large optics by reactive atom plasma

    Science.gov (United States)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  11. The Configurable Aperture Space Telescope (CAST)

    Science.gov (United States)

    Ennico, Kimberly; Bendek, Eduardo A.; Lynch, Dana H.; Vassigh, Kenny K.; Young, Zion

    2016-07-01

    The Configurable Aperture Space Telescope, CAST, is a concept that provides access to a UV/visible-infrared wavelength sub-arcsecond imaging platform from space, something that will be in high demand after the retirement of the astronomy workhorse, the 2.4 meter diameter Hubble Space Telescope. CAST allows building large aperture telescopes based on small, compatible and low-cost segments mounted on autonomous cube-sized satellites. The concept merges existing technology (segmented telescope architecture) with emerging technology (smartly interconnected modular spacecraft, active optics, deployable structures). Requiring identical mirror segments, CAST's optical design is a spherical primary and secondary mirror telescope with modular multi-mirror correctors placed at the system focal plane. The design enables wide fields of view, up to as much as three degrees, while maintaining aperture growth and image performance requirements. We present a point design for the CAST concept based on a 0.6 meter diameter (3 x 3 segments) growing to a 2.6 meter diameter (13 x 13 segments) primary, with a fixed Rp=13,000 and Rs=8,750 mm curvature, f/22.4 and f/5.6, respectively. Its diffraction limited design uses a two arcminute field of view corrector with a 7.4 arcsec/mm platescale, and can support a range of platescales as fine as 0.01 arcsec/mm. Our paper summarizes CAST, presents a strawman optical design and requirements for the underlying modular spacecraft, highlights design flexibilities, and illustrates applications enabled by this new method in building space observatories.

  12. 大口径反射镜及其支撑结构设计%The design of large aperture mirror and support structure

    Institute of Scientific and Technical Information of China (English)

    张军; 张帆; 高明辉

    2012-01-01

    A kind of flexible structure applied to support the large aperture mirror is put forward for space remote sensing.With FEA method,the features such as support structure,size,the shape of the lightweight hole and weight distribution are calculated to obtain the feasible and reasonable structure.The result shows that the mirror surface figure precision can reach λ/40(λ=632.8 nm) in the structure,and can meet the needs of remote sensing precision.%提出了一种采用柔性支撑的大口径反射镜组件进行遥感器地面检测的装置。通过有限元分析对反射镜的支撑结构、形状尺寸、轻量化孔的形状、尺寸及分布位置进行计算,得到了一种合理可行的支撑结构。在该支撑结构下面形精度达到λ/40(λ=632.8nm),满足遥感器地面检测的精度要求。

  13. Long-Term Evaluation of the Scintec Boundary-Layer Scintillometer and the Wageningen Large-Aperture Scintillometer: Implications for Scintillometer Users

    Science.gov (United States)

    Van Kesteren, B.; Beyrich, F.; Hartogensis, O. K.; Braam, M.

    2015-08-01

    We compare the structure parameter of the refractive index, , measured simultaneously with two large-aperture scintillometers: the WagLAS (Wageningen University, Wageningen, the Netherlands) and the BLS900 (Scintec, Rottenburg, Germany). A 3.5-year dataset shows a bias in of about 17 % between the instruments. Analysis of these data reveals firstly that the logarithmic amplifiers in the WagLAS exhibit a strong dependence on temperature, resulting in an overestimation of of up to 35 % for temperatures 0 . Secondly, high-pass filtering of the WagLAS and BLS900 intensity data artificially reduces for crosswinds 2 (error 25 and 5 % respectively). Thirdly, the BLS900 increasingly underestimates (up to 10-15 %) with increasing signal saturation. We demonstrate that Scintec's data processing relies too heavily on the assumption that the intensity data obey a log-normal distribution, which they do not in the case of saturation. Fourthly, both instruments ignore the dissipation range of the refractive-index spectrum, which leads to an overestimation of of up to 30 % for friction velocity 0.2 . Implications of these findings are discussed and placed into perspective for other scintillometer users. Furthermore, we present a tool for revealing saturation and other violations of Rytov theory for any given scintillometer type, including microwave scintillometers.

  14. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform

    Science.gov (United States)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2016-07-01

    A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.

  15. Aperture referral in dioptric systems with stigmatic elements

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available A previous paper develops the general theory of aperture referral in linear optics and shows how several ostensibly distinct concepts, including the blur patch on the retina, the effective cornealpatch, the projective field and the field of view, are now unified as particular applications of the general theory.  The theory allows for astigmatism and heterocentricity.  Symplecticity and the generality of the approach, however, make it difficult to gain insight and mean that the material is not accessible to readers unfamiliar with matrices and linear algebra. The purpose of this paper is to examine whatis, perhaps, the most important special case, that in which astigmatism is ignored.  Symplecticity and, hence, the mathematics become greatly simplified. The mathematics reduces largely to elementary vector algebra and, in some places, simple scalar algebra and yet retains the mathematical form of the general approach.  As a result the paper allows insight into and provides a stepping stone to the general theory.  Under referral an aperture under-goes simple scalar magnification and transverse translation.  The paper pays particular attention to referral to transverse planes in the neighbourhood of a focal point where the magnification may be positive, zero or negative.  Circular apertures are treated as special cases of elliptical apertures and the meaning of referred apertures of negative radius is explained briefly. (S Afr Optom 2012 71(1 3-11

  16. Large Binocular Telescope Interferometer Adaptive Optics: On-sky performance and lessons learned

    CERN Document Server

    Bailey, Vanessa P; Puglisi, Alfio T; Esposito, Simone; Vaitheeswaran, Vidhya; Skemer, Andrew J; Defrere, Denis; Vaz, Amali; Leisenring, Jarron M

    2014-01-01

    The Large Binocular Telescope Interferometer is a high contrast imager and interferometer that sits at the combined bent Gregorian focus of the LBT's dual 8.4~m apertures. The interferometric science drivers dictate 0.1'' resolution with $10^3-10^4$ contrast at $10~\\mu m$, while the $4~\\mu m$ imaging science drivers require even greater contrasts, but at scales $>$0.2''. In imaging mode, LBTI's Adaptive Optics system is already delivering $4~\\mu m$ contrast of $10^4-10^5$ at $0.3''-0.75''$ in good conditions. Even in poor seeing, it can deliver up to 90\\% Strehl Ratio at this wavelength. However, the performance could be further improved by mitigating Non-Common Path Aberrations. Any NCPA remedy must be feasible using only the current hardware: the science camera, the wavefront sensor, and the adaptive secondary mirror. In preliminary testing, we have implemented an ``eye doctor'' grid search approach for astigmatism and trefoil, achieving 5\\% improvement in Strehl Ratio at $4~\\mu m$, with future plans to tes...

  17. Improved Large Aperture Collector Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, Deven [Abengoa Solar LLC, Lakewood, CO (United States); Farr, Adrian [Abengoa Solar LLC, Lakewood, CO (United States)

    2015-12-01

    The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management, and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs will be supported by new technology in the area of quality control inspection, in which state of the art photogrammetry and laser CMM inspection methods will be used to qualify parts and assemblies, and in which the recently-developed Absorber Reflection Method will enable in-line quality control inspection of modules produced by the new high-rate production line.

  18. Half-width at half-maximum, full-width at half-maximum analysis for resolution of asymmetrically apodized optical systems with slit apertures

    Indian Academy of Sciences (India)

    Andra Naresh Kumar Reddy; Dasari Karuna Sagar

    2015-01-01

    Resolution for the modified point spread function (PSF) of asymmetrically apodized optical systems has been analysed by a new parameter half-width at half-maximum (HWHM) in addition to the well-defined parameter full-width at half-maximum (FWHM). The distribution of half-maximum energy in the centroid of modified PSF has been investigated in terms of HWHM on good side and HWHM on bad side. We observed that as the asymmetry in PSF increases, FWHM of the main peak increases and then decreases and is being aided by the degree of amplitude apodization in the central region of slit functions. In the present study, HWHM (half-width at half-maximum) of the resultant PSF has been defined to characterize the resolution of the detection system. It is essentially a line of projection, which measures the width of the main lobe at its half-maximum position from the diffraction centre and has been computed for various amplitudes and antiphase apodizations of the slit aperture. We have noticed that HWHM on the good side decreases at the cost of the increased HWHM on the bad side in the presence of asymmetric apodization.

  19. The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR)

    Science.gov (United States)

    Peterson, Bradley M.; Fischer, Debra; LUVOIR Science and Technology Definition Team

    2017-01-01

    LUVOIR is one of four potential large mission concepts for which the NASA Astrophysics Division has commissioned studies by Science and Technology Definition Teams (STDTs) drawn from the astronomical community. LUVOIR will have an 8 to16-m segmented primary mirror and operate at the Sun-Earth L2 point. It will be designed to support a broad range of astrophysics and exoplanet studies. The notional initial complement of instruments will include 1) a high-performance optical/NIR coronagraph with imaging and spectroscopic capability, 2) a UV imager and spectrograph with high spectral resolution and multi-object capability, 3) a high-definition wide-field optical/NIR camera, and 4) a multi-resolution optical/NIR spectrograph. LUVOIR will be designed for extreme stability to support unprecedented spatial resolution and coronagraphy. It is intended to be a long-lifetime facility that is both serviceable and upgradable. This is the first report by the LUVOIR STDT to the community on the top-level architectures we are studying, including preliminary capabilities of a mission with those parameters. The STDT seeks feedback from the astronomical community for key science investigations that can be undertaken with the notional instrument suite and to identify desirable capabilities that will enable additional key science.

  20. IP over optical multicasting for large-scale video delivery

    Science.gov (United States)

    Jin, Yaohui; Hu, Weisheng; Sun, Weiqiang; Guo, Wei

    2007-11-01

    In the IPTV systems, multicasting will play a crucial role in the delivery of high-quality video services, which can significantly improve bandwidth efficiency. However, the scalability and the signal quality of current IPTV can barely compete with the existing broadcast digital TV systems since it is difficult to implement large-scale multicasting with end-to-end guaranteed quality of service (QoS) in packet-switched IP network. China 3TNet project aimed to build a high performance broadband trial network to support large-scale concurrent streaming media and interactive multimedia services. The innovative idea of 3TNet is that an automatic switched optical networks (ASON) with the capability of dynamic point-to-multipoint (P2MP) connections replaces the conventional IP multicasting network in the transport core, while the edge remains an IP multicasting network. In this paper, we will introduce the network architecture and discuss challenges in such IP over Optical multicasting for video delivery.

  1. Aperture lamp

    Science.gov (United States)

    MacLennan, Donald A.; Turner, Brian P.

    2003-01-01

    A discharge lamp includes means for containing a light emitting fill, the fill being capable of absorbing light at one wavelength and re-emitting the light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill; means for exciting the fill to cause the fill to emit light; and means for reflecting some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length. Another discharge lamp includes an envelope; a fill which emits light when excited disposed in the envelope; a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light; and a reflective ceramic structure disposed around the envelope and defining an light emitting opening, wherein the structure comprises a sintered body built up directly on the envelope and made from a combination of alumina and silica.

  2. Reaching record-low β* at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics

    Science.gov (United States)

    Bruce, R.; Bracco, C.; De Maria, R.; Giovannozzi, M.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Quaranta, E.; Salvachua, B.

    2017-03-01

    The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β-function at the collision point) to smaller values for increased luminosity, the β-function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β*, which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β*=80 cm used in 2015 and significantly below the design value β*=55 cm, in spite of a lower beam energy. The proposed configuration with β*=40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb-1 in one year, in spite of using less bunches than in the design.

  3. Towards Laser-Guide-Stars for Multi-Aperture Interferometry: an application to the Hypertelescope

    CERN Document Server

    Nuñez, Paul D; Riaud, Pierre

    2014-01-01

    Optical interferometry has been successful at achieving milliarcsecond resolution on bright stars. Imaging performance can improve greatly by increasing the number of baselines, which has motivated proposals to build large (~ 100 m) optical interferometers with tens to hundreds of telescopes. It is also desirable to adaptively correct atmospheric turbulence to obtain direct phased images of astrophysical sources. When a natural guide star is not available, we investigate the feasibility of using a modified laser-guide-star technique that is suitable for large diluted apertures. The method consists of using sub-sets of apertures to create an array of artificial stars in the sodium layer and collecting back-scattered light with the same sub-apertures. We present some numerical and laboratory simulations that quantify the requirements and sensitivity of the technique.

  4. Signal-to-noise ratio of Singer product apertures

    Science.gov (United States)

    Shutler, Paul M. E.; Byard, Kevin

    2017-09-01

    Formulae for the signal-to-noise ratio (SNR) of Singer product apertures are derived, allowing optimal Singer product apertures to be identified, and the CPU time required to decode them is quantified. This allows a systematic comparison to be made of the performance of Singer product apertures against both conventionally wrapped Singer apertures, and also conventional product apertures such as square uniformly redundant arrays. For very large images, equivalently for images at very high resolution, the SNR of Singer product apertures is asymptotically as good as the best conventional apertures, but Singer product apertures decode faster than any conventional aperture by at least a factor of ten for image sizes up to several megapixels. These theoretical predictions are verified using numerical simulations, demonstrating that coded aperture video is for the first time a realistic possibility.

  5. Application of large aperture spiral CT in radiotherapy simulation positioning%大孔径螺旋CT在放疗模拟定位中的应用研究

    Institute of Scientific and Technical Information of China (English)

    李雪南; 修霞; 李高峰

    2013-01-01

    目的:探讨大孔径16排螺旋CT在放疗模拟定位中的应用。方法:应用大孔径16排螺旋CT进行乳腺癌保乳术后根治性放疗乳腺切线野的CT模拟定位,并对CT模拟定位技术与传统X射线模拟定位技术进行比较,同时与单排螺旋CT的图像进行比较。结果:大孔径16排螺旋CT在放疗模拟定位中的应用避免了因患者体位受限而造成的误差;大孔径16排螺旋CT模拟机的定位验证误差均优于传统X射线模拟机;其图像质量优于单排螺旋CT。结论:大孔径16排螺旋CT模拟定位机的应用,使得放疗定位更加精确,计划和治疗更加准确。%Objective:To discuss application of large aperture 16 row spiral CT in radiotherapy simulation positioning. Methods: To apply CT simulation positioning with large aperture 16 row spiral CT for the breast tangential field by early breast cancer after breast conserving surgery and radical radiotherapy. Compare CT-simulation and X-ray conventional positioning technique and Compare large aperture 16 row spiral CT and single row spiral CT image. Results: The application of large aperture 16 row spiral CT avoided the error because of body limited. Large aperture 16 row spiral CT simulation position validation error is superior to X-ray positioning. Its image quality is better than that of single row spiral CT. Conclusion:The application of large aperture 16 row spiral CT make simulation positioning more accurate, planned and treatment more accurate, it can provide guarantee of accurate simulation positioning for accurate plan and treatment.

  6. Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China

    Science.gov (United States)

    Liu, Qiaoxia; Koper, Keith D.; Burlacu, Relu; Ni, Sidao; Wang, Fuyun; Zou, Changqiao; Wei, Yunhao; Gal, Martin; Reading, Anya M.

    2016-09-01

    Transversely polarized seismic waves are routinely observed in ambient seismic energy across a wide range of periods, however their origin is poorly understood because the corresponding source regions are either undefined or weakly constrained, and nearly all models of microseism generation incorporate a vertically oriented single force as the excitation mechanism. To better understand the origin of transversely polarized energy in the ambient seismic wavefield we make the first systematic attempt to locate the source regions of teleseismic SH waves observed in microseismic (2.5-20 s) noise. We focus on body waves instead of surface waves because the source regions can be constrained in both azimuth and distance using conventional array techniques. To locate microseismic sources of SH waves (as well as SV and P waves) we continuously backproject the vertical, radial, and transverse components of the ambient seismic wavefield recorded by a large-aperture array deployed in China during 2013-2014. As expected, persistent P wave sources are observed in the North Atlantic, North Pacific, and Indian Oceans, mainly at periods of 2.5-10 s, in regions with the strong ocean wave interactions needed to produce secondary microseisms. SV waves are commonly observed to originate from locations indistinguishable from the P wave sources, but with smaller signal-to-noise ratios. We also observe SH waves with about half or less the signal-to-noise ratio of SV waves. SH source regions are definitively located in deep water portions of the Pacific, away from the sloping continental shelves that are thought to be important for the generation of microseismic Love waves, but nearby regions that routinely generate teleseismic P waves. The excitation mechanism for the observed SH waves may therefore be related to the interaction of P waves with small-wavelength bathymetric features, such as seamounts and basins, through some sort of scattering process.

  7. Large Binocular Telescope Adaptive Optics System: New achievements and perspectives in adaptive optics

    CERN Document Server

    Esposito, Simone; Pinna, Enrico; Puglisi, Alfio; Quirós-Pacheco, Fernando; Arcidiacono, Carmelo; Xompero, Marco; Briguglio, Runa; Agapito, Guido; Busoni, Lorenzo; Fini, Luca; Argomedo, Javier; Gherardi, Alessandro; Brusa, Guido; Miller, Douglas; Guerra, Juan Carlos; Stefanini, Paolo; Salinari, Piero; 10.1117/12.898641

    2012-01-01

    The Large Binocular Telescope (LBT) is a unique telescope featuring two co-mounted optical trains with 8.4m primary mirrors. The telescope Adaptive Optics (AO) system uses two innovative key components, namely an adaptive secondary mirror with 672 actuators and a high-order pyramid wave-front sensor. During the on-sky commissioning such a system reached performances never achieved before on large ground-based optical telescopes. Images with 40mas resolution and Strehl Ratios higher than 80% have been acquired in H band (1.6 micron). Such images showed a contrast as high as 10e-4. Based on these results, we compare the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guide Star (LGS) systems. The comparison, in terms of sky coverage and performances, suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems for the 8-10 meter class telescopes and Extremely Large Telescopes (ELTs)...

  8. Hierarchical fringe tracker to co-phase and coherence very large optical interferometers

    Science.gov (United States)

    Petrov, Romain G.; Boskri, Abdelkarim; Bresson, Yves; Agabi, Karim; Folcher, Jean-Pierre; Elhalkouj, Thami; Lagarde, Stephane; Benkhaldoum, Zouhair

    2016-08-01

    The full scientific potential of the VLTI with its second generation instruments MATISSE and GRAVITY require fringe tracking up to magnitudes K>14 with the UTs and K>10 with the ATs. The GRAVITY fringe tracker (FT) will be limited to K 10.5 with UTs and K 7.5 with ATs, for fundamental conceptual reasons: the flux of each telescope is distributed among 3 cophasing pairs and then among 5 spectral channels for coherencing. To overcome this limit we propose a new FT concept, called Hierarchical Fringe Tracker (HFT) that cophase pairs of apertures with all the flux from two apertures and only one spectral channel. When the pair is cophased, most of the flux is transmitted as if it was produced by an unique single mode beam and then used to cophase pairs of pairs and then pairs of groups. At the deeper level, the flux is used in an optimized dispersed fringe device for coherencing. On the VLTI such a system allows a gain of about 3 magnitudes over the GRAVITY FT. On interferometers with more apertures such as CHARA (6 telescopes) or a future Planet Formation Imager (12 to 20 telescopes), the HFT would be even more decisive, as its performance does not decrease with the number of apertures. It would allow building a PFI reaching a coherent magnitude H 10 with 16 apertures with diameters smaller than 2 m. We present the HFT concept, the first steps of its feasibility demonstration from computer simulations and the optical design of a 4 telescopes HFT prototype.

  9. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available The widespread access to Synthetic Aperture Radar data has created a need for more precise ship extraction, specifically in low-to-medium resolution imagery. While Synthetic Aperture Radar pixel resolution is improving for a large swaths...

  10. Apodized vortex coronagraph designs for segmented aperture telescopes

    CERN Document Server

    Ruane, Garreth; Mawet, Dimitri; Pueyo, Laurent; Shaklan, Stuart

    2016-01-01

    Current state-of-the-art high contrast imaging instruments take advantage of a number of elegant coronagraph designs to suppress starlight and image nearby faint objects, such as exoplanets and circumstellar disks. The ideal performance and complexity of the optical systems depends strongly on the shape of the telescope aperture. Unfortunately, large primary mirrors tend to be segmented and have various obstructions, which limit the performance of most conventional coronagraph designs. We present a new family of vortex coronagraphs with numerically-optimized gray-scale apodizers that provide the sensitivity needed to directly image faint exoplanets with large, segmented aperture telescopes, including the Thirty Meter Telescope (TMT) as well as potential next-generation space telescopes.

  11. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    CERN Document Server

    Defrère, D; Downey, E; Böhm, M; Danchi, W C; Durney, O; Ertel, S; Hill, J M; Hoffmann, W F; Mennesson, B; Millan-Gabet, R; Montoya, M; Pott, J -U; Skemer, A; Spalding, E; Stone, J; Vaz, A

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 $\\mu$m). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illus...

  12. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data

    Science.gov (United States)

    Sun, Genhou; Hu, Zeyong; Sun, Fanglin; Wang, Jiemin; Xie, Zhipeng; Lin, Yun; Huang, Fangfang

    2017-08-01

    The influence of spatial scales on surface fluxes is an interesting but not fully investigated question. This paper presents an analysis on the influence of spatial scales on surface fluxes in the north Tibetan Plateau based on eddy covariance (EC) and large aperture scintillometer (LAS) data at site Nagqu/BJ, combined with the land surface temperature (LST) and normalized difference vegetation index (NDVI) of moderate-resolution imaging spectroradiometer (MODIS). The analysis shows that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with sensible heat fluxes calculated with EC data (H_EC) in the rain and dry seasons. The difference in their footprints due to the wind direction is an important reason for the differences in H_EC and H_LAS. The H_LAS are statistically more consistent with H_EC when their footprints overlap than when their footprints do not. A detailed analysis on H_EC and H_LAS changes with net radiation and wind direction in rain and dry season indicates that the spatial heterogeneity in net radiation created by clouds contributes greatly to the differences in H_EC and H_LAS in short-term variations. A significant relationship between the difference in footprint-weighted averages of LST and difference in H_EC and H_LAS suggests that the spatial heterogeneity in LST at two spatial scales is a reason for the differences in H_EC and H_LAS and that LST has a positive correlation with the differences in H_EC and H_LAS. A significant relationship between the footprint-weighted averages of NDVI and the ratio of sensible heat fluxes at two spatial scales to net radiation (H/Rn) in the rain season supports the analysis that the spatial heterogeneity in canopy at two spatial scales is another reason for differences in H_EC and H_LAS and that canopy has a negative correlation with (H/Rn). An analysis on the influence of the difference in aerodynamic roughness lengths at two spatial scales on sensible heat fluxes shows that the

  13. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data

    Science.gov (United States)

    Sun, Genhou; Hu, Zeyong; Sun, Fanglin; Wang, Jiemin; Xie, Zhipeng; Lin, Yun; Huang, Fangfang

    2016-05-01

    The influence of spatial scales on surface fluxes is an interesting but not fully investigated question. This paper presents an analysis on the influence of spatial scales on surface fluxes in the north Tibetan Plateau based on eddy covariance (EC) and large aperture scintillometer (LAS) data at site Nagqu/BJ, combined with the land surface temperature (LST) and normalized difference vegetation index (NDVI) of moderate-resolution imaging spectroradiometer (MODIS). The analysis shows that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with sensible heat fluxes calculated with EC data (H_EC) in the rain and dry seasons. The difference in their footprints due to the wind direction is an important reason for the differences in H_EC and H_LAS. The H_LAS are statistically more consistent with H_EC when their footprints overlap than when their footprints do not. A detailed analysis on H_EC and H_LAS changes with net radiation and wind direction in rain and dry season indicates that the spatial heterogeneity in net radiation created by clouds contributes greatly to the differences in H_EC and H_LAS in short-term variations. A significant relationship between the difference in footprint-weighted averages of LST and difference in H_EC and H_LAS suggests that the spatial heterogeneity in LST at two spatial scales is a reason for the differences in H_EC and H_LAS and that LST has a positive correlation with the differences in H_EC and H_LAS. A significant relationship between the footprint-weighted averages of NDVI and the ratio of sensible heat fluxes at two spatial scales to net radiation (H/Rn) in the rain season supports the analysis that the spatial heterogeneity in canopy at two spatial scales is another reason for differences in H_EC and H_LAS and that canopy has a negative correlation with (H/Rn). An analysis on the influence of the difference in aerodynamic roughness lengths at two spatial scales on sensible heat fluxes shows that the

  14. Electrostatically Driven Large Aperture Micro-Mirror Actuator Assemblies for High Fill-Factor, Agile Optical Phase Arrays

    Science.gov (United States)

    2015-06-18

    gap is reduced demonstrates how the force is a nonlinear function of the applied voltage as well as the air gap saturation [35]. Because of this non...Instruments, vol. 75, no. 7, pp. 2229-2253, 2004. [35] S. Beeby, G. Ensell, M. Kraft and N. White, MEMS Mechanical Sensors, Norwood: Artech House Inc

  15. Optical 3D sensor for large objects in industrial application

    Science.gov (United States)

    Kuhmstedt, Peter; Heinze, Matthias; Himmelreich, Michael; Brauer-Burchardt, Christian; Brakhage, Peter; Notni, Gunther

    2005-06-01

    A new self calibrating optical 3D measurement system using fringe projection technique named "kolibri 1500" is presented. It can be utilised to acquire the all around shape of large objects. The basic measuring principle is the phasogrammetric approach introduced by the authors /1, 2/. The "kolibri 1500" consists of a stationary system with a translation unit for handling of objects. Automatic whole body measurement is achieved by using sensor head rotation and changeable object position, which can be done completely computer controlled. Multi-view measurement is realised by using the concept of virtual reference points. In this way no matching procedures or markers are necessary for the registration of the different images. This makes the system very flexible to realise different measurement tasks. Furthermore, due to self calibrating principle mechanical alterations are compensated. Typical parameters of the system are: the measurement volume extends from 400 mm up to 1500 mm max. length, the measurement time is between 2 min for 12 images up to 20 min for 36 images and the measurement accuracy is below 50μm.The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  16. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B....... The method is investigated using simulations and through measurements using both phased array and convex array transducers. The images all show an improved contrast compared to images without compounding, and by construction, imaging using an improved frame rate is possible. Using a phased array transducer...... and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging...

  17. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    OpenAIRE

    Clivati, Cecilia; Calonico, Davide; Costanzo, Giovanni A.; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical f...

  18. A Large Area Fiber Optic Gyroscope on multiplexed fiber network

    CERN Document Server

    Clivati, Cecilia; Costanzo, Giovanni A; Mura, Alberto; Pizzocaro, Marco; Levi, Filippo

    2012-01-01

    We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors

  19. Synthetic aperture imaging in astronomy and aerospace: introduction.

    Science.gov (United States)

    Creech-Eakman, Michelle J; Carney, P Scott; Buscher, David F; Shao, Michael

    2017-05-01

    Aperture synthesis methods allow the reconstruction of images with the angular resolutions exceeding that of extremely large monolithic apertures by using arrays of smaller apertures together in combination. In this issue we present several papers with techniques relevant to amplitude interferometry, laser radar, and intensity interferometry applications.

  20. LAS在西北半干旱地区的观测分析%Large Aperture Scintillometers(LAS)Observation in Semi-arid Regions of Northwestern China

    Institute of Scientific and Technical Information of China (English)

    黄山; 张文煜; 左洪超; 刘欣; 史永义

    2011-01-01

    In this paper, sensible heat flux in semi-arid region of northwestern China were calculated and analyzed by use of the observation data of Large Aperture Scintillometers (LAS) recorded per 30 minutes, the temperature, pressure data, and the observation data by Eddy Covariance System at Lanzhou University Semi-arid Climate and Environment Observatory during summer and winter of 2007.The values of the sensible heat flux in summer were bigger than that in winter, and there was a lag of peak value on diurnal variation curve in winter; at the similar weather conditions, the fluctuation of sensible flux in summer was bigger than that in winter.Weather condition had a great impact on the observations of LAS, the values of the sensible heat flux in sunny days were higher than that in cloudy days at the same season.Compared with sensible heat flux observed by Eddy Covariance System, the sensible heat flux measured by LAS was a little larger, but the values by the two methods showed a good agreement, and the correlation coefficient in summer was 0.95, and it was 0.98 in winter.%利用兰州大学半干旱气候与环境观测站2007年夏冬两季LAS观测数据.结合观测站气温、气压及同期的涡动相关仪30 min时间间隔的观测数据,计算分析了西北半干旱地区显热通量的变化特征,并将LAS所测结果与涡动相关仪的测量结果进行了对比分析.结果表明,在西北半干旱地区.夏季的显热通量值整体大于冬季,冬季显热通量的日变化峰值较夏季有明显的滞后性;在类似的天气状况下,夏季测得显热通量的波动要大于冬季;天气状况对LAS的观测结果有着很大的影响,在同一季节晴天显热通量较大,阴天较小;LAS测得显热通量H的值较涡动相关所得H值略微偏大.但LAS与涡动相关仪测得的显热通量有很好的符合性,复季相关系数为0.95,冬季相关系数为0.98.

  1. High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design

    CERN Document Server

    N'Diaye, Mamadou; Pueyo, Laurent; Elliot, Erin; Perrin, Marshall D; Wallace, J Kent; Groff, Tyler; Carlotti, Alexis; Mawet, Dimitri; Sheckells, Matt; Shaklan, Stuart; Macintosh, Bruce; Kasdin, N Jeremy; Soummer, Rémi

    2014-01-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing o...

  2. Role of the aperture in Z-scan experiments:A parametric study

    Institute of Scientific and Technical Information of China (English)

    M. R. Rashidian Vaziri

    2015-01-01

    In close-aperture Z-scan experiments, a small aperture is conventionally located in the far-field thereby enabling the detection of slight changes in the laser beam profile due to the Kerr-lensing effect. In this work, by numerically solving the Fresnel–Kirchhoff diffraction integrals, the amount of transmitted power through apertures has been evaluated and a parametric study on the role of the various parameters that can infl uence this transmitted power has been done. In order to perform a comprehensive analysis, we have used a nonlinear phase shift optimized for nonlocal nonlinear media in our calculations. Our results show that apertures will result in the formation of symmetrical fl uctuations on the wings of Z-scan transmittance curves. It is further shown that the appearance of these fl uctuations can be ascribed to the natural diffraction of the Gaussian beam as it propagates up to the aperture plane. Our calculations reveal that the nonlocal parameter variations can shift the position of fl uctuations along the optical axis, whereas their magnitude depends on the largeness of the induced nonlinear phase shift. It is concluded that since the mentioned fl uctuations are produced by the natural diffraction of the Gaussian beam itself, one must take care not to mistakenly interpret them as noise and should not expect to eliminate them from experimental Z-scan transmittance curves by using apertures with different sizes.

  3. Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra

    Science.gov (United States)

    Heusinger, Martin; Flügel-Paul, Thomas; Zeitner, Uwe-Detlef

    2016-08-01

    In this paper, we analyze the influence of large-scale segmentation errors in the morphology of high-performance optical gratings. It is thus assumed that the optical grating under consideration (typical lateral extends S are 10-1000 mm) can be spatially decomposed into a great many but unique sub-segments (≪ S; typical extends are 10-100 μm). Any violation of the perfect periodicity will result in the generation of stray light, especially Rowland ghosts, which radiate into a small angular region around the grating's diffraction orders. In this paper, we focus on three different kinds of segmentation errors. On the one hand, there are statistic as well as deterministic alignment errors between otherwise perfect sub-segments. On the other hand, we analyze the effect of chirping of geometrical parameters, i.e., the groove width, within every sub-segment. Most importantly, we find that the particular type of imperfection results in a unique characteristic of the according stray light spectrum which thus acts as a fingerprint. We come to this conclusion on three different ways. First, we rely on a simple theoretical model that is based on scalar diffraction theory. Second, we have performed rigorous numerical simulations for a high aspect ratio purely dielectric spectrometer grating (period = {667} nm). Third, the very same grating was then fabricated by e-beam lithography and its stray light spectrum was measured with a purposely designed optical setup. Eventually, all different routes to analyze the problem turn out to be in very good agreement, and we are confident that stray light measurements can be used as an important tool in the detection of fabrication imperfections.

  4. Leber’s Inherited Optic Neuropathy: A Large Family

    Directory of Open Access Journals (Sweden)

    Taylan Pekoz

    2012-04-01

    Full Text Available Leber's hereditary optic neuropathy characterized by loss of central vision is often seen in men and a maternally inherited disease. Here, admitted to our clinic with complaints of unilateral visual loss was diagnosed as Leber's hereditary optic neuropathy which was confirmed by the presence of a mutation at 3460G>A position. [Cukurova Med J 2012; 37(2.000: 121-124

  5. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  6. Mastering Apple Aperture

    CERN Document Server

    Fitzgerald, Thomas

    2013-01-01

    Written in a conversational style, the author will share his knowledge on advanced Aperture topics with detailed discussions of advanced topics, the theory behind some of those topics and lots of hints and tips for ways to improve your workflow.Photographer's who have a basic understanding of Aperture

  7. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future UV/Optical telescopes will require increasingly large apertures to answer the questions raised by HST, JWST, Planck and Hershel, and to complement the = 30-m...

  8. Modern methods of production of large-sized multicomponent optical systems

    Science.gov (United States)

    Galyavov, Igor R.; Belousov, Sergey P.; Ignatov, Aleksandr N.; Ponin, Oleg V.; Sharov, Aleksandr A.; Domnin, Aleksandr V.

    2016-10-01

    The article describes the technology of production of large-sized multicomponent optical systems of different function. All stages of a production cycle are considered: assembly of separate units of optical components, including aspherical and off-axis mirrors; preliminary assembly and adjustment of all system; final adjustment of optical system. Modern computer-controlled methods of testings and adjustment of multicomponent optical systems, using the examples of production of such systems at JSC LZOS, are described.

  9. Large High Performance Optics for Spaceborne Missions: L-3 Brashear Experience and Capability

    Science.gov (United States)

    Canzian, Blaise; Gardopee, George; Clarkson, Andrew; Hull, Tony; Borucki, William J.

    2010-01-01

    Brashear is a division of L-3 Communications, Integrated Optical Systems. Brashear is well known for the ground-based telescopes it has manufactured at its facilities and delivered to satisfied customers. Optics from meter-class up to 8.3 meters diameter have been fabricated in Brashear's facilities. Brashear has demonstrated capabilities for large spaceborne optics. We describe in this paper both legacy and new Brashear capabilities for high performance spaceborne optics.

  10. Convolutional neural networks for synthetic aperture radar classification

    Science.gov (United States)

    Profeta, Andrew; Rodriguez, Andres; Clouse, H. Scott

    2016-05-01

    For electro-optical object recognition, convolutional neural networks (CNNs) are the state-of-the-art. For large datasets, CNNs are able to learn meaningful features used for classification. However, their application to synthetic aperture radar (SAR) has been limited. In this work we experimented with various CNN architectures on the MSTAR SAR dataset. As the input to the CNN we used the magnitude and phase (2 channels) of the SAR imagery. We used the deep learning toolboxes CAFFE and Torch7. Our results show that we can achieve 93% accuracy on the MSTAR dataset using CNNs.

  11. Beam optics in a MeV-class multi-aperture multi-grid accelerator for the ITER neutral beam injector.

    Science.gov (United States)

    Kashiwagi, M; Taniguchi, M; Umeda, N; de Esch, H P L; Grisham, L R; Boilson, D; Hemsworth, R S; Tanaka, M; Tobari, H; Watanabe, K; Inoue, T

    2012-02-01

    In a multi-aperture multi-grid accelerator of the ITER neutral beam injector, the beamlets are deflected due to space charge repulsion between beamlets and beam groups, and also due to magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid support structure. Such complicated beamlet deflections and the compensations have been examined utilizing a three-dimensional beam analysis. The space charge repulsion and the influence by the grid support structure were studied in a 1∕4 model of the accelerator including 320 beamlets. Beamlet deflection due to the magnetic field was studied by a single beamlet model. As the results, compensation methods of the beamlet deflection were designed, so as to utilize a metal bar (so-called field shaping plate) of 1 mm thick beneath the electron suppression grid (ESG), and an aperture offset of 1 mm in the ESG.

  12. Large Scale Medical Databases On Digital Optical Discs

    Science.gov (United States)

    Rann, Leonard S.

    1985-04-01

    Since 1974, Micromedex Inc., has authored and published three widely used medical databases on microfiche. An integrated medical database system has been designed to run on an IBM-PC compatible computer utilizing digital optical discs as the primary mass storage medium.

  13. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    Science.gov (United States)

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  14. Construction and thermal efficiency test of 145m and 165m SpaceTube large-aperture parabolic trough collector prototypes

    Science.gov (United States)

    Rubia, Salvador Valenzuela; Schramm, Markus; Yildiz, Hülya; Marcotte, Patrick; Casero, David Martín; Magee, John Sebastian

    2016-05-01

    During 2013-2014 two prototype SpaceTube® 8.2 parabolic trough collector [1] were built, optically tested, and interconnected into an existing parabolic trough thermal testing loop at Abengoa's Solucar Platform in Spain. After this startup process more than 500 hours of testing at nominal operating conditions (393 °C maximum temperature and 40 bar maximum pressure) were accumulated, allowing verification of the real-world thermal performance against model predictions. Measured performances of both collectors met the optical performance target and no significant optical or assembly deficiency was found, resulting in verification of the collector(s) as ready to commercialize.

  15. Incorporating prior knowledge of urban scene spatial structure in aperture code designs for surveillance systems

    Science.gov (United States)

    Valenzuela, John R.; Thelen, Brian J.; Subotic, Nikola

    2010-08-01

    Two major missions of Surveillance systems are imaging and ground moving target indication (GMTI). Recent advances in coded aperture electro optical systems have enabled persistent surveillance systems with extremely large fields of regard. The areas of interest for these surveillance systems are typically urban, with spatial topologies having a very definite structure. We incorporate aspects of a priori information on this structure in our aperture code designs to enable optimized dealiasing operations for undersampled focal plane arrays. Our framework enables us to design aperture codes to minimize mean square error for image reconstruction or to maximize signal to clutter ratio for GMTI detection. In this paper we present a technical overview of our code design methodology and show the results of our designed codes on simulated DIRSIG mega-scene data.

  16. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  17. Broadband synthetic aperture geoacoustic inversion.

    Science.gov (United States)

    Tan, Bien Aik; Gerstoft, Peter; Yardim, Caglar; Hodgkiss, William S

    2013-07-01

    A typical geoacoustic inversion procedure involves powerful source transmissions received on a large-aperture receiver array. A more practical approach is to use a single moving source and/or receiver in a low signal to noise ratio (SNR) setting. This paper uses single-receiver, broadband, frequency coherent matched-field inversion and exploits coherently repeated transmissions to improve estimation of the geoacoustic parameters. The long observation time creates a synthetic aperture due to relative source-receiver motion. This approach is illustrated by studying the transmission of multiple linear frequency modulated (LFM) pulses which results in a multi-tonal comb spectrum that is Doppler sensitive. To correlate well with the measured field across a receiver trajectory and to incorporate transmission from a source trajectory, waveguide Doppler and normal mode theory is applied. The method is demonstrated with low SNR, 100-900 Hz LFM pulse data from the Shallow Water 2006 experiment.

  18. Optical materials for astronomy from SCHOTT: the quality of large components

    Science.gov (United States)

    Jedamzik, Ralf; Hengst, Joachim; Elsmann, Frank; Lemke, Christian; Döhring, Thorsten; Hartmann, Peter

    2008-07-01

    The new generation of survey telescopes and future giant observatories such as E-ELT or TMT do not only require very fast or very large mirrors, but also high sophisticated instruments with the need of large optical materials in outstanding quality. The huge variety of modern optical materials from SCHOTT covers almost all areas of specification needs of optical designers. Even if many interesting optical materials are restricted in size and/or quality, there is a variety of optical materials that can be produced in large sizes, with excellent optical homogeneity, and a low level of stress birefringence. Some actual examples are high homogeneous N-BK7 blanks with a diameter of up to 1000 mm, CaF2 blanks as large as 300 mm which are useable for IR applications, Fused Silica (LITHOSIL®) with dimensions up to 700 mm which are used for visible applications, and other optical glasses like FK5, LLF1 and F2 in large formats. In this presentation the latest inspection results of large optical materials will be presented, showing the advances in production and measurement technology.

  19. Software Defined Optics and Networking for Large Scale Data Centers

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    Big data imposes correlations of large amounts of information between numerous systems and databases. This leads to large dynamically changing flows and traffic patterns between clusters and server racks that result in a decrease of the quality of transmission and degraded application performance....... Highly interconnected topologies combined with flexible, on demand network configuration can become a solution to the ever-increasing dynamic traffic...

  20. Software Defined Optics and Networking for Large Scale Data Centers

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Andrus, Bogdan-Mihai; Tafur Monroy, Idelfonso

    Big data imposes correlations of large amounts of information between numerous systems and databases. This leads to large dynamically changing flows and traffic patterns between clusters and server racks that result in a decrease of the quality of transmission and degraded application performance...

  1. The Affordable Pre-Finishing of Silicon Carbide for Optical Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Large aperture, lightweight optical mirror technologies are critical for the future of lightweight telescopes and their attendant missions to explore the planets in...

  2. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  3. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Teplow, William J. [US Geothermal, Inc., Boise, ID (United States); Warren, Ian [US Geothermal, Inc., Boise, ID (United States)

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  4. High temperature thermal behaviour modeling of large-scale fused silica optics for laser facility

    Institute of Scientific and Technical Information of China (English)

    Yu Jing-Xia; He Shao-Bo; Xiang Xia; Yuan Xiao-Dong; Zheng Wan-Guo; Lü Hai-Bing; Zu Xiao-Tao

    2012-01-01

    High temperature annealing is often used for the stress control of optical materials.However,weight and viscosity at high temperature may destroy the surface morphology,especially for the large-scale,thin and heavy optics used for large laser facilities.It is necessary to understand the thermal behaviour and design proper support systems for large-scale optics at high temperature.In this work,three support systems for fused silica optics are designed and simulated with the finite element method.After the analysis of the thermal behaviours of different support systems,some advantages and disadvantages can be revealed.The results show that the support with the optical surface vertical is optimal because both pollution and deformation of optics could be well controlled during annealing at high temperature.Annealing process of the optics irradiated by CO2 laser is also simulated.It can be concluded that high temperature annealing can effectively reduce the residual stress.However,the effects of annealing on surface morphology of the optics are complex.Annealing creep is closely related to the residual stress and strain distribution.In the region with large residual stress,the creep is too large and probably increases the deformation gradient which may affect the laser beam propagation.

  5. Aperture-averaging effects for weak to strong scintillations in turbulent atmosphere

    Institute of Scientific and Technical Information of China (English)

    Yixin Zhang(张逸新); Tuo Zhu(朱拓); Chunkan Tao(陶纯堪)

    2004-01-01

    Under the approximations of (1) the received irradiance fluctuations of an optical wave caused by small scale turbulent eddies are multiplicatively modulated by the fluctuations caused by large scale turbulent eddies;(2) the scintillations caused by small- and large-scale eddies, respectively, are statistically independent; (3)the Rytov method for optical scintillation collected by the finite-diameter receiving aperture is valid for light wave propagation under weak to saturation fluctuation regime, we develop the applicable apertureaveraging analytic formulas in the week-to-strong-fluctuation for the scintillations of plane and spherical waves, which include the outer- and inner-scale rules of turbulence.

  6. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    WU Ji; ZHANG Cheng; LIU Hao; SUN WeiYing

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics, radio astronomy and mi-crowave remote sensing areas. With the increasing demands of high resolution imaging observation, a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application. This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups, whose revolving radii and speeds are different. The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity, and greatly simplify the system hardware at the cost of sacrificing a certain time resolution. The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction. The potential ap-plications of geostationary orbit (GEO) earth observation and solar polar orbit (SPO) plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  7. Asynchronous rotation scan for synthetic aperture interferometric radiometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Synthetic aperture interferometric technique has wide applications in optics,radio astronomy and mi-crowave remote sensing areas.With the increasing demands of high resolution imaging observation,a new time-sharing sampling scheme of asynchronous rotation scan is proposed to meet the technical challenge of achieving a large equivalent aperture and overcome the operating barriers of space borne application.This configuration is basically composed by two asynchronously and concentrically ro-tating antenna groups,whose revolving radii and speeds are different.The synthetic aperture system with asynchronous rotation scanning scheme can effectively solve the trade-off problem of system complexity,and greatly simplify the system hardware at the cost of sacrificing a certain time resolution.The basic rules and design methods of asynchronous rotation scan are investigated The Gridding method is introduced to inverse the spiral sampling data for image reconstruction.The potential ap-plications of geostationary orbit(GEO)earth observation and solar polar orbit(SPO)plasma cloud observation are explored with numerical simulations to validate the significance and feasibility of this new imaging configuration.

  8. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...

  9. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...

  10. Adaptive optics sky coverage modeling for extremely large telescopes.

    Science.gov (United States)

    Clare, Richard M; Ellerbroek, Brent L; Herriot, Glen; Véran, Jean-Pierre

    2006-12-10

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms.

  11. Large area full-field optical coherence tomography

    Science.gov (United States)

    Chang, Shoude; Sherif, Sherif; Flueraru, Costel

    2006-09-01

    Optical Coherence Tomography (OCT) is a fundamentally new type of optical imaging technology. OCT performs high resolution, cross-sectional tomographic imaging of the internal structure in materials and biological systems. The biomedical applications of the OCT imaging systems have been developed for diagnostics of ophthalmology, dermatology, dentistry and cardiology. Most of existing OCT systems use point-scanning based technology, however, the 3-axis scanning makes the system slow and cumbersome. A few OCT systems working directly on 2D full-field images were reported, however, they are designed to work in a relatively small area, around couple of hundred microns square. In this paper, we present a design and implementation of a full-field OCT imaging system for acquiring tomography and with a working area around 15mm by 15 mm. The problems rising from full-field OCT are addressed and analyzed. The algorithms to extract the tomography are proposed. Two applications of multilayer information retrieval and 3D object imaging using full-field OCT are described.

  12. Investigation of standing-wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided focused ultrasound (MRgFUS) phased array: an experimental and simulation study.

    Science.gov (United States)

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2012-02-01

    Standing-wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30-cm diameter with 15-cm radius of curvature, low-frequency (230 kHz), hemispherical transcranial magnetic resonance-guided focused ultrasound phased array. Experimental and simulation studies were conducted with changing aperture size and f -number configurations of the phased array and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and antinodes of standing wave produced by the small-aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing-wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number.

  13. Coded-aperture imaging using photo-induced reconfigurable aperture arrays for mapping terahertz beams

    CERN Document Server

    Kannegulla, Akash; Rahman, Syed; Fay, Patrick; Xing, Huili Grace; Cheng, Li-Jing; Liu, Lei

    2013-01-01

    We report terahertz coded-aperture imaging using photo-induced reconfigurable aperture arrays on a silicon wafer. The coded aperture was implemented using programmable illumination from a commercially available digital light processing projector. At 590 GHz, each of the array element apertures can be optically turned on and off with a modulation depth of 20 dB and a modulation rate of ~1.3 KHz. Prototype demonstrations of 4 by 4 coded-aperture imaging using Hadamard coding have been performed and this technique has been successfully applied to mapping THz beams by using a 6 by 6 aperture array at 590 GHz. The imaging results agree closely with theoretical calculations based on Gaussian beam transformation, demonstrating that this technique is promising for realizing real-time and low-cost terahertz cameras for many applications. The reported approach provides a simple but powerful means to visualize THz beams, which is highly desired in quasi-optical system alignment, quantum-cascade laser design and characte...

  14. Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative

    Institute of Scientific and Technical Information of China (English)

    刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华

    2003-01-01

    Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.

  15. Edge Control in Large Segmented Optics Using Zeeko Polishing Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The fabrication of very large optical telescopes for space astronomy can be prohibitively costly due to the immense weight and size of monolithic primary mirrors....

  16. Analysis of Electrically Large Antennas using Fast Physical Optics

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Viskum, Hans-Henrik; Meincke, Peter

    2015-01-01

    The design of electrically large antennas can be a significant challenge for computational electromagnetics (CEM) tools, particularly during the final stages of the design process where there are strict requirements for the accuracy. In the present paper, we consider the use of a newly developed...

  17. Large-scale optical diffraction tomography for inspection of optical plastic lenses

    CERN Document Server

    Kim, Kyoohyun; Park, YongKeun

    2015-01-01

    Herein is presented an optical diffraction tomography (ODT) technique for measuring 3-D refractive index (RI) maps of optical plastic lenses. A Mach-Zehnder interferometer was used to measure multiple complex optical fields of a plastic lens immersed in RI matching oil, at various rotational orientations. From this, ODT was used to reconstruct a 3-D RI distribution of the plastic lens with unprecedented RI sensitivity (dn = 4.21 x 10^-5) and high resolution (12.8 um). As a demonstration, 3-D RI distributions of a 2-mm-diameter borosilicate sphere and a 5-mm-diameter plastic lens

  18. Dispersion flattened single mode optical fiber with large effective area

    Science.gov (United States)

    Babita, Rastogi, Vipul

    2013-06-01

    In this paper we present design of a fiber having ultra-flattened dispersion with large effective area over a wide range of wavelengths. The maximum value of the dispersion and dispersion slope within the spectral range 1450-1600 nm are 1.0 ps/km/nm and 0.05 ps/km/nm2 respectively. Effective mode area within the aforementioned wavelength range varies from 100-295 μm2.

  19. Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography.

    Science.gov (United States)

    Binzoni, Tiziano; Torricelli, Alessandro; Giust, Remo; Sanguinetti, Bruno; Bernhard, Paul; Spinelli, Lorenzo

    2014-08-01

    A bone tissue phantom prototype allowing to test, in general, optical flowmeters at large interoptode spacings, such as laser-Doppler flowmetry or diffuse correlation spectroscopy, has been developed by 3D-stereolithography technique. It has been demonstrated that complex tissue vascular systems of any geometrical shape can be conceived. Absorption coefficient, reduced scattering coefficient and refractive index of the optical phantom have been measured to ensure that the optical parameters reasonably reproduce real human bone tissue in vivo. An experimental demonstration of a possible use of the optical phantom, utilizing a laser-Doppler flowmeter, is also presented.

  20. New challenges for Adaptive Optics Extremely Large Telescopes

    CERN Document Server

    Le Louarn, M; Sarazin, M; Tokovinin, A

    2000-01-01

    The performance of an adaptive optics (AO) system on a 100m diameter ground based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60% is achieved at 0.5um with a limiting magnitude of the AO guide source near R~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use 3 or 4 reference sources and up to 3 deformable mirrors, which increase up to 8-fold the corrected field size (up to 60\\arcsec at 0.5 um). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50% with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint (R ~22) NGS for low-order correction, which results in a sky cov...

  1. Wide Aperture Multipole Magnets of Separator COMBAS

    CERN Document Server

    Artukh, A G; Gridnev, G F; Gruszecki, M; Koscielniak, F; Semchenkova, O V; Sereda, Yu M; Shchepunov, V A; Szmider, J; Teterev, Yu G; Severgin, Yu P; Rozhdestvensky, B V; Myasnikov, Yu A; Shilkin, N F; Lamzin, E A; Nagaenko, M G; Sytchevsky, S E; Vishnevski, I N

    2000-01-01

    The high-resolving wide aperture separator COMBAS has been designed and commissioned at the FLNR, JINR. Its magneto-optical structure is based on strong focusing principle. The magnetic fields of analysing magnets M_1, M_2, M_7, M_8, contain quadrupole components of alternating sign that provide necessary beam focusing. Besides, all the magnets M_1-M_8, contain sextupole and octupole field components, which minimizes the 2nd and 3rd order aberrations. All this allowed one to increase their apertures, to effectively form a beam of the required sizes, and to decrease the channel length. This implementation of wide aperture magnets with combined functions is unique for the separation technology. Three-components magnetic measurements of all the magnets were performed. The measured data allow reconstructing the 3D-distributions of the fields in all the magnets. 3D-maps are supposed to be used for particle trajectory simulations throughout the entire separator.

  2. Confocal coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  3. Fully Optimized Shaped Pupils for Arbitrary Apertures

    Science.gov (United States)

    Carlotti, Alexis; Vanderbei, R.; Kasdin, N. J.; Che, G.

    2012-01-01

    Optimal apodization masks for monolithic and segmented apertures are presented, with and without central obstruction and spider vanes. Examples of optimal masks are shown for several ground-based telescopes (The Subaru, Keck, Gemini, Palomar and Very Large telescopes). We also discuss the case of extremely large telescopes. Various high-contrast regions are considered with different inner and outer working angles, shapes and contrasts. These parameters are chosen to fit the specific constraints of each instrument, in particular those set by the dedicated coronagraphic adaptive optics system. Because of the limited size of the high-contrast regions, all the masks that result from these optimizations tend to have binary transmissions, and are thus as achromatic as previous shaped pupils. Effort is put on obtaining structurally connected masks. We intend to test these new shaped pupils in Princeton's high-contrast imaging laboratory, and to this end we explore different techniques to make the masks, such as cutting them in a metal layer, laying them on a glass substrate, or using a MOEMS device.

  4. Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, Daniel J.

    2011-01-01

    The polished panel optical receiver concept described here makes use of aluminum panels on the main reflector of the Deep Space Network's (DSN's) 34-meter antennas at optical wavelengths by polishing and coating their surface to efficiently reflect near-infrared wavelengths in the 1,064 1,550-nanometer range. Achievable surface smoothness is not a limiting factor for aluminum panels, and initial field experiments indicate that the surface quality of microwave aluminum panels is sufficient to concentrate the light into small, but not diffraction-limited, spots at their primary focus. Preliminary analysis of data from high-quality microwave panels has shown that the light can be concentrated into 200 400 microradian cones, resulting in spot diameters of 2-4 mm at the 10-meter primary focus F(0) shown in the figure, or 2-4 cm spots at F(1) after magnification by the subreflector, which results in an effective focal length of about 100 meters. Three distinct implementation options are possible, with theoretically identical tracking and communications performance: Option 1: The communications assembly could be placed directly behind the subreflector at F(0), but this placement would require replacing the existing all-aluminum subreflector with a new design that transmits optical wavelengths but reflects RF, thus transmitting the optical signal to the primary focus of the parabolic polished aluminum panels at F(0), as shown in the figure. Option 2: Alternately, the optical communications assembly could be located near the first available focal-spot F(1) following reflection by the subreflector (which would have to be polished), next to the input to the beam waveguide on the main reflector as shown in the figure. Option 3: Finally, the optical communications assembly could be placed inside the pedestal room, and separated from the RF signal after the ellipsoid and before the signal reached the microwave receiver via an RF/optical dichroic near F(3).

  5. Compound interferometer system for large-scale optical components surface measurement

    Science.gov (United States)

    Wang, Qiwei; Sun, Tao; Han, Chengshun; Dong, Shen; Rodionov, A. Y.; Shirin, A. S.; Shekhtman, V. N.

    2010-10-01

    Large-scale optical components is being applied more and more widely in the astronomical optics, space optics, groundbased space target detection and identification, laser propagation in the atmosphere, inertial confinement fusion (ICF) and other fields, especially the large-scale aspherical optical component is one of key parts which play a supportive role in those fields. Large-scale optical components surface measurement instrument and technique has become a research focus of many scholars in recent years. In this paper introduced a compound interferometer system, which based on the principle of traditional Fizeau interferometer and lateral shear interferometer. In this system, produces two probe light beams by a He-Ne laser, one of probe light beams is used to measure flat optical surface by using comparison with the reference wavefront, and the other probe light beam is used to measure spherical and aspherical optical surface according to the principle of lateral shear interferometer and without using reference wavefront. Discussed in detail optical layout of the system as well as the principle of surface measurement, and the preliminary test results were given. The compound interferometer system has a compact, multi-function, and good anti-vibration performance can be used for large-scale optical plane (diameter less than 320mm), spherical and aspherical optical components surface measurement. Due to the information that lateral shear interferogram carries does not show directly the deviation between the wavefront under test and the ideal wavefront, but the wavefront difference, so the wavefront reconstruction method is more complex, and the wavefront reconstruction algorithm from lateral shearing interferograms is also analyzed and discussed.

  6. Picosecond optical nonlinearities in symmetrical and unsymmetrical phthalocyanines studied using the Z-scan technique

    Indian Academy of Sciences (India)

    S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari

    2010-11-01

    We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.

  7. Compensation in the presence of deep turbulence using tiled-aperture architectures

    Science.gov (United States)

    Spencer, Mark F.; Brennan, Terry J.

    2017-05-01

    The presence of distributed-volume atmospheric aberrations or "deep turbulence" presents unique challenges for beam-control applications which look to sense and correct for disturbances found along the laser-propagation path. This paper explores the potential for branch-point-tolerant reconstruction algorithms and tiled-aperture architectures to correct for the branch cuts contained in the phase function due to deep-turbulence conditions. Using wave-optics simulations, the analysis aims to parameterize the fitting-error performance of tiled-aperture architectures operating in a null-seeking control loop with piston, tip, and tilt compensation of the individual optical beamlet trains. To evaluate fitting-error performance, the analysis plots normalized power in the bucket as a function of the Fried coherence diameter, the log-amplitude variance, and the number of subapertures for comparison purposes. Initial results show that tiled-aperture architectures with a large number of subapertures outperform filled-aperture architectures with continuous-face-sheet deformable mirrors.

  8. Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths

    Science.gov (United States)

    Jain, A. (Inventor)

    1982-01-01

    A single-frequency multibeam synthetic aperture radar for large swath imaging is disclosed. Each beam illuminates a separate ""footprint'' (i.e., range and azimuth interval). The distinct azimuth intervals for the separate beams produce a distinct Doppler frequency spectrum for each beam. After range correlation of raw data, an optical processor develops image data for the different beams by spatially separating the beams to place each beam of different Doppler frequency spectrum in a different location in the frequency plane as well as the imaging plane of the optical processor. Selection of a beam for imaging may be made in the frequency plane by adjusting the position of an aperture, or in the image plane by adjusting the position of a slit. The raw data may also be processed in digital form in an analogous manner.

  9. Combined synthetic aperture radar/Landsat imagery

    Science.gov (United States)

    Marque, R. E.; Maurer, H. E.

    1978-01-01

    This paper presents the results of investigations into merging synthetic aperture radar (SAR) and Landsat multispectral scanner (MSS) images using optical and digital merging techniques. The unique characteristics of airborne and orbital SAR and Landsat MSS imagery are discussed. The case for merging the imagery is presented and tradeoffs between optical and digital merging techniques explored. Examples of Landsat and airborne SAR imagery are used to illustrate optical and digital merging. Analysis of the merged digital imagery illustrates the improved interpretability resulting from combining the outputs from the two sensor systems.

  10. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Irshad A.; Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmed, Jahangeer; Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Ahmad, Tokeer, E-mail: tokeer.ch@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  11. Synthetic Aperture Radar Interferometry

    Science.gov (United States)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  12. IMPROVED SYNTHETIC APERTURE SONAR MOTION COMPENSATION COMBINED DPCA WITH SUB-APERTURE IMAGE CORRELATION

    Institute of Scientific and Technical Information of China (English)

    Liu Wei; Zhang Chunhua; Liu Jiyuan

    2009-01-01

    Estimation precision of Displaced Phase Center Algorithm (DPCA) is affected by the number of displaced phase center pairs, the bandwidth of transmitting signal and many other factors. Detailed analysis is made on DPCA's estimation precision. Analysis results show that the directional vector estimation precision of DPCA is low, which will produce accumulating errors when phase centers' track is estimated. Because of this reason, DPCA suffers from accumulating errors seriously. To overcome this problem, a method combining DPCA with Sub Aperture Image Correlation (SAIC) is presented. Large synthetic aperture is divided into sub-apertures. Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data. Bulk errors between sub-apertures are estimated by SAIC and compensated directly to sub-aperture images. After that, sub-aperture images are directly used to generate ultimate SAS image. The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system. Results show the method can successfully remove the accumulating error and produce a better SAS image.

  13. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  14. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    Science.gov (United States)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  15. Review of self-focusing of high power lasers in large-mode-area optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Chujun; Li Ying; Lei Dajun; Yang Hua; Wen Shuangchun; Fan Dianyuan; Wen Jianguo, E-mail: scwen@vip.sina.com [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)

    2011-02-01

    The main progress about the self-focusing of high power lasers in large-mode-area optical fiber has been reviewed. The theoretical models including the self-focusing effects have been discussed. Some different views on the whole beam self focusing and small scale self-focusing effects in optical fiber have been introduced. Moreover, the possible methods exceeding the bulk-media self-focusing threshold have been discussed and explored.

  16. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    Science.gov (United States)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  17. Collimator equipment of the Large Optical Test Facility Vertical for testing space telescopes

    Science.gov (United States)

    Sergeev, Pavel A.; Gogolev, Yuri A.; Zvonkova, V. V.; Kobozev, I. R.; Ostapenko, S. V.; Malamed, Evgeny R.; Demidov, V. V.

    1995-06-01

    This paper is concerned with the collimator equipment of the large optical test facility (LOTF) 'vertical' designed for testing space telescopes. It is being created in the Research Center 'S.I. Vavilov State Optical Institute' in Russia. The optical scheme and special structural features of the vacuum vertical-type double-mirror collimator will be covered here. This paper deals with technical data and potentials of collimator focal equipment. Estimations of the collimator thermal aberrations caused by temperature fields coming from thermal simulators are put forward.

  18. Very large optical rotation generated by Rb vapor in a multi-pass cell

    CERN Document Server

    Li, S; Sheng, D; Dural, N; Romalis, M V

    2011-01-01

    Paramagnetic Faraday rotation is a powerful technique for atom sensing widely used in quantum non-demolition measurements, fundamental symmetry tests, and other precision measurements. We demonstrate the use of a multi-pass optical cell for Faraday rotation spectroscopy and observe polarization rotation in excess of 100 radians from spin-polarized Rb vapor. Unlike optical cavities, multi-pass cells have a deterministic number of light passes and can be used to measure large optical rotations. We also observe a 10-fold suppression of transverse spin relaxation when Rb atoms are placed in a coherent superposition state immune to spin-exchange collisions.

  19. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    Science.gov (United States)

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF.

  20. Measurements of Aperture Averaging on Bit-Error-Rate

    Science.gov (United States)

    Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert

    2005-01-01

    We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.

  1. Parameters for aperture calculations at injection for HL-LHC*

    CERN Document Server

    Bruce, Roderik; De Maria, Riccardo; Giovannozzi, Massimo; Redaelli, Stefano; Tomas Garcia, Rogelio; Velotti, Francesco Maria; Wenninger, Jorg

    2016-01-01

    Accurate evaluations of the margins of available aperture in the LHC and HL-LHC are very important, in order to judge if proposed optics and hardware are adequate, and to push the machine performance. A 2D calculation model was used during the design stage to study the aperture margins, however, the parameters of the model can now be refined based on LHC measurements and operational experience. This has already been carried out for the triplet aperture in the experimental insertions during physics operation [1]. In this report, we study instead the parameter sets for aperture calculations at injection for HL-LHC, and provide an updated set of tolerances as well as a criterion for the allowed aperture.

  2. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal...... resolutions; 2) the lack of capability in detecting flow other than the one along the direction of the beam. Addressing these technical limitations would translate in the clinic as a gain in valuable clinical information and a removal of operator-dependant sources of error, which would improve the diagnosis....... The main contribution of this work was the development of an angle estimator which features high accuracy and low standard deviation over the full 360◦ range. The estimator demonstrated its capability of operating at high frame rates (> 1000 Hz), and simultaneously detecting a large range of flow...

  3. Congenital pyriform aperture stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Osovsky, Micky [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel); Rabin Medical Center, Department of Neonatology, Schneider Children' s Medical Center of Israel, Beilinson Campus, Petah Tikvah (Israel); Aizer-Danon, Anat; Horev, Gadi [Schneider Pediatric Hospital, Department of Pediatric Radiology, Petach Tikvah (Israel); Sirota, Lea [Schneider Pediatric Hospital, Department of Neonatology, Petach Tikvah (Israel)

    2007-01-15

    Nasal airway obstruction is a potentially life-threatening condition in the newborn. Neonates are obligatory nasal breathers. The pyriform aperture is the narrowest, most anterior bony portion of the nasal airway, and a decrease in its cross-sectional area will significantly increase nasal airway resistance. Congenital nasal pyriform aperture stenosis (CNPAS) is a rare, unusual form of nasal obstruction. It should be considered in the differential diagnosis of any neonate or infant with signs and symptoms of upper airway compromise. It is important to differentiate this level of obstruction from the more common posterior choanal stenosis or atresia. CNPAS presents with symptoms of nasal airway obstruction, which are often characterized by episodic apnea and cyclical cyanosis. (orig.)

  4. The physics of light transmission through subwavelength apertures and aperture arrays

    Science.gov (United States)

    Weiner, J.

    2009-06-01

    The passage of light through apertures much smaller than the wavelength of the light has proved to be a surprisingly subtle phenomenon. This report describes how modern developments in nanofabrication, coherent light sources and numerical vector field simulations have led to the upending of early predictions from scalar diffraction theory and classical electrodynamics. Optical response of real materials to incident coherent radiation at petahertz frequencies leads to unexpected consequences for transmission and extinction of light through subwavelength aperture arrays. This paper is a report on progress in our understanding of this phenomenon over the past decade.

  5. Aperture effects in squid jet propulsion.

    Science.gov (United States)

    Staaf, Danna J; Gilly, William F; Denny, Mark W

    2014-05-01

    Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.

  6. The slant-stacklet transform and its application to teleseismic PcP-P data recorded at large aperture seismic array

    Science.gov (United States)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    In most high-resolution studies of the Earth's Deep Interior, the limited amount and uneven distribution of high-quality observations of short-period teleseismic body waves are major obstacles. Dense broadband seismic networks help to overcome major challenges of low signal-to-noise ratio (SNR) of the target phases and of signal-to-interference ratio (SIR) of other (often stronger) mantle phases when the slowness difference is large enough. Intuitive delay-and-sum (i.e. slant-stack) approaches are routinely applied to combine data of many spatially close stations to improve data quality. Alternative methods developed in the context of image processing, such as Radon transform-based methods, have proven useful in exploration seismology to facilitate enhancement and separation of signals according to their slowness and time of arrival. In this spirit, we have introduced the slant-stacklet transform to define coherency-guided filters able to exploit signals that would have been otherwise rejected because of low SNR or SIR. As an illustration, this method allows us to dramatically increase the amount of high-quality PcP observations using dense arrays in North America and Japan, sampling Central America, the western Pacific and Alaska/western Canada with unprecedented resolution and accuracy. After mantle corrections, the main signal left in these regions is relatively long wavelength in these regions of fast velocities around the Pacific, except at the western border of the Pacific large-low shear-velocity province (LLSVP) where we observe a rapid reduction of Vp velocity over a distance of about 10˚. This is just one step to further increase lowermost mantle imaging using P waves, much more information from PcP and other complementary signals (e.g. PdP) around the globe are needed to resolve volumetric structure, topography of the core-mantle boundary and D" discontinuity, and the trade-offs between them, in order to improve our understanding of the interaction

  7. Woody savannah tree structural assessment in the greater Kruger National Park region, South Africa, using multi-seasonal polarimetric synthetic aperture radar (SAR) and optical data product approaches

    CSIR Research Space (South Africa)

    Naidoo, L

    2012-11-01

    Full Text Available scattering properties which is essential for building SAR related tree structure relationships. The use of Passive optical sensors alone has also played a role in accurately estimating tree structural parameters (Nichol and Sarker, 2011; Castillo..., J., Field, C.B., 2007. Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging (wLiDAR) for three-dimensional studies of ecosystems. Journal of Applied Remote Sensing, 1 Castillo...

  8. Optical performance assessment under environmental and mechanical perturbations in large, deployable telescopes

    Science.gov (United States)

    Folley, Christopher; Bronowicki, Allen

    2005-09-01

    Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.

  9. Three-dimensional packaging of very large scale integrated optics (VLSIO) for high-complexity optical systems

    Science.gov (United States)

    West, Lawrence C.; Roberts, Charles W.; Piscani, Emil C.; Dubey, Madan; Jones, Kenneth A.; McLane, George F.

    1996-03-01

    Optics has the fundamental capability of dramatically improving computer performance via the reduction of capacitance for intrinsic high bandwidth communications and low power usage. Yet optical devices have not displaced silicon VLSI in any measure to date. The reason is clear. When placed into systems, the optical devices have not had significantly greater performance in equally complex information processing circuits and similarly low manufacturing cost. An approach demonstrated here uses the same system integration techniques that have been successful for silicon electronics, only applied to optics. Essential for creation of very large scale integrated optics (VLSIO), with over 50,000 high speed logic gates per square centimeter, is a new class of ultra high confinement (UHC) waveguides. These waveguides are created with high index difference (as high as 4.0 to 1.0) between guide and cladding. The waveguides have been demonstrated with infrared cross sections less than 5% of a square free space wavelength. These waveguides can be manufactured today only in the mid-infrared, but the concepts should scale to the near-infrared as lithography improves. Waveguide corners have been designed and demonstrated with a bend radius of less than one free space wavelength. Resonators have been designed which have over 100 times smaller volume than VCSELs, yet efficiently inter-connected laterally in high densities. A connector to the UHC waveguides has been developed and demonstrated using diffractive optical element arrays on the back side of the substrate. The coupler arrays can allow up to 10,000 Gaussian beam connections per square centimeter. This connectivity also has advantages for low cost three dimensional packaging for reduced cost and thermal dissipation. Experimental results on the above concepts and components are presented.

  10. Design of lightweight large aperture mirrors and supporting structures%大口径反射镜轻量化及其支撑结构设计

    Institute of Scientific and Technical Information of China (English)

    李畅; 何欣

    2015-01-01

    为了满足大口径(800mm ×400mm)矩形轮廓反射镜的结构稳定性设计要求,采用背部3点支撑方式,基于Bipod原理,为某超宽覆盖空间的相机主镜设计了一种新型柔性支撑结构。分析了反射镜各结构参量对其质量和刚度的影响,选取其中影响较大的参量作为设计变量,对镜体轻量化结构进行了优化设计,并进行了有限元分析。结果表明,优化设计后的反射镜组件具有较好的力学适应性、温度适应性和动态刚度。振动试验结果与有限元分析结果相符,证明了其准确性。%In order to satisfy the structure stability of a large rectangle mirror (800mm ×400mm), a novel flexible supporting structure of space camera primary mirror with super wide coverage was designed by Bipod principle in which three supporting points were adopted in backside of the mirror .The influence of the structure parameters on the mass and stiffness of the mirror was analyzed .The parameters which had significant effect were chosen as the design variables and the optimization design of mirror lightweight structure was carried out .The finite element analysis was conducted .The results indicate that the mirror structure has better mechanical adaptability , thermal adaptability and dynamical stiffness .The results of finite element analysis are consistent with the results of vibration test .

  11. Scanning laser optical computed tomography system for large volume 3D dosimetry

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  12. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  13. Large-area super-resolution optical imaging by using core-shell microfibers

    Science.gov (United States)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  14. Large-Scale Procurement of Radiation Resistant Single-Mode Optical Fibers for CERN

    CERN Document Server

    Guillermain, Elisa; Kuhnhenn, Jochen; Ricci, Daniel; Weinand, Udo

    2015-01-01

    2400 km of special radiation resistant optical fibres were procured by CERN (European Organization for Nuclear Research), for the installation of more than 55 km of optical fibre cables in the accelerator complex underground during the Long Shutdown 1 (LS1). In the frame of this large-scale industrial production, a thorough quality assurance plan (QAP) was put in place and followed at each step of the process. In-depth qualification of optical fibres preceded the 17-month procurement process. All supplied batches were tested for their resistance to radiation, leading to more than 65 quality control irradiation tests. During the cable assembly process and the installations works, a full traceability down to the optical fibre level was ensured. The actions put in place in the frame of the QAP led to successful installation works and to full respect of the LS1 planning.

  15. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Science.gov (United States)

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  16. High-contrast imager for complex aperture telescopes (HiCAT): 1. testbed design

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, Elodie; Pueyo, Laurent; Elliot, Erin; Perrin, Marshall D.; Wallace, J. Kent; Groff, Tyler; Carlotti, Alexis; Mawet, Dimitri; Sheckells, Matt; Shaklan, Stuart; Macintosh, Bruce; Kasdin, N. Jeremy; Soummer, Rémi

    2013-09-01

    Searching for nearby habitable worlds with direct imaging and spectroscopy will require a telescope large enough to provide angular resolution and sensitivity to planets around a significant sample of stars. Segmented telescopes are a compelling option to obtain such large apertures. However, these telescope designs have a complex geometry (central obstruction, support structures, segmentation) that makes high-contrast imaging more challenging. We are developing a new high-contrast imaging testbed at STScI to provide an integrated solution for wavefront control and starlight suppression on complex aperture geometries. We present our approach for the testbed optical design, which defines the surface requirements for each mirror to minimize the amplitude-induced errors from the propagation of out-of-pupil surfaces. Our approach guarantees that the testbed will not be limited by these Fresnel propagation effects, but only by the aperture geometry. This approach involves iterations between classical ray-tracing optical design optimization, and end-to-end Fresnel propagation with wavefront control (e.g. Electric Field Conjugation / Stroke Minimization). The construction of the testbed is planned to start in late Fall 2013.

  17. On Estimation of Fracture Aperture with Ground Penetrating Radar

    Science.gov (United States)

    Linde, N.; Shakas, A.

    2016-12-01

    Ground penetrating radar (GPR) is an excellent tool for fracture imaging, but GPR-assisted estimation of fracture aperture is a largely unresolved challenge. The main reason for this is that traditional modeling techniques face severe limitations in fractured rock environments. For example, finite-difference time-domain (FDTD) formulations of Maxwell's equations are poorly adapted to deal with fractures of arbitrary orientations and apertures that are three-five orders of magnitude smaller than the modeling domain. An alternative is to use analytical solutions for thin-bed responses, but they are based on strong assumptions that often do not apply in practise. We have recently developed an efficient modeling approach to simulate GPR propagation and reflection in fractured rock. Here, we first use this modeling formulation to examine the ability of the thin-bed solution to infer the aperture of a homogeneous fracture. We then consider a suite of synthetic examples with heterogeneous fracture aperture fields of varying fractal (Hurst) exponents and spatial correlation lengths. We then use a global optimization algorithm to infer a mean (effective) fracture aperture in each case using the noise-contaminated synthetic data. The thin-bed solution leads to biased aperture estimates even if the fracture has a constant aperture and all other modeling parameters are known. With our modeling approach, we find that appropriate mean apertures are estimated in the homogeneous case, and when the correlation length of the aperture distribution is of similar scale (or larger) than the dominant GPR wavelength.

  18. Modeling optical properties of silicon clusters by first principles: From a few atoms to large nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nurbawono, Argo; Liu, Shuanglong [Department of Physics and the Centre for Advanced 2D Materials, National University of Singapore, 2 Science Drive 3 (Singapore); Zhang, Chun, E-mail: phyzc@nus.edu.sg [Department of Physics and the Centre for Advanced 2D Materials, National University of Singapore, 2 Science Drive 3 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3 (Singapore)

    2015-04-21

    Time dependent density functional tight binding (TDDFTB) method is implemented with sparse matrix techniques and improved parallelization algorithms. The method is employed to calculate the optical properties of various Si nanocrystals (NCs). The calculated light absorption spectra of small Si NCs from TDDFTB were found to be comparable with many body perturbation methods utilizing planewave basis sets. For large Si NCs (more than a thousand atoms) that are beyond the reach of conventional approaches, the TDDFTB method is able to produce reasonable results that are consistent with prior experiments. We also employed the method to study the effects of surface chemistry on the optical properties of large Si NCs. We learned that the optical properties of Si NCs can be manipulated with small molecule passivations such as methyl, hydroxyl, amino, and fluorine. In general, the shifts and profiles in the absorption spectra can be tuned with suitably chosen passivants.

  19. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region.

    Science.gov (United States)

    Alam, M Zahirul; De Leon, Israel; Boyd, Robert W

    2016-05-13

    Nonlinear optical phenomena are crucial for a broad range of applications, such as microscopy, all-optical data processing, and quantum information. However, materials usually exhibit a weak optical nonlinearity even under intense coherent illumination. We report that indium tin oxide can acquire an ultrafast and large intensity-dependent refractive index in the region of the spectrum where the real part of its permittivity vanishes. We observe a change in the real part of the refractive index of 0.72 ± 0.025, corresponding to 170% of the linear refractive index. This change in refractive index is reversible with a recovery time of about 360 femtoseconds. Our results offer the possibility of designing material structures with large ultrafast nonlinearity for applications in nanophotonics. Copyright © 2016, American Association for the Advancement of Science.

  20. Super Unit Cells in Aperture-Based Metamaterials

    OpenAIRE

    Dragan Tanasković; Zoran Jakšić; Marko Obradov; Olga Jakšić

    2015-01-01

    An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses). Thus obtained “super unit cell” shows far richer behavior than the subobjects that compris...

  1. 高能拍瓦激光系统中大口径离轴抛物面聚焦特性研究%Study on Focusing Characteristic of Large Aperture Off-Axis Paraboloidal Mirror in the High-Energy Petawatt Laser System

    Institute of Scientific and Technical Information of China (English)

    岳峰; 朱健强; 赵东峰

    2012-01-01

    为进行快点火实验,需对高能拍瓦激光聚焦系统中的核心元件即大口径离轴抛物面,进行深入量化研究,以便对其结构选型和精密调整提供准确的理论依据.利用基于严格的矢量衍射理论的数值计算方法,并结合像差分析得到了大孔径、大离轴量的抛物面镜(OAP)的物理光学成像特性.首先用理想平行光入射,得出OAP的三维平动公差与其焦深密切相关,OAP绕旋转刘称轴的转动可归结为平动问题,其公差与焦深也有简单关系;入射光轴失准时,像散占主导作用,并可由一结构因子来定性描述其对像斑的影响.其次当入射光有一定的发散角时,除引起最佳像面位置变化外,还会由于OAP不对称性而引起的彗差使得像斑的峰值光强大大降低,并论述了OAP的结构参数对此的影响.%To realize the fast ignition experiments,deep and quantitative research needs to be taken on the large aperture off-axis paraboloidal mirror (OAP) which is the core component in the high-energy petawatt laser focusing system,in order to provide an accurate basic theory for the OAP structure model selection and precision adjustments. This paper uses a numerical calculation method based on the rigorous vector diffraction theory combining with wavefront aberration analysis,by which the physical optical imaging characteristics of a large aperture and far off-axis OAP are obtained. First,using parallel light incidence,a conclusion can be obtained that the tolerances of OAP translation and revolving around its symmetric axis are closely related with its focal depth. When the optical axis misalignment occurs,astigmatism will play a leading role in the influence on the optical spot which can be described qualitatively by a structural factor. Then,when the incident light has a divergence angle,the best image plane location will change and coma is produced to decrease the power density of the optical spot owing to the asymmetry of

  2. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    Science.gov (United States)

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

  3. The laser interferometer system for the large optics diamond turning machine

    Energy Technology Data Exchange (ETDEWEB)

    Baird, E D; Donaldson, R R; Patterson, S R

    1999-06-29

    The purpose of this report is to describe the Laser Interferometer System designed for the Large Optics Diamond Turning Machine (LODTM). To better understand the laser interferometer system, it is useful to begin with an overview of the LODTM metrology system.

  4. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  5. Large-scale photonic integration for advanced all-optical routing functions

    Science.gov (United States)

    Nicholes, Steven C.

    Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power

  6. The micro-vibration analysis for the large aperture grating tiling device%大口径光栅拼接装置的微振动响应分析

    Institute of Scientific and Technical Information of China (English)

    周忆; 廖云飞; 刘有海; 罗跃飞; 王逍; 周海

    2012-01-01

    A new grating tiling device with 2×2 gratings is developed to obtain a large aperture grating.For the stability of the device impacted by the HVAC vibration,a dynamic finite element analysis model is established.The random vibration response of the model under the measured power spectral density as stimulus has been carried out by the ANSYS software,and the data has been compared to the experimental data.The results show that the device can meet the stability requirements in the work environment.%针对2×2大口径光栅拼接装置在暖通空调振动影响下的稳定性问题,建立了有限元动力分析模型。以实测的震动功率谱密度为激励,运用ANSYS软件对其随机振动响应进行分析计算,并与实测结果进行了比较。结果表明,该装置在工作环境中满足稳定性要求。

  7. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Gerald Forkuor

    2014-07-01

    Full Text Available Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover, small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye and dual polarized (VV/VH SAR (TerraSAR-X data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable.

  8. Review of the design and manufacturing procedures for large-format holographic optical elements

    Science.gov (United States)

    Stojanoff, Christo G.; Schuette, Hartmut; Schulat, Jochen; Froning, Philipp

    1998-10-01

    The objective of this research program was the development of the technology for the industrial manufacturing of HOEs for technical applications such as: holographic solar concentrators for utilization in photovoltaic energy conversion and solar photochemistry, and integrated holographic stacks for daylighting, glazing and shading in buildings. Some of the fabricated HOEs exhibit apertures in the order of 8 square meters. The accomplished technology facilitates the continuous fabrication of the holographic films on glass or plastic substrata. The standard holographic material we use for the fabrication of HOEs is dichromated gelatin (DCG) on glass or plastic film (PET) substrata. The dichromated gelatin layer could be prepared with different compositions to accommodate the desired exposures and chemical processing procedures. At present we manufacture holographic plates on glass substrata in sizes of up to 1 meter square. The holographic film on plastic substratum is 20 cm wide and could be made in lengths of hundredths of meters. The inexpensive fabrication of such large formats is attained by automation of the entire process: film manufacturing, hologram copying, development and test. We present in this paper the design considerations and the developed manufacturing procedures. These comprise the fabrication of large format reflective holograms for concentrating mirrors and the copying of transmissive holograms, such as gratings and lenses, using in-plane contact copying in checkerboard arrangement or rotating drum continuous copying onto an endless plastic film.

  9. Trapped ion imaging with a high numerical aperture spherical mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shu, G; Dietrich, M R; Kurz, N; Blinov, B B, E-mail: shugang@u.washington.ed [Department of Physics, University of Washington, Seattle, WA 98105-1560 (United States)

    2009-08-14

    Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

  10. Optical characterization of a miniaturized large field of view motion sensor

    Science.gov (United States)

    Moens, Els; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this paper we discuss the geometrical and optical characterization of a miniaturized very wide field-of-view (FOV) motion sensor inspired by the working principle of insect facet eyes. The goal of the sensor is to detect movement in the environment and to specify where in the surroundings these changes took place. Based on the measurements of the sensor, certain actions can be taken such as sounding an alarm in security applications or turning on the light in domotic applications. The advantage of miniaturizing these sensors is that they are low-cost, compact and more esthetical compared to current motion detectors. The sensor was designed to have a very large FOV of 125° and an angular resolution of 1° or better. The micro-optics is built up of two stacked polymer plates consisting each out of a five by five lens array. In between there is a plate of absorbing material with a five by five array of baffles to create 25 optically isolated channels that each image part of the total FOV of 125° onto the detector. To geometrically characterize the lens arrays and verify the designed specifications, we made use of a coordinate measuring machine. The optical performance of the designed micro-optical system was analyzed by sending white light beams with different angles of incidence with respect to the sample through the sensor, comparing the position of the light spots visible on the detector and determining optical quality parameters such as MTF and distortion.

  11. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  12. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    Science.gov (United States)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  13. Super Unit Cells in Aperture-Based Metamaterials

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2015-01-01

    Full Text Available An important class of electromagnetic metamaterials are aperture-based metasurfaces. Examples include extraordinary optical transmission arrays and double fishnets with negative refractive index. We analyze a generalization of such metamaterials where a simple aperture is now replaced by a compound object formed by superposition of two or more primitive objects (e.g., rectangles, circles, and ellipses. Thus obtained “super unit cell” shows far richer behavior than the subobjects that comprise it. We show that nonlocalities introduced by overlapping simple subobjects can be used to produce large deviations of spectral dispersion even for small additive modifications of the basic geometry. Technologically, some super cells may be fabricated by simple spatial shifting of the existing photolithographic masks. In our investigation we applied analytical calculations and ab initio finite element modeling to prove the possibility to tailor the dispersion including resonances for plasmonic nanocomposites by adjusting the local geometry and exploiting localized interactions at a subwavelength level. Any desired form could be defined using simple primitive objects, making the situation a geometrical analog of the case of series expansion of a function. Thus an additional degree of tunability of metamaterials is obtained. The obtained designer structures can be applied in different fields like waveguiding and sensing.

  14. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...... harmonic techniques have been made, but none of these methods have so far been applicable for in-vivo imaging. The basis of this project is a synthetic aperture technique known as synthetic aperture sequential beamforming (SASB). The technique utilizes a two step beamforming approach to drastically reduce...

  15. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rahul C [Los Alamos National Laboratory; Johnson, Randall P [Los Alamos National Laboratory; Shimada, Tsutomu [Los Alamos National Laboratory; Hegelich, Bjorn M [Los Alamos National Laboratory

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  16. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  17. Large-dynamic-range time pre-compensation scheme for fiber optic time transfer.

    Science.gov (United States)

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wei, Yimei

    2017-02-20

    In this paper we experimentally demonstrate a transmission delay compensation scheme for precise fiber-optic time transfer. The scheme is based on a clock counter and an electronic variable delay line, which theoretically can provide unlimited compensation range. We perform successive tests in three optical fiber links of different lengths in which both continuous drifts and abrupt hop of the transmission delay are effectively compensated. The total transmission delay variation induced in the experiments is much larger than most of the reported cases. This large-dynamic compensation scheme is quite suitable for time transfer links whose transmission delay varies a lot.

  18. Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation.

    Science.gov (United States)

    Liu, Baoan; Wang, Dongxing; Shi, Chuan; Crozier, Kenneth B; Yang, Tian

    2011-05-23

    We propose a device for reproducible achievement of enormous enhancement of local electric field intensities. In each device, a metallic spiral ring grating is employed for efficient excitation of local surface plasmon resonance in the tiny gap of a vertically oriented optical antenna. Radiation from the optical antenna is collimated by the ring grating which facilitates efficient collection. As a numerical example, for a gold nanosphere placed one nanometer above the center of a gold spiral ring grating, our simulations predict an increase in local electric field intensity of up to seven orders of magnitude compared to planewave illumination, and collection efficiencies of up to 68% by an objective with a numerical aperture of 0.7. Single molecule SERS application is discussed.

  19. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites

    Science.gov (United States)

    Yang, Ye; Yang, Mengjin; Zhu, Kai; Johnson, Justin C.; Berry, Joseph J.; van de Lagemaat, Jao; Beard, Matthew C.

    2016-08-01

    A strong interaction of a semiconductor with a below-bandgap laser pulse causes a blue-shift of the bandgap transition energy, known as the optical Stark effect. The energy shift persists only during the pulse duration with an instantaneous response time. The optical Stark effect has practical relevance for applications, including quantum information processing and communication, and passively mode-locked femtosecond lasers. Here we demonstrate that solution-processable lead-halide perovskites exhibit a large optical Stark effect that is easily resolved at room temperature resulting from the sharp excitonic feature near the bandedge. We also demonstrate that a polarized pump pulse selectively shifts one spin state producing a spin splitting of the degenerate excitonic states. Such selective spin manipulation is an important prerequisite for spintronic applications. Our result implies that such hybrid semiconductors may have great potential for optoelectronic applications beyond photovoltaics.

  20. Optical position measurement for a large gap magnetic suspension system: Design and performance analysis

    Science.gov (United States)

    Welch, Sharon S.; Clemmons, James I., Jr.; Shelton, Kevin J.; Duncan, Walter C.

    1994-01-01

    An optical measurement system (OMS) has been designed and tested for a large gap magnetic suspension system (LGMSS). The LGMSS will be used to study control laws for magnetic suspension systems for vibration isolation and pointing applications. The LGMSS features six degrees of freedom and consists of a planar array of electromagnets that levitate and position a cylindrical element containing a permanent magnet core. The OMS provides information on the location and orientation of the element to the LGMSS control system to stabilize suspension. The hardware design of this optical sensing system and the tracking algorithms are presented. The results of analyses and experiments are presented that define the accuracy limits of the optical sensing system and that quantify the errors in position estimation.