WorldWideScience

Sample records for laparoscopic mouse model

  1. The pig as preclinical model for laparoscopic vagus nerve stimulation.

    Science.gov (United States)

    Wolthuis, A M; Stakenborg, N; D'Hoore, A; Boeckxstaens, G E

    2016-02-01

    Cervical vagus nerve stimulation (VNS) prevents manipulation-induced intestinal inflammation and improves intestinal transit in a mouse model of postoperative ileus (POI). Cervical VNS, however, is accompanied by cardiovascular and respiratory side effects. In view of potential clinical application, we therefore evaluated the safety and feasibility of abdominal VNS via laparoscopic approach in a porcine model. Six pigs were used in a non-survival study for both cervical and abdominal VNS. Two cardiac pacing electrodes were positioned around the right cervical and posterior abdominal vagus nerve and connected to an external stimulator. VNS was performed using four different settings (5 and 20 Hz, 0.5 and 1 ms pulse width) during 2 min with ECG recording. Laparoscopic VNS was timed and videotaped, and technical difficulties were noted. A validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire was used to evaluate the task and workload. The procedure was completed in all pigs with 4-port laparoscopic technique. Cervical and abdominal VNS were performed after correct identification and isolation of the nerve, and positioning of the electrodes around the nerve. Median laparoscopic operating time was 16 min (range 8-33 min), and median NASA-TLX was 31 (range 11-74). No major complications were encountered. Reduction of heart rate was between 5.5 and 14% for cervical VNS and undetectable for abdominal VNS. In a porcine model, laparoscopic VNS is feasible and safe with cardiac pacing electrodes and may lead to a similar novel approach in humans in the near future.

  2. Laparoscopic radical prostatectomy in the canine model.

    Science.gov (United States)

    Price, D T; Chari, R S; Neighbors, J D; Eubanks, S; Schuessler, W W; Preminger, G M

    1996-12-01

    The purpose of this study was to determine the feasibility of performing laparoscopic radical prostatectomy in a canine model. Laparoscopic radical prostatectomy was performed on six adult male canines. A new endoscopic needle driver was used to construct a secure vesicourethral anastomosis. Average operative time required to complete the procedure was 304 min (range 270-345 min). Dissection of the prostate gland took an average of 67 min (range 35-90 min), and construction of the vesicourethral anastomosis took 154 min (rage 80-240 min). There were no intraoperative complications and only one postoperative complication (anastomotic leak). Five of the six animals recovered uneventfully from the procedure, and their foley catheters were removed 10-14 days postoperatively after a retrograde cystourethrogram demonstrated an intact vesicourethral anastomosis. Four (80%) of the surviving animals were clinically continent within 10 days after catheter removal. Post mortem examination confirmed that the vesicourethral anastomosis was intact with no evidence of urine extravasation. These data demonstrate the feasibility of laparoscopic radical prostatectomy in a canine model, and suggest that additional work with this technique should be continued to develop its potential clinical application.

  3. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  4. Laparoscopic kidney orthotopic transplant: preclinical study in the pig model.

    Science.gov (United States)

    He, B; Musk, G C; Mou, L; Waneck, G L; Delriviere, L

    2013-06-01

    Laparoscopic surgery has rapidly expanded in clinical practice replacing conventional open surgery over the last three decades. Laparoscopic donor nephrectomy has been favored due to its multiple benefits. The aim of this study was to explore the safety and feasibility of kidney transplantation by a laparoscopic technique in a pig model. The study was approved by the university animal ethics committee. Eight female pigs (Sus Scrofra, weighing 45-50 kg) were divided into 2 groups: group I included 4 animals that underwent laparoscopic kidney orthotopic transplantation on the left side. The right kidney was remained functional in situ. The pigs recovered and were observed for 1 week. In the 4 hosts group II pigs underwent a laparoscopic kidney transplantation on the left side. With simultaneous clipping of the right ureter. After recovery, the pigs were observed for 4 weeks. A laparotomy for examination was performed prior to euthanasia. All 4 group I pigs survived for 1 week. The laparotomy showed normal graft perfusion with wall patent renal artery and vein as well as satisfactory urine output upon transection of ureter in 3 hosts. Renal artery stenosis occurred in one pig. In The Immediate kidney graft function was achieved in 3 group II pigs. The fourth died following extubation due to laryngospasm despite a functional graft. The average creatinine levels were 195.5 μmol/L on day 3; 224.5 μmol/L at week 1; 127 μmol/L at week 2; 182.7 umol/L at week 3; and 154.7 umol/L at week 4. Laparoscopic kidney transplantation was feasible and safe in a pig model with immediate graft function. This study will provide further evidence to support application of laparoscopic technique to human kidney transplant. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Mouse models of Fanconi anemia

    International Nuclear Information System (INIS)

    Parmar, Kalindi; D'Andrea, Alan; Niedernhofer, Laura J.

    2009-01-01

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  6. Mouse models of Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Kalindi; D' Andrea, Alan [Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115 (United States); Niedernhofer, Laura J., E-mail: niedernhoferl@upmc.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, Research Pavilion 2.6, Pittsburgh, PA 15213-1863 (United States)

    2009-07-31

    Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.

  7. Mouse Models of Gastric Cancer

    Science.gov (United States)

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  8. Laparoscopic anterior resection: new anastomosis technique in a pig model.

    Science.gov (United States)

    Bedirli, Abdulkadir; Yucel, Deniz; Ekim, Burcu

    2014-01-01

    Bowel anastomosis after anterior resection is one of the most difficult tasks to perform during laparoscopic colorectal surgery. This study aims to evaluate a new feasible and safe intracorporeal anastomosis technique after laparoscopic left-sided colon or rectum resection in a pig model. The technique was evaluated in 5 pigs. The OrVil device (Covidien, Mansfield, Massachusetts) was inserted into the anus and advanced proximally to the rectum. A 0.5-cm incision was made in the sigmoid colon, and the 2 sutures attached to its delivery tube were cut. After the delivery tube was evacuated through the anus, the tip of the anvil was removed through the perforation. The sigmoid colon was transected just distal to the perforation with an endoscopic linear stapler. The rectosigmoid segment to be resected was removed through the anus with a grasper, and distal transection was performed. A 25-mm circular stapler was inserted and combined with the anvil, and end-to-side intracorporeal anastomosis was then performed. We performed the technique in 5 pigs. Anastomosis required an average of 12 minutes. We observed that the proximal and distal donuts were completely removed in all pigs. No anastomotic air leakage was observed in any of the animals. This study shows the efficacy and safety of intracorporeal anastomosis with the OrVil device after laparoscopic anterior resection.

  9. Training for laparoscopic Nissen fundoplication with a newly designed model: a replacement for animal tissue models?

    Science.gov (United States)

    Christie, Lorna; Goossens, Richard; Jakimowicz, Jack J.

    2010-01-01

    Background To bridge the early learning curve for laparoscopic Nissen fundoplication from the clinical setting to a safe environment, training models can be used. This study aimed to develop a reusable, low-cost model to be used for training in laparoscopic Nissen fundoplication procedure as an alternative to the use of animal tissue models. Methods From artificial organs and tissue, an anatomic model of the human upper abdomen was developed for training in performing laparoscopic Nissen fundoplication. The 20 participants and tutors in the European Association for Endoscopic Surgery (EAES) upper gastrointestinal surgery course completed four complementary tasks of laparoscopic Nissen fundoplication with the artificial model, then compared the realism, haptic feedback, and training properties of the model with those of animal tissue models. Results The main difference between the two training models was seen in the properties of the stomach. The wrapping of the stomach in the artificial model was rated significantly lower than that in the animal tissue model (mean, 3.6 vs. 4.2; p = 0.010). The main criticism of the stomach of the artificial model was that it was too rigid for making a proper wrap. The suturing of the stomach wall, however, was regarded as fairly realistic (mean, 3.6). The crura on the artificial model were rated better (mean, 4.3) than those on the animal tissue (mean, 4.0), although the difference was not significant. The participants regarded the model as a good to excellent (mean, 4.3) training tool. Conclusion The newly developed model is regarded as a good tool for training in laparoscopic Nissen fundoplication procedure. It is cheaper, more durable, and more readily available for training and can therefore be used in every training center. The stomach of this model, however, still needs improvement because it is too rigid for making the wrap. PMID:20526629

  10. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...

  11. Melatonin receptors: latest insights from mouse models

    Science.gov (United States)

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  12. Laparoscopic training model using fresh human cadavers without the establishment of penumoperitoneum

    Directory of Open Access Journals (Sweden)

    Ernesto Sasaki Imakuma

    2016-01-01

    Full Text Available Background: Laparoscopy is a well-established alternative to open surgery for treating many diseases. Although laparoscopy has many advantages, it is also associated with disadvantages, such as slow learning curves and prolonged operation time. Fresh frozen cadavers may be an interesting resource for laparoscopic training, and many institutions have access to cadavers. One of the main obstacles for the use of cadavers as a training model is the difficulty in introducing a sufficient pneumoperitoneum to distend the abdominal wall and provide a proper working space. The purpose of this study was to describe a fresh human cadaver model for laparoscopic training without requiring a pneumoperitoneum. Materials and Methods and Results: A fake abdominal wall device was developed to allow for laparoscopic training without requiring a pneumoperitoneum in cadavers. The device consists of a table-mounted retractor, two rail clamps, two independent frame arms, two adjustable handle and rotating features, and two frames of the abdominal wall. A handycam is fixed over a frame arm, positioned and connected through a USB connection to a television and dissector; scissors and other laparoscopic materials are positioned inside trocars. The laparoscopic procedure is thus simulated. Conclusion: Cadavers offer a very promising and useful model for laparoscopic training. We developed a fake abdominal wall device that solves the limitation of space when performing surgery on cadavers and removes the need to acquire more costly laparoscopic equipment. This model is easily accessible at institutions in developing countries, making it one of the most promising tools for teaching laparoscopy.

  13. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depres......The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr...

  14. Outreach training model for accredited colorectal specialists in laparoscopic colorectal surgery: feasibility and evaluation of challenges.

    Science.gov (United States)

    Hamdan, M F; Day, A; Millar, J; Carter, F J C; Coleman, M G; Francis, N K

    2015-07-01

    The aim of this study was to explore the feasibility and safety of an outreach model of laparoscopic colorectal training of accredited specialists in advanced laparoscopic techniques and to explore the challenges of this model from the perspective of a National Training Programme (NTP) trainer. Prospective data were collected for unselected laparoscopic colorectal training procedures performed by five laparoscopic colorectal NTP trainees supervised by a single NTP trainer with an outreach model between 2009 and 2012. The operative and postoperative outcomes were compared with standard laparoscopic colorectal training procedures performed by six senior colorectal trainees under the supervision of the same NTP trainer within the same study period. The primary outcome was 30-day mortality. The Mann-Whitney test was used to compare continuous variables and the Chi squared or Fisher's exact tests were applied for the analysis of categorical variables. The level of statistical significance was set at P groups. Seventy-eight per cent of the patients operated on by the NTP trainees had had no previous abdominal surgery, compared with 50% in the supervised trainees' group (P = 0.0005). There were no significant differences in 30-day mortality or the operative and postoperative outcome between both groups. There were, however, difficulties in training an already established consultant in his or her own hospital and these were overcome by certain adjustments to the programme. Outreach laparoscopic training of colorectal surgeons is a feasible and safe model of training accredited specialists and does not compromise patient care. The challenges encountered can be overcome with optimum training and preparation. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  15. Efficacy of a laparoscopic gastric restrictive device in an obese canine model.

    Science.gov (United States)

    Guo, Xiaomei; Mattar, Samer G; Mimms, Scott E; Navia, Jose A; Kassab, Ghassan S

    2014-01-01

    Bariatric surgery using laparoscopic techniques is the most effective treatment for morbid obesity. The objective of the study is to assess the safety and efficacy of a novel laparoscopic reversible gastric restrictive (RGR) device in a group of obese dogs. An implant was also performed in a cadaver to assess implant feasibility in a human. Four obese mongrel dogs were subjected to RGR implantation for 3 months followed by recovery for an additional 6 weeks after device removal. Food intake, body weight, radiographic barium imaging, and gastric endoscopy were used to monitor RGR performance before implant, after implant, and implant removal. An additional RGR laparoscopic implantation procedure was performed in a human cadaver. The implanted obese dogs exhibited a significant decrease in food intake and body weight over 3 months with the RGR device. The reduction of food intake was sustained at an average of 46 % after implant and the excess weight loss reached an average of 75 % at the end of 12 weeks with recovery to approximately 78 % of baseline after 6 weeks of implant removal. Barium imaging and gastric endoscopy both confirmed passage for food through the restrictive device channel in the stomach. The RGR device was successfully implanted laparoscopically on the cadaver stomach in less than an hour. The RGR device is laparoscopically deliverable and removable with effective and sustainable weight loss over a 12-week period in an obese dog model. The implant is also technically feasible in man.

  16. Humanized mouse models: Application to human diseases.

    Science.gov (United States)

    Ito, Ryoji; Takahashi, Takeshi; Ito, Mamoru

    2018-05-01

    Humanized mice are superior to rodents for preclinical evaluation of the efficacy and safety of drug candidates using human cells or tissues. During the past decade, humanized mouse technology has been greatly advanced by the establishment of novel platforms of genetically modified immunodeficient mice. Several human diseases can be recapitulated using humanized mice due to the improved engraftment and differentiation capacity of human cells or tissues. In this review, we discuss current advanced humanized mouse models that recapitulate human diseases including cancer, allergy, and graft-versus-host disease. © 2017 Wiley Periodicals, Inc.

  17. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L.; Youssef, S. A.; de Bruin, A.

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of geroscience,

  18. Pathology of Mouse Models of Accelerated Aging

    NARCIS (Netherlands)

    Harkema, L; Youssef, S A; de Bruin, A

    2016-01-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience,"

  19. A simulated training model for laparoscopic pyloromyotomy: Is 3D printing the way of the future?

    Science.gov (United States)

    Williams, Andrew; McWilliam, Morgan; Ahlin, James; Davidson, Jacob; Quantz, Mackenzie A; Bütter, Andreana

    2018-05-01

    Hypertrophic pyloric stenosis (HPS) is a common neonatal condition treated with open or laparoscopic pyloromyotomy. 3D-printed organs offer realistic simulations to practice surgical techniques. The purpose of this study was to validate a 3D HPS stomach model and assess model reliability and surgical realism. Medical students, general surgery residents, and adult and pediatric general surgeons were recruited from a single center. Participants were videotaped three times performing a laparoscopic pyloromyotomy using box trainers and 3D-printed stomachs. Attempts were graded independently by three reviewers using GOALS and Task Specific Assessments (TSA). Participants were surveyed using the Index of Agreement of Assertions on Model Accuracy (IAAMA). Participants reported their experience levels as novice (22%), inexperienced (26%), intermediate (19%), and experienced (33%). Interrater reliability was similar for overall average GOALS and TSA scores. There was a significant improvement in GOALS (p3D-printed stomach model for simulated laparoscopic pyloromyotomy is a useful training tool for learners to improve laparoscopic skills. The GOALS and TSA provide reliable technical skills assessments. II. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Engineering a new mouse model for vitiligo.

    Science.gov (United States)

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  1. Urology residents training in laparoscopic surgery. Development of a virtual reality model.

    Science.gov (United States)

    Gutiérrez-Baños, J L; Ballestero-Diego, R; Truan-Cacho, D; Aguilera-Tubet, C; Villanueva-Peña, A; Manuel-Palazuelos, J C

    2015-11-01

    The training and learning of residents in laparoscopic surgery has legal, financial and technological limitations. Simulation is an essential tool in the training of residents as a supplement to their training in laparoscopic surgery. The training should be structured in an appropriate environment, with previously established and clear objectives, taught by professionals with clinical and teaching experience in simulation. The training should be conducted with realistic models using animals and ex-vivo tissue from animals. It is essential to incorporate mechanisms to assess the objectives during the residents' training progress. We present the training model for laparoscopic surgery for urology residents at the University Hospital Valdecilla. The training is conducted at the Virtual Hospital Valdecilla, which is associated with the Center for Medical Simulation in Boston and is accredited by the American College of Surgeons. The model is designed in 3 blocks, basic for R1, intermediate for R2-3 and advanced for R4-5, with 9 training modules. The training is conducted in 4-hour sessions for 4 afternoons, for 3 weeks per year of residence. Residents therefore perform 240 hours of simulated laparoscopic training by the end of the course. For each module, we use structured objective assessments to measure each resident's training progress. Since 2003, 9 urology residents have been trained, in addition to the 5 who are currently in training. The model has undergone changes according to the needs expressed in the student feedback. The acquisition of skills in a virtual reality model has enabled the safe transfer of those skills to actual practice. A laparoscopic surgery training program designed in structured blocks and with progressive complexity provides appropriate training for transferring the skills acquired using this model to an actual scenario while maintaining patient safety. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Development and validation of a laparoscopic hysterectomy cuff closure simulation model for surgical training.

    Science.gov (United States)

    Tunitsky-Bitton, Elena; Propst, Katie; Muffly, Tyler

    2016-03-01

    The number of robotically assisted hysterectomies is increasing, and therefore, the opportunities for trainees to become competent in performing traditional laparoscopic hysterectomy are decreasing. Simulation-based training is ideal for filling this gap in training. The objective of the study was to design a surgical model for training in laparoscopic vaginal cuff closure and to present evidence of its validity and reliability as an assessment and training tool. Participants included gynecology staff and trainees at 2 tertiary care centers. Experienced surgeons were also recruited at the combined International Urogynecologic Association and American Urogynecologic Society scientific meeting. Participants included 19 experts and 21 trainees. All participants were recorded using the laparoscopic hysterectomy cuff closure simulation model. The model was constructed using the an advanced uterine manipulation system with a sacrocolopexy tip/vaginal stent, a vaginal cuff constructed from neoprene material and lined with a swimsuit material (nylon and spandex) secured to the vaginal stent with a plastic cable tie. The uterine manipulation system was attached to the fundamentals of laparoscopic surgery laparoscopic training box trainer using a metal bracket. Performance was evaluated using the Global Operative Assessment of Laparoscopic Skills scale. In addition, needle handling, knot tying, and incorporation of epithelial edge were also evaluated. The Student t test was used to compare the scores and the operating times between the groups. Intrarater reliability between the scores by the 2 masked experts was measured using the interclass correlation coefficient. Total and annual experience with laparoscopic suturing and specifically vaginal cuff closure varied greatly among the participants. For the construct validity, the participants in the expert group received significantly higher scores in each of the domains of the Global Operative Assessment of Laparoscopic Skills

  3. Mouse Models of Graves' Disease

    OpenAIRE

    Nagayama, Yuji

    2005-01-01

    Graves' disease is characterized by overstimulation of the thyroid gland with agonistic autoantibodies against the thyrotropin (TSH) receptor, leading to hyperthyroidism and diffuse hyperplasia of the thyroid gland. Our and other laboratories have recently established several animal models of Graves' hyperthyroidism with novel immunization approaches, i.e., in vivo expression of the TSH receptor by injection of syngeneic living cells co-expressing the TSH receptor and major histocompatibility...

  4. Mouse Chromosome Engineering for Modeling Human Disease

    OpenAIRE

    van der Weyden, Louise; Bradley, Allan

    2006-01-01

    Chromosomal rearrangements occur frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the e...

  5. Experimental photoallergic contact dermatitis: a mouse model

    International Nuclear Information System (INIS)

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-01-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model

  6. Development of a novel ex vivo porcine laparoscopic Heller myotomy and Nissen fundoplication training model (Toronto lap-Nissen simulator).

    Science.gov (United States)

    Ujiie, Hideki; Kato, Tatsuya; Hu, Hsin-Pei; Bauer, Patrycja; Patel, Priya; Wada, Hironobu; Lee, Daiyoon; Fujino, Kosuke; Schieman, Colin; Pierre, Andrew; Waddell, Thomas K; Keshavjee, Shaf; Darling, Gail E; Yasufuku, Kazuhiro

    2017-06-01

    Surgical trainees are required to develop competency in a variety of laparoscopic operations. Developing laparoscopic technical skills can be difficult as there has been a decrease in the number of procedures performed. This study aims to develop an inexpensive and anatomically relevant model for training in laparoscopic foregut procedures. An ex vivo , anatomic model of the human upper abdomen was developed using intact porcine esophagus, stomach, diaphragm and spleen. The Toronto lap-Nissen simulator was contained in a laparoscopic box-trainer and included an arch system to simulate the normal radial shape and tension of the diaphragm. We integrated the use of this training model as a part of our laparoscopic skills laboratory-training curriculum. Afterwards, we surveyed trainees to evaluate the observed benefit of the learning session. Twenty-five trainees and five faculty members completed a survey regarding the use of this model. Among the trainees, only 4 (16%) had experience with laparoscopic Heller myotomy and Nissen fundoplication. They reported that practicing with the model was a valuable use of their limited time, repeating the exercise would be of additional benefit, and that the exercise improved their ability to perform or assist in an actual case in the operating room. Significant improvements were found in the following subjective measures comparing pre- vs. post-training: (I) knowledge level (5.6 vs. 8.0, Pmyotomy and fundoplication.

  7. Esophageal Cancer: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Marie-Pier Tétreault

    2015-01-01

    Full Text Available Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer.

  8. A Mouse Model for Human Anal Cancer

    Science.gov (United States)

    Stelzer, Marie K.; Pitot, Henry C.; Liem, Amy; Schweizer, Johannes; Mahoney, Charles; Lambert, Paul F.

    2010-01-01

    Human anal cancers are associated with high-risk human papillomaviruses (HPVs) that cause other anogenital cancers and head and neck cancers. As with other cancers, HPV16 is the most common high-risk HPV in anal cancers. We describe the generation and characterization of a mouse model for human anal cancer. This model makes use of K14E6 and K14E7 transgenic mice in which the HPV16 E6 and E7 genes are directed in their expression to stratified squamous epithelia. HPV16 E6 and E7 possess oncogenic properties including but not limited to their capacity to inactivate the cellular tumor suppressors p53 and pRb, respectively. Both E6 and E7 were found to be functionally expressed in the anal epithelia of K14E6/K14E7 transgenic mice. To assess the susceptibility of these mice to anal cancer, mice were treated topically with dimethylbenz[a]anthracene (DMBA), a chemical carcinogen that is known to induce squamous cell carcinomas in other sites. Nearly 50% of DMBA-treated HPV16 E6/E7 transgenic mice showed overt signs of tumors; whereas, none of the like treated non-transgenic mice showed tumors. Histopathological analyses confirmed that the HPV16 transgenic mice were increased in their susceptibility to anal cancers and precancerous lesions. Biomarker analyses demonstrated that these mouse anal cancers exhibit properties that are similar to those observed in HPV-positive precursors to human anal cancer. This is the first mouse model for investigating the contributions of viral and cellular factors in anal carcinogenesis, and should provide a platform for assessing new therapeutic modalities for treating and/or preventing this type of cancer. PMID:20947489

  9. Toward a Model of Human Information Processing for Decision-Making and Skill Acquisition in Laparoscopic Colorectal Surgery.

    Science.gov (United States)

    White, Eoin J; McMahon, Muireann; Walsh, Michael T; Coffey, J Calvin; O Sullivan, Leonard

    To create a human information-processing model for laparoscopic surgery based on already established literature and primary research to enhance laparoscopic surgical education in this context. We reviewed the literature for information-processing models most relevant to laparoscopic surgery. Our review highlighted the necessity for a model that accounts for dynamic environments, perception, allocation of attention resources between the actions of both hands of an operator, and skill acquisition and retention. The results of the literature review were augmented through intraoperative observations of 7 colorectal surgical procedures, supported by laparoscopic video analysis of 12 colorectal procedures. The Wickens human information-processing model was selected as the most relevant theoretical model to which we make adaptions for this specific application. We expanded the perception subsystem of the model to involve all aspects of perception during laparoscopic surgery. We extended the decision-making system to include dynamic decision-making to account for case/patient-specific and surgeon-specific deviations. The response subsystem now includes dual-task performance and nontechnical skills, such as intraoperative communication. The memory subsystem is expanded to include skill acquisition and retention. Surgical decision-making during laparoscopic surgery is the result of a highly complex series of processes influenced not only by the operator's knowledge, but also patient anatomy and interaction with the surgical team. Newer developments in simulation-based education must focus on the theoretically supported elements and events that underpin skill acquisition and affect the cognitive abilities of novice surgeons. The proposed human information-processing model builds on established literature regarding information processing, accounting for a dynamic environment of laparoscopic surgery. This revised model may be used as a foundation for a model describing robotic

  10. Effect of PDCA model on nutritional status in patients after laparoscopic repair of perforated peptic ulcer

    Directory of Open Access Journals (Sweden)

    Shu-Jing Hu

    2016-11-01

    Full Text Available Objective: To explore the effect of PDCA model on the nutritional status in patients after laparoscopic repair of perforated peptic ulcer. Methods: A total of 83 patients with gastric perforation who were admitted in our hospital from October, 2014 to December, 2015 for laparoscopic repair of perforated peptic ulcer were included in the study and randomized into the observation group (n=42 and the control group (n=41. The patients in the two groups were given routine treatments after operation. On this basis, the patients in the observation group were given additional PCDA model nursing. The gastrointestinal hormone levels and nutritional indicators after operation in the two groups were compared. Results: The difference of VIP, CCK, and GAS levels before operation between the two groups was not statistically significant (P>0.05. VIP, CCK, and GAS levels 3 d after operation were significantly reduced when compared with before operation (P0.05. WBC 1 d after operation in the observation group was significantly reduced, while TP, Hb, Alb, TRF, and BMI were significantly elevated (P0.05. Conclusions: PDCA nursing intervention can effectively improve the early nutritional status in patients after laparoscopic repair of perforated peptic ulcer and contribute to the postoperative rehabilitation.

  11. Bloodless laparoscopic liver resection using radiofrequency thermal energy in the porcine model.

    Science.gov (United States)

    Tsalis, Konstantinos; Blouhos, Konstantinos; Vasiliadis, Konstantinos; Kalfadis, Stavros; Tsachalis, Theodoros; Savvas, Ioannis; Betsis, Dimitrios

    2007-02-01

    The aim of this study was to assess the feasibility and safety of laparoscopic hepatectomy using radiofrequency (RF) thermal energy in a porcine model. Fifteen female domestic pigs weighing 29.3 kg (range 25 to 35 kg) were used. Five transversal abdominal incisions (3 of 1 cm and 2 of 0.5 cm) were made for the introduction of the video camera and the other laparoscopic instruments. With the porta hepatis not clamped, the liver was inspected and the preferred lobe each time was divided using RF (cool-tip electrode 3 cm) with minimum bleeding. Serum liver enzymes and blood counts were drawn pre and postoperatively. All animals were killed after 1 week. The mean time of the procedures was 119 minutes (range 100 to 155 min). There were no intraoperative complications. Mean blood loss was 27 mL (range 5 to 60 mL), and the mass of the resected specimen was 132.5 g (range 65 to 305 g). There were no postoperative complications or deaths. Bloodless laparoscopic hepatectomy was technically feasible and safe in the porcine model using cool-tip electrode and 500-kHz RF Generator.

  12. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Mouse models of long QT syndrome

    Science.gov (United States)

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  14. Rational Design of Mouse Models for Cancer Research

    NARCIS (Netherlands)

    Landgraf, M.; McGovern, J.A.; Friedl, P.; Hutmacher, D.W.

    2018-01-01

    The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models.

  15. 3D vs 2D laparoscopic systems: Development of a performance quantitative validation model.

    Science.gov (United States)

    Ghedi, Andrea; Donarini, Erica; Lamera, Roberta; Sgroi, Giovanni; Turati, Luca; Ercole, Cesare

    2015-01-01

    The new technology ensures 3D laparoscopic vision by adding depth to the traditional two dimensions. This realistic vision gives the surgeon the feeling of operating in real space. Hospital of Treviglio-Caravaggio isn't an university or scientific institution; in 2014 a new 3D laparoscopic technology was acquired therefore it led to evaluation of the of the appropriateness in term of patient outcome and safety. The project aims at achieving the development of a quantitative validation model that would ensure low cost and a reliable measure of the performance of 3D technology versus 2D mode. In addition, it aims at demonstrating how new technologies, such as open source hardware and software and 3D printing, could help research with no significant cost increase. For these reasons, in order to define criteria of appropriateness in the use of 3D technologies, it was decided to perform a study to technically validate the use of the best technology in terms of effectiveness, efficiency and safety in the use of a system between laparoscopic vision in 3D and the traditional 2D. 30 surgeons were enrolled in order to perform an exercise through the use of laparoscopic forceps inside a trainer. The exercise consisted of having surgeons with different level of seniority, grouped by type of specialization (eg. surgery, urology, gynecology), exercising videolaparoscopy with two technologies (2D and 3D) through the use of a anthropometric phantom. The target assigned to the surgeon was that to pass "needle and thread" without touching the metal part in the shortest time possible. The rings selected for the exercise had each a coefficient of difficulty determined by depth, diameter, angle from the positioning and from the point of view. The analysis of the data collected from the above exercise has mathematically confirmed that the 3D technique ensures a learning curve lower in novice and greater accuracy in the performance of the task with respect to 2D.

  16. A new proposal for laparoscopic left colectomy in a rat model

    Directory of Open Access Journals (Sweden)

    Leonardo de Castro Durães

    2013-04-01

    Full Text Available PURPOSE: To evaluate the feasibility and safety of a new technique for laparoscopic segmental colectomy and primary anastomosis in the left colon of rats. METHODS: Thirty rats were randomly assigned to three groups of ten animals each. All animals underwent segmental resection of the left colon and end-to-end anastomosis. In Group I, the animals underwent laparoscopic surgery with carbon dioxide pneumoperitoneum at a pressure of 5 mmHg. In Group II, the animals underwent pneumoperitoneum with carbon dioxide at a pressure of 12 mmHg. In Group III, the control group, the animals underwent open surgery. All animals were reopened on the 7th postoperative day and were evaluated for peritonitis, abscesses, anastomotic dehiscence and bowel obstruction, and the anastomosis bursting pressure was measured. RESULTS: No obstructions, peritonitis or abscesses were found in any of the animals. An animal in Group I exhibited a blocked anastomosis leakage. The average anastomosis bursting pressure in the 30 animals was 187.02 ± 68.35 mmHg. There was no significant difference in the anastomosis bursting pressure among the groups (p = 0.503 CONCLUSION: The laparoscopic experimental model was feasible and safe for segmental colectomy and anastomosis of the left colon in rats.

  17. Hand-assisted Approach as a Model to Teach Complex Laparoscopic Hepatectomies: Preliminary Results.

    Science.gov (United States)

    Makdissi, Fabio F; Jeismann, Vagner B; Kruger, Jaime A P; Coelho, Fabricio F; Ribeiro-Junior, Ulysses; Cecconello, Ivan; Herman, Paulo

    2017-08-01

    Currently, there are limited and scarce models to teach complex liver resections by laparoscopy. The aim of this study is to present a hand-assisted technique to teach complex laparoscopic hepatectomies for fellows in liver surgery. Laparoscopic hand-assisted approach for resections of liver lesions located in posterosuperior segments (7, 6/7, 7/8, 8) was performed by the trainees with guidance and intermittent intervention of a senior surgeon. Data as: (1) percentage of time that the senior surgeon takes the surgery as main surgeon, (2) need for the senior surgeon to finish the procedure, (3) necessity of conversion, (4) bleeding with hemodynamic instability, (5) need for transfusion, (6) oncological surgical margins, were evaluated. In total, 12 cases of complex laparoscopic liver resections were performed by the trainee. All cases included deep lesions situated on liver segments 7 or 8. The senior surgeon intervention occurred in a mean of 20% of the total surgical time (range, 0% to 50%). A senior intervention >20% was necessary in 2 cases. There was no need for conversion or reoperation. Neither major bleeding nor complications resulted from the teaching program. All surgical margins were clear. This preliminary report shows that hand-assistance is a safe way to teach complex liver resections without compromising patient safety or oncological results. More cases are still necessary to draw definitive conclusions about this teaching method.

  18. Mouse Model Resources for Vision Research

    Directory of Open Access Journals (Sweden)

    Jungyeon Won

    2011-01-01

    Full Text Available The need for mouse models, with their well-developed genetics and similarity to human physiology and anatomy, is clear and their central role in furthering our understanding of human disease is readily apparent in the literature. Mice carrying mutations that alter developmental pathways or cellular function provide model systems for analyzing defects in comparable human disorders and for testing therapeutic strategies. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Two programs, the Eye Mutant Resource and the Translational Vision Research Models, focused on providing such models to the vision research community are described herein. Over 100 mutant lines from the Eye Mutant Resource and 60 mutant lines from the Translational Vision Research Models have been developed. The ocular diseases of the mutant lines include a wide range of phenotypes, including cataracts, retinal dysplasia and degeneration, and abnormal blood vessel formation. The mutations in disease genes have been mapped and in some cases identified by direct sequencing. Here, we report 3 novel alleles of Crxtvrm65, Rp1tvrm64, and Rpe65tvrm148 as successful examples of the TVRM program, that closely resemble previously reported knockout models.

  19. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  20. Training in laparoscopic colorectal surgery: A new educational model using specially embalmed human anatomical specimen

    NARCIS (Netherlands)

    J.C. Slieker (Juliette); H. Theeuwes (Hilco); G.L. van Rooijen (Göran); J.F. Lange (Johan); G.J. Kleinrensink (Gert Jan)

    2012-01-01

    textabstractBackground: With an increasing percentage of colorectal resections performed laparoscopically nowadays, there is more emphasis on training "before the job" on operative skills, including the comprehension of specific laparoscopic surgical anatomy. As integration of technical skills with

  1. Mouse infection models for space flight immunology

    Science.gov (United States)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  2. A new method for three-dimensional laparoscopic ultrasound model reconstruction

    DEFF Research Database (Denmark)

    Fristrup, C W; Pless, T; Durup, J

    2004-01-01

    BACKGROUND: Laparoscopic ultrasound is an important modality in the staging of gastrointestinal tumors. Correct staging depends on good spatial understanding of the regional tumor infiltration. Three-dimensional (3D) models may facilitate the evaluation of tumor infiltration. The aim of the study...... accuracy of the new method was tested ex vivo, and the clinical feasibility was tested on a small series of patients. RESULTS: Both electromagnetic tracked reconstructions and the new 3D method gave good volumetric information with no significant difference. Clinical use of the new 3D method showed...

  3. Humanized Mouse Models of Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Dane Parker

    2017-05-01

    Full Text Available Staphylococcus aureus is a successful human pathogen that has adapted itself in response to selection pressure by the human immune system. A commensal of the human skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used extensively in all these conditions to identify virulence factors and host components important for pathogenesis. Although significant effort has gone toward development of an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection in humans after successful studies in mice. These results have raised questions as to the utility of mice to predict patient outcome and suggest that humanized mice might prove useful in modeling infection. The development of humanized mouse models of S. aureus infection will allow us to assess the contribution of several human-specific virulence factors, in addition to exploring components of the human immune system in protection against S. aureus infection. Their use is discussed in light of several recently reported studies.

  4. Mouse models for gastric cancer: Matching models to biological questions

    Science.gov (United States)

    Poh, Ashleigh R; O'Donoghue, Robert J J

    2016-01-01

    Abstract Gastric cancer is the third leading cause of cancer‐related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late‐stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new‐targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre‐clinical development of new therapeutics. PMID:26809278

  5. Model-based formalization of medical knowledge for context-aware assistance in laparoscopic surgery

    Science.gov (United States)

    Katić, Darko; Wekerle, Anna-Laura; Gärtner, Fabian; Kenngott, Hannes G.; Müller-Stich, Beat P.; Dillmann, Rüdiger; Speidel, Stefanie

    2014-03-01

    The increase of technological complexity in surgery has created a need for novel man-machine interaction techniques. Specifically, context-aware systems which automatically adapt themselves to the current circumstances in the OR have great potential in this regard. To create such systems, models of surgical procedures are vital, as they allow analyzing the current situation and assessing the context. For this purpose, we have developed a Surgical Process Model based on Description Logics. It incorporates general medical background knowledge as well as intraoperatively observed situational knowledge. The representation consists of three parts: the Background Knowledge Model, the Preoperative Process Model and the Integrated Intraoperative Process Model. All models depend on each other and create a concise view on the surgery. As a proof of concept, we applied the system to a specific intervention, the laparoscopic distal pancreatectomy.

  6. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Development of a human cadaver model for training in laparoscopic donor nephrectomy.

    Science.gov (United States)

    Sutton, Erica R H; Billeter, Adrian; Druen, Devin; Roberts, Henry; Rice, Jonathan

    2017-06-01

    The organ procurement network recommends a surgeon record 15 cases as surgeon or assistant for laparoscopic donor nephrectomies (LDN) prior to independent practice. The literature suggests that the learning curve for improved perioperative and patient outcomes is closer to 35 cases. In this article, we describe our development of a model utilizing fresh tissue and objective, quantifiable endpoints to document surgical progress, and efficiency in each of the major steps involved in LDN. Phase I of model development focused on the modifications necessary to maintain visualization for laparoscopic surgery in a human cadaver. Phase II tested proposed learner-based metrics of procedural competency for multiport LDN by timing procedural steps of LDN in a novice learner. Phases I and II required 12 and nine cadavers, with a total of 35 kidneys utilized. The following metrics improved with trial number for multiport LDN: time taken for dissection of the gonadal vein, ureter, renal hilum, adrenal and lumbrical veins, simulated warm ischemic time (WIT), and operative time. Human cadavers can be used for training in LDN as evidenced by improvements in timed learner-based metrics. This simulation-based model fills a gap in available training options for surgeons. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Web-video-mining-supported workflow modeling for laparoscopic surgeries.

    Science.gov (United States)

    Liu, Rui; Zhang, Xiaoli; Zhang, Hao

    2016-11-01

    As quality assurance is of strong concern in advanced surgeries, intelligent surgical systems are expected to have knowledge such as the knowledge of the surgical workflow model (SWM) to support their intuitive cooperation with surgeons. For generating a robust and reliable SWM, a large amount of training data is required. However, training data collected by physically recording surgery operations is often limited and data collection is time-consuming and labor-intensive, severely influencing knowledge scalability of the surgical systems. The objective of this research is to solve the knowledge scalability problem in surgical workflow modeling with a low cost and labor efficient way. A novel web-video-mining-supported surgical workflow modeling (webSWM) method is developed. A novel video quality analysis method based on topic analysis and sentiment analysis techniques is developed to select high-quality videos from abundant and noisy web videos. A statistical learning method is then used to build the workflow model based on the selected videos. To test the effectiveness of the webSWM method, 250 web videos were mined to generate a surgical workflow for the robotic cholecystectomy surgery. The generated workflow was evaluated by 4 web-retrieved videos and 4 operation-room-recorded videos, respectively. The evaluation results (video selection consistency n-index ≥0.60; surgical workflow matching degree ≥0.84) proved the effectiveness of the webSWM method in generating robust and reliable SWM knowledge by mining web videos. With the webSWM method, abundant web videos were selected and a reliable SWM was modeled in a short time with low labor cost. Satisfied performances in mining web videos and learning surgery-related knowledge show that the webSWM method is promising in scaling knowledge for intelligent surgical systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Characterization of a pneumococcal meningitis mouse model

    Directory of Open Access Journals (Sweden)

    Mook-Kanamori Barry

    2012-03-01

    Full Text Available Abstract Background S. pneumoniae is the most common causative agent of meningitis, and is associated with high morbidity and mortality. We aimed to develop an integrated and representative pneumococcal meningitis mouse model resembling the human situation. Methods Adult mice (C57BL/6 were inoculated in the cisterna magna with increasing doses of S. pneumoniae serotype 3 colony forming units (CFU; n = 24, 104, 105, 106 and 107 CFU and survival studies were performed. Cerebrospinal fluid (CSF, brain, blood, spleen, and lungs were collected. Subsequently, mice were inoculated with 104 CFU S. pneumoniae serotype 3 and sacrificed at 6 (n = 6 and 30 hours (n = 6. Outcome parameters were bacterial outgrowth, clinical score, and cytokine and chemokine levels (using Luminex® in CSF, blood and brain. Meningeal inflammation, neutrophil infiltration, parenchymal and subarachnoidal hemorrhages, microglial activation and hippocampal apoptosis were assessed in histopathological studies. Results Lower doses of bacteria delayed onset of illness and time of death (median survival CFU 104, 56 hrs; 105, 38 hrs, 106, 28 hrs. 107, 24 hrs. Bacterial titers in brain and CSF were similar in all mice at the end-stage of disease independent of inoculation dose, though bacterial outgrowth in the systemic compartment was less at lower inoculation doses. At 30 hours after inoculation with 104 CFU of S. pneumoniae, blood levels of KC, IL6, MIP-2 and IFN- γ were elevated, as were brain homogenate levels of KC, MIP-2, IL-6, IL-1β and RANTES. Brain histology uniformly showed meningeal inflammation at 6 hours, and, neutrophil infiltration, microglial activation, and hippocampal apoptosis at 30 hours. Parenchymal and subarachnoidal and cortical hemorrhages were seen in 5 of 6 and 3 of 6 mice at 6 and 30 hours, respectively. Conclusion We have developed and validated a murine model of pneumococcal meningitis.

  10. A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    Directory of Open Access Journals (Sweden)

    Matthew E. Brown

    2018-04-01

    Full Text Available Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs. Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymus

  11. A Mouse Model of Chronic West Nile Virus Disease.

    Directory of Open Access Journals (Sweden)

    Jessica B Graham

    2016-11-01

    Full Text Available Infection with West Nile virus (WNV leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.

  12. Validation of a model of intensive training in digestive laparoscopic surgery.

    Science.gov (United States)

    Enciso, Silvia; Díaz-Güemes, Idoia; Usón, Jesús; Sánchez-Margallo, Francisco Miguel

    2016-02-01

    Our objective was to assess a laparoscopic training model for general surgery residents. Twelve general surgery residents carried out a training program, consisting of a theoretical session (one hour) and a hands-on session on simulator (7 h) and on animal model (13 h). For the first and last repetitions of simulator tasks and the Nissen fundoplication technique, time and scores from the global rating scale objective structured assessment of technical skills (OSATS) were registered. Before and after the course, participants performed 4 tasks on the virtual reality simulator LAPMentor™: 1) hand-eye coordination, 2) hand-hand coordination, 3) transference of objects and 4) cholecystectomy task, registering time and movement metrics. Moreover, the residents completed a questionnaire related to the training components on a 5-point rating scale. The last repetition of the tasks and the Nissen fundoplication technique were performed faster and with a higher OSATS score. After the course, the participants performed all LAPMentor™ tasks faster, increasing the speed of movements in all tasks. Number of movements decreased in tasks 2, 3 and 4; as well as path length in tasks 2 and 4. Training components were positively rated by residents, being the suture task the aspect best rated (4.90 ± 0.32). This training model in digestive laparoscopic surgery has demonstrated to be valid for the improvement of basic and advanced skills of general surgery residents. Intracorporeal suturing and the animal model were the best rated training elements. Copyright © 2015 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Decerebrate mouse model for studies of the spinal cord circuits

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Mayr, Kyle A; Manuel, Marin

    2017-01-01

    The adult decerebrate mouse model (a mouse with the cerebrum removed) enables the study of sensory-motor integration and motor output from the spinal cord for several hours without compromising these functions with anesthesia. For example, the decerebrate mouse is ideal for examining locomotor be......, which is ample time to perform most short-term procedures. These protocols can be modified for those interested in cardiovascular or respiratory function in addition to motor function and can be performed by trainees with some previous experience in animal surgery....

  14. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations.

    Science.gov (United States)

    Kirma, Nameer B; Tekmal, Rajeshwar R

    2012-09-01

    Mouse models of breast cancer, especially transgenic and knockout mice, have been established as valuable tools in shedding light on factors involved in preneoplastic changes, tumor development and malignant progression. The majority of mouse transgenic models develop estrogen receptor (ER) negative tumors. This is seen as a drawback because the majority of human breast cancers present an ER positive phenotype. On the other hand, several transgenic mouse models have been developed that produce ER positive mammary tumors. These include mice over-expressing aromatase, ERα, PELP-1 and AIB-1. In this review, we will discuss the value of these models as physiologically relevant in vivo systems to understand breast cancer as well as some of the pitfalls involving these models. In all, we argue that the use of transgenic models has improved our understanding of the molecular aspects and biology of breast cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Mouse Models as Predictors of Human Responses: Evolutionary Medicine.

    Science.gov (United States)

    Uhl, Elizabeth W; Warner, Natalie J

    Mice offer a number of advantages and are extensively used to model human diseases and drug responses. Selective breeding and genetic manipulation of mice have made many different genotypes and phenotypes available for research. However, in many cases, mouse models have failed to be predictive. Important sources of the prediction problem have been the failure to consider the evolutionary basis for species differences, especially in drug metabolism, and disease definitions that do not reflect the complexity of gene expression underlying disease phenotypes. Incorporating evolutionary insights into mouse models allow for unique opportunities to characterize the effects of diet, different gene expression profiles, and microbiomics underlying human drug responses and disease phenotypes.

  17. Mouse models for understanding human developmental anomalies

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals

  18. A preclinical mouse model of invasive lobular breast cancer metastasis

    NARCIS (Netherlands)

    Doornebal, Chris W.; Klarenbeek, Sjoerd; Braumuller, Tanya M.; Klijn, Christiaan N.; Ciampricotti, Metamia; Hau, Cheei-Sing; Hollmann, Markus W.; Jonkers, Jos; de Visser, Karin E.

    2013-01-01

    Metastatic disease accounts for more than 90% of cancer-related deaths, but the development of effective antimetastatic agents has been hampered by the paucity of clinically relevant preclinical models of human metastatic disease. Here, we report the development of a mouse model of spontaneous

  19. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  20. Mass spectrometry analysis of hepcidin peptides in experimental mouse models.

    Directory of Open Access Journals (Sweden)

    Harold Tjalsma

    Full Text Available The mouse is a valuable model for unravelling the role of hepcidin in iron homeostasis, however, such studies still report hepcidin mRNA levels as a surrogate marker for bioactive hepcidin in its pivotal function to block ferroportin-mediated iron transport. Here, we aimed to assess bioactive mouse Hepcidin-1 (Hep-1 and its paralogue Hepcidin-2 (Hep-2 at the peptide level. To this purpose, Fourier transform ion cyclotron resonance (FTICR and tandem-MS was used for hepcidin identification, after which a time-of-flight (TOF MS-based methodology was exploited to routinely determine Hep-1 and -2 levels in mouse serum and urine. This method was biologically validated by hepcidin assessment in: i 3 mouse strains (C57Bl/6; DBA/2 and BABL/c upon stimulation with intravenous iron and LPS, ii homozygous Hfe knock out, homozygous transferrin receptor 2 (Y245X mutated mice and double affected mice, and iii mice treated with a sublethal hepatotoxic dose of paracetamol. The results showed that detection of Hep-1 was restricted to serum, whereas Hep-2 and its presumed isoforms were predominantly present in urine. Elevations in serum Hep-1 and urine Hep-2 upon intravenous iron or LPS were only moderate and varied considerably between mouse strains. Serum Hep-1 was decreased in all three hemochromatosis models, being lowest in the double affected mice. Serum Hep-1 levels correlated with liver hepcidin-1 gene expression, while acute liver damage by paracetamol depleted Hep-1 from serum. Furthermore, serum Hep-1 appeared to be an excellent indicator of splenic iron accumulation. In conclusion, Hep-1 and Hep-2 peptide responses in experimental mouse agree with the known biology of hepcidin mRNA regulators, and their measurement can now be implemented in experimental mouse models to provide novel insights in post-transcriptional regulation, hepcidin function, and kinetics.

  1. External validation of the Cairns Prediction Model (CPM) to predict conversion from laparoscopic to open cholecystectomy.

    Science.gov (United States)

    Hu, Alan Shiun Yew; Donohue, Peter O'; Gunnarsson, Ronny K; de Costa, Alan

    2018-03-14

    Valid and user-friendly prediction models for conversion to open cholecystectomy allow for proper planning prior to surgery. The Cairns Prediction Model (CPM) has been in use clinically in the original study site for the past three years, but has not been tested at other sites. A retrospective, single-centred study collected ultrasonic measurements and clinical variables alongside with conversion status from consecutive patients who underwent laparoscopic cholecystectomy from 2013 to 2016 in The Townsville Hospital, North Queensland, Australia. An area under the curve (AUC) was calculated to externally validate of the CPM. Conversion was necessary in 43 (4.2%) out of 1035 patients. External validation showed an area under the curve of 0.87 (95% CI 0.82-0.93, p = 1.1 × 10 -14 ). In comparison with most previously published models, which have an AUC of approximately 0.80 or less, the CPM has the highest AUC of all published prediction models both for internal and external validation. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  2. Comparisons of prediction models of quality of life after laparoscopic cholecystectomy: a longitudinal prospective study.

    Directory of Open Access Journals (Sweden)

    Hon-Yi Shi

    Full Text Available BACKGROUND: Few studies of laparoscopic cholecystectomy (LC outcome have used longitudinal data for more than two years. Moreover, no studies have considered group differences in factors other than outcome such as age and nonsurgical treatment. Additionally, almost all published articles agree that the essential issue of the internal validity (reproducibility of the artificial neural network (ANN, support vector machine (SVM, Gaussian process regression (GPR and multiple linear regression (MLR models has not been adequately addressed. This study proposed to validate the use of these models for predicting quality of life (QOL after LC and to compare the predictive capability of ANNs with that of SVM, GPR and MLR. METHODOLOGY/PRINCIPAL FINDINGS: A total of 400 LC patients completed the SF-36 and the Gastrointestinal Quality of Life Index at baseline and at 2 years postoperatively. The criteria for evaluating the accuracy of the system models were mean square error (MSE and mean absolute percentage error (MAPE. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and to rank the variables in order of importance. Compared to SVM, GPR and MLR models, the ANN model generally had smaller MSE and MAPE values in the training data set and test data set. Most ANN models had MAPE values ranging from 4.20% to 8.60%, and most had high prediction accuracy. The global sensitivity analysis also showed that preoperative functional status was the best parameter for predicting QOL after LC. CONCLUSIONS/SIGNIFICANCE: Compared with SVM, GPR and MLR models, the ANN model in this study was more accurate in predicting patient-reported QOL and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data.

  3. A mouse model of mammary hyperplasia induced by oral hormone ...

    African Journals Online (AJOL)

    Methods and Materials: To address the mechanism, we developed a mouse model of mammary hyperplasia. We gave mice estradiol valerate tablets and progesterone capsules sequentially for one month by intragastric administration. Results: Mice treated by this method had a series of pathological changes which are ...

  4. Towards a mouse model of depression : a psychoneuroendocrine approach

    NARCIS (Netherlands)

    Dalm, Sergiu

    2012-01-01

    Chronic stress is considered a vulnerability factor for depression. A key symptom is anhedonia; a reduced response to positive stimuli. Drugs are effective for only 20-40% of the patients and new drugs are urgently needed. The objective of the research was to develop a mouse model of depression that

  5. Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia

    DEFF Research Database (Denmark)

    Anzovino, Amy; Chiang, Shannon; Brown, Bronwyn E

    2017-01-01

    mechanisms. Using a mouse conditional frataxin knockout (KO) model in the heart and skeletal muscle, we examined the Nrf2 pathway in these tissues. Frataxin KO results in fatal cardiomyopathy, whereas skeletal muscle was asymptomatic. In the KO heart, protein oxidation and a decreased glutathione...

  6. The Event Coordination Notation: Behaviour Modelling Beyond Mickey Mouse

    DEFF Research Database (Denmark)

    Jepsen, Jesper; Kindler, Ekkart

    2015-01-01

    The Event Coordination Notation (ECNO) allows modelling the desired behaviour of a software system on top of any object-oriented software. Together with existing technologies from Model-based Software Engineering (MBSE) for automatically generating the software for the structural parts, ECNO allows...... special aspect of ECNO or another; and it would be fair to call them “Mickey Mouse examples”. In this paper, we give a concise overview of the motivation, ideas, and concepts of ECNO. More importantly, we discuss a larger system, which was completely generated from the underlying models: a workflow...... management system. This way, we demonstrate that ECNO can be used for modelling software beyond the typical Mickey Mouse examples. This example demonstrates that the essence of workflow management – including its behaviour – can be captured in ECNO: in a sense, it is a domain model of workflow management...

  7. Rapid genetic algorithm optimization of a mouse computational model: Benefits for anthropomorphization of neonatal mouse cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Corina Teodora Bot

    2012-11-01

    Full Text Available While the mouse presents an invaluable experimental model organism in biology, its usefulness in cardiac arrhythmia research is limited in some aspects due to major electrophysiological differences between murine and human action potentials (APs. As previously described, these species-specific traits can be partly overcome by application of a cell-type transforming clamp (CTC to anthropomorphize the murine cardiac AP. CTC is a hybrid experimental-computational dynamic clamp technique, in which a computationally calculated time-dependent current is inserted into a cell in real time, to compensate for the differences between sarcolemmal currents of that cell (e.g., murine and the desired species (e.g., human. For effective CTC performance, mismatch between the measured cell and a mathematical model used to mimic the measured AP must be minimal. We have developed a genetic algorithm (GA approach that rapidly tunes a mathematical model to reproduce the AP of the murine cardiac myocyte under study. Compared to a prior implementation that used a template-based model selection approach, we show that GA optimization to a cell-specific model results in a much better recapitulation of the desired AP morphology with CTC. This improvement was more pronounced when anthropomorphizing neonatal mouse cardiomyocytes to human-like APs than to guinea pig APs. CTC may be useful for a wide range of applications, from screening effects of pharmaceutical compounds on ion channel activity, to exploring variations in the mouse or human genome. Rapid GA optimization of a cell-specific mathematical model improves CTC performance and may therefore expand the applicability and usage of the CTC technique.

  8. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects

    NARCIS (Netherlands)

    Korstanje, Ron; Desai, Jigar; Lazar, Gloria; King, Benjamin; Rollins, Jarod; Spurr, Melissa; Joseph, Jamie; Kadambi, Sindhuja; Li, Yang; Cherry, Allison; Matteson, Paul G.; Paigen, Beverly; Millonig, James H.

    Korstanje R, Desai J, Lazar G, King B, Rollins J, Spurr M, Joseph J, Kadambi S, Li Y, Cherry A, Matteson PG, Paigen B, Millonig JH. Quantitative trait loci affecting phenotypic variation in the vacuolated lens mouse mutant, a multigenic mouse model of neural tube defects. Physiol Genomics 35:

  9. Histologic scoring of gastritis and gastric cancer in mouse models.

    Science.gov (United States)

    Rogers, Arlin B

    2012-01-01

    Histopathology is a defining endpoint in mouse models of experimental gastritis and gastric adenocarcinoma. Presented here is an overview of the histology of gastritis and gastric cancer in mice experimentally infected with Helicobacter pylori or H. felis. A modular histopathologic scoring scheme is provided that incorporates relevant disease-associated changes. Whereas the guide uses Helicobacter infection as the prototype challenge, features may be applied to chemical and genetically engineered mouse models of stomach cancer as well. Specific criteria included in the combined gastric histologic activity index (HAI) include inflammation, epithelial defects, oxyntic atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia or neoplasia. Representative photomicrographs accompany descriptions for each lesion grade. Differentiation of genuine tumor invasion from pseudoinvasion is highlighted. A brief comparison of normal rodent versus human stomach anatomy and physiology is accompanied by an introduction to mouse-specific lesions including mucous metaplasia and eosinophilic droplets (hyalinosis). In conjunction with qualified pathology support, this guide is intended to assist research scientists, postdoctoral fellows, graduate students, and medical professionals from affiliated disciplines in the interpretation and histologic grading of chronic gastritis and gastric carcinoma in mouse models.

  10. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  11. Spallanzani's mouse: a model of restoration and regeneration.

    Science.gov (United States)

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  12. Laparoscopic herniorrhaphy.

    Science.gov (United States)

    Swanstrom, L L

    1996-06-01

    There is little doubt that laparoscopic herniorrhaphy has assumed a place in the pantheon of hernia repair. There is also little doubt that further work needs to be done to determine the exact role that laparoscopic hernia repair should play in the surgical armamentarium. Hernias have been surgically treated since the early Greeks. In contrast, laparoscopic hernia repair has a history of only 6 years. Even within that short time, laparoscopic hernia repair techniques have not remained unchanged. This is obviously a technique in evolution, as indicated by the abandonment of early repairs ("plug and mesh" and IPOM) and the gradual gain in pre-eminence of the TEP repair. During the same time frame, surgery itself has evolved into a discipline more concerned with cost-effectiveness, outcomes, and "consumer acceptance." Confluence of these two developments has led to a situation in which traditional concerns regarding surgical procedures (i.e., recurrence rates or complication rates) assume less of a role than cost-effectiveness, learnability, marketability, and medical-legal considerations. No surgeon, whether practicing in a academic setting or a private practice, is exempt from these pressures. Laparoscopic hernia repair therefore seems to fit into a very specialized niche. In our community, the majority of general surgeons are only too happy to not do laparoscopic hernia repairs. On the other hand, in our experience, certain indications do seem to cry out for a laparoscopic approach. At our own center we have found that laparoscopic repairs can indeed be effective, and even cost-effective, under specific circumstances. These include completing a minimal learning curve, utilizing the properitoneal approach, minimizing the use of reusable instruments, using dissecting balloons as a time-saving device, and very specific patient selection criteria. At present these include patients with bilateral inguinal hernias on clinical examination, patients with recurrent

  13. Mouse models for atherosclerosis and pharmaceutical modifiers

    NARCIS (Netherlands)

    Zadelaar, A.S.M.; Kleemann, R.; Verschuren, L.; Vries-van der Weij, J. de; Hoorn, J. van der; Princen, H.M.; Kooistra, T.

    2007-01-01

    Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically

  14. A transgenic mouse model for trilateral retinoblastoma

    NARCIS (Netherlands)

    O'Brien, J.M.; Marcus, D.M.; Bernards, R.A.; Carpenter, J.L.; Windle, J.J.; Mellon, P.; Albert, D.M.

    1990-01-01

    We present a murine model of trilateral retinoblastoma. Ocular retinoblastoma and central nervous system tumors are observed in a line of mice formed by the transgenic expression of SV40 T-antigen. An oncogenic protein known to bind to the retinoblastoma gene product (p105-Rb) is specifically

  15. Single-incision laparoscopic surgery in a survival animal model using a transabdominal magnetic anchoring system.

    Science.gov (United States)

    Cho, Yong Beom; Park, Chan Ho; Kim, Hee Cheol; Yun, Seong Hyeon; Lee, Woo Yong; Chun, Ho-Kyung

    2011-12-01

    Though single-incision laparoscopic surgery (SILS) can reduce operative scarring and facilitates postoperative recovery, it does have some limitations, such as reduction in instrument working, difficulty in triangulation, and collision of instruments. To overcome these limitations, development of new instruments is needed. The aim of this study is to evaluate the feasibility and safety of a magnetic anchoring system in performing SILS ileocecectomy. Experiments were performed in a living dog model. Five dogs (26.3-29.2 kg) underwent ileocecectomy using a multichannel single port (OCTO port; Darim, Seoul, Korea). The port was inserted at the umbilicus and maintained a CO(2) pneumoperitoneum. Two magnet-fixated vascular clips were attached to the colon using an endoclip applicator, and it was held together across the abdominal wall by using an external handheld magnet. The cecum was then retracted in an upward direction by moving the external handheld magnet, and the mesocolon was dissected with Ultracision(®). Extracorporeal functional end-to-end anastomosis was done using a linear stapler. All animals survived during the observational period of 2 weeks, and then re-exploration was performed under general anesthesia for evaluation of intra-abdominal healing and complications. Mean operation time was 70 min (range 55-100 min), with each subsequent case taking less time. The magnetic anchoring system was effective in achieving adequate exposure in all cases. All animals survived and convalesced normally without evidence of clinical complication during the observation period. At re-exploration, all anastomoses were completely healed and there were no complications such as abscess, bleeding or organ injury. SILS ileocecectomy using a magnetic anchoring system was safe and effective in a dog model. The development of magnetic anchoring systems may be beneficial for overcoming the limitations of SILS.

  16. Nonspecific airway reactivity in a mouse model of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  17. A consensus definition of cataplexy in mouse models of narcolepsy.

    Science.gov (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  18. Mouse Models Recapitulating Human Adrenocortical Tumors: What is lacking?

    Directory of Open Access Journals (Sweden)

    Felicia Leccia

    2016-07-01

    Full Text Available Adrenal cortex tumors are divided into benign forms such as primary hyperplasias and adrenocortical adenomas (ACAs, and malignant forms or adrenocortical carcinomas (ACCs. Primary hyperplasias are rare causes of ACTH-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely functional, i.e producing steroids. When functional, adenomas result in endocrine disorders such as Cushing’s syndrome (hypercortisolism or Conn’s syndrome (hyperaldosteronism. In contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors led to the identification of potentially causative genes, most of them being involved in PKA, Wnt/β-catenin and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders and in fine to provide in vivo tools for therapeutic screens. In this article we will provide an overview on the existing mouse models (xenografted and genetically engineered of adrenocortical tumors by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.

  19. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    Science.gov (United States)

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  20. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  1. Efficacy of Enrofloxacin in a Mouse Model of Sepsis

    OpenAIRE

    Slate, Andrea R; Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-01-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciproflox...

  2. Skeletal muscle repair in a mouse model of nemaline myopathy

    OpenAIRE

    Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.

    2006-01-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five d...

  3. Behavioral characterization of mouse models of neuroferritinopathy.

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    Full Text Available Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK promoter. Transgenic (Tg mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests. The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help

  4. Behavioral characterization of mouse models of neuroferritinopathy.

    Science.gov (United States)

    Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  5. Mouse Models of the Skin: Models to Define Mechanisms of Skin Carcinogenesis

    International Nuclear Information System (INIS)

    Wheeler, D. L.; Verma, A. K.; Denning, M. F.

    2013-01-01

    The multistep model of mouse skin carcinogenesis has facilitated identification of irreversible genetic events of initiation and progression, and epigenetic events of tumor promotion. Mouse skin tumor initiation can be accomplished by a single exposure to a sufficiently small dose of a carcinogen, and this step is rapid and irreversible. However, promotion of skin tumor formation requires a repeated and prolonged exposure to a promoter, and that tumor promotion is reversible. Investigations focused on the mechanisms of mouse carcinogenesis have resulted in the identifications of potential molecular targets of cancer induction and progression useful in planning strategies for human cancer prevention trials. This special issue contains eight papers that focus on mouse models used to study individual proteins expressed in the mouse skin and the role they play in differentiation, tissue homeostasis, skin carcinogenesis, and chemo prevention of skin cancer.

  6. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    Science.gov (United States)

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  7. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    International Nuclear Information System (INIS)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.; Kosyk, Oksana; Sandot, Amelia; Witek, Rafal; Kaiser, Robert; Stewart, Todd; Amaral, Kirsten; Freeman, Kimberly; Black, Chris; LeCluyse, Edward L.; Ferguson, Stephen S.; Rusyn, Ivan

    2010-01-01

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

  8. Combination radiotherapy in an orthotopic mouse brain tumor model.

    Science.gov (United States)

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  9. A dystrophic Duchenne mouse model for testing human antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Marcel Veltrop

    Full Text Available Duchenne muscular dystrophy (DMD is a severe muscle-wasting disease generally caused by reading frame disrupting mutations in the DMD gene resulting in loss of functional dystrophin protein. The reading frame can be restored by antisense oligonucleotide (AON-mediated exon skipping, allowing production of internally deleted, but partially functional dystrophin proteins as found in the less severe Becker muscular dystrophy. Due to genetic variation between species, mouse models with mutations in the murine genes are of limited use to test and further optimize human specific AONs in vivo. To address this we have generated the del52hDMD/mdx mouse. This model carries both murine and human DMD genes. However, mouse dystrophin expression is abolished due to a stop mutation in exon 23, while the expression of human dystrophin is abolished due to a deletion of exon 52. The del52hDMD/mdx model, like mdx, shows signs of muscle dystrophy on a histological level and phenotypically mild functional impairment. Local administration of human specific vivo morpholinos induces exon skipping and dystrophin restoration in these mice. Depending on the number of mismatches, occasional skipping of the murine Dmd gene, albeit at low levels, could be observed. Unlike previous models, the del52hDMD/mdx model enables the in vivo analysis of human specific AONs targeting exon 51 or exon 53 on RNA and protein level and muscle quality and function. Therefore, it will be a valuable tool for optimizing human specific AONs and genome editing approaches for DMD.

  10. Human immune system mouse models of Ebola virus infection.

    Science.gov (United States)

    Spengler, Jessica R; Prescott, Joseph; Feldmann, Heinz; Spiropoulou, Christina F

    2017-08-01

    Human immune system (HIS) mice, immunodeficient mice engrafted with human cells (with or without donor-matched tissue), offer a unique opportunity to study pathogens that cause disease predominantly or exclusively in humans. Several HIS mouse models have recently been used to study Ebola virus (EBOV) infection and disease. The results of these studies are encouraging and support further development and use of these models in Ebola research. HIS mice provide a small animal model to study EBOV isolates, investigate early viral interactions with human immune cells, screen vaccines and therapeutics that modulate the immune system, and investigate sequelae in survivors. Here we review existing models, discuss their use in pathogenesis studies and therapeutic screening, and highlight considerations for study design and analysis. Finally, we point out caveats to current models, and recommend future efforts for modeling EBOV infection in HIS mice. Published by Elsevier B.V.

  11. Arrhythmia phenotype in mouse models of human long QT.

    Science.gov (United States)

    Salama, Guy; Baker, Linda; Wolk, Robert; Barhanin, Jacques; London, Barry

    2009-03-01

    Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K(+) channels are heterogeneously expressed across the ventricles resulting in 'intrinsic' DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K(+) currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of I(Ks) and I(Kr), respectively. Both currents are important human K(+) currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of I(Ks) giving rise to the Jervell and Lange-Nielsen syndrome and the reduced KCNH2 gene reduces MERG and I(Kr). Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK(-/-)) and heterozygous Merg1 (Merg(+/-)) deletions and littermate control mice. MinK(-/-) mice has similar APDs and no arrhythmias (n = 4). Merg(+/-) mice had prolonged APDs (from 20 +/- 6 to 32 +/- 9 ms at the base, p mice (60% vs. 10%). A comparison of mouse models of LQT based on K(+) channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.

  12. Single-layer versus double-layer laparoscopic intracorporeally sutured gastrointestinal anastomoses in the canine model.

    Science.gov (United States)

    Tavakoli, Azine; Bakhtiari, Jalal; Khalaj, Ali Reza; Gharagozlou, Mohammad Javad; Veshkini, Abbas

    2010-01-01

    The objective of this study was to compare the gross and histopathologic changes following 1- versus 2-layer hand-sewn suture techniques in laparoscopic gastrointestinal anastomosis in dogs. This was an experimental prospective study of 16 healthy mixed breed male and female dogs. Animals were randomly divided into 2 groups. Two-layer side-to-side hand-sewn laparoscopic gastrojejunostomies were performed in group A, so that simple interrupted sutures were placed in the outer layer and simple continuous suture was used in the inner layer. The 1-layer simple continuous anastomosis between the stomach and jejunum was done in group B precisely. Specimen were collected from the sites of anastomosis, and H&E statining was performed for light microscopic studies. All animals survived the surgery. There was no gross inflammation, ischemia, apparent granulation tissue, abscess or fistula formation, leakage or stricture formation, and all sites of anastomosis were patent. Several adhesion formations were found in the abdomen with the higher incidence in the control group. Mean scores of leukocyte infiltration and granulation tissue formation at the sites of anastomosis were statistically insignificant between groups (P>0.05). Gross and histopathologic findings revealed that hand-sewn laparoscopic gastrointestinal anastomosis with the 1-layer suture technique is comparable to the 2-layer suture technique.

  13. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  14. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.

    Science.gov (United States)

    Chen, Xi; Wu, Jun; Lvovskaya, Svetlana; Herndon, Emily; Supnet, Charlene; Bezprozvanny, Ilya

    2011-11-25

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as

  15. Development of a metastatic fluorescent Lewis Lung carcinoma mouse model

    DEFF Research Database (Denmark)

    Rask, Lene; Fregil, Marianne; Høgdall, Estrid

    2013-01-01

    Cancer metastasis is the foremost cause of death in cancer patients. A series of observable pathological changes takes place during progression and metastasis of cancer, but the underlying genetic changes remain unclear. Therefore, new approaches are required, including insights from cancer mouse...... and the model is well suited for the identification of novel microRNAs and mRNAs involved in malignant progression. Our results suggest that increases in metalloproteinase expression and impairment of microRNA processing are involved in the acquirement of metastatic ability....

  16. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis

    Czech Academy of Sciences Publication Activity Database

    Lipoldová, Marie; Svobodová, M.; Havelková, Helena; Krulová, Magdalena; Badalová, Jana; Nohýnková, E.; Hart, A. A. M.; Schlegel, David; Volf, P.; Demant, P.

    2002-01-01

    Roč. 54, č. 3 (2002), s. 174-183 ISSN 0093-7711 R&D Projects: GA MZd NM28; GA ČR GA310/00/0760; GA MŠk OK 394 Grant - others:Howard Hughes Medical Institute(US) HHMI55000323; WHO(XX) TDR I.D. 970772; EC(XE) ERBI-C15-CT98-0317; EC(XE) BIO-4-CT98-0445 Institutional research plan: CEZ:AV0Z5052915 Keywords : Leishmaniasis * mouse model * complex disease Subject RIV: EC - Immunology Impact factor: 2.475, year: 2002

  17. The calm mouse: an animal model of stress reduction.

    Science.gov (United States)

    Gurfein, Blake T; Stamm, Andrew W; Bacchetti, Peter; Dallman, Mary F; Nadkarni, Nachiket A; Milush, Jeffrey M; Touma, Chadi; Palme, Rupert; Di Borgo, Charles Pozzo; Fromentin, Gilles; Lown-Hecht, Rachel; Konsman, Jan Pieter; Acree, Michael; Premenko-Lanier, Mary; Darcel, Nicolas; Hecht, Frederick M; Nixon, Douglas F

    2012-05-09

    Chronic stress is associated with negative health outcomes and is linked with neuroendocrine changes, deleterious effects on innate and adaptive immunity, and central nervous system neuropathology. Although stress management is commonly advocated clinically, there is insufficient mechanistic understanding of how decreasing stress affects disease pathogenesis. Therefore, we have developed a "calm mouse model" with caging enhancements designed to reduce murine stress. Male BALB/c mice were divided into four groups: control (Cntl), standard caging; calm (Calm), large caging to reduce animal density, a cardboard nest box for shelter, paper nesting material to promote innate nesting behavior, and a polycarbonate tube to mimic tunneling; control exercise (Cntl Ex), standard caging with a running wheel, known to reduce stress; and calm exercise (Calm Ex), calm caging with a running wheel. Calm, Cntl Ex and Calm Ex animals exhibited significantly less corticosterone production than Cntl animals. We also observed changes in spleen mass, and in vitro splenocyte studies demonstrated that Calm Ex animals had innate and adaptive immune responses that were more sensitive to acute handling stress than those in Cntl. Calm animals gained greater body mass than Cntl, although they had similar food intake, and we also observed changes in body composition, using magnetic resonance imaging. Together, our results suggest that the Calm mouse model represents a promising approach to studying the biological effects of stress reduction in the context of health and in conjunction with existing disease models.

  18. Genetic mouse models of brain ageing and Alzheimer's disease.

    Science.gov (United States)

    Bilkei-Gorzo, Andras

    2014-05-01

    Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Revisiting the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Kim CB

    2016-05-01

    Full Text Available Clifford B Kim,1,2 Patricia A D’Amore,2–4 Kip M Connor1,2 1Angiogenesis Laboratory, Massachusetts Eye and Ear, 2Department of Ophthalmology, Harvard Medical School, 3Schepens Eye Research Institute, Massachusetts Eye and Ear, 4Department of Pathology, Harvard Medical School, Boston, MA, USA Abstract: Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP, proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. Keywords: ROP, OIR, angiogenesis

  20. Dendritic spine pathology in autism: lessons learned from mouse models

    Institute of Scientific and Technical Information of China (English)

    Qiangge Zhang; Dingxi Zhou; Guoping Feng

    2016-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that affect up to 1.5% of population in the world. Recent large scale genomic studies show that genetic causes of ASD are very heterogeneous. Gene ontology, pathway analysis and animal model studies have revealed several potential converging mechanisms including postsynaptic dysfunction of excitatory synapses. In this review, we focus on the structural and functional specializations of dendritic spines, and describe their defects in ASD. We use Fragile X syndrome, Rett syndrome and Phe-lan-McDermid syndrome, three of the most studied neurodevelopmental disorders with autism features, as examples to demonstrate the significant contribution made by mouse models towards the understanding of monogenic ASD. We envision that the development and application of new technologies to study the function of dendritic spines in valid animal models will eventually lead to innovative treatments for ASD.

  1. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  2. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  3. Laparoscopic pyeloplasty.

    LENUS (Irish Health Repository)

    Cheema, I A

    2010-01-01

    We report our results and short term follow up of transperitoneal laparoscopic pyeloplasty for pelvi-ureteric junction (PUJ) obstruction. We have prospectively maintained a database to document our initial experience of 54 laparoscopic pyeloplasty. All procedures were carried out by one surgeon through a transperitoneal approach. The data extends from April 2005 to September 2008 and reports operative time, blood loss, complications, hospital stay, short term follow-up on symptomatic and radiological outcome. Fifty-four procedures were performed during the study period. Mean patient age was 29 years. Mean operating time was 133 minutes (range 65-300 minutes), and mean blood loss was 45 ml (range 20-300 ml). No intra operative complication occurred. Neither blood transfusion nor conversion to open surgery was required. Postoperative mean hospital stay was 3.4 days (range 3-14 days). There were 3 anastomotic leakages; 2 in the immediate postoperative period and 1 following removal of stent. They all required percutaneous drainage and prolonged stenting. Overall 47 (87%) patients have symptomatic relief and resolution of obstruction on renogram. Four (7%) patients developed recurrence. Three (5.5%) patients had symptomatic relief but have a persistent obstructive renogram. Laparoscopic pyeloplasty is an effective alternative treatment for symptomatic pelvi-ureteric junction obstruction. The results appear comparable to open pyeloplasty with decreased postoperative morbidity.

  4. A novel minimal invasive mouse model of extracorporeal circulation.

    Science.gov (United States)

    Luo, Shuhua; Tang, Menglin; Du, Lei; Gong, Lina; Xu, Jin; Chen, Youwen; Wang, Yabo; Lin, Ke; An, Qi

    2015-01-01

    Extracorporeal circulation (ECC) is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n = 20) survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  5. A Novel Minimal Invasive Mouse Model of Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    Shuhua Luo

    2015-01-01

    Full Text Available Extracorporeal circulation (ECC is necessary for conventional cardiac surgery and life support, but it often triggers systemic inflammation that can significantly damage tissue. Studies of ECC have been limited to large animals because of the complexity of the surgical procedures involved, which has hampered detailed understanding of ECC-induced injury. Here we describe a minimally invasive mouse model of ECC that may allow more extensive mechanistic studies. The right carotid artery and external jugular vein of anesthetized adult male C57BL/6 mice were cannulated to allow blood flow through a 1/32-inch external tube. All animals (n=20 survived 30 min ECC and subsequent 60 min observation. Blood analysis after ECC showed significant increases in levels of tumor necrosis factor α, interleukin-6, and neutrophil elastase in plasma, lung, and renal tissues, as well as increases in plasma creatinine and cystatin C and decreases in the oxygenation index. Histopathology showed that ECC induced the expected lung inflammation, which included alveolar congestion, hemorrhage, neutrophil infiltration, and alveolar wall thickening; in renal tissue, ECC induced intracytoplasmic vacuolization, acute tubular necrosis, and epithelial swelling. Our results suggest that this novel, minimally invasive mouse model can recapitulate many of the clinical features of ECC-induced systemic inflammatory response and organ injury.

  6. Supporting Third Year Medical Students' Skill Acquisition and Self-Efficacy with Coping Models and Process Feedback during Laparoscopic Knot Tying Simulation.

    Science.gov (United States)

    Dempsey, Michael S; Kauffman, Douglas F

    2017-01-01

    Background: During the third year general surgery clerkship, medical students are required to develop laparoscopic knot-tying skills. Knot-tying skills studies often rely on objective variables (e.g., time, materials used, number of iterations) that lend themselves to correlational analysis of pre- and post-intervention skill level. This study differs by examining how instructional interventions-role modeling and feedback-affect medical students' skill acquisition and self-efficacy during a laparoscopic surgical simulation training session. Methods: Seventy-eight surgical clerkship students were assigned randomly to one cell of a 2X2 factorial design. Participants observed one of two types of role modeling (expert vs. coping) and received either process-oriented or outcome-oriented feedback during a 30-min laparoscopic training session. Participants also completed several surveys that assessed their interest in surgery and their self-efficacy for laparoscopic knot tying. Results: Coping model groups tended to perform better on the knot tying task, though this was less the case in the presence of outcome feedback. Expert model groups slightly outperformed the coping model group on the peg transfer task, but in the presence of outcome feedback they reported the lowest satisfaction with their performance and the lowest self-efficacy for the knot tying task. The coping model combined with process feedback had a positive influence on students' efficiency in learning the task, on their satisfaction with their performance, and on their self-efficacy for laparoscopic knot typing. Conclusions: Results are discussed relative to self-regulated learning theory.

  7. Ibrutinib suppresses alloantibody responses in a mouse model of allosensitization.

    Science.gov (United States)

    Kim, Irene; Wu, Gordon; Chai, Ning-Ning; Klein, Andrew S; Jordan, Stanley

    2017-12-01

    Ibrutinib is a Bruton's tyrosine Kinase (BTK) antagonist that inhibits B cell receptor (BCR) signaling. Complete BTK deficiency is associated with absence of B-cells. Ibrutinb is currently approved by FDA for treatment of B-cell malignancies, including Waldenström macroglobulinaemia. We recently carried out studies to determine if ibrutinib could modify alloantibody responses. A mouse model of allogenic sensitization using a C57BL/6 mouse as the recipient of a skin allograft from an HLA-A2 transgenic mouse was utilized to examine the effects of ibrutinib on alloantibody responses and B cell effector functions. Donor-specific antibody (DSA) levels were measured in a flow-cytometric antibody binding assay. Splenic T and B cell subsets and plasma cells were analyzed in flow cytometry. Control mice developed peak levels of DSA IgM at day 14 PTx while the ibrutinib treated mice had significantly lower levels of DSA IgM (p=0.0047). Control mice developed HLA.A2-specific IgG antibodies at day 14 (230±60 MFI) and reached peak levels at day 21 (426±61 MFI). In contrast, mice in the treatment group had low levels of HLA.A2-specific IgG at day 14 (109±59 MFI, p=0.004) and day 21 (241±86 MFI, p=0.003). FACS analysis found a reduction of B220 + or CD19 + B cell population (pibrutinib attenuated recall DSA IgG responses to re-sensitization (pIbrutinib is effective in suppressing alloantibody responses through blocking BTK-mediated BCR signaling, leading to reduction of B cells and short-lived plasma cells in the spleens. Use of ibrutinib may provide benefits to HLA-sensitized transplant patients for alloantibody suppression. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Glycomic analyses of mouse models of congenital muscular dystrophy.

    Science.gov (United States)

    Stalnaker, Stephanie H; Aoki, Kazuhiro; Lim, Jae-Min; Porterfield, Mindy; Liu, Mian; Satz, Jakob S; Buskirk, Sean; Xiong, Yufang; Zhang, Peng; Campbell, Kevin P; Hu, Huaiyu; Live, David; Tiemeyer, Michael; Wells, Lance

    2011-06-17

    Dystroglycanopathies are a subset of congenital muscular dystrophies wherein α-dystroglycan (α-DG) is hypoglycosylated. α-DG is an extensively O-glycosylated extracellular matrix-binding protein and a key component of the dystrophin-glycoprotein complex. Previous studies have shown α-DG to be post-translationally modified by both O-GalNAc- and O-mannose-initiated glycan structures. Mutations in defined or putative glycosyltransferase genes involved in O-mannosylation are associated with a loss of ligand-binding activity of α-DG and are causal for various forms of congenital muscular dystrophy. In this study, we sought to perform glycomic analysis on brain O-linked glycan structures released from proteins of three different knock-out mouse models associated with O-mannosylation (POMGnT1, LARGE (Myd), and DAG1(-/-)). Using mass spectrometry approaches, we were able to identify nine O-mannose-initiated and 25 O-GalNAc-initiated glycan structures in wild-type littermate control mouse brains. Through our analysis, we were able to confirm that POMGnT1 is essential for the extension of all observed O-mannose glycan structures with β1,2-linked GlcNAc. Loss of LARGE expression in the Myd mouse had no observable effect on the O-mannose-initiated glycan structures characterized here. Interestingly, we also determined that similar amounts of O-mannose-initiated glycan structures are present on brain proteins from α-DG-lacking mice (DAG1) compared with wild-type mice, indicating that there must be additional proteins that are O-mannosylated in the mammalian brain. Our findings illustrate that classical β1,2-elongation and β1,6-GlcNAc branching of O-mannose glycan structures are dependent upon the POMGnT1 enzyme and that O-mannosylation is not limited solely to α-DG in the brain.

  9. Development of A Mouse Model of Menopausal Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Smith

    2014-02-01

    Full Text Available Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; questions of the cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology.A potentially useful model is the germ cell-deficient Wv (white spotting variant mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1-5% (it is not a null mutation. Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer.Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention.

  10. Per-Oral Endoscopic Myotomy (POEM) After Previous Laparoscopic Heller Myotomy Is Feasible and Safe in a Porcine Model.

    Science.gov (United States)

    Miles, Luke F; Frelich, Matthew J; Gould, Jon C; Dua, Kulwinder S; Jensen, Eric S; Kastenmeier, Andrew S

    2015-10-01

    We sought to evaluate the feasibility, safety, and difficulty of performing the per-oral endoscopic myotomy (POEM) procedure in the setting of a prior Heller myotomy using a survival porcine model. Four pigs underwent laparoscopic Heller myotomy with Dor partial anterior fundoplication followed by the POEM performed 4 weeks later. Two additional pigs served as controls, undergoing only the POEM. All procedures were completed without complications. The revisional POEM was not significantly more difficult than POEM controls based on procedure time, POEM procedure components, or procedure difficulty scores. Revisional POEM had a longer mean operative time when compared with Heller myotomy (126.0 vs. 83.8 min; PHeller myotomy is safe and feasible in the porcine model and has potential as an option for patients suffering from recurrent or persistent symptoms after failed surgical myotomy.

  11. Mouse models of ageing and their relevance to disease.

    Science.gov (United States)

    Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E

    2016-12-01

    Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. An antibiotic-responsive mouse model of fulminant ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Silvia S Kang

    2008-03-01

    Full Text Available BACKGROUND: The constellation of human inflammatory bowel disease (IBD includes ulcerative colitis and Crohn's disease, which both display a wide spectrum in the severity of pathology. One theory is that multiple genetic hits to the host immune system may contribute to the susceptibility and severity of IBD. However, experimental proof of this concept is still lacking. Several genetic mouse models that each recapitulate some aspects of human IBD have utilized a single gene defect to induce colitis. However, none have produced pathology clearly distinguishable as either ulcerative colitis or Crohn's disease, in part because none of them reproduce the most severe forms of disease that are observed in human patients. This lack of severe IBD models has posed a challenge for research into pathogenic mechanisms and development of new treatments. We hypothesized that multiple genetic hits to the regulatory machinery that normally inhibits immune activation in the intestine would generate more severe, reproducible pathology that would mimic either ulcerative colitis or Crohn's disease. METHODS AND FINDINGS: We generated a novel mouse line (dnKO that possessed defects in both TGFbetaRII and IL-10R2 signaling. These mice rapidly and reproducibly developed a disease resembling fulminant human ulcerative colitis that was quite distinct from the much longer and more variable course of pathology observed previously in mice possessing only single defects. Pathogenesis was driven by uncontrolled production of proinflammatory cytokines resulting in large part from T cell activation. The disease process could be significantly ameliorated by administration of antibodies against IFNgamma and TNFalpha and was completely inhibited by a combination of broad-spectrum antibiotics. CONCLUSIONS: Here, we develop to our knowledge the first mouse model of fulminant ulcerative colitis by combining multiple genetic hits in immune regulation and demonstrate that the resulting

  13. Serotonin Neuron Abnormalities in the BTBR Mouse Model of Autism

    Science.gov (United States)

    Guo, Yue-Ping; Commons, Kathryn G.

    2017-01-01

    The inbred mouse strain BTBR T+ Itpr3tf/J (BTBR) i studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. PMID:27478061

  14. Nintendo Wii video-gaming ability predicts laparoscopic skill.

    Science.gov (United States)

    Badurdeen, Shiraz; Abdul-Samad, Omar; Story, Giles; Wilson, Clare; Down, Sue; Harris, Adrian

    2010-08-01

    Studies using conventional consoles have suggested a possible link between video-gaming and laparoscopic skill. The authors hypothesized that the Nintendo Wii, with its motion-sensing interface, would provide a better model for laparoscopic tasks. This study investigated the relationship between Nintendo Wii skill, prior gaming experience, and laparoscopic skill. In this study, 20 participants who had minimal experience with either laparoscopic surgery or Nintendo Wii performed three tasks on a Webcam-based laparoscopic simulator and were assessed on three games on the Wii. The participants completed a questionnaire assessing prior gaming experience. The score for each of the three Wii games correlated positively with the laparoscopic score (r = 0.78, 0.63, 0.77; P skill overlap between the Nintendo Wii and basic laparoscopic tasks. Surgical candidates with advanced Nintendo Wii ability may possess higher baseline laparoscopic ability.

  15. Human tissue models in cancer research: looking beyond the mouse

    Directory of Open Access Journals (Sweden)

    Samuel J. Jackson

    2017-08-01

    Full Text Available Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of ‘non-animal human tissue’ models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models.

  16. Human tissue models in cancer research: looking beyond the mouse.

    Science.gov (United States)

    Jackson, Samuel J; Thomas, Gareth J

    2017-08-01

    Mouse models, including patient-derived xenograft mice, are widely used to address questions in cancer research. However, there are documented flaws in these models that can result in the misrepresentation of human tumour biology and limit the suitability of the model for translational research. A coordinated effort to promote the more widespread development and use of 'non-animal human tissue' models could provide a clinically relevant platform for many cancer studies, maximising the opportunities presented by human tissue resources such as biobanks. A number of key factors limit the wide adoption of non-animal human tissue models in cancer research, including deficiencies in the infrastructure and the technical tools required to collect, transport, store and maintain human tissue for lab use. Another obstacle is the long-standing cultural reliance on animal models, which can make researchers resistant to change, often because of concerns about historical data compatibility and losing ground in a competitive environment while new approaches are embedded in lab practice. There are a wide range of initiatives that aim to address these issues by facilitating data sharing and promoting collaborations between organisations and researchers who work with human tissue. The importance of coordinating biobanks and introducing quality standards is gaining momentum. There is an exciting opportunity to transform cancer drug discovery by optimising the use of human tissue and reducing the reliance on potentially less predictive animal models. © 2017. Published by The Company of Biologists Ltd.

  17. Pre implanted mouse embryos as model for uranium toxicology studies

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    Full text: The search of 'in vitro' toxicology model that can predict toxicology effects 'in vivo' is a permanent challenge. A toxicology experimental model must to fill to certain requirements: to have a predictive character, an appropriate control to facilitate the interpretation of the data among the experimental groups, and to be able to control the independent variables that can interfere or modify the results that we are analyzing. The preimplantation embryos posses many advantages in this respect: they are a simple model that begins with the development of only one cell. The 'in vitro' model reproduces successfully the 'in vivo' situation. Due to the similarity that exists among the embryos of mammals during this period the model is practically valid for other species. The embryo is itself a stem cell, the toxicology effects are early observed in his clonal development and the physical-chemical parameters are easily controllable. The purpose of the exhibition is to explain the properties of the pre implanted embryo model for toxicology studies of uranium and to show our experimental results. The cultivation 'in vitro' of mouse embryos with uranylo nitrate demonstrated that the uranium causes from the 13 μgU/ml delay of development, decrease the number of cells per embryo and hipoploidy in the embryonic blastomere. (author)

  18. Laparoscopic Choledochoduodenostomy.

    Science.gov (United States)

    Cuendis-Velázquez, Adolfo; E Trejo-Ávila, Mario; Rosales-Castañeda, Enrique; Cárdenas-Lailson, Eduardo; E Rojano-Rodríguez, Martin; Romero-Loera, Sujey; A Sanjuan-Martínez, Carlos; Moreno-Portillo, Mucio

    Today's options for biliary bypass procedures, for difficult choledocholithiasis, range from open surgery to laparo-endoscopic hybrid procedures. The aim of this study was to analyze the outcomes of patients with difficult choledocholithiasis treated with laparoscopic choledochoduodenostomy. We performed a prospective observational study from March 2011 to June 2016. We included patients with difficult common bile duct stones (recurrent or unresolved by ERCP) in which a biliary bypass procedure was required. We performed a laparoscopic bile duct exploration with choledochoduodenostomy and intraoperative cholangioscopy. A total of 19 patients were included. We found female predominance (78.9%), advanced mean age (72.4±12 years) and multiple comorbidities. Most patients with previous episodes of choledocholitiasis or cholangitis, mode 1 (min-max: 1-7). Mean common bile duct diameter 24.9±7mm. Mean operative time 218.5±74min, estimated blood loss 150 (30-600)mL, resume of oral intake 3.2±1 days, postoperative length of stay 4.9±2 days. We found a median of 18 (12-32) months of follow-up. All patients with normalization of liver enzymes during follow-up. One patient presented with sump syndrome and one patient died due to nosocomial pneumonia. Laparoscopic choledochoduodenostomy with intraoperative cholangioscopy seems to be safe and effective treatment for patients with difficult common bile duct stones no resolved by endoscopic procedures. This procedure is a good option for patients with advanced age and multiple comorbidities. We offer all the advantages of minimally invasive surgery to these patients. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Distraction induced enterogenesis: a unique mouse model using polyethylene glycol.

    Science.gov (United States)

    Okawada, Manabu; Maria, Haytham Mustafa; Teitelbaum, Daniel H

    2011-09-01

    Recent studies have demonstrated that the small intestine can be lengthened by applying mechanical forces to the bowel lumen-distraction-induced enterogenesis. However, the mechanisms which account for this growth are unknown, and might be best examined using a mouse model. The purpose of this study is to establish the feasibility of developing distractive-induced small bowel growth in mouse. Twelve-week old C57BL/6J mice had a jejunal segment taken out of continuity, and distended with polyethylene glycol (PEG: 3350 KDa); this group was compared with a control group without stretching. Segment length and diameter were measured intra-operatively and after 5 d. Villus height, crypt depth, and muscle thickness in the isolated segment were assessed. Rate of epithelial cell proliferation (5-bromo-2-deoxyuridine: BrdU incorporation) in crypts were also examined. The mucosal mRNA expression of targeted factors was performed to investigate potential mechanisms which might lead to distraction-induced enterogenesis. At harvest, the PEG-stretched group showed a significant increase in length and diameter versus controls. Villus height, crypt depth, and muscular layer thickness increased in the PEG group. The PEG group also showed significantly increased rates of epithelial cell proliferation versus controls. Real-time PCR showed a trend toward higher β-catenin and c-myc mRNA expression in the PEG-stretched group; however, this difference was not statistically significant. Radial distraction-induced enterogenesis with PEG is a viable method for increasing small intestinal length and diameter. This model may provide a new method for studying the mechanisms leading to distraction-induced enterogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Mariela Andrea Bilotas

    Full Text Available To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation.Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid.Pregnancy rate (i.e. pregnant mice/N decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions.Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  1. Interplay between Endometriosis and Pregnancy in a Mouse Model.

    Science.gov (United States)

    Bilotas, Mariela Andrea; Olivares, Carla Noemí; Ricci, Analía Gabriela; Baston, Juan Ignacio; Bengochea, Tatiana Soledad; Meresman, Gabriela Fabiana; Barañao, Rosa Inés

    2015-01-01

    To evaluate the effect of endometriosis on fertility and the levels of the IL-2 and IFN-γ in the peritoneal fluid in a mouse model; to evaluate the effect of pregnancy on endometriotic lesion growth, apoptosis and cell proliferation. Two month old C57BL/6 female mice underwent either a surgical procedure to induce endometriosis or a sham surgery. Four weeks after surgery mice were mated and sacrificed at day 18 of pregnancy. Number of implantation sites, fetuses and fetal weight were recorded. Endometriotic lesions were counted, measured, excised and fixed. Apoptosis and cell proliferation were evaluated in lesions by TUNEL and immunohistochemistry for PCNA respectively. Levels of IL-2 and IFN-γ were assessed by ELISA in the peritoneal fluid. Pregnancy rate (i.e. pregnant mice/N) decreased in mice with endometriosis. However there were no significant differences in resorption rate, litter size and pup weight between groups. IFN-γ augmented in endometriosis mice independently of pregnancy outcome. Additionally IFN-γ increased in pregnant endometriosis mice compared to pregnant sham animals. While IFN-γ increased in non pregnant versus pregnant mice in the sham group, IL-2 was increased in non pregnant mice in the endometriosis group. The size of endometriotic lesions increased in pregnant mice while apoptosis increased in the stroma and cell proliferation decreased in the epithelium of these lesions. Additionally, leukocyte infiltration, necrosis and decidualization were increased in the same lesions. Pregnancy rate is reduced in this mouse model of endometriosis. Levels of IL-2 are increased in the peritoneal fluid of mice with endometriosis suggesting a role of this cytokine in infertility related to this disease. The size of endometriotic lesions is increased in pregnant mice; however pregnancy has a beneficial effect on lesions by decreasing cell proliferation and by increasing apoptosis, decidualization and necrosis.

  2. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  3. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  4. Laparoscopic Splenectomy

    International Nuclear Information System (INIS)

    Javed, I.; Malik, A. A.; Khan, A.; Shamim, R.; Allahnawaz, A.; Ayaaz, M.

    2014-01-01

    Patients undergoing laparoscopic splenectomy were observed for their postoperative recovery and development of complications. It was a retrospective analysis done at Services Hospital and National Hospital and Medical Center, Lahore, from January 2010 to December 2012. A total of 13 patients underwent laparoscopic splenectomy and were included in the study. Patients were followed for their postoperative recovery and development of any complications. The median age of patients was 19 years ranging from 13 to 69 years. Accessory spleens were removed in 3 patients. Mean operating time was 158 minutes. One operation had to be converted to open because of uncontrolled hemorrhage. Six patients experienced postoperative complications including unexplained hyperpyrexia (n=2), pleural effusion (n=4) and prolonged pain > 48 hours (n=1). No deaths or infections were seen. Seven out of 8 patients with idiopathic thrombocytopenic purpura developed a positive immediate response to the splenectomy, defined as a platelet count greater than 100 x 109/L after the surgery, which was maintained without medical therapy. Mean hospital stay was 5.5 days. Average time to return to activity was 15 days. All patients were followed for 6 months and no follow-up complications were noted. (author)

  5. Laparoscopic donor nephrectomy

    Directory of Open Access Journals (Sweden)

    Gupta Nitin

    2005-01-01

    Full Text Available Of the various options for patients with end stage renal disease, kidney transplantation is the treatment of choice for a suitable patient. The kidney for transplantation is retrieved from either a cadaver or a live donor. Living donor nephrectomy has been developed as a method to address the shortfall in cadaveric kidneys available for transplantation. Laparoscopic living donor nephrectomy (LLDN, by reducing postoperative pain, shortening convalescence, and improving the cosmetic outcome of the donor nephrectomy, has shown the potential to increase the number of living kidney donations further by removing some of the disincentives inherent to donation itself. The technique of LLDN has undergone evolution at different transplant centers and many modifications have been done to improve donor safety and recipient outcome. Virtually all donors eligible for an open surgical procedure may also undergo the laparoscopic operation. Various earlier contraindications to LDN, such as right donor kidney, multiple vessels, anomalous vasculature and obesity have been overcome with increasing experience. Laparoscopic live donor nephrectomy can be done transperitoneally or retroperitoneally on either side. The approach is most commonly transperitoneal, which allows adequate working space and easy dissection. A review of literature and our experience with regards to standard approach and the modifications is presented including a cost saving model for the developing countries. An assessment has been made, of the impact of LDN on the outcome of donor and the recipient.

  6. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  7. Improving treatment outcome assessment in a mouse tuberculosis model.

    Science.gov (United States)

    Mourik, Bas C; Svensson, Robin J; de Knegt, Gerjo J; Bax, Hannelore I; Verbon, Annelies; Simonsson, Ulrika S H; de Steenwinkel, Jurriaan E M

    2018-04-09

    Preclinical treatment outcome evaluation of tuberculosis (TB) occurs primarily in mice. Current designs compare relapse rates of different regimens at selected time points, but lack information about the correlation between treatment length and treatment outcome, which is required to efficiently estimate a regimens' treatment-shortening potential. Therefore we developed a new approach. BALB/c mice were infected with a Mycobacterium tuberculosis Beijing genotype strain and were treated with rifapentine-pyrazinamide-isoniazid-ethambutol (R p ZHE), rifampicin-pyrazinamide-moxifloxacin-ethambutol (RZME) or rifampicin-pyrazinamide-moxifloxacin-isoniazid (RZMH). Treatment outcome was assessed in n = 3 mice after 9 different treatment lengths between 2-6 months. Next, we created a mathematical model that best fitted the observational data and used this for inter-regimen comparison. The observed data were best described by a sigmoidal E max model in favor over linear or conventional E max models. Estimating regimen-specific parameters showed significantly higher curative potentials for RZME and R p ZHE compared to RZMH. In conclusion, we provide a new design for treatment outcome evaluation in a mouse TB model, which (i) provides accurate tools for assessment of the relationship between treatment length and predicted cure, (ii) allows for efficient comparison between regimens and (iii) adheres to the reduction and refinement principles of laboratory animal use.

  8. Iodine uptake and prostate cancer in the TRAMP mouse model.

    Science.gov (United States)

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  9. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    Science.gov (United States)

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  10. Zmpste24-/- mouse model for senescent wound healing research.

    Science.gov (United States)

    Butala, Parag; Szpalski, Caroline; Soares, Marc; Davidson, Edward H; Knobel, Denis; Warren, Stephen M

    2012-12-01

    The graying of our population has motivated the authors to better understand age-related impairments in wound healing. To increase research throughput, the authors hypothesized that the Hutchinson-Gilford progeria syndrome Zmpste24-deficient (Zmpste24(-/-)) mouse could serve as a model of senescent wound healing. Using a stented excisional wound closure model, the authors tested this hypothesis on 8-week-old male Zmpste24(-/-) mice (n = 25) and age-matched male C57BL/6J wild-type mice (n = 25). Wounds were measured photogrammetrically and harvested for immunohistochemistry, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction, and circulating vasculogenic progenitor cells were measured by flow cytometry. Zmpste24(-/-) mice had a significant delay in wound closure compared with wild-type mice during the proliferative/vasculogenic phase. Zmpste24(-/-) wounds had decreased proliferation, increased 8-hydroxy-2'-deoxyguanosine levels, increased proapoptotic signaling (i.e., p53, PUMA, BAX), decreased antiapoptotic signaling (i.e., Bcl-2), and increased DNA fragmentation. These changes correlated with decreased local vasculogenic growth factor expression, decreased mobilization of bone marrow-derived vasculogenic progenitor cells, and decreased new blood vessel formation. Age-related impairments in wound closure are multifactorial. The authors' data suggest that the Hutchinson-Gilford progeria syndrome Zmpste24(-/-) progeroid syndrome shares mechanistic overlap with normal aging and therefore might provide a uniquely informative model with which to study age-associated impairments in wound closure.

  11. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  12. HUPO BPP Workshop on Mouse Models for Neurodegeneration--Choosing the right models.

    Science.gov (United States)

    Hamacher, Michael; Marcus, Katrin; Stephan, Christian; van Hall, Andre; Meyer, Helmut E

    2005-09-01

    The HUPO Brain Proteome Project met during the 4th Dutch Endo-Neuro-Psycho Meeting in Doorwerth, The Netherlands, on June 1, 2005, in order to discuss appropriate (mouse) models for neurodegenerative diseases as well as to conceptualise sophisticated proteomics analyses strategies. Here, the topics of the meeting are summarised.

  13. Impact of laparoscopic surgery training laboratory on surgeon's performance

    Science.gov (United States)

    Torricelli, Fabio C M; Barbosa, Joao Arthur B A; Marchini, Giovanni S

    2016-01-01

    Minimally invasive surgery has been replacing the open standard technique in several procedures. Similar or even better postoperative outcomes have been described in laparoscopic or robot-assisted procedures when compared to open surgery. Moreover, minimally invasive surgery has been providing less postoperative pain, shorter hospitalization, and thus a faster return to daily activities. However, the learning curve required to obtain laparoscopic expertise has been a barrier in laparoscopic spreading. Laparoscopic surgery training laboratory has been developed to aid surgeons to overcome the challenging learning curve. It may include tutorials, inanimate model skills training (box models and virtual reality simulators), animal laboratory, and operating room observation. Several different laparoscopic courses are available with specific characteristics and goals. Herein, we aim to describe the activities performed in a dry and animal-model training laboratory and to evaluate the impact of different kinds of laparoscopic surgery training courses on surgeon’s performance. Several tasks are performed in dry and animal laboratory to reproduce a real surgery. A short period of training can improve laparoscopic surgical skills, although most of times it is not enough to confer laparoscopic expertise for participants. Nevertheless, this short period of training is able to increase the laparoscopic practice of surgeons in their communities. Full laparoscopic training in medical residence or fellowship programs is the best way of stimulating laparoscopic dissemination. PMID:27933135

  14. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    Full Text Available Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006. Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007. As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001. This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027 and asparaginase (P = 0.036. We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids.

  15. Analysis of a Mouse Skin Model of Tuberous Sclerosis Complex.

    Directory of Open Access Journals (Sweden)

    Yanan Guo

    Full Text Available Tuberous Sclerosis Complex (TSC is an autosomal dominant tumor suppressor gene syndrome in which patients develop several types of tumors, including facial angiofibroma, subungual fibroma, Shagreen patch, angiomyolipomas, and lymphangioleiomyomatosis. It is due to inactivating mutations in TSC1 or TSC2. We sought to generate a mouse model of one or more of these tumor types by targeting deletion of the Tsc1 gene to fibroblasts using the Fsp-Cre allele. Mutant, Tsc1ccFsp-Cre+ mice survived a median of nearly a year, and developed tumors in multiple sites but did not develop angiomyolipoma or lymphangioleiomyomatosis. They did develop a prominent skin phenotype with marked thickening of the dermis with accumulation of mast cells, that was minimally responsive to systemic rapamycin therapy, and was quite different from the pathology seen in human TSC skin lesions. Recombination and loss of Tsc1 was demonstrated in skin fibroblasts in vivo and in cultured skin fibroblasts. Loss of Tsc1 in fibroblasts in mice does not lead to a model of angiomyolipoma or lymphangioleiomyomatosis.

  16. Deficient Sleep in Mouse Models of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    R. Michelle Saré

    2017-09-01

    Full Text Available In patients with fragile X syndrome (FXS, sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO/Fxr2 heterozygote circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180 groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70 Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2 in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.

  17. Sparse Statistical Deformation Model for the Analysis of Craniofacial Malformations in the Crouzon Mouse

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Hansen, Michael Sass; Sjöstrand, Karl

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures. Recently the first genetic Crouzon mouse model was generated. In this study, Micro CT skull scannings of wild-type mice and Crouzon mice were investigated. Using nonrigid registration, a wild-type mouse atlas was built...

  18. Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Directory of Open Access Journals (Sweden)

    Uddhav P. Kelavkar

    2006-06-01

    Full Text Available The incidence and mortality of prostate cancer (PCa vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1, which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN, and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt, FLiMP+/-, and FLiMP+/+ mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC, and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP+/+ and hemizygous FLiMP+/- prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN. In summary, targeted overexpression of h

  19. Laparoscopic Spleen Removal (Splenectomy)

    Science.gov (United States)

    ... Affairs and Humanitarian Efforts Login Laparoscopic Spleen Removal (Splenectomy) Patient Information from SAGES Download PDF Find a ... are suspected. What are the Advantages of Laparoscopic Splenectomy? Individual results may vary depending on your overall ...

  20. Randomized, blinded comparison of transgastric, transcolonic, and laparoscopic peritoneoscopy for the detection of peritoneal metastases in a human cadaver model

    NARCIS (Netherlands)

    Voermans, Rogier P.; Henegouwen, Mark I. van Berge; Cuba, Erienne de; Broek, Frank J. C. van den; van Acker, Gijs; Timmer, Robin; Fockens, Paul

    2010-01-01

    Background: Natural orifice transluminal endoscopic surgery peritoneoscopy may be able to replace laparoscopic peritoneoscopy (LAP) for staging of GI malignancies if it is proven to be equally accurate and safe. Objective: To compare transgastric peritoneoscopy (TGP) and transcolonic peritoneoscopy

  1. Laparoscopic Partial Hepatectomy: Animal Experiments

    Directory of Open Access Journals (Sweden)

    Haruhiro Inoue

    1995-01-01

    Full Text Available As a first step in firmly establishing laparoscopic hepatectomy, we introduce a porcine model of laparoscopic partial hepatectomy. This procedure has been successfully performed under the normal-pressure or low-pressure pneumoperitoneum condition supported by the full-thickness abdominal wall lifting technique. An ultrasonic dissector combined with electrocautery, newly developed by Olympus Optical Corporation (Japan was effectively utilized in facilitating safe and smooth incisions into the liver parenchyma. Although indications for this procedure seem to be limited only to peripheral lesions and not to central lesions, clinical application of this method may be useful for some patients in the near future.

  2. The Sound of Silence: Mouse Models for Hearing Loss

    Directory of Open Access Journals (Sweden)

    Sumantra Chatterjee

    2011-01-01

    Full Text Available Sensorineural hearing loss is one of the most common disabilities in humans. It is estimated that about 278 million people worldwide have slight to extreme hearing loss in both ears, which results in an economic loss for the country and personal loss for the individual. It is thus critical to have a deeper understanding of the causes for hearing loss to better manage and treat the affected individuals. The mouse serves as an excellent model to study and recapitulate some of these phenotypes, identify new genes which cause deafness, and to study their roles in vivo and in detail. Mutant mice have been instrumental in elucidating the function and mechanisms of the inner ear. The development and morphogenesis of the inner ear from an ectodermal layer into distinct auditory and vestibular components depends on well-coordinated gene expression and well-orchestrated signaling cascades within the otic vesicle and interactions with surrounding layers of tissues. Any disruption in these pathways can lead to hearing impairment. This review takes a look at some of the genes and their corresponding mice mutants that have shed light on the mechanism governing hearing impairment (HI in humans.

  3. Efficacy of enrofloxacin in a mouse model of sepsis.

    Science.gov (United States)

    Slate, Andrea R; Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-07-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciprofloxacin were greater in the group treated by injection than in controls or the groups treated by administration in drinking water. Survival of the group treated with enrofloxacin injection was greater than that of controls and groups treated with enrofloxacin in the drinking water. Bioluminescence in the group treated with enrofloxacin injection was less than that in the groups treated with oral administration at 12 h and in the groups treated orally and the control group at 16 h. According to these findings, we recommend the use of injectable enrofloxacin at 5 mg/kg SC for mice with systemic infections.

  4. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego

    2010-02-01

    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  5. Fundus autofluorescence findings in a mouse model of retinal detachment.

    Science.gov (United States)

    Secondi, Roberta; Kong, Jian; Blonska, Anna M; Staurenghi, Giovanni; Sparrow, Janet R

    2012-08-07

    Fundus autofluorescence (fundus AF) changes were monitored in a mouse model of retinal detachment (RD). RD was induced by transscleral injection of hyaluronic acid (Healon) or sterile balanced salt solution (BSS) into the subretinal space of 4-5-day-old albino Abca4 null mutant and Abca4 wild-type mice. Images acquired by confocal scanning laser ophthalmoscopy (Spectralis HRA) were correlated with spectral domain optical coherence tomography (SD-OCT), infrared reflectance (IR), fluorescence spectroscopy, and histologic analysis. Results. In the area of detached retina, multiple hyperreflective spots in IR images corresponded to punctate areas of intense autofluorescence visible in fundus AF mode. The puncta exhibited changes in fluorescence intensity with time. SD-OCT disclosed undulations of the neural retina and hyperreflectivity of the photoreceptor layer that likely corresponded to histologically visible photoreceptor cell rosettes. Fluorescence emission spectra generated using flat-mounted retina, and 488 and 561 nm excitation, were similar to that of RPE lipofuscin. With increased excitation wavelength, the emission maximum shifted towards longer wavelengths, a characteristic typical of fundus autofluorescence. In detached retinas, hyper-autofluorescent spots appeared to originate from photoreceptor outer segments that were arranged within retinal folds and rosettes. Consistent with this interpretation is the finding that the autofluorescence was spectroscopically similar to the bisretinoids that constitute RPE lipofuscin. Under the conditions of a RD, abnormal autofluorescence may arise from excessive production of bisretinoid by impaired photoreceptor cells.

  6. Hepatitis C Virus-Related Lymphomagenesis in a Mouse Model

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Sekiguchi, Satoshi; Kasama, Yuri; Salem, Nagla Elwy; Machida, Keigo; Kohara, Michinori

    2011-01-01

    B cell non-Hodgkin lymphoma is a typical extrahepatic manifestation frequently associated with hepatitis C virus (HCV) infection. The mechanism by which HCV infection leads to lymphoproliferative disorder remains unclear. Our group established HCV transgenic mice that expressed the full HCV genome in B cells (RzCD19Cre mice). We observed a 25.0% incidence of diffuse large B cell non-Hodgkin lymphomas (22.2% in male and 29.6% in female mice) within 600 days of birth. Interestingly, RzCD19Cre mice with substantially elevated serum-soluble interleukin-2 receptor α-subunit (sIL-2Rα) levels (>1000 pg/mL) developed B cell lymphomas. Another mouse model of lymphoproliferative disorder was established by persistent expression of HCV structural proteins through disruption of interferon regulatory factor-1 (irf-1_/_/CN2 mice). Irf-1_/_/CN2 mice showed extremely high incidences of lymphomas and lymphoproliferative disorders. Moreover, these mice showed increased levels of interleukin (IL)-2, IL-10, and Bcl-2 as well as increased Bcl-2 expression, which promoted oncogenic transformation of lymphocytes. PMID:22084693

  7. A mouse model for degeneration of the spiral ligament.

    Science.gov (United States)

    Kada, Shinpei; Nakagawa, Takayuki; Ito, Juichi

    2009-06-01

    Previous studies have indicated the importance of the spiral ligament (SL) in the pathogenesis of sensorineural hearing loss. The aim of this study was to establish a mouse model for SL degeneration as the basis for the development of new strategies for SL regeneration. We injected 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, at various concentrations into the posterior semicircular canal of adult C57BL/6 mice. Saline-injected animals were used as controls. Auditory function was monitored by measurements of auditory brain stem responses (ABRs). On postoperative day 14, cochlear specimens were obtained after the measurement of the endocochlear potential (EP). Animals that were injected with 5 or 10 mM 3-NP showed a massive elevation of ABR thresholds along with extensive degeneration of the cochleae. Cochleae injected with 1 mM 3-NP exhibited selective degeneration of the SL fibrocytes but alterations in EP levels and ABR thresholds were not of sufficient magnitude to allow for testing functional recovery after therapeutic interventions. Animals injected with 3 mM 3-NP showed a reduction of around 50% in the EP along with a significant loss of SL fibrocytes, although degeneration of spiral ganglion neurons and hair cells was still present in certain regions. These findings indicate that cochleae injected with 3 mM 3-NP may be useful in investigations designed to test the feasibility of new therapeutic manipulations for functional SL regeneration.

  8. Skeletal muscle repair in a mouse model of nemaline myopathy.

    Science.gov (United States)

    Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H

    2006-09-01

    Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.

  9. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    Science.gov (United States)

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Use of 5-mm Laparoscopic Stapler to Perform Open Small Bowel Anastomosis in a Neonatal Animal Model.

    Science.gov (United States)

    Glenn, Ian C; Bruns, Nicholas E; Ponsky, Todd A

    2016-10-01

    While adult bowel anastomoses are typically performed with staplers, neonatal small bowel anastomoses have traditionally been performed in a hand-sewn manner due to the large size of surgical staplers. The purpose of this study was to compare stapled anastomosis using a newly available, 5-mm laparoscopic stapler to a hand-sewn anastomosis in an open animal model. Twenty anastomoses were performed by two general surgery residents (10 stapled and 10 hand-sewn) in an adult New Zealand white rabbit. The small bowel was divided with a scalpel. Surgical technique was alternated between single-layer hand-sewn and stapled anastomoses. Each anastomosis was resected for ex vivo testing. Measurements collected were outer diameter of the bowel before division, time to perform the anastomosis, anastomosis inner diameter (ID), and leak test. IDs were measured by cutting the anastomosis in cross-section, taking a photograph, and measuring the diameter by computer software. In addition, the surgeons qualitatively evaluated the anastomoses for hemostasis and overall quality. Statistical significance was determined using the Student's t-test. There were statistically significant differences between stapled and hand-sewn anastomosis, respectively, for average operative time (4 minutes 2 seconds versus 16 minutes 6 seconds, P animal model, a 5-mm stapled anastomosis is an acceptable alternative to hand-sewn small bowel anastomosis. The stapler is faster and creates a larger diameter anastomosis, however, there was one leak when closing the enterotomy in the stapled group and overlapping staple lines should be avoided.

  11. A gastrointestinal rotavirus infection mouse model for immune modulation studies

    Directory of Open Access Journals (Sweden)

    van Amerongen Geert

    2011-03-01

    Full Text Available Abstract Background Rotaviruses are the single most important cause of severe diarrhea in young children worldwide. The current study was conducted to assess whether colostrum containing rotavirus-specific antibodies (Gastrogard-R® could protect against rotavirus infection. In addition, this illness model was used to study modulatory effects of intervention on several immune parameters after re-infection. Methods BALB/c mice were treated by gavage once daily with Gastrogard-R® from the age of 4 to 10 days, and were inoculated with rhesus rotavirus (RRV at 7 days of age. A secondary inoculation with epizootic-diarrhea infant-mouse (EDIM virus was administered at 17 days of age. Disease symptoms were scored daily and viral shedding was measured in fecal samples during the post-inoculation periods. Rotavirus-specific IgM, IgG and IgG subclasses in serum, T cell proliferation and rotavirus-specific delayed-type hypersensitivity (DTH responses were also measured. Results Primary inoculation with RRV induced a mild but consistent level of diarrhea during 3-4 days post-inoculation. All mice receiving Gastrogard-R® were 100% protected against rotavirus-induced diarrhea. Mice receiving both RRV and EDIM inoculation had a lower faecal-viral load following EDIM inoculation then mice receiving EDIM alone or Gastrogard-R®. Mice receiving Gastrogard-R® however displayed an enhanced rotavirus-specific T-cell proliferation whereas rotavirus-specific antibody subtypes were not affected. Conclusions Preventing RRV-induced diarrhea by Gastrogard-R® early in life showed a diminished protection against EDIM re-infection, but a rotavirus-specific immune response was developed including both B cell and T cell responses. In general, this intervention model can be used for studying clinical symptoms as well as the immune responses required for protection against viral re-infection.

  12. A three-dimensional pelvic model made with a three-dimensional printer: applications for laparoscopic surgery to treat rectal cancer.

    Science.gov (United States)

    Hamabe, A; Ito, M

    2017-05-01

    To help understand the three-dimensional (3D) spatial relationships among the highly complex structures of the pelvis, we made a novel 3D pelvic model with a 3D printing system. We created two pelvic models including the muscles, vessels, nerves, and urogenital organs; the first based on the pelvic anatomy of a healthy male volunteer and the second on the pelvic anatomy of a female volunteer with rectal cancer. The models clearly demonstrated the complicated spatial relationships between anatomical structures in the pelvis. Surgeons could use these models to improve their spatial understanding of pelvic anatomy, which could consequently improve the safety and efficiency of laparoscopic rectal cancer surgery.

  13. Bioenergetic Defects and Oxidative Damage in Transgenic Mouse Models of Neurodegenerative Disorders

    National Research Council Canada - National Science Library

    Brown, Susan

    1999-01-01

    ... (HE) and familial amyotrophic lateral sclerosis (FALS), using transgenic mouse models. Studies in this first year employed C-14-2-deoxyglucose in vivo autoradiography and spectrophotometric metabolic enzyme assays...

  14. Mouse model for acute Epstein-Barr virus infection.

    Science.gov (United States)

    Wirtz, Tristan; Weber, Timm; Kracker, Sven; Sommermann, Thomas; Rajewsky, Klaus; Yasuda, Tomoharu

    2016-11-29

    Epstein-Barr Virus (EBV) infects human B cells and drives them into continuous proliferation. Two key viral factors in this process are the latent membrane proteins LMP1 and LMP2A, which mimic constitutively activated CD40 receptor and B-cell receptor signaling, respectively. EBV-infected B cells elicit a powerful T-cell response that clears the infected B cells and leads to life-long immunity. Insufficient immune surveillance of EBV-infected B cells causes life-threatening lymphoproliferative disorders, including mostly germinal center (GC)-derived B-cell lymphomas. We have modeled acute EBV infection of naive and GC B cells in mice through timed expression of LMP1 and LMP2A. Although lethal when induced in all B cells, induction of LMP1 and LMP2A in just a small fraction of naive B cells initiated a phase of rapid B-cell expansion followed by a proliferative T-cell response, clearing the LMP-expressing B cells. Interfering with T-cell activity prevented clearance of LMP-expressing B cells. This was also true for perforin deficiency, which in the human causes a life-threatening EBV-related immunoproliferative syndrome. LMP expression in GC B cells impeded the GC reaction but, upon loss of T-cell surveillance, led to fatal B-cell expansion. Thus, timed expression of LMP1 together with LMP2A in subsets of mouse B cells allows one to study major clinically relevant features of human EBV infection in vivo, opening the way to new therapeutic approaches.

  15. Novel autoimmune response in a tauopathy mouse model

    Directory of Open Access Journals (Sweden)

    Carlos J Nogueras-Ortiz

    2014-01-01

    Full Text Available Molecular diagnostic tools with non-invasive properties that allow detection of pathological events in Alzheimer’s disease (AD and other neurodegenerative tauopathies are essential for the development of therapeutics. Several diagnostic strategies based on the identification of biomarkers have been proposed. However, its specificity among neurodegenerative disorders is disputable as the association with pathological events remains elusive. Recently, we showed that Amphiphysin-1 (AMPH1 protein’s abundance is reduced in the central nervous system (CNS of the tauopathy mouse model JNPL3 and AD brains. AMPH1 is a synaptic protein that plays an important role in clathrin-mediated endocytosis and associates with BIN1, one of the most important risk loci for AD. Also, it has been associated with a rare neurological disease known as Stiff-Person Syndrome (SPS. Auto-antibodies against AMPH1 are used as diagnostic biomarkers for a paraneoplastic variant of SPS. Therefore, we set up to evaluate the presence and abundance of auto-AMPH1 antibodies in tau-mediated neurodegeneration. Immunoblots and enzyme-linked immunosorbent assays (ELISA were conducted to detect the presence of auto-AMPH1 antibodies in sera from euthanized mice that developed neurodegeneration (JNPL3 and healthy control mice (NTg. Results showed increased levels of auto-AMPH1 antibodies in JNPL3 sera compared to NTg controls. The abundance of auto-AMPH1 antibodies correlated with motor impairment and AMPH1 protein level decrease in the CNS. The results suggest that auto-AMPH1 antibodies could serve as a biomarker for the progression of tau-mediated neurodegeneration in JNPL3 mice.

  16. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  17. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  18. Regulatory Forum commentary: alternative mouse models for future cancer risk assessment.

    Science.gov (United States)

    Morton, Daniel; Sistare, Frank D; Nambiar, Prashant R; Turner, Oliver C; Radi, Zaher; Bower, Nancy

    2014-07-01

    International regulatory and pharmaceutical industry scientists are discussing revision of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) S1 guidance on rodent carcinogenicity assessment of small molecule pharmaceuticals. A weight-of-evidence approach is proposed to determine the need for rodent carcinogenicity studies. For compounds with high human cancer risk, the product may be labeled appropriately without conducting rodent carcinogenicity studies. For compounds with minimal cancer risk, only a 6-month transgenic mouse study (rasH2 mouse or p53+/- mouse) or a 2-year mouse study would be needed. If rodent carcinogenicity testing may add significant value to cancer risk assessment, a 2-year rat study and either a 6-month transgenic mouse or a 2-year mouse study is appropriate. In many cases, therefore, one rodent carcinogenicity study could be sufficient. The rasH2 model predicts neoplastic findings relevant to human cancer risk assessment as well as 2-year rodent models, produces fewer irrelevant neoplastic outcomes, and often will be preferable to a 2-year rodent study. Before revising ICH S1 guidance, a prospective evaluation will be conducted to test the proposed weight-of-evidence approach. This evaluation offers an opportunity for a secondary analysis comparing the value of alternative mouse models and 2-year rodent studies in the proposed ICH S1 weight-of-evidence approach for human cancer risk assessment. © 2014 by The Author(s).

  19. Laparoscopic ureterocalicostomy in pigs - experimental study

    Directory of Open Access Journals (Sweden)

    Paulo Fernando de Oliveira Caldas

    2015-07-01

    Full Text Available This study aimed to evaluated laparoscopic ureterocalicostomy as treatment of experimental ureteropelvic junction (UPJ obstruction in pigs. Ten male Large White pigs weighting approximately 28.4 (±1.43 kg were used in the current study. The UPJ obstruction was created laparoscopically by double-clipping of the left ureter. After 14 days the animals underwent laparoscopic ureterocalicostomy f The animals were sacrificed for subsequent retrograde pyelography in order to assess the anastomotic patency on the 28th day. The laparoscopic procedure for experimental obstruction of UPJ was successfully performed in all animals, as well as the laparoscopic ureterocalicostomy. There was intestinal iatrogenic injury in one animal. Satisfactory UPJ patency was noted in 75% of the animals. There was no stenosis of the proximal anastomosis between the ureter and the lower pole of the kidney in 37.5%, mild stenosis in 37.5% and severe stenosis in 25% of the animals. The laparoscopic approach for reestablishment he urinary flow by ureterocalicostomy was feasible in the porcine model. The ascending pyelography revealed satisfactory results of the laparoscopic ureterocalicostomy

  20. The Value of Decision Analytical Modeling in Surgical Research: An Example of Laparoscopic Versus Open Distal Pancreatectomy.

    Science.gov (United States)

    Tax, Casper; Govaert, Paulien H M; Stommel, Martijn W J; Besselink, Marc G H; Gooszen, Hein G; Rovers, Maroeska M

    2017-11-02

    To illustrate how decision modeling may identify relevant uncertainty and can preclude or identify areas of future research in surgery. To optimize use of research resources, a tool is needed that assists in identifying relevant uncertainties and the added value of reducing these uncertainties. The clinical pathway for laparoscopic distal pancreatectomy (LDP) versus open (ODP) for nonmalignant lesions was modeled in a decision tree. Cost-effectiveness based on complications, hospital stay, costs, quality of life, and survival was analyzed. The effect of existing uncertainty on the cost-effectiveness was addressed, as well as the expected value of eliminating uncertainties. Based on 29 nonrandomized studies (3.701 patients) the model shows that LDP is more cost-effective compared with ODP. Scenarios in which LDP does not outperform ODP for cost-effectiveness seem unrealistic, e.g., a 30-day mortality rate of 1.79 times higher after LDP as compared with ODP, conversion in 62.2%, surgically repair of incisional hernias in 21% after LDP, or an average 2.3 days longer hospital stay after LDP than after ODP. Taking all uncertainty into account, LDP remained more cost-effective. Minimizing these uncertainties did not change the outcome. The results show how decision analytical modeling can help to identify relevant uncertainty and guide decisions for future research in surgery. Based on the current available evidence, a randomized clinical trial on complications, hospital stay, costs, quality of life, and survival is highly unlikely to change the conclusion that LDP is more cost-effective than ODP.

  1. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  2. Hand-assisted laparoscopic splenectomy

    NARCIS (Netherlands)

    Bemelman, W. A.; de Wit, L. T.; Busch, O. R.; Gouma, D. J.

    2000-01-01

    Laparoscopic splenectomy is performed routinely in patients with small and moderately enlarged spleens at specialized centers. Large spleens are difficult to handle laparoscopically and hand-assisted laparoscopic splenectomy might facilitate the procedure through enhanced vascular control, easier

  3. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model.

    Science.gov (United States)

    Banyard, Ashley C; Healy, Derek M; Brookes, Sharon M; Voller, Katja; Hicks, Daniel J; Núñez, Alejandro; Fooks, Anthony R

    2014-03-06

    The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and

  4. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  5. Laparoscopic splenectomy: Current concepts

    Science.gov (United States)

    Misiakos, Evangelos P; Bagias, George; Liakakos, Theodore; Machairas, Anastasios

    2017-01-01

    Since early 1990’s, when it was inaugurally introduced, laparoscopic splenectomy has been performed with excellent results in terms of intraoperative and postoperative complications. Nowadays laparoscopic splenectomy is the approach of choice for both benign and malignant diseases of the spleen. However some contraindications still apply. The evolution of the technology has allowed though, cases which were considered to be absolute contraindications for performing a minimal invasive procedure to be treated with modified laparoscopic approaches. Moreover, the introduction of advanced laparoscopic tools for ligation resulted in less intraoperative complications. Today, laparoscopic splenectomy is considered safe, with better outcomes in comparison to open splenectomy, and the increased experience of surgeons allows operative times comparable to those of an open splenectomy. In this review we discuss the indications and the contraindications of laparoscopic splenectomy. Moreover we analyze the standard and modified surgical approaches, and we evaluate the short-term and long-term outcomes. PMID:28979707

  6. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    Science.gov (United States)

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  7. Ergonomics in laparoscopic surgery

    Directory of Open Access Journals (Sweden)

    Supe Avinash

    2010-01-01

    Full Text Available Laparoscopic surgery provides patients with less painful surgery but is more demanding for the surgeon. The increased technological complexity and sometimes poorly adapted equipment have led to increased complaints of surgeon fatigue and discomfort during laparoscopic surgery. Ergonomic integration and suitable laparoscopic operating room environment are essential to improve efficiency, safety, and comfort for the operating team. Understanding ergonomics can not only make life of surgeon comfortable in the operating room but also reduce physical strains on surgeon.

  8. Defining the role of polyamines in colon carcinogenesis using mouse models

    Directory of Open Access Journals (Sweden)

    Natalia A Ignatenko

    2011-01-01

    Full Text Available Genetics and diet are both considered important risk determinants for colorectal cancer, a leading cause of death in the US and worldwide. Genetically engineered mouse (GEM models have made a significant contribution to the characterization of colorectal cancer risk factors. Reliable, reproducible, and clinically relevant animal models help in the identification of the molecular events associated with disease progression and in the development of effictive treatment strategies. This review is focused on the use of mouse models for studying the role of polyamines in colon carcinogenesis. We describe how the available mouse models of colon cancer such as the multiple intestinal neoplasia (Min mice and knockout genetic models facilitate understanding of the role of polyamines in colon carcinogenesis and help in the development of a rational strategy for colon cancer chemoprevention.

  9. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    Science.gov (United States)

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  10. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    Energy Technology Data Exchange (ETDEWEB)

    Salek, Reza M.; Pears, Michael R. [University of Cambridge, Department of Biochemistry and Cambridge Systems Biology Centre (United Kingdom); Cooper, Jonathan D. [King' s College London, Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry (United Kingdom); Mitchison, Hannah M. [Royal Free and University College Medical School, Department of Paediatrics and Child Health (United Kingdom); Pearce, David A. [Sanford School of Medicine of the University of South Dakota, Department of Pediatrics (United States); Mortishire-Smith, Russell J. [Johnson and Johnson PR and D (Belgium); Griffin, Julian L., E-mail: jlg40@mole.bio.cam.ac.uk [University of Cambridge, Department of Biochemistry and the Cambridge Systems Biology Centre (United Kingdom)

    2011-04-15

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in {gamma}-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  11. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses

    International Nuclear Information System (INIS)

    Salek, Reza M.; Pears, Michael R.; Cooper, Jonathan D.; Mitchison, Hannah M.; Pearce, David A.; Mortishire-Smith, Russell J.; Griffin, Julian L.

    2011-01-01

    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.

  12. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  13. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  14. Ultrastructural study of Rift Valley fever virus in the mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E. [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States); Smith, Darci R., E-mail: darci.smith1@us.army.mil [United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD (United States)

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  15. Ultrastructural study of Rift Valley fever virus in the mouse model

    International Nuclear Information System (INIS)

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-01-01

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF.

  16. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  17. Laparoscopic simulation for all: two affordable, upgradable, and easy-to-build laparoscopic trainers.

    Science.gov (United States)

    Smith, Matthew D; Norris, Joseph M; Kishikova, Lyudmila; Smith, David P

    2013-01-01

    Laparoscopic surgery has established itself as the approach of choice for a multitude of operations in general, urological, and gynecological surgery. A number of factors make performing laparoscopic surgery technically demanding, and as such it is crucial that surgical trainees hone their skills safely on trainers before operating on patients. These can be highly expensive. Here, we describe a novel and upgradable approach to constructing an affordable laparoscopic trainer. A pattern was produced to build an upgradable laparoscopic trainer for less than $100. The basic model was constructed from an opaque plastic crate with plywood base, 2 trocars, and 2 pairs of disposable laparoscopic instruments. A laptop, a light emitting diode (LED), and a fixed webcam were utilized to visualize the box interior. An enhanced version was also created, as an optional upgrade to the basic model, featuring a neoprene-trocar interface and a simulated mobile laparoscope. The described setup allowed trainees to gain familiarity with laparoscopic techniques, beginning with simple manipulation and then progressing through to more relevant procedures. Novices began by moving easy-to-grasp objects between containers and then attempting more challenging manipulations such as stacking sugar cubes, excising simulated lesions, threading circular mints onto cotton, and ligating fastened drinking straws. These techniques have introduced the necessity of careful instrument placement and have increased trainees' dexterity with laparoscopy. Here, we have outlined an upgradable and affordable alternative laparoscopic trainer that has given many trainees crucial experience with laparoscopic techniques, allowing them to safely improve their manual skill and confidence. Copyright © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego

    2011-01-01

    Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.

  19. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  20. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Dijk, van M.; Dijk, F.J.; Boekschoten, M.V.; Faber, J.; Argiles, J.M.; Laviano, A.; Müller, M.R.; Witkamp, R.F.; Norren, van K.

    2014-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an

  1. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    NARCIS (Netherlands)

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have

  2. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  3. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lei ZG

    2016-01-01

    Full Text Available Zhen-ge Lei,1,* Xiao-hua Ren,2,* Sha-sha Wang,3 Xin-hua Liang,3,4 Ya-ling Tang3,5 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, 2Department of Stomatology, Sichuan Medical Science Academy and Sichuan Provincial People’s Hospital, 3State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 4Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, 5Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China *These authors contributed equally to this work Abstract: Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis. Keywords: head and neck squamous cell carcinoma, HNSCC, mouse models, immunocompromised models, immunocompetent models, transgenic models

  4. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health.

    Science.gov (United States)

    Ezran, Camille; Karanewsky, Caitlin J; Pendleton, Jozeph L; Sholtz, Alex; Krasnow, Maya R; Willick, Jason; Razafindrakoto, Andriamahery; Zohdy, Sarah; Albertelli, Megan A; Krasnow, Mark A

    2017-06-01

    Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs ( Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while

  5. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling

  6. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease

    OpenAIRE

    Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang

    2016-01-01

    Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical e...

  7. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Eléonore Pérès

    2015-12-01

    Full Text Available The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1, is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.

  8. Computed Tomography Perfusion, Magnetic Resonance Imaging, and Histopathological Findings After Laparoscopic Renal Cryoablation: An In Vivo Pig Model

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole

    2017-01-01

    The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention...... of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings...

  9. Invited review: Genetic and genomic mouse models for livestock research

    Directory of Open Access Journals (Sweden)

    D. Arends

    2018-02-01

    Full Text Available Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regulation of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this review, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock.

  10. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  11. Uncompensated polyuria in a mouse model of Bartter's syndrome

    Science.gov (United States)

    Takahashi, Nobuyuki; Chernavvsky, Daniel R.; Gomez, R. Ariel; Igarashi, Peter; Gitelman, Hillel J.; Smithies, Oliver

    2000-01-01

    We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney. PMID:10779555

  12. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.

    Science.gov (United States)

    Gatej, Simona M; Marino, Victor; Bright, Richard; Fitzsimmons, Tracy R; Gully, Neville; Zilm, Peter; Gibson, Rachel J; Edwards, Suzanne; Bartold, Peter M

    2018-02-01

    This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p loss in a mouse model of induced PD irrespective of the mode of administration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The STR/ort mouse model of spontaneous osteoarthritis - an update.

    Science.gov (United States)

    Staines, K A; Poulet, B; Wentworth, D N; Pitsillides, A A

    2017-06-01

    Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. Characterized by cartilage degradation, subchondral bone thickening and osteophyte formation, osteoarthritis inflicts much pain and suffering, for which there are currently no disease-modifying treatments available. Mouse models of osteoarthritis are proving critical in advancing our understanding of the underpinning molecular mechanisms. The STR/ort mouse is a well-recognized model which develops a natural form of osteoarthritis very similar to the human disease. In this Review we discuss the use of the STR/ort mouse in understanding this multifactorial disease with an emphasis on recent advances in its genetics and its bone, endochondral and immune phenotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. An inducible mouse model of late onset Tay-Sachs disease.

    Science.gov (United States)

    Jeyakumar, Mylvaganam; Smith, David; Eliott-Smith, Elena; Cortina-Borja, Mario; Reinkensmeier, Gabriele; Butters, Terry D; Lemm, Thorsten; Sandhoff, Konrad; Perry, V Hugh; Dwek, Raymond A; Platt, Frances M

    2002-08-01

    Mouse models of the G(M2) gangliosidoses, Tay-Sachs and Sandhoff disease, are null for the hexosaminidase alpha and beta subunits respectively. The Sandhoff (Hexb-/-) mouse has severe neurological disease and mimics the human infantile onset variant. However, the Tay-Sachs (Hexa-/-) mouse model lacks an overt phenotype as mice can partially bypass the blocked catabolic pathway and escape disease. We have investigated whether a subset of Tay-Sachs mice develop late onset disease. We have found that approximately 65% of the mice develop one or more clinical signs of the disease within their natural life span (n = 52, P disease at an earlier age (n = 21, P Tay-Sachs mice confirmed that pregnancy induces late onset Tay-Sachs disease. Onset of symptoms correlated with reduced up-regulation of hexosaminidase B, a component of the bypass pathway.

  15. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  16. Neuropathological assessment and validation of mouse models for Alzheimer's disease: applying NIA-AA guidelines

    Directory of Open Access Journals (Sweden)

    C. Dirk Keene

    2016-06-01

    Full Text Available Dozens of transgenic mouse models, generally based on mutations associated with familial Alzheimer's disease (AD, have been developed, in part, for preclinical testing of candidate AD therapies. However, none of these models has successfully predicted the clinical efficacy of drugs for treating AD patients. Therefore, development of more translationally relevant AD mouse models remains a critical unmet need in the field. A concept not previously implemented in AD preclinical drug testing is the use of mouse lines that have been validated for neuropathological features of human AD. Current thinking suggests that amyloid plaque and neurofibrillary tangle deposition is an essential component for accurate modeling of AD. Therefore, the AD translational paradigm would require pathologic Aβ and tau deposition, a disease-relevant distribution of plaques and tangles, and a pattern of disease progression of Aβ and tau isoforms similar to the neuropathological features found in the brains of AD patients. Additional parameters useful to evaluate parallels between AD and animal models would include 1 cerebrospinal fluid (CSF AD biomarker changes with reduced Aβ and increased phospho-tau/tau; 2 structural and functional neuroimaging patterns including MRI hippocampal atrophy, fluorodeoxyglucose (FDG, and amyloid/tau PET alterations in activity and/or patterns of pathologic peptide deposition and distribution; and 3 cognitive impairment with emphasis on spatial learning and memory to distinguish presymptomatic and symptomatic mice at specific ages. A validated AD mouse model for drug testing would likely show tau-related neurofibrillary degeneration following Aβ deposition and demonstrate changes in pathology, CSF analysis, and neuroimaging that mirror human AD. Development of the ideal model would revolutionize the ability to establish the translational value of AD mouse models and serve as a platform for discussions about national phenotyping guidelines

  17. Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.

    Science.gov (United States)

    Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao

    2012-10-01

    Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.

  18. Comparison of different training models for laparoscopic surgery in neonates and small infants.

    Science.gov (United States)

    Heinrich, M; Tillo, N; Kirlum, H-J; Till, H

    2006-04-01

    Minimally invasive surgery in small children and infants requires special skills and training. This experimental study compares the efficiency of an in vitro pelvic trainer (PT) and an a in vivo animal model (AM). For this study, 12 residents were prospectively randomized into two groups. Initially, all had to pass a basic skill assessment (3 tasks). Then endoscopic small bowel biopsy was performed (8 times) either with the in vitro PT (group A) or the in vivo AM (group B). Finally, all had to demonstrate this procedure in the in vivo AM and repeat the basic skill assessment. A quality index (complications, suture, biopsy) was evaluated. Initially, there was no difference between the two groups. Interestingly, the mean regression gradient of the index for the in vitro PT (group A) was significantly better than for the in vivo AM (group B). In the final in vivo operation, however, the mean index for the in vitro PT (group A) worsened significantly, whereas it increased for the in vivo AM (group B) (p = 0.037). Adequate training for an isolated mechanical task such as gut biopsy can be supplied using a pelvic trainer or animal model with similar effects. However in vivo performance of the same task requires secondary surgical skills, which are conveyed during live training with greater success. Consequently, stepwise teaching with both modules seems reasonable before these procedures are approached in neonates or small children.

  19. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  20. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Science.gov (United States)

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  1. Two-handed assisted laparoscopic surgery: Evaluation in an animal model

    Directory of Open Access Journals (Sweden)

    Eduardo Sanchez-de-Badajoz

    2014-10-01

    Full Text Available Purposes To evaluate in an animal model the feasibility of a novel concept of hand-assisted surgery consisting of inserting two hands into the abdomen instead of one. The chosen procedure was retroperitoneal lymph node dissection (L-RPLND that was performed in five pigs. Surgical Technique A Pfannestiel and a transverse epigastric incisions were made through which both hands were introduced. The scope was inserted through the umbilicus. The colon was moved medially and the dissection was performed as in open surgery using short conventional surgical instruments. Comments The surgery was fulfilled easily and safely in quite a similar way as in open surgery. Two-handed laparoscopy may be indicated in cases that still today require an open approach as apparently makes the operation easier and significantly shortens the surgery time. However, new opinions and trials are required.

  2. Laparoscopic total pancreatectomy

    Science.gov (United States)

    Wang, Xin; Li, Yongbin; Cai, Yunqiang; Liu, Xubao; Peng, Bing

    2017-01-01

    Abstract Rationale: Laparoscopic total pancreatectomy is a complicated surgical procedure and rarely been reported. This study was conducted to investigate the safety and feasibility of laparoscopic total pancreatectomy. Patients and Methods: Three patients underwent laparoscopic total pancreatectomy between May 2014 and August 2015. We reviewed their general demographic data, perioperative details, and short-term outcomes. General morbidity was assessed using Clavien–Dindo classification and delayed gastric emptying (DGE) was evaluated by International Study Group of Pancreatic Surgery (ISGPS) definition. Diagnosis and Outcomes: The indications for laparoscopic total pancreatectomy were intraductal papillary mucinous neoplasm (IPMN) (n = 2) and pancreatic neuroendocrine tumor (PNET) (n = 1). All patients underwent laparoscopic pylorus and spleen-preserving total pancreatectomy, the mean operative time was 490 minutes (range 450–540 minutes), the mean estimated blood loss was 266 mL (range 100–400 minutes); 2 patients suffered from postoperative complication. All the patients recovered uneventfully with conservative treatment and discharged with a mean hospital stay 18 days (range 8–24 days). The short-term (from 108 to 600 days) follow up demonstrated 3 patients had normal and consistent glycated hemoglobin (HbA1c) level with acceptable quality of life. Lessons: Laparoscopic total pancreatectomy is feasible and safe in selected patients and pylorus and spleen preserving technique should be considered. Further prospective randomized studies are needed to obtain a comprehensive understanding the role of laparoscopic technique in total pancreatectomy. PMID:28099344

  3. The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model.

    Science.gov (United States)

    Colinot, Darrelle L; Garbuz, Tamila; Bosland, Maarten C; Wang, Liang; Rice, Susan E; Sullivan, William J; Arrizabalaga, Gustavo; Jerde, Travis J

    2017-07-01

    Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia. © 2017 Wiley Periodicals, Inc.

  4. Laparoscopic Retrieval of a Peritoneal Mouse

    Directory of Open Access Journals (Sweden)

    Dara O. Kavanagh

    2010-01-01

    Full Text Available A 67-year-old Caucasian male was referred by the urology service with a history of incomplete bowel emptying. He complained of tenesmus. MRI scan suggested a leiomyoma lying anterior to the rectum. He underwent examination under anaesthesia and attempted endorectal ultrasound and biopsy. However, the lesion seemed to migrate cranially and was impalpable. At laparoscopy, a mobile, unattached, 5.5×5×3.5, cream-coloured ‘egg was retrieved from the retrovesical space. Histology confirmed a hyalinised fibrocollagenous lesion lined with mesothelium. A comprehensive review of the literature is presented.

  5. Laparoscopic retrieval of a peritoneal mouse.

    LENUS (Irish Health Repository)

    Kavanagh, Dara O

    2010-01-01

    A 67-year-old Caucasian male was referred by the urology service with a history of incomplete bowel emptying. He complained of tenesmus. MRI scan suggested a leiomyoma lying anterior to the rectum. He underwent examination under anaesthesia and attempted endorectal ultrasound and biopsy. However, the lesion seemed to migrate cranially and was impalpable. At laparoscopy, a mobile, unattached, 5.5 × 5 × 3.5, cream-coloured \\'egg was retrieved from the retrovesical space. Histology confirmed a hyalinised fibrocollagenous lesion lined with mesothelium. A comprehensive review of the literature is presented.

  6. USING OF MOUSE MODEL TO ANALYZE IMMUNE RESPONSE TO INFECTIOUS PATHOGENS BY THE METHODS OF CLASSICAL GENETICS

    Directory of Open Access Journals (Sweden)

    A. Poltorak

    2011-01-01

    Full Text Available Abstract. Identification and studying of numerous functions of all genes of the human beings is one of the main objects of modern biological science. Due to high level of homology between mouse and human genomes the important role to reach above mentioned goal belongs to the mouse model which using in the classical genetics increase in connection with appearance of different inbred mouse lines. For instance, the differences in immune response to infectious pathogens in various mouse lines were used many times to determine immunologically competent genes. That is why the contribution of mouse model in understanding of the mechanisms of immune response to infectious pathogens is difficult to overestimate. In the current review some of the most successful and well known examples of mouse using in studies of anti-infectious response are described.

  7. Animal models for studying neural crest development: is the mouse different?

    Science.gov (United States)

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  8. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease

    NARCIS (Netherlands)

    A.G.A. Bijvoet (Agnes); A.T. van der Ploeg (Ans); E.H. van de Kamp; M.A. Kroos (Marian); J.-H. Ding (Jia-Huan); B.Z. Yang (Bing); P. Visser (Pim); C.E. Bakker (Cathy); M.Ph. Verbeet (Martin); B.A. Oostra (Ben); A.J.J. Reuser (Arnold)

    1998-01-01

    textabstractGlycogen storage disease type II (GSDII; Pompe disease), caused by inherited deficiency of acid alpha-glucosidase, is a lysosomal disorder affecting heart and skeletal muscles. A mouse model of this disease was obtained by targeted disruption of the

  9. Role of Stat in Skin Carcinogenesis: Insights Gained from Relevant Mouse Models

    International Nuclear Information System (INIS)

    Macias, E.; Rao, D.; DiGiovanni, J.; DiGiovanni, J.; DiGiovanni, J.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat) is a cytoplasmic protein that is activated in response to cytokines and growth factors and acts as a transcription factor. Stat plays critical roles in various biological activities including cell proliferation, migration, and survival. Studies using keratinocyte-specific Stat-deficient mice have revealed that Stat plays an important role in skin homeostasis including keratinocyte migration, wound healing, and hair follicle growth. Use of both constitutive and inducible keratinocyte-specific Stat-deficient mouse models has demonstrated that Stat is required for both the initiation and promotion stages of multistage skin carcinogenesis. Further studies using a transgenic mouse model with a gain of function mutant of Stat (Stat3C) expressed in the basal layer of the epidermis revealed a novel role for Stat in skin tumor progression. Studies using similar Stat-deficient and gain-of-function mouse models have indicated its similar roles in ultraviolet B (UVB) radiation-mediated skin carcinogenesis. This paper summarizes the use of these various mouse models for studying the role and underlying mechanisms for the function of Stat in skin carcinogenesis. Given its significant role throughout the skin carcinogenesis process, Stat is an attractive target for skin cancer prevention and treatment.

  10. Aging rather than aneuploidy affects monoamine neurotransmitters in brain regions of Down syndrome mouse models

    NARCIS (Netherlands)

    Dekker, Alain D; Vermeiren, Yannick; Albac, Christelle; Lana-Elola, Eva; Watson-Scales, Sheona; Gibbins, Dorota; Aerts, Tony; Van Dam, Debby; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Potier, Marie-Claude; De Deyn, Peter P

    Altered concentrations of monoamine neurotransmitters and metabolites have been repeatedly found in people with Down syndrome (DS, trisomy 21). Because of the limited availability of human post-mortem tissue, DS mouse models are of great interest to study these changes and the underlying

  11. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability

    NARCIS (Netherlands)

    Lodde, B. M.; Mineshiba, F.; Kok, M. R.; Wang, J.; Zheng, C.; Schmidt, M.; Cotrim, A. P.; Kriete, M.; Tak, P. P.; Baum, B. J.

    2006-01-01

    OBJECTIVES: The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated

  12. Allergen immunotherapy induces a suppressive memory response mediated by IL-10 in a mouse asthma model

    NARCIS (Netherlands)

    Vissers, Joost L. M.; van Esch, Betty C. A. M.; Hofman, Gerard A.; Kapsenberg, Martien L.; Weller, Frank R.; van Oosterhout, Antoon J. M.

    2004-01-01

    Background: Human studies have demonstrated that allergen immunotherapy induces memory suppressive responses and IL-10 production by allergen-specific T cells. Previously, we established a mouse model in which allergen immunotherapy was effective in the suppression of allergen-induced asthma

  13. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    NARCIS (Netherlands)

    Wijnhoven, Susan W P; Hoogervorst, Esther M; Waard, Harm de; Horst, Gijsbertus T J van der; Steeg, Harry van

    2007-01-01

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can

  14. Dystropathology increases energy expenditure and protein turnover in the Mdx mouse model of Duchenne muscular dystrophy

    Science.gov (United States)

    The skeletal muscles in Duchenne muscular dystrophy and the mdx mouse model lack functional dystrophin and undergo repeated bouts of necrosis, regeneration, and growth. These processes have a high metabolic cost. However, the consequences for whole body energy and protein metabolism, and on the diet...

  15. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model

    NARCIS (Netherlands)

    Snoek, S. A.; Dhawan, S.; van Bree, S. H.; Cailotto, C.; van Diest, S. A.; Duarte, J. M.; Stanisor, O. I.; Hilbers, F. W.; Nijhuis, L.; Koeman, A.; van den Wijngaard, R. M.; Zuurbier, C. J.; Boeckxstaens, G. E.; de Jonge, W. J.

    2012-01-01

    Background Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied

  16. Breeding a PKU-mouse model on Phe-free diet, is it possible?

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Johansen, Karen Singers; Vorup-Jensen, Thomas

    2014-01-01

    The PKU-mouse model mutated in the PAH gene was developed in the 1990s in the laboratory of Dr. Alexandra Shedlovsky at the McArdle Laboratory for Cancer Research, University of Wisconsin. The mutation was generated by ENU (N-ethyl-N-nitrosourea) treatment of BTBR males. Several mutation was found...

  17. A novel brain trauma model in the mouse : effects of dexamethasone treatment

    NARCIS (Netherlands)

    Hortobágyi, Tibor; Hortobagyi, S; Gorlach, C; Harkany, T; Benbyo, Z; Gorogh, T; Nagel, W; Wahl, M

    2000-01-01

    We describe a novel methodological approach for inducing cold lesion in the mouse as a model of human cortical contusion trauma. To validate its reproducibility and reliability, dexamethasone (Dxm) was repeatedly applied to demonstrate possible antioedematous drug effects. Following tho induction of

  18. Hypothalamic food intake regulation in a cancer-cachectic mouse model

    OpenAIRE

    Dwarkasing, Jvalini T.; van Dijk, Miriam; Dijk, Francina J.; Boekschoten, Mark V.; Faber, Joyce; Argilès, Josep M.; Laviano, Alessandro; Müller, Michael; Witkamp, Renger F.; van Norren, Klaske

    2013-01-01

    Background Appetite is frequently affected in cancer patients leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer-cachectic mouse model with increased food intake. In this model, mice bearing C26 tumour have an increased food intake subsequently to the loss of body weight. We hypothesise that in this model, appetite-regulating systems in the hypothalamus, which apparently fail in anorexia, are still able t...

  19. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  20. Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1

    OpenAIRE

    Dwarkasing, Jvalini; Dijk, Francina J.; Boekschoten, Mark; Faber, Joyce; Argilès, Josep M.; Lavianio, Alessandro; Muller, Michael; Witkamp, Renger; Norren, van, Klaske

    2013-01-01

    Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still ab...

  1. The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, J M [University of Alabama, Birmingham; Michaud III, Edward J [ORNL; Schoeb, T [University of Alabama, Birmingham; Aydin Son, Yesim [University of Tennessee, Knoxville (UTK); Miller, M [University of Alabama, Birmingham; Yoder, Bradley [University of Alabama, Birmingham

    2008-08-01

    The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can be analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.

  2. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  3. Gallbladder removal - laparoscopic

    Science.gov (United States)

    ... Gallbladder anatomy Laparoscopic surgery - series References Jackson PG, Evans SRT. Biliary system. In: Townsend CM Jr, Beauchamp ... A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among ...

  4. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  5. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy.

    Science.gov (United States)

    Nash, Kevin R; Lee, Daniel C; Hunt, Jerry B; Morganti, Josh M; Selenica, Maj-Linda; Moran, Peter; Reid, Patrick; Brownlow, Milene; Guang-Yu Yang, Clement; Savalia, Miloni; Gemma, Carmelina; Bickford, Paula C; Gordon, Marcia N; Morgan, David

    2013-06-01

    Alzheimer's disease is characterized by amyloid plaques, neurofibrillary tangles, glial activation, and neurodegeneration. In mouse models, inflammatory activation of microglia accelerates tau pathology. The chemokine fractalkine serves as an endogenous neuronal modulator to quell microglial activation. Experiments with fractalkine receptor null mice suggest that fractalkine signaling diminishes tau pathology, but exacerbates amyloid pathology. Consistent with this outcome, we report here that soluble fractalkine overexpression using adeno-associated viral vectors significantly reduced tau pathology in the rTg4510 mouse model of tau deposition. Furthermore, this treatment reduced microglial activation and appeared to prevent neurodegeneration normally found in this model. However, in contrast to studies with fractalkine receptor null mice, parallel studies in an APP/PS1 model found no effect of increased fractalkine signaling on amyloid deposition. These data argue that agonism at fractalkine receptors might be an excellent target for therapeutic intervention in tauopathies, including those associated with amyloid deposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease

    OpenAIRE

    Van Leuven Fred; Wera Stefaan; Van der Auwera Ingrid; Henderson Samuel T

    2005-01-01

    Abstract Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-β (Aβ) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Results S...

  7. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model

    OpenAIRE

    Cho, Seo-Hee; Song, Ji Yun; Shin, Jinyeon; Kim, Seonhee

    2016-01-01

    Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1?~?2???104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of...

  8. Dissociation of social and nonsocial anxiety in a mouse model of fragile X syndrome

    OpenAIRE

    Liu, Zhong-Hua; Smith, Carolyn Beebe

    2009-01-01

    Anxiety is a common symptom in fragile X patients. However, an anxiety-prone phenotype in mouse models of fragile X syndrome is not clear. In most studies of fmr1 knockout mice, decreased anxiety-like responses in exploratory-based models are found, but mice also exhibit abnormal social interactions. We hypothesize the coexistence of elevated social anxiety and reduced nonsocial anxiety in fmr1 knockout mice. In the present study, we applied an automated three-chambered social approach method...

  9. Brain Transcriptome Profiles in Mouse Model Simulating Features of Post-traumatic Stress Disorder

    Science.gov (United States)

    2015-02-28

    analyses of DEGs suggested pos- sible roles in anxiety-related behavioral responses, synaptic plasticity, neurogenesis, inflammation, obesity...Behavioral evaluation of mouse model We established [29] a rodent model manifesting PTSD- like behavioral features. We believe that, because the stres - sor...hippo- campus (HC), medial prefrontal cortex (MPFC) play primary roles in fear learning and memory, and thus, may contribute to the behavioral

  10. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tyler eCash-Padgett

    2013-09-01

    Full Text Available DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression.The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities.Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions.

  11. Laparoscopic pancreatic cystogastrostomy.

    Science.gov (United States)

    Obermeyer, Robert J; Fisher, William E; Salameh, Jihad R; Jeyapalan, Manjula; Sweeney, John F; Brunicardi, F Charles

    2003-08-01

    The purpose of the review was to evaluate the feasibility and outcome of laparoscopic pancreatic cystogastrostomy for operative drainage of symptomatic pancreatic pseudocysts. A retrospective review of all patients who underwent laparoscopic pancreatic cystogastrostomy between June 1997 and July 2001 was performed. Data regarding etiology of pancreatitis, size of pseudocyst, operative time, complications, and pseudocyst recurrence were collected and reported as median values with ranges. Laparoscopic pancreatic cystogastrostomy was attempted in 6 patients. Pseudocyst etiology included gallstone pancreatitis (3), alcohol-induced pancreatitis (2), and post-ERCP pancreatitis (1). The cystogastrostomy was successfully performed laparoscopically in 5 of 6 patients. However, the procedure was converted to open after creation of the cystgastrostomy in 1 of these patients. There were no complications in the cases completed laparoscopically and no deaths in the entire group. No pseudocyst recurrences were observed with a median followup of 44 months (range 4-59 months). Laparoscopic pancreatic cystgastrostomy is a feasible surgical treatment of pancreatic pseudocysts with a resultant low pseudocyst recurrence rate, length of stay, and low morbidity and mortality.

  12. Laparoscopic female sterilization.

    Science.gov (United States)

    Filshie, G M

    1989-09-01

    An overview of laparoscopic sterilization techniques from a historical and practical viewpoint includes instrumentation, operative techniques, mechanical occlusive devices, anesthesia, failure rates, morbidity and mortality. Laparoscope was first reported in 1893, but was developed simultaneously in France, Great Britain, Canada and the US in the 1960s. There are smaller laparoscopes for double-puncture procedures, and larger, single-puncture laparoscopes. To use a ring or clip, a much larger operating channel, up to 8 mm is needed. Insufflating gas may be CO2, which does not support combustion, but is more uncomfortable, NO2, which is also an anesthetic, and room air often used in developing countries. Unipolar electrocautery is now rarely used, in fact most third party payers do not allow it. Bipolar cautery, thermal coagulation and laser photocoagulation are safer methods. Falope rings, Hulka-Clemens, Filshie, Bleier, Weck and Tupla clips are described and illustrated. General anesthesia, usually a short acting agent with a muscle relaxant, causes 33% of the mortality of laparoscope, often due to cardiac arrest and arrhythmias, preventable with atropine. Local anesthesia is safer and cheaper and often used in developing countries. Failure rates of the various laparoscopic tubal sterilization methods are reviewed: most result from fistula formation. Mortality and morbidity can be caused by bowel damage, injury or infection, pre- existing pelvic infection, hemorrhage, gas embolism (avoidable by the saline drip test), and other rare events.

  13. [Sacrocolpopexy - pro laparoscopic].

    Science.gov (United States)

    Hatzinger, M; Sohn, M

    2012-05-01

    Innovative techniques have a really magical attraction for physicians as well as for patients. The number of robotic-assisted procedures worldwide has almost tripled from 80,000 procedures in the year 2007 to 205,000 procedures in 2010. In the same time the total number of Da Vinci surgery systems sold climbed from 800 to 1,400. Advantages, such as three-dimensional visualization, a tremor-filter, an excellent instrument handling with 6 degrees of freedom and better ergonomics, together with aggressive marketing led to a veritable flood of new Da Vinci acquisitions in the whole world. Many just took the opportunity to introduce a new instrument to save a long learning curve and start immediately in the surgical master class.If Da Vinci sacrocolpopexy is compared with the conventional laparoscopic approach, robotic-assisted sacrocolpopexy shows a significantly longer duration of the procedure, a higher need for postoperative analgesics, much higher costs and an identical functional outcome without any advantage over the conventional laparoscopic approach. Although the use of robotic-assisted systems shows a significantly lower learning curve for laparoscopic beginners, it only shows minimal advantages for the experienced laparoscopic surgeon. Therefore it remains uncertain whether robotic-assisted surgery shows a significant advantage compared to the conventional laparoscopic surgery, especially with small reconstructive laparoscopic procedures such as sacrocolpopexy.

  14. Mobile Laser Indirect Ophthalmoscope: For the Induction of Choroidal Neovascularization in a Mouse Model.

    Science.gov (United States)

    Weinberger, Dov; Bor-Shavit, Elite; Barliya, Tilda; Dahbash, Mor; Kinrot, Opher; Gaton, Dan D; Nisgav, Yael; Livnat, Tami

    2017-11-01

    This study aims to evaluate and standardize the reliability of a mobile laser indirect ophthalmoscope in the induction of choroidal neovascularization (CNV) in a mouse model. A diode laser indirect ophthalmoscope was used to induce CNV in pigmented male C57BL/6J mice. Standardization of spot size and laser intensity was determined using different aspheric lenses with increasing laser intensities applied around the optic disc. Development of CNV was evaluated 1, 5, and 14 days post laser application using fluorescein angiography (FA), histology, and choroidal flat mounts stained for the endothelial marker CD31 and FITC-dextran. Correlation between the number of laser hits to the number and size of developed CNV lesions was determined using flat mount choroid staining. The ability of intravitreally injected anti-human and anti-mouse VEGF antibodies to inhibit CNV induced by the mobile laser was evaluated. Laser parameters were standardized on 350 mW for 100 msec, using the 90 diopter lens to accomplish the highest incidence of Bruch's membrane rupture. CNV lesions' formation was validated on days 5 and 14 post laser injury, though FA showed leakage on as early as day 1. The number of laser hits was significantly correlated with the CNV area. CNV growth was successfully inhibited by both anti-human and mouse VEGF antibodies. The mobile laser indirect ophthalmoscope can serve as a feasible and a reliable alternative method for the CNV induction in a mouse model.

  15. ¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.

    Science.gov (United States)

    Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho

    2015-01-01

    Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.

  16. The effects of video games on laparoscopic simulator skills.

    Science.gov (United States)

    Jalink, Maarten B; Goris, Jetse; Heineman, Erik; Pierie, Jean-Pierre E N; ten Cate Hoedemaker, Henk O

    2014-07-01

    Recently, there has been a growth in studies supporting the hypothesis that video games have positive effects on basic laparoscopic skills. This review discusses all studies directly related to these effects. A search in the PubMed and EMBASE databases was performed using synonymous terms for video games and laparoscopy. All available articles concerning video games and their effects on skills on any laparoscopic simulator (box trainer, virtual reality, and animal models) were selected. Video game experience has been related to higher baseline laparoscopic skills in different studies. There is currently, however, no standardized method to assess video game experience, making it difficult to compare these studies. Several controlled experiments have, nevertheless, shown that video games cannot only be used to improve laparoscopic basic skills in surgical novices, but are also used as a temporary warming-up before laparoscopic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Estimating Lead (Pb) Bioavailability In A Mouse Model

    Science.gov (United States)

    Children are exposed to Pb through ingestion of Pb-contaminated soil. Soil Pb bioavailability is estimated using animal models or with chemically defined in vitro assays that measure bioaccessibility. However, bioavailability estimates in a large animal model (e.g., swine) can be...

  18. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    Science.gov (United States)

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Mathematical Model of Skeletal Muscle Disease and Immune Response in the mdx Mouse

    Directory of Open Access Journals (Sweden)

    Abdul Salam Jarrah

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD is a genetic disease that results in the death of affected boys by early adulthood. The genetic defect responsible for DMD has been known for over 25 years, yet at present there is neither cure nor effective treatment for DMD. During early disease onset, the mdx mouse has been validated as an animal model for DMD and use of this model has led to valuable but incomplete insights into the disease process. For example, immune cells are thought to be responsible for a significant portion of muscle cell death in the mdx mouse; however, the role and time course of the immune response in the dystrophic process have not been well described. In this paper we constructed a simple mathematical model to investigate the role of the immune response in muscle degeneration and subsequent regeneration in the mdx mouse model of Duchenne muscular dystrophy. Our model suggests that the immune response contributes substantially to the muscle degeneration and regeneration processes. Furthermore, the analysis of the model predicts that the immune system response oscillates throughout the life of the mice, and the damaged fibers are never completely cleared.

  20. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    Science.gov (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2017-12-08

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  1. Music experience influences laparoscopic skills performance.

    Science.gov (United States)

    Boyd, Tanner; Jung, Inkyung; Van Sickle, Kent; Schwesinger, Wayne; Michalek, Joel; Bingener, Juliane

    2008-01-01

    Music education affects the mathematical and visuo-spatial skills of school-age children. Visuo-spatial abilities have a significant effect on laparoscopic suturing performance. We hypothesize that prior music experience influences the performance of laparoscopic suturing tasks. Thirty novices observed a laparoscopic suturing task video. Each performed 3 timed suturing task trials. Demographics were recorded. A repeated measures linear mixed model was used to examine the effects of prior music experience on suturing task time. Twelve women and 18 men completed the tasks. When adjusted for video game experience, participants who currently played an instrument performed significantly faster than those who did not (PMen who had never played an instrument or were currently playing an instrument performed better than women in the same group (P=0.002 and P<0.001). There was no sex difference in the performance of participants who had played an instrument in the past (P=0.29). This study attempted to investigate the effect of music experience on the laparoscopic suturing abilities of surgical novices. The visuo-spatial abilities used in laparoscopic suturing may be enhanced in those involved in playing an instrument.

  2. COMPARATIVE EFFICIENCIES STUDY OF SLOT MODEL AND MOUSE MODEL IN PRESSURISED PIPE FLOW

    Directory of Open Access Journals (Sweden)

    Saroj K. Pandit

    2014-01-01

    Full Text Available The flow in sewers is unsteady and variable between free-surfac e to full pipe pressurized flow. Sewers are designed on the basis of free surf ace flow (gravity flow however they may carry pressurized flow. Preissmann Slot concep t is widely used numerical approach in unsteady free surface-pressurized flow as it provides the advantage of using free surface flow as a single type flow. Slo t concept uses the Saint- Venant’s equations as a basic equation for one-dimensional unst eady free surface flow. This paper includes two different numerical models using Saint Venant’s equations. The Saint Venant’s e quations of continuity and momen tum are solved by the Method of Characteristics and presented in forms for direct substitution into FORTRAN programming for numerical analysis in the first model. The MOUSE model carries out computation of unsteady flows which is founde d on an implicit, finite difference numerical solut ion of the basic one dimension al Saint Venant’s equations of free surface flow. The simulation results are comp ared to analyze the nature and degree of errors for further improvement.

  3. Mouse model in food allergy: dynamic determination of shrimp ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... Available online at http://www.academicjournals.org/AJB ... Food allergy is now an important health issue, and there is urgent need for a developmental approach to identify ... ideal model and method for the characterization of.

  4. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection.

    Science.gov (United States)

    Carraro, Mattia; Park, Albert H; Harrison, Robert V

    2016-02-01

    Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Automatic Assessment of Craniofacial Growth in a Mouse Model of Crouzon Syndrome

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Larsen, Rasmus; Darvann, Tron Andre

    2009-01-01

    for each mouse-type; growth models were created using linear interpolation and visualized as 3D animations. Spatial regions of significantly different growth were identified using the local False Discovery Rate method, estimating the expected percentage of false predictions in a set of predictions. For all......-rigid volumetric image registration was applied to micro-CT scans of ten 4-week and twenty 6-week euthanized mice for growth modeling. Each age group consisted of 50% normal and 50% Crouzon mice. Four 3D mean shapes, one for each mouse-type and age group were created. Extracting a dense field of growth vectors...... a tool for spatially detailed automatic phenotyping. MAIN OBJECTIVES OF PRESENTATION: We will present a 3D growth model of normal and Crouzon mice, and differences will be statistically and visually compared....

  6. Mouse models in liver cancer research: A review of current literature

    Science.gov (United States)

    Leenders, Martijn WH; Nijkamp, Maarten W; Rinkes, Inne HM Borel

    2008-01-01

    Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in East-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used, especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common type of primary liver cancer, accounting for 70%-85% of cases. PMID:19058325

  7. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    Science.gov (United States)

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems

  8. Distinctive serum miRNA profile in mouse models of striated muscular pathologies.

    Directory of Open Access Journals (Sweden)

    Nicolas Vignier

    Full Text Available Biomarkers are critically important for disease diagnosis and monitoring. In particular, close monitoring of disease evolution is eminently required for the evaluation of therapeutic treatments. Classical monitoring methods in muscular dystrophies are largely based on histological and molecular analyses of muscle biopsies. Such biopsies are invasive and therefore difficult to obtain. The serum protein creatine kinase is a useful biomarker, which is however not specific for a given pathology and correlates poorly with the severity or course of the muscular pathology. The aim of the present study was the systematic evaluation of serum microRNAs (miRNAs as biomarkers in striated muscle pathologies. Mouse models for five striated muscle pathologies were investigated: Duchenne muscular dystrophy (DMD, limb-girdle muscular dystrophy type 2D (LGMD2D, limb-girdle muscular dystrophy type 2C (LGMD2C, Emery-Dreifuss muscular dystrophy (EDMD and hypertrophic cardiomyopathy (HCM. Two-step RT-qPCR methodology was elaborated, using two different RT-qPCR miRNA quantification technologies. We identified miRNA modulation in the serum of all the five mouse models. The most highly dysregulated serum miRNAs were found to be commonly upregulated in DMD, LGMD2D and LGMD2C mouse models, which all exhibit massive destruction of striated muscle tissues. Some of these miRNAs were down rather than upregulated in the EDMD mice, a model without massive myofiber destruction. The dysregulated miRNAs identified in the HCM model were different, with the exception of one dysregulated miRNA common to all pathologies. Importantly, a specific and distinctive circulating miRNA profile was identified for each studied pathological mouse model. The differential expression of a few dysregulated miRNAs in the DMD mice was further evaluated in DMD patients, providing new candidates of circulating miRNA biomarkers for DMD.

  9. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.

    Science.gov (United States)

    Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P

    2016-05-31

    Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.

  10. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Francis Richard W

    2010-04-01

    Full Text Available Abstract Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL. However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo.

  11. Short term benefits for laparoscopic colorectal resection.

    Science.gov (United States)

    Schwenk, W; Haase, O; Neudecker, J; Müller, J M

    2005-07-20

    studies reported medians and ranges instead of means and standard deviations, we assumed the difference of medians to be equal to the difference of means. If no measure of dispersion was given, we tried to obtain these data from the authors or estimated SD as the mean or median. Data were pooled and rate differences as well as weighted mean differences with their 95% confidence intervals were calculated using random effects models. 25 RCT were included and analysed. Methodological quality of most of these trials was only moderate and perioperative treatment was very traditional in most studies. Operative time was longer in laparoscopic surgery, but intraoperative blood was less than in conventional surgery. Intensity of postoperative pain and duration of postoperative ileus was shorter after laparoscopic colorectal resection and pulmonary function was improved after a laparoscopic approach. Total morbidity and local (surgical) morbidity was decreased in the laparoscopic groups. General morbidity and mortality was not different between both groups. Until the 30th postoperative day, quality of life was better in laparoscopic patients. Postoperative hospital stay was less in laparoscopic patients. Under traditional perioperative treatment, laparoscopic colonic resections show clinically relevant advantages in selected patients. If the long-term oncological results of laparoscopic and conventional resection of colonic carcinoma show equivalent results, the laparoscopic approach should be preferred in patients suitable for this approach to colectomy.

  12. Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease.

    Science.gov (United States)

    Thiele, Sherri L; Warre, Ruth; Nash, Joanne E

    2012-02-14

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this

  13. Quantification of Lung Metastases from In Vivo Mouse Models

    DEFF Research Database (Denmark)

    Chang, Joan; Erler, Janine T

    2016-01-01

    Cancer research has made significant progress in terms of understanding and targeting primary tumors; however, the challenge remains for the successful treatment of metastatic cancers. This highlights the importance to use in vivo models to study the metastatic process, as well as for preclinical...

  14. Mouse models of acute and chronic hepacivirus infection

    DEFF Research Database (Denmark)

    Billerbeck, Eva; Wolfisberg, Raphael; Fahnøe, Ulrik

    2017-01-01

    An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in labora...

  15. CSF transthyretin neuroprotection in a mouse model of brain ischemia

    DEFF Research Database (Denmark)

    Santos, Sofia Duque; Lambertsen, Kate Lykke; Clausen, Bettina Hjelm

    2010-01-01

    Brain injury caused by ischemia is a major cause of human mortality and physical/cognitive disability worldwide. Experimentally, brain ischemia can be induced surgically by permanent middle cerebral artery occlusion. Using this model, we studied the influence of transthyretin in ischemic stroke. ...

  16. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  17. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    NARCIS (Netherlands)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Herve; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Oehlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H. M.; Molenaar, IQ; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G. J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and

  18. Mouse Models Applied to the Research of Pharmacological Treatments in Asthma.

    Science.gov (United States)

    Marqués-García, Fernando; Marcos-Vadillo, Elena

    2016-01-01

    Models developed for the study of asthma mechanisms can be used to investigate new compounds with pharmacological activity against this disease. The increasing number of compounds requires a preclinical evaluation before starting the application in humans. Preclinical evaluation in animal models reduces the number of clinical trials positively impacting in the cost and in safety. In this chapter, three protocols for the study of drugs are shown: a model to investigate corticoids as a classical treatment of asthma; a protocol to test the effects of retinoic acid (RA) on asthma; and a mouse model to test new therapies in asthma as monoclonal antibodies.

  19. A mouse model for binge-like sucrose overconsumption: Contribution of enhanced motivation for sweetener consumption.

    Science.gov (United States)

    Yasoshima, Yasunobu; Shimura, Tsuyoshi

    2015-01-01

    Behavioral and neural features of binge-like sugar overconsumption have been studied using rat models. However, few mouse models are available to examine the interaction between neural and genetic underpinnings of bingeing. In the present study, we first aim to establish a simple mouse model of binge-like sucrose overconsumption using daytime limited access training in food-restricted male mice. Trained mice received 4-h limited access to both 0.5M sucrose solution and chow for 10 days. Three control groups received (1) 4-h sucrose and 20-h chow access, (2) 20-h sucrose and 4-h, or (3) 20-h chow access, respectively. Only the trained group showed progressively increased sucrose consumption during brief periods of time and developed binge-like excessive behavior. Next, we examined whether the present mouse model mimicked a human feature of binge eating known as "eating when not physically hungry." Trained mice consumed significantly more sucrose or non-caloric sweetener (saccharin) during post-training days even after they nocturnally consumed substantial chow prior to daytime sweetener access. In other trained groups, both a systemic administration of glucose and substantial chow consumption prior to the daytime limited sucrose access failed to reduce binge-like sucrose overconsumption. Our results suggest that even when caloric consumption is not necessarily required, limited access training shapes and triggers binge-like overconsumption of sweetened solution in trained mice. The binge-like behavior in trained mice may be mainly due to enhanced hedonic motivation for the sweetener's taste. The present study suggests that our mouse model for binge-like sugar overconsumption may mimic some human features of binge eating and can be used to investigate the roles of neural and genetic mechanisms in binge-like overconsumption of sweetened substances in the absence of physical hunger. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of gypenosides on anxiety disorders in MPTP-lesioned mouse model of Parkinson's disease.

    Science.gov (United States)

    Shin, Keon Sung; Zhao, Ting Ting; Choi, Hyun Sook; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2014-06-03

    Ethanol extract (GP-EX) of Gynostemma pentaphyllum (GP) ameliorates chronic stress-induced anxiety in mice. The present study investigated the effects of gypenoside-enriched components (GPS), GP-EX and water extract of GP (GP-WX) on MPTP lesion-induced affective disorders in C57BL/6 mice. GPS (50mg/kg) and GP-EX (50mg/kg) for 21 day-treatment period improved the symptom of anxiety disorders in the MPTP-lesioned mouse model of PD with or without L-DOPA treatment, which was examined by the elevated plus-maze and marble burying tests. In these states, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) significantly increased the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. In addition, treatments with GPS (50mg/kg) and GP-EX (50mg/kg) showed protective effects on dopaminergic neurons in MPTP-lesioned mouse model of PD with or without L-DOPA treatment. In contrast, GPS (30 mg/kg) and GP-WX (50mg/kg) showed anxiolytic effects in the same animal models, but it was not significant. These results suggest that GPS (50mg/kg) and GP-EX (50mg/kg) showed anxiolytic effects on affective disorders and protective effects on dopaminergic neurons by modulating the brain levels of dopamine and serotonin in the MPTP-lesioned mouse model of PD with or without l-DOPA treatment. Clinical trials of GPS and GP-EX need to be conducted further so as to develop adjuvant therapeutic agents for PD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Building operative care capacity in a resource limited setting: The Mongolian model of the expansion of sustainable laparoscopic cholecystectomy.

    Science.gov (United States)

    Wells, Katie M; Lee, Yu-Jin; Erdene, Sandag; Erdene, Sarnai; Sanchin, Urjin; Sergelen, Orgoi; Zhang, Chong; Rodriguez, Brandon P; deVries, Catherine R; Price, Raymond R

    2016-08-01

    The benefits of laparoscopic cholecystectomy, including rapid recovery and fewer infections, have been largely unavailable to the majority of people in developing countries. Compared to other countries, Mongolia has an extremely high incidence of gallbladder disease. In 2005, only 2% of cholecystectomies were performed laparoscopically. This is a retrospective review of the transition from open to laparoscopic cholecystectomy throughout Mongolia. A cross-sectional, retrospective review was conducted of demographic patient data, diagnosis type, and operation performed (laparoscopic versus open cholecystectomy) from 2005-2013. Trends were analyzed from 6 of the 21 provinces (aimags) throughout Mongolia, and data were culled from 7 regional diagnostic referral and treatment centers and 2 tertiary academic medical centers. The data were analyzed by individual training center and by year before being compared between rural and urban centers. We analyzed and compared 14,522 cholecystectomies (n = 4,086 [28%] men, n = 10,436 [72%] women). Men and women were similar in age (men 52.2, standard deviation 14.8; women 49.4, standard deviation 15.7) and in the percentage undergoing laparoscopic cholecystectomy (men 39%, women 42%). By 2013, 58% of gallbladders were removed laparoscopically countrywide compared with only 2% in 2005. In 2011, laparoscopic cholecystectomy surpassed open cholecystectomy as the primary method for gallbladder removal countrywide. More than 315 Mongolian health care practitioners received laparoscopic training in 19 of the country's 21 aimags (states). By 2013, 58% of cholecystectomies countrywide were performed laparoscopically, a dramatic increase over 9 years. The expansion of laparoscopic cholecystectomy has transformed the care of biliary tract disease in Mongolia despite the country's limited resources. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Impaired spatial processing in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2018-05-17

    Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. A mouse model of mitochondrial complex III dysfunction induced by myxothiazol

    Energy Technology Data Exchange (ETDEWEB)

    Davoudi, Mina [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Kallijärvi, Jukka; Marjavaara, Sanna [Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Kotarsky, Heike; Hansson, Eva [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Levéen, Per [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Fellman, Vineta, E-mail: Vineta.Fellman@med.lu.se [Pediatrics, Department of Clinical Sciences, Lund, Lund University, Lund 22185 (Sweden); Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, 00014 (Finland); Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki 00029 (Finland)

    2014-04-18

    Highlights: • Reversible chemical inhibition of complex III in wild type mouse. • Myxothiazol causes decreased complex III activity in mouse liver. • The model is useful for therapeutic trials to improve mitochondrial function. - Abstract: Myxothiazol is a respiratory chain complex III (CIII) inhibitor that binds to the ubiquinol oxidation site Qo of CIII. It blocks electron transfer from ubiquinol to cytochrome b and thus inhibits CIII activity. It has been utilized as a tool in studies of respiratory chain function in in vitro and cell culture models. We developed a mouse model of biochemically induced and reversible CIII inhibition using myxothiazol. We administered myxothiazol intraperitoneally at a dose of 0.56 mg/kg to C57Bl/J6 mice every 24 h and assessed CIII activity, histology, lipid content, supercomplex formation, and gene expression in the livers of the mice. A reversible CIII activity decrease to 50% of control value occurred at 2 h post-injection. At 74 h only minor histological changes in the liver were found, supercomplex formation was preserved and no significant changes in the expression of genes indicating hepatotoxicity or inflammation were found. Thus, myxothiazol-induced CIII inhibition can be induced in mice for four days in a row without overt hepatotoxicity or lethality. This model could be utilized in further studies of respiratory chain function and pharmacological approaches to mitochondrial hepatopathies.

  4. Organoid Models of Human and Mouse Ductal Pancreatic Cancer

    Science.gov (United States)

    Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H.M.; Molenaar, I. Quintus; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G.J.; Clevers, Hans; Tuveson, David A.

    2015-01-01

    SUMMARY Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080

  5. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  6. Should all distal pancreatectomies be performed laparoscopically?

    Science.gov (United States)

    Merchant, Nipun B; Parikh, Alexander A; Kooby, David A

    2009-01-01

    the procedure is failing to progress laparoscopically, or if cancer surgery principles are likely to be violated, the surgeon (and the patient) must be willing to abort the laparoscopic approach and complete the operation using standard open technique. During the next few years we can expect to see more robust outcome data with laparoscopic pancreatectomy. The expectation is that more data will come to light demonstrating benefits of laparoscopic pancreatic resection as compared with open technique for selected patients. Several groups are considering randomized trials to look at these endpoints. Although more retrospective and prospectively maintained data will certainly be presented, it is less likely that randomized data specifically examining the question oflaparoscopic versus open pancreatectomy for cancer will mature, due to some of the limitations discussed above. Additional areas of discovery are in staple line reinforcement for left pancreatectomy and suturing technology for pancreatico-intestinal anastomosis. Robotic surgery may have a role in pancreatic surgery. Improving optics and visualization with flexible endoscopes with provide novel surgical views potentially improving the safety of laparoscopy. Another area in laparoscopic surgery that is gaining momentum is that of Natural Orifice Transluminal Endoscopic Surgery (NOTES). NOTES represents the "holy grail" of incisionless surgery. Can we enucleate a small tumor off the pancreatic body by passing an endoscope through the gastric (or colonic) wall, and bring the specimen out via the mouth or anus? Can we use this approach for formal left pancreatectomies? Pioneers have already developed a porcine model of left pancreatectomy. This technology must clear several hurdles before it is cancer ready; however, technology is moving at a rapid pace.

  7. A Susceptible Mouse Model for Zika Virus Infection.

    Directory of Open Access Journals (Sweden)

    Stuart D Dowall

    2016-05-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129 mice and the parent strain (129Sv/Ev after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals.

  8. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  9. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  10. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  11. Transgenic Mouse Models Transferred into the Test Tube: New Perspectives for Developmental Toxicity Testing In Vitro?

    Science.gov (United States)

    Kugler, Josephine; Luch, Andreas; Oelgeschläger, Michael

    2016-10-01

    Despite our increasing understanding of molecular mechanisms controlling embryogenesis, the identification and characterization of teratogenic substances still heavily relies on animal testing. Embryonic development depends on cell-autonomous and non-autonomous processes including spatiotemporally regulated extracellular signaling activities. These have been elucidated in transgenic mouse models harboring easily detectable reporter genes under the control of evolutionarily conserved signaling cascades. We propose combining these transgenic mouse models and cells derived thereof with existing alternative toxicological testing strategies. This would enable the plausibility of in vitro data to be verified in light of in vivo data and, ultimately, facilitate regulatory acceptance of in vitro test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Imaging noradrenergic influence on amyloid pathology in mouse models of Alzheimer's disease

    International Nuclear Information System (INIS)

    Winkeler, A.; Waerzeggers, Y.; Klose, A.; Monfared, P.; Thomas, A.V.; Jacobs, A.H.; Schubert, M.; Heneka, M.T.

    2008-01-01

    Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimers' disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases. (orig.)

  13. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  14. Use of mouse thigh as a radiobiological model of radiation-induced skin reactions

    International Nuclear Information System (INIS)

    Smith, A.J.; Hagkyriakou, H.; Martin, R.F.

    2000-01-01

    Full text: The effects of radiation exposure on skin have been widely studied. One of the most useful and relatively easy methods for evaluating radiation-induced skin reactions is the mouse thigh model. This model is non-invasive and has the advantage of not requiring the use of anaesthetic. In the current adaptation of the mouse thigh model, female C3H/HeJ ARC mice (from the Animal Resource Centre, W.A.) were used. The mice were restrained in specially designed jigs where the right leg was held in place by a metal hook. Lead shielding ensured that only the right ventral thigh was exposed to the radiation beam. A 6MeV electron beam from a Varian 2100 Linac (20Gy / minute) was used, thus minimising the time for which the mice were restrained. Eight to twelve days after exposure to the radiation, the first skin reactions can be seen. These are scored according to a scale ranging from 0 (no visible reaction) to 3.5 (breakdown of the entire area with severe exudation). The skin reactions (erythema and moist desquamation) peak approximately 18-22 days after radiation exposure and may remain at peak for only 1-3 days. Therefore, the reactions need to be scored daily and this continues, generally until day 35, or until all moist desquamation has healed. The maximum score in a score versus time profile for each mouse in a group of 5-6 animals are averaged. Radiation-dose response data will be presented. Using the mouse thigh model, hair loss can also be measured (usually on about day 30-35) using a scale from 0-4, where 0 depicts no evident hair loss and 4 represents complete epilation. Leg contraction can also be measured as a late effect by comparison with the length of the unirradiated leg

  15. Inhibition of Inflammation-Associated Olfactory Loss by Etanercept in an Inducible Olfactory Inflammation Mouse Model.

    Science.gov (United States)

    Jung, Yong Gi; Lane, Andrew P

    2016-06-01

    To determine the effect of a soluble human tumor necrosis factor alpha (TNF-α) receptor blocker (etanercept) on an inducible olfactory inflammation (IOI) mouse model. An in vivo study using a transgenic mouse model. Research laboratory. To study the impact of chronic inflammation on the olfactory system, a transgenic mouse model of chronic rhinosinusitis-associated olfactory loss was utilized (IOI mouse), expressing TNF-α in a temporally controlled fashion within the olfactory epithelium. In one group of mice (n = 4), etanercept was injected intraperitoneally (100 μg/dose, 3 times/week) concurrent with a 2-week period of TNF-α expression. A second group of mice (n = 2) underwent induction of TNF-α expression for 8 weeks, with etanercept treatment administered during the final 2 weeks of inflammation. Olfactory function was assayed by elecro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Each group was compared with an equal-number control group. Compared with nontreated IOI mice, etanercept-treated IOI mice showed significantly improved EOG responses after 2 weeks (P loss of olfactory epithelium and no EOG response in nontreated IOI mice. However, in etanercept-treated mice, regeneration of olfactory epithelium was observed. Concomitant administration of etanercept in IOI mice results in interruption of TNF-α-induced olfactory loss and induction of neuroepithelial regeneration. This demonstrates that etanercept has potential utility as a tool for elucidating the role of TNF-α in other olfactory inflammation models. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  16. A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology*

    OpenAIRE

    Paton, Leigh; Bitoun, Emmanuelle; Kenyon, Janet; Priestman, David A.; Oliver, Peter L.; Edwards, Benjamin; Platt, Frances M.; Davies, Kay E.

    2014-01-01

    Mucolipidosis II (MLII) is a lysosomal storage disorder caused by loss of N-acetylglucosamine-1-phosphotransferase, which tags lysosomal enzymes with a mannose 6-phosphate marker for transport to the lysosome. In MLII, the loss of this marker leads to deficiency of multiple enzymes and non-enzymatic proteins in the lysosome, leading to the storage of multiple substrates. Here we present a novel mouse model of MLII homozygous for a patient mutation in the GNPTAB gene. Whereas the current gene ...

  17. Proteomic profiling of the hypothalamus in a mouse model of cancer-induced anorexia-cachexia

    OpenAIRE

    Ihnatko, Robert; Post, Claes; Blomqvist, Anders

    2013-01-01

    Background: Anorexia-cachexia is a common and severe cancer-related complication but the underlying mechanisms are largely unknown. Here, using a mouse model for tumour-induced anorexia-cachexia, we screened for proteins that are differentially expressed in the hypothalamus, the brain’s metabolic control centre. Methods: The hypothalamus of tumour-bearing mice with implanted methylcholanthrene-induced sarcoma (MCG 101) displaying anorexia and their sham-implanted pair-fed or free-fed litterma...

  18. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  19. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  20. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene

    Czech Academy of Sciences Publication Activity Database

    Kašpárek, Petr; Ileninová, Zuzana; Hanečková, Radka; Kanchev, Ivan; Jeníčková, Irena; Sedláček, Radislav

    2016-01-01

    Roč. 397, č. 12 (2016), s. 1287-1292 ISSN 1431-6730 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LQ1604; GA MŠk(CZ) LM2011032; GA MŠk(CZ) LO1509 Institutional support: RVO:68378050 Keywords : mosaicism * mouse model * netherton syndrome * skin * SPINK5 * TALEN Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.273, year: 2016

  1. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis

    OpenAIRE

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W.; Beier, Frank; Cai, Daozhang

    2018-01-01

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. R...

  2. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    Science.gov (United States)

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.

  3. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    OpenAIRE

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Photoreceptors degenerate in a wide array of hereditary retinal diseases and age-related macular degeneration. There is currently no treatment available for retinal degenerations. While outnumbered roughly 20:1 by rods in the human retina, it is the cones that mediate color vision and visual acuity, and their survival is critical for vision. In this communication, we investigate whether thyroid hormone (TH) signaling affects cone viability in retinal degeneration mouse models. TH signaling is...

  4. Altered Gastrointestinal Function in the Neuroligin-3 Mouse Model of Autism

    Science.gov (United States)

    2013-10-01

    the Neuroligin-3 Mouse Model of Autism PRINCIPAL INVESTIGATOR: Professor Joel Bornstein CONTRACTING ORGANIZATION: The University of...NUMBER The University of Melbourne PARKVILLE, AU 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...of the DDC GI forum at Texas Children’s Hospital in Houston, TX, May 2013 20 Conclusion The data obtained in this component of the project

  5. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  6. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Zoe eFonseca-Kelly

    2012-05-01

    Full Text Available Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE, a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current studies examine potential neuroprotective and immunomodulatory effects of resveratrol in chronic EAE induced by immunization with myelin oligodendroglial glycoprotein peptide in C57/Bl6 mice. Effects of two distinct formulations of resveratrol administered daily orally were compared. Resveratrol delayed the onset of EAE compared to vehicle-treated EAE mice, but did not prevent or alter the phenotype of inflammation in spinal cords or optic nerves. Significant neuroprotective effects were observed, with higher numbers of retinal ganglion cells found in eyes of resveratrol-treated EAE mice with optic nerve inflammation. Results demonstrate that resveratrol prevents neuronal loss in this chronic demyelinating disease model, similar to its effects in relapsing EAE. Differences in immunosuppression compared with prior studies suggest that immunomodulatory effects may be limited and may depend on specific immunization parameters or timing of treatment. Importantly, neuroprotective effects can occur without immunosuppression, suggesting a potential additive benefit of resveratrol in combination with anti-inflammatory therapies for multiple sclerosis.

  7. Investigations of oocyte in vitro maturation within a mouse model.

    Science.gov (United States)

    Chin, Alexis Heng Boon; Chye, Ng Soon

    2004-02-01

    This study attempted to develop a 'less meiotically competent' murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze-thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage.

  8. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  9. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  10. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  11. A chimeric human-mouse model of Sjögren's syndrome.

    Science.gov (United States)

    Young, Nicholas A; Wu, Lai-Chu; Bruss, Michael; Kaffenberger, Benjamin H; Hampton, Jeffrey; Bolon, Brad; Jarjour, Wael N

    2015-01-01

    Despite recent advances in the understanding of Sjögren's Syndrome (SjS), the pathogenic mechanisms remain elusive and an ideal model for early drug discovery is not yet available. To establish a humanized mouse model of SjS, peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with SjS were transferred into immunodeficient NOD-scid IL-2rγ(null) mouse recipients to produce chimeric mice. While no difference was observed in the distribution of cells, chimeric mice transferred with PBMCs from SjS patients produced enhanced cytokine levels, most significantly IFN-γ and IL-10. Histological examination revealed enhanced inflammatory responses in the lacrimal and salivary glands of SjS chimeras, as measured by digital image analysis and blinded histopathological scoring. Infiltrates were primarily CD4+, with minimal detection of CD8+ T-cells and B-cells. These results demonstrate a novel chimeric mouse model of human SjS that provides a unique in vivo environment to test experimental therapeutics and investigate T-cell disease pathology. Copyright © 2014. Published by Elsevier Inc.

  12. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  13. Effect of induced peritoneal endometriosis on oocyte and embryo quality in a mouse model.

    Science.gov (United States)

    Cohen, J; Ziyyat, A; Naoura, I; Chabbert-Buffet, N; Aractingi, S; Darai, E; Lefevre, B

    2015-02-01

    To assess the impact of peritoneal endometriosis on oocyte and embryo quality in a mouse model. Peritoneal endometriosis was surgically induced in 33 B6CBA/F1 female mice (endometriosis group, N = 17) and sham-operated were used as control (sham group, N = 16). Mice were superovulated 4 weeks after surgery and mated or not, to collect E0.5-embryos or MII-oocytes. Evaluation of oocyte and zygote quality was done by immunofluorescence under spinning disk confocal microscopy. Endometriosis-like lesions were observed in all mice of endometriosis group. In both groups, a similar mean number of MII oocytes per mouse was observed in non-mated mice (30.2 vs 32.6), with a lower proportion of normal oocytes in the endometriosis group (61 vs 83 %, p endometriosis group (21 vs 35.5, p = 0.02) without difference in embryo quality. Our results support that induced peritoneal endometriosis in a mouse model is associated with a decrease in oocyte quality and embryo number. This experimental model allows further studies to understand mechanisms of endometriosis-associated infertility.

  14. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Sian E. Piret

    2017-06-01

    Full Text Available Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD due to missense uromodulin (UMOD mutations (ADTKD-UMOD. ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R. Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78 was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.

  15. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  16. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Shobi Veleri

    2015-02-01

    Full Text Available Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.

  17. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities.

    Science.gov (United States)

    Vanhooren, Valerie; Libert, Claude

    2013-01-01

    The mouse has become the favorite mammalian model. Among the many reasons for this privileged position of mice is their genetic proximity to humans, the possibilities of genetically manipulating their genomes and the availability of many tools, mutants and inbred strains. Also in the field of aging, mice have become very robust and reliable research tools. Since laboratory mice have a life expectancy of only a few years, genetic approaches and other strategies for intervening in aging can be tested by examining their effects on life span and aging parameters during the relatively short period of, for example, a PhD project. Moreover, experiments on mice with an extended life span as well as on mice demonstrating signs of (segmental) premature aging, together with genetic mapping strategies, have provided novel insights into the fundamental processes that drive aging. Finally, the results of studies on caloric restriction and pharmacological anti-aging treatments in mice have a high degree of relevance to humans. In this paper, we review a number of recent genetic mapping studies that have yielded novel insights into the aging process. We discuss the value of the mouse as a model for testing interventions in aging, such as caloric restriction, and we critically discuss mouse strains with an extended or a shortened life span as models of aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  19. [Establishment of mouse endometrial injury model by electrocoagulation].

    Science.gov (United States)

    Hu, Xiaoxiao; Lin, Xiaona; Jiang, Yinshen; Shi, Libing; Wang, Jieyu; Zhao, Lijuan; Zhang, Songying

    2014-12-23

    To establish the murine model of moderate endometrial injury. Electrocoagulation was applied to induce endometrial injury of ICR mice with 0.5 watts power while contralateral uterine cavity acted as control without electrocoagulation. The endometrial histomorphology was observed in 7 days later by microscopy and fetal number of each lateral uterus assessed at 17.5 days after pregnancy. At 7 days post-electrocoagulation, the average endometrial thickness of operating side was significantly thinner than that of control side (1.14 ± 0.08 vs 1.88 ± 0.15 mm, P electrocoagulation injury shows morphologic changes and decreased fertile ability. It has potential uses for animal studies of endometrial injury treatment.

  20. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  1. Heterotopic ossifications in a mouse model of albright hereditary osteodystrophy.

    Directory of Open Access Journals (Sweden)

    David L Huso

    Full Text Available Albright hereditary osteodystrophy (AHO is characterized by short stature, brachydactyly, and often heterotopic ossifications that are typically subcutaneous. Subcutaneous ossifications (SCO cause considerable morbidity in AHO with no effective treatment. AHO is caused by heterozygous inactivating mutations in those GNAS exons encoding the α-subunit of the stimulatory G protein (Gα(s. When inherited maternally, these mutations are associated with obesity, cognitive impairment, and resistance to certain hormones that mediate their actions through G protein-coupled receptors, a condition termed pseudohypoparathyroidism type 1a (PHP1a. When inherited paternally, GNAS mutations cause only AHO but not hormonal resistance, termed pseudopseudohypoparathyroidism (PPHP. Mice with targeted disruption of exon 1 of Gnas (Gnas(E1-/+ replicate human PHP1a or PPHP phenotypically and hormonally. However, SCO have not yet been reported in Gnas(E1+/- mice, at least not those that had been analyzed by us up to 3 months of age. Here we now show that Gnas(E1-/+ animals develop SCO over time. The ossified lesions increase in number and size and are uniformly detected in adult mice by one year of age. They are located in both the dermis, often in perifollicular areas, and the subcutis. These lesions are particularly prominent in skin prone to injury or pressure. The SCO comprise mature bone with evidence of mineral deposition and bone marrow elements. Superficial localization was confirmed by radiographic and computerized tomographic imaging. In situ hybridization of SCO lesions were positive for both osteonectin and osteopontin. Notably, the ossifications were much more extensive in males than females. Because Gnas(E1-/+ mice develop SCO features that are similar to those observed in AHO patients, these animals provide a model system suitable for investigating pathogenic mechanisms involved in SCO formation and for developing novel therapeutics for heterotopic bone

  2. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup

    2005-01-01

    (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  3. Educational and training aspects of new surgical techniques: experience with the endoscopic–laparoscopic interdisciplinary training entity (ELITE) model in training for a natural orifice translumenal endoscopic surgery (NOTES) approach to appendectomy.

    Science.gov (United States)

    Gillen, Sonja; Gröne, Jörn; Knödgen, Fritz; Wolf, Petra; Meyer, Michael; Friess, Helmut; Buhr, Heinz-Johannes; Ritz, Jörg-Peter; Feussner, Hubertus; Lehmann, Kai S

    2012-08-01

    Natural orifice translumenal endoscopic surgery (NOTES) is a new surgical concept that requires training before it is introduced into clinical practice. The endoscopic–laparoscopic interdisciplinary training entity (ELITE) is a training model for NOTES interventions. The latest research has concentrated on new materials for organs with realistic optical and haptic characteristics and the possibility of high-frequency dissection. This study aimed to assess both the ELITE model in a surgical training course and the construct validity of a newly developed NOTES appendectomy scenario. The 70 attendees of the 2010 Practical Course for Visceral Surgery (Warnemuende, Germany) took part in the study and performed a NOTES appendectomy via a transsigmoidal access. The primary end point was the total time required for the appendectomy, including retrieval of the appendix. Subjective evaluation of the model was performed using a questionnaire. Subgroups were analyzed according to laparoscopic and endoscopic experience. The participants with endoscopic or laparoscopic experience completed the task significantly faster than the inexperienced participants (p = 0.009 and 0.019, respectively). Endoscopic experience was the strongest influencing factor, whereas laparoscopic experience had limited impact on the participants with previous endoscopic experience. As shown by the findings, 87.3% of the participants stated that the ELITE model was suitable for the NOTES training scenario, and 88.7% found the newly developed model anatomically realistic. This study was able to establish face and construct validity for the ELITE model with a large group of surgeons. The ELITE model seems to be well suited for the training of NOTES as a new surgical technique in an established gastrointestinal surgery skills course.

  4. Laparoscopic Transcystic Common Bile Duct Exploration: Advantages over Laparoscopic Choledochotomy.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available The ideal treatment for choledocholithiasis should be simple, readily available, reliable, minimally invasive and cost-effective for patients. We performed this study to compare the benefits and drawbacks of different laparoscopic approaches (transcystic and choledochotomy for removal of common bile duct stones.A systematic search was implemented for relevant literature using Cochrane, PubMed, Ovid Medline, EMBASE and Wanfang databases. Both the fixed-effects and random-effects models were used to calculate the odds ratio (OR or the mean difference (MD with 95% confidence interval (CI for this study.The meta-analysis included 18 trials involving 2,782 patients. There were no statistically significant differences between laparoscopic choledochotomy for common bile duct exploration (LCCBDE (n = 1,222 and laparoscopic transcystic common bile duct exploration (LTCBDE (n = 1,560 regarding stone clearance (OR 0.73, 95% CI 0.50-1.07; P = 0.11, conversion to other procedures (OR 0.62, 95% CI 0.21-1.79; P = 0.38, total morbidity (OR 1.65, 95% CI 0.92-2.96; P = 0.09, operative time (MD 12.34, 95% CI -0.10-24.78; P = 0.05, and blood loss (MD 1.95, 95% CI -9.56-13.46; P = 0.74. However, the LTCBDE group showed significantly better results for biliary morbidity (OR 4.25, 95% CI 2.30-7.85; P<0.001, hospital stay (MD 2.52, 95% CI 1.29-3.75; P<0.001, and hospital expenses (MD 0.30, 95% CI 0.23-0.37; P<0.001 than the LCCBDE group.LTCBDE is safer than LCCBDE, and is the ideal treatment for common bile duct stones.

  5. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2.

    Directory of Open Access Journals (Sweden)

    Loredana Leo

    2011-06-01

    Full Text Available Familial hemiplegic migraine type 2 (FHM2 is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887 mutants died just after birth, while heterozygous Atp1a2(+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD, the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.

  6. Normal social seeking behavior, hypoactivity and reduced exploratory range in a mouse model of Angelman syndrome

    Directory of Open Access Journals (Sweden)

    Reiter Lawrence T

    2011-01-01

    Full Text Available Abstract Background Angelman syndrome (AS is a neurogenetic disorder characterized by severe developmental delay with mental retardation, a generally happy disposition, ataxia and characteristic behaviors such as inappropriate laughter, social-seeking behavior and hyperactivity. The majority of AS cases are due to loss of the maternal copy of the UBE3A gene. Maternal Ube3a deficiency (Ube3am-/p+, as well as complete loss of Ube3a expression (Ube3am-/p-, have been reproduced in the mouse model used here. Results Here we asked if two characteristic AS phenotypes - social-seeking behavior and hyperactivity - are reproduced in the Ube3a deficient mouse model of AS. We quantified social-seeking behavior as time spent in close proximity to a stranger mouse and activity as total time spent moving during exploration, movement speed and total length of the exploratory path. Mice of all three genotypes (Ube3am+/p+, Ube3am-/p+, Ube3am-/p- were tested and found to spend the same amount of time in close proximity to the stranger, indicating that Ube3a deficiency in mice does not result in increased social seeking behavior or social dis-inhibition. Also, Ube3a deficient mice were hypoactive compared to their wild-type littermates as shown by significantly lower levels of activity, slower movement velocities, shorter exploratory paths and a reduced exploratory range. Conclusions Although hyperactivity and social-seeking behavior are characteristic phenotypes of Angelman Syndrome in humans, the Ube3a deficient mouse model does not reproduce these phenotypes in comparison to their wild-type littermates. These phenotypic differences may be explained by differences in the size of the genetic defect as ~70% of AS patients have a deletion that includes several other genes surrounding the UBE3A locus.

  7. Effect of CPAP in a Mouse Model of Hyperoxic Neonatal Lung Injury

    Science.gov (United States)

    Reyburn, Brent; Fiore, Juliann M. Di; Raffay, Thomas; Martin, Richard J.; Y.S., Prakash; Jafri, Anjum; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure [CPAP] and supplemental oxygen have become the mainstay of neonatal respiratory support in preterm infants. Although oxygen therapy is associated with respiratory morbidities including bronchopulmonary dysplasia [BPD], the long-term effects of CPAP on lung function are largely unknown. We used a hyperoxia-induced mouse model of BPD to explore the effects of daily CPAP during the first week of life on later respiratory system mechanics. Objective To test the hypothesis that daily CPAP in a newborn mouse model of BPD improves longer term respiratory mechanics. Methods Mouse pups from C57BL/6 pregnant dams were exposed to room air [RA] or hyperoxia [50% O2, 24hrs/day] for the first postnatal week with or without exposure to daily CPAP [6cmH2O, 3hrs/day]. Respiratory system resistance [Rrs] and compliance [Crs] were measured following a subsequent 2 week period of room RA recovery. Additional measurements included radial alveolar counts and macrophage counts. Results Mice exposed to hyperoxia had significantly elevated Rrs, decreased Crs, reduced alveolarization, and increased macrophage counts at three weeks compared to RA treated mice. Daily CPAP treatment significantly improved Rrs, Crs and alveolarization, and decreased lung macrophage infiltration in hyperoxia-exposed pups. Conclusions We have demonstrated that daily CPAP had a longer term benefit on baseline respiratory system mechanics in a neonatal mouse model of BPD. We speculate that this beneficial effect of CPAP was the consequence of a decrease in the inflammatory response and resultant alveolar injury associated with hyperoxic newborn lung injury. PMID:26394387

  8. Immunotherapy for choroidal neovascularization in a laser-induced mouse model simulating exudative (wet) macular degeneration

    Science.gov (United States)

    Bora, Puran S.; Hu, Zhiwei; Tezel, Tongalp H.; Sohn, Jeong-Hyeon; Kang, Shin Goo; Cruz, Jose M. C.; Bora, Nalini S.; Garen, Alan; Kaplan, Henry J.

    2003-03-01

    Age-related macular degeneration (AMD) is the leading cause of blindness after age 55 in the industrialized world. Severe loss of central vision frequently occurs with the exudative (wet) form of AMD, as a result of the formation of a pathological choroidal neovasculature (CNV) that damages the macular region of the retina. We tested the effect of an immunotherapy procedure, which had been shown to destroy the pathological neovasculature in solid tumors, on the formation of laser-induced CNV in a mouse model simulating exudative AMD in humans. The procedure involves administering an Icon molecule that binds with high affinity and specificity to tissue factor (TF), resulting in the activation of a potent cytolytic immune response against cells expressing TF. The Icon binds selectively to TF on the vascular endothelium of a CNV in the mouse and pig models and also on the CNV of patients with exudative AMD. Here we show that the Icon dramatically reduces the frequency of CNV formation in the mouse model. After laser treatment to induce CNV formation, the mice were injected either with an adenoviral vector encoding the Icon, resulting in synthesis of the Icon by vector-infected mouse cells, or with the Icon protein. The route of injection was i.v. or intraocular. The efficacy of the Icon in preventing formation of laser-induced CNV depends on binding selectively to the CNV. Because the Icon binds selectively to the CNV in exudative AMD as well as to laser-induced CNV, the Icon might also be efficacious for treating patients with exudative AMD.

  9. Enhanced Operant Extinction and Prefrontal Excitability in a Mouse Model of Angelman Syndrome.

    Science.gov (United States)

    Sidorov, Michael S; Judson, Matthew C; Kim, Hyojin; Rougie, Marie; Ferrer, Alejandra I; Nikolova, Viktoriya D; Riddick, Natallia V; Moy, Sheryl S; Philpot, Benjamin D

    2018-03-14

    Angelman syndrome (AS), a neurodevelopmental disorder associated with intellectual disability, is caused by loss of maternal allele expression of UBE3A in neurons. Mouse models of AS faithfully recapitulate disease phenotypes across multiple domains, including behavior. Yet in AS, there has been only limited study of behaviors encoded by the prefrontal cortex, a region broadly involved in executive function and cognition. Because cognitive impairment is a core feature of AS, it is critical to develop behavioral readouts of prefrontal circuit function in AS mouse models. One such readout is behavioral extinction, which has been well described mechanistically and relies upon prefrontal circuits in rodents. Here we report exaggerated operant extinction in male AS model mice, concomitant with enhanced excitability in medial prefrontal neurons from male and female AS model mice. Abnormal behavior was specific to operant extinction, as two other prefrontally dependent tasks (cued fear extinction and visuospatial discrimination) were largely normal in AS model mice. Inducible deletion of Ube3a during adulthood was not sufficient to drive abnormal extinction, supporting the hypothesis that there is an early critical period for development of cognitive phenotypes in AS. This work represents the first formal experimental analysis of prefrontal circuit function in AS, and identifies operant extinction as a useful experimental paradigm for modeling cognitive aspects of AS in mice. SIGNIFICANCE STATEMENT Prefrontal cortex encodes "high-level" cognitive processes. Thus, understanding prefrontal function is critical in neurodevelopmental disorders where cognitive impairment is highly penetrant. Angelman syndrome is a neurodevelopmental disorder associated with speech and motor impairments, an outwardly happy demeanor, and intellectual disability. We describe a behavioral phenotype in a mouse model of Angelman syndrome and related abnormalities in prefrontal cortex function. We

  10. Epithelial morphogenesis: the mouse eye as a model system.

    Science.gov (United States)

    Chauhan, Bharesh; Plageman, Timothy; Lou, Ming; Lang, Richard

    2015-01-01

    Morphogenesis is the developmental process by which tissues and organs acquire the shape that is critical to their function. Here, we review recent advances in our understanding of the mechanisms that drive morphogenesis in the developing eye. These investigations have shown that regulation of the actin cytoskeleton is central to shaping the presumptive lens and retinal epithelia that are the major components of the eye. Regulation of the actin cytoskeleton is mediated by Rho family GTPases, by signaling pathways and indirectly, by transcription factors that govern the expression of critical genes. Changes in the actin cytoskeleton can shape cells through the generation of filopodia (that, in the eye, connect adjacent epithelia) or through apical constriction, a process that produces a wedge-shaped cell. We have also learned that one tissue can influence the shape of an adjacent one, probably by direct force transmission, in a process we term inductive morphogenesis. Though these mechanisms of morphogenesis have been identified using the eye as a model system, they are likely to apply broadly where epithelia influence the shape of organs during development. © 2015 Elsevier Inc. All rights reserved.

  11. A Redox Sensitive Pathway in the Mouse ES Cell Assay Modeled From ToxCast HTS Data

    Science.gov (United States)

    The broad chemical landscape coupled with the lack of developmental toxicity information across most environmental chemicals has motivated the need for high- throughput screening methods and predictive models of developmental toxicity. Towards this end, we used the mouse embryoni...

  12. Behavioral and neurochemical characterization of new mouse model of hyperphenylalaninemia.

    Directory of Open Access Journals (Sweden)

    Tiziana Pascucci

    Full Text Available Hyperphenylalaninemia (HPA refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU (PHE > 1200 µM/L, mild PKU (PHE 600-1200 µM/L and persistent HPA (PHE 120-600 µM/L (normal blood PHE < 120 µM/L. The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU, developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.

  13. Therapeutic action of ghrelin in a mouse model of colitis.

    Science.gov (United States)

    Gonzalez-Rey, Elena; Chorny, Alejo; Delgado, Mario

    2006-05-01

    Ghrelin is a novel growth hormone-releasing peptide with potential endogenous anti-inflammatory activities ameliorating some pathologic inflammatory conditions. Crohn's disease is a chronic debilitating disease characterized by severe T helper cell (Th)1-driven inflammation of the colon. The aim of this study was to investigate the therapeutic effect of ghrelin in a murine model of colitis. We examined the anti-inflammatory action of ghrelin in the colitis induced by intracolonic administration of trinitrobenzene sulfonic acid. Diverse clinical signs of the disease were evaluated, including weight loss, diarrhea, colitis, and histopathology. We also investigated the mechanisms involved in the potential therapeutic effect of ghrelin, such as inflammatory cytokines and chemokines, Th1-type response, and regulatory factors. Ghrelin ameliorated significantly the clinical and histopathologic severity of the trinitrobenzene sulfonic acid-induced colitis; abrogating body weight loss, diarrhea, and inflammation; and increasing survival. The therapeutic effect was associated with down-regulation of both inflammatory and Th1-driven autoimmune response through the regulation of a wide spectrum of inflammatory mediators. In addition, a partial involvement of interluekin-10/transforming growth factor-beta1-secreting regulatory T cells in this therapeutic effect was demonstrated. Importantly, the ghrelin treatment was therapeutically effective in established colitis and avoided the recurrence of the disease. Our data demonstrate novel anti-inflammatory actions for ghrelin in the gastrointestinal tract, ie, the capacity to deactivate the intestinal inflammatory response and to restore mucosal immune tolerance at multiple levels. Consequently, ghrelin administration represents a novel possible therapeutic approach for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis.

  14. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    parameters. Taken together, this typically catabolic treatment (disuse and irradiation) appeared to stimulate cortical expansion in MCAT mice but not WT mice. In conclusion, these results reveal the importance of mitochondrial ROS generation in skeletal remodeling and show that MCAT mice provide a useful animal model for bone studies.

  15. "Knotless" laparoscopic extraperitoneal adenomectomy.

    Science.gov (United States)

    Garcia-Segui, A; Verges, A; Galán-Llopis, J A; Garcia-Tello, A; Ramón de Fata, F; Angulo, J C

    2015-03-01

    Laparoscopic adenomectomy is a feasible and effective surgical procedure. We have progressively simplified the procedure using barbed sutures and a technique we call "knotless" laparoscopic adenomectomy. We present a prospective, multicenter, descriptive study that reflects the efficacy and safety of this technique in an actual, reproducible clinical practice situation. A total of 26 patients with benign prostatic hyperplasia of considerable size (>80cc) underwent "knotless" laparoscopic adenomectomy. This is an extraperitoneal laparoscopic technique with 4 trocars based on the controlled and hemostatic enucleation of the adenoma using ultrasonic scalpels, precise urethral sectioning under direct vision assisted by a urethral plug, trigonization using barbed suture covering the posterior wall of the fascia, capsulorrhaphy with barbed suture and extraction of the morcellated adenoma through the umbilical incision. The median patient age was 69 (54-83)years, the mean prostate volume was 127 (89-245)cc, the mean operative time was 136 (90-315)min, the mean estimated bleeding volume was 200 (120-500)cc and the hospital stay was 3 (2-6)days. All patients experienced improved function in terms of uroflowmetry and International Prostate Symptom Score and quality of life questionnaires. There were complications in 6 patients, 5 of which were minor. "Knotless" laparoscopic adenomectomy is a procedure with low complexity that combines the advantages of open surgery (lasting functional results and complete extraction of the adenoma) with laparoscopic procedures (reduced bleeding and need for transfusions, shorter hospital stays and reduced morbidity and complications related to the abdominal wall). The use of ultrasonic scalpels and barbed sutures simplifies the procedure and enables a safe and hemostatic technique. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Enhanced fear expression in a psychopathological mouse model of trait anxiety: pharmacological interventions.

    Directory of Open Access Journals (Sweden)

    Simone B Sartori

    Full Text Available The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB, or normal (NAB anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α(2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i for identifying biological factors underlying misguided conditioned fear responses and (ii for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias.

  17. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  18. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  19. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deforges, Séverine; Branchu, Julien; Biondi, Olivier; Grondard, Clément; Pariset, Claude; Lécolle, Sylvie; Lopes, Philippe; Vidal, Pierre-Paul; Chanoine, Christophe; Charbonnier, Frédéric

    2009-07-15

    Several studies using transgenic mouse models of familial amyotrophic lateral sclerosis (ALS) have reported a life span increase in exercised animals, as long as animals are submitted to a moderate-intensity training protocol. However, the neuroprotective potential of exercise is still questionable. To gain further insight into the cellular basis of the exercise-induced effects in neuroprotection, we compared the efficiency of a swimming-based training, a high-frequency and -amplitude exercise that preferentially recruits the fast motor units, and of a moderate running-based training, that preferentially triggers the slow motor units, in an ALS mouse model. Surprisingly, we found that the swimming-induced benefits sustained the motor function and increased the ALS mouse life span by about 25 days. The magnitude of this beneficial effect is one of the highest among those induced by any therapeutic strategy in this disease. We have shown that, unlike running, swimming significantly delays spinal motoneuron death and, more specifically, the motoneurons of large soma area. Analysis of the muscular phenotype revealed a swimming-induced relative maintenance of the fast phenotype in fast-twitch muscles. Furthermore, the swimming programme preserved astrocyte and oligodendrocyte populations in ALS spinal cord. As a whole, these data are highly suggestive of a causal relationship not only linking motoneuron activation and protection, but also motoneuron protection and the maintenance of the motoneuron surrounding environment. Basically, exercise-induced neuroprotective mechanisms provide an example of the molecular adaptation of activated motoneurons.

  20. Primary amines protect against retinal degeneration in mouse models of retinopathies.

    Science.gov (United States)

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-12-25

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.

  1. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  2. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    International Nuclear Information System (INIS)

    Wakeford, S.; Watt, D.J.; Partridge, T.A.

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD

  3. X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, S.; Watt, D.J.; Partridge, T.A. (Charing Cross and Westminster Medical School, London (England))

    1991-01-01

    The mdx mouse, although a genetic and biochemical homologue of human Duchenne muscular dystrophy (DMD), presents a comparatively mild histopathological and clinical phenotype. These differences are partially attributable to the greater efficacy of regeneration in the mdx mouse than in DMD muscle. To lessen this disparity, we have used a single dose of X-irradiation (16 Gy) to inhibit regeneration in one leg of mdx mice. The result is an almost complete block of muscle fiber regeneration leading to progressive loss of muscle fibers and their replacement by loose connective tissue. Surviving fibers are mainly peripherally nucleated and, surprisingly, of large diameter. Thus, X-irradiation converts mdx muscle to a model system in which the degenerative process can be studied in isolation from the complicating effect of myofiber regeneration. This system should be of use for testing methods of alleviating the myofiber degeneration which is common to mdx and DMD.

  4. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    Science.gov (United States)

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  5. Analgesic effects of lappaconitine in leukemia bone pain in a mouse model

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Zhu

    2015-05-01

    Full Text Available Bone pain is a common and severe symptom in cancer patients. The present study employed a mouse model of leukemia bone pain by injection K562 cells into tibia of mouse to evaluate the analgesic effects of lappacontine. Our results showed that the lappaconitine treatment at day 15, 17 and 19 could effectively reduce the spontaneous pain scoring values, restore reduced degree in the inclined-plate test induced by injection of K562 cells, as well as restore paw mechanical withdrawal threshold and paw withdrawal thermal latency induced by injection of K562 cells to the normal levels. Additionally, the molecular mechanisms of lappaconitine’s analgesic effects may be related to affect the expression levels of endogenous opioid system genes (POMC, PENK and MOR, as well as apoptosis-related genes (Xiap, Smac, Bim, NF-κB and p53. Our present results indicated that lappaconitine may become a new analgesic agent for leukemia bone pain management.

  6. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, K.D.; Rapisarda, D.; Bailey, H.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1995-07-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease of unknown pathogenesis which is characterized by weakness of the face and shoulder girdle. It is associated with a sensorineural hearing loss which may be subclinical. FSHD has been mapped to the distalmost portion of 4q35, although the gene has not yet been identified. Distal 4q has homology with a region of mouse chromosome 8 to which a mouse mutant, myodystrophy (myd), has been mapped. Muscle from homozygotes for the myd mutation appears dystrophic, showing degenerating and regenerating fibers, inflammatory infiltrates, central nuclei, and variation in fiber size. Brainstem auditory evoked potentials reveal a sensorineural hearing loss in myd homozygotes. Based on the homologous genetic map locations, and the phenotypic syndrome of dystrophic muscle with sensorineural hearing loss, we suggest that myd represents an animal model for the human disease FSHD. 28 refs., 4 figs.

  7. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  8. Laparoscopic adrenal cortex

    International Nuclear Information System (INIS)

    Peyrolou, A.; Salom, A.; Harguindeguy; Taroco, L.; Ardao, G.; Broli, F. . E mail: andresssss@adinet.com.uy

    2005-01-01

    The paper presents the case of a female patient who carried an aldosterone-secreting tumor of adrenal cortex.In the analysis of diagnosis and para clinical examinations there is particular reference to the laparoscopic surgery mode of treatment.Diagnosis should be established on the basis of clinical and laboratory tests (hypopotassemia and hyperaldosteronism).Tumor topography was confirmed through CT scan, MRI and Scintiscan in left adrenal cortex.Resection was consequently made through laparoscopic surgery.The patients evolution was excellent from the surgical viewpoint,with I levels of blood pressure, potassium and aldosterone returned to normal

  9. Laparoscopic Removal of Gossypiboma

    Directory of Open Access Journals (Sweden)

    Zeki Özsoy

    2015-01-01

    Full Text Available Gossypiboma is defined as a mass caused by foreign body reaction developed around the retained surgical item in the operative area. When diagnosed, it should be removed in symptomatic patients. Minimal invasive surgery should be planned for the removal of the retained item. The number of cases treated by laparoscopic approach is rare in the literature. We present a case of forty-year-old woman referred to emergency room with acute abdomen diagnosed as gossypiboma and treated successfully with laparoscopic surgery.

  10. A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision.

    Science.gov (United States)

    Shinomiya, Katsuhiko; Ueta, Mayumi; Kinoshita, Shigeru

    2018-01-24

    Chronic dry eye is an increasingly prevalent condition worldwide, with resulting loss of visual function and quality of life. Relevant, repeatable, and stable animal models of dry eye are still needed. We have developed an improved surgical mouse model for dry eye based on severe aqueous fluid deficiency, by excising both the exorbital and intraorbital lacrimal glands (ELG and ILG, respectively) of mice. After ELG plus ILG excision, dry eye symptoms were evaluated using fluorescein infiltration observation, tear production measurement, and histological evaluation of ocular surface. Tear production in the model mice was significantly decreased compared with the controls. The corneal fluorescein infiltration score of the model mice was also significantly increased compared with the controls. Histological examination revealed significant severe inflammatory changes in the cornea, conjunctiva or meibomian glands of the model mice after surgery. In the observation of LysM-eGFP (+/-) mice tissues, postsurgical infiltration of green fluorescent neutrophils was observed in the ocular surface tissues. We theorize that the inflammatory changes on the ocular surface of this model were induced secondarily by persistent severe tear reduction. The mouse model will be useful for investigations of both pathophysiology as well as new therapies for tear-volume-reduction type dry eye.

  11. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz, E-mail: rcmosca@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm{sup 3}) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  12. An athymic mouse model to mimic cobalt-60 cutaneous radiation injury

    International Nuclear Information System (INIS)

    Mosca, Rodrigo Crespo; Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Santin, Stefany Plumeri; Dornelles, Leonardo Dalla Porta; Alvarenga, Eluara Ortigoso; Mathor, Monica Beatriz

    2013-01-01

    Propose: Cutaneous wound from irradiation is the most common complication in radiotherapy treatment, and can be lead to mortality. We describe an athymic mouse model to mimic cutaneous radiation injury by Cobalt-60. Methods: A protocol was including dosimetry with silicon diodes,10x10x5 cm arrangement made by four lead bricks and PVC pipe designed to immobilize the athymic mouse in order to irradiate one clamped back skin point that was subdivided in four parts. To get the measurements of dose rates on the arrangement in Panoramic Irradiator, it was used a silicon diode encased in an opaque protection for ambient light and connected to an electric cable, forming a dosing probe. The currents generated in diode sensitive volume as a function of time of exposure to gamma radiation coming from the radiator, with dose rate of 0,015 Gy/min in positions 1, 0,021 Gy/min in position 2, 0,55 Gy/min in position 3 and 1,45 Gy/min in position four. After the dosimetry, each athymic mouse was anesthetized using Xylazine and Ketamine dilution and entered into a PVC pipe and a small portion of skin (1 cm 3 ) was clamped. This tube was then fixed to arrangement and the athymic mouse was irradiate for 60 min, than it was being returned to its cage. Results: The wound was visualized in all animals and photographed after 5 days of irradiation, with the emergence of ulceration after 9 days. No systemic or lethal sequelae occurred or visualized in any animals. Late clinical signs included a wound healing after 22 days. Conclusion: While still being a baseline study, we created a new functional preclinical animal model that can be used for new therapies and may improve radiotherapy management. (author)

  13. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  14. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  15. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  16. Long-term exposure to intranasal oxytocin in a mouse autism model.

    Science.gov (United States)

    Bales, K L; Solomon, M; Jacob, S; Crawley, J N; Silverman, J L; Larke, R H; Sahagun, E; Puhger, K R; Pride, M C; Mendoza, S P

    2014-11-11

    Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8  IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT.

  17. Cytomegalovirus-induced embryopathology: mouse submandibular salivary gland epithelial-mesenchymal ontogeny as a model

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2006-09-01

    Full Text Available Abstract Background Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues. It has been postulated that mesenchymal infection is the critical step in disrupting organogenesis. If so, organogenesis dependent on epithelial-mesenchymal interactions would be particularly vulnerable. In this study, we chose to model the vulnerability by investigating the cell and molecular pathogenesis of CMV infected mouse embryonic submandibular salivary glands (SMGs. Results We infected E15 SMG explants with mouse CMV (mCMV. Active infection for up to 12 days in vitro results in a remarkable cell and molecular pathology characterized by atypical ductal epithelial hyperplasia, apparent epitheliomesenchymal transformation, oncocytic-like stromal metaplasia, β-catenin nuclear localization, and upregulation of Nfkb2, Relb, Il6, Stat3, and Cox2. Rescue with an antiviral nucleoside analogue indicates that mCMV replication is necessary to initiate and maintain SMG dysmorphogenesis. Conclusion mCMV infection of embryonic mouse explants results in dysplasia, metaplasia, and, possibly, anaplasia. The molecular pathogenesis appears to center around the activation of canonical and, perhaps more importantly, noncanonical NFκB. Further, COX-2 and IL-6 are important downstream effectors of embryopathology. At the cellular level, there appears to be a consequential interplay between the transformed SMG cells and the surrounding extracellular matrix, resulting in the nuclear translocation of β-catenin. From these studies, a tentative framework has emerged within which additional studies may be planned and performed.

  18. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  19. Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Directory of Open Access Journals (Sweden)

    Poliana C. M. Martins

    2013-09-01

    Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD, presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs. We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies.

  20. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    The development of an optimal animal model that could provide fast assessments of the interaction between bone and orthopedic implants is essential for both preclinical and theoretical researches in the design of novel biomaterials. Compared with other animal models, mice have superiority in accessing the well-developed transgenic modification techniques (e.g., cell tracing, knockoff, knockin, and so on), which serve as powerful tools in studying molecular mechanisms. In this study, we introduced the establishment of a mouse model, which was specifically tailored for the assessment of bone-implant interaction in a load-bearing bone marrow microenvironment and could potentially allow the molecular mechanism study of biomaterials by using transgenic technologies. The detailed microsurgery procedures for developing a bone defect (Φ = 0.8 mm) at the metaphysis region of the mouse femur were recorded. According to our results, the osteoconductive and osseointegrative properties of a well-studied 45S5 bioactive glass were confirmed by utilizing our mouse model, verifying the reliability of this model. The feasibility and reliability of the present model were further checked by using other materials as objects of study. Furthermore, our results indicated that this animal model provided a more homogeneous tissue-implant interacting surface than the rat at the early stage of implantation and this is quite meaningful for conducting quantitative analysis. The availability of transgenic techniques to mechanism study of biomaterials was further testified by establishing our model on Nestin-GFP transgenic mice. Intriguingly, the distribution of Nestin + cells was demonstrated to be recruited to the surface of 45S5 glass as early as 3 days postsurgery, indicating that Nestin + lineage stem cells may participate in the subsequent regeneration process. In summary, the bone-implant interaction mouse model could serve as a potential candidate to evaluate the early stage tissue

  1. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model.

    Science.gov (United States)

    Carlon, Marianne S; Toelen, Jaan; da Cunha, Marina Mori; Vidović, Dragana; Van der Perren, Anke; Mayer, Steffi; Sbragia, Lourenço; Nuyts, Johan; Himmelreich, Uwe; Debyser, Zeger; Deprest, Jan

    2012-10-31

    Prenatal pulmonary delivery of cells, genes or pharmacologic agents could provide the basis for new therapeutic strategies for a variety of genetic and acquired diseases. Apart from congenital or inherited abnormalities with the requirement for long-term expression of the delivered gene, several non-inherited perinatal conditions, where short-term gene expression or pharmacological intervention is sufficient to achieve therapeutic effects, are considered as potential future indications for this kind of approach. Candidate diseases for the application of short-term prenatal therapy could be the transient neonatal deficiency of surfactant protein B causing neonatal respiratory distress syndrome(1,2) or hyperoxic injuries of the neonatal lung(3). Candidate diseases for permanent therapeutic correction are Cystic Fibrosis (CF)(4), genetic variants of surfactant deficiencies(5) and α1-antitrypsin deficiency(6). Generally, an important advantage of prenatal gene therapy is the ability to start therapeutic intervention early in development, at or even prior to clinical manifestations in the patient, thus preventing irreparable damage to the individual. In addition, fetal organs have an increased cell proliferation rate as compared to adult organs, which could allow a more efficient gene or stem cell transfer into the fetus. Furthermore, in utero gene delivery is performed when the individual's immune system is not completely mature. Therefore, transplantation of heterologous cells or supplementation of a non-functional or absent protein with a correct version should not cause immune sensitization to the cell, vector or transgene product, which has recently been proven to be the case with both cellular and genetic therapies(7). In the present study, we investigated the potential to directly target the fetal trachea in a mouse model. This procedure is in use in larger animal models such as rabbits and sheep(8), and even in a clinical setting(9), but has to date not been

  2. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  3. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  4. Simulating obstructive sleep apnea patients' oxygenation characteristics into a mouse model of cyclical intermittent hypoxia.

    Science.gov (United States)

    Lim, Diane C; Brady, Daniel C; Po, Pengse; Chuang, Li Pang; Marcondes, Laise; Kim, Emily Y; Keenan, Brendan T; Guo, Xiaofeng; Maislin, Greg; Galante, Raymond J; Pack, Allan I

    2015-03-01

    Mouse models of cyclical intermittent hypoxia (CIH) are used to study the consequences of both hypoxia and oxidative stress in obstructive sleep apnea (OSA). Whether or not a mouse model of CIH that simulates OSA patients' oxygenation characteristics would translate into improved patient care remains unanswered. First we identified oxygenation characteristics using the desaturation and resaturation time in 47 OSA subjects from the Molecular Signatures of Obstructive Sleep Apnea Cohort (MSOSA). We observe that a cycle of intermittent hypoxia is not sinusoidal; specifically, desaturation time increases in an almost linear relationship to the degree of hypoxia (nadir), whereas resaturation time is somewhat constant (∼15 s), irrespective of the nadir. Second, we modified the Hycon mouse model of CIH to accommodate a 15-s resaturation time. Using this modified CIH model, we explored whether a short resaturation schedule (15 s), which includes the characteristics of OSA patients, had a different effect on levels of oxidative stress (i.e., urinary 8,12-iso-iPF2α-VI levels) compared with sham and a long resaturation schedule (90 s), a schedule that is not uncommon in rodent models of CIH. Results suggest that shorter resaturation time may result in a higher level of 8,12-iso-iPF2α-VI compared with long resaturation or sham conditions. Therefore, simulating the rodent model of CIH to reflect this and other OSA patients' oxygenation characteristics may be worthy of consideration to better understand the effects of hypoxia, oxidative stress, and their interactions. Copyright © 2015 the American Physiological Society.

  5. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    2010-04-01

    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  6. Predictors of laparoscopic simulation performance among practicing obstetrician gynecologists.

    Science.gov (United States)

    Mathews, Shyama; Brodman, Michael; D'Angelo, Debra; Chudnoff, Scott; McGovern, Peter; Kolev, Tamara; Bensinger, Giti; Mudiraj, Santosh; Nemes, Andreea; Feldman, David; Kischak, Patricia; Ascher-Walsh, Charles

    2017-11-01

    While simulation training has been established as an effective method for improving laparoscopic surgical performance in surgical residents, few studies have focused on its use for attending surgeons, particularly in obstetrics and gynecology. Surgical simulation may have a role in improving and maintaining proficiency in the operating room for practicing obstetrician gynecologists. We sought to determine if parameters of performance for validated laparoscopic virtual simulation tasks correlate with surgical volume and characteristics of practicing obstetricians and gynecologists. All gynecologists with laparoscopic privileges (n = 347) from 5 academic medical centers in New York City were required to complete a laparoscopic surgery simulation assessment. The physicians took a presimulation survey gathering physician self-reported characteristics and then performed 3 basic skills tasks (enforced peg transfer, lifting/grasping, and cutting) on the LapSim virtual reality laparoscopic simulator (Surgical Science Ltd, Gothenburg, Sweden). The association between simulation outcome scores (time, efficiency, and errors) and self-rated clinical skills measures (self-rated laparoscopic skill score or surgical volume category) were examined with regression models. The average number of laparoscopic procedures per month was a significant predictor of total time on all 3 tasks (P = .001 for peg transfer; P = .041 for lifting and grasping; P simulation performance as it correlates to active physician practice, further studies may help assess skill and individualize training to maintain skill levels as case volumes fluctuate. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Centralized mouse repositories.

    Science.gov (United States)

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  8. A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD-associated cognitive phenotypes.

    Science.gov (United States)

    Zhu, Jinmin; Fan, Fangfang; McCarthy, Deirdre M; Zhang, Lin; Cannon, Elisa N; Spencer, Thomas J; Biederman, Joseph; Bhide, Pradeep G

    2017-05-01

    Prenatal exposure to nicotine via cigarette smoke or other forms of tobacco use is a significant environmental risk factor for attention deficit hyperactivity disorder (ADHD). The neurobiological mechanisms underlying the link between prenatal nicotine exposure (PNE) and ADHD are not well understood. Animal models, especially rodent models, are beginning to bridge this gap in knowledge. Although ADHD is characterized by hyperactivity, inattention, impulsivity and working memory deficits, the majority of the animal models are based on only one or two ADHD associated phenotypes, in particular, hyperactivity or inattention. We report a PNE mouse model that displays the full range of ADHD associated behavioral phenotypes including working memory deficit, attention deficit and impulsive-like behavior. All of the ADHD-associated phenotypes respond to a single administration of a therapeutic equivalent dose of methylphenidate. In an earlier study, we showed that PNE produces hyperactivity, frontal cortical hypodopaminergic state and thinning of the cingulate cortex. Collectively, these data suggest that the PNE mouse model recapitulates key features of ADHD and may be a suitable preclinical model for ADHD research. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recent technological advances in using mouse models to study ovarian cancer.

    Science.gov (United States)

    House, Carrie Danielle; Hernandez, Lidia; Annunziata, Christina Messineo

    2014-01-01

    Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.

  11. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm.

    Science.gov (United States)

    Allan, Andrea M; Chynoweth, Julie; Tyler, Lani A; Caldwell, Kevin K

    2003-12-01

    The incidence of fetal alcohol spectrum disorders is estimated to be as high as 1 in 100 births. Efforts to better understand the basis of prenatal ethanol-induced impairments in brain functioning, and the mechanisms by which ethanol produces these defects, will rely on the use of animal models of fetal alcohol exposure (FAE). Using a saccharin-sweetened alcohol solution, we developed a free-choice, moderate alcohol access model of prenatal alcohol exposure. Stable drinking of a saccharin solution (0.066%) was established in female mice. Ethanol then was added to the saccharin in increasing concentrations (2%, 5%, 10% w/v) every 2 days. Water was always available, and mice consumed standard pellet chow. Control mice drank saccharin solution without ethanol. After a stable baseline of ethanol consumption (14 g/kg/day) was obtained, females were impregnated. Ethanol consumption continued throughout pregnancy and then was decreased to 0% in a step-wise fashion over a period of 6 days after pups were delivered. Characterization of the model included measurements of maternal drinking patterns, blood alcohol levels, food consumption, litter size, pup weight, pup retrieval times for the dams, and effects of FAE on performance in fear-conditioned learning and novelty exploration. Maternal food consumption, maternal care, and litter size and number were all found to be similar for the alcohol-exposed and saccharin control animals. FAE did not alter locomotor activity in an open field but did increase the time spent inspecting a novel object introduced into the open field. FAE mice displayed reduced contextual fear when trained using a delay fear conditioning procedure. The mouse model should be a useful tool in testing hypotheses about the neural mechanisms underlying the learning deficits present in fetal alcohol spectrum disorders. Moreover, a mouse prenatal ethanol model should increase the opportunity to use the power of genetically defined and genetically altered mouse

  12. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Visesato Mor

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer, is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  13. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    Science.gov (United States)

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.

  14. Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy

    International Nuclear Information System (INIS)

    Luddi, A.; Strazza, M.; Carbone, M.; Moretti, E.; Costantino-Ceccarini, E.

    2005-01-01

    The classical recessive mouse mutant, 'the twitcher,' is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis

  15. Trypsin digest protocol to analyze the retinal vasculature of a mouse model.

    Science.gov (United States)

    Chou, Jonathan C; Rollins, Stuart D; Fawzi, Amani A

    2013-06-13

    Trypsin digest is the gold standard method to analyze the retinal vasculature (1-5). It allows visualization of the entire network of complex three-dimensional retinal blood vessels and capillaries by creating a two-dimensional flat-mount of the interconnected vascular channels after digestion of the non-vascular components of the retina. This allows one to study various pathologic vascular changes, such as microaneurysms, capillary degeneration, and abnormal endothelial to pericyte ratios. However, the method is technically challenging, especially in mice, which have become the most widely available animal model to study the retina because of the ease of genetic manipulations (6,7). In the mouse eye, it is particularly difficult to completely remove the non-vascular components while maintaining the overall architecture of the retinal blood vessels. To date, there is a dearth of literature that describes the trypsin digest technique in detail in the mouse. This manuscript provides a detailed step-by-step methodology of the trypsin digest in mouse retina, while also providing tips on troubleshooting difficult steps.

  16. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ya [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Wang, Guang [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Han, Sha-Sha; He, Mei-Yao [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Cheng, Xin; Ma, Zheng-Lai [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Wu, Xia [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Liu, Guo-Sheng, E-mail: tlgs@jnu.edu.cn [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China)

    2016-09-10

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but did not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  17. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    Science.gov (United States)

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  18. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    International Nuclear Information System (INIS)

    Jin, Ya; Wang, Guang; Han, Sha-Sha; He, Mei-Yao; Cheng, Xin; Ma, Zheng-Lai; Wu, Xia; Yang, Xuesong; Liu, Guo-Sheng

    2016-01-01

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel"+ apoptosis but did not dramatically affect PCNA"+ cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  19. In Vivo Monitoring of Pancreatic β-Cells in a Transgenic Mouse Model

    Directory of Open Access Journals (Sweden)

    Steven J. Smith

    2006-04-01

    Full Text Available We generated a transgenic mouse model (RIP-luc for the in vivo monitoring of pancreatic islet mass and function in response to metabolic disease. Using the rat insulin promoter fused to firefly luciferase, and noninvasive technology to detect luciferase activity, we tracked changes in reporter signal during metabolic disease states and correlated the changes in luciferase signal with metabolic status of the mouse. Transgene expression was found to be specific to the pancreatic islets in this transgenic model. Basal transgene expression was tracked in male and female mice fed either a chow or a high-fat diet and in response to treatment with streptozotocin. Pancreatic bioluminescent signal increased in mice fed a high-fat diet compared with chow-fed animals. In a model of chemically induced diabetes, the bioluminescent signal decreased in accordance with the onset of diabetes and reduction of islet β-cell number. Preliminary studies using islets transplanted from this transgenic model suggest that in vivo image analysis can also be used to monitor transplanted islet viability and survival in the host. This transgenic model is a useful tool for in vivo studies of pancreatic β-cells and as a donor for islet transplantation studies.

  20. Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC of the infraorbital nerve

    Directory of Open Access Journals (Sweden)

    Ma Fei

    2012-12-01

    Full Text Available Abstract Background Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched. Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied to studies in mice. A mouse trigeminal inflammatory compression (TIC model is introduced here which successfully and reliably promotes vibrissal whisker pad hypersensitivity. Results The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42, postoperative day 70. Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of microglial activation. Cold allodynia was detected at 4 weeks. Conclusions A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic pain (Type 2 is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at least 10 weeks and cold allodynia measureable at 4 weeks.

  1. LAPAROSCOPIC ADENOMECTOMY (PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    A. Yu. Seroukhov

    2016-01-01

    Full Text Available Bladder outlet obstruction due to benign prostatic hyperplasia (BPH remains one of the most common problems of men in the advanced age group. Open prostatectomy for patients with large BPH is still the standard treatment recommended by the European Association of Urology and is performed quiet often. Disadvantages of this method of treatment are significant surgical trauma and high rate of perioperative complications . Laparoscopic modification of simple prostatectomy presents a worthy minimal invasive alternative to open surgical treatment of BPH. From November 2014 to December 2015, laparoscopic adenomectomy was performed for 16 patients. 7 (43.5% patients had transperitoneal (TP and 9 (56.25% patients had extraperitoneal (EP laparoscopic simple prostatectomy. None of the cases required conversion . All patients were discharged in satisfactory condition with complete restoration of free micturation. Laparoscopic prostatectomy as a method of surgical treatment for BPH can be easily reproducible. It can be adopted as a routine urological practice for large-sized BPH with the aim of minimizing operative trauma and achieving short hospital stay.

  2. Laparoscopic hemi-splenectomy

    NARCIS (Netherlands)

    de Pastena, Matteo; Nijkamp, Maarten W.; van Gulik, Thomas G.; Busch, Olivier R.; Hermanides, H. S.; Besselink, Marc G.

    2018-01-01

    Laparoscopic splenectomy is now established as a safe and feasible procedure. However, it remains associated with some short- and long-term postoperative complications, especially infectious complications. To our knowledge, this is the first report (with video) focusing on the safety and feasibility

  3. A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.

    Science.gov (United States)

    Rahme, Gilbert J; Luikart, Bryan W; Cheng, Chao; Israel, Mark A

    2018-02-19

    Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma. We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells. The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature. Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Novel Vitamin K analogues suppress seizures in zebrafish and mouse models of epilepsy

    Science.gov (United States)

    Rahn, Jennifer J.; Bestman, Jennifer E.; Josey, Benjamin J.; Inks, Elizabeth S.; Stackley, Krista D.; Rogers, Carolyn E.; Chou, C. James; Chan, Sherine S. L.

    2014-01-01

    Epilepsy is a debilitating disease affecting 1-2% of the world’s population. Despite this high prevalence, 30% of patients suffering from epilepsy are not successfully managed by current medication suggesting a critical need for new anti-epileptic drugs (AEDs). In an effort to discover new therapeutics for the management of epilepsy, we began our study by screening drugs that, like some currently used AEDs, inhibit HDACs using a well-established larval zebrafish model. In this model, 7-day post fertilization (dpf) larvae are treated with the widely used seizure-inducing compound pentylenetetrazol (PTZ) which stimulates a rapid increase in swimming behavior previously determined to be a measurable manifestation of seizures. In our first screen, we tested a number of different HDAC inhibitors and found that one, NQN1, significantly decreased swim activity to levels equal to that of VPA. We continued to screen structurally related compounds including Vitamin K3 (VK3) and a number of novel Vitamin K (VK) analogues. We found that VK3 was a robust inhibitor of the PTZ-induced swim activity, as were several of our novel compounds. Three of these compounds were subsequently tested on mouse seizure models at the National Institute of Neurological Disorders and Stroke (NINDS) Anticonvulsant Screening Program. Compound 2h reduced seizures particularly well in the minimal clonic seizure (6 Hz) and corneal kindled mouse models of epilepsy, with no observable toxicity. As VK3 affects mitochondrial function, we tested the effects of our compounds on mitochondrial respiration and ATP production in a mouse hippocampal cell line. We demonstrate that these compounds affect ATP metabolism and increase total cellular ATP. Our data indicate the potential utility of these and other VK analogues for prevention of seizures and suggest the potential mechanism for this protection may lie in the ability of these compounds to affect energy production. PMID:24291671

  5. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Directory of Open Access Journals (Sweden)

    Marc Trimborn

    Full Text Available Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC in early G2 phase and delayed decondensation post-mitosis (PCC syndrome. The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608 containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation appears to be largely normal in cell cultures derived from Mcph1(gt/gt mice, the overall survival rates of the Mcph1(gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  6. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Science.gov (United States)

    Trimborn, Marc; Ghani, Mahdi; Walther, Diego J; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie

    2010-02-16

    Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  7. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta.

    Science.gov (United States)

    Roschger, Andreas; Roschger, Paul; Keplingter, Petra; Klaushofer, Klaus; Abdullah, Sami; Kneissel, Michaela; Rauch, Frank

    2014-09-01

    Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4weeks in male Col1a1(Jrt)/+mice, a model of severe dominant OI, starting either at 4weeks (growing mice) or at 20weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1(Jrt)/+mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Maternal separation with early weaning: a novel mouse model of early life neglect

    Directory of Open Access Journals (Sweden)

    Elwafi Hani M

    2010-09-01

    Full Text Available Abstract Background Childhood adversity is associated with increased risk for mood, anxiety, impulse control, and substance disorders. Although genetic and environmental factors contribute to the development of such disorders, the neurobiological mechanisms involved are poorly understood. A reliable mouse model of early life adversity leading to lasting behavioral changes would facilitate progress in elucidating the molecular mechanisms underlying these adverse effects. Maternal separation is a commonly used model of early life neglect, but has led to inconsistent results in the mouse. Results In an effort to develop a mouse model of early life neglect with long-lasting behavioral effects in C57BL/6 mice, we designed a new maternal separation paradigm that we call Maternal Separation with Early Weaning (MSEW. We tested the effects of MSEW on C57BL/6 mice as well as the genetically distinct DBA/2 strain and found significant MSEW effects on several behavioral tasks (i.e., the open field, elevated plus maze, and forced swim test when assessed more than two months following the MSEW procedure. Our findings are consistent with MSEW causing effects within multiple behavioral domains in both strains, and suggest increased anxiety, hyperactivity, and behavioral despair in the MSEW offspring. Analysis of pup weights and metabolic parameters showed no evidence for malnutrition in the MSEW pups. Additionally, strain differences in many of the behavioral tests suggest a role for genetic factors in the response to early life neglect. Conclusions These results suggest that MSEW may serve as a useful model to examine the complex behavioral abnormalities often apparent in individuals with histories of early life neglect, and may lead to greater understanding of these later life outcomes and offer insight into novel therapeutic strategies.

  9. A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2018-01-01

    Full Text Available In recent years, enterovirus D68 (EVD68 has been reported increasingly to be associated with severe respiratory tract infections and acute flaccid myelitis (AFM in children all over the world. Yet, no effective vaccines or antiviral drugs are currently available for EVD68. Although several experimental animal models have been developed, immunogenicity and protective efficacy of inactivated EVD68 vaccines has not been fully evaluated. To promote the development of vaccines, we established an Institute of Cancer Research (ICR suckling mouse model of EVD68 infection in this study. The results showed that ICR neonatal mice up to about nine days of age were susceptible to infection with EVD68 clinical strain US/MO/14-18947 by intraperitoneal injection. The infected mice exhibited progressive limb paralysis prior to death and the mortality of mice was age- and virus dose-dependent. Tissue viral load analysis showed that limb muscle and spinal cord were the major sites of viral replication. Moreover, histopathologic examination revealed the severe necrosis of the limb and juxtaspinal muscles, suggesting that US/MO/14-18947 has a strong tropism toward muscle tissues. Additionally, β-propiolactone-inactivated EVD68 vaccine showed high purity and quality and induced robust EVD68-specific neutralizing antibody responses in adult mice. Importantly, results from both antisera transfer and maternal immunization experiments clearly showed that inactivated EVD68 vaccine was able to protect against lethal viral infection in the mouse model. In short, these results demonstrate the successful establishment of the mouse model of EVD68 infection for evaluating candidate vaccines against EVD68 and also provide important information for the development of inactivated virus-based EVD68 vaccines.

  10. Inner ear morphology is perturbed in two novel mouse models of recessive deafness.

    Directory of Open Access Journals (Sweden)

    Kerry A Miller

    Full Text Available Human MYO7A mutations can cause a variety of conditions involving the inner ear. These include dominant and recessive non-syndromic hearing loss and syndromic conditions such as Usher syndrome. Mouse models of deafness allow us to investigate functional pathways involved in normal and abnormal hearing processes. We present two novel mouse models with mutations in the Myo7a gene with distinct phenotypes. The mutation in Myo7a(I487N/I487N ewaso is located within the head motor domain of Myo7a. Mice exhibit a profound hearing loss and manifest behaviour associated with a vestibular defect. A mutation located in the linker region between the coiled-coil and the first MyTH4 domains of the protein is responsible in Myo7a(F947I/F947I dumbo. These mice show a less severe hearing loss than in Myo7a(I487N/I487N ewaso; their hearing loss threshold is elevated at 4 weeks old, and progressively worsens with age. These mice show no obvious signs of vestibular dysfunction, although scanning electron microscopy reveals a mild phenotype in vestibular stereocilia bundles. The Myo7a(F947I/F947I dumbo strain is therefore the first reported Myo7a mouse model without an overt vestibular phenotype; a possible model for human DFNB2 deafness. Understanding the molecular basis of these newly identified mutations will provide knowledge into the complex genetic pathways involved in the maintenance of hearing, and will provide insight into recessively inherited sensorineural hearing loss in humans.

  11. A two-compartment model of VEGF distribution in the mouse.

    Directory of Open Access Journals (Sweden)

    Phillip Yen

    Full Text Available Vascular endothelial growth factor (VEGF is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120 and VEGF(164 and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in

  12. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    Science.gov (United States)

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P model, and may have implications for the effects of these strategies on experimental outcomes.

  13. Mouse Models for Studying Oral Cancer: Impact in the Era of Cancer Immunotherapy.

    Science.gov (United States)

    Luo, J J; Young, C D; Zhou, H M; Wang, X J

    2018-04-01

    Model systems for oral cancer research have progressed from tumor epithelial cell cultures to in vivo systems that mimic oral cancer genetics, pathological characteristics, and tumor-stroma interactions of oral cancer patients. In the era of cancer immunotherapy, it is imperative to use model systems to test oral cancer prevention and therapeutic interventions in the presence of an immune system and to discover mechanisms of stromal contributions to oral cancer carcinogenesis. Here, we review in vivo mouse model systems commonly used for studying oral cancer and discuss the impact these models are having in advancing basic mechanisms, chemoprevention, and therapeutic intervention of oral cancer while highlighting recent discoveries concerning the role of immune cells in oral cancer. Improvements to in vivo model systems that highly recapitulate human oral cancer hold the key to identifying features of oral cancer initiation, progression, and invasion as well as molecular and cellular targets for prevention, therapeutic response, and immunotherapy development.

  14. Understanding perceptual boundaries in laparoscopic surgery.

    Science.gov (United States)

    Lamata, Pablo; Gomez, Enrique J; Hernández, Félix Lamata; Oltra Pastor, Alfonso; Sanchez-Margallo, Francisco Miquel; Del Pozo Guerrero, Francisco

    2008-03-01

    Human perceptual capabilities related to the laparoscopic interaction paradigm are not well known. Its study is important for the design of virtual reality simulators, and for the specification of augmented reality applications that overcome current limitations and provide a supersensing to the surgeon. As part of this work, this article addresses the study of laparoscopic pulling forces. Two definitions are proposed to focalize the problem: the perceptual fidelity boundary, limit of human perceptual capabilities, and the Utile fidelity boundary, that encapsulates the perceived aspects actually used by surgeons to guide an operation. The study is then aimed to define the perceptual fidelity boundary of laparoscopic pulling forces. This is approached with an experimental design in which surgeons assess the resistance against pulling of four different tissues, which are characterized with both in vivo interaction forces and ex vivo tissue biomechanical properties. A logarithmic law of tissue consistency perception is found comparing subjective valorizations with objective parameters. A model of this perception is developed identifying what the main parameters are: the grade of fixation of the organ, the tissue stiffness, the amount of tissue bitten, and the organ mass being pulled. These results are a clear requirement analysis for the force feedback algorithm of a virtual reality laparoscopic simulator. Finally, some discussion is raised about the suitability of augmented reality applications around this surgical gesture.

  15. The Ptch1DL mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome associated skeletal defects

    OpenAIRE

    Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor

    2013-01-01

    Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including de...

  16. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    OpenAIRE

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2016-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunizat...

  17. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris

    2015-01-01

    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  18. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris.

    Science.gov (United States)

    Schulze, Katja; Galichet, Arnaud; Sayar, Beyza S; Scothern, Anthea; Howald, Denise; Zymann, Hillard; Siffert, Myriam; Zenhäusern, Denise; Bolli, Reinhard; Koch, Peter J; Garrod, David; Suter, Maja M; Müller, Eliane J

    2012-02-01

    Evidence has accumulated that changes in intracellular signaling downstream of desmoglein 3 (Dsg3) may have a significant role in epithelial blistering in the autoimmune disease pemphigus vulgaris (PV). Currently, most studies on PV involve passive transfer of pathogenic antibodies into neonatal mice that have not finalized epidermal morphogenesis, and do not permit analysis of mature hair follicles (HFs) and stem cell niches. To investigate Dsg3 antibody-induced signaling in the adult epidermis at defined stages of the HF cycle, we developed a model with passive transfer of AK23 (a mouse monoclonal pathogenic anti-Dsg3 antibody) into adult 8-week-old C57Bl/6J mice. Validated using histopathological and molecular methods, we found that this model faithfully recapitulates major features described in PV patients and PV models. Two hours after AK23 transfer, we observed widening of intercellular spaces between desmosomes and EGFR activation, followed by increased Myc expression and epidermal hyperproliferation, desmosomal Dsg3 depletion, and predominant blistering in HFs and oral mucosa. These data confirm that the adult passive transfer mouse model is ideally suited for detailed studies of Dsg3 antibody-mediated signaling in adult skin, providing the basis for investigations on novel keratinocyte-specific therapeutic strategies.

  19. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  20. Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model.

    Science.gov (United States)

    Bernard, Valérie; Villa, Chiara; Auguste, Aurélie; Lamothe, Sophie; Guillou, Anne; Martin, Agnès; Caburet, Sandrine; Young, Jacques; Veitia, Reiner A; Binart, Nadine

    2018-01-19

    Lactotroph adenoma, also called prolactinoma, is the most common pituitary tumor but little is known about its pathogenesis. Mouse models of prolactinoma can be useful to better understand molecular mechanisms involved in abnormal lactotroph cell proliferation and secretion. We have previously developed a prolactin receptor deficient ( Prlr -/- ) mouse, which develops prolactinoma. The present study aims to explore the natural history of prolactinoma formation in Prlr -/- mice, using hormonal, radiological, histological and molecular analyses to uncover mechanisms involved in lactotroph adenoma development. Prlr -/- females develop large secreting prolactinomas from 12 months of age, with a penetrance of 100%, mimicking human aggressive densely granulated macroprolactinoma, which is a highly secreting subtype. Mean blood PRL measurements reach 14 902 ng/mL at 24 months in Prlr -/- females while PRL levels were below 15 ng/mL in control mice ( p model in ACI rats, we pinpointed 218 concordantly differentially expressed (DE) genes involved in cell cycle, mitosis, cell adhesion molecules, dopaminergic synapse and estrogen signaling. Pathway/gene-set enrichment analyses suggest that the transcriptomic dysregulation in both models of prolactinoma might be mediated by a limited set of transcription factors (i.e., STAT5, STAT3, AhR, ESR1, BRD4, CEBPD, YAP, FOXO1) and kinases (i.e., JAK2, AKT1, BRAF, BMPR1A, CDK8, HUNK, ALK, FGFR1, ILK). Our experimental results and their bioinformatic analysis provide insights into early genomic changes in murine models of the most frequent human pituitary tumor.

  1. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2015-01-01

    Full Text Available Mutations in the giant sarcomeric protein titin (TTN are a major cause for inherited forms of dilated cardiomyopathy (DCM. We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC in heterozygous (Het Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p<0.05, while wild-type (WT TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.

  2. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

    Science.gov (United States)

    Alvarez-Fischer, Daniel; Noelker, Carmen; Vulinović, Franca; Grünewald, Anne; Chevarin, Caroline; Klein, Christine; Oertel, Wolfgang H; Hirsch, Etienne C; Michel, Patrick P; Hartmann, Andreas

    2013-01-01

    Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  3. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity.

    Science.gov (United States)

    Ellegood, J; Anagnostou, E; Babineau, B A; Crawley, J N; Lin, L; Genestine, M; DiCicco-Bloom, E; Lai, J K Y; Foster, J A; Peñagarikano, O; Geschwind, D H; Pacey, L K; Hampson, D R; Laliberté, C L; Mills, A A; Tam, E; Osborne, L R; Kouser, M; Espinosa-Becerra, F; Xuan, Z; Powell, C M; Raznahan, A; Robins, D M; Nakai, N; Nakatani, J; Takumi, T; van Eede, M C; Kerr, T M; Muller, C; Blakely, R D; Veenstra-VanderWeele, J; Henkelman, R M; Lerch, J P

    2015-02-01

    Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1-2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response.

  4. Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease

    International Nuclear Information System (INIS)

    Griffett, Kristine; Burris, Thomas P.

    2016-01-01

    The liver X receptor (LXR) functions as a receptor for oxysterols and plays a critical role in the regulation of glucose and lipid metabolism. We recently described a synthetic LXR inverse agonist that displayed efficacy in treatment of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). This compound, SR9238, was designed to display liver specificity so as to avoid potential detrimental effects on reverse cholesterol transport in peripheral tissues. Here, we examined the effects of a LXR antagonist/inverse agonist, GSK2033, which displays systemic exposure. Although GSK2033 performed as expected in cell-based models as a LXR inverse agonist, it displayed unexpected activity in the mouse NAFLD model. The expression of lipogenic enzyme genes such as fatty acid synthase and sterol regulatory binding protein 1c were induced rather than suppressed and no effect on hepatic steatosis was found. Further characterization of the specificity of GSK2033 revealed that it displayed a significant degree of promiscuity, targeting a number of other nuclear receptors that could clearly alter hepatic gene expression. - Highlights: • The LXR antagonist GSK2033 suppresses the expression of lipogenic genes FASN and SREBF1 in HepG2 cells. • GSK2033 exhibits sufficient exposure to perform animal experiments targeting the liver. • GSK2033 has fails to suppress hepatic Fasn and Srebf1 expression in an animal model of non-alcoholic fatty liver disease. • GSK2033 may regulate the activity of several nuclear receptors.

  5. PKC theta ablation improves healing in a mouse model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Luca Madaro

    Full Text Available Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ(-/-, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ(-/- mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells.These results demonstrate a hitherto unrecognized role of immune-cell intrinsic PKCθ activity in the development of DMD. Although the immune cell population(s involved remain unidentified, our findings reveal that PKCθ can be proposed as a new pharmacological target to counteract the disease, as well as to improve the efficacy of gene- or cell- therapy approaches.

  6. Novel object exploration in the C58/J mouse model of autistic-like behavior.

    Science.gov (United States)

    Blick, Mikkal G; Puchalski, Breann H; Bolanos, Veronica J; Wolfe, Kaitlin M; Green, Matthew C; Ryan, Bryce C

    2015-04-01

    Mouse models of autistic like behaviors are a valuable tool to use when studying the causes, symptoms, and potential treatments for autism. The inbred C58/J strain is a strain of interest for this model and has previously been shown to possess face validity for some of the core traits of autism, including low social behavior and elevated motor stereotypies. Higher order repetitive behaviors have not been extensively studied in this strain, or in mice in general. In this study, we looked for evidence of higher-order repetitive behaviors in the C58/J strain using a novel object assay. This assay utilized a mouse's natural exploratory behavior among unfamiliar objects to identify potential sequencing patterns in motor activity. The motor stereotypies displayed by the C58/J strain during testing were consistent with past studies. The C58/J strain also displayed a high preference for a single object in the round arena assays and the females demonstrating elevated sequencing patterns in the round arena. Although the C58/J strain did not show pervasive evidence of higher-order repetitive behaviors across all measures, there was evidence of higher order repetitive behaviors in certain situations. This study further demonstrates the potential of the C58/J mouse strains as a model for lower-order and potentially, higher-order repetitive behaviors. This study also demonstrates that the shape of the novel object arena can change the behavior displayed by the test animals. Further studies utilizing the C58/J strain and further validation of the novel object assay are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Sara Anjomani Virmouni

    Full Text Available Friedreich ataxia (FRDA is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats, YG8R (90 and 190 GAA repeats and YG22R (190 GAA repeats.We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R.Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.

  8. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique

    Directory of Open Access Journals (Sweden)

    Jie Ni

    2016-02-01

    Full Text Available Prostate cancer (CaP is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D ultrasound system equipped with photoacoustic (PA imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8. Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001. The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research.

  9. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism

    OpenAIRE

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng

    2011-01-01

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with i...

  10. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model.

    Science.gov (United States)

    Koohestani, Faezeh; Qiang, Wenan; MacNeill, Amy L; Druschitz, Stacy A; Serna, Vanida A; Adur, Malavika; Kurita, Takeshi; Nowak, Romana A

    2016-07-01

    Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights

  11. PET/SPECT/CT multimodal imaging in a transgenic mouse model of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boisgard, R.; Alberini, J.L.; Jego, B.; Siquier, K.; Theze, B.; Guillermet, S.; Tavitian, B. [Service Hospitalier Frederic Joliot, Institut d' Imagerie BioMedicale, CEA, 91 - Orsay (France); Inserm, U803, 91 - Orsay (France)

    2008-02-15

    Background. - In the therapy monitoring of breast cancer, conventional imaging methods include ultrasound, mammography, CT and MRI, which are essentially based on tumor size modifications. However these modifications represent a late consequence of the biological response and fail to differentiate scar or necrotic tissue from residual viable tumoral tissue. Therefore, a current objective is to develop tools able to predict early response to treatment. Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are imaging modalities able to provide extremely sensitive quantitative molecular data and are widely used in humans and animals. Results. - Mammary epithelial cells of female transgenic mice expressing the polyoma middle T onco-protein (Py M.T.), undergo four distinct stages of tumour progression, from pre malignant to malignant stages. Stages are identifiable in the mammary tissue and can lead to the development of distant metastases Longitudinal studies by dynamic whole body acquisitions by multimodal imaging including PET, SPECT and Computed Tomography (CT) allow following the tumoral evolution in Py M.T. mice in comparison with the histopathological analysis. At four weeks of age, mammary hyperplasia was identified by histopathology, but no abnormalities were found by palpation or detected by PET with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose. Such as in some human mammary cancers, the sodium iodide sym-porter (N.I.S.) in tumoral mammary epithelial cells is expressed in this mouse model. In order to investigate the expression of N.I.S. in the Py M.T. mice mammary tumours, [{sup 99m}Tc]TcO{sub 4} imaging was performed with a dedicated SPECT/CT system camera (B.I.O.S.P.A.C.E. Gamma Imager/CT). Local uptake of [{sup 99m}Tc]TcO{sub 4} was detected as early as four weeks of age. The efficacy of chemotherapy was evaluated in this mouse model using a conventional regimen (Doxorubicine, 100 mg/ kg) administered weekly from nine to

  12. Sodium 4-phenylbutyrate reduces myofiber damage in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Begam, Morium; Abro, Valerie M; Mueller, Amber L; Roche, Joseph A

    2016-10-01

    We performed a placebo-controlled pre-clinical study to determine if sodium 4-phenylbutyrate (4PB) can reduce contraction-induced myofiber damage in the mdx mouse model of Duchenne muscular dystrophy (DMD). At 72 h post-eccentric contractions, 4PB significantly increased contractile torque and reduced myofiber damage and macrophage infiltration. We conclude that 4PB, which is approved by Health Canada (Pheburane) and the United States Food and Drug Administration (Buphenyl) for urea cycle disorders, might modify disease severity in patients with DMD.

  13. Tumour-cell killing by X-rays and immunity quantitated in a mouse model system

    International Nuclear Information System (INIS)

    Porteous, D.D.; Porteous, K.M.; Hughes, M.J.

    1979-01-01

    As part of an investigation of the interaction of X-rays and immune cytotoxicity in tumour control, an experimental mouse model system has been used in which quantitative anti-tumour immunity was raised in prospective recipients of tumour-cell suspensions exposed to varying doses of X-rays in vitro before injection. Findings reported here indicate that, whilst X-rays kill a proportion of cells, induced immunity deals with a fixed number dependent upon the immune status of the host, and that X-rays and anti-tumour immunity do not act synergistically in tumour-cell killing. The tumour used was the ascites sarcoma BP8. (author)

  14. Expression and significance of Bax protein in model of radiation injury in mouse skin

    International Nuclear Information System (INIS)

    Feng Yizhong; Mo Yahong

    2002-01-01

    Objective: The study is to find some valuable criteria for diagnosis and treatment of radiation injury in skin. Methods: The expression of Bax protein was studied by SP immunohistochemistry in 40 cases of model of radiation injury in mouse skin. Their relationship relating to radiation dose was also investigated. Results: The expression rates of Bax were 30%, 30%, 70%, 70% in 5 Gy group, 15 Gy group, 30 Gy group, 45 Gy group respectively. There was no significant correlation between the expression of Bax and radiation groups. Conclusions: The experiment shows that radiation can increase the expression of Bax protein which might be related to poor healing in radiation skin injury

  15. Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models.

    Science.gov (United States)

    Bobko, Andrey A; Evans, Jason; Denko, Nicholas C; Khramtsov, Valery V

    2017-06-01

    Tissue oxygenation, extracellular acidity, and tissue reducing capacity are among crucial parameters of tumor microenvironment (TME) of significant importance for tumor pathophysiology. In this paper, we demonstrate the complementary application of particulate lithium octa-n-butoxy-naphthalocyanine and soluble nitroxide paramagnetic probes for monitoring of these TME parameters using electron paramagnetic resonance (EPR) technique. Two different types of therapeutic interventions were studied: hypothermia and systemic administration of metabolically active drug. In summary, the results demonstrate the utility of EPR technique for non-invasive concurrent longitudinal monitoring of physiologically relevant chemical parameters of TME in mouse xenograft tumor models, including that under therapeutic intervention.

  16. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    OpenAIRE

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to...

  17. Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis.

    Science.gov (United States)

    Furusawa, Takaaki; Iwano, Hidetomo; Hiyashimizu, Yutaro; Matsubara, Kazuki; Higuchi, Hidetoshi; Nagahata, Hajime; Niwa, Hidekazu; Katayama, Yoshinari; Kinoshita, Yuta; Hagiwara, Katsuro; Iwasaki, Tomohito; Tanji, Yasunori; Yokota, Hiroshi; Tamura, Yutaka

    2016-09-01

    Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad

  18. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model.

    Directory of Open Access Journals (Sweden)

    Astrid Menning

    Full Text Available Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery.

  19. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy.

    Science.gov (United States)

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-08-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies.

  20. Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model.

    Directory of Open Access Journals (Sweden)

    Marianne Sødring

    Full Text Available Red and processed meats are considered risk factors for colorectal cancer (CRC; however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat, and hemin in combination with nitrite (a model of processed meat on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.

  1. The synthetic parasite-derived peptide GK1 increases survival in a preclinical mouse melanoma model.

    Science.gov (United States)

    Pérez-Torres, Armando; Vera-Aguilera, Jesús; Hernaiz-Leonardo, Juan Carlos; Moreno-Aguilera, Eduardo; Monteverde-Suarez, Diego; Vera-Aguilera, Carlos; Estrada-Bárcenas, Daniel

    2013-11-01

    The therapeutic efficacy of a synthetic parasite-derived peptide GK1, an immune response booster, was evaluated in a mouse melanoma model. This melanoma model correlates with human stage IIb melanoma, which is treated with wide surgical excision; a parallel study employing a surgical treatment was carried out as an instructive goal. C57BL/6 mice were injected subcutaneously in the flank with 2×10(5) B16-F10 murine melanoma cells. When the tumors reached 20 mm3, mice were separated into two different groups; the GK1 group, treated weekly with peritumoral injections of GK1 (10 μg/100 μL of sterile saline solution) and the control group, treated weekly with an antiseptic peritumoral injection of 100 μL of sterile saline solution without further intervention. All mice were monitored daily for clinical appearance, tumor size, and survival. Surgical treatment was performed in parallel when the tumor size was 20 mm3 (group A), 500 mm3 (group B), and >500 mm3 (group C). The GK1 peptide effectively increased the mean survival time by 9.05 days, corresponding to an increase of 42.58%, and significantly delayed tumor growth from day 3 to 12 of treatment. In addition, tumor necrosis was significantly increased (pcancers remains to be determined, and surgical removal remains a challenge for any new experimental treatment of melanoma in mouse models.

  2. Ultrasonographic Characterization of the db/db Mouse: An Animal Model of Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Francesco Faita

    2018-01-01

    Full Text Available The availability of an animal model able to reliably mirror organ damage occurring in metabolic diseases is an urgent need. These models, mostly rodents, have not been fully characterized in terms of cardiovascular, renal, and hepatic ultrasound parameters, and only sparse values can be found in literature. Aim of this paper is to provide a detailed, noninvasive description of the heart, vessels, liver, and kidneys of the db/db mouse by ultrasound imaging. Sixteen wild type and thirty-four db/db male mice (11-week-old were studied. State-of-the-art ultrasound technology was used to acquire images of cardiovascular, renal, and hepatic districts. A set of parameters describing function of the selected organs was evaluated. db/db mice are characterized by systolic and diastolic dysfunction, confirmed by strain analysis. Abdominal aortic and carotid stiffness do not seem to be increased in diabetic rodents; furthermore, they are characterized by a smaller mean diameter for both vessels. Renal microcirculation is significantly compromised, while liver steatosis is only slightly higher in db/db mice than in controls. We offer here for the first time an in vivo detailed ultrasonographic characterization of the db/db mouse, providing a useful tool for a thoughtful choice of the right rodent model for any experimental design.

  3. Metabolic effects of bariatric surgery in mouse models of circadian disruption.

    Science.gov (United States)

    Arble, D M; Sandoval, D A; Turek, F W; Woods, S C; Seeley, R J

    2015-08-01

    Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. VSG led to a reduction in body weight and fat mass in both Clock(Δ19) mutant and constant-light mouse models (Pdisruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P>0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (Pdisruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption.

  4. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    Science.gov (United States)

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  5. Elevated incidence of dental caries in a mouse model of cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Marcelo A Catalán

    2011-01-01

    Full Text Available Dental caries is the single most prevalent and costly infectious disease worldwide, affecting more than 90% of the population in the U.S. The development of dental cavities requires the colonization of the tooth surface by acid-producing bacteria, such as Streptococcus mutans. Saliva bicarbonate constitutes the main buffering system which neutralizes the pH fall generated by the plaque bacteria during sugar metabolism. We found that the saliva pH is severely decreased in a mouse model of cystic fibrosis disease (CF. Given the close relationship between pH and caries development, we hypothesized that caries incidence might be elevated in the mouse CF model.We induced carious lesions in CF and wildtype mice by infecting their oral cavity with S. mutans, a well-studied cariogenic bacterium. After infection, the mice were fed a high-sucrose diet for 5 weeks (diet 2000. The mice were then euthanized and their jaws removed for caries scoring and bacterial counting. A dramatic increase in caries and severity of lesions scores were apparent in CF mice compared to their wildtype littermates. The elevated incidence of carious lesions correlated with a striking increase in the S. mutans viable population in dental plaque (20-fold increase in CF vs. wildtype mice; p value < 0.003; t test. We also found that the pilocarpine-stimulated saliva bicarbonate concentration was significantly reduced in CF mice (16 ± 2 mM vs. 31 ± 2 mM, CF and wildtype mice, respectively; p value < 0.01; t test.Considering that bicarbonate is the most important pH buffering system in saliva, and the adherence and survival of aciduric bacteria such as S. mutans are enhanced at low pH values, we speculate that the decrease in the bicarbonate content and pH buffering of the saliva is at least partially responsible for the increased severity of lesions observed in the CF mouse.

  6. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.

    Science.gov (United States)

    Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan

    2014-01-01

    Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    International Nuclear Information System (INIS)

    Winkler, Sandra; Borkham-Kamphorst, Erawan; Stock, Peggy; Brückner, Sandra; Dollinger, Matthias; Weiskirchen, Ralf; Christ, Bruno

    2014-01-01

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH

  8. Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency.

    Directory of Open Access Journals (Sweden)

    Sander Barnhoorn

    2014-10-01

    Full Text Available As part of the Nucleotide Excision Repair (NER process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS, or the infantile lethal cerebro-oculo-facio-skeletal (COFS syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.

  9. Immunohistochemical analysis of Clara cell secretory protein expression in a transgenic model of mouse lung carcinogenesis

    International Nuclear Information System (INIS)

    Hicks, Sarah M.; Vassallo, Jeffrey D.; Dieter, Matthew Z.; Lewis, Cindy L.; Whiteley, Laurence O.; Fix, Andrew S.; Lehman-McKeeman, Lois D.

    2003-01-01

    Immunohistochemical methods have been widely used to determine the histogenesis of spontaneous and chemically-induced mouse lung tumors. Typically, antigens for either alveolar Type II cells or bronchiolar epithelial Clara cells are studied. In the present work, the morphological and immunohistochemical phenotype of a transgenic mouse designed to develop lung tumors arising from Clara cells was evaluated. In this model, Clara cell-specific transformation is accomplished by directed expression of the SV40 large T antigen (TAg) under the mouse Clara cell secretory protein (CC10) promoter. In heterozygous mice, early lesions at 1 month of age consisted of hyperplastic bronchiolar epithelial cells. These progressed to adenoma by 2 months as proliferating epithelium extended into adjacent alveolar spaces. By 4 months, a large portion of the lung parenchyma was composed of tumor masses. Expression of constitutive CC10 was diminished in transgenic animals at all time points. Only the occasional cell or segment of the bronchiolar epithelium stained positively for CC10 by immunohistochemistry, and all tumors were found to be uniformly negative for staining. These results were corroborated by Western blotting, where CC10 was readily detectable in whole lung homogenate from nontransgenic animals, but not detected in lung from transgenic animals at any time point. Tumors were also examined for expression of surfactant apoprotein C (SPC), an alveolar Type II cell-specific marker, and found to be uniformly negative for staining. These results indicate that, in this transgenic model, expression of CC10, which is widely used to determine whether lung tumors arise from Clara cells, was reduced and subsequently lost during Clara cell tumor progression

  10. The use of urinary proteomics in the assessment of suitability of mouse models for ageing.

    Science.gov (United States)

    Nkuipou-Kenfack, Esther; Schanstra, Joost P; Bajwa, Seerat; Pejchinovski, Martin; Vinel, Claire; Dray, Cédric; Valet, Philippe; Bascands, Jean-Loup; Vlahou, Antonia; Koeck, Thomas; Borries, Melanie; Busch, Hauke; Bechtel-Walz, Wibke; Huber, Tobias B; Rudolph, Karl L; Pich, Andreas; Mischak, Harald; Zürbig, Petra

    2017-01-01

    Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8-96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing.

  11. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2010-05-01

    Full Text Available Abstract Background Painful Diabetic Neuropathy (PDN affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age of diabetes. Using this timeline of PDN, we can investigate the signaling mechanisms underlying mechanical allodynia in the db/db mouse. Results We studied the role of p38 in lumbar dorsal root ganglia (LDRG during the development of mechanical allodynia in db/db mice. p38 phosphorylation was detected by immunoblots at the early stage of mechanical allodynia in LDRG of diabetic mice. Phosphorylated p38 (pp38 immunoreactivity was detected mostly in the small- to medium-sized LDRG neurons during the time period of mechanical allodynia. Treatment with an antibody against nerve growth factor (NGF significantly inhibited p38 phosphorylation in LDRG of diabetic mice. In addition, we detected higher levels of inflammatory mediators, including cyclooxygenase (COX 2, inducible nitric oxide synthases (iNOS, and tumor necrosis factor (TNF-α in LDRG neurons of db/db mice compared to non-diabetic db+ mice. Intrathecal delivery of SB203580, a p38 inhibitor, significantly inhibited the development of mechanical allodynia and the upregulation of COX2, iNOS and TNF-α. Conclusions Our findings suggest that NGF activated-p38 phosphorylation mediates mechanical allodynia in the db/db mouse by upregulation of multiple inflammatory mediators in LDRG.

  12. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  13. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  14. Characterization of neuronal cell death in the spiral ganglia of a mouse model of endolymphatic hydrops.

    Science.gov (United States)

    Semaan, Maroun T; Zheng, Qing Y; Han, Fengchan; Zheng, Yuxi; Yu, Heping; Heaphy, John C; Megerian, Cliff A

    2013-04-01

    Spiral ganglion neurons (SGN) in the Phex male mouse, a murine model of postnatal endolymphatic hydrops (ELH) undergo progressive deterioration reminiscent of human and other animal models of ELH with features suggesting apoptosis as an important mechanism. Histologic analysis of the mutant's cochlea demonstrates ELH by postnatal Day (P) 21 and SGN loss by P90. The SGN loss seems to occur in a consistent topographic pattern beginning at the cochlear apex. SGN were counted at P60, P90, and P120. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative PCR, and immunohistochemical analyses of activated caspase-3, caspase-8, and caspase-9 were performed on cochlear sections obtained from mutants and controls. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay (TUNEL) was carried out on 2 mutants and 2 controls. Corrected SGN counts in control mice were greater in the apical turn of the cochleae at P90 and P120, respectively (p < 0.01). Increased expression of activated caspase-3, caspase-8, and caspase-9 was seen in the mutant. At later time points, activated caspase expression gradually declined in the apical turns and increased in basal turns of the cochlea. Quantitative and semiquantitative PCR analysis confirmed increased expression of caspase-3, caspase-8, and caspase-9 at P21 and P40. TUNEL staining demonstrated apoptosis at P90 in the apical and basal turns of the mutant cochleae. SGN degeneration in the Phex /Y mouse seems to mimic patterns observed in other animals with ELH. Apoptosis plays an important role in the degeneration of the SGN in the Phex male mouse.

  15. Global gene expression analysis in a mouse model for Norrie disease: late involvement of photoreceptor cells.

    Science.gov (United States)

    Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang

    2002-09-01

    Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.

  16. Hippocampal transcriptomic and proteomic alterations in the BTBR mouse model of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Caitlin M Daimon

    2015-11-01

    Full Text Available Autism spectrum disorders (ASD are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6 control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including axon guidance and regulation of actin cytoskeleton. In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD.

  17. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model.

    Directory of Open Access Journals (Sweden)

    Amory Koch

    Full Text Available Acute radiation sickness (ARS following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS developed at the Veterinary Sciences Department (VSD of the Armed Forces Radiobiology Research Institute (AFRRI to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male TBI model (6-14 Gy, 60Co γ-rays at 0.6 Gy min-1, which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated, 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors. In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2-4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies.

  18. Modeling the origins of mammalian sociality: moderate evidence for matrilineal signatures in mouse lemur vocalizations.

    Science.gov (United States)

    Kessler, Sharon E; Radespiel, Ute; Hasiniaina, Alida I F; Leliveld, Lisette M C; Nash, Leanne T; Zimmermann, Elke

    2014-02-20

    Maternal kin selection is a driving force in the evolution of mammalian social complexity and it requires that kin are distinctive from nonkin. The transition from the ancestral state of asociality to the derived state of complex social groups is thought to have occurred via solitary foraging, in which individuals forage alone, but, unlike the asocial ancestors, maintain dispersed social networks via scent-marks and vocalizations. We hypothesize that matrilineal signatures in vocalizations were an important part of these networks. We used the solitary foraging gray mouse lemur (Microcebus murinus) as a model for ancestral solitary foragers and tested for matrilineal signatures in their calls, thus investigating whether such signatures are already present in solitary foragers and could have facilitated the kin selection thought to have driven the evolution of increased social complexity in mammals. Because agonism can be very costly, selection for matrilineal signatures in agonistic calls should help reduce agonism between unfamiliar matrilineal kin. We conducted this study on a well-studied population of wild mouse lemurs at Ankarafantsika National Park, Madagascar. We determined pairwise relatedness using seven microsatellite loci, matrilineal relatedness by sequencing the mitrochondrial D-loop, and sleeping group associations using radio-telemetry. We recorded agonistic calls during controlled social encounters and conducted a multi-parametric acoustic analysis to determine the spectral and temporal structure of the agonistic calls. We measured 10 calls for each of 16 females from six different matrilineal kin groups. Calls were assigned to their matriline at a rate significantly higher than chance (pDFA: correct = 47.1%, chance = 26.7%, p = 0.03). There was a statistical trend for a negative correlation between acoustic distance and relatedness (Mantel Test: g = -1.61, Z = 4.61, r = -0.13, p = 0.058). Mouse lemur agonistic calls are

  19. Virtual reality in laparoscopic surgery.

    Science.gov (United States)

    Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg

    2004-01-01

    Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.

  20. Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations

    Directory of Open Access Journals (Sweden)

    Ayano Yurino

    2016-09-01

    Full Text Available In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that the introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS strongly promoted human multi-lineage reconstitution. After xenotransplantation of human CD34+CD38− cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis.

  1. Mevalonate Pathway Antagonist Suppresses Formation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models.

    Science.gov (United States)

    Kobayashi, Yusuke; Kashima, Hiroyasu; Wu, Ren-Chin; Jung, Jin-Gyoung; Kuan, Jen-Chun; Gu, Jinghua; Xuan, Jianhua; Sokoll, Lori; Visvanathan, Kala; Shih, Ie-Ming; Wang, Tian-Li

    2015-10-15

    Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with TP53 mutations. Because TP53 mutations occur in almost all ovarian high-grade serous carcinoma (HGSC), we determined whether statins suppressed tumor growth in animal models of ovarian cancer. Two ovarian cancer mouse models were used. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously developed serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the antitumor effects of lovastatin were also investigated. Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced antiproliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. ©2015 American Association for Cancer Research.

  2. Mevalonate Pathway Antagonist Inhibits Proliferation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models

    Science.gov (United States)

    Kobayashi, Yusuke; Kashima, Hiroyasu; Wu, Ren-Chin; Jung, Jin- Gyoung; Kuan, Jen-Chun; Gu, Jinghua; Xuan, Jianhua; Sokoll, Lori; Visvanathan, Kala; Shih, Ie-Ming; Wang, Tian-Li

    2015-01-01

    Purpose Statins are among the most frequently prescribed drugs because of their efficacy and low toxicity in treating hypercholesterolemia. Recently, statins have been reported to inhibit the proliferative activity of cancer cells, especially those with TP53 mutations. Since TP53 mutations occur in almost all of the ovarian high-grade serous carcinoma, we determined if statins suppressed tumor growth in animal models of ovarian cancer. Experimental Design Two ovarian cancer mouse models were employed. The first one was a genetically engineered model, mogp-TAg, in which the promoter of oviduct glycoprotein-1 was used to drive the expression of SV40 T-antigen in gynecologic tissues. These mice spontaneously develop serous tubal intraepithelial carcinomas (STICs), which are known as ovarian cancer precursor lesions. The second model was a xenograft tumor model in which human ovarian cancer cells were inoculated into immunocompromised mice. Mice in both models were treated with lovastatin, and effects on tumor growth were monitored. The molecular mechanisms underlying the anti-tumor effects of lovastatin were also investigated. Results Lovastatin significantly reduced the development of STICs in mogp-TAg mice and inhibited ovarian tumor growth in the mouse xenograft model. Knockdown of prenylation enzymes in the mevalonate pathway recapitulated the lovastatin-induced anti-proliferative phenotype. Transcriptome analysis indicated that lovastatin affected the expression of genes associated with DNA replication, Rho/PLC signaling, glycolysis, and cholesterol biosynthesis pathways, suggesting that statins have pleiotropic effects on tumor cells. Conclusion The above results suggest that repurposing statin drugs for ovarian cancer may provide a promising strategy to prevent and manage this devastating disease. PMID:26109099

  3. The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease.

    Science.gov (United States)

    Shin, Rick; Kobayashi, Katsunori; Hagihara, Hideo; Kogan, Jeffrey H; Miyake, Shinichi; Tajinda, Katsunori; Walton, Noah M; Gross, Adam K; Heusner, Carrie L; Chen, Qian; Tamura, Kouichi; Miyakawa, Tsuyoshi; Matsumoto, Mitsuyuki

    2013-06-01

    There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy

  4. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models.

    Science.gov (United States)

    Diekman, Eugene F; van Weeghel, Michel; Wanders, Ronald J A; Visser, Gepke; Houten, Sander M

    2014-07-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inherited disorder of mitochondrial long-chain fatty acid β-oxidation (FAO). Patients with VLCAD deficiency may present with hypoglycemia, hepatomegaly, cardiomyopathy, and myopathy. Although several mouse models have been developed to aid in the study of the pathogenesis of long-chain FAO defects, the muscular phenotype is underexposed. To address the muscular phenotype, we used a newly developed mouse model on a mixed genetic background with a more severe defect in FAO (LCAD(-/-); VLCAD(+/-)) in addition to a validated mouse model (LCAD(-/-); VLCAD(+/+)) and compared them with wild-type (WT) mice. We found that both mouse models show a 20% reduction in energy expenditure (EE) and a 3-fold decrease in locomotor activity in the unfed state. In addition, we found a 1.7°C drop in body temperature in unfed LCAD(-/-); VLCAD(+/+) mice compared with WT body temperature. We conclude that food withdrawal-induced inactivity, hypothermia, and reduction in EE are novel phenotypes associated with FAO deficiency in mice. Unexpectedly, inactivity was not explained by rhabdomyolysis, but rather reflected the overall reduced capacity of these mice to generate heat. We suggest that mice are partly protected against the negative consequence of an FAO defect.-Diekman, E. F., van Weeghel, M., Wanders, R. J. A., Visser, G., Houten, S. M. Food withdrawal lowers energy expenditure and induces inactivity in long-chain fatty acid oxidation-deficient mouse models. © FASEB.

  5. Chlamydophila abortus infection in the mouse: a useful model of the ovine disease.

    Science.gov (United States)

    Caro, M R; Buendía, A J; Del Rio, L; Ortega, N; Gallego, M C; Cuello, F; Navarro, J A; Sanchez, J; Salinas, J

    2009-03-16

    Chlamydophila (C.) abortus is an obligate intracellular bacterium able to colonize the placenta of several species of mammals, which may induce abortion in the last third of pregnancy. The infection affects mainly small ruminants resulting in major economic losses in farming industries worldwide. Furthermore, its zoonotic risk has been reported in pregnant farmers or abattoir workers. Mouse models have been widely used to study both the pathology of the disease and the role of immune cells in controlling infection. Moreover, this animal experimental model has been considered a useful tool to evaluate new vaccine candidates and adjuvants that could prevent abortion and reduce fetal death. Future studies using these models will provide and reveal information about the precise mechanisms in the immune response against C. abortus and will increase the knowledge about poorly understood issues such as chlamydial persistence.

  6. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection.

    Directory of Open Access Journals (Sweden)

    Ryuta Uraki

    2018-03-01

    Full Text Available Few animal models of Zika virus (ZIKV infection have incorporated arthropod-borne transmission. Here, we establish an Aedes aegypti mosquito model of ZIKV infection of mice, and demonstrate altered vector competency among three strains, (Orlando, ORL, Ho Chi Minh, HCM, and Patilas, PAT. All strains acquired ZIKV in their midguts after a blood meal from infected mice, but ZIKV transmission only occurred in mice fed upon by HCM, and to a lesser extent PAT, but not ORL, mosquitoes. This defect in transmission from ORL or PAT mosquitoes was overcome by intrathoracic injection of ZIKV into mosquito. Genetic analysis revealed significant diversity among these strains, suggesting a genetic basis for differences in ability for mosquito strains to transmit ZIKV. The intrathoracic injection mosquito-mouse transmission model is critical to understanding the influence of mosquitoes on ZIKV transmission, infectivity and pathogenesis in the vertebrate host, and represents a natural transmission route for testing vaccines and therapeutics.

  7. Genetic mouse models relevant to schizophrenia: taking stock and looking forward.

    Science.gov (United States)

    Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M

    2012-03-01

    Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Shortened Lifespan and Lethal Hemorrhage in a Hemophilia A Mouse Model.

    Science.gov (United States)

    Staber, Janice M; Pollpeter, Molly J

    2016-01-01

    Hemophilia A animal models have helped advance our understanding of factor VIII deficiency. Previously, factor VIII deficient mouse models were reported to have a normal life span without spontaneous bleeds. However, the bleeding frequency and survival in these animals has not been thoroughly evaluated. To investigate the survival and lethal bleeding frequency in two strains of E-16 hemophilia A mice. We prospectively studied factor VIII deficient hemizygous affected males (n = 83) and homozygous affected females (n = 55) for survival and bleeding frequency. Animals were evaluated for presence and location of bleeds as potential cause of death. Hemophilia A mice had a median survival of 254 days, which is significantly shortened compared to wild type controls (p hemophilia A mice experienced hemorrhage in several tissues. This previously-underappreciated shortened survival in the hemophilia A murine model provides new outcomes for investigation of therapeutics and also reflects the shortened lifespan of patients if left untreated.

  9. Muc1 deficiency exacerbates pulmonary fibrosis in a mouse model of silicosis.

    Science.gov (United States)

    Kato, Kosuke; Zemskova, Marina A; Hanss, Alec D; Kim, Marianne M; Summer, Ross; Kim, Kwang Chul

    2017-11-25

    MUC1 (MUC in human and Muc in animals) is a membrane-tethered mucin expressed on the apical surface of lung epithelial cells. However, in the lungs of patients with interstitial lung disease, MUC1 is aberrantly expressed in hyperplastic alveolar type II epithelial (ATII) cells and alveolar macrophages (AM), and elevated levels of extracellular MUC1 are found in bronchoalveolar lavage (BAL) fluid and the serum of these patients. While pro-fibrotic effects of extracellular MUC1 have recently been described in cultured fibroblasts, the contribution of MUC1 to the pathobiology of pulmonary fibrosis is unknown. In this study, we hypothesized that MUC1 deficiency would reduce susceptibility to pulmonary fibrosis in a mouse model of silicosis. We employed human MUC1 transgenic mice, Muc1 deficient mice and wild-type mice on C57BL/6 background in these studies. Some mice received a one-time dose of crystalline silica instilled into their oropharynx in order to induce pulmonary fibrosis and assess the effects of Muc1 deficiency on fibrotic and inflammatory responses in the lung. As previously described in other mouse models of pulmonary fibrosis, we found that extracellular MUC1 levels were markedly increased in whole lung tissues, BALF and serum of human MUC1 transgenic mice after silica. We also detected an increase in total MUC1 levels in the lungs of these mice, indicating that production as well as release contributed to elevated levels after lung injury. Immunohistochemical staining revealed that increased MUC1 expression was mostly confined to ATII cells and AMs in areas of fibrotic remodeling, illustrating a pattern similar to the expression of MUC1 in human fibrotic lung tissues. However, contrary to our hypothesis, we found that Muc1 deficiency resulted in a worsening of fibrotic remodeling in the mouse lung as judged by an increase in number of silicotic nodules, an increase in lung collagen deposition and an increase in the severity of pulmonary inflammation

  10. Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia

    Science.gov (United States)

    May, A.J.; Chatzeli, L.; Proctor, G.B.; Tucker, A.S.

    2017-01-01

    Xerostomia, or chronic dry mouth, is a common syndrome caused by a lack of saliva that can lead to severe eating difficulties, dental caries and oral candida infections. The prevalence of xerostomia increases with age and affects approximately 30% of people aged 65 or older. Given the large numbers of sufferers, and the potential increase in incidence given our aging population, it is important to understand the complex mechanisms that drive hyposalivation and the consequences for the dentition and oral mucosa. From this study we propose the Fgf10 +/- mouse as a model to investigate xerostomia. By following embryonic salivary gland development, in vivo and in vitro, we show that a reduction in Fgf10 causes a delay in branching of salivary glands. This leads to hypoplasia of the glands, a phenotype that is not rescued postnatally or by adulthood in both male and female Fgf10 +/- mice. Histological analysis of the glands showed no obvious defect in cellular differentiation or acini/ductal arrangements, however there was a significant reduction in their size and weight. Analysis of saliva secretion showed that hypoplasia of the glands led to a significant reduction in saliva production in Fgf10 +/- adults, giving rise to a reduced saliva pellicle in the oral cavity of these mice. Mature mice were shown to drink more and in many cases had severe tooth wear. The Fgf10 +/- mouse is therefore a useful model to explore the causes and effects of xerostomia. PMID:26321752

  11. Contrasting features of urea cycle disorders in human patients and knockout mouse models.

    Science.gov (United States)

    Deignan, Joshua L; Cederbaum, Stephen D; Grody, Wayne W

    2008-01-01

    The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a characteristic profile of plasma amino acid alterations that can be utilized for diagnosis. While enzyme assay is possible, an analysis of the underlying mutation is preferable for an accurate diagnosis. Mouse models for each of the urea cycle disorders exist (with the exception of NAGS deficiency), and for almost all of them, their clinical and biochemical phenotypes rather closely resemble the phenotypes seen in human patients. Consequently, all of the current mouse models are highly useful for future research into novel pharmacological and dietary treatments and gene therapy protocols for the management of urea cycle disorders.

  12. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ian Smyth

    2008-09-01

    Full Text Available Harlequin Ichthyosis (HI is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.

  13. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: Role of the TNF signaling axis

    International Nuclear Information System (INIS)

    Wahl, Elizabeth C.; Aronson, James; Liu, Lichu; Liu, Zhendong; Perrien, Daniel S.; Skinner, Robert A.; Badger, Thomas M.; Ronis, Martin J.J.; Lumpkin, Charles K.

    2007-01-01

    Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-α signaling. The effects in mice are unreported. Therefore, we hypothesized that in mice (1) administration of a soluble TNF receptor 1 derivative (sTNF-R1) would protect direct bone formation during chronic ethanol exposure, and (2) administration of recombinant mouse TNF-α (rmTNF-α) to ethanol naive mice would inhibit direct bone formation. We utilized a unique model of limb lengthening (distraction osteogenesis, DO) combined with liquid diets to measure chronic ethanol's effects on direct bone formation. Chronic ethanol exposure resulted in increased marrow TNF, IL-1, and CYP 2E1 RNA levels in ethanol-treated vs. control mice, while no significant weight differences were noted. Systemic administration of sTNF-R1 during DO (8.0 mg/kg/2 days) to chronic ethanol-exposed mice resulted in enhanced direct bone formation as measured radiologically and histologically. Systemic rmTNF-α (10 μg/kg/day) administration decreased direct bone formation measures, while no significant weight differences were noted. We conclude that chronic ethanol-associated inhibition of direct bone formation is mediated to a significant extent by the TNF signaling axis in a mouse model

  14. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis.

    Science.gov (United States)

    Camps, Montserrat; Rückle, Thomas; Ji, Hong; Ardissone, Vittoria; Rintelen, Felix; Shaw, Jeffrey; Ferrandi, Chiara; Chabert, Christian; Gillieron, Corine; Françon, Bernard; Martin, Thierry; Gretener, Denise; Perrin, Dominique; Leroy, Didier; Vitte, Pierre-Alain; Hirsch, Emilio; Wymann, Matthias P; Cirillo, Rocco; Schwarz, Matthias K; Rommel, Christian

    2005-09-01

    Phosphoinositide 3-kinases (PI3K) have long been considered promising drug targets for the treatment of inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases. But the lack of specificity, isoform selectivity and poor biopharmaceutical profile of PI3K inhibitors have so far hampered rigorous disease-relevant target validation. Here we describe the identification and development of specific, selective and orally active small-molecule inhibitors of PI3Kgamma (encoded by Pik3cg). We show that Pik3cg(-/-) mice are largely protected in mouse models of rheumatoid arthritis; this protection correlates with defective neutrophil migration, further validating PI3Kgamma as a therapeutic target. We also describe that oral treatment with a PI3Kgamma inhibitor suppresses the progression of joint inflammation and damage in two distinct mouse models of rheumatoid arthritis, reproducing the protective effects shown by Pik3cg(-/-) mice. Our results identify selective PI3Kgamma inhibitors as potential therapeutic molecules for the treatment of chronic inflammatory disorders such as rheumatoid arthritis.

  15. Unconventional transcriptional response to environmental enrichment in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Bredford Kerr

    Full Text Available BACKGROUND: Rett syndrome (RTT is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2 and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2(-/y. PRINCIPAL FINDINGS: We found that EE delayed and attenuated some neurological alterations presented by Mecp2(-/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. CONCLUSIONS/SIGNIFICANCE: We found that EE induced downregulation of several synaptic markers, suggesting that the partial prevention of RTT-associated phenotypes is achieved through a non-conventional transcriptional program.

  16. Psidium guajava leaf extract prevents intestinal colonization of Citrobacter rodentium in the mouse model

    Directory of Open Access Journals (Sweden)

    Pooja Gupta

    2015-01-01

    Full Text Available Diarrheal diseases are the second highest cause of mortality of children under 5 years worldwide. There is a continuous search for developing a cost-effective treatment for diarrhea as the present ones are facing challenges. Medicinal plants can be explored further as an alternative treatment for diarrhea. Psidium guajava leaves have been used as an antidiarrheal globally. Citrobacter rodentium, a common mouse pathogen, is known to mimic the pathogenecity of enteropathogenic and enterohemorrhagic E. coli. It can thus present an effective model to study infectious diarrhea. In the present study, the P. guajava leaf extract was tested for its efficacy in treating infectious diarrhea using a C. rodentium mouse model. The mice in the test group (treated with P. guajava leaf extract showed quicker clearance of infection as compared with the control group. The bacterial load in the fecal sample of the mice in the test group was high on Day 4 as compared with that in the control group, suggesting a flush out of the bacteria. In the test group, 6/7 (85.71% mice showed clearance of infection by Day 19. The control group continued to show infection till Day 29. P. guajava leaf extract thus has the potential for use in the treatment of infectious diarrhea.

  17. Psidium guajava leaf extract prevents intestinal colonization of Citrobacter rodentium in the mouse model

    Science.gov (United States)

    Gupta, Pooja; Birdi, Tannaz

    2015-01-01

    Diarrheal diseases are the second highest cause of mortality of children under 5 years worldwide. There is a continuous search for developing a cost-effective treatment for diarrhea as the present ones are facing challenges. Medicinal plants can be explored further as an alternative treatment for diarrhea. Psidium guajava leaves have been used as an antidiarrheal globally. Citrobacter rodentium, a common mouse pathogen, is known to mimic the pathogenecity of enteropathogenic and enterohemorrhagic E. coli. It can thus present an effective model to study infectious diarrhea. In the present study, the P. guajava leaf extract was tested for its efficacy in treating infectious diarrhea using a C. rodentium mouse model. The mice in the test group (treated with P. guajava leaf extract) showed quicker clearance of infection as compared with the control group. The bacterial load in the fecal sample of the mice in the test group was high on Day 4 as compared with that in the control group, suggesting a flush out of the bacteria. In the test group, 6/7 (85.71%) mice showed clearance of infection by Day 19. The control group continued to show infection till Day 29. P. guajava leaf extract thus has the potential for use in the treatment of infectious diarrhea. PMID:25878465

  18. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia

    Science.gov (United States)

    Planel, Emmanuel; Bretteville, Alexis; Liu, Li; Virag, Laszlo; Du, Angela L.; Yu, Wai Haung; Dickson, Dennis W.; Whittington, Robert A.; Duff, Karen E.

    2009-01-01

    Alzheimer’s disease and other tauopathies are characterized by the presence of intracellular neurofibrillary tangles composed of hyperphosphorylated, insoluble tau. General anesthesia has been shown to be associated with increased risk of Alzheimer’s disease, and we have previously demonstrated that anesthesia induces hypothermia, which leads to overt tau hyperphosphorylation in the brain of mice regardless of the anesthetic used. To investigate whether anesthesia enhances the long-term risk of developing pathological forms of tau, we exposed a mouse model with tauopathy to anesthesia and monitored the outcome at two time points—during anesthesia, or 1 wk after exposure. We found that exposure to isoflurane at clinically relevant doses led to increased levels of phospho-tau, increased insoluble, aggregated forms of tau, and detachment of tau from microtubules. Furthermore, levels of phospho-tau distributed in the neuropil, as well as in cell bodies increased. Interestingly, the level of insoluble tau was increased 1 wk following anesthesia, suggesting that anesthesia precipitates changes in the brain that provoke the later development of tauopathy. Overall, our results suggest that anesthesia-induced hypothermia could lead to an acceleration of tau pathology in vivo that could have significant clinical implications for patients with early stage, or overt neurofibrillary tangle pathology.—Planel, E., Bretteville, A., Liu, L., Virag, L., Du, A. L., Yu, W. Y., Dickson, D. W., Whittington, R. A., Duff, K. E. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. PMID:19279139

  19. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis.

    Science.gov (United States)

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W; Beier, Frank; Cai, Daozhang

    2018-02-12

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.

  20. Vision deficits precede structural losses in a mouse model of mitochondrial dysfunction and progressive retinal degeneration.

    Science.gov (United States)

    Laliberté, Alex M; MacPherson, Thomas C; Micks, Taft; Yan, Alex; Hill, Kathleen A

    2011-12-01

    Current animal models of retinal disease often involve the rapid development of a retinal disease phenotype; however, this is at odds with age-related diseases that take many years to manifest clinical symptoms. The present study was performed to examine an apoptosis-inducing factor (Aif)-deficient model, the harlequin carrier mouse (X(hq)X), and determine how mitochondrial dysfunction and subsequent accelerated aging affect the function and structure of the mouse retina. Vision and eye structure for cohorts of 6 X(hq)X and 6 wild type mice at 3, 11, and 15 months of age were studied using in vivo electroretinography (ERG), and optical coherence tomography (OCT). Retinal superoxide levels were determined in situ using dihydroethidium (DHE) histochemistry. Retinal cell counts were quantified post mortem using hematoxylin and eosin (H&E) staining. ERG analysis of X(hq)X retinal function indicated a reduction in b-wave amplitude significant at 3 months of age (p retina (p retina may account for the early and significant reduction in retinal function. This remodeling of retinal neurochemistry in response to stress may be a relevant mechanism in the progression of normal retinal aging and early stages of some retinal degenerative diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Specific Disruption of Hippocampal Mossy Fiber Synapses in a Mouse Model of Familial Alzheimer's Disease

    Science.gov (United States)

    Wilke, Scott A.; Raam, Tara; Antonios, Joseph K.; Bushong, Eric A.; Koo, Edward H.; Ellisman, Mark H.; Ghosh, Anirvan

    2014-01-01

    The earliest stages of Alzheimer's disease (AD) are characterized by deficits in memory and cognition indicating hippocampal pathology. While it is now recognized that synapse dysfunction precedes the hallmark pathological findings of AD, it is unclear if specific hippocampal synapses are particularly vulnerable. Since the mossy fiber (MF) synapse between dentate gyrus (DG) and CA3 regions underlies critical functions disrupted in AD, we utilized serial block-face electron microscopy (SBEM) to analyze MF microcircuitry in a mouse model of familial Alzheimer's disease (FAD). FAD mutant MF terminal complexes were severely disrupted compared to control – they were smaller, contacted fewer postsynaptic spines and had greater numbers of presynaptic filopodial processes. Multi-headed CA3 dendritic spines in the FAD mutant condition were reduced in complexity and had significantly smaller sites of synaptic contact. Significantly, there was no change in the volume of classical dendritic spines at neighboring inputs to CA3 neurons suggesting input-specific defects in the early course of AD related pathology. These data indicate a specific vulnerability of the DG-CA3 network in AD pathogenesis and demonstrate the utility of SBEM to assess circuit specific alterations in mouse models of human disease. PMID:24454724

  2. A neonatal mouse model of intermittent hypoxia associated with features of apnea in premature infants.

    Science.gov (United States)

    Cai, Jun; Tuong, Chi Minh; Gozal, David

    2011-09-15

    A neonatal mouse model of intermittent hypoxia (IH) simulating the recurring hypoxia/reoxygenation episodes of apnea of prematurity (AOP) was developed. C57BL/6 P2 pups were culled for exposure to either intermittent hypoxia or intermittent air as control. The IH paradigms consisted of alternation cycles of 20.9% O2 and either 8.0% or 5.7% O2 every 120 or 140s for 6h a day during daylight hours from day 2 to day 10 postnatally, i.e., roughly equivalent to human brain development in the perinatal period. IH exposures elicited modest to severe decrease in oxygen saturation along with bradycardia in neonatal mice, which were severity-dependent. Hypomyelination in both central and peripheral nervous systems was observed despite the absence of visible growth retardation. The neonatal mouse model of IH in this study partially fulfills the current diagnostic criteria with features of AOP, and provides opportunities to reproduce in rodents some of the pathophysiological changes associated with this disorder, such as alterations in myelination. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Musical Electroacupuncture May Be a Better Choice than Electroacupuncture in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Jiang, Jing; Liu, Gang; Shi, Suhua; Li, Zhigang

    2016-01-01

    Objectives . To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer's disease. Methods . In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer's disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer's disease (AD), and normal (N) groups were assessed. Results . The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and A β amyloid content in the frontal lobe, compared with the AD group ( P < 0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD. Conclusion . MEA therapy may be superior to EA in treating Alzheimer's disease as demonstrated in SAMP8 mice.

  4. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  5. Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia.

    Science.gov (United States)

    May, A J; Chatzeli, L; Proctor, G B; Tucker, A S

    2015-01-01

    Xerostomia, or chronic dry mouth, is a common syndrome caused by a lack of saliva that can lead to severe eating difficulties, dental caries and oral candida infections. The prevalence of xerostomia increases with age and affects approximately 30% of people aged 65 or older. Given the large numbers of sufferers, and the potential increase in incidence given our aging population, it is important to understand the complex mechanisms that drive hyposalivation and the consequences for the dentition and oral mucosa. From this study we propose the Fgf10 +/- mouse as a model to investigate xerostomia. By following embryonic salivary gland development, in vivo and in vitro, we show that a reduction in Fgf10 causes a delay in branching of salivary glands. This leads to hypoplasia of the glands, a phenotype that is not rescued postnatally or by adulthood in both male and female Fgf10 +/- mice. Histological analysis of the glands showed no obvious defect in cellular differentiation or acini/ductal arrangements, however there was a significant reduction in their size and weight. Analysis of saliva secretion showed that hypoplasia of the glands led to a significant reduction in saliva production in Fgf10 +/- adults, giving rise to a reduced saliva pellicle in the oral cavity of these mice. Mature mice were shown to drink more and in many cases had severe tooth wear. The Fgf10 +/- mouse is therefore a useful model to explore the causes and effects of xerostomia.

  6. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Nucleotide excision repair- and p53-deficient mouse models in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Hoogervorst, Esther M. [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Utrecht University, Department of Pathobiology, Utrecht (Netherlands); Steeg, Harry van [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Vries, Annemieke de [Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands)]. E-mail: Annemieke.de.Vries@rivm.nl

    2005-07-01

    Cancer is caused by the loss of controlled cell growth due to mutational (in)activation of critical genes known to be involved in cell cycle regulation. Three main mechanisms are known to be involved in the prevention of cells from becoming cancerous; DNA repair and cell cycle control, important to remove DNA damage before it will be fixed into mutations and apoptosis, resulting in the elimination of cells containing severe DNA damage. Several human syndromes are known to have (partially) deficiencies in these pathways, and are therefore highly cancer prone. Examples are xeroderma pigmentosum (XP) caused by an inborn defect in the nucleotide excision repair (NER) pathway and the Li-Fraumeni syndrome, which is the result of a germ line mutation in the p53 gene. XP patients develop skin cancer on sun exposed areas at a relatively early age, whereas Li-Fraumeni patients spontaneously develop a wide variety of early onset tumors, including sarcomas, leukemia's and mammary gland carcinomas. Several mouse models have been generated to mimic these human syndromes, providing us information about the role of these particular gene defects in the tumorigenesis process. In this review, spontaneous phenotypes of mice deficient for nucleotide excision repair and/or the p53 gene will be described, together with their responses upon exposure to either chemical carcinogens or radiation. Furthermore, possible applications of these and newly generated mouse models for cancer will be given.

  8. Single access laparoscopic nephrectomy

    Directory of Open Access Journals (Sweden)

    Jay D Raman

    2008-01-01

    Full Text Available Laparoscopic nephrectomy has assumed a central role in the management of benign and malignant kidney diseases. While laparoscopy is less morbid than open surgery, it still requires several incisions each at least 1-2 cm in length. Each incision carries morbidity risks of bleeding, hernia and/or internal organ damage, and incrementally decreases cosmesis. An alternative to conventional laparoscopy is single access or keyhole surgery, which utilizes magnetic anchoring and guidance system (MAGS technology or articulating laparoscopic instruments. These technical innovations obviate the need to externally space trocars for triangulation, thus allowing for the creation of a small, solitary portal of entry into the abdomen. Laboratory and early clinical series demonstrate feasibility as well as safe and successful completion of keyhole nephrectomy. Future work is necessary to improve existing instrumentation, increase clinical experience, assess benefits of this surgical approach, and explore other potential applications for this technique.

  9. Hernia inguinal laparoscopic surgery

    International Nuclear Information System (INIS)

    Morelli Brum, R. . E mail: raulmorelli@hotmail.com

    2005-01-01

    The purpose of this paper is to enhance treatment of inguinal hernia through a bibliographic study of its main complications and the analysis of a retrospective series of laparoscopic restorations performed by the author in the same private medical care center. From December 1994 through July 2003, ninety-nine patients were operated in 108 procedures.The technique employed was trans-abdominal peritoneal (TAPP)Follow-up covered over 2 years in 80% of patients with a relapse of 2.8%. Main morbidity was neuralgia due to a nerve being trapped, which fact required re-intervention.There was no mortality.The conclusion arrived at is that it is and excellent technique which requires a long learning curve and its main indication would be relapse of conventional surgery, bilateralism, coexistence with another laparoscopic abdominal pathology and doubts concerning contra lateral hernia

  10. Laparoscopic specimen retrieval bags.

    Science.gov (United States)

    Smorgick, Noam

    2014-10-01

    Specimen retrieval bags have long been used in laparoscopic gynecologic surgery for contained removal of adnexal cysts and masses. More recently, the concerns regarding spread of malignant cells during mechanical morcellation of myoma have led to an additional use of specimen retrieval bags for contained "in-bag" morcellation. This review will discuss the indications for use retrieval bags in gynecologic endoscopy, and describe the different specimen bags available to date.

  11. Peritonitis: laparoscopic approach

    Directory of Open Access Journals (Sweden)

    Agresta Ferdinando

    2006-03-01

    Full Text Available Abstract Background Laparoscopy has became as the preferred surgical approach to a number of different diseases because it allows a correct diagnosis and treatment at the same time. In abdominal emergencies, both components of treatment – exploration to identify the causative pathology and performance of an appropriate operation – can often be accomplished via laparoscopy. There is still a debate of peritonitis as a contraindication to this kind of approach. Aim of the present work is to illustrate retrospectively the results of a case-control experience of laparoscopic vs. open surgery for abdominal peritonitis emergencies carried out at our institution. Methods From January 1992 and January 2002 a total of 935 patients (mean age 42.3 ± 17.2 years underwent emergent and/or urgent surgery. Among them, 602 (64.3% were operated on laparoscopically (of whom 112 -18.7% – with peritonitis, according to the presence of a surgical team trained in laparoscopy. Patients with a history of malignancy, more than two previous major abdominal surgeries or massive bowel distension were not treated Laparoscopically. Peritonitis was not considered contraindication to Laparoscopy. Results The conversion rate was 23.2% in patients with peritonitis and was mainly due to the presence of dense intra-abdominal adhesions. Major complications ranged as high as 5.3% with a postoperative mortality of 1.7%. A definitive diagnosis was accomplished in 85.7% (96 pat. of cases, and 90.6% (87 of these patients were treated successfully by Laparoscopy. Conclusion Even if limited by its retrospective feature, the present experience let us to consider the Laparoscopic approach to abdominal peritonitis emergencies a safe and effective as conventional surgery, with a higher diagnostic yield and allows for lesser trauma and a more rapid postoperative recovery. Such features make Laparoscopy a challenging alternative to open surgery in the management algorithm for abdominal

  12. Laparoscopic liver resection assisted by the laparoscopic Habib Sealer.

    Science.gov (United States)

    Jiao, Long R; Ayav, Ahmet; Navarra, Giuseppe; Sommerville, Craig; Pai, Madhava; Damrah, Osama; Khorsandi, Shrin; Habib, Nagy A

    2008-11-01

    Radiofrequency has been used as a tool for liver resection since 2002. A new laparoscopic device is reported in this article that assists liver resection laparoscopically. From October 2006 to the present, patients suitable for liver resection were assessed carefully for laparoscopic resection with the laparoscopic Habib Sealer (LHS). Detailed data of patients resected laparoscopically with this device were collected prospectively and analyzed. In all, 28 patients underwent attempted laparoscopic liver resection. Four cases had to be converted to an open approach because of extensive adhesions from previous colonic operations. Twenty-four patients completed the procedure comprising tumorectomy (n = 7), multiple tumoretcomies (n = 5), segmentectomy (n = 3), and bisegmentectomies (n = 9). Vascular clamping of portal triads was not used. The mean resection time was 60 +/- 23 min (mean +/- SD), and blood loss was 48 +/- 54 mL. None of the patients received any transfusion of blood or blood products perioperatively or postoperatively. Postoperatively, 1 patient developed severe exacerbation of asthma that required steroid therapy, and 1 other patient had a transient episode of liver failure that required supportive care. The mean duration of hospital stay was 5.6 +/- 2 days (mean +/- SD). At a short-term follow up, no recurrence was detected in patients with liver cancer. Laparoscopic liver resection can be performed safely with this new laparoscopic liver resection device with a significantly low risk of intraoperative bleeding or postoperative complications.

  13. Protective Effect of Carvacrol against Gut Dysbiosis and Clostridium difficile Associated Disease in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Kumar Venkitanarayanan

    2017-04-01

    Full Text Available This study investigated the effect of carvacrol (CR, a phytophenolic compound on antibiotic-associated gut dysbiosis and C. difficile infection in a mouse model. Five to six-week-old C57BL/6 mice were randomly divided into seven treatment groups (challenge and control of eight mice each. Mice were fed with irradiated feed supplemented with CR (0, 0.05, and 0.1%; the challenge groups were made susceptible to C. difficile by orally administering an antibiotic cocktail in water and an intra-peritoneal injection of clindamycin. Both challenge and control groups were infected with 105CFU/ml of hypervirulent C. difficile (ATCC 1870 spores or PBS, and observed for clinical signs for 10 days. Respective control groups for CR, antibiotics, and their combination were included for investigating their effect on mouse enteric microflora. Mouse body weight and clinical and diarrhea scores were recorded daily post infection. Fecal samples were collected for microbiome analysis using rRNA sequencing in MiSeq platform. Carvacrol supplementation significantly reduced the incidence of diarrhea and improved the clinical and diarrhea scores in mice (p < 0.05. Microbiome analysis revealed a significant increase in Proteobacteria and reduction in the abundance of protective bacterial flora in antibiotic-treated and C. difficile-infected mice compared to controls (p < 0.05. However, CR supplementation positively altered the microbiome composition, as revealed by an increased abundance of beneficial bacteria, including Firmicutes, and significantly reduced the proportion of detrimental flora such as Proteobacteria, without significantly affecting the gut microbiome diversity compared to control. Results suggest that CR could potentially be used to control gut dysbiosis and reduce C. difficile infection.

  14. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis.

    Science.gov (United States)

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A; Kröger, Nicolaus; Stocking, Carol

    2014-06-10

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdc(scid) and Il2rg(null) alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation.

  15. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model

    Science.gov (United States)

    Hu, Yanping; Turner, Michael J; Shields, Jacqueline; Gale, Matthew S; Hutto, Elizabeth; Roberts, Bruce L; Siders, William M; Kaplan, Johanne M

    2009-01-01

    Alemtuzumab is a humanized monoclonal antibody against CD52, an antigen found on the surface of normal and malignant lymphocytes. It is approved for the treatment of B-cell chronic lymphocytic leukaemia and is undergoing Phase III clinical trials for the treatment of multiple sclerosis. The exact mechanism by which alemtuzumab mediates its biological effects in vivo is not clearly defined and mechanism of action studies have been hampered by the lack of cross-reactivity between human and mouse CD52. To address this issue, a transgenic mouse expressing human CD52 (hCD52) was created. Transgenic mice did not display any phenotypic abnormalities and were able to mount normal immune responses. The tissue distribution of hCD52 and the level of expression by various immune cell populations were comparable to those seen in humans. Treatment with alemtuzumab replicated the transient increase in serum cytokines and depletion of peripheral blood lymphocytes observed in humans. Lymphocyte depletion was not as profound in lymphoid organs, providing a possible explanation for the relatively low incidence of infection in alemtuzumab-treated patients. Interestingly, both lymphocyte depletion and cytokine induction by alemtuzumab were largely independent of complement and appeared to be mediated by neutrophils and natural killer cells because removal of these populations with antibodies to Gr-1 or asialo-GM-1, respectively, strongly inhibited the activity of alemtuzumab whereas removal of complement by treatment with cobra venom factor had no impact. The hCD52 transgenic mouse appears to be a useful model and has provided evidence for the previously uncharacterized involvement of neutrophils in the activity of alemtuzumab. PMID:19740383

  16. Simultaneous Video-EEG-ECG Monitoring to Identify Neurocardiac Dysfunction in Mouse Models of Epilepsy.

    Science.gov (United States)

    Mishra, Vikas; Gautier, Nicole M; Glasscock, Edward

    2018-01-29

    In epilepsy, seizures can evoke cardiac rhythm disturbances such as heart rate changes, conduction blocks, asystoles, and arrhythmias, which can potentially increase risk of sudden unexpected death in epilepsy (SUDEP). Electroencephalography (EEG) and electrocardiography (ECG) are widely used clinical diagnostic tools to monitor for abnormal brain and cardiac rhythms in patients. Here, a technique to simultaneously record video, EEG, and ECG in mice to measure behavior, brain, and cardiac activities, respectively, is described. The technique described herein utilizes a tethered (i.e., wired) recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Compared to wireless telemetry recording systems, the tethered arrangement possesses several technical advantages such as a greater possible number of channels for recording EEG or other biopotentials; lower electrode costs; and greater frequency bandwidth (i.e., sampling rate) of recordings. The basics of this technique can also be easily modified to accommodate recording other biosignals, such as electromyography (EMG) or plethysmography for assessment of muscle and respiratory activity, respectively. In addition to describing how to perform the EEG-ECG recordings, we also detail methods to quantify the resulting data for seizures, EEG spectral power, cardiac function, and heart rate variability, which we demonstrate in an example experiment using a mouse with epilepsy due to Kcna1 gene deletion. Video-EEG-ECG monitoring in mouse models of epilepsy or other neurological disease provides a powerful tool to identify dysfunction at the level of the brain, heart, or brain-heart interactions.

  17. Initial laparoscopic basic skills training shortens the learning curve of laparoscopic suturing and is cost-effective.

    Science.gov (United States)

    Stefanidis, Dimitrios; Hope, William W; Korndorffer, James R; Markley, Sarah; Scott, Daniel J

    2010-04-01

    Laparoscopic suturing is an advanced skill that is difficult to acquire. Simulator-based skills curricula have been developed that have been shown to transfer to the operating room. Currently available skills curricula need to be optimized. We hypothesized that mastering basic laparoscopic skills first would shorten the learning curve of a more complex laparoscopic task and reduce resource requirements for the Fundamentals of Laparoscopic Surgery suturing curriculum. Medical students (n = 20) with no previous simulator experience were enrolled in an IRB-approved protocol, pretested on the Fundamentals of Laparoscopic Surgery suturing model, and randomized into 2 groups. Group I (n = 10) trained (unsupervised) until proficiency levels were achieved on 5 basic tasks; Group II (n = 10) received no basic training. Both groups then trained (supervised) on the Fundamentals of Laparoscopic Surgery suturing model until previously reported proficiency levels were achieved. Two weeks later, they were retested to evaluate their retention scores, training parameters, instruction requirements, and cost between groups using t-test. Baseline characteristics and performance were similar for both groups, and 9 of 10 subjects in each group achieved the proficiency levels. The initial performance on the simulator was better for Group I after basic skills training, and their suturing learning curve was shorter compared with Group II. In addition, Group I required less active instruction. Overall time required to finish the curriculum was similar for both groups; but the Group I training strategy cost less, with a savings of $148 per trainee. Teaching novices basic laparoscopic skills before a more complex laparoscopic task produces substantial cost savings. Additional studies are needed to assess the impact of such integrated curricula on ultimate educational benefit. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Laparoscopic radical trachelectomy.

    Science.gov (United States)

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  19. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Fennell, T R; Brown, C D

    2001-06-15

    Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.

  20. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Somogyi, Attila; Katonai, Zoltán; Alpár, Alán; Wolf, Ervin

    2016-01-01

    One century after its first description, pathology of Alzheimer's disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD

  1. Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system.

    Science.gov (United States)

    Yong, Kylie Su Mei; Ng, Justin Han Jia; Her, Zhisheng; Hey, Ying Ying; Tan, Sue Yee; Tan, Wilson Wei Sheng; Irac, Sergio Erdal; Liu, Min; Chan, Xue Ying; Gunawan, Merry; Foo, Randy Jee Hiang; Low, Dolyce Hong Wen; Mendenhall, Ian Hewitt; Chionh, Yok Teng; Dutertre, Charles-Antoine; Chen, Qingfeng; Wang, Lin-Fa

    2018-03-16

    Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R -/- (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat's remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.

  2. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis

    NARCIS (Netherlands)

    Ben-David, Uri; Ha, Gavin; Khadka, Prasidda; Jin, Xin; Wong, Bang; Franke, Lude; Golub, Todd R.

    Aneuploidy and copy-number alterations (CNAs) are a hallmark of human cancer. Although genetically engineered mouse models (GEMMs) are commonly used to model human cancer, their chromosomal landscapes remain underexplored. Here we use gene expression profiles to infer CNAs in 3,108 samples from 45

  3. The effect of DNA repair defects on reproductive performance in nucleotide excision repair (NER) mouse models: an epidemiological approach

    NARCIS (Netherlands)

    Tsai, P.S.; Nielen, M.; Horst, G.T.J. van der; Colenbrander, B.; Heesterbeek, J.A.P.; Fentener van Vlissingen, J.M.

    2005-01-01

    In this study, we used an epidemiological approach to analyze an animal database of DNA repair deficient mice on reproductive performance in five Nucleotide Excision Repair (NER) mutant mouse models on a C57BL/6 genetic background, namely CSA, CSB, XPA, XPC [models for the human DNA repair disorders

  4. Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models

    Directory of Open Access Journals (Sweden)

    Kanako So

    2015-03-01

    Full Text Available Recent evidence suggests a role of transient receptor potential melastatin 2 (TRPM2 in immune and inflammatory responses. We previously reported that TRPM2 deficiency attenuated inflammatory and neuropathic pain in some pain mouse models, including formalin- or carrageenan-induced inflammatory pain, and peripheral nerve injury-induced neuropathic pain models, while it had no effect on the basal mechanical and thermal nociceptive sensitivities. In this study, we further explored the involvement of TRPM2 in various pain models using TRPM2-knockout mice. There were no differences in the chemonociceptive behaviors evoked by intraplantar injection of capsaicin or hydrogen peroxide between wildtype and TRPM2-knockout mice, while acetic acid-induced writhing behavior was significantly attenuated in TRPM2-knockout mice. In the postoperative incisional pain model, no difference in mechanical allodynia was observed between the two genotypes. By contrast, mechanical allodynia in the monosodium iodoacetate-induced osteoarthritis pain model and the experimental autoimmune encephalomyelitis model were significantly attenuated in TRPM2-knockout mice. Furthermore, mechanical allodynia in paclitaxel-induced peripheral neuropathy and streptozotocin-induced painful diabetic neuropathy models were significantly attenuated in TRPM2-knockout mice. Taken together, these results suggest that TRPM2 plays roles in a wide range of pathological pain models based on peripheral and central neuroinflammation, rather than physiological nociceptive pain.

  5. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  6. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    Science.gov (United States)

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  7. The Sirtuin 2 Inhibitor AK-7 Is Neuroprotective in Huntington’s Disease Mouse Models

    Directory of Open Access Journals (Sweden)

    Vanita Chopra

    2012-12-01

    Full Text Available Inhibition of sirtuin 2 (SIRT2 deacetylase mediates protective effects in cell and invertebrate models of Parkinson’s disease and Huntington’s disease (HD. Here we report the in vivo efficacy of a brain-permeable SIRT2 inhibitor in two genetic mouse models of HD. Compound treatment resulted in improved motor function, extended survival, and reduced brain atrophy and is associated with marked reduction of aggregated mutant huntingtin, a hallmark of HD pathology. Our results provide preclinical validation of SIRT2 inhibition as a potential therapeutic target for HD and support the further development of SIRT2 inhibitors for testing in humans.

  8. A mouse air pouch model for evaluating the immune response to Taenia crassiceps infection.

    Science.gov (United States)

    Gaspar, Emanuelle B; Sakai, Yuriko I; Gaspari, Elizabeth De

    2014-02-01

    The experimental system of Taenia crassiceps cysticerci infection in BALB/c mice is considered to be the most representative model of cysticercosis. In our work, mice were sacrificed 7 and 30days after infection, and pouch fluid was collected to determine the number of accumulated cells and the concentrations of IFNγ, IL-2, IL-4, IL-6, IL-10 and nitric oxide. The injection of 50 nonbudding cysticerci into normal mouse dorsal air pouches induced a high level of IFNγ and nitric oxide production relative to the parasite load. The air pouch provides a convenient cavity that allows studying the cellular immunological aspects of the T. crassiceps parasite. The nonbudding cysticerci recovered from the air pouches contained cells that can reconstitute complete cysts in the peritoneal cavity of mice. In conclusion, these results demonstrate that the air pouch model is an alternative tool for the evaluation of the immune characteristics of T. crassiceps infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Sodium caseinate induces increased survival in leukaemic mouse J774 model.

    Science.gov (United States)

    Córdova-Galaviz, Yolanda; Ledesma-Martínez, Edgar; Aguíñiga-Sánchez, Itzen; Soldevila-Melgarejo, Gloria; Soto-Cruz, Isabel; Weiss-Steider, Benny; Santiago-Osorio, Edelmiro

    2014-01-01

    Acute myeloid leukaemia is a neoplastic disease of haematopoietic stem cells. Although there have been recent advances regarding its treatment, mortality remains high. Consequently, therapeutic alternatives continue to be explored. In the present report, we present evidence that sodium caseinate (CasNa), a salt of the principal protein in milk, may possess important anti-leukaemic properties. J774 leukaemia macrophage-like cells were cultured with CasNa and proliferation, viability and differentiation were evaluated. These cells were also inoculated into BALB/c mice as a model of leukemia. We demonstrated that CasNa inhibits the in vitro proliferation and reduces viability of J774 cells, and leads to increased survival in vivo in a leukaemic mouse model. These data indicate that CasNa may be useful in leukaemia therapy. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse