WorldWideScience

Sample records for lanthanides iii nitrates

  1. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  2. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  3. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants

    International Nuclear Information System (INIS)

    Toulemonde, V.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1995-01-01

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author)

  4. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V [CEA Centre d` Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France); [CEA Centre d` Etudes de la Vallee du Rhone, 30 -Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement

    1995-12-20

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author). 89 refs.

  5. Liquid-liquid extraction kinetics of uranyl nitrate and actinides (III)-lanthanides nitrates by extractants with amide function

    International Nuclear Information System (INIS)

    Toulemonde, V.

    1995-01-01

    Nowadays, the most important part of electric power is generated by fission energy. But spent fuels have then to be reprocessed. The production of these reprocessed materials separately and with a high purity level is done according to a liquid-liquid extraction process (Purex process) with the use of tributyl phosphate as solvent. Optimization studies concerning the extracting agent have been undertaken. This work gives the results obtained for the uranyl nitrate and the actinides (III)-lanthanides (III) nitrates extraction by extractants with amide function (monoamide for U(VI) and diamide for actinides (III) and lanthanides (III)). The extraction kinetics have been studied in the case of a metallic specie transfer from the aqueous phase towards the organic phase. The experiments show that the nitrates extraction kinetics is limited by the complexation chemical reaction of the species at the interface between the two liquids. An adsorption-desorption interfacial reactional mechanism (Langmuir theory) is proposed for the uranyl nitrate. (O.M.)

  6. Study of extraction kinetics of lanthanides(III) and actinides(III) nitrates by the molecule N, N'-dimethyl-N, N'-dibutyl, tetradecylmalonamide

    International Nuclear Information System (INIS)

    Daldon, M.

    1999-01-01

    The kinetics of extraction of lanthanides (III) and actinides (III) nitrates by the molecule N, N'-dimethyl - N, N'-dibutyl tetra-decyl malonamide has been investigated. This study was realised with a new constant interfacial-area-stirred cell. During the qualification step of the device it appears that the reduction of the device can lead to hydrolytic perturbations. The main conclusions are: - after the determination of conditions which provide kinetics regime (diffusion of species neglectable), partial orders of the kinetics law have been obtained and lead to the establishment of the law J = k [Nd 3+ ] [NO 3 - ] 3 [diamide] 1 , - interfacial tension measurements and kinetics study in presence of surface-active compounds proved that the chemical limiting reaction for Nd(III) is interfacial, - the results allow to propose an adsorption-desorption reaction mechanism, - a comprehensive study of the extraction kinetics of the lanthanides(III) series and also Am(III) and Cm(III) nitrates has been realised. The lighter lanthanides (La, Ce and Pr) exhibit higher kinetics rate of extraction than the others, which differs from the tendency observed with distribution coefficients which exhibit tetrad effect. The kinetics rate of extraction of Am(III) and Cm(III) is closed to the value of Eu(III). (author)

  7. Study of extraction kinetics of lanthanides(III) and actinides(III) nitrates by the molecule N, N'-dimethyl-N, N'-dibutyl, tetradecylmalonamide; Etude des cinetiques d'extraction des nitrates de lanthanides (III) et d'actinides (III) par le malonamide N, N'-dimethyl-N, N'-dibutyl, tetradecylmalonamide

    Energy Technology Data Exchange (ETDEWEB)

    Daldon, M

    1999-07-01

    The kinetics of extraction of lanthanides (III) and actinides (III) nitrates by the molecule N, N'-dimethyl - N, N'-dibutyl tetra-decyl malonamide has been investigated. This study was realised with a new constant interfacial-area-stirred cell. During the qualification step of the device it appears that the reduction of the device can lead to hydrolytic perturbations. The main conclusions are: - after the determination of conditions which provide kinetics regime (diffusion of species neglectable), partial orders of the kinetics law have been obtained and lead to the establishment of the law J = k [Nd{sup 3+}] [NO{sub 3}{sup -}]{sup 3} [diamide]{sup 1}, - interfacial tension measurements and kinetics study in presence of surface-active compounds proved that the chemical limiting reaction for Nd(III) is interfacial, - the results allow to propose an adsorption-desorption reaction mechanism, - a comprehensive study of the extraction kinetics of the lanthanides(III) series and also Am(III) and Cm(III) nitrates has been realised. The lighter lanthanides (La, Ce and Pr) exhibit higher kinetics rate of extraction than the others, which differs from the tendency observed with distribution coefficients which exhibit tetrad effect. The kinetics rate of extraction of Am(III) and Cm(III) is closed to the value of Eu(III). (author)

  8. The extraction of lanthanides and americium by benzyldiakylamines and benzyltrialkylammonium nitrates from the nitrate solutions; structure and aggregation of their salts

    International Nuclear Information System (INIS)

    Jedinakova, V.; Zilkova, J.; Dvorak, Z.; Vojtiskova, M.

    1982-01-01

    Benzyldialkylamine and benzyltrialkylammonium nitrates were used for the extraction of lanthanides and americium from aqueous nitrate solutions. The dependence of the extraction performance for Ln(III) and Am(III) on the concentration of nitric acid, the kind and concentration of salting-out agents in the aqueous phase, and the kind of solvent were investigated. The extraction of Am(III) is compared with the extraction of lanthanides. The difference in distribution coefficients for lanthanides and americium can be utilized for the separation of lanthanides and americium. Using vapor phase osmometry and cryoscopy the association of these compounds was measured at 5.5deg, 25deg and 37deg C, allowing rough estimates of ΔH and ΔS for the formation of the aggregates, monomers in the case of benzyldiethylamine, benzyldibutylamine, benzyldihexylamine and benzyldioctylamine, tetramers for the benzyldibutylamine nitrate and tetramers for benzyldimethyldodecylammonium nitrate. (author)

  9. Application of composite materials based on various extractants for isolation of lanthanides(III) nitrates from multicomponent aqueous solutions

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Pyartman, A.K.; Kesnikov, V.A.; Pleshkov, M.A.; Exekov, M.H.

    1999-01-01

    In present work we obtained samples of composite materials mentioned containing tributylphosphate (TBP) and trialkylmethylammonium nitrate (TAMAN). Extraction of lanthanides(III) nitrates of cerium group from multicomponent aqueous solutions by means of these materials was studied. Some systems with different concentration of sodium nitrate up to 5 mol/l and the same systems containing additions of sodium chloride or sulfate along with sodium nitrate was investigated, isotherm of extraction being obtained for all cases. Also we compared in identical conditions extraction process when liquid extractants were used and process with composite materials. It was found that traditional extraction systems and systems based on composite extractants demonstrated almost the same extraction properties in respect to lanthanides(III) nitrates. Extraction isotherms observed in identical conditions and being shown in the same coordinates had no difference with taking into account errors of experiment. This fact allow to use the same mathematical model for those systems. For systems studied it was generated mathematical model that is able to describe extraction process when component concentration vary in wide range, with assumption being used that ratio activity coefficients in organic phase stay constant. (authors)

  10. 'Americium(III)/trivalent lanthanides' separation using organothiophosphinic acids

    International Nuclear Information System (INIS)

    Hill, C.; Madic, C.; Baron, P.; Ozawa, Masaki; Tanaka, Yasumasa.

    1997-01-01

    The present paper describes the extraction of neodymium and other lanthanides by saponified Cyanex 301 acid. The saponification of commercial Cyanex 301 acid favoured the extraction of macro concentrations of neodymium from sodium nitrate aqueous solutions (pH eq ∼ 4). The amount of lanthanide extracted in the organic phase always reached the third of the initial concentration of saponified Cyanex 301 acid, which assumed a cation exchange mechanism to occur during the extraction. No nitrate anion took part in the complex formation. This paper also compares the abilities of purified Cyanex 301, Cyanex 302 and Cyanex 272 acids to extract and separate 241 Am(III) from 152 Eu(III). Very high separation factors S.F. Am/Eu were observed in the case of purified Cyanex 301 acid. Finally some studies are presented herein using tri-n-butylphosphate (TBP) as a synergistic extractant with Cyanex 301 acid to separate actinides from trivalent lanthanide. (author)

  11. Lanthanide (III) complexes of 2-(N-salicylideneamino)-4-phenylthiazole

    International Nuclear Information System (INIS)

    Sasidharan, G.N.; Mohanan, K.; Lakshmi Prabha, A.N.

    2002-01-01

    Lanthanide(III) complexes of 2-(N-salicylideneamino)-4- phenylthiazole (HSAT) have been synthesised and characterised by elemental, analytical, thermogravimetric, molar conductance, UV- visible, IR and NMR spectral data. The ligand coordinates to the lanthanide(III) ion in a tridentate fashion without deprotonation, giving complexes of the type [Ln(HSAT) 2 (NO 3 ) 3 ] and [Ln(HSAT) 2 (H 2 0) 3 Cl 3 ]. The spectral data reveal that the ligand is bonded to the lanthanide ion through azomethine nitrogen, ring nitrogen and phenolic oxygen without deprotonation. The nitrate group acts in a bidentate fashion. The ligand and the metal complexes exhibit antibacterial and antifungal activities. (author)

  12. Coordination polymers of some lanthanide(III) nitrate with schiff bases

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Shukla, B.K.; Shukla, R.K.

    1991-01-01

    The Schiff bases derived from 2-hydroxy-1-naphthaldehyde and salicylaldehyde with o-dianisidine, p-phenylene diamine and benzidine and their lanthanide(III) complexes have been synthesized and characterized by elemental, I.R., thermal, magnetic and D.R.S. studies. (author). 7 refs

  13. Spectroscopic studies of some lanthanide(III nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A.S. Sall

    2003-06-01

    Full Text Available The ligand 2,6-bis-(salicylaldehydehydrazone-4-chlorophenol (H5L and its binuclear lanthanide(III nitrate complexes {[Ln2(H4L3(NO3](NO32.mH2O} where Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb and Y, have been synthesized. The complexes were characterized by chemical analysis, conductance, magnetic moment measurements and infrared spectra. Infrared study indicates that the ligand behaves both as neutral and ionic O donors and as neutral N donors.

  14. Cloud point extraction: an alternative to traditional liquid-liquid extraction for lanthanides(III) separation.

    Science.gov (United States)

    Favre-Réguillon, Alain; Draye, Micheline; Lebuzit, Gérard; Thomas, Sylvie; Foos, Jacques; Cote, Gérard; Guy, Alain

    2004-06-17

    Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.

  15. Thermodecomposition of lanthanides (III) and ytrium (III) glucoheptonates

    International Nuclear Information System (INIS)

    Giolito, J.

    1987-01-01

    The lanthanides (III) and yttrium (III) glucoheptonates as well the D-glucoheptono 1-4 lactone were studied using common analytical methods, elemental microanalysis of carbon and hydrogen, thermogravimetry and differential scanning calorimetry. These compounds were prepared from the reaction between the lanthanides (III) and yttrium (III) hydroxides and glucoheptonic acid aqueous solution obtained by means of the delta lactone hydrolysis of this acid. After stoichiometric reaction the compounds were precipitated by the addition of absolute ethanol, washed with the same solvent and dried in desiccator. Thermogravimetric the (TG) curves of the lanthanides glucoheptonates of the ceric group present thermal profiles with enough differences permitting an easy caracterization of each compound and the yttrium (III) glucoheptonate TG curve showed a great similarity with the erbium (III) compound TG curve. The differential scanning calometry (DSC) curves showed endothermic and exothermic peaks by their shape, height and position (temperature) permit an easy and rapid identification of each compound specially if DSC and TG curves were examined simultaneously. (author) [pt

  16. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  17. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  18. Specification and comparative calculation of enthalpies and Gibbs formation energies of anhydrous lanthanide nitrates

    International Nuclear Information System (INIS)

    Del' Pino, Kh.; Chukurov, P.M.; Drakin, S.I.

    1980-01-01

    Analyzed are the results of experimental depermination of formation enthalpies of waterless nitrates of lanthane cerium, praseodymium, neodymium and samarium. Using method of comparative calculation computed are enthalpies of formation of waterless lanthanide and yttrium nitrates. Calculated values of enthalpies and Gibbs energies of waterless lanthanide nitrate formation are tabulated

  19. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  20. Synthesis and Characterization of Lanthanide(III Nitrate Complexes with Terdentate ONO Donor Hydrazone Derived from 2-Benzimidazolyl Mercaptoaceto Hydrazide and o-Hydroxy Aromatic Aldehyde

    Directory of Open Access Journals (Sweden)

    Vinayak M. Naik

    2011-01-01

    Full Text Available A few eight coordinated complexes of lanthanide(III nitrate with 2-benzimidazolyl mercaptoaceto hydrazone ligand (LH2 with the general formula [Ln(LH2NO2]H2O (where Ln = La, Pr, Nd, Sm and Gd have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, UV-Visible, IR and 1H NMR spectral studies. The experimental data sustain stoichiometry of 1:2 (metal/ligand for the complexes. The spectral data shows that the ligand reacts in keto form and behaves as monobasic terdentate in nature. The nitrate appears to coordinate in the bidentate fashion to the metal ion. The thermal stabilities of the complexes have been studied by TGA and their kinetic parameters were calculated using Coats-Redfern and MKN methods. The antimicrobial activity studies have been under taken and results are discussed.

  1. Some high coordination compounds of lanthanides(III derived from N-isonicotinamidosalicyaldimine

    Directory of Open Access Journals (Sweden)

    Ram K. Agarwal

    2000-12-01

    Full Text Available A new series of lanthanide(III nitrates, isothiocyanates and perchlorates coordination complexes of N-isonicotinamidosalicyaldimine (INH-SAL with the general composition LnX3.n(INH-SAL (Ln = La, Pr, Nd, Sm, Gd, Tb or Dy; X = NO3-, n = 2; X = NCS-, n = 2 or 3 and X = ClO4-, n = 4 have been reported. All the complexes were characterized by chemical analyses, conductance, molar weight, magnetic moment measurements, infrared and electronic spectra. IR spectra indicate that the ligand behaves as a neutral N,O-donors. Thermal properties of the complexes have also been studied.

  2. Bis(pentamethylene)urea complexes of the lanthanide nitrates: synthesis, characterization, properties

    International Nuclear Information System (INIS)

    Souza, H.K.S. de; Pedrosa, A.M.G.; Marinho, E.P.M.; Batista, M.K.S.; Melo, D.M.A.; Zinner, K.; Zinner, L.B.; Zukerman-Schpector, J.; Vicentini, G.

    2003-01-01

    Lanthanide nitrate complexes of bis(pentamethylene)urea (BPMU) with general formula Ln(NO 3 ) 3 3BPMU, where Ln: La, Nd, Sm, Eu, Ho and Er have been prepared and characterized based on CHN elemental analyses, lanthanide titration with EDTA, molar conductivity, spectroscopic data and thermal studies. The infrared spectra show that ligands (BPMU) are bonded through the carbonyl oxygen, nitrate counter-ions are bidentate linked to the central ions. The structure of the neodymium complex was determined. The crystal is monoclinic, P2 1/c ,Z=4, with the following parameters: a=10.148(1) A, b=21.879(2), c=19.154(2) A, β=104.11(1) deg., V=4124.3(7) A 3 . The polyhedron is a distorted tricapped trigonal prism, coordination number nine

  3. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  4. Synthesis, characterization and luminescent properties of lanthanide complexes with an unsymmetrical tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenzhong [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Tang Yu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: tangyu@lzu.edu.cn; Liu Weisheng; Tan Minyu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2008-09-15

    Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2'-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.

  5. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  6. 2,2',-bipyridine and 1,10-phenanthroline complexes of lanthanide(III) trifluoroacetates

    International Nuclear Information System (INIS)

    Misra, S.N.; Singh, M.

    1983-01-01

    The syntheses and characterization of lanthanide(III) triflloroacetate complexes with 2,2'-bipyridine and 1,10-phenanthroline are reported. Lanthanide(III) trifluoroacetates yield compounds of the type Ln(CF 3 COO) 3 .bipy or phen with 2,2'-bipyridine and 1,10-phenanthroline. Their properties and structures have been studied using chemical analyses. electronic and infrared spectra. Thermal analysis of a few complexes have also been done. The infrared data show that the trifluoroacetate group acts as a bidentate ligand making the coordination number of lanthanide eight. (author)

  7. Studies on the Interaction of a Novel 6,6''-bis(1,2,4-triazin-3-yl)- 2,2':6',2''-terpyridine Ligand with Lanthanide(III) Ions and Americium(III)

    International Nuclear Information System (INIS)

    Lewis, Frank W.; Harwood, Laurence M.; Hudson, Michael J.; Drew, Michael G.B.; Modolo, Giuseppe; Sypula, Michal; Desreux, Jean F.; Bouslimani, Nouri; Vidick, Geoffrey

    2010-01-01

    The new solvent extraction reagent 6,6''-bis(5,5,8,8-tetramethyl- 5,6,7,8-tetrahydro-1,2,4-benzo-triazin-3-yl)-2,2':6',2''-terpyridine (CyMe 4 -BTTP) has been synthesized in 4 steps from 2,2':6',2''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1:2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1:1 complexes are formed with lanthanide(III) nitrates where the aliphatic rings are conformationally mobile. An optimized structure of the 1:2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-ray crystallographic structures of the ligand and of its 1:1 complex with Y(III) were also obtained. In the absence of a phase-modifier, CyMe 4 -BTTP in 1-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (±20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid solution. The metal(III) cations are extracted as the 1:1 complex from nitric acid solutions. The generally low distribution coefficients observed compared with the BTBPs arise because the 1:1 complex of CyMe 4 -BTTP is considerably less hydrophobic than the 1:2 complexes formed by the BTBPs. In M(BTTP) 3+ complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal. (authors)

  8. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  9. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  10. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  11. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine; Etude de la selectivite de molecules extractantes polyazotees dans la complexation des actinides (III) et des lanthanides (III) en solution dans la pyridine anhydre

    Energy Technology Data Exchange (ETDEWEB)

    Riviere, Ch

    2000-10-05

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  12. Structural trends in a series of isostructural lanthanide-copper metallacrown sulfates (Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho): hexaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) heptaaquapentakis[μ3-glycinehydroxamato(2-)]sulfatopentacopper(II)lanthanide(III) sulfate hexahydrate.

    Science.gov (United States)

    Pavlishchuk, Anna V; Kolotilov, Sergey V; Fritsky, Igor O; Zeller, Matthias; Addison, Anthony W; Hunter, Allen D

    2011-07-01

    The seven isostructural complexes, [Cu(5)Ln(C(2)H(4)N(2)O(2))(5)(SO(4))(H(2)O)(6.5)](2)(SO(4))·6H(2)O, where Ln(III) = Pr, Nd, Sm, Eu, Gd, Dy and Ho, are representatives of the 15-metallacrown-5 family. Each dianion of glycinehydroxamic acid (GlyHA) links two Cu(II) cations forming a cyclic [CuGlyHA](5) frame. The Ln(III) cations are located at the centre of the [CuGlyHA](5) rings and are bound by the five hydroxamate O atoms in the equatorial plane. Five water molecules are coordinated to Cu(II) cations, and one further water molecule, located close to an inversion centre between two adjacent [Cu(5)Ln(GlyHA)(5)](2+) cations, is disordered around this inversion centre and coordinated to a Cu(II) cation of either the first or second metallacrown ether. Another water molecule and one of the two crystallographically independent sulfate anions are coordinated, the latter in a bidentate fashion, to the Ln(III) cation in the axial positions. The second sulfate anion is not coordinated to the cation, but is located in an interstitial position on a crystallographic inversion centre, thus leading to disorder of the O atoms around the centre of inversion. The Ln-O bond distances follow the trend of the lanthanide contraction. The apical Ln-O bond distances are very close to the sums of the ionic radii. However, the Ln-O distances within the metallacrown units are slightly compressed and the Ln(III) cations protrude significantly from the plane of the otherwise flat metallacrown ligand, thus indicating that the cavity is somewhat too small to accommodate the Ln(III) ions comfortably. This effect decreases with the size of the lanthanide cation from complex (I) (Ln(III) = Pr; 0.459) to complex (VII) (Ln(III) = Ho; 0.422), which indicates that the smaller lanthanide cations fit the cavity of the pentacopper metallacrown ring better than the larger ones. The diminished contraction of Ln-O distances within the metallacrown planes leads to an aniostropic contraction of the unit

  13. TRLIFS study of Eu(III) spectroscopic properties to obtain structural and thermodynamic informations on lanthanide-malonamide complexes in the Eu(III)/NaNO3/tetraethylmalonamide system

    International Nuclear Information System (INIS)

    Couston, L.; Charbonnel, M.C.; Flandin, J.L.; Rancier, F.; Moulin, C.

    2004-01-01

    Improvement of the nuclear fuel reprocessing involves separating the minor actinides (Am(III) and Cm(III)) from the fission products. In the French strategy, the first step consists in the separation of the trivalent actinides and lanthanides from high-level liquid waste, for which malonamides RR'NCO(CHR '' )CONRR' are promising ligands. These molecules have been optimized for reprocessing but still require basic chemical studies to describe the complexation mechanisms at a molecular scale. This paper discusses a thermodynamic and structural study of a Ln(III)-malonamide complex formed with the hydrosoluble tetraethylmalonamide ligand (TEMA = (C 2 H 5 ) 2 NCOCH 2 CON(C 2 H 5 ) 2 ) dissolved in a nitrate medium. Despite the simplified chemical system obtained with TEMA, its weak chemical affinity and its physical properties pushed the analytical techniques to their limits. The sensitivity of time-resolved laser-induced fluorescence spectroscopy (TRLIFS) combined with the major luminescent spectroscopic properties of Eu(III) (hypersensitive band and fluorescence lifetime) were successfully used to determine the equilibrium constant and hydration number in the Eu(III), TEMA, and NO 3 - system. Fluorescence lifetimes, connected with the first coordination sphere of the solvated metal, clearly show the inner-sphere location of nitrate in the Eu(NO 3 ) 2+ complex, the outer-sphere location of TEMA in the Eu(TEMA) 3+ complex, and the outer-sphere location of both ligands in the Eu(NO 3 )(TEMA) 2+ complex. (orig.)

  14. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides

    International Nuclear Information System (INIS)

    Flandin, J.L.

    2001-01-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties (Δ r G, Δ r H et Δ r S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties Δ r G et Δ r H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  15. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  16. Study of the selectivity of poly-nitrogenous extracting molecules in the complexation of actinides (III) and lanthanides (III) in solution in anhydrous pyridine

    International Nuclear Information System (INIS)

    Riviere, Ch.

    2000-01-01

    The aim of this work is to better understand the factors which contribute to the separation of lanthanides(III) and actinides(III). Polydentate nitrogenous molecules present an interesting selectivity. A thermodynamic study of the complexation in pyridine of lanthanide and uranium by the bipyridine ligand (bipy) has been carried out. The formation constants and the thermodynamic values of the different complexes have been determined. It has been shown that the bipy complexes formation is controlled by the enthalpy and unfavored by the entropy. The conductometry has revealed too a significant difference in the uranium and lanthanides complexation by the bipyridine ligand. The use of the phenanthroline ligand induces a better complexation of the metallic ions but the selectivity is not improved. On the other hand, the decrease of the basicity and the increase of the ligand denticity (for instance in the case of the use of ter-pyridine) favour the selectivity without improving the complexation. The selectivity difference for the complexation of actinides(III) and lanthanides(III) by the different studied ligands (independent systems) has been confirmed by experiments of inter-metals competition. (O.M.)

  17. Calorimetric approach of lanthanides (3) complexation and extraction by malonamides; Approche calorimetrique de la complexation et de l'extraction des lanthanides (3) par les malonamides

    Energy Technology Data Exchange (ETDEWEB)

    Flandin, J.L

    2001-07-01

    In the field of long lived radionuclides separation, diamides are interesting extractants because of their ability to co-extract trivalent lanthanides and actinides, which is a preliminary and essential step in high level radioactive waste reprocessing. The research carried out contributes to a better understanding of the mechanisms and the aim is the determination of thermodynamics properties ({delta}{sub r}G, {delta}{sub r}H et {delta}{sub r}S) related to the complexation and the extraction of lanthanides(III) by malonamides. The first part of the document deals with the complexation of lanthanides(III) by an hydrosoluble diamide. The experimental results obtained by UV-visible spectrometry, TRLIF, NMR and microcalorimetric titration proved that lanthanides(III)-TEMA interactions in aqueous medium are very weak and that the complexation reaction is endothermic. The TEMA ligand still stays in the second coordination sphere of coordination of the lanthanide ion. The second part of this study focuses on the extraction of neodymium(III) nitrate by a lipophilic diamide which is an exothermic reaction. The influence of the composition of aqueous and organic phases on the thermodynamics properties {delta}{sub r}G et {delta}{sub r}H has been studied by microcalorimetric titration. The most influent parameter is the total concentration in extractant. As a consequence, thermodynamic values are very dependent on the organic phase organisation before and alter extraction. At the same time, this study showed the interest of the calorimetric approach for the analysis of basic reactions like diamide dilution and their organisation as oligomeric aggregates. (author)

  18. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  19. Synthesis, structure and photoluminescence of novel lanthanide (Tb(III), Gd(III)) complexes with 6-diphenylamine carbonyl 2-pyridine carboxylate

    International Nuclear Information System (INIS)

    An Baoli; Gong Menglian; Cheah, Kok-Wai; Wong, Wai-Kwok; Zhang Jiming

    2004-01-01

    A novel organic ligand, 6-diphenylamine carbonyl 2-pyridine carboxylic acid (HDPAP), and the corresponding lanthanide complexes, tris(6-diphenylamine carbonyl 2-pyridine carboxylato) terbium(III) (Tb-DPAP) and tris(6-diphenylamine carbonyl 2-pyridine carboxylato) gadolinium(III) (Gd-DPAP) have been designed and synthesized. The crystal structure and photoluminescence of Tb-DPAP and Gd-DPAP have been studied. The results showed that the lanthanide complexes have electroneutral structures, and the solid terbium complex emits characteristic green fluorescence of Tb(III) ions at room temperature while the gadolinium complex emits the DPAP ligand phosphorescence. The lowest triplet level of DPAP ligand was calculated from the phosphorescence spectrum of Gd-DPAP in N,N-dimethyl formamide (DMF) dilute solution determined at 77 K, and the energy transfer mechanisms in the lanthanide complexes were discussed. The lifetimes of the 5 D 4 levels of Tb 3+ ions in the terbium complex were examined using time-resolved spectroscopy, and the values are 0.0153±0.0001 ms for solid Tb(DPAP) 3 ·11.5H 2 O and 0.074±0.007 ms for 2.5x10 -5 mol/l Tb-DPAP ethanol solution

  20. Structural investigation of the complexation of uranyl and lanthanide ions by CMPO-functionalized calixarenes

    International Nuclear Information System (INIS)

    Cherfa, S.

    1998-12-01

    A way to reduce the volume of nuclear wastes is to make a simultaneous extraction of actinides and lanthanides for their ulterior separation. Historically, the two first series of extractants used for the reprocessing of these wastes are the phosphine oxides and the CMPO (carbamoyl methyl phosphine oxide). In order to better know the type of complexes formed during the extraction, have been carried out structural studies concerning these two series (uranyl complexes and lanthanide nitrates). These studies have been carried out by X-ray diffraction on monocrystals. More recently, a new series of extracting molecules of lanthanides (III) and actinides (III) have been developed. It has been shown that in functionalizing an organic macrocycle of calixarene type (cyclic oligomer resulting of the poly-condensation of phenolic units) by a ligand of CMPO type, the extracting power of these molecules in terms of yield and selectivity towards the lighter lanthanides was superior to those of the CMPO alone. This study, carried out by X-ray diffraction on monocrystals of complexes formed between these ligands calix[4]arenes-CMPO (with 4 phenolic units) with uranyl and lanthanides nitrates, has allowed to define the type of the formed complexes, that is to say to establish the stoichiometry and the coordination mode (monodentate or bidentate) of the CMPO functions. These different steps of characterization have allowed too to determine the correlations existing between the complexes structures in the one hand and the selectivity and the exacerbation of the extracting power measured in liquid phase on the other hand. (O.M.)

  1. Synthesis and spectroscopic characterization of some lanthanide(III nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate

    Directory of Open Access Journals (Sweden)

    CHEMPAKAM JANARDHANAN ATHIRA

    2011-02-01

    Full Text Available Ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III complexes, viz., lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III and gadolinium(III, which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III complex were subjected to X-ray diffraction studies. In addition, the lanthanum(III complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behaviour of the lanthanum(III complex was also examined

  2. Determination of stability constants of lanthanides (III) with amino acids (Preprint No. AL-07)

    International Nuclear Information System (INIS)

    Patel, N.M.; Patel, P.M.; Patel, M.N.; Joshi, J.D.

    1989-01-01

    The present paper reports the stability constants of La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) with amino acids valine, serine, threonine, methionine and aspartic acid. The coordination of valine and aspartic acid have been discussed. The stability constants of trivalent lanthanide amino acid complexes were found to be in the order, La < Ce < Pr < Nd < Sm < Gd. (author). 5 refs

  3. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    Science.gov (United States)

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  4. Study of the reaction between Uranium(III) and Lanthanide oxide by using the UV-VIS spectrophotometer

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Choi, Kwang-Soon; Jee, Kwang-Yong

    2006-01-01

    Recently, ionic melts have become attractive reaction media in many fields. Molten salt based electrochemical processes have been proposed as a promising method for future nuclear programs and more specifically for spent fuel processing. Molten alkaline chloride based melts are considered as a promising reaction media. For this, it is interesting to understand the chemical nature of the actinides and lanthanides in high-temperature melt. Some spectroscopy provides essential information on the exact nature of f-block elements LiCl-KCl melt system. The knowledge on the basic chemical properties of these lanthanide oxides and U(III) in molten salt media is essential for developing suitable processes. However, few studies have been reported until now on the interaction between U metal and lanthanide oxides in LiCl-KCl melt. So, we studied the interaction between U(III) and Ln(III) by using the UV-VIS spectra. UV-vis spectrometry is a strong analytical technique for characterizing chemical species and their behavior in molten salt

  5. Yttrium and lanthanide nitrate complexes of N,N1-bis(4-antipyryl methylidene) ethylenediamine

    International Nuclear Information System (INIS)

    Joseph, Siby; Radhakrishnan, P.K.

    1998-01-01

    Complexes of yttrium and lanthanide nitrates with a Schiff base, N, N 1 -bis(4-antipyrylmethylidene)ethylenediamine (BAME) having the general formula [Ln(BAME) 2 (NO 3 )](NO 3 ) 2 , where Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho and Er have been synthesised and characterised by elemental analyses, molar conductance in non-aqueous solvents, electronic, infrared and proton NMR spectra. BAME acts as a neutral bidentate ligand coordinating through both azomethine nitrogen atoms. One of the nitrate groups is coordinated in a bidentate manner. A coordination number of six may be assigned to the metal ion in these complexes. The covalency parameters evaluated from the solid state electronic spectra suggest weak covalent character of the metal-ligand bond. (author)

  6. Complexes between lanthanide (III) and yttrium (III) picrates and tetra methylene sulfoxide as ligand

    International Nuclear Information System (INIS)

    Silva, M.A.A. da.

    1991-01-01

    The preparation and characterization of addition compounds between lanthanide (III) and yttrium (III) picrates and tetra methylene sulfoxide as ligand were described. The adducts were prepared in the molar relation 1 (salt): 3(ligand) in ethanol. They are microcrystalline with more intense color than those of their respective hydrated salts. At room temperature conditions they are non hygroscopic and do not present perceptible alterations. They became slightly opalescent, when heated between 363 and 423 K. At higher temperatures under several heating ratios, the behavior shown is the same: melting between 439 and 472 K. The characterization of the compounds was made by elemental analysis, electrolytic conductance measurements, X-ray powder patterns, infrared spectroscopy, visible electronic absorption and emission spectra of the neodymium (III) and europium (III), respectively. (author). 116 refs., 17 tabs., 11 figs

  7. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    Science.gov (United States)

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  8. Molecular dynamics simulations of ter-pyridine and bis-triazinyl-pyridine complexes with lanthanide cations; Etude de dynamique moleculaire de complexes de la bis-triazinyl-pyridine (BTP) et de la terpyridine avec des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, Ph. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    The search for ligands which specifically separate actinides(III) from lanthanides(III) by liquid-liquid extraction has prompted considerable research in the Process Design and Modeling Department ('Service d'Etude et de Modelisation des Procedes'- SEMP). Ligands with soft donor atoms AS) that are able to perform this separation have already been investigated and research is currently under way to improve their performance for high acidic feeds. Theoretical chemistry research is conducted in the Theoretical and Structural Chemistry Laboratory ('Laboratoire de Chimie Theorique et Structurale') to improve our understanding of the complexation and extraction of these cations with such ligands. Theoretical studies were first carried out for the ter-pyridine (TPY) and bis-triazinyl-pyridine (BTP) ligands that display fairly good ability to separate and extract actinide(III) from lanthanide(III) ions. Molecular dynamics simulations were performed on ter-pyridine and bis-triazinyl-pyridine complexes with three lanthanide cations (La{sup 3+}, Eu{sup 3+} and Lu{sup 3+}) for vacuum and for water solutions. These calculations were carried out without counter-ions, with three nitrate (NO{sub 3}{sup -}) ions, and, in the case of ter-pyridine, with three {alpha}-bromo-caprate anions that are likely to be used experimentally as synergistic agents for the separation and extraction of An(III) from Ln(III). Molecular dynamics simulations were first performed for vacuum to evaluate the distances between nitrogen and lanthanide atoms (Ln{sup 3+},N) and intrinsic interaction energies to poly-nitrogenous ligands with or without NO{sub 3} ions, and for both ligands. The (Ln{sup 3+},N) distances decrease and the cation/ligand interaction energies increase along the La{sup 3+}, Eu{sup 3+}, Lu{sup 3+} series, with decreasing Ln(III) ion radii. The introduction of nitrate counter-ions makes the (Ln{sup 3+},N) distances slightly higher, and the TPY/Ln{sup 3+} and BTP

  9. Lanthanide nitrates as Lewis acids in the one-pot synthesis of 1,2,4-oxadiazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Vale, Juliana A.; Faustino, Wagner M., E-mail: julianadqf@yahoo.com.br [Departamento de Quimica, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil); Zampieri, Davila de S.; Moran, Paulo J.S.; Rodrigues, Jose A.R. [Instituto de Quimica, Universidade Estadual de Campinas, SP (Brazil); Sa, Gilberto F. de [Departamento de Quimica Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE (Brazil)

    2012-08-15

    In this work we report the use of lanthanide nitrates [Ln(NO{sub 3}){sub 3}] acting as catalyst in direct one pot synthesis of 3-benzoyl- and 3-acetyl-1,2,4-oxadiazoles derivatives from ketones, nitriles and nitric acid. This is the first example of one-pot synthesis of benzoyl- and acetyl 1,2,4-oxadiazoles derivatives preparation using acetophenones derivates with electron-donator groups. (author)

  10. Crystal structures of two mononuclear complexes of terbium(III nitrate with the tripodal alcohol 1,1,1-tris(hydroxymethylpropane

    Directory of Open Access Journals (Sweden)

    Thaiane Gregório

    2017-02-01

    Full Text Available Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris(hydroxymethylpropane (H3LEt, C6H14O3 were prepared from Tb(NO33·5H2O and had their crystal and molecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris(hydroxymethylpropane]terbium(III nitrate dimethoxyethane hemisolvate, [Tb(NO32(H3LEt2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-antiprismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-molecule of dimethoxyethane (completed by a crystallographic twofold rotation axis is also present. In product aquanitratobis[1,1,1-tris(hydroxymethylpropane]terbium(III dinitrate, [Tb(NO3(H3LEt2(H2O](NO32, 2, one bidentate nitrate ion and one water molecule are bound to the nine-coordinate terbium(III centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water molecule was found in either of the crystal structures and, only in the case of 1, dimethoxyethane acts as a crystallizing solvent. In both molecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and intermolecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  11. Contribution for study on positron annihilation in tris (dipivaloilmethanates) lanthanides (III)

    International Nuclear Information System (INIS)

    Ribeiro e Silva, M.E.S.

    1988-01-01

    Some data on life time of positron and annihilation by Doppler effect in tris (dipivaloilmethanates) lanthanides (III), Ln (dpm) 3 , and Ln = Eu, Gd, Dy, Ho, Er, Tm and Yb are shown. Some results from positronium (Ps) in complexes except Eu (dpm) 3 , chemical aspects and properties of positron and positronium are evaluated. (M.J.C.) [pt

  12. Magneto, spectral and thermal studies of lanthanum and lanthanide(3) bromide and nitrate complexes of 2,2'bipyridine mono N-oxide

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    1988-01-01

    Lanthanide(3) bromide and nitrate complexes of 2,2'-bipyridine mono N-oxide (BipyNO) having the composition Ln(BipyNO) 3 Br 3 and Ln(BipyNO) 2 (NO 3 ) 3 (Ln=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Yb) have been prepared and characterized by means of conductance, molecular weight, magnetic and spectral studies. The ligand acts as a bidentate O,N-chelating agent. The coordination number nine or ten for lanthanide ions has been assigned to these complexes. 3 tabs., 25 refs. (author)

  13. Towards an interpretation of the mechanism of the actinides(III)/lanthanides(III) separation by synergistic solvent extraction with nitrogen-containing polydendate ligands; Vers une interpretation des mecanismes de la separation actinides(III)/lanthanides(III) par extraction liquide-liquide synergique impliquant des ligands polyazotes

    Energy Technology Data Exchange (ETDEWEB)

    Francois, N [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification, (DRRV), 30 - Marcoule (France); Universite Henri Poincare, 54 - Vandoeuvre-les-Nancy (France)

    2000-07-01

    In the field of the separation of long-lived radionuclides from the wastes produced by nuclear fuel reprocessing, aromatic nitrogen-containing polydendate ligands are potential candidates for the selective extraction, alone or in synergistic mixture with acidic extractants, of trivalent actinides from trivalent lanthanides. The first part of this work deals with the complexation of trivalent f cations with various nitrogen-containing ligands (poly-pyridine analogues). Time-resolved laser-induced fluorimetry (TRLIF) and UV-visible spectrophotometry were used to determine the nature and evaluate the stability of each complex. Among the ligands studied, the least basic Me-Btp proved to be highly selective towards americium(III) in acidic solution. In the second part, two synergistic systems (nitrogen-containing polydendate ligand and lipophilic carboxylic acid) are studied and compared in regard to the extraction and separation of lanthanides(III) and actinides(III). TRLIF and gamma spectrometry allowed the nature of the extracted complexes and the optimal conditions of efficiency of both systems to be determined. Comparison between these different studies showed that the selectivity of complexation of trivalent f cations by a given nitrogen-containing polydendate ligand could not always be linked to the Am(III)Eu(III) selectivity reached in synergistic extraction. The latter depends on the 'balance' between the acid-basic properties on the one hand, and on the hard-soft characteristics on the other hand, of both components of synergistic system. (author)

  14. Towards an interpretation of the mechanism of the actinides(III)/lanthanides(III) separation by synergistic solvent extraction with nitrogen-containing polydendate ligands; Vers une interpretation des mecanismes de la separation actinides(III)/lanthanides(III) par extraction liquide-liquide synergique impliquant des ligands polyazotes

    Energy Technology Data Exchange (ETDEWEB)

    Francois, N. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification, (DRRV), 30 - Marcoule (France); Universite Henri Poincare, 54 - Vandoeuvre-les-Nancy (France)

    2000-07-01

    In the field of the separation of long-lived radionuclides from the wastes produced by nuclear fuel reprocessing, aromatic nitrogen-containing polydendate ligands are potential candidates for the selective extraction, alone or in synergistic mixture with acidic extractants, of trivalent actinides from trivalent lanthanides. The first part of this work deals with the complexation of trivalent f cations with various nitrogen-containing ligands (poly-pyridine analogues). Time-resolved laser-induced fluorimetry (TRLIF) and UV-visible spectrophotometry were used to determine the nature and evaluate the stability of each complex. Among the ligands studied, the least basic Me-Btp proved to be highly selective towards americium(III) in acidic solution. In the second part, two synergistic systems (nitrogen-containing polydendate ligand and lipophilic carboxylic acid) are studied and compared in regard to the extraction and separation of lanthanides(III) and actinides(III). TRLIF and gamma spectrometry allowed the nature of the extracted complexes and the optimal conditions of efficiency of both systems to be determined. Comparison between these different studies showed that the selectivity of complexation of trivalent f cations by a given nitrogen-containing polydendate ligand could not always be linked to the Am(III)Eu(III) selectivity reached in synergistic extraction. The latter depends on the 'balance' between the acid-basic properties on the one hand, and on the hard-soft characteristics on the other hand, of both components of synergistic system. (author)

  15. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  16. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  17. Scandium, yttrium and the lanthanide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The hydroxide and oxide phases that exist for scandium(III) include scandium hydroxide, which likely has both amorphous and crystalline forms, ScOOH(s), and scandium oxide. This chapter presents the data selected for the stability constants of the polymeric hydrolysis species of scandium at zero ionic strength. The behaviour of yttrium, and the lanthanide metals, in the environment is largely dependent on their solution equilibria. Hydrolysis and other complexation reactions of yttrium and the lanthanide metals are important in the disposal of nuclear waste. The trivalent lanthanide metals include lanthanum(III) through lutetium(III). A number of studies have reported a tetrad effect for the geochemical behaviour of the lanthanide series, including stability constants and distribution coefficients. The solubility of many of the lanthanide hydroxide phases has been studied at fixed ionic strength. In studying the hydrolysis of cerium(IV), a number of studies have utilised oxidation-reduction reactions in determining the relevant stability constants.

  18. Phase extraction equilibria in systems rare earth (3) nitrates-ammonium nitrate-water-trialkylmethylammonium nitrate

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab

  19. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  20. Formation constants of lanthanide(III)- aminopolycarboxylate- ATP mixed ligand complexes and their systematics

    International Nuclear Information System (INIS)

    Verma, Sangeeta; Limaye, S.N.; Saxena, M.C.

    1993-01-01

    Formation constants (log Ksub(MAL)sup(MA), log Ksub(ML)sup(M) and log Ksub(ML)sup(ML) of mixed ligand lanthanide(III) complexes of the type [Ln(III).A.ATP[ 2 , where LN(III)=La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ or Dy 3+ ' A=NTA(nitrilotriacetate) or HEDTA (2-hydroxyethylethylenediamine triacetate) and ATP=adenosine 5'-triphosphate (L), and of the binary [Ln(III).ATP[ and [Ln(III).(ATP) 2 [ complexes have been determined by potentiometric pH titrations using the Irving-Rossotti approach at three temperatures 20, 30 and 40 degC and at a fixed ionic strength, I=0.2 mol dm -3 (NAclO 4 ). The solution stabilities (log Ksub(MAL)sup(MA) values) are influenced by the electrostatic effect involved in ternary complexation and increase with temperature. The enthalpy factor (ΔH) has been found to be small but unfavourable and the entropy factor (ΔS) large and favourable. The log Ksub(MAL)sup(MA) values lie in the order NTA>HEDTA with respect to A and La 3+ 3+ 3+ 3+ 3+ 3+ >Gd 3+ 3+ 3+ with respect to lanthanides. Tetrad effect is present in the formation constant values; its magnitude has been found to lie in the sequence f 7 >f 3 -f 4 ≅ f 10 -f 11 for the Ln(III) ions. Systematics in the formation constant values has been further studied by evaluating changes in the inter-electronic repulsion Racah parameters, extra stabilisation of specific 4f 9 -configurations and nephelauxetic ratio using experimental values of the formation constants. (author). 24 refs., 2 figs., 3 tabs

  1. Development and demonstration of a new SANEX Partitioning Process for selective actinide(III)/lanthanide(III) separation using a mixture of CyMe{sub 4}BTBP and TODGA

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, G.; Wilden, A.; Daniels, H. [Forschungszentrum Juelich GmbH (Germany). Institute for Energy and Climate Research, IEK-6, Nuclear Waste Management and Reactor Safety; Geist, A.; Magnusson, D. [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung; Malmbeck, R. [European Commission, JRC, Karlsruhe (Germany). Inst. for Transuranium Elements (ITU)

    2013-05-01

    Within the framework of the European collaborative project ACSEPT, a new SANEX partitioning process was developed at Forschungszentrum Juelich for the separation of the trivalent minor actinides americium, curium and californium from lanthanide fission products in spent nuclear fuels. The development is based on batch solvent extraction studies, single-centrifugal contactor tests and on flow-sheet design by computer code calculations. The used solvent is composed of 6,6{sup '}-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo-[1,2-4]trizazin-3-yl)-[2,2{sup '}]-bipyridine (CyMe{sub 4}BTBP) and N,N,N{sup '},N{sup '}-tetraoctyldiglycolamide (TODGA) dissolved in n-octanol. A spiked continuous counter-current test was carried out in miniature centrifugal contactors with the aid of a 20-stage flow-sheet consisting of 12 extraction, 4 scrubbing and 4 stripping stages. A product fraction containing more than 99.9% of the trivalent actinides Am(III), Cm(III) and Cf(III) was obtained. High product/feed decontamination factors >1000 were achieved for these actinides. The trivalent lanthanides were directed to the raffinate of the process with the actinide (III) product stream being contaminated with less than 0.5 mass-% in the initial lanthanides. (orig.)

  2. Transformation of Nitrate and Toluene in Groundwater by Sulfur Modified Iron(SMI-III)

    Science.gov (United States)

    Lee, W.; Park, S.; Lim, J.; Hong, U.; Kwon, S.; Kim, Y.

    2009-12-01

    In Korea, nitrate and benzene, toluene, ethylbenzene, and xylene isomers (BTEX) are frequently detected together as ground water contaminants. Therefore, a system simultaneously treating both nitrate (inorganic compound) and BTEX (organic compounds) is required to utilize groundwater as a water resource. In this study, we investigated the efficiency of Sulfur Modified Iron (SMI-III) in treating both nitrate and BTEX contaminated groundwater. Based on XRD (X-Ray Diffraction) analysis, the SMI-III is mainly composed of Fe3O4, S, and Fe. A series of column tests were conducted at three different empty bed contact times (EBCTs) for each compound. During the experiments, removal efficiency for both nitrate and toluene were linearly correlated with EBCT, suggesting that SMI-III have an ability to transform both nitrate and toluene. The concentration of SO42- and oxidation/reduction potential (ORP) were also measured. After exposed to nitrate contaminated groundwater, the composition of SMI-III was changed to Fe2O3, Fe3O4, Fe, and Fe0.95S1.05. The trends of effluent sulfate concentrations were inversely correlated with effluent nitrate concentrations, while the trends of ORP values, having the minimum values of -480 mV, were highly correlated with effluent nitrate concentrations. XRD analysis before and after exposed to nitrate contaminated groundwater, sulfate production, and nitrite detection as a reductive transformation by-product of nitrate suggest that nitrate is reductively transformed by SMI-III. Interestingly, in the toluene experiments, the trends of ORP values were inversely correlated with effluent toluene concentrations, suggesting that probably degrade through oxidation reaction. Consequently, nitrate and toluene probably degrade through reduction and oxidation reaction, respectively and SMI-III could serve as both electron donor and acceptor.

  3. Diphenyl-phosphinyl-morpholide (DPPM) lanthanide trifluoroacetate adducts

    International Nuclear Information System (INIS)

    Carvalho, L.R.F. de; Kim, D.J.

    1984-01-01

    Preparation and properties of adducts of lanthanide salts and diphenyl-phosphinyl-morpholide (DPPM) have been described in the literature. Addition compounds containing lanthanide nitrates, isothiocyanates, perchlorates, chlorides, bromides with DPPM have been obtained. In this article, the preparation and characterization of the addition compounds of lanthanide trifluoroacetates (TFA) with DPPM are reported. The compounds of general formula Ln (TFA) 3 . 3DPPM, Ln= La-Lu, Y were characterized by elemental analysis, melting ranges, infrared spectra, absorption and emission visible spectra, X-ray powder patterns. (Author) [pt

  4. Thermodynamic and kinetics study of the extraction of lanthanides nitrates by a malonamide (dimethyl di-octyl hexyl-ethoxy malonamide); Etude thermodynamique et cinetique de l'extraction des nitrates de lanthanides par un malonamide: N,N dimethyl-N,N dioctyl hexylethoxy malonamide ou DMDOHEMA

    Energy Technology Data Exchange (ETDEWEB)

    Bosland, L

    2005-10-15

    In the field of nuclear waste separation, DIAMEX Process (Based on liquid-liquid extraction) allows the co-extraction of trivalent lanthanides and actinides thanks to DMDOHEMA molecule. The objectives of this study are to measure the lanthanides extraction kinetics and to characterize the organic phase. Firstly, a thermodynamic study of water, nitric acid and neodymium nitrate extraction was done in DIAMEX process experimental conditions. Organic phase characterisation was done at different temperatures: measurement of the interfacial tension show the presence of aggregate (determination of the critical micellization concentrations); vapour pressure osmometry measurements confirm the presence of aggregates of diamide molecule in organic phase and show that their size and concentration vary with the temperature and the composition of aqueous phase. Nitric acid extraction was modelled at 25 deg C, several complexes were identified: - monomeric species: L(HNO{sub 3}), L(HNO{sub 3} ){sub 2} and (L){sub 2} (HNO{sub 3}) (with L: DMDOHEMA molecule) - and aggregate species: (L){sub 4} (HNO{sub 3} ){sub 2} (H{sub 2}O){sub 4} and (L){sub 15} (HNO{sub 3}){sub 7} (H{sub 2}O){sub 9}. When metal is in trace level concentration, lanthanides nitrate extraction at 25 deg C can be modelled by the species L{sub 12} (Ln(NO{sub 3}){sub 3} ). This stoichiometry can be dependant on the temperature. Then, kinetics study of neodymium nitrate by DMDOHEMA was done with two techniques: 'ARMOLLEX' cell and 'single drop technique'. Diffusional regime is the limiting step in 'ARMOLLEX' cell whereas a mix regime is rather obtained with 'single drop technique'. An increase of the temperature leads to a decreasing of the global transfer coefficient. This result could be explained by the interfacial behaviour of DMDOHEMA molecule that is not well understood, or by the extraction mechanisms which could be dependant on the temperature. (author)

  5. Recovery of copper(II) and chromium(III) from nitrate medium with ...

    African Journals Online (AJOL)

    The solvent extraction of copper(II) and chromium(III) from nitrate medium with salicylideneaniline (HL) is studied as a function of various parameters: pH, concentration of salicylideneaniline, contact time and the nature of anoin (nitrate and sulfate) in aqueous phase. Chromium(III) is not extracted by salicylideneaniline ...

  6. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    International Nuclear Information System (INIS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-01-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln 2 (Hpdc) 2 (C 2 O 4 )(H 2 O) 4 ] n ·2nH 2 O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H 3 pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H 3 pdc was decomposed into (ox) 2− with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2 1 /c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H 3 pdc was decomposed into (ox) 2− with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence

  7. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  8. Separation by liquid-liquid extraction of actinides(III) from lanthanides(III) using new molecules: the picolinamides; Separation par extraction liquide-liquide des actinides(III) des lanthanides(III) par de nouvelles molecules: les picolinamides

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P Y [CEA Marcoule, Departement de Recherche en Retraitement et en Vitrification, 30 - Bagnols-sur-Ceze (France); [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1996-07-01

    In the field of long-lived radionuclides separation from waste generated during spent fuel reprocessing, the picolinamides have been chosen as potential extractants for the selective extraction of actinides (III) from lanthanides (III). The first studies initiated on the most simple molecule of the picolinamide family, namely 2-pyridinecarboxamide, pointed out that in an aqueous media the complexation stability constant between this ligand and Am(III) is roughly 10 times higher than the ones corresponding to Ln(III). The synthesis of lipophilic derivatives of 2-pyridinecarboxamide leaded to extraction experiments. The extraction of metallic cation by lipophilic picolinamides, according to a solvatation mechanism, is strongly dependent on the nature of the amide function: a primary amide function (group I) leads to a good extraction; on the contrary, there is a decrease for secondary (group II) and tertiary (group III) amide functions. From a theoretical point of view, this work leads finally to the following conclusions: confirmation of the importance of the presence of soft donor atoms within the extractants (nitrogen in our case) for An(III)/Ln(III). Also, sensitivity of this soft donor atom regarding the protonation reaction; prevalence in our case of the affinity of the extractant for the metallic cation over the lipophilia of the extractant to ensure good distribution coefficients. The extraction and Am(III)/Ln(III) separation performances of the picolinamides from pertechnetic media leads to the design of a possible flowsheet for the reprocessing of high level liquid waste, with the new idea of an integrated technetium reflux. (author) 105 refs.

  9. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    International Nuclear Information System (INIS)

    Eliseeva, Svetlana V.; Golovach, Iurii P.; Liasotskyi, Valerii S.; Antonovich, Valery P.; Petoud, Stéphane; Meshkova, Svetlana B.

    2016-01-01

    Most of the existing optical methods for Cu II detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of Cu II ions based on both visible (Tb III , Eu III ) and near-infrared (Nd III , Yb III ) emission. Quantum yields of the characteristic Ln III emission signals increases by at least two-orders of magnitude upon addition of Cu II into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu II ions does not significantly affect the energy positions of the singlet (32,260 cm −1 ) and triplet (25,640–25,970 cm −1 ) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu II to Cu I has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu II over other transition metal ions: the addition of divalent Zn II , Cd II , Pd II , Ni II , Co II or trivalent Fe III , Ga III , In III ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu II results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the

  10. Magnetic Properties of linear chain compounds formed by lanthanide (III) ions and nitronyl-nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L. (Florence Univ. (IT)); Rey, P. (CEA Centre d' Etudes Nucleaires de Grenoble, 38 (FR). Dept. de Recherche Fondamentale)

    1988-12-01

    The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals.

  11. Magnetic Properties of linear chain compounds formed by lanthanide (III) ions and nitronyl-nitroxide radicals

    International Nuclear Information System (INIS)

    Benelli, C.; Caneschi, A.; Gatteschi, D.; Pardi, L.; Rey, P.

    1988-01-01

    The magnetic properties of novel linear chain compounds containing lanthanide (III) ions (gadolinium, europium) coupled to stable nitronyl-nitroxide radicals are reported. The metal ions and the radicals are regularly alternating along the chain. The magnetic behaviors appears to be dominated by antiferromagnetic interactions between the radicals

  12. Addition compounds between lanthanide (III) and yttrium (III) and methanesulfonates (MS) and 3-picoline-N-oxide (3-pic NO)

    International Nuclear Information System (INIS)

    Zinner, L.B.

    1984-01-01

    The preparation and characterization of addition compounds between lanthanide methanesulfonates and 3-picoline-N-oxide of general formula Ln (MS) 3 .2(3-pic No), Ln being La, Yb and Y, were carried out. The techniques employed for characterization were: elemental analysis, X-ray diffraction, infrared absorption spectroscopy, electrolytic conductance in methanol, melting ranges and emission spectrum of the Eu (III) compound. (Author) [pt

  13. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  14. Towards an interpretation of the mechanism of the actinides(III)/lanthanides(III) separation by synergistic solvent extraction with nitrogen-containing polydendate ligands

    International Nuclear Information System (INIS)

    Francois, N.

    2000-01-01

    In the field of the separation of long-lived radionuclides from the wastes produced by nuclear fuel reprocessing, aromatic nitrogen-containing polydendate ligands are potential candidates for the selective extraction, alone or in synergistic mixture with acidic extractants, of trivalent actinides from trivalent lanthanides. The first part of this work deals with the complexation of trivalent f cations with various nitrogen-containing ligands (poly-pyridine analogues). Time-resolved laser-induced fluorimetry (TRLIF) and UV-visible spectrophotometry were used to determine the nature and evaluate the stability of each complex. Among the ligands studied, the least basic Me-Btp proved to be highly selective towards americium(III) in acidic solution. In the second part, two synergistic systems (nitrogen-containing polydendate ligand and lipophilic carboxylic acid) are studied and compared in regard to the extraction and separation of lanthanides(III) and actinides(III). TRLIF and gamma spectrometry allowed the nature of the extracted complexes and the optimal conditions of efficiency of both systems to be determined. Comparison between these different studies showed that the selectivity of complexation of trivalent f cations by a given nitrogen-containing polydendate ligand could not always be linked to the Am(III)Eu(III) selectivity reached in synergistic extraction. The latter depends on the 'balance' between the acid-basic properties on the one hand, and on the hard-soft characteristics on the other hand, of both components of synergistic system. (author)

  15. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  16. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Eliseeva, Svetlana V., E-mail: svetlana.eliseeva@cnrs-orleans.fr [Centre de Biophysique Moléculaire CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2 (France); Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans (France); Golovach, Iurii P.; Liasotskyi, Valerii S. [I.I.Mechnikov Odessa National University, 2 Dvoryanska street, 65082 Odessa (Ukraine); Antonovich, Valery P. [A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine); Petoud, Stéphane, E-mail: stephane.petoud@inserm.fr [Centre de Biophysique Moléculaire CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2 (France); Meshkova, Svetlana B., E-mail: s_meshkova@ukr.net [A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine)

    2016-03-15

    Most of the existing optical methods for Cu{sup II} detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a 'turn-on' lanthanide(III)-based molecular probe for the specific detection of Cu{sup II} ions based on both visible (Tb{sup III}, Eu{sup III}) and near-infrared (Nd{sup III}, Yb{sup III}) emission. Quantum yields of the characteristic Ln{sup III} emission signals increases by at least two-orders of magnitude upon addition of Cu{sup II} into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu{sup II} ions does not significantly affect the energy positions of the singlet (32,260 cm{sup −1}) and triplet (25,640–25,970 cm{sup −1}) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu{sup II} to Cu{sup I} has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu{sup II} over other transition metal ions: the addition of divalent Zn{sup II}, Cd{sup II}, Pd{sup II}, Ni{sup II}, Co{sup II} or trivalent Fe{sup III}, Ga{sup III}, In{sup III} ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu{sup II} results in a 20- to 30-times

  17. Magneto and spectral behaviour of lanthanide(III) perchlorate complexes of n-isonicotinamidoanisalaldimine

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Sarin, R.K.

    1996-01-01

    A new series of lanthanide(III) perchlorate complexes of N-isonicotinamidoanisalaldimine (INH-SAL) with the general composition (Ln(INH-SAL) 4 )(ClO) 4 ) 3 (Ln=La, Pr, Nd, Sm, Gd, Tb or Dy) were synthesized and characterized by elemental analyses, conductance, molecular weight, infrared and electronic spectral data. INH-SAL acts as a bidentate (N, O) chelating agents. The tentative coordination number eight has been assigned. Thermal behaviour of some representative chelates has also been investigated. (author). 14 refs., 2 tabs

  18. Rethinking anaerobic As(III) oxidation in filters: Effect of indigenous nitrate respirers.

    Science.gov (United States)

    Cui, Jinli; Du, Jingjing; Tian, Haixia; Chan, Tingshan; Jing, Chuanyong

    2018-04-01

    Microorganisms play a key role in the redox transformation of arsenic (As) in aquifers. In this study, the impact of indigenous bacteria, especially the prevailing nitrate respirers, on arsenite (As(III)) oxidation was explored during groundwater filtration using granular TiO 2 and subsequent spent TiO 2 anaerobic landfill. X-ray absorption near edge structure spectroscopy analysis showed As(III) oxidation (46% in 10 days) in the presence of nitrate in the simulated anaerobic landfills. Meanwhile, iron (Fe) species on the spent TiO 2 were dominated by amorphous ferric arsenate, ferrihydrite and goethite. The Fe phase showed no change during the anaerobic landfill incubation. Batch incubation experiments implied that the indigenous bacteria completely oxidized As(III) to arsenate (As(V)) in 10 days using nitrate as the terminal electron acceptor under anaerobic conditions. The bacterial community analysis indicated that various kinds of microbial species exist in groundwater matrix. Phylogenetic tree analysis revealed that Proteobacteria was the dominant phylum, with Hydrogenophaga (34%), Limnohabitans (16%), and Simplicispira (7%) as the major bacterial genera. The nitrate respirers especially from the Hydrogenophaga genus anaerobically oxidized As(III) using nitrate as an electron acceptor instead of oxygen. Our study implied that microbes can facilitate the groundwater As oxidation using nitrate on the adsorptive media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Separation of Am(III) from Eu(III) by mixtures of triazynylbipyridine and bis(dicarbollide) extractants. The composition of the metal complexes extracted

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. The use of soft donor (N and S) ligands makes it possible to separate the two groups of elements, probably because of the more covalent character in the complexes with actinides compared to the lanthanides. The aim of present work was to study solvent extraction of Am(III) and Eu(III) in a similar system with diethylhemi-BTP and COSAN: protonated bis(chlorodicarbollido)cobalt(III) or commo-3,3-cobalta-bis(8,9,12-trichlora-1,2-dicarbaclosododecaborane)ic acid. The present research was focused on both the determination of conditions for the separation of 241 Am(III) from 152 Eu in aqueous nitrate solution by using a synergistic extraction system and on the modelling of the process by slope analysis. Obtained values of the separation factors supported by the computer modelling permitted drawing the conclusions on the mechanism of the process and on the structure of extracted species

  20. Mutual solubility between hexane and three-n-butyl phosphate solvates of lanthanide(III) and thorium(IV) nitrates at various temperatures

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Lishuk, V.V.; Pyartman, A.K.

    2007-01-01

    Phase diagrams of binary liquid systems of hexane-rare earth(III) nitrates solvates (rare earth - neodymium, gadolinium, yttrium, ytterbium, lutetium) and thorium(IV) with tri-n-butylphosphate are studied at different temperatures. Phase diagrams of binary systems consist of fields of homogeneous solutions and field of stratification into two liquid phases (I, II): phase I is enriched by hexane, and phase II - [Ln(NO 3 ) 3 (TBP) 3 ] (Ln=Nd, Gd, Y, Yb and Lu) or [Th(NO 3 ) 4 (TBP) 2 ]. Field of stratification into two liquid phases are decreased with growing temperature in binary systems [ru

  1. Separation by liquid-liquid extraction of actinides(III) from lanthanides(III) using new molecules: the picolinamides

    International Nuclear Information System (INIS)

    Cordier, P.Y.

    1996-07-01

    In the field of long-lived radionuclides separation from waste generated during spent fuel reprocessing, the picolinamides have been chosen as potential extractants for the selective extraction of actinides (III) from lanthanides (III). The first studies initiated on the most simple molecule of the picolinamide family, namely 2-pyridinecarboxamide, pointed out that in an aqueous media the complexation stability constant between this ligand and Am(III) is roughly 10 times higher than the ones corresponding to Ln(III). The synthesis of lipophilic derivatives of 2-pyridinecarboxamide leaded to extraction experiments. The extraction of metallic cation by lipophilic picolinamides, according to a solvatation mechanism, is strongly dependent on the nature of the amide function: a primary amide function (group I) leads to a good extraction; on the contrary, there is a decrease for secondary (group II) and tertiary (group III) amide functions. From a theoretical point of view, this work leads finally to the following conclusions: confirmation of the importance of the presence of soft donor atoms within the extractants (nitrogen in our case) for An(III)/Ln(III). Also, sensitivity of this soft donor atom regarding the protonation reaction; prevalence in our case of the affinity of the extractant for the metallic cation over the lipophilia of the extractant to ensure good distribution coefficients. The extraction and Am(III)/Ln(III) separation performances of the picolinamides from pertechnetic media leads to the design of a possible flowsheet for the reprocessing of high level liquid waste, with the new idea of an integrated technetium reflux. (author)

  2. Extraction of lanthanides and actinides (III) by DI-2 ethyl dithiophosphoric acid and DI-2 ethyl hexyl monothiophosphoric acid. Structure of the complexes in the organic phase

    International Nuclear Information System (INIS)

    Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C.

    1986-09-01

    To operate a trivalent actinide-lanthanide (III) group chemical separation from low pH nitric solutions we studied the extractive properties of the di-2 ethyl hexyl dithiophosphoric acid (HDEHDTP); this bidentate ligand which possesses a sulfur donor atom is a good extractant of soft acids. We so expect a better selectivity for the actinides (III) extraction. We also have investigated extractive properties of di-2 ethyl hexyl monothiophosphoric acid (HDEHTP) for trivalent actinides and lanthanides; HDEHDTP is a bidentate ligand with one oxygen donor atom and so is a better extractant for hard acids like actinides and lanthanides (III); but its selectivity is weak. The addition of TBP (tri-n butyl phosphate) to HDEHDTP deals to strong synergistic organic complexes with a great selectivity for Am(III). We explicited this phenomenon. When the metal is macroconcentrated the organic complexes aggregate and form inverted micelles

  3. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    International Nuclear Information System (INIS)

    Zhao Jing; Liang Jingjing; Pan Yingli; Zhang Yong; Jia Dingxian

    2011-01-01

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en) 2 (dien)(η 2 -SbSe 4 )] (Ln=Ce(1a), Nd(1b)), [Ln(en) 2 (dien)(SbSe 4 )] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)(μ-η 1 ,η 2 -SbSe 4 )] ∞ (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)(η 2 -SbSe 4 )] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe 4 ] 3- acts as a monodentate ligand mono-SbSe 4 , a bidentate chelating ligand η 2 -SbSe 4 or a tridentate bridging ligand μ-η 1 ,η 2 -SbSe 4 to the lanthanide(III) center depending on the Ln 3+ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E g between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: → Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. → The [SbSe 4 ] 3- anion acts as a mono-SbSe 4 , a η 2 -SbSe 4 or a μ-η 1 ,η 2 -SbSe 4 ligand to the Ln 3+ ions. → The soft base ligand [SbSe 4 ] 3- can be controlled to coordinate to the Ln 3+ ions with en+dien and en+trien as co-ligands.

  4. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    Science.gov (United States)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln2(Hpdc)2(C2O4)(H2O)4]n·2nH2O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H3pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H3pdc was decomposed into (ox)2- with Cu(II)-Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P21/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1-4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities.

  5. Structural, luminescence and biological studies of trivalent lanthanide complexes with N,N Prime -bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base ligand

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M. [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Al Momani, Waleed [Department of Allied Medical Sciences, Al Balqa Applied University (Jordan)

    2012-11-15

    New eight lanthanide metal complexes were prepared. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis ({sup 1}H NMR, FT-IR, UV-vis), luminescence and thermal gravimetric analysis. All Ln(III) complexes were 1:1 electrolytes as established by their molar conductivities. The microanalysis and spectroscopic analysis revealed eight-coordinated environments around lanthanide ions with two nitrate ligands behaving in a bidentate manner. The other four positions were found to be occupied with tetradentate L{sub III} ligand. Tb-L{sub III} and Sm-L{sub III} complexes exhibited characteristic luminescence emissions of the central metal ions and this was attributed to efficient energy transfer from the ligand to the metal center. The L{sub III} and Ln-L{sub III} complexes showed antibacterial activity against a number of pathogenic bacteria. - Highlights: Black-Right-Pointing-Pointer Ln(III) ion adopts an eight-coordinate geometry. Black-Right-Pointing-Pointer Luminescence spectra of Sm-L{sub III} and Tb-L{sub III} complexes display the metal centered line emission. Black-Right-Pointing-Pointer Energy transfer process from L{sub III} to Sm in Sm-L{sub III} complex is more efficient than to Tb in Tb-L{sub III} complex. Black-Right-Pointing-Pointer Ln(III) complexes may serve as models for biologically important species.

  6. Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gel glasses

    International Nuclear Information System (INIS)

    Lenaerts, Philip; Ryckebosch, Eline; Driesen, Kris; Deun, Rik van; Nockemann, Peter; Goerller-Walrand, Christiane; Binnemans, Koen

    2005-01-01

    The solubility and uniform distribution of lanthanide complexes in sol-gel glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide β-diketonate complexes (Ln=Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(III) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured

  7. The systems cerium(3) (samarium) nitrate-quinoline nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C the solubility in the systems cerium (3) nitrate-quinoline nitrate-water and samarium nitrate-quinoline nitrate-water has been studied. It is established that in the systems during chemical interaction of components congruently melting compounds of the composition: Ce(NO 3 ) 2 x2[C 9 H 7 NxHNO 3 ]x6H 2 O and Sm(NO 3 ) 3 x2[C 9 H 7 NxHNO 3 ]x2H 2 O are formed. New solid phases are separated preparatively and are subjected to chemical, differential thermal and IR spectroscopic analyses. The investigation results are compared with similar ones for nitrates of other representatives of lanthanide group

  8. Structural study of the uranyl and rare earth complexation functionalized by the CMPO; Etude structurale de la complexation de l'uranyle et des ions lanthanides par des calixarenes fonctionnalises par le CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Cherfa, S

    1998-12-10

    In view of reducing the volume of nuclear waste solutions, a possible way is to extract simultaneously actinide and lanthanide ions prior to their ulterior separation.. Historically, the two extractant families used for nuclear waste reprocessing are the phosphine oxides and the CMPO (Carbamoyl Methyl Phosphine Oxide). For a better understanding of the complexes formed during extraction, we undertook structural studies of the complexes formed between uranyl and lanthanide (III) ions and the two classes of ligands cited above. These studies have been performed by X-ray diffraction on single crystals. Recently, a new type of extractants of lanthanide (III) and actinide (III) ions has been developed. When the Organic macrocycle called calixarene (an oligomeric compound resulting from the poly-condensation of phenolic units) is functionalized by a CMPO ligand, the extracting power, in terms of yield and selectivity towards lightest lanthanides, is greatly enhanced compared to the one measured for the single CMPO. Our X-ray diffraction studies allowed us to characterise, in terms of stoichiometry and monodentate or bidentate coordination mode of the CMPO functions, the complexes of calix[4]arene-CMPO (with four phenolic units) with lanthanide nitrates and uranyl. These different steps of characterisation enabled us to determine the correlation between the structures of the complexes and both selectivity and exacerbation of the extracting power measured in the liquid phase. (author)

  9. Actinides(3)/lanthanides(3) separation by nano-filtration assisted by complexation; Separation actinides(3)lanthanides(3) par nanofiltration assistee par complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sorin, A

    2006-07-01

    In France, one of the research trend concerning the reprocessing of spent nuclear fuel consists to separate selectively the very radio-toxic elements with a long life to be recycled (Pu) or transmuted (Am, Cm, Np). The aim of this thesis concerns the last theme about actinides(III)/lanthanides(III) separation by a process of nano-filtration assisted by complexation. Thus, a pilot of tangential membrane filtration was designed and established in a glove box at the ATALANTE place of CEA-Marcoule. Physico-chemical characterisation of the Desal GH membrane (OSMONICS), selected to carry out actinides(III)/lanthanides(III) separation, was realized to determine the zeta potential of the active layer and its resistance to ionizing radiations. Moreover, a parametric study was also carried out to optimize the selectivity of complexation, and the operating conditions of complex retention (influences of the transmembrane pressure, solute concentration, tangential velocity and temperature). Finally, the separation of traces of Am(III) contained in a mixture of lanthanides(III), simulating the real load coming from a reprocessing cycle, was evaluated with several chelating agents such as poly-amino-carboxylic acids according to the solution acidity and the [Ligand]/[Cation(III)] ratio. (author)

  10. Thermal decomposition of lanthanides (III) and yttrium (III) solid complexes from ethyl ene diamine tetraacetic acid

    International Nuclear Information System (INIS)

    Mercadante, A.

    1991-01-01

    Solid state compounds of lanthanides (III) and yttrium derived from ethyl ene diamine tetraacetic acid were prepared from respective basic carbonates, that were neutralized with EDTA stoichiometry quantities. Complexometry with EDTA, thermogravimetry (TG), differential thermal analysis (DTA) and X-ray diffraction have been used in the study of these compounds. The results of complexometry with EDTA as well as TG and DTA curves bed to the stoichiometry of these compounds the following general formula is obeyed: H[Ln(EDTA]. n H 2 O. X-ray powder patterns of these compounds permitted to establish two isomorphous series. The DTA ant TG curves allowed us to study the dehydration process, the thermal stability and thermal decomposition of these compounds. (C.G.C.)

  11. Uranium and lanthanide complexes with the 2-mercapto benzothiazolate ligand: Evidence for a specific covalent binding site in the differentiation of isostructural lanthanide(III) and actinide(III) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Roger, M.; Arliguie, T.; Thuery, P.; Ephritikhine, M. [CEA Saclay, DSM, DRECAM, Serv Chim Mol, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Belkhiri, L. [Univ Mentouri Constantine, Fac Sci, Dept Chim, Lab Chim Mol LACMOM, Constantine 25017, (Algeria); Boucekkine, A. [Univ Rennes 1, CNRS, UMR Sci Chim Rennes 6226, F-35042 Rennes, (France)

    2008-07-01

    Treatment Of [U(Cp*){sub 2}Cl{sub 2}] with KSBT in THF gave [U(Cp*){sub 2}(SBT){sub 2}], which exhibits the usual bent sandwich configuration in the solid state with the two SBT ligands adopting the bidentate ligation mode. The mono-cyclopentadienyl compound [U(Cp*)(SBT){sub 3}] was synthesized by reaction of [U(Cp*)(BH{sub 4}){sub 3}] with KSBT in THF, and its reduction with potassium amalgam in the presence of 18-crown-6 afforded the corresponding anionic complex [K(18-crown-6)(THF){sub 2}][U(Cp*)(SBT){sub 3}]. The lanthanide analogues [K(THF){sub 2}Ln(Cp*)(SBT){sub 3}] were obtained by treating [Ln(BH{sub 4}){sub 3}(THF){sub 3}] with KSBT and KCp*; isomorphous crystals of [K(15-crown-5){sub 2}] [Ln(Cp*)(SBT){sub 3}].THF [Ln = La, Ce, Nd] were formed upon addition of 15-crown-5. Comparison of the crystal structures of the pentagonal bipyramidal complexes [M(Cp*)(SBT){sub 3}]{sup -} reveals that the M-Nax distances are shorter than the M-Neq distances, whatever the metal, the phenomenon being enhanced in the U(III) compound versus the Ln(III) analogues. The structural data obtained by relativistic density functional theory (DFT) calculations reproduce experimental trends. Electronic population and molecular orbital analyses show that the structural differences in the series of [M(Cp*)(SBT){sub 3}]{sup -} anions are related to the uranium 5f orbital-ligand mixing, which is greater than the lanthanide 4f orbital-ligand mixing. Moreover, the consideration of the corresponding bond orders and the analysis of the bonding energy bring to light a strong and specific interaction between the uranium and apical nitrogen atoms. (authors)

  12. The electronic structure of adducts derived from tris(cyclopentadienyl)-lanthanide(III)

    International Nuclear Information System (INIS)

    Amberger, H.D.; Edelstein, N.M.

    1985-01-01

    On the basis of magneto-optical and optical data of adducts derived from tris (eta/sup 5/-cyclopentadienyl)-lanthanide(III) (Ln = Pr, Nd, Er) the underlying crystal field (CF) splitting patterns could be derived. Fitting the parameters of an empirical Hamiltonian to these CF splitting patterns, the CF eigenvalues and CF eigenfunctions were obtained. By means of these data the experimental temperature dependence of the paramagnetic susceptibility could be reproduced by choosing orbital reduction factors between 0.950 and 0.975, respectively. The contact contribution of the /sup 1/H-NMR shifts of the cyclopentadienide protons of Cp/sub 3/Pr . CNC/sub 6/H/sub 11/ could be simulated by adopting a hyperfine coupling parameter A/sub F/ = vertical bar 0.236 vertical bar MHz

  13. Preparation, characterization and thermal behaviour study of double selenates of lanthanides, yttrium and beryllium

    International Nuclear Information System (INIS)

    Ribeiro, C.A.

    1988-01-01

    The lanthanides (III) and yttrium (III) double selenates were studied using common analytical methods, atomic absorption, X-ray diffraction infra-red absorption, thermogravimetry and differential thermal analysis. These compounds were prepared from the mixture of lanthanides (III) and yttrium (III) selenates aqueous solution and basic beryllium selenates aqueous solution, obeying equimolar relation (1:1) to the cation

  14. Radical-lanthanide ferromagnetic interaction in a T bIII bis-phthalocyaninato complex

    Science.gov (United States)

    Komijani, Dorsa; Ghirri, Alberto; Bonizzoni, Claudio; Klyatskaya, Svetlana; Moreno-Pineda, Eufemio; Ruben, Mario; Soncini, Alessandro; Affronte, Marco; Hill, Stephen

    2018-02-01

    Recent studies have highlighted the importance of organic ligands in the field of molecular spintronics, via which delocalized electron-spin density can mediate magnetic coupling to otherwise localized 4 f moments of lanthanide ions, which show tremendous potential for single-molecule device applications. To this end, high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is employed to study a neutral terbium bis-phthalocyaninato metalorganic complex, [TbPc2 ] 0, with the aim of understanding the magnetic interaction between the Ising-like moment of the lanthanide ion and the unpaired spin density on the coordinating organic radical ligand. The measurements were performed on a previously unknown [TbPc2 ] 0 structural phase crystallizing in the Pnma space group. EPR measurements on powder samples of [TbPc2 ] 0 reveal an anisotropic spectrum, which is attributed to the spin-1/2 radical coupled weakly to the EPR-silent T bIII ion. Extensive double-axis rotation studies on a single crystal reveal two independent spin-1/2 signals with differently oriented (albeit identical) uniaxial g -tensors, in complete agreement with x-ray structural studies that indicate two molecular orientations within the unit cell. The easy-axis nature of the radical EPR spectra thus reflects the coupling to the Ising-like T bIII moment. This is corroborated by studies of the isostructural [YPc2 ] 0 analog (where Y is nonmagnetic yttrium), which gives a completely isotropic radical EPR signal. The experimental results for the terbium complex are well explained on the basis of an effective model that introduces a weak ferromagnetic Heisenberg coupling between an isotropic spin-1/2 and an anisotropic spin-orbital moment, J =6 , that mimics the known, strong easy-axis Tb ⋯P c2 crystal-field interaction.

  15. Direct spectrophotometric analysis of low level Pu (III) in Pu(IV) nitrate solution

    International Nuclear Information System (INIS)

    Mageswaran, P.; Suresh Kumar, K.; Kumar, T.; Gayen, J.K.; Shreekumar, B.; Dey, P.K.

    2010-01-01

    Among the various methods demonstrated for the conversion of plutonium nitrate to its oxide, the oxalate precipitation process either as Pu (III) or Pu (IV) oxalate gained wide acceptance. Since uranous nitrate is the most successful partitioning agent used in the PUREX process for the separation of Pu from the bulk amount of U, the Pu (III) oxalate precipitation of the purified nitrate solution will not give required decontamination from U. Hence Pu IV oxalate precipitation process is a better option to achieve the end user's specified PuO 2 product. Prior to the precipitation process, ensuring of the Pu (IV) oxidation state is essential. Hence monitoring of the level of Pu oxidation state either Pu (III) or Pu (IV) in the feed solution plays a significant role to establish complete conversion of Pu (III). The method in vogue to estimate Pu(lV) content is extractive radiometry using Theonyl Trifluoro Acetone (TTA). As the the method warrants a sample preparation with respect to acidity, a precise measurement of Pu (IV) without affecting the Pu(III) level in the feed sample is difficult. Present study is focused on the exploration of direct spectrophotometry using an optic fiber probe of path length of 40mm to monitor the low level of Pu(III) after removing the bulk Pu(lV) which interfere in the Pu(III) absorption spectrum, using TTA-TBP synergistic mixture without changing the sample acidity

  16. Subnanodimensional thermometrical NMR-sensors on the basis of lanthanide(III) paramagnetic complexes with EDTA for temperature control in aqueous media and magnetoresonance tomography

    International Nuclear Information System (INIS)

    Babajlov, S.P.

    2008-01-01

    It is proposed that temperature dependence of paramagnetic lanthanide-induced shifts (LIS) in NMR spectra on nuclei of EDTA type synthetic organic complexes in kinetically unstable compounds with paramagnetic lanthanide(III) cations is used for ascertaining the temperature of samples placed directly into a NMR spectrometer and formed on the basis of aqueous solutions of diverse chemical substances. It was revealed that complex [Ho III (EDTA)] can be used as an internal or an external thermometric NMR-sensor. For identification and control of temperature in a sample one can make use of LIS for individual signals from CH 2 groups (taken in relation to water or inner DCC standard signals). A higher temperature measurement accuracy (≤0.08 K) is attained by using LIS difference corresponding to the relevant nonequivalent CH 2 groups [ru

  17. Separation of Am from lanthanides by a synergistic mixture of purified Cyanex 301 and TBP

    International Nuclear Information System (INIS)

    Xinghai Wang; Yongjun Zhu; Rongzhou Jiao

    2002-01-01

    The dependence of the distribution ratios of 241 Am and lanthanides between purified Cyanex 301 (HBTMPDTP)-TBP-kerosene/nitrate solution on pH, lanthanide concentration in aqueous phase and degree of saponification of HBTMPDTP was investigated. The distribution ratios of 241 Am and lanthanides increase with pH and degree of saponification of HBTMPDTP and decrease with lanthanides concentration. Countercurrent multistage extraction consisting of 7 extraction, 3 washing and 2 stripping stages showed that more than 99,99% of 241 Am and less than 0.04% of lanthanides were extracted. The pH 1/2 value of Am was 2.45 compared to 3.16 in case of HBTMPDTP-kerosene extraction. (author)

  18. Separation of Am(III) from SHLW using a hollow fiber supported liquid membrane containing TODGA as the carrier

    International Nuclear Information System (INIS)

    Ansari, S.A.; Raut, D.R.; Mohapatra, P.K.; Manchanda, V.K.

    2008-01-01

    Facilitated transport of Am(III) from nitrate medium has been investigated through a hollow fibre supported liquid membrane using N,N,N',N'-tetraoctyl diglycolamide (TODGA) as the carrier. The influence of aqueous feed composition on the permeability of Am(III) is reported. Quantitative transport of Am(III) was observed in 45 min from a feed solution containing 1g/l Nd(III) at 3.5M HNO 3 . Similarly, quantitative transport of Am(III) was observed in 30 min from a synthetic high level waste containing ∼0.6g/l total lanthanides, in addition to the other non-extractable metal ions. (author)

  19. N,N-dimethylformamide (dMF) adducts of lanthanide trifluoroacetates

    International Nuclear Information System (INIS)

    Vicentini, G.; Silva, M.G. da

    1984-01-01

    Addition compounds of lanthanide iodides, acetates, nitrates, perchlorates, chlorides, perhenates, hexathiocyanates, chromiates, isothiocyanates and hexafluorophosphates with DMF have been extensively described in the literature. This article reports the preparation and characterization of adducts with general formula Ln(CF 3 COO) 3 . 2 DMF. (Author) [pt

  20. Complexes of light lanthanides with 2,4-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    WIESLAWA FERENC

    2000-01-01

    Full Text Available The complexes of light lanthanides with 2,4-dimethoxybenzoic acid of the formula: Ln(C9H9O43·nH2O where Ln = La(III, Ce(III, Pr(III, Nd(III, Sm(III, Eu(III, Gd(IIII, and n = 3 for La(III, Gd(III, n = 2 for Sm(III, Eu(III, and n = 0 for Ce(III, Pr(III, Nd(III have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric studies and X-ray diffraction measurements. The complexes have colours typical for Ln3+ ions (La, Ce, Eu, Gd-white, Sm-cream, Pr-green, Nd-violet. The carboxylate group in these complexes is a symmetrical, bidentate, chelating ligand. They are crystalline compounds characterized by various symmetry. On heating in air to 1273 K the 2,4-dimethoxybenzoates of the light lanthanides decompose in various ways. The hydrated complexes decompose in two or three steps while those of anhydrous ones only in one or two. The trihydrate of lanthanum 2,4-dimethoxybenzoate first dehydrates to form the anhydrous salt, which then decomposes to La2O3via the intermediate formation of La2O2CO3. The hydrates of Sm(III, Eu(III, Gd(III decompose in two stages. First, they dehydrate forming the anhydrous salts, which then decompose directly to the oxides of the respective metals. The anhydrous complexes of Ce(III, Pr(III decompose in one step, while that of Nd(III in two. The solubilities of the 2,4-dimethoxybenzoates of the light lanthanides in water and ethanol at 293 K are in the order of: 10-3 mol dm-3 and 10-4-10-3 mol dm-3, respectively.

  1. Lanthanides(3)/ actinides (3) separation by nano-filtration-complexation in aqueous medium

    International Nuclear Information System (INIS)

    Chitry, F.; Pellet-Rostaing, S.; Gozzi, C.; Lemaire, M.; Guy, A.; Foos, J.

    2000-01-01

    Lanthanides(III)/actinides(III) separation is a major research subject in matter of treatment of high activity liquid effluents. Liquid-liquid extraction actually gives the best results for this separation. In order to demonstrate that nano-filtration (NF) is a valuable alternative to liquid-liquid extraction, we tried to separate different lanthanides(III) with a nano-filtration process combined with a selective complexation step. At first DTPA (diethylene-triamine-pentaacetic acid) combined with a Sepa MG-17 (Osmonics) gave a 95% retention of Gd 3+ and a 50% retention of La 3+ . Then new hydrosoluble and more selective ligands derived from DTPA were synthesized. One of them combined with a Sepa MG-17 membrane allowed a 87% retention of Gd 3+ and a 5% retention of La 3+ . The same nano-filtration-complexation system was experimented with an equimolar aqueous solution of Gd 3+ , Pr 3+ and La 3+ . Other experiments in the field of actinides(III)/lanthanides(III) separation were also performed. (authors)

  2. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    Science.gov (United States)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  3. Adducts of between lanthanide (III) trifluoromethanesulfonate and yttrium (III) and tetramethylene sulphoxide ligand

    International Nuclear Information System (INIS)

    Assis Araujo, F. de.

    1983-01-01

    The synthesis, characterization and spectroscopic properties of lanthanides trifluoromethanesulfonate complexes with tetramethylenesulfoxide (TMSO), are described. The interpretation of X-ray powder patterns show one isomorphous series. (M.J.C.) [pt

  4. Effect of the oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation

    Science.gov (United States)

    Senko, John M.; Dewers , Thomas A.; Krumholz, Lee R.

    2005-01-01

    A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble Fe(II) [Fe(II)sol] or FeS under nitrate-reducing conditions. Based on X-ray diffraction (XRD) analysis, Fe(III) (hydr)oxide produced by oxidation of FeS was shown to be amorphous, while oxidation of Fe(II)sol yielded goethite. The rate of Fe(II) oxidation was then manipulated by incubating various cell concentrations of FW33AN with Fe(II)sol and nitrate. Characterization of products revealed that as Fe(II) oxidation rates slowed, a stronger goethite signal was observed by XRD and a larger proportion of Fe(III) was in the crystalline fraction. Since the mineralogy of Fe(III) (hydr)oxides may control the extent of subsequent Fe(III) reduction, the variables we identify here may have an effect on the biogeochemical cycling of Fe in anoxic ecosystems.

  5. Modelling the liquid-liquid extraction of nitric acid and lanthanide nitrates by tributylphosphate. Study of the influence of the aqueous phase composition on the selectivity of rare earth separation

    International Nuclear Information System (INIS)

    Mokili, Bandombele

    1992-01-01

    This research thesis reports the application of advances in the modelling of liquid-liquid extraction to a quantitative processing of the selectivity of separations. It is here applied to the extraction-based separation of lanthanide nitrates by using the tributylphosphate (TBP) in nitric environment as this system is interesting for industrial applications in hydro-metallurgy of rare earths as well as in the processing of irradiated nuclear fuels. Experimental data are acquired and then used in the Mikulin-Sergievskii-Dannus model. Complete modelling is thus obtained which allowed the complex problem of extraction of nitric acid and of lanthanide to be addressed, and the existence of a hybrid solvate to be supported. A mathematical expression of the separation factor of two lanthanides is proposed and used to highlight its influencing parameters, i.e. water activity in the aqueous phase, and the rate of the effective extraction constants of the two elements to be separated. Experimental observations are thus interpreted. The selection of optimal separation conditions is thus justified, and, in some cases, the system selectivity can be predicted [fr

  6. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  7. Studies on mixed ligand complexes of lanthanide (III) ions

    International Nuclear Information System (INIS)

    Rajendran, G.; Usha Devi, K.G.

    2002-01-01

    As part of our research programme, we have prepared and characterized a few nitrato, thiocyanato and perchlorato complexes of lanthanide(III) ions with ligands, viz., a Schiff base derived from p-anisidine and vanillin and diphenyl sulphoxide. The complexes were characterized by the measurement of electrical conductances and magnetic susceptibilities, molecular mass and metal percentage and spectral analysis. The thermal decompositions were studied by TG and DTG techniques. The thiocyanato complexes were prepared by substitution method from nitrato complexes. p-Anisidine-vanillin (HDDA) and diphenyl sulphoxide (DPSO) are coordinated to the metal ion in unidentate fashion. All the anions were involved in coordination in these complexes. Thus they were found to have non- electrolytic behaviour with composition [Ln(HDDA) 2 (DPSO)X 3 ] where X = NO 3 ) or SCN perchlorato complexes were prepared from metal perchlorate as done in the case of nitrato complexes. They were found to have electrical conductance which corresponds to 1 : 1 electrolyte. Hence one of the perchlorate ions is outside the coordination sphere. The composition of this complex is found to be [Ln(HDDA) 3 (DPSO)(ClO 4 ) 2 ]ClO 4 . (author)

  8. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  9. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    Lanthanide complexes, hydrazino, antioxidant activity, X-ray structure. 1. Introduction ... measured using a Johnson Matthey scientific magnetic suscepti- bility balance. 2.1. .... of the ligand and that the nitrogen atom supporting this proton is not involved in the ... 4f-electrons are not involved in the coordination. These facts.

  10. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  11. Crystal structure of a samarium(III nitrate chain cross-linked by a bis-carbamoylmethylphosphine oxide ligand

    Directory of Open Access Journals (Sweden)

    Julie A. Stoscup

    2014-10-01

    Full Text Available In the title compound poly[aquabis(μ-nitrato-κ4O,O′:O,O′′tetrakis(nitrato-κ2O,O′{μ4-tetraethyl [(ethane-1,2-diylbis(azanediylbis(2-oxoethane-2,1-diyl]diphosphonate-κ2O,O′}disamarium(III], [Sm2(NO36(C14H30N2O8P2(H2O]n, a 12-coordinate SmIII and a nine-coordinate SmIII cation are alternately linked via shared bis-bidentate nitrate anions into a corrugated chain extending parallel to the a axis. The nine-coordinate SmIII atom of this chain is also chelated by a bidentate, yet flexible, carbamoylmethylphoshine oxide (CMPO ligand and bears one water molecule. This water molecule is hydrogen bonded to nitrate groups bonded to the 12-coordinate SmIII cation. The CMPO ligand, which lies about an inversion center, links neighboring chains along the c axis, forming sheets parallel to the ac plane. Hydrogen bonds between the amide NH group and metal-bound nitrate anions are also present in these sheets. The sheets are packed along the b axis through only van der Waals interactions.

  12. Extraction of lanthanides ions (III) from aqueous solution by sodium salt of the N(4-amino-benzoate)-propyl-silica gel

    International Nuclear Information System (INIS)

    Retamero, R.C.

    1991-01-01

    The silica gel 60 of specific superficial area 486 m 2 .g -1 was modified chemically with the ligand 4-amino benzoate of sodium in water-ethanol environment (l:L). The adsorptions of metallic ions were from water solutions at approximately 2 x 10 -3 M of chloride of Pr(III), Nd(III), Eu(III) and Ho(III). In these experiments we could see that the system gets the equilibrium of adsorption rapidly and that the pH of the environment has a great influence on the process of adsorption, being that the number of metal mols adsorpted in the matrix varied between 10,00 and 17,00 x 10 -5 mols. g -1 with a pH of approximately 5 for all the lanthanides, where the adsorption curves reach equilibrium. (author)

  13. Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy.

    Science.gov (United States)

    Nishio, Masaki; Inami, Shinnosuke; Katayama, Misaki; Ozutsumi, Kazuhiko; Hayashi, Yoshihito

    2012-01-16

    Reactions of a tetravanadate anion, [V(4)O(12)](4-), with a series of lanthanide(III) salts yield three types of lanthanide complexes of macrocyclic polyoxovanadates: (Et(4)N)(6)[Ln(III)V(9)O(27)] [Ln = Nd (1), Sm (2), Eu (3), Gd (4), Tb (5), Dy (6)], (Et(4)N)(5)[(H(2)O)Ho(III)(V(4)O(12))(2)] (7), and (Et(4)N)(7)[Ln(III)V(10)O(30)] [Ln = Er (8), Tm (9), Yb (10), Lu (11)]. Lanthanide complexes 1-11 are isolated and characterized by IR, elemental analysis, single-crystal X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS). Lanthanide complexes 1-6 are composed of a square-antiprism eight-coordinated Ln(III) center with a macrocyclic polyoxovanadate that is constructed from nine VO(4) tetrahedra through vertex sharing. The structure of 7 is composed of a seven-coordinated Ho(III) center, which exhibits a capped trigonal-prism coordination environment by the sandwiching of two cyclic tetravanadates with a capping H(2)O ligand. Lanthanide complexes 8-11 have a six-coordinated Ln(III) center with a 10-membered vanadate ligand. The structural trend to adopt a larger coordination number for a larger lanthanide ion among the three types of structures is accompanied by a change in the vanadate ring sizes. These lanthanide complexes are examined by EXAFS spectroscopies on lanthanide L(III) absorption edges, and the EXAFS oscillations of each of the samples in the solid state and in acetonitrile are identical. The Ln-O and Ln···V bond lengths obtained from fits of the EXAFS data are consistent with the data from the single-crystal X-ray studies, reflecting retention of the structures in acetonitrile.

  14. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Li-Mei [College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001 (China); Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn [College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2017-01-15

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealed that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect.

  15. Adducts compounds of lanthanides (III) trifluoreacetates and yttrium and the N,N - dimenthylformamide

    International Nuclear Information System (INIS)

    Silva, M. das G. da.

    1983-01-01

    Some studies on lanthanides, f transition elements, and yttrium are presented. Adducts of lanthanides trifluoroacetates and N,N -dimethylformamide are described. The characterization of complexes from elementar analysis, conductance measurements, X-ray patterns, vibrational, electronics and fluorescence spectra are analysed. (M.J.C.) [pt

  16. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  17. Thermal decomposition of double selenates of lanthanides (III), yttrium (III) and ammonium

    International Nuclear Information System (INIS)

    Crespi, M.S.

    1989-01-01

    Double selenates of lanthanides, yttrium and ammonium were prepared by treating mixtures of simple selenates with equimolar amounts and then dried in a vacuum desiccator containing anhydrous calcium chloride, protected from light. The compounds were studied using the conventional analytical methods such as infrared absorption spectra, X-ray diffraction, differential thermal analysis (DTA), and thermogravimetry (TG). (author)

  18. Synthesis and characterization of metal soaps of lanthanides (III)

    International Nuclear Information System (INIS)

    Payolla, Filipe Boccato; Ribeiro, Sidney Jose Lima; Massbni, Antonio Carlos

    2015-01-01

    The present study describes synthesis and partial characterization of Eu"3"+, Nd"3"+, Dy"3"+, Tb"3"+ and Yb"3"+ behenate complexes. The compounds were analyzed using IR-Spectroscopy, TG-DTG, DSC, elemental analysis, XRD, luminescence and SEM. The results show the purity of the compounds. The XRD analysis and the SEM images show the high crystallinity of the complexes. TG-DTG and DSC analyses do not show a liquid crystal behavior, as occurs with other lanthanide metallic soaps. The mass loses until 1000° C show that the compounds lose ligand fragments at specific temperatures. XRD of the residues are compatible with the respective lanthanide oxides. The luminescence analysis shows that the Eu"3"+, Nd"3"+ and Tb"3"+ complexes presents appreciable emission. The Judd-Ofelt parameters obtained are compatible with the values found in the literature. It was not possible to obtain the complexes in a glass-form because it is difficult to prevent the crystallization of the complexes even using liquid nitrogen. The XDR data indicate that one of the complexes axis has 52 Å of length, agreeing with a structure containing behenate-lanthanide ion-behenate. The structures of the complexes were not fully elucidated and more analyses are necessary. The complexes presented a molar ratio of 3:1 (L:M) and were formulated as Bh_3Eu, Bh_3Nd, Bh_3Dy, Bh_3Tb e Bh_3Yb (Bh = behenate anion). (author)

  19. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J. (CSIRO/MHT); (CSIRO/MSE)

    2010-08-23

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  20. Lanthanide Phytanates: Liquid-Crystalline Phase Behavior, Colloidal Particle Dispersions, and Potential as Medical Imaging Agents

    International Nuclear Information System (INIS)

    Conn, Charlotte E.; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J.; Kennedy, Danielle F.; Drummond, Calum J.

    2010-01-01

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  1. Electro-spray Ionization Mass Spectrometry Investigation of BTBP - Lanthanide(III) and Actinide(III) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Retegan, T.; Ekberg, Ch. [Chalmers, Dept Chem and Biol Engn, SE-41296 Gothenburg, (Sweden); Berthon, L.; Zorz, N. [DEN DRCP SCPS LCSE, CEA Marcoule, Bagnols Sur Ceze, (France)

    2009-07-01

    In the framework of nuclear waste reprocessing, the separation processes of minor actinides from fission products are developed using liquid-liquid extraction. To gain an understanding of the mechanism involved in the extraction process, a complex formation of actinides and lanthanides with BTBPs (6, 6'-bis(5, 6-dialkyl-1, 2, 4-triazin-3-yl)-2, 2'-bipyridines) was characterized using the Electro-spray Ionization Mass Spectrometry (ESI-MS) technique. This study was carried out to compare the influence of diluents and side groups of the extractants on complex formation. Three different diluents, nitrobenzene, octanol and cyclohexanone, and two extractants, C5-BTBP and CyMe{sub 4}-BTBP, were selected for this experiment. It was found that the change of the diluent and of the substituent on the BTBP moiety does not modify the stoichiometry of the complexes which is L{sub 2}M(NO{sub 3}){sub 3}. It is proposed that one nitrate is directly coordinated to the metal ion, the two other anions probably remaining in the outer coordination sphere. The difference observed in extracting properties is probably due to the solvation of the complexes by the diluent. The noncovalent force that holds complexes together are likely to be largely governed by electrostatic interactions even if the hydrophobic exterior of the complexes plays an important role in the complexation/extraction mechanism. The study of the stability of the ions in the gas phase shows that the C5-BTBP ligand has a labile hydrogen atom, which is a fragility point of C5-BTBP. (authors)

  2. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    Science.gov (United States)

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  3. Trivalent lanthanide/actinide separation in the spent nuclear fuel wastes' reprocessing

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. Since the trivalent actinides and lanthanides have similar chemistries, it is rather difficult to separate them from each other. The aim of presented work was to study solvent extraction of Am(III) and Eu(III) in a system containing diethylhemi-BTP (6-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine) and COSAN (protonated bis(chlorodicarbollido)cobalt(III)). The system was chosen by several groups working in the integrated EC research Project EUROPART. Several physicochemical properties of the extraction system were analyzed and discussed

  4. Separation of lanthanides (III) and actinides (III) by calixarenes containing acetamide-phosphine oxides functions

    International Nuclear Information System (INIS)

    Garcia Carrera, A.; Dozol, J.F.; Rouquette, H.

    2001-01-01

    The carbamoyl methyl phosphine oxide CMPO is the well known extractant of the TRUEX process for extraction of actinides from highly salted acidic wastes. In the framework of an European research contract coordinated by CEA/DDCC. V. Boehmer (Mainz, Germany) synthesized calix(4)arenes bearing CMPO moieties either on the wide rim, or on the narrow rim. Some of these calixarenes used at a concentration 10 -3 M are more efficient than CMPO used at a two hundred fifty fold higher concentration. Moreover, calixarene skeleton leads to a strong selectivity among lanthanides, this selectivity is much less obvious for CMPO. Selectivity order is reversed according to whether CMPO unit is borne by the wide rim or the narrow rim. The most efficient calixarenes allow actinides to be separated from most of the lanthanides except the lightest ones. (authors)

  5. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  6. Studies on trivalent lanthanide complexes of bis-vanillin p-phenylenediamine

    International Nuclear Information System (INIS)

    Shahma, Abu; Ahmad, Naseer

    1983-01-01

    The coordination interaction of lanthanide(III) chlorides with bis-vanillin o-phenylenediamine was studied by Ansari and Ahmad (1977). It was thought fruitful to compare these with the complexes of trivalent lanthanide ions with bis-vanillin p-phenylenediamine. The newly synthesized complexes were subjected to elemental, thermogravimetric and differential thermal analyses and their melting points, magnetic susceptibilities, molar conductances determined and infrared and electronic spectra taken. (author)

  7. System of ytterbium nitrate-hydrazine(mono-)dinitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Katamanov, V.L.

    1986-01-01

    Solubility in ternary systems ytterbium nitrate-hydrazine monohydrate-water and ytterbium nitrate-hydrazine dinitrate-water is studied at 25 and 50 deg C. Salt components of both systems do not form with each other double addition compounds in the chosen temperature range. Initial salts are equilibrium solid phases of saturated solutions. Correlation of the range of primary crystallization of nitrate acydocomplexes of lanthanides formed in similar systems with their atomic number is considered. It is shown that hydrazine dinitrate can be used for separation of rare earth elements of cerium group

  8. Investigation of the separation of americium(III) and europium(III) by high-speed countercurrent chromatography

    International Nuclear Information System (INIS)

    Wu, J.F.; Jin, Y.R.; Xu, Q.C.; Wang, S.L.; Zhang, L.X.

    2005-01-01

    The long-lived actinides are the important elements in the radioactive waste ;disposal. Because the ions semi diameter and chemical properties of trivalent actinides(III) and trivalent lanthanides(III) are very similar, the separation between them is very difficult. Yang Yu-Sheng put forward the actinides(III) are softer acid than the lanthanides(III), so the actinides(III) are more easily extracted by the soft extractant contain sulfur or nitrogen than the lanthanides(III). Some research have been done on the separation between actinides(III) and lanthanides(III) using the extractants contain sulfur or nitrogen. The results show that satisfactory separation efficiency was gained. Countercurrent Chromatography (CCC) have many specific advantages, such as free from solid support, permit large sample volume and high flow rate, which is useful in the preconcentration of inorganic solute and inorganic preparation. Some studies were done on the separation of lanthanides or-other inorganic elements by HSCCC, the high-purity reagents prepared by HSCCC or CPC turned out to be successful. In present paper, the investigation of separation between Americium (III) and Euricium (III) by High-Speed Countercurrent Chromatography (HSCCC) were made. The extractant used in the work was prepared by ourselves, which is of the soft extractant contrain sulfur. The effects of separation condition on the separation efficiency of Am and Eu by HSCCC were investigated using dichlorophenyl dithiophosphinic acid in xylene as the stationary phase and 0.1 mol/L NaClO4 as mobile phase, respectively. The results show that mutual separation between Am and Eu can be accomplished. The separation factor increases with the increasing of the concentration of extractant and the pH value of the mobile phase, further more, minishing the flow rate of the mobile phase can also improves the separation efficiency between Am and Eu. The nearly base separation was gained when the flow rate is 0.35 ml/min, the

  9. New strategies for the chemical separation of actinides and lanthanides

    International Nuclear Information System (INIS)

    Hudson, M.J.; Iveson, P.B.

    2002-01-01

    A general model is proposed for the effective design of ligands for partitioning. There is no doubt that the correct design of a molecule is required for the effective separation by separation of metal ions such as lanthanides(III) and actinides(III). Heterocyclic ligands with aromatic rings systems have a rich chemistry, which is only now becoming sufficiently well understood, in relation to the partitioning process. The synthesis, characterisation and structures of some chosen molecules will be introduced in order to illustrate some important features. For example, the molecule N-butyl-2-amino-4,6-di (2-pyridyl)-1,3,5-triazine (BADPTZ), which is an effective solvent extraction reagent for actinides and lanthanides, has been synthesised, characterised and its interaction with metal ions studied. The interesting and important features of this molecule will be compared with those of other heterocyclic molecules such as 2,6-bis(5-butyl-1,2,4-triazol-3-yl) pyridine (DBTZP), which is a candidate molecule for the commercial separation of actinides and lanthanide elements. Primary Coordination Sphere. One of the most critical features concerning whether a molecule is a suitable extraction reagent is the nature of the binding and co-ordination in the primary co-ordination sphere. This effect will be considered in depth for the selected heterocylic molecules. It will be shown how the bonding of the heterocyclic and nitrate ligands changes as the complete lanthanide series is traversed from lanthanum to lutetium. For effective solvent extraction, the ligand(s) should be able completely to occupy the primary co-ordination sphere of the metal ion to be extracted. Interactions in the secondary co-ordination sphere are of less importance. Inter-complex Hydrogen Bonding Interactions. Another feature that will be considered is the intermolecular binding between ligands when bound to the metal ion. Thus the intermolecular structures between complex molecules will be considered

  10. Separation process for lanthanides based on solvation properties of non ionic surfactants

    International Nuclear Information System (INIS)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G.

    2004-01-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  11. Local Structure in Americium and Californium Hexa-cyanoferrates - Comparison with Their Lanthanide Analogues

    International Nuclear Information System (INIS)

    Dupouy, G.; Bonhoure, I.; Dumas, Th.; Moisy, Ph.; Petit, S.; Den Auwer, Ch.; Conradson, St.D.; Hennig, Ch.; Scheinost, A.C.; Le Naour, C.; Simoni, E.

    2011-01-01

    Metal hexa-cyanoferrates are well known molecular solids for a large variety of cations, although very little has been described for actinide adducts. Two new members of actinide(III) hexa-cyanoferrates were synthesized with the cations americium and californium. They were structurally characterized by infrared and X-ray absorption spectroscopy. Combined EXAFS data at the iron K edge and actinide L 3 edge provide evidence for a three-dimensional model for these two new compounds. Structural data in terms of bond lengths were compared to those reported for the parent lanthanide(III) compounds, neodymium and gadolinium hexa-cyanoferrates, respectively: the americium compound with (KNd(III)Fe(II)-Fe-III(CN) 6 .4H 2 O and the californium compound with (KGd(III)Fe(II)(CN) . 3.5H 2 O and (KGd(III)Fe(II)(CN) 6 .3H 2 O. This comparison between actinide and lanthanide homologues has been carried out on the basis of ionic radii considerations. The americium and neodymium environments appear to be very similar and are arranged in a tri-capped trigonal prism polyhedron of coordination number 9 (CN: 9), in which the americium atom is bonded to six nitrogen atoms and to three water molecules. For the californium adduct, a similar comparison and bond length and angle values derived from EXAFS studies suggest that the californium cation sits in a bi-capped trigonal prism (CN: 8) as in (KGd(III)Fe(II)(CN) 6 . 3H 2 O. This arrangement differs from that in the structure of (KGd(III)Fe(II)(CN) 6 .3.5H 2 O, in which the gadolinium atom is surrounded by 9 atoms. This is one of the rare pieces of information revealed by EXAFS spectroscopy for americium and californium in comparison to lanthanide atoms in molecular solid compounds. A discussion on the decrease in bond length and coordination number from americium to californium is also provided, on the basis of crystallographic results reported in the literature for actinide(III) and lanthanide(III) hydrate series. (authors)

  12. Solvent extraction of La(III) using Cyanex 921 in petrofin and modelling of data by linear and nonlinear techniques

    International Nuclear Information System (INIS)

    Sagarika Acharya; Sujata Mishra; Anusandhan University, Bhubaneswar, Odisha; Sunita Chand; Anusandhan University, Bhubaneswar, Odisha

    2017-01-01

    Influence of various parameters affecting the extraction of La(III) from acidic nitrate medium has been analysed. The extraction of 99.1% La(III) from 0.01 mol/L HNO 3 and 1 M NaNO 3 has been obtained using 0.3 mol/L Cyanex 921 in petrofin. The ∆H 0, ∆S 0 calculated from temperature variation experiments and were found to be negative. Stripping has been effectively achieved using low concentrations of HCl and H 2 SO 4 . Separation of La(III) from other lanthanides (Ce, Pr, Nd, Sm) has shown maximum separation factor for La-Sm pair. Modelling of data has been performed using MLR, ANN and ANFIS. (author)

  13. Thermal evolution of nitrate precursors for processing of lanthanide perovskites

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V. S.

    1998-12-01

    Full Text Available Studies on thermal decomposition of ceramic powder with a general formula of (La1-x Ba x (Co0.8 Fe0.2O3 have been achieved. Precursors as nitrate solutions with additive of EDTA as complexion agent are used for powder processing. The black powders obtained are dried and their thermal evolution up to 1000ºC has been investigated by Differential Thermal Analysis. The powders was analyzed by EDX and ICP- AES, as well. It was established that the powder compositions are very close to the nominal one. The resulting DTA, TA, TG and DTG curves are analyzed as function of the composition and heating rate applied. At polythermal scanning regime three regions the powder thermal evolution are discussed. The correlation dependence has been examined for both Sr- and Ba- doped multicomponent lanthanide samples. The multicomponent nature of the samples have been shown on the base of the thermal treatment applied and XRD phase control carried out.

    Se han realizado estudios sobre la descomposición térmica de polvos cerámicos de fórmula general (La1-x Ba x (Co0.8 Fe0.2O3. Se utilizaron como precursores soluciones de nitratos con EDTA como agente acomplejante. La evolución térmica del polvo negro obtenido se estudió hasta la temperatura de 1000 ºC por medio de análisis térmico diferencial. Los polvos se analizaron así mismo por EDX e ICP-A ES. Se estableció que la composición de los polvos esta muy próxima a la composición nominal. Se distingue tres regímenes en la evolución térmica. Se examina la dependencia con el contenido en lantanidas multicomponentes de pulsos con Sr y Ba. La naturaleza multicomponente se ha mostrado sobre la base del tratamiento térmico empleado y el análisis de las fases cristalinas.

  14. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides; Modelisation thermodynamique de l'extraction de nitrates de lanthanides par le CMPO et par un calixarene-CMPO en milieu acide nitrique concentre. Application a l'optimisation de la separation des lanthanides et des actinides/lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Belair, S

    2003-07-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO{sub 3}){sub 3}-HNO{sub 3}-H{sub 2}O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  15. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    International Nuclear Information System (INIS)

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-01-01

    Two new lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln III ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln III ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb III ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb III for 1 and Tb III for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: ► The research provided a new method for synthesizing lanthanide-azide complexes. ► The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. ► The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  16. SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION

    Science.gov (United States)

    Peppard, D.F.; Horwitz, E.P.; Mason, G.W.

    1963-02-12

    This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)

  17. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    Science.gov (United States)

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  18. Thermodynamic modelling of the extraction of nitrates of lanthanides by CMPO and by CMPO-like calixarene in concentrated nitric acid medium. Application in the optimization of the separation of lanthanides and actinides/lanthanides

    International Nuclear Information System (INIS)

    Belair, S.

    2003-01-01

    The separation minor actinides / lanthanides in nitric acid medium is as one of problems of separative chemistry the most delicate within the framework of the processes allowing the recovery of long life radioelements present in the solutions of fission products. Previous studies showed that CMPO-substituted calix[4]arenes presents a better affinity for actinides than for lanthanides. To optimize the operating conditions of separation and to take into account the degree of non-ideality for the concentrated nitric solutions, we adopted a thermodynamic approach. The methodology taken to determine the number and the stoichiometry of the complexes formed in organic phase base on MIKULIN-SERGIEVSKII's model used through a software of data processing of experimental extraction isotherms. These tools are exploited at first on an extraction system engaging the CMPO, extractant reagent of actinides and lanthanides in concentrated nitric medium. The modelling of the system Ln(NO 3 ) 3 -HNO 3 -H 2 O/CMPO comes to confirm the results of several studies. At the same time, they allow to establish working hypotheses aiming at limiting the investigations of our researches towards the most stable complexes formed between lanthanides and CMPO-like calixarene to which the same method is then applied. An analytical expression of the selectivity of separation by the calixarene is established to determine the parameters and physico-chemical variables on which it depends. So, the ratio of the constants of extraction and the value of the activity of water of the system fixes the selectivity of separation of 2 elements. The exploitation of this relation allows to preview the influence of a variation of the concentration of nitric acid. Experiments of extraction confirm these forecasts and inform about the affinity of the calixarene with respect to lanthanides elements and to the americium. (author)

  19. Water molecule-enhanced CO2 insertion in lanthanide coordination polymers

    International Nuclear Information System (INIS)

    Luo Liushan; Huang Xiaoyuan; Wang Ning; Wu Hongyan; Chen Wenbin; Feng Zihao; Zhu Huiping; Peng Xiaoling; Li Yongxian; Huang Ling; Yue Shantang; Liu Yingliang

    2009-01-01

    Two new lanthanide coordination polymers H 2 N(CH 3 ) 2 .[Eu III 2 (L 1 ) 3 (L 2 )] (1, L 1 =isophthalic acid dianion, L 2 =formic acid anion) and [La III (2,5-PDC)(L 2 )](2, 2,5-PDC=2,5-pyridinedicarboxylate dianion) were synthesized under solvothermal conditions. It is of interest that the formic ligand (L 2 ) is not contained in the stating materials, but arises from the water molecule-enhanced CO 2 insertion during the solvothermal process. Both of the two compounds exhibit complicated three dimensional sandwich-like frameworks. - Graphical abstract: Two new lanthanide coordination polymers involving water molecule-enhanced CO 2 insertion resulting in the formation of formic anion and dimethylammonium cation were synthesized under solvothermal conditions.

  20. Polymetallic lanthanide (III) complexes for the design of new luminescent materials

    International Nuclear Information System (INIS)

    Marchal, C.

    2008-09-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecular chemistry and allows the combination of their nano-scopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecular lanthanide complexes quite challenging. In order to better understand the factors determining the assembly of lanthanide-based polymetallic arrays, we designed two different types of organic ligands, which favor, in one case, formation of infinite polymetallic complexes (coordination polymers), and in the case the assembly of discrete polymetallic architectures. Thus, we show that the use of flexible and multi-dentate picolinate-derivative ligands enables the formation of infinite and luminescent infinite frameworks which display very interesting luminescent properties. Geometry of the ligand has a great influence on the final network architecture. Particularly, implementation of four picolinate units within a tetrapodal ligand results in the controlled assembly of 1-D coordination polymers. Conversely to favor the controlled assembly of discrete polymetallic arrays we use dissymmetric ligands which displays low denticity. Complexation studies of a tridentate 8- hydroxyquinoline-derivative ligand as well as a tetradentate ligand possessing an oxazoline ring are presented. (author)

  1. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    Science.gov (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments

    Science.gov (United States)

    Terry, Lee R.; Kulp, Thomas R.; Wiatrowski, Heather A.; Miller, Laurence G.; Oremland, Ronald S.

    2015-01-01

    Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophagataeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.

  3. An enantiomerically pure siderophore type ligand for the diastereoselective 1 : 1 complexation of lanthanide(III ions

    Directory of Open Access Journals (Sweden)

    Markus Albrecht

    2009-12-01

    Full Text Available A facile synthesis of a highly preorganized tripodal enterobactine-type ligand 1a-H3 consisting of a chiral C3-symmetric macrocyclic peptide and three tridentate 2-amido-8-hydroxyquinoline coordinating units is presented. Complex formation with various metal ions (Al3+, Ga3+, Fe3+, La3+ and Eu3+ was investigated by spectrophotometric methods. Only in the case of La3+ and Eu3+ were well defined 1 : 1 complexes formed. On the basis of CD spectroscopy and DFT calculations the configuration at the metal centre of the La3+ complex was determined to show Λ helicity. The coordination compounds [(1aLn] presented should be prototypes for further lanthanide(III complexes with an enterobactine analogue binding situation.

  4. Fluorescence Resonance Energy Transfer of the Tb(III)-Nd(III) Binary System in Molten LiCl-KCl Eutectic Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yun, J. I. [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The lanthanides act as a neutron poison in nuclear reactor with large neutron absorption cross section. For that reason, very low amount of lanthanides is required in the recovered U/TRU ingot product from pyrochemical process. In view of that, the investigation of thermodynamic properties and chemical behaviors of lanthanides in molten chloride salt are necessary to estimate the performance efficiency of pyrochemical process. However, there are uncertainties about knowledge and understanding of basic mechanisms in pyrochemical process, such as chemical speciation and redox behaviors due to the lack of in-situ monitoring methods for high temperature molten salt. The spectroscopic analysis is one of the probable techniques for in-situ qualitative and quantitative analysis. Recently, a few fluorescence spectroscopic measurements on single lanthanide element in molten LiCl-KCl eutectic have been investigated. The fluorescence intensity and the fluorescence lifetime of Tb(III) were decreased as increasing the concentration of Nd(III), demonstrating collisional quenching between donor ions and acceptor ions. The Forster distance (..0) of Tb(III)-Nd(III) binary system in molten LiCl-KCl eutectic was determined in the specific range of .... (0.1-1.0) and .. (1.387-1.496)

  5. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    Science.gov (United States)

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sparkle/PM3 for the modeling of europium(III), gadolinium(III), and terbium(III) complexes

    International Nuclear Information System (INIS)

    Freire, Ricardo O.; Rocha, Gerd B.; Simas, Alfredo M.

    2009-01-01

    The Sparkle/PM3 model is extended to europium(III), gadolinium(III), and terbium(III) complexes. The validation procedure was carried out using only high quality crystallographic structures, for a total of ninety-six Eu(III) complexes, seventy Gd(III) complexes, and forty-two Tb(III) complexes. The Sparkle/PM3 unsigned mean error, for all interatomic distances between the trivalent lanthanide ion and the ligand atoms of the first sphere of coordination, is: 0.080 A for Eu(III); 0.063 A for Gd(III); and 0.070 A for Tb(III). These figures are similar to the Sparkle/AM1 ones of 0.082 A, 0.061 A, and 0.068 A respectively, indicating they are all comparable parameterizations. Moreover, their accuracy is similar to what can be obtained by present-day ab initio effective core potential full geometry optimization calculations on such lanthanide complexes. Finally, we report a preliminary attempt to show that Sparkle/PM3 geometry predictions are reliable. For one of the Eu(III) complexes, BAFZEO, we created hundreds of different input geometries by randomly varying the distances and angles of the ligands to the central Eu(III) ion, which were all subsequently fully optimized. A significant trend was unveiled, indicating that more accurate local minima geometries cluster at lower total energies, thus reinforcing the validity of sparkle model calculations. (author)

  7. SPECTROSCOPIC STUDIES OF SOME LANTHANIDE(III) NITRATE ...

    African Journals Online (AJOL)

    a

    The first method involves condensation of keto precursors with polyamines by the template method [11, 12] and in the second method, the ligand is first synthesized and isolated and the metal ion added to prepare the complexes [13, 14]. In our previous research on transition metal complexes we have used both routes ...

  8. Complexation of trivalent actinides and lanthanides with hydrophilic N-donor ligands for Am(III)/Cm(III) and An(III)/Ln(III) separation; Komplexierung von trivalenten Actiniden und Lanthaniden mit hydrophilen N-Donorliganden zur Am(III)/Cm(III)- bzw. An(III)/Ln(III)-Trennung

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Christoph

    2017-07-24

    The implementation of actinide recycling processes is considered in several countries, aiming at the reduction of long-term radiotoxicity and heat load of used nuclear fuel. This requires the separation of the actinides from the fission and corrosion products. The separation of the trivalent actinides (An(III)) Am(III) and Cm(III), however, is complicated by the presence of the chemically similar fission lanthanides (Ln(III)). Hydrophilic N-donor ligands are employed as An(III) or Am(III) selective complexing agents in solvent extraction to strip An(III) or Am(III) from an organic phase loaded with An(III) and Ln(III). Though they exhibit excellent selectivity, the complexation chemistry of these ligands and the complexes formed during solvent extraction are not sufficiently characterized. In the present thesis the complexation of An(III) and Ln(III) with hydrophilic N-donor ligands is studied by time resolved laser fluorescence spectroscopy (TRLFS), UV/Vis, vibronic sideband spectroscopy and solvent extraction. TRLFS studies on the complexation of Cm(III) and Eu(III) with the Am(III) selective complexing agent SO{sub 3}-Ph-BTBP (tetrasodium 3,3{sup '},3'',3{sup '''}-([2,2{sup '}-bipyridine]-6,6{sup '}-diylbis(1,2,4-triazine-3,5,6-triyl)) tetrabenzenesulfonate) revealed the formation of [M(SO{sub 3}-Ph-BTBP){sub n}]{sup (4n-3)-} complexes (M = Cm(III), Eu(III); n = 1, 2). The conditional stability constants were determined in different media yielding two orders of magnitude larger β{sub 2}-values for the Cm(III) complexes, independently from the applied medium. A strong impact of ionic strength on the stability and stoichiometry of the formed complexes was identified, resulting from the stabilization of the pentaanionic [M(SO{sub 3}-Ph-BTBP){sub 2}]{sup 5-} complex with increasing ionic strength. Thermodynamic studies of Cm(III)-SO{sub 3}-Ph-BTBP complexation showed that the proton concentration of the applied medium impacts

  9. Lanthanide-doped luminescent ionogels

    OpenAIRE

    Lunstroot, Kyra; Driesen, Kris; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Görller-Walrand, Christiane; Binnemans, Koen; Bellayer, Séverine; Viau, Lydie; Le Bideau, Jean; Vioux, André

    2009-01-01

    Ionogels are solid oxide host networks confining at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving anthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C6mim][Ln(tta)4], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choli...

  10. Isothiocyanato complexes of Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl)benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, V K

    1982-01-01

    Six-coordinated complexes of the type (Ln(PyBzH)/sub 2/NCS.H/sub 2/O) (NCS)/sub 2/.nH/sub 2/O/mC/sub 2/H/sub 5/OH (Ln = Gd(III), Tb(III), Dy(III) and Ho(III), n=1-2; m=1) have been prepared from Ln(NCS)/sub 6//sup 3 -/. The room temperature magnetic moment values confirm the terpositive state of the lanthanide ions. Infrared spectra suggest the N-coordination of thiocyanate group. Electronic spectral studies of Tb(III), Dy(III) and Ho(III) complexes have been made in terms of LSJ term energies. 13 refs.

  11. Single-crystal neutron diffraction study of ammonium nitrate phase III

    International Nuclear Information System (INIS)

    Choi, C.S.; Prask, H.J.

    1982-01-01

    The crystal structure of ammonium nitrate phase III has been studied at room temperature by neutron diffraction using a single crystal containing 5% KNO 3 in solid-solution form. The space group is Pnma, with a = 7.6772 (4), b = 5.8208 (4), c = 7.1396 (5) A, Z = 4. The final residual after full-matrix least-squares refinement was R = 0.042 for 348 observed reflections. The ammonium ions are thermally disordered into two orientations, displaced by an angle of approximately 42 0 about an axis parallel to the c axis. (Auth.)

  12. Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2010-11-01

    Full Text Available Lanthanides/actinides sorption speciation on minerals and oxides by means of time resolved laser fluorescence spectroscopy (TRLFS, extended X-ray absorption fine structure spectroscopy (EXAFS and density functional theory (DFT is reviewed in the field of nuclear disposal safety research. The theoretical aspects of the methods are concisely presented. Examples of recent research results of lanthanide/actinide speciation and local atomic structures using TRLFS, EXAFS and DFT are discussed. The interaction of lanthanides/actinides with oxides and minerals as well as their uptake are also of common interest in radionuclide chemistry. Especially the sorption and inclusion of radionuclides into several minerals lead to an improvement in knowledge of minor components in solids. In the solid-liquid interface, the speciation and local atomic structures of Eu(III, Cm(III, U(VI, and Np(IV/VI in several natural and synthetic minerals and oxides are also reviewed and discussed. The review is important to understand the physicochemical behavior of lanthanides/actinides at a molecular level in the natural environment.

  13. Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials.

    Science.gov (United States)

    Dutra, José Diogo L; Filho, Manoel A M; Rocha, Gerd B; Freire, Ricardo O; Simas, Alfredo M; Stewart, James J P

    2013-08-13

    The recently published Parametric Method number 7, PM7, is the first semiempirical method to be successfully tested by modeling crystal structures and heats of formation of solids. PM7 is thus also capable of producing results of useful accuracy for materials science, and constitutes a great improvement over its predecessor, PM6. In this article, we present Sparkle Model parameters to be used with PM7 that allow the prediction of geometries of metal complexes and materials which contain lanthanide trications. Accordingly, we considered the geometries of 224 high-quality crystallographic structures of complexes for the parameterization set and 395 more for the validation of the parameterization for the whole lanthanide series, from La(III) to Lu(III). The average unsigned error for Sparkle/PM7 for the distances between the metal ion and its coordinating atoms is 0.063Å for all lanthanides, ranging from a minimum of 0.052Å for Tb(III) to 0.088Å for Ce(III), comparable to the equivalent errors in the distances predicted by PM7 for other metals. These distance deviations follow a gamma distribution within a 95% level of confidence, signifying that they appear to be random around a mean, confirming that Sparkle/PM7 is a well-tempered method. We conclude by carrying out a Sparkle/PM7 full geometry optimization of two spatial groups of the same thulium-containing metal organic framework, with unit cells accommodating 376 atoms, of which 16 are Tm(III) cations; the optimized geometries were in good agreement with the crystallographic ones. These results emphasize the capability of the use of the Sparkle Model for the prediction of geometries of compounds containing lanthanide trications within the PM7 semiempirical model, as well as the usefulness of such semiempirical calculations for materials modeling. Sparkle/PM7 is available in the software package MOPAC2012, at no cost for academics and can be obtained from http://openmopac.net.

  14. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin.

  15. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  16. Direct nano ESI time-of-flight mass spectrometric investigations on lanthanide BTP complexes in the extraction-relevant diluent 1-octanol

    International Nuclear Information System (INIS)

    Steppert, M.; Walther, C.; Geist, A.; Fanghanel, Th.

    2009-01-01

    The present work focuses on investigations of a highly selective ligand for Am(III)/Ln(III) separation: bis-triazinyl-pyridine (BTP). By means of nano-electro-spray mass spectrometry, complex formation of BTP with selected elements of the lanthanide series is investigated. We show that the diluent drastically influences complex speciation. Measurements obtained in the extraction-relevant diluent 1-octanol show the occurrence of Ln(BTP) i (i 1-3) species in different relative abundances, depending on the lanthanide used. Here, the relative abundances of the Ln(BTP) 3 complexes correlate with the distribution ratios for extraction to the organic phase of the respective lanthanide. (authors)

  17. Advanced Extraction Methods for Actinide/Lanthanide Separations

    International Nuclear Information System (INIS)

    Scott, M.J.

    2005-01-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  18. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  19. Solvent extraction of lanthanide ions with 1-Phenyl-3-Methyl-4-Benzoyl-Pyrazolone-5 (HPMBP), 2. Extraction of Erbium(III), Ytterbium(III) and Lutetium(III) by HPMBP from aqueous-methanol solutions

    International Nuclear Information System (INIS)

    Czakis-Sulikowska, D.M.; Kuznik, B.; Malinowska, A.

    1990-01-01

    The solvent extraction of lanthanides(III)(Ln = Er, Yb, Lu) by 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HL) in carbon tetrachloride from aqueous-methanol phase was investigated. The equilibrium constants for the extraction from aqueous-50 % (ν/ν) methanol phase (K ex ), two-phase stability constants of the complexes LnL 3 (β 3 * ) and stability constants of complexes LnL 2+ , LnL 2 + , LnL 3 (β n )(Ln = Yb, Lu) were calculated. It was confirmed that the addition of methanol to the aqueous phase causes a synergistic effect. The influence of methanol on the dissociation constant of HPMBP (K a ) and the distribution constant of HPMBP (p HL ) between carbon tetrachloride and water-methanol solutions was investigated. (Authors)

  20. Diglycolic acid modified zirconium phosphate and studies on the extraction of Am(III) and Eu(III) from dilute nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Selvan, B. Robert; Suneesh, A.S.; Venkatesan, K.A.; Antony, M.P. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Division; Dasthaiah, K.; Gardas, R.L. [Indian Institute of Technology - Madras, Chennai (India). Dept. of Chemistry

    2017-06-01

    Diglycolic acid modified zirconium phosphate (ZrP-DGA) was prepared and studied for the extraction of Am(III) and Eu(III) from dilute nitric acid medium. The distribution coefficient (K{sub d}, mL.g{sup -1}) of Am(III) and Eu(III) was measured as a function of time, pH and concentration of Eu(III) ion etc. The K{sub d} of Am(III) and Eu(III) increased with increase of pH, reached a maximum value of distribution coefficient at pH 1.5 - 2, followed by decrease in K{sub d} values. Rapid extraction of Am(III) and Eu(III) in ZrP-DGA was observed followed by the establishment of equilibrium occurred in 100 min. Kinetics of extraction was fitted in to pseudo second order rate equation. The amount of Eu(III) loaded in ZrP-DGA increased with increase in the concentration of Eu(III) ion in aqueous phase and the isotherm was fitted in to Langmuir and Freundlich adsorption models. The extraction of Am(III) in ZrP-DGA was higher as compared to Eu(III) and the interference of Eu(III) on the extraction of Am(III) was studied. The distribution coefficient of some lanthanides in ZrP-DGA was measured and the K{sub d} of lanthanides increased across the lanthanide series. The extracted trivalent metal ions were recovered in three contacts of loaded ZrP-DGA with 0.5 M nitric acid.

  1. Ternary complex formation of lanthanides and radiolanthanides with phosphate and serum proteins

    International Nuclear Information System (INIS)

    Neumaier, B.; Roesch, F.

    1999-01-01

    Radioyttrium was recently reported to form ternary complexes with phosphate and serum proteins in blood. In the present work it was investigated whether the trivalent radiolanthanides react in a chemically similar way. In systematic binding studies using gel filtration a ternary complex formation between different lanthanides, phosphate and serum proteins could be identified. The tendency to build a ternary compound of the type Ln III - phosphate - serum protein, however, is dependent on the ionic radii of the lanthanides. Whereas the light and transition lanthanides have a strong inclination to build a ternary complex, this tendency is weaker for the heavier ones. Taking into account the high content of phosphate in human blood, the corresponding ternary complexes of radiolanthanides represent an important transport form of these elements in blood. This finding may contribute to an understanding of the nuclear medical observation on the biodistribution of radiolanthanides. The heavy radiolanthanides can be classified as bone seeking metals, whereas the light and transition lanthanide elements accumulate mainly in the liver and the spleen. For the lighter radiolanthanides the corresponding ternary complexes thus represent an important transport form in blood. This physicochemical form of lanthanides mainly results in reticulo endothelial accumulation; on the other hand, the lower tendency of heavier lanthanides leads to preferential skeletal deposition. (orig.)

  2. RECOVERY OF COPPER(II AND CHROMIUM(III FROM NITRATE MEDIUM WITH SALICYLIDENEANILINE DISSOLVED IN 1-OCTANOL

    Directory of Open Access Journals (Sweden)

    A. Guerdouh

    2016-05-01

    Full Text Available The solvent extraction of copper(II and chromium(III from nitrate medium with salicylideneaniline (HL is studied as a function of various parameters: pH, concentration of salicylideneaniline, contact time and the nature of anoin (nitrate and sulfate in aqueous phase. Chromium(III is not extracted by salicylideneaniline  diluted in 1-octanol. Copper(II is only extracted by salicylideneaniline and it was found that the highest extractability achieved to 95% at pH 4.9, The stoichiometry of the extracted species was determined by using the method of slope analysis. Elemental analysis, UV–vis and IR-spectra were used to confirm the structure. It is found that the copper (II is extracted as CuL2.2H2O Their equilibrium constant, distribution coefficient, percentage extraction (%E and free energy are also calculated.

  3. Extended lanthanide-transition metal arrays with cyanide bridges: syntheses, structures, and catalytic applications

    International Nuclear Information System (INIS)

    Liu Shengming; Poplaukhin, Pavel; Ding Errun; Plecnik, Christine E.; Chen Xuenian; Keane, Mark A.; Shore, Sheldon G.

    2006-01-01

    Systematic synthetic procedures produced several different structural types of extended lanthanide-transition metal (group 10) complexes with cyanide bridges. Of these, one-dimensional ladder arrays containing a Yb-Pd combination have been converted to bimetallic heterogeneous catalysts on an oxide (SiO 2 ) surface that is more effective than supported Pd alone. Two lanthanide-Cu(I) complexes have been prepared. One type, an inclusion complex consists of lanthanide(III) cations encapsulated in the pockets of a three-dimensional anionic array that contains Cu(I)-CN-Cu(I) bridges. The second type, an extended layer complex, consists of joined five-membered rings in a 'tile-like' pattern with Ln-CN-Cu and Cu-CN-Cu bridges

  4. Secret lanthanides.

    Science.gov (United States)

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  5. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  6. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  7. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  8. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    Science.gov (United States)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  9. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Constanze

    2015-11-05

    obtained sorption curves exhibit a similar characteristic for orthoclase and muscovite. As expected Nd(III) shows the highest amount of sorption followed by U(VI) and finally Np(V). With spectroscopic investigations of the aquatic U(VI) solution in presence of Ca{sup 2+}, the Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} complex could be identified. Furthermore, with spectroscopic methods the U(VI) surface species onto orthoclase could be characterized, of which a novel uranium-carbonate surface species was observed. Based on the results of batch experiments and spectroscopic methods new SCM parameters for the sorption of U(VI), Np(V), and Nd(III) onto orthoclase and for Np(V) and Nd(III) onto muscovite could be derived. SCM parameters for U(VI) sorption onto muscovite confirmed earlier investigations. The obtained SCM parameters increase the amount of data available for sorption processes onto feldspar and mica. With this the relevance of feldspars for the sorption of actinides and lanthanides could be shown. Thus, this work contributes to a better understanding of interactions of actinides and lanthanides, in particular U(VI), Np(V), and Nd(III), with mineral phases ubiquitous in the environment. This in turn adds confidence to long-term safety assessments essential for the protection of humans and the environment from the hazards of radioactive waste.

  10. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    International Nuclear Information System (INIS)

    Richter, Constanze

    2015-01-01

    obtained sorption curves exhibit a similar characteristic for orthoclase and muscovite. As expected Nd(III) shows the highest amount of sorption followed by U(VI) and finally Np(V). With spectroscopic investigations of the aquatic U(VI) solution in presence of Ca 2+ , the Ca 2 UO 2 (CO 3 ) 3 complex could be identified. Furthermore, with spectroscopic methods the U(VI) surface species onto orthoclase could be characterized, of which a novel uranium-carbonate surface species was observed. Based on the results of batch experiments and spectroscopic methods new SCM parameters for the sorption of U(VI), Np(V), and Nd(III) onto orthoclase and for Np(V) and Nd(III) onto muscovite could be derived. SCM parameters for U(VI) sorption onto muscovite confirmed earlier investigations. The obtained SCM parameters increase the amount of data available for sorption processes onto feldspar and mica. With this the relevance of feldspars for the sorption of actinides and lanthanides could be shown. Thus, this work contributes to a better understanding of interactions of actinides and lanthanides, in particular U(VI), Np(V), and Nd(III), with mineral phases ubiquitous in the environment. This in turn adds confidence to long-term safety assessments essential for the protection of humans and the environment from the hazards of radioactive waste.

  11. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    Science.gov (United States)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  12. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Thermodynamics of complexation of lanthanides with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl) pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, N.; Bhattacharyya, A.; Tomar, B.S. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.; Ghosh, S.K.; Gadly, T. [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Bioorganic Div.

    2011-07-01

    Solvent extraction studies on separation of trivalent actinides from lanthanides using 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl) pyridines have shown promising results with respect to separation factor and efficiency in acidic medium. In order to understand their complexation behavior, the stability constant (log {beta}) of trivalent lanthanides (La, Nd, Eu, Tb, Ho, Tm, Lu) with 2,6-bis(5,6-diethyl-1,2,4-triazin-3-yl)pyridine (ethyl-BTP) have been determined in methanol medium (ionic strength 0.01 M) using spectrophotometric titrations. The stoichiometry of the complexes is found to vary with the ionic size of lanthanide ion. The variation in log {beta} across the lanthanide series is attributed to variation in solvation characteristics of the metal ion. Comparison of log {beta} for Ln(III)-ethyl-BTP complexes with other alkyl derivatives showed increase in the stability with increasing length of the alkyl group due to hydrophobic interaction. In the case of Eu(III), the speciation was also corroborated by time resolved fluorescence spectroscopy. The thermodynamic parameters ({delta} G, {delta} H, {delta} S) for complexation of Eu(III) with ethyl-BTP, were determined by microcalorimetry, which revealed strong metal ion-ligand interaction with the reactions driven mainly by enthalpy. (orig.)

  14. Synthesis and characterization of metal soaps of lanthanides (III); Sintese e caracterizacao de saboes metalicos de lantanidios (III)

    Energy Technology Data Exchange (ETDEWEB)

    Payolla, Filipe Boccato; Ribeiro, Sidney Jose Lima; Massbni, Antonio Carlos [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Centro Universitario de Araraquara (UNIARA), Araraquara, SP (Brazil)

    2015-07-01

    The present study describes synthesis and partial characterization of Eu{sup 3+}, Nd{sup 3+}, Dy{sup 3+}, Tb{sup 3+} and Yb{sup 3+} behenate complexes. The compounds were analyzed using IR-Spectroscopy, TG-DTG, DSC, elemental analysis, XRD, luminescence and SEM. The results show the purity of the compounds. The XRD analysis and the SEM images show the high crystallinity of the complexes. TG-DTG and DSC analyses do not show a liquid crystal behavior, as occurs with other lanthanide metallic soaps. The mass loses until 1000° C show that the compounds lose ligand fragments at specific temperatures. XRD of the residues are compatible with the respective lanthanide oxides. The luminescence analysis shows that the Eu{sup 3+}, Nd{sup 3+} and Tb{sup 3+} complexes presents appreciable emission. The Judd-Ofelt parameters obtained are compatible with the values found in the literature. It was not possible to obtain the complexes in a glass-form because it is difficult to prevent the crystallization of the complexes even using liquid nitrogen. The XDR data indicate that one of the complexes axis has 52 Å of length, agreeing with a structure containing behenate-lanthanide ion-behenate. The structures of the complexes were not fully elucidated and more analyses are necessary. The complexes presented a molar ratio of 3:1 (L:M) and were formulated as Bh{sub 3}Eu, Bh{sub 3}Nd, Bh{sub 3}Dy, Bh{sub 3}Tb e Bh{sub 3}Yb (Bh = behenate anion). (author)

  15. Lanthanide Organophosphate Spiro Polymers: Synthesis, Structure, and Magnetocaloric Effect in the Gadolinium Polymer.

    Science.gov (United States)

    Gupta, Sandeep K; Bhat, Gulzar A; Murugavel, Ramaswamy

    2017-08-07

    Spirocyclic lanthanide organophosphate polymers, {[Ln(dipp)(dippH)(CH 3 OH)(H 2 O) 2 ](CH 3 OH) 2 } n [Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11)], have been prepared from the reaction of Ln(NO 3 ) 3 ·xH 2 O with sterically hindered 2,6-diisopropylphenyl phosphate (dippH 2 ) using aqueous NaOH as the base. The one-dimensional chainlike lanthanide (III) organophosphate coordination polymers have been characterized with the aid of analytical and spectroscopic methods. The single crystal structure determination of polymers (2-5 and 7-11) reveals that in these compounds the hydrophobic organic groups of the phosphate provide a protective coating for the inorganic lanthanide phosphate polymeric chain. The encapsulation of inorganic lanthanide phosphate core, which has very low solubility product, within the organic groups assists in the facile crystallization of the polymers. The di- and monoanionic organophosphate ligands dipp 2- and dippH - display [2.111] and [2.110] binding modes, respectively, in 2-5 and 7. However, they exhibit only [2.110] binding mode in the case of 8-11. This results in the formation of two different types of polymers. While the lighter rare-earth metal ions in 2-5 and 7 display eight coordinate biaugmented trigonal prismatic geometry, the heavier rare-earth metal ions in 9-11 exhibit a seven coordinate capped trigonal prismatic environment. The Tb(III) ion in 8 displays distorted pentagonal bipyramidal geometry. Magnetic studies reveal the presence of weak antiferromagnetic interactions between the Ln(III) ions through the organophosphate ligand. The isotropic Gd(III) polymer 7 exhibits a maximum entropy change of 17.83 J kg -1 K -1 for a field change of 7.0 T at 2.5 K, which is significant considering the high molecular weight of the organophosphate ligand. These polymers represent the first family of any structurally characterized rare-earth organophosphate polymers derived from monoesters

  16. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations; Etude structurale et thermodynamique de la complexation de lanthanides (III) par des acides carboxyliques polyhydroxyles: synthese de nouveaux extractants et perspectives pour l'extraction de ces cations

    Energy Technology Data Exchange (ETDEWEB)

    Aury, S

    2002-12-15

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  17. New Lanthanide Alkynylamidinates and Diiminophosphinates

    Directory of Open Access Journals (Sweden)

    Farid M. Sroor

    2015-11-01

    Full Text Available This contribution reports the synthesis and structural characterization of several new lithium and lanthanide alkynylamidinate complexes. Treatment of PhC≡CLi with N,N′-diorganocarbodiimides, R–N=C=N–R (R = iPr, Cy (cyclohexyl, in THF or diethyl ether solution afforded the lithium-propiolamidinates Li[Ph–C≡C–C(NCy2] S (1: R = iPr, S = THF; 2: R = Cy, S = THF; 3: R = Cy, S = Et2O. Single-crystal X-ray diffraction studies of 1 and 2 showed the presence of typical ladder-type dimeric structures in the solid state. Reactions of anhydrous LnCl3 (Ln = Ce, Nd, Sm or Ho with 2 in a 1:3 molar ratio in THF afforded a series of new homoleptic lanthanide tris(propiolamidinate complexes, [Ph–C≡C–C(NCy2]3Ln (4: Ln = Ce; 5: Ln = Nd; 6: Ln = Sm; 7: Ln = Ho. The products were isolated in moderate to high yields (61%–89% as brightly colored, crystalline solids. The chloro-functional neodymium(III bis(cyclopropylethynylamidinate complex [{c-C3H5–C≡C–C(NiPr2}2Ln(µ-Cl(THF]2 (8 was prepared from NdCl3 and two equiv. of Li[c-C3H5–C≡C–C(NiPr2] in THF and structurally characterized. A new monomeric Ce(III-diiminophosphinate complex, [Ph2P(NSiMe32]2Ce(µ-Cl2Li(THF2 (9, has also been synthesized in a similar manner from CeCl3 and two equiv. of Li[Ph2P(NSiMe32]. Structurally, this complex resembles the well-known “ate” complexes (C5Me52Ln(µ-Cl2Li(THF2. Attempts to oxidize compound 9 using trityl chloride or phenyliodine(III dichloride did not lead to an isolable cerium(IV species.

  18. Thermoanalytical, spectroscopic and DFT studies of heavy trivalent lanthanides and yttrium(III) with oxamate as ligand

    Energy Technology Data Exchange (ETDEWEB)

    Caires, Flavio Junior; Gaglieri, Caroline, E-mail: caires.flavio@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias; Nunes, Wilhan Donizete Goncalves; Nascimento, Andre Luiz Carneiro Soares do; Teixeira, Jose Augusto; Zangaro, Georgia Alvim Coelho; Treu-Filho, Oswaldo; Ionashiro, Massao [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil)

    2017-07-15

    Solid-state LnL{sub 3}∙nH{sub 2}O complexes, where Ln stands for trivalent lanthanides (Tb to Lu) or yttrium(III) and L is oxamate (NH{sub 2}COCO{sub 2}{sup -}), have been synthesized. The characterization of the complexes was performed by using elemental analysis (EA), complexometric titration with EDTA, thermoanalytical techniques such as simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), evolved gas analysis (TG-FTIR), infrared spectroscopy (IR) and powder X-ray diffraction (XRPD). The results provided information about thermal behavior, crystallinity, stoichiometry, coordination sites, as well as the products released during thermal degradation of the complexes studied. Theoretical calculation of yttrium oxamate, as representative of all complexes was performed using density functional theory (DFT) for studying the molecular structure and vibrational spectrum of the investigated molecule in the ground state. The optimized geometrical parameters and theoretical vibrational spectrum obtained by DFT calculations are in good agreement with the experimental results. (author)

  19. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, A; Singh, M P; Singh, V K

    1982-05-01

    The nitrato-complexes, (Y(PyBzH)/sub 2/(NO/sub 3/)/sub 2/)NO/sub 3/.H/sub 2/O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole) are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm/sup -1/cm/sup 2/mol/sup -1/) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the positive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C/sub 2/v) and uncoordinated (D/sub 3/h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms.

  20. Nitrato-complexes of Y(III), La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III) and Ho(III) with 2-(2'-pyridyl) benzimidazole

    International Nuclear Information System (INIS)

    Mishra, A.; Singh, M.P.; Singh, V.K.

    1982-01-01

    The nitrato-complexes, [Y(PyBzH) 2 (NO 3 ) 2 ]NO 3 .H 2 O and Nd, Sm, Gd, Tb, Dy, Ho ; n=1-3, m=0-0.5 ; PyBzh=2-(2 -pyridyl)benzimidazole] are formed on interaction of the ligand with metal nitrates in ethanol. The electrical conductance values (116-129 ohm -1 cm 2 mol -1 ) suggest 1:1 electrolyte-nature of the complexes. Magnetic moment values of Ce(2.53 B.M.), Pr(3.62 B.M.), Nd(3.52 B.M.), Sm(1.70 B.M.), Gd(8.06 B.M.), Tb(9.44 B.M.), Dy(10.56 B.M.) and Ho(10.51 B.M.) in the complexes confirm the terpositive state of the metals. Infrared evidences are obtained for the existance of both coordinated (C 2 v) and uncoordinated (D 3 h) nitrate groups. Electronic absorption spectra of Pr(III)-, Nd(III)-, Sm(III)-, Tb(III)-, Dy(III)- and Ho(III)-complexes have been analysed in the light of LSJ terms. (author)

  1. 3,4,3-LI(1,2-HOPO): In Vitro Formation of Highly Stable Lanthanide Complexes Translates into Efficacious In Vivo Europium Decorporation

    Energy Technology Data Exchange (ETDEWEB)

    Sturzbecher-Hoehne, Manuel; Ng Pak Leung, Clara; Daleo, Anthony; Kullgren, Birgitta; Prigent, Anne-Laure; Shuh, David K.; Raymond, Kenneth N.; Abergel, Rebecca J.

    2011-07-13

    The spermine-based hydroxypyridonate octadentate chelator 3,4,3-LI(1,2-HOPO) was investigated for its ability to act as an antennae that sensitizes the emission of Sm{sup III}, Eu{sup III}, and Tb{sup III} in the Visible range (Φ{sub tot} = 0.2 - 7%) and the emission of Pr{sup III}, Nd{sup III}, Sm{sup III}, and Yb{sup III} in the Near Infra-Red range, with decay times varying from 1.78 μs to 805 μs at room temperature. The particular luminescence spectroscopic properties of these lanthanide complexes formed with 3,4,3-LI(1,2-HOPO) were used to characterize their respective solution thermodynamic stabilities as well as those of the corresponding La{sup III}, Gd{sup III}, Dy{sup III}, Ho{sup III}, Er{sup III}, Tm{sup III}, and Lu{sup III} complexes. The remarkably high affinity of 3,4,3-LI(1,2-HOPO) for lanthanide metal ions and the resulting high complex stabilities (pM values ranging from 17.2 for La{sup III} to 23.1 for Yb{sup III}) constitute a necessary but not sufficient criteria to consider this octadentate ligand an optimal candidate for in vivo metal decorporation. The in vivo lanthanide complex stability and decorporation capacity of the ligand were assessed, using the radioactive isotope {sup 152}Eu as a tracer in a rodent model, which provided a direct comparison with the in vitro thermodynamic results and demonstrated the great potential of 3,4,3-LI(1,2-HOPO) as a therapeutic metal chelating agent.

  2. Organometallic neptunium(III) complexes.

    Science.gov (United States)

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  3. Complexes of trivalent lanthanide ions with schiff base derived from vanillin and triethylenetetraamine

    International Nuclear Information System (INIS)

    Shahma, A.; Athar, M.; Ahmad, N.

    1982-01-01

    Complexes of lanthanide(III) ions with the schiff base derived from vanillin and triethylenetetraamine have been synthesised and characterised on the basis of elemental analyses, molar conductance, magnetic moment, IR and thermal analysis data. The thermograms show the elimination (OH)(OCH 3 )C 6 H 3 CH-group at low temperatures before the elimination of triethylenetetraamine part corroborating the observation made on the basis of IR spectral data. This is a clear indication of the non-coordination of the phenolic hydroxyl groups. The lanthanide ions in the complexes exhibit eight coordination numbers. (author)

  4. The kinetics of lanthanide complexation by EDTA and DTPA in lactate media.

    Science.gov (United States)

    Nash, K L; Brigham, D; Shehee, T C; Martin, A

    2012-12-28

    The interaction of trivalent lanthanide and actinide cations with polyaminopolycarboxylic acid complexing agents in lactic acid buffer systems is an important feature of the chemistry of the TALSPEAK process for the separation of trivalent actinides from lanthanides. To improve understanding of metal ion coordination chemistry in this process, the results of an investigation of the kinetics of lanthanide complexation by ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.3 M lactic acid/0.3 M ionic strength solution are reported. Progress of the reaction was monitored using the distinctive visible spectral changes attendant to lanthanide complexation by the colorimetric indicator ligand Arsenazo III, which enables the experiment but plays no mechanistic role. Under the conditions of these experiments, the reactions occur in a time regime suitable for study by stopped-flow spectrophotometric techniques. Experiments have been conducted as a function of EDTA/DTPA ligand concentration, total lactic acid concentration, and pH. The equilibrium perturbation reaction proceeds as a first order approach to equilibrium over a wide range of conditions, allowing the simultaneous determination of complex formation and dissociation rate constants. The rate of the complexation reaction has been determined for the entire lanthanide series (except Pm(3+)). The predominant pathway for lanthanide-EDTA and lanthanide-DTPA dissociation is inversely dependent on the total lactate concentration; the complex formation reaction demonstrates a direct dependence on [H(+)]. Unexpectedly, the rate of the complex formation reaction is seen in both ligand systems to be fastest for Gd(3+). Correlation of these results indicates that in 0.3 M lactate solutions the exchange of lanthanide ions between lactate complexes and the polyaminopolycarboxylate govern the process.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 1. Synthesis, spectral properties and DNA binding and nuclease activity of lanthanide (III) complexes of 2-benzoylpyridine benzhydrazone: X-ray crystal structure, Hirshfeld studies and nitrate- interactions of cerium(III) complex. Karreddula Raja Akkili ...

  6. Complexes of lanthanum(III), cerium(III), samarium(III) and dysprosium(III) with substituted piperidines

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, B S; Trikha, A K; Singh, H; Chander, M

    1983-11-01

    Complexes of the general formulae M/sub 2/Cl/sub 6/(L)/sub 3/.C/sub 2/H/sub 5/OH and M/sub 2/(NO/sub 3/)/sub 6/(L)/sub 2/.CH/sub 3/OH have been synthesised by the reactions of chlorides and nitrates of La(III), Ce(III), Sm(III) and Dy(III) with 2-methylpiperidine, 3-methylpiperidine and 4-methylpiperidine. These complexes have been characterised on the basis of their elemental analysis, and IR and electronic reflectance spectra. IR spectral data indicate the presence of coordinated ethanol and methanol molecules and bidentate nitrate groups. Coordination numbers of the metal ions vary from 5 to 8. 19 refs.

  7. Synthesis and study on complexes of some lanthanides to L-isoleucine

    International Nuclear Information System (INIS)

    Le Minh Tuan; Pham Minh Tuan; Tran The Dinh

    2007-01-01

    The formation of lanthanide (La, Pr and Nd) complexes with L-isoleucine have been studied as a function of pH values. The titrations were performed at 25 o C, and the ionic strength of the medium was maintained at 0.10 M by using potassium nitrate. The formation curves of their complexes (n-p[L]) were obtained by means of the titration data. Then the stability constants were determined in relation to these curves. The complexes were synthesized in the mixture of water-ethanol. The coordination of the complexes were determined by elements analysis, 13 C-NMR, 1 H-NMR and IR methods. These complexes are formulated as Ln(HIle) 3 .(NO 3 ) 3 .3H 2 O; (Ln: La, Pr and Nd,; L-Ile: L-isoleucine). Comparison of the IR, 13 C-NMR and 1 H-NMR spectra of the ligand with those of their complexes shows that isoleucine acts as a bidentate ligand bonding the lanthanide ions through the amino and carboxylate groups. (author)

  8. Complexation of f elements by tripodal ligands containing aromatic nitrogens. Application to the selective extraction of actinides(III)

    International Nuclear Information System (INIS)

    Wietzke, Raphael

    1999-01-01

    This work initiates a research project, whose aim is the actinides(lll)/lanthanides(III) separation by liquid-liquid extraction. We were interested in the study of the coordination chemistry of lanthanides(III) and uranium(III) (uranium(III) as model for the actinides(III)), with the aim to show differences between the two families and to better understand the coordination properties involved in the extraction process. We studied the lanthanide(III) and uranium(III) complexation with tripodal ligands containing aromatic nitrogens. Several tripodal ligands were synthesized varying the type and the number of the donor atoms. The lanthanide(III) complexes have been characterized in the solid state and in solution (by several techniques: "1H NMR, ESMS, luminescence, UV spectrophotometry, conductometry). Differences in the coordination were found depending on the nature of the donor atoms. The new ligands, tris(2-pyrazinylmethyl)amine (tpza) et tris(N,N-diethyl-2-carbamoyl-6- pyridylmethyl)amine (tpaa), have shown a selectivity for the actinides(III) with promising results in liquid-liquid extraction. The comparison between the lanthanum(III) and uranium(III) complexes with the ligand tpza showed differences in the bonding nature, which could be attributed to a covalent contribution to the metal-ligand bond. (author) [fr

  9. The Lanthanide Contraction Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  10. (Carbonato-κO,O')bis-(1,10-phenan-throline-κN,N')cobalt(III) nitrate monohydrate.

    Science.gov (United States)

    Andaç, Omer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2009-12-12

    The crystal structure of the title compound, [Co(CO(3))(C(12)H(8)N(2))(2)]NO(3)·H(2)O, consists of Co(III) complex cations, nitrate anions and uncoordinated water mol-ecules. The Co(III) cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa-hedral coordination geometry. A three-dimensional supra-molecular structure is formed by O-H⋯O and C-H⋯O hydrogen bonding, C-H⋯π and aromatic π-π stacking [centroid-centroid distance = 3.995 (1)Å] inter-actions.

  11. Structural and thermodynamic aspects of aqueous solution of trivalent lanthanides complexation by hydrophobic compounds of tartaric acid, by gluconic acid and related molecules. Outlook for liquid-liquid extraction of these cations

    International Nuclear Information System (INIS)

    Giroux, Sebastien

    1999-01-01

    This work deals with the complexation of lanthanide(III) ions by different molecules and with the synthesis of hydrophobic molecules able to extract them of an aqueous solution. Its aim is to describe the systems obtained by the determination of the formation constants of the species and by the description of their structure. The aim of this work is also to obtain a selective complexation of lanthanides(III) towards actinides(III), because this aim presents a great interest in the reprocessing of radioactive wastes. The complexation studies have been followed by potentiometry, NMR, UV-visible spectroscopy and circular dichroism. The first mixtures studied are the couples: lanthanide(III)-gluconic acid (LH). The complexes system they formed has been described and the structures have been specified; a strong complexation has been revealed. The MLH -2 specie induces a selectivity between the lanthanides(III) equivalent to those obtained with EDTA and its uncharged character allows to consider the use of gluconic acid as extractant. The use of ligands as glucosaminic acid or glucamine slows the beginning of the complexation until pH= 6-7. The neutral specie MLH -2 is formed too. In order to use the complexing properties of gluconic acid and its selective character towards lanthanides(III), the synthesis of molecules derived containing a long alkyl chain with a hydrophobic character has been carried out for using them as extracting agents. An original method of the preparation of tartramides is presented. This preparation consists of an amidation of one of the carboxylic functions of the tartaric acid by a fatty amine. These molecules, surface-active, complex the lanthanides(III) and extract them in an organic phase using the tri-n-butyl phosphate as co-extractant. (O.M.)

  12. Experimental studies and tests on An(III)/Ln(III) separation using the TODGA extractant

    Energy Technology Data Exchange (ETDEWEB)

    Heres, Xavier; Sorel, Christian; Miguirditchian, Manuel; Cames, Beatrice; Hill, Clement; Bisel, Isabelle; Espinoux, Denis; Viallesoubranne, Carole; Baron, Pascal; Lorrain, Brigitte [CEA/DEN/MAR/DRCP, Marcoule, BP17171, 30207 Bagnols/Ceze (France)

    2009-06-15

    Minor actinide recycling by separation and transmutation is worldwide considered as one of the most promising strategies to reduce the inventory of radioactive waste, thus contributing to make nuclear energy more sustainable. One of the different options investigated at the CEA Marcoule and within the ACSEPT project (a European collaborative project partly funded by the 7. EURATOM Framework Program) to separate trivalent minor actinide (Am(III)-Cf(III)) from the fission and activation products contained in PUREX raffinates is the TODGA process, which consists in: 1. Co-extracting trivalent 4f and 5f elements from highly acidic PUREX raffinates by a mixture of TODGA (tetraoctyl-diglycolamide) and TBP (tributyl-phosphate), dissolved in HTP (hydrogenated tetra-propene). 2. Selectively stripping the trivalent minor actinides by a hydrophilic poly-aminocarboxylic acid used as a complexing agent in a buffered aqueous solution, while the trivalent lanthanides are kept in the organic solvent thanks to a sodium nitrate salting-out effect. 3. Stripping the lanthanides in a diluted nitric acid solution. The major difficulty of this TODGA separation process is to tune the pH in a very narrow range of operating conditions in the second step, because of the high sensitivity of the performances of the flow-sheet vs pH. This difficulty was however overcome. This paper describes the development of the TODGA process from experimental studies to hot test implementation in shielded cells of the ATALANTE facility, including (i) the optimization of the extraction system (both the formulation of the organic solvent and those of the aqueous scrubbing and stripping solutions), (ii) the implementation of a cold test in small scale mixer-settlers in the G1 facility (MARCEL loop), using a surrogate feed composed of major fission products, (iii) the validation of some steps of the process, using a surrogate feed, spiked with Am-241 and Eu-152, and similar laboratory contactors (medium activity

  13. Investigation of global particulate nitrate from the AeroCom phase III experiment

    Directory of Open Access Journals (Sweden)

    H. Bian

    2017-11-01

    Full Text Available An assessment of global particulate nitrate and ammonium aerosol based on simulations from nine models participating in the Aerosol Comparisons between Observations and Models (AeroCom phase III study is presented. A budget analysis was conducted to understand the typical magnitude, distribution, and diversity of the aerosols and their precursors among the models. To gain confidence regarding model performance, the model results were evaluated with various observations globally, including ground station measurements over North America, Europe, and east Asia for tracer concentrations and dry and wet depositions, as well as with aircraft measurements in the Northern Hemisphere mid-to-high latitudes for tracer vertical distributions. Given the unique chemical and physical features of the nitrate occurrence, we further investigated the similarity and differentiation among the models by examining (1 the pH-dependent NH3 wet deposition; (2 the nitrate formation via heterogeneous chemistry on the surface of dust and sea salt particles or thermodynamic equilibrium calculation including dust and sea salt ions; and (3 the nitrate coarse-mode fraction (i.e., coarse/total. It is found that HNO3, which is simulated explicitly based on full O3-HOx-NOx-aerosol chemistry by all models, differs by up to a factor of 9 among the models in its global tropospheric burden. This partially contributes to a large difference in NO3−, whose atmospheric burden differs by up to a factor of 13. The atmospheric burdens of NH3 and NH4+ differ by 17 and 4, respectively. Analyses at the process level show that the large diversity in atmospheric burdens of NO3−, NH3, and NH4+ is also related to deposition processes. Wet deposition seems to be the dominant process in determining the diversity in NH3 and NH4+ lifetimes. It is critical to correctly account for contributions of heterogeneous chemical production of nitrate on dust and sea salt, because this process

  14. Recovery of lanthanides

    International Nuclear Information System (INIS)

    Tilley, G.L.; Doyle, W.E.

    1990-01-01

    This paper discusses a method for recovering a lanthanide and thorium from a material containing a fluorine compound and the lanthanide and thorium. It comprises a. obtaining the material from a roasted, acid-leached bastnasite ore; b. forming a mixture of the material with at least about ten weight percent of silica; c. contacting the mixture with sulfuric acid; d. heating the mixture and sulfuric acid to a temperature of at least about 150 degrees C for at least about 3 hours to cause most of the fluorine to be released as a volatile material containing silicon and fluorine; e. contacting the reacted mixture with an aqueous medium consisting essentially of water to solubilize the lanthanide and thorium while leaving an insoluble residue; and f. separating the aqueous solution of the lanthanide and thorium from the insoluble residue

  15. Bis{2-[(pyridin-2-ylmethylideneamino]benzoato-κ3N,N′,O}chromium(III nitrate monohydrate

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2014-04-01

    Full Text Available The title complex salt hydrate, [Cr(C13H9N2O22]NO3·H2O, comprises discrete cations, nitrate anions and solvent water molecules. The CrIII atom is octahedrally coordinated by two anionic Schiff base ligands with the O atoms being cis. The two ligands differ significantly with dihedral angles between the pyridine and benzene rings of 4.8 (2 and 24.9 (2°. The nitrate anion and solvent water molecule were modelled as being disordered, with the major components having site-occupancy values of 0.856 (14 and 0.727 (16, respectively. The crystal is built of alternating layers of cations and of anions plus water molecules, stacked along the c axis.

  16. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit, E-mail: amitk@barc.gov.in [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ali, Manjoor [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ningthoujam, Raghumani S. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Gaikwad, Pallavi [Department of Zoology, Savitribai Phule Pune University, Pune 411 007, Mumbai (India); Kumar, Mukesh [Solid State, Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Nath, Bimalendu B. [Department of Zoology, Savitribai Phule Pune University, Pune 411 007, Mumbai (India); Pandey, Badri N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-04-15

    Highlights: • The sites of Ln and An interaction in Hb depend upon their charge-to-ionic-radii ratio. • Th(IV), Ce(IV) and U(VI) altered structure and oxygen-binding of Hb. • Spectroscopic studies determined binding characteristics of actinides. • Metal–Hb interaction was tested in an environmentally-important aquatic midge, Chironomus. - Abstract: Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75 μM, these ions affected heme moiety. Metal–heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal–Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity.

  17. The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology

    International Nuclear Information System (INIS)

    Kumar, Amit; Ali, Manjoor; Ningthoujam, Raghumani S.; Gaikwad, Pallavi; Kumar, Mukesh; Nath, Bimalendu B.; Pandey, Badri N.

    2016-01-01

    Highlights: • The sites of Ln and An interaction in Hb depend upon their charge-to-ionic-radii ratio. • Th(IV), Ce(IV) and U(VI) altered structure and oxygen-binding of Hb. • Spectroscopic studies determined binding characteristics of actinides. • Metal–Hb interaction was tested in an environmentally-important aquatic midge, Chironomus. - Abstract: Due to increasing use of lanthanides/actinides in nuclear and civil applications, understanding the impact of these metal ions on human health and environment is a growing concern. Hemoglobin (Hb), which occurs in all the kingdom of living organism, is the most abundant protein in human blood. In present study, effect of lanthanides and actinides [thorium: Th(IV), uranium: U(VI), lanthanum: La(III), cerium: Ce(III) and (IV)] on the structure and function of Hb has been investigated. Results showed that these metal ions, except Ce(IV) interacted with carbonyl and amide groups of Hb, which resulted in the loss of its alpha-helix conformation. However, beyond 75 μM, these ions affected heme moiety. Metal–heme interaction was found to affect oxygen-binding of Hb, which seems to be governed by their closeness with the charge-to-ionic-radius ratio of iron(III). Consistently, Ce(IV) being closest to iron(III), exhibited a greater effect on heme. Binding constant and binding stoichiometry of Th(IV) were higher than that of U(VI). Experiments using aquatic midge Chironomus (possessing human homologous Hb) and human blood, further validated metal–Hb interaction and associated toxicity. Thus, present study provides a biochemical basis to understand the actinide/lanthanide-induced interference in heme, which may have significant implications for the medical and environmental management of lanthanides/actinides toxicity.

  18. Addition compounds of lanthamide (III) and yttrium (III) hexafluorophosphates and N,N - dimethylformamide

    International Nuclear Information System (INIS)

    Braga, L.S.P.

    1983-01-01

    Addition compounds of lanthanide (III) and yttrium (III) hexafluorophosphates and N-N-Dimetylformamide are described to characterize the complexes, elemental analysis, melting ranges, molar conductance measurements, X-ray powder patters infrared and Raman spectra, TG and DTA curves, are studied. Information concerning the decomposition of the adducts through the thermogravimetric curves and the differential thermal analysis curves is obtained. (M.J.C.) [pt

  19. Carbon-based magnetic nanocomposites in solid phase dispersion for the preconcentration some of lanthanides, followed by their quantitation via ICP-OES

    International Nuclear Information System (INIS)

    Tajabadi, F.; Sovizi, M.R.; Yamini, Y.

    2013-01-01

    We report on a method for the extraction of the lanthanide ions La(III), Sm(III), Nd(III) and Pr(III) using a carbon-ferrite magnetic nanocomposite as a new adsorbent, and their determination via flow injection ICP-OES. The lanthanide ions were converted into their complexes with 4-(2-pyridylazo)resorcinol, and these were adsorbed onto the nanocomposite. Fractional factorial design and central composite design were applied to optimize the extraction efficiencies to result in preconcentration factors in the range of 141-246. Linear calibration plots were obtained, the limits of detection (at S/N = 3) are between 0. 5 and 10 μg L -1 , and the intra-day precisions (n = 3) range from 3.1 to 12.8 %. The method was successfully applied to a certified reference material. (author)

  20. Complexes of Sm(III) and Dy(III) with piperazines

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, B S; Trikha, A K [Punjabi Univ., Patiala (India). Dept. of Chemistry; Singh, M [Guru Nanak Dev Univ., Amritsar (India). Dept. of Chemistry

    1981-09-01

    Complexes of SmCl/sub 3/, DyCl/sub 3/, Sm(NO/sub 3/)/sub 3/ and Dy(NO/sub 3/) with piperazine, N-methylpiperazine, 2-methylpiperazine, N-phenyl-piperazine and N, N'-dimethyl-piperazine have been prepared and characterized on the basis of elemental analyses, IR and electronic reflectance spectra and magnetic susceptibility measurements. IR data indicate that the ligands are coordinated in the chair conformation giving polymeric bridged complexes and that the nitrate group is bidentate. Coordination numbers from 6 to 12 are proposed for the lanthanide ions.

  1. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  2. Series of isostructural planar lanthanide complexes [Ln(III)4(mu3-OH)2(mdeaH)2(piv)8] with single molecule magnet behavior for the Dy4 analogue.

    Science.gov (United States)

    Abbas, Ghulam; Lan, Yanhua; Kostakis, George E; Wernsdorfer, Wolfgang; Anson, Christopher E; Powell, Annie K

    2010-09-06

    A series of five isostructural tetranuclear lanthanide complexes of formula [Ln(4)(mu(3)-OH)(2)(mdeaH)(2)(piv)(8)], (mdeaH(2) = N-methyldiethanolamine; piv = pivalate; Ln = Tb (1), Dy (2), Ho (3), Er (4), and Tm (5)) have been synthesized and characterized. These clusters have a planar "butterfly" Ln(4) core. Magnetically, the Ln(III) ions are weakly coupled in all cases; the Dy(4) compound 2 shows Single Molecule Magnet (SMM) behavior.

  3. Inner-sphere and outer-sphere complexes of yttrium(III), lanthanum (III), neodymium(III), terbium(III) and thulium(III) with halide ions in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Takahashi, Ryouta; Ishiguro, Shin-ichi

    1991-01-01

    The formation of chloro, bromo and iodo complexes of yttrium(III), and bromo and iodo complexes of lanthanum(III), neodymium(III), terbium(III) and thulium(III) has been studied by precise titration calorimetry in N,N-dimethylformamide (DMF) at 25 o C. The formation of [YCl] 2+ , [YCl 2 ] + , [YCl 3 ] and [YCl 4 ] - , and [MBr] 2+ and [MBr 2 ] + (M = Y, La, Nd, Tb, Tm) was revealed, and their formation constants, enthalpies and entropies were determined. It is found that the formation enthalpies change in the sequence ΔH o (Cl) > ΔH o (l), which is unusual for hard metal (III) ions. This implies that, unlike the chloride ion, the bromide ion forms outer-sphere complexes with the lanthanide(III) and yttrium(III) ions in DMF. Evidence for either an inner- or outer-sphere complex was obtained from 89 Y NMR spectra for Y(ClO 4 ) 3 , YCl 3 and YBr 3 DMF solutions at room temperature. (author)

  4. Organometallic neptunium(III) complexes

    Science.gov (United States)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  5. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Structural variability in uranyl-lanthanide hetero-metallic complexes with DOTA and oxalato ligands

    International Nuclear Information System (INIS)

    Thuery, P.

    2009-01-01

    Four novel 4f-5f hetero-metallic complexes could be obtained from the reaction of uranyl and lanthanide nitrates with DOTA (H 4 L) under hydrothermal conditions. In all cases, as in the previous examples reported, additional oxalato ligands are formed in situ. Variations in the stoichiometry of the final products and the presence of hydroxo ions in some cases appear to result in a large structural variability. In the two isomorphous complexes [(UO 2 ) 2 Ln 2 (L) 2 (C 2 O 4 )] with Ln = Sm(1) or Eu(2), the lanthanide ion is located in the N 4 O 4 site and is also bound to a carboxylate oxygen atom from a neighbouring unit, to give zigzag chains which are further linked to one another by [(UO 2 ) 2 (C 2 O 4 )] 2+ di-cations, resulting in the formation of a 3D framework. In [(UO 2 ) 4 Gd 2 (L) 2 (C 2 O 4 ) 3 (H 2 O) 6 ].2H 2 O (3), 2D bilayer subunits of the 'double floor' type with uranyl oxalate pillars are assembled into a 3D framework by other, disordered uranyl ions. [(UO 2 ) 2 Gd(L)(C 2 O 4 )(OH)].H 2 O (4) is a 2D assembly in which cationic {[(UO 2 ) 2 (C 2 O 4 )(OH)] + } n chains are linked to one another by the [Gd(L)] - groups. The most notable feature of this compound is the environment of the 4f ion, which is eight-coordinate and twisted square anti-prismatic (TSA'), instead of nine-coordinate mono-capped square anti-prismatic (SA), as generally observed in DOTA complexes of gadolinium(III) and similarly-sized ions. (author)

  7. Rapid separation of lanthanides and actinides on small particle based reverse phase supports

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    This paper presents the results on the use of short columns (3-5 cm long) with small particle size (1.8 {mu}m) for high performance liquid chromatographic separation of individual lanthanides and uranium from plutonium as well as uranium from thorium to achieve rapid separations i.e. separation time as short as 3.6 min for individual lanthanides, 1 min for thorium-uranium and 4.2 min for uranium from plutonium. These advantages can be exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator when radioactive samples are analysed e.g. burn-up determination. In the present work, a dynamic ion-exchange chromatographic separation technique was employed using camphor-10-sulfonic acid (CSA) as the ion-pairing reagent and {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) as the complexing reagent for the isolation of individual lanthanides as well as the separation of uranium from thorium. Uranium was separated from Pu(III) as well as Pu(IV) by reverse phase HPLC technique. The reverse phase HPLC was also investigated for the isolation and quantitative determination of uranium from thorium as well as lanthanide group from uranium. The dynamic ion-exchange technique using small particle support was demonstrated for measuring the concentrations of lanthanide fission products such as La, Ce, Pr, Nd and Sm in the dissolver solution of fast reactor fuel. Similarly, the assay of uranium in the dissolver solution of fast reactor was carried out using reverse phase HPLC technique. The rapid separation technique using reverse phase HPLC was also demonstrated for separation of lanthanides as a group from uranium matrix; samples of LiCl-KCl eutectic salt containing chlorides of lanthanides in uranium matrix (typically 1: 2000) were analysed. (orig.)

  8. Actinide-lanthanide separation by bipyridyl-based ligands. DFT calculations and experimental results

    International Nuclear Information System (INIS)

    Borisova, Nataliya E.; Eroshkina, Elizaveta A.; Korotkov, Leonid A.; Ustynyuk, Yuri A.; Alyapyshev, Mikhail Yu.; Eliseev, Ivan I.; Babain, Vasily A.

    2011-01-01

    In order to gain insights into effect of substituents on selectivity of Am/Eu separation, the synthesis and extractions tests were undertaken on the series of bipyridyl-based ligands (amides of 2,2'-bipyridyl-6,6'-dicarboxylic acid: L Ph - N,N'-diethyl-N,N'-diphenyl amide; L Bu2 - tetrabutyl amide; L Oct2 - tetraoctyl amide; L 3FPh - N,N'-diethyl-N,N'-bis-(3-fluorophenyl) amide; as well as N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dibrom-2,2'-bipyridyl-6,6'-dicarboxylic acid and N,N'-diethyl-N,N'-diphenyl amide of 4,4'-dinitro-2,2'-bipyridyl-6,6'-dicarboxylic acid) as well as structure and stability of their complexes with lanthanides and actinides were studied. The extraction tests were performed for Am, lanthanide series and transition metals in polar diluents in presence of chlorinated cobalt dicarbolide and have shown high distribution coefficients for Am. Also was found that the type of substituents on amidic nitrogen exerts great influence on the extraction of light lanthanides. For understanding of the nature of this effect we made QC-calculations at DFT level, binding constants determination and X-Ray structure determination of the complexes. The UV/VIS titration performed show that the composition of all complexes of the amides with lanthanides in solution is 1:1. In spite of the binding constants are high (lgβ about 6-7 in acetonitrile solution), lanthanide ions have binding constants with the same order of magnitude for dialkyl substituted extractants. The X-Ray structures of the complexes of bipyridyl-based amides show the composition of 1:1 and the coordination number of the ions being 10. The DFT optimized structures of the compounds are in good agreement with that obtained by X-Ray. The gas phase affinity of the amides to lanthanides shows strong correlation with the distribution ratios. We can infer that the bipyridyl-based amides form complexes with metal nitrates which have similar structure in solid and gas phases and in solution, and the DFT

  9. COMPLEXES POLYMETALLIQUES DE LANTHANIDES (III) POUR LE DEVELOPPEMENT DE NOUVEAUX MATERIAUX LUMINESCENTS

    OpenAIRE

    Marchal , Claire

    2008-01-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecularchemistry and allows the combination of their nanoscopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecu...

  10. Analytical chemistry of lanthanides

    International Nuclear Information System (INIS)

    Al-Sowdani, K.H.

    1986-12-01

    Candoluminescence of the lanthanides and the development of instruments for monitoring the phenomenon are described. The use of fluorescence spectroscopy, spectrofluorometry and spectrophotometry for the quantitative chemical analysis of the lanthanides is described. (U.K.)

  11. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.

    Science.gov (United States)

    Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just

    2018-01-01

    Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.

  12. Structural studies of lanthanide nitrate-N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxyamide complexes

    International Nuclear Information System (INIS)

    Fujiwara, Asako; Nakano, Yoshiharu; Yaita, Tsuyoshi; Okuno, Kenji

    2008-01-01

    The tridentate ligand N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxyamide (DMDPhPDA) and the corresponding lanthanum complex [La(NO 3 ) 3 (DMDPhPDA) 2 ] have been prepared and structurally characterised. The crystal structure of DMDPhPDA shows syn-anti conformation. In the lanthanum complex, two DMDPhPDA molecules coordinated to La(III) in a tridentate fashion and to three nitrate ions in a bidentate fashion make the lanthanum atom 12-coordinate. The crystal structure of [La(NO 3 ) 3 (DMDPhPDA) 2 ] has a C 2 symmetry. The stability constants determined by spectrophotometric titration suggest that [Ln(DMDPhPDA) 2 ] 3+ is the primary product in CH 3 CN solution and [Ln(DMDPhPDA) 3 ] 3+ is difficult to form. However, [Ln(DMDPhPDA) 2 ] 3+ could not be distinguished in 1 H NMR spectra. The 1 H NMR titration results imply that a fast ligand exchange process takes place

  13. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    International Nuclear Information System (INIS)

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing; Wang Tiegang

    2008-01-01

    A series of lanthanide coordination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4), H 2 ip=isophthalic acid, im=imidazole] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted

  14. Scandium, yttrium and the lanthanides

    International Nuclear Information System (INIS)

    Hart, F.A.

    1987-01-01

    This chapter on the chemistry of the coordination complexes of scandium, yttrium and the lanthanides includes sections on the nitrogen and oxygen donor ligands and complex halides of scandium, and the phosphorus and sulfur donor ligands of yttrium and the lanthanides. Complexes with the macrocylic ligands and with halides are also discussed. Sections on the NMR and electronic spectra of the lanthanides are also included. (UK)

  15. Separation studies of La(III) and Ce(III)/Nd(III)/Pr(III)/Sm(III) from chloride solution using DEHPA/PC88A in petrofin

    International Nuclear Information System (INIS)

    Acharya, Sagarika; Mishra, Sujata; Bhatta, B.C.

    2017-01-01

    The separation of La(III) and four other lanthanides. Ce, Nd, Pr and Sm from chloride solution has been studied using the two acidic organophosphorous extractants, DEHPA and PC88A in petrofin at pH 4.3. The metal content analysis was done using an ICP-OES spectrophotometer. The separation factors (β) was calculated and for La-Sm pair highest value of 9.7 was obtained. (author)

  16. NMR studies of structures of lanthanide dicarboxylate complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.; Kullberg, L.

    PMR pand 13 C shift data were measured for complexes of Pr(III), Eu(III) and Yb(III) with ethylene 1,2-dioxydiacetate (EDODA), ethylene 1,2-dithiodiacetate (EDSDA), and ethylene, 1,2-diaminodiacetate (EDDA). Solubility problems limited analysis of the EDSDA and EDDA data to qualitative evaluation. In the EDSDA complexes, the data indicate that the sulfur atoms do not participate in bonding to the lanthanide cations. Moreover, both carboxylate groups seem to bind Pr and Eu while Yb interacts with only a single carboxylate group. The EDDA complexes are tetradentate with long lived (NMR scale) Ln-N bonds. Shift theory allowed more quantitative analysis of the EDODA complexes. They are tetradentate with a puckered chelate ring and Ln-O(ether) distances of 2.3 A

  17. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  18. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Extraction chromatography of lanthanides, ch. 8

    International Nuclear Information System (INIS)

    Siekierski, S.; Fidelis, I.

    1975-01-01

    The extraction of lanthanides by chelate formation with acidic organophosphorous extractants, by solvation of salts, and in the form of ion pairs is reviewed. The double-double effect and its significance for the lanthanide as well as the actinide separation is discussed. A short survey of the existing data on the enthalpies of lanthanide extraction and on the influence of temperature on their separation factor is given. The resolution ability of columns used for the separation of lanthanides is briefly surveyed

  20. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  1. Complexes of (III) lanthanides isothiocyanate and (III) yttrium with 2,6-lutidine-n-oxide (2,6-LNO)

    International Nuclear Information System (INIS)

    Arico, E.M.

    1990-01-01

    The preparation and characterization of the complexes of yttrium and some lanthanides isothiocyanate with 2,6-lutidine-N-oxide (2,6-LNO) are described. The ligand employed in the synthesis of the compounds were prepared by the reaction of 2,6-lutidine with hydrogen peroxide in glacial acetic acid. The complexes were prepared using the relation 1:3 salt-ligand. Their characterization was made by elemental analysis, electrolytic conductance measurements, X-ray powder patterns, infrared spectra, electronic absorption spectra of the neodymium and fluorescence spectra of the europium compounds. (author)

  2. Synthesis, magnetic and spectral studies of lanthanide(III) chloride complexes of hydrazones of isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Prasad, Ram

    1996-01-01

    The synthesis, magnetic and spectral properties of trivalent lanthanide chlorides with N-isonicotinamidobenzalaldimine (INH-BENZ), N-isonicotinamidoanisalaldimine (INH-ANSL) and N-isonicotinamido-p-dimethylaminobenzalaldimine (INH-PDAB) are described. 13 refs., 2 tabs

  3. Lanthanide and actinide ion phytoextraction: investigations of biosorption chemistry

    International Nuclear Information System (INIS)

    Rayson, Gary D.; Serna, Debbie D.; Moore, Jessica L.

    2009-01-01

    Investigations of the chemical interactions responsible for passive biosorption of a lanthanide (Eu (III)) and an actinide (U (VI)) metal ion is described. Spectroscopic methods for the elucidation of chemical functionalities on cultured anther cell walls from the plant Datura innoxia include metal ion luminescence measurements. These have revealed the presence of distinctly different binding environments involving one, two, and three carboxylate moieties for Eu (III) and UO 2 2+ binding and sulfonates (or sulfates) and phosphates for sequestration of Eu (III) on the uranyl ion, respectively. Additional investigations of the apparent affinities of these metals to this material have revealed the presence of both low and high affinity sites for the binding of Eu (III) with weak electrostatic attractions proposed for binding at high metal concentrations (i.e., low affinities) and surface coordination interactions responsible for higher affinities. Conversely, total uranyl ion binding revealed only a single distribution of interactions based on apparent affinities. (author)

  4. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  5. Selective Lanthanides Sequestration Based on a Self-Assembled Organo-silica

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.; Reye, C.; Corriu, R.J. P. [Univ Montpellier, Inst Charles Gerhardt Montpellier, UMR 5253, Chim Mol and Org Solide, F-34095 Montpellier 5 (France); Besson, E. [ICSM Site Marcoule, UMR 5257, Inst Chim Separat Marcoule, F-30207 Bagnols Sur Ceze (France); Van der Lee, Arie [Univ Montpellier, Inst Europeen Membranes, UMR 5635, CNRS, F-34095 Montpellier 5 (France); Besson, E.; Chollet, H. [CEA Valduc, Dept Traitement Mat Nucl, F-21120 Is Sur Tille (France); Guilard, R. [Univ Bourgogne, Inst Chim Mol, CNRS, ICMUB, UMR 5260, F-21078 Dijon (France)

    2010-07-01

    In this paper, we investigate the cation-exchange properties of a self-assembled hybrid material towards trivalent ions, lanthanides (La{sup 3+}, Eu{sup 3+}, Gd{sup 3+}, Yb{sup 3+}) and Fe{sup 3+}. The bis-zwitterionic lamellar material was prepared by sol-gel process from only 3-aminopropyltriethoxysilane (APTES), succinic anhydride, and ethylenediamine. In ethanol heated under reflux, the exchange ethylenediammonium versus Ln{sup 3+} proved to be complete by complexometry measurements and elemental analyses, one Cl{sup -} ion per one Ln(III) remaining as expected for charge balance. In aqueous solution at 20 degrees C, the material was found to be selective towards lanthanide in spite of the similarity of their ionic radii. The cation uptake depends on the nature of the salt, the difference between two lanthanides reaching up to 20% in some cases. Finally, ion-exchange reaction with FeCl{sub 3} was chosen as a probe to get more information on the material after incorporation of trivalent ions. Based on Moessbauer spectroscopic investigations on the resulting material in conjunction with the XRD analysis of materials containing trivalent ions, a structural model was proposed to describe the incorporation of trivalent ions by exchange reaction within the original zwitterionic material. (authors)

  6. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  7. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors

    Science.gov (United States)

    Schmidt, Natalie; Page, Declan; Tiehm, Andreas

    2017-08-01

    Biodegradation of pharmaceuticals and endocrine disrupting compounds was examined in long term batch experiments for a period of two and a half years to obtain more insight into the effects of redox conditions. A mix including lipid lowering agents (e.g. clofibric acid, gemfibrozil), analgesics (e.g. diclofenac, naproxen), beta blockers (e.g. atenolol, propranolol), X-ray contrast media (e.g. diatrizoic acid, iomeprol) as well as the antiepileptic carbamazepine and endocrine disruptors (e.g. bisphenol A, 17α-ethinylestradiol) was analyzed in batch tests in the presence of oxygen, nitrate, manganese (IV), iron (III), and sulfate. Out of the 23 selected substances, 14 showed a degradation of > 50% of their initial concentrations under aerobic conditions. The beta blockers propranolol and atenolol and the analgesics pentoxifylline and naproxen showed a removal of > 50% under anaerobic conditions. In particular naproxen proved to be degradable with oxygen and under most anaerobic conditions, i.e. with manganese (IV), iron (III), or sulfate. The natural estrogens estriol, estrone and 17β-estradiol showed complete biodegradation under aerobic and nitrate-reducing conditions, with a temporary increase of estrone during transformation of estriol and 17β-estradiol. Transformation of 17β-estradiol under Fe(III)-reducing conditions resulted in an increase of estriol as well. Concentrations of clofibric acid, carbamazepine, iopamidol and diatrizoic acid, known for their recalcitrance in the environment, remained unchanged.

  8. Prism inside. Spectroscopic and magnetic properties of the lanthanide(III) chloride oxidotungstates(VI) Ln{sub 3}Cl{sub 3}[WO{sub 6}] (Ln = La - Nd, Sm - Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Katharina V.; Blaschkowski, Bjoern; Hartenbach, Ingo [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Foerg, Katharina; Netzsch, Philip; Hoeppe, Henning A. [Institute for Physics, University of Augsburg (Germany)

    2017-11-17

    The lanthanide(III) chloride oxidotungstates(VI) with the formula Ln{sub 3}Cl{sub 3}[WO{sub 6}] for Ln = La - Nd, Sm - Tb were synthesized by solid-state reactions utilizing the respective lanthanide trichloride, lanthanide sesquioxide (where available), and tungsten trioxide together with lithium chloride as flux. The title compounds crystallize hexagonally in space group P6{sub 3}/m (no. 176, a = 941-909, c = 543-525 pm, Z = 2). The structures comprise crystallographically unique Ln{sup 3+} cations surrounded by six O{sup 2-} and four Cl{sup -} anions (C.N. = 10) forming distorted tetracapped trigonal prisms as well as rather uncommon trigonal prismatic [WO{sub 6}]{sup 6-} units, whose edges are coordinated by nine Ln{sup 3+} cations. Thus, a {sup 3}{sub ∞}{([WO_6]Ln"e_9_/_3)"3"+} framework (e = edge-sharing) is created, which contains tube-shaped channels along [001] lined with chloride anions. To elucidate the spectroscopic and magnetic properties of the obtained pure phase samples, single-crystal Raman (for Ln = La - Nd, Sm-Tb), diffuse reflectance (for Ln = La, Pr, Nd, Gd), and luminescence spectroscopy (for bulk Ln{sub 3}Cl{sub 3}[WO{sub 6}] (Ln = La, Eu, Gd, Tb) and Eu{sup 3+}- or Tb{sup 3+}-doped derivatives of La{sub 3}Cl{sub 3}[WO{sub 6}] and Gd{sub 3}Cl{sub 3}[WO{sub 6}], respectively) were performed and their temperature-dependent magnetic moments (for Ln = Pr, Nd, Gd) were determined. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    Science.gov (United States)

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  10. Effect of applied hydrostatic pressure on the quenching kinetics, and electronic and molecular structure of eight and nine-coordinate lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Maupin, C.L.; Riehl, J.P.

    1998-01-01

    Full text: Applied hydrostatic pressure may be used as a probe of the reaction mechanism for various solution reactions involving lanthanide ions. In this work we report on the use of high pressure to probe the mechanism of enantioselective quenching between racemic luminescent lanthanide complexes containing Dy(III) Tb(III) and Eu(III), and optically active transition metal complexes as quenchers. Diastereomeric rate constants are obtained from a biexponential fit of the luminescence decay. Particular attention will be given to solvation effects on the measured diastereomeric rate constants. The source of chirality is ascribed to a enantioselective rearrangement step within a bimolecular 'encounter' complex yielding a intermolecular geometry in which the energy transfer is efficient. The effect of high pressure on the molecular and electronic structure of these complexes will also be discussed

  11. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  12. New open-framework three-dimensional lanthanide oxalates containing as a template the diprotonated 1,2- or 1,3-diaminopropane

    International Nuclear Information System (INIS)

    Mohanu, A.; Brouca-Cabarrecq, C.; Trombe, J.C.

    2006-01-01

    Single crystals of three new open-framework lanthanide oxalates have been synthesized hydrothermally, in the presence of 1,2-diaminopropane, (C 3 N 2 H 12 )[Nd(H 2 O)(C 2 O 4 ) 2 ] 2 .3H 2 O I and (C 3 N 2 H 12 )[Yb(C 2 O 4 ) 2 ] 2 .5H 2 O II, or 1,3-diaminopropane (C 3 N 2 H 12 ) 2 [La 2 (C 2 O 4 ) 5 ].5H 2 O III. Their structures have been determined by X-ray diffraction data: I and III crystallize in the triclinic system, space group P-1, with a=7.8130(5)A, b=11.8800(6)A, c=12.9940(8)A, α=93.092(5) o , β=93.930(6) o , γ=108.359(5) o and a=11.6650(9)A, b=11.9240(6)A, c=13.2230(7)A, α=104.585(4) o , β=108.268(5) o , γ=111.132(5) o , respectively while II crystallizes in the orthorhombic system, space group F2dd, with a=8.7970(4)A, b=16.1550(8)A, c=32.170(2)A. The three-dimensional (3D) framework of these compounds is built up by the linkages of lanthanide atoms and the oxygen atoms of the bischelating oxalate ligands. Instead of four chelating oxalate units surrounding a lanthanide atom (I and II), both lanthanum atoms, in III, are surrounded by five chelating oxalate groups and that is new. In all the cases within the frame, are observed 8- and 12-membered channels where are localized the guest species, 1,2- or 1,3-diaminopropane cations and free water molecules. The ratio of the guest number (especially the diaminopropane) per 12-membered ring could tune the shape and the size of 12-membered channels: thus, the 12-membered channels, observed for I and II, have elliptical cross-section (5.5Ax11.4A and 5.2Ax9.5A) while those, observed for III, have nearly circular cross-section (9.1Ax9.5A). The lanthanide atoms are 8, 9 and 10-fold coordinated for Yb (II), Nd (I) and La (III), respectively

  13. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3)

    International Nuclear Information System (INIS)

    Philippini, V.

    2007-12-01

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An 3+ and Ln 3+ cations. The study of the solubility of double carbonates (AlkLn(CO 3 ) 2 ,xH 2 O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO 3 ) 4 5- whereas the heaviest (Eu and Dy) form Ln(CO 3 ) 3 3- in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO 3 ) 4 5- while Dy to Lu form Ln(CO 3 ) 3 3- . Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO 3 ) 3 3- complex, specially with Cs + . Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  14. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  15. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    Science.gov (United States)

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  16. Separation of lanthanides through hydroxyapatite

    International Nuclear Information System (INIS)

    Garcia M, F.G.

    2006-01-01

    With the objective of obtaining from an independent way to each one of the lanthanides 151 Pm, 161 Tb, 166 Ho and 177 Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI 3 (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because practically these lanthanides

  17. Actinides-lanthanides (neodymium) separation by electrolytical extraction in molten fluoride media; Separation actinides-lanthanides (neodyne) par extraction electrolytique en milieux fluorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, C

    2005-02-15

    The aim of this thesis is to assess the potentialities of pyrochemical processes for futur nuclear fuels and Generation IV reactors (more particularly molten salt reactors). This study concerns the Actinides-Lanthanides and Lanthanides-Solvent separation by electrolytical extraction in molten fluoride media at high temperature. Three elements are selected for this study: neodymium (NdF{sub 3}), uranium (UF{sub 4}) and plutonium (PuF{sub 3}). Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF{sub 2} eutectic mixture. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99.99%; this value is just sufficient for the Pu-Nd separation. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed that the uranium and neodymium deposits are unstable in several fluoride media. In addition, the presence of salts in the dendritic metal is observed for the U solid deposits. Finally, a reactive cathode is used to improve these separation results and the shape of the deposits. The experimental results on nickel electrodes showed an improvement of the Pu-Nd separation and the Nd-solvent separation with the depolarisation phenomenon of the metal deposit on the nickel. Moreover, U and Nd metal are stabilized in the alloy which allows the elimination of reactions with the solvent as observed for the solid deposit. The formation of liquids alloys makes also easier the recovery of these three. (author)

  18. Actinides-lanthanides (neodymium) separation by electrolytic extraction in molten fluoride media; Separation actinides-lanthanides (neodyne) par extraction electrolytique en milieux fluorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, C

    2005-02-15

    The aim of this thesis is to assess the potentialities of pyrochemical processes for future nuclear fuels and Generation IV reactors (more particularly molten salt reactors). This study concerns the Actinides-Lanthanides and Lanthanides-Solvent separation by electrolytic extraction in molten fluoride media at high temperature. Three elements are selected for this study: neodymium (NdF{sub 3}), uranium (UF{sub 4}) and plutonium (PuF{sub 3}). Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF{sub 2} eutectic mixture. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99.99%; this value is just sufficient for the Pu-Nd separation. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed that the uranium and neodymium deposits are unstable in several fluoride media. In addition, the presence of salts in the dendritic metal is observed for the U solid deposits. Finally, a reactive cathode is used to improve these separation results and the shape of the deposits. The experimental results on nickel electrodes showed an improvement of the Pu-Nd separation and the Nd-solvent separation with the depolarization phenomenon of the metal deposit on the nickel. Moreover, U and Nd metal are stabilized in the alloy which allows the elimination of reactions with the solvent as observed for the solid deposit. The formation of liquids alloys makes also easier the recovery of these three. (author)

  19. Diluent and extractant effects on the enthalpy of extraction of uranium(VI) and americium(III) nitrates by trialkyl phosphates

    International Nuclear Information System (INIS)

    Srinivasan, T.G.; Vasudeva Rao, P.R.; Sood, D.D.

    1998-01-01

    The effect of various diluents such as n-hexane, n-heptane n-octane, isooctane, n-decane, n-undecane, n-dodecane, n-tetradecane, n-hexadecane, cyclohexane, benzene, toluene, p-xylene, mesitylene and o-dichlorobenzene on the enthalpy of extraction of uranyl nitrate by tri-n-amyl phosphate (TAP) over the temperature range 283 K--333 K has been studied. The results indicate that the enthalpy of extraction does not vary significantly with the diluents studied. Also enthalpies of extraction of uranyl nitrate and americium(III) nitrate by neutral organo phosphorous extractants such as tri-n-butyl phosphate (TBP), tri-n-amyl phosphate (TAP), tri-sec-butyl phosphate (TsBP), tri-isoamyl phosphate (TiAP) and tri-n-hexyl phosphate (THP) have been studied. An attempt has been made to explain the trends, on the basis of the nature of the solvate formed and the different terms which contribute to the overall enthalpy change

  20. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory

    International Nuclear Information System (INIS)

    Ruas, A.

    2006-03-01

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO 3 ) 3 , Cm (NO 3 ) 3 ). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO 2 (NO 3 ) 2 /HNO 3 /H 2 O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then, in chapter 3, two predictive capabilities of the theory

  1. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).

    Science.gov (United States)

    Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N

    2017-05-14

    The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).

  2. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I

    Directory of Open Access Journals (Sweden)

    Jill R. Hanna

    2017-05-01

    Full Text Available The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I. This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors for the detection of ligand-bound copper(I.

  3. Lanthanide ions as absorption spectral probes in biochemical reactions

    International Nuclear Information System (INIS)

    Misra, S.N.

    1989-01-01

    The interactions of adenine, adenosine, adenosine 5'-monophosphate, 5'-diphosphate and 5'-triphosphate with Pr(III) and Nd(III) in different stoichiometries and at varying pH levels have been investigated by electronic spectral studies. The intra 4f-4f transitions yield sharp bands which were analysed individually by Gaussian curve analysis. The energy interaction (Fsup(k),Esup(k)) spin orbit interaction (ζ4f), bonding(b), nephelauxetic (β,δ) and intensity parameters (Tsub(τ.P)) have been computed on HP-1000/45 computer using regression analyses refined by least square fit. The nature of bonding, coordination environment, outer and inner sphere coordination have been interpreted in terms of the magnitude of these parameters as compared to the lanthanide free ion. In order to supplicate the solution studies the crystalline compounds of AMP, ADP and ATP with Pr(III) and Nd(III) have been isolated and characterized by IR, 1 H and 31 P NMR studies. The infrared spectral data indicated weak interaction with the imidazole nitrogen of adenine moiety and bidentate attachment of oxygen. (author). 10 refs

  4. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  5. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory; Caracterisation de l'ecart a l'idealite de solutions concentrees de sels d'actinide et de lanthanide: contribution de la theorie Bimsa

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, A

    2006-03-15

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO{sub 3}){sub 3}, Cm (NO{sub 3}){sub 3}). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO{sub 2}(NO{sub 3}){sub 2}/HNO{sub 3}/H{sub 2}O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then

  6. Studies on supercritical hydrothermal syntheses of uranium and lanthanide oxide particles and their reaction mechanisms

    Science.gov (United States)

    Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa

    2015-11-01

    In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.

  7. Interaction of Eu(III) and Cm(III) with mucin. A key component of the human mucosa

    International Nuclear Information System (INIS)

    Wilke, Claudia; Barkleit, Astrid

    2017-01-01

    To evaluate the potential health risks caused by the ingestion of lanthanides (Ln) and actinides (An), investigations into the chemical behavior of these metals in the human gastrointestinal tract are necessary. Mucin is an important part of the protective mucosa layer in the digestive system. We have recently reported that mucin interacts strongly with Eu(III) and Cm(III), representatives of Ln(III) and An(III), respectively, under in vivo conditions. In order to investigate the complexation behavior of this protein with Ln(III)/An(III), TRLFS measurements were performed on Eu(III)/Cm(III)-mucin solutions with different protein concentrations and at different pH. The results indicate the formation of at least two independent mucin species. At higher pH, the formation of hydroxide species was also observed.

  8. Interaction of Eu(III) and Cm(III) with mucin. A key component of the human mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Claudia; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    To evaluate the potential health risks caused by the ingestion of lanthanides (Ln) and actinides (An), investigations into the chemical behavior of these metals in the human gastrointestinal tract are necessary. Mucin is an important part of the protective mucosa layer in the digestive system. We have recently reported that mucin interacts strongly with Eu(III) and Cm(III), representatives of Ln(III) and An(III), respectively, under in vivo conditions. In order to investigate the complexation behavior of this protein with Ln(III)/An(III), TRLFS measurements were performed on Eu(III)/Cm(III)-mucin solutions with different protein concentrations and at different pH. The results indicate the formation of at least two independent mucin species. At higher pH, the formation of hydroxide species was also observed.

  9. Lanthanide complexation in aqueous solutions

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1984-01-01

    The lanthanide elements form an extended series of cations with the same charge, slightly varying radii and useful magnetic and spectroscopic properties. Their use in technology is growing rapidly as their properties are more fully explored. The lanthanides also offer scientists valuable and often unique probes for investigating a variety of chemical and physical phenomena. This review has attempted to call attention to these latter uses without trying to provide a thorough discussion of all the relevant literature. Hopefully, awareness of the more interesting facets of present studies of lanthanide complexes in aqueous solution will spur even more advances in the use of these elements. (Auth.)

  10. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    Science.gov (United States)

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Theoretical and experimental spectroscopic studies of the first highly luminescent binuclear hydrocinnamate of Eu(III), Tb(III) and Gd(III) with bidentate 2,2'-bipyridine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F.; Correa, Charlane C.; Garcia, Humberto C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG 36036-330 (Brazil); Martins Francisco, Thiago [Departamento de Física-ICEx, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte-MG 30123-970 (Brazil); Ribeiro, Sidney J.L. [Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho-UNESP, CP 355, Araraquara-SP 14801-970 (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG 36036-330 (Brazil)

    2014-04-15

    In this paper, the synthesis of three new binuclear lanthanide (III) complexes [Ln{sub 2}(cin){sub 6}(bpy){sub 2}] (Ln=Eu (1), Tb (2), Gd (3), cin=hydrocinnamate anion; bpy=2,2'-bipyridine), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermal analysis (TGA/DTA) are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structures of 1–3 reveal that all compounds are isostructural and that each lanthanide ion is nine-coordinated by oxygen and nitrogen atoms in an overall distorted tricapped trigonal-prismatic geometry. Eu(III) complex structure was also calculated using the Sparkle model for lanthanide complexes and the intensity parameters (Ω{sub 2}, Ω{sub 4}, and Ω{sub 6}), calculated from the experimental data and from Sparkle/PM3 model. The theoretical emission quantum efficiencies obtained for Sparkle/PM3 structures are in excellent agreement with the experimental values, clearly attesting to the efficacy of the theoretical models. The theoretical procedure applied here shows that the europium binuclear compound displays a quantum yield about 65% suggesting that the system can be excellent for the development of efficient luminescent devices. Highlights: • First binuclear Ln{sup 3+}-hydrocinnamate have been synthesized and characterized. • Eu{sup 3+}, Tb{sup 3+} and Gd{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • 65% Quantum yield suggests an excellent system for luminescent devices.

  12. Photoluminescent lanthanide-organic bilayer networks with 2,3-pyrazinedicarboxylate and oxalate.

    Science.gov (United States)

    Soares-Santos, Paula C R; Cunha-Silva, Luís; Paz, Filipe A Almeida; Ferreira, Rute A S; Rocha, João; Carlos, Luís D; Nogueira, Helena I S

    2010-04-05

    The hydrothermal reaction between lanthanide nitrates and 2,3-pyrazinedicarboxylic acid led to a new series of two-dimensional (2D) lanthanide-organic frameworks: [Ln(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) [where 2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate, and Ln(III) = Ce, Nd, Sm, Eu, Gd, Tb, or Er]. The structural details of these materials were determined by single-crystal X-ray diffraction (for Ce(3+) and Nd(3+)) that revealed the formation of a layered structure. Cationic monolayers of {(infinity)(2)[Ln(2,3-pzdc)(H(2)O)](+)} are interconnected via the ox(2-) ligand leading to the formation of neutral (infinity)(2)[Ln(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)] bilayer networks; structural cohesion of the crystalline packing is reinforced by the presence of highly directional O-H...O hydrogen bonds between adjacent bilayers. Under the employed hydrothermal conditions 2,3-pyrazinedicarboxylic acid can be decomposed into ox(2-) and 2-pyrazinecarboxylate (2-pzc(-)), as unequivocally proved by the isolation of the discrete complex [Tb(2)(2-pzc)(4)(ox)(H(2)O)(6)].10H(2)O. Single-crystal X-ray diffraction of this latter complex revealed its co-crystallization with an unprecedented (H(2)O)(16) water cluster. Photoluminescence measurements were performed for the Nd(3+), Sm(3+), Eu(3+), and Tb(3+) compounds which show, under UV excitation at room temperature, the Ln(3+) characteristic intra-4f(N) emission peaks. The energy level of the triplet states of 2,3-pyrazinedicarboxylic acid (18939 cm(-1)) and oxalic acid (24570 cm(-1)) was determined from the 12 K emission spectrum of the Gd(3+) compound. The (5)D(0) and (5)D(4) lifetime values (0.333 +/- 0.006 and 0.577 +/- 0.017 ms) and the absolute emission quantum yields (0.13 +/- 0.01 and 0.05 +/- 0.01) were determined for the Eu(3+) and Tb(3+) compounds, respectively. For the Eu(3+) compound the energy transfer efficiency arising from the ligands' excited states was estimated (0.93 +/- 0.01).

  13. Crystal structure and luminescence of complexes of Eu(III) and Tb(III) with furan-2,5-dicarboxylate

    NARCIS (Netherlands)

    Akerboom, S.; Fu, W.T.; Lutz, M.; Bouwman, E.

    2012-01-01

    Four new Ln(III) complexes (Ln = Eu, Tb) with furan-2,5-dicarboxylic acid (H2FDA) as a ligand have been synthesized and characterized in the solid state. Luminescence studies indicate that the compounds exhibit line-like luminescence characteristic of the lanthanide centre upon excitation in the

  14. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    Science.gov (United States)

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  15. U(SMes*)n, (n = 3, 4) and Ln(SMes*)3 (Ln = La, Ce, Pr, Nd): lanthanide(III)/actinide(III) differentiation in agostic interactions and an unprecedented eta3 ligation mode of the arylthiolate ligand, from X-ray diffraction and DFT analysis.

    Science.gov (United States)

    Roger, Mathieu; Barros, Noémi; Arliguie, Thérèse; Thuéry, Pierre; Maron, Laurent; Ephritikhine, Michel

    2006-07-12

    Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.

  16. (Carbonato-κ2 O,O′)bis­(1,10-phenan­throline-κ2 N,N′)cobalt(III) nitrate monohydrate

    Science.gov (United States)

    Andaç, Ömer; Yolcu, Zuhal; Büyükgüngör, Orhan

    2010-01-01

    The crystal structure of the title compound, [Co(CO3)(C12H8N2)2]NO3·H2O, consists of CoIII complex cations, nitrate anions and uncoordinated water mol­ecules. The CoIII cation is chelated by a carbonate anion and two phenanthroline ligands in a distorted octa­hedral coordination geometry. A three-dimensional supra­molecular structure is formed by O—H⋯O and C—H⋯O hydrogen bonding, C—H⋯π and aromatic π–π stacking [centroid–centroid distance = 3.995 (1)Å] inter­actions. PMID:21579944

  17. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of

  18. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  19. Detection scheme for bioassays based on 2,6-pyridinedicarboxylic acid derivatives and enzyme-amplified lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Tanja [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Karst, Uwe [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: u.karst@utwente.nl

    2004-11-15

    2,6-Pyridinedicarboxylic acid (PDC) and its derivatives are introduced as a new sensitizer system for enzyme-amplified lanthanide luminescence (EALL), a detection scheme for bioassays, which combines enzymatic amplification with time-resolved luminescence measurements of lanthanide chelates. Various PDC esters have been synthesized as esterase substrates that are cleaved to PDC in the presence of the enzyme. PDC forms luminescent complexes with Tb(III) or Eu(III), and the evaluation of the reaction is used for the selective and sensitive detection of esterases. For an esterase from hog liver a limit of detection of 10{sup -3} u/mL (equivalent to 10{sup -9} mol/L) and a limit of quantification of 3 x 10{sup -3} u/mL (equivalent to 3 x 10{sup -9} mol/L) could be achieved. As a second model reaction, xanthine oxidase (XOD) catalyzes the oxidation of 2,6-pyridinedicarboxaldehyde to PDC. Here, the limit of detection was 3 x 10{sup -3} u/mL and the limit of quantification 10{sup -2} u/mL for XOD from microorganisms. Major advantage of the tridentate PDC ligand is the possibility to perform all steps of the assay within or close to the physiological pH range, while the established EALL schemes based on bidentate salicylates or bisphenols have to be carried out at strongly alkaline pH to ensure sufficient complexation with the lanthanides.

  20. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    International Nuclear Information System (INIS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-01-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2 1 helical chains. While the Nd(III) ions are bridged through μ 2 -HIDC 2− and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2 1 helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2 1 helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature

  1. Simulating the synthesis and thermodynamic characteristics of the desolvation of lanthanide borohydride tris-Tetrahydrofuranates

    Science.gov (United States)

    Gafurov, B. A.; Mirsaidov, I. U.; Nasrulloeva, D. Kh.; Badalov, A.

    2013-10-01

    Lanthanide borohydride tris-tetrahydrofuranates (Ln(BH4) · 3THF, where THF is tetrahydrofuran and Ln is La, Nd, Sm, Gd, Er, Yb, and Lu) is synthesized via the exchange reaction of lanthanide(III) chloride and sodium borohydride in THF. It is found that synthesis proceeds according to a stepwise mechanism and the product of the reaction (lanthanide borohydride) initiates the process. The two-step character of the desolvation of Ln(BH4)3 · 3THF under steady-state conditions in the temperature range of 300 to 400 K is determined through X-ray phase and chemical analyses, tensiometry, and gas volumetry. It is established that one mole and then two moles of THF are removed from the initial sample at the first and second steps, respectively. Equations for barograms are obtained and the thermodynamic characteristics of desolvation of Ln(BH4)3 · 3THF under study are calculated. Gibbs energy values of the stages of process are determined semi-empirically. The law of its change for the entire series of Ln(BH4)3 · 3THF is determined with the emergence of the tetrad effect.

  2. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  3. Solvent phase characterisation of lanthanide(3) and americium(3) complexes with malonamide (tema) and ter-pyridine ligands by EXAFS: comparison with single crystals

    International Nuclear Information System (INIS)

    Den Auwer, C.; Presson, M.T.; Grigoriev, M.; Madic, C.; Nierlich, M.; Thuery, P.; David, F.; Hubert, S.; Drew, M.G.B.; Hudson, M.J.; Iveson, P.B.; Russell, M.L.

    2002-01-01

    In order to develop molecules that will be good candidates for the extractive separation of the various elements contained within nuclear fuels, 4f and 5f molecular chemistry has been the subject of numerous studies. Thus, to better understand the ligand to cation interaction and to fine tune the theoretical models, precise knowledge about the cation co-ordination sphere must be obtained. More precisely, both structural and electronic data must be acquired in order to define the role of the cation frontier orbitals within the complex. To do so, various structural probes must be used, from vibrational and nuclear techniques to X-ray spectroscopies. In the field of actinide solvent extraction, the species of interest are in the solvent phase and both solid state diffraction methods and solvent phase X-ray absorption spectroscopy have become of primary importance lately. A number of Ln(III) and Am(III) complexes of the type M(NO 3 ) 3 L 1,2 (where M is either Ln 3+ or Am 3+ and L is either the 2,2',6',2 - ter-pyridine (Tpy) or the N,N,N',N' tetraethyl-malonamide (TEMA) ligand) have been crystallographically characterised in the solid state. In order to obtain structural information in the solvent phase, EXAFS L III edge measurements have been performed on the cation (DCI ring at the LURE facility). The overall contraction (-0.05 Angstrom) of the cation co-ordination sphere from Nd 3+ to Lu 3+ reflects the decrease in the lanthanide ionic radii. With the TEMA ligand, this steric constraint generates the elongation of one nitrate bond, leading to one formally monodendate nitrate for the late Ln ions. Comparison is made with the Tpy ligand. In the case of Am 3+ cation, comparison with isostructural Nd 3+ shows that similar co-ordination spheres are obtained, either with the TEMA or the Tpy ligands. (authors)

  4. Spectral studies of Lanthanide interactions with membrane surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Karukstis, K.K.; Kao, M.Y.; Savin, D.A.; Bittker, R.A.; Kaphengst, K.J.; Emetarom, C.M.; Naito, N.R.; Takamoto, D.Y. [Harvey Mudd College, Claremont, CA (United States)

    1995-03-23

    We have monitored the interactions of the series of trivalent lanthanide cations with the thylakoid membrane surface of spinach chloroplasts using two complementary spectral techniques. Measurements of the fluorescence emission of the extrinsic probe 2-p-toluidinonaphthalene-6-sulfonate (TNS) and the absorbance of the intrinsic chromophore chlorophyll provide two sensitive means of characterizing the dependence of the cation-membrane interaction on the nature of the cation. In these systems, added lanthanide cations adsorb onto the membrane surface to neutralize exposed segments of membrane-embedded protein complexes. The lanthanide-induced charge neutralization increases the proximity of added TNS anion to the membrane surface as evidenced by variations in the TNS fluorescence level and wavelength of maximum emission. Our results reveal a strong dependence of TNS fluorescence parameters on both lanthanide size and total orbital angular momentum L value. Lanthanides with greater charge density (small size and/or low L value) enhance the TNS fluorescence level to a greater extent. A possible origin for the lanthanide-dependent TNS fluorescence levels is suggested in terms of a heterogeneity in the number and type of TNS binding sites. The data are consistent with the proposal that larger lanthanides with smaller enthalpies of hydration induce more significant membrane appression. 59 refs., 9 figs., 2 tabs.

  5. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    International Nuclear Information System (INIS)

    Vuojola, Johanna; Soukka, Tero

    2014-01-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications. (topical review)

  6. Factors controlling nitrate cracking of mild steel

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1977-01-01

    Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth

  7. The geochemistry and mobility of the lanthanides in marine sediments

    International Nuclear Information System (INIS)

    Elderfield, H.

    1988-07-01

    A study has been made to evaluate lanthanide mobility in sediments directly by measuring concentrations of 10 lanthanide elements in sediments and pore waters. Due to the very low concentrations of the lanthanides in sea water relative to marine sediments, evidence of lanthanide mobilization is usually difficult to detect from studies of solid-phase geochemistry. Results show that the lanthanides can be extremely mobile. Concentrations in pore waters up to 100 times sea water concentrations have been measured. The conclusions are tentative but the present data suggest that the lanthanides are mobilized during oxidation of organic-rich sediments and are relocated in part in association with secondary Fe-rich phases. The behaviour of Ce is, predictably, somewhat different from the other lanthanides and may be more mobile as a consequence of its redox chemistry. (author)

  8. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  9. Lanthanide-cyclodextrin complexes as probes for elucidating optical purity by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.J.; Bogyo, M.S.; Lebeau, E.L. (Bates College, Lewiston, ME (United States))

    1994-06-01

    A multidentate ligand is bonded to cyclodextrins by the reaction of diethylenetriaminepentaacetic dianhydride with 6-mono- and 2-mono(ethylenediamine) derivatives of cyclodextrin. Adding Dy(III) to the cyclodextrin derivatives enhances the enantiomeric resolution in the [sup 1]H NMR spectra of carbionoxamine maleate, doxylamine succinate, pheniramine maleate, propranolol hydrochloride, and tryptophan. The enhancement is more pronounced with the secondary derivative. The Dy(III)-induced shifts can be used to elucidate the geometry of cyclodextrin-substrate inclusion complexes. Lanthanide-induced shifts are reported for complexes of aspartame, tryptophan, propranolol, and 1-anilino-8-naphthalenesulfonate with cyclodextrins, and the relative magnitudes of the shifts agree with previously reported structures of the complexes. 37 refs., 9 figs., 5 tabs.

  10. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Vercouter, Th.

    2005-03-01

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO 3 ) 3 3- , is identified by solubility measurements in Na 2 CO 3 solutions. Then the formation constants of the complexes Eu(CO 3 ) i 3-2i (i=1-3) and Eu(SO 4 ) i 3-2i (i=1-2) are measured by TRLFS. The formation of aqueous LaSO 4 + is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO 3 ) 2 - + CO 3 2- ↔ Cm(CO 3 ) 3 3- are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  11. Spectroscopic investigation of complexation of Cm(III) und Eu(III) with partitioning-relevant N-donor ligands

    International Nuclear Information System (INIS)

    Bremer, Antje

    2014-01-01

    The separation of trivalent actinides and lanthanides is an essential part of the development of improved nuclear fuel cycles. Liquid-liquid extraction is an applicable technique to achieve this separation. Due to the chemical similarity and the almost identical ionic radii of trivalent actinides and lanthanides this separation is, however, only feasible with highly selective extracting agents. It has been proven that molecules with soft sulphur or nitrogen donor atoms have a higher affinity for trivalent actinides. In the present work, the complexation of Cm(III) and Eu(III) with N-donor ligands relevant for partitioning has been studied by time-resolved laser fluorescence spectroscopy (TRLFS). This work aims at a better understanding of the molecular reason of the selectivity of these ligands. In this context, enormous effort has been and is still put into detailed investigations on BTP and BTBP ligands, which are the most successful N-donor ligands for the selective extraction of trivalent actinides, to date. Additionally, the complexation and extraction behavior of molecules which are structurally related to these ligands is studied. The ligand C5-BPP (2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine) where the triazine rings of the aromatic backbone of the BTP ligands have been replaced by pyrazole rings is one of these molecules. Laser fluorescence spectroscopic investigation of the complexation of Cm(III) with this ligand revealed stepwise formation of three (Cm(C5-BPP) n ) 3+ complexes (n = 1 - 3). The stability constant of the 1:3 complex was determined (log β 3 = 14.8 ± 0.4). Extraction experiments have shown that, in contrast to BTP and BTBP ligands, C5-BPP needs an additional lipophilic anion source such as a 2-bromocarboxylic acid to selectively extract trivalent actinides from nitric acid solutions. The comparison of the stability constant of the (Cm(C5-BPP) 3 ) 3+ complex with the stability constant of the (Cm(nPr-BTP) 3 ) 3+ complex

  12. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  13. A thermodynamical and structural study on the complexation of trivalent lanthanides with a polycarboxylate based concrete superplasticizer.

    Science.gov (United States)

    Fröhlich, Daniel R; Maiwald, Martin M; Taube, Franziska; Plank, Johann; Panak, Petra J

    2017-03-21

    The complexation of trivalent lanthanides with a commercial polycarboxylate based concrete superplasticizer (Glenium® 51) is investigated using different spectroscopic techniques. Time-resolved laser fluorescence spectroscopy (TRLFS) in combination with a charge neutralization model is used to determine temperature dependent conditional stability constants (log β'(T)) for the complexation of Eu(iii) with Glenium® 51 in 0.1 mol kg -1 NaCl solution in the temperature range of 20-90 °C. Only one complex species is observed, and log β'(T) (given in kg per mol eq) shows a very slight increase with temperature from 7.5 to 7.9. The related conditional molar reaction enthalpy (Δ r H' m ) and entropy (Δ r S' m ) obtained using the Van't Hoff equation show that the complexation reaction is slightly endothermic and entropy driven. The thermodynamic investigations are complemented by structural data for complexes formed with Gd(iii) or Tb(iii) and Glenium® 51 using extended X-ray absorption fine structure (EXAFS) spectroscopy. The results imply a non-chelate coordination of the trivalent metals through approximately three carboxylic functions of the polycarboxylate comb polymer which are attached predominantly in a bidentate fashion to the lanthanide under the given experimental conditions.

  14. U(SMes*)n, (n=3, 4) and Ln(SMes*)3 (Ln = La, Ce, Pr, Nd): Lanthanide(III)/actinide(III) differentiation in agostic interactions and an unprecedented eta(3) Ligation mode of the aryl-thiolate ligand, from X-ray diffraction and DFT analysis

    International Nuclear Information System (INIS)

    Roger, Mathieu; Barros, Noemi; Arliguie, Therese; Thuery, Pierre; Maron, Laurent; Ephritikhine, Michel

    2006-01-01

    Reaction of U(NEt 2 ) 4 with HS-2,4,6- t Bu 3 C 6 H 2 (HSMes*) gave U(SMes*) 3 (NEt 2 )(py) (1), whereas similar treatment of U[N(SiMe 3 )SiMe 2 CH 2 ][N(SiMe 3 ) 2 ] 2 afforded U(SMes*)[N(SiMe 3 ) 2 ] 3 (2) and U(SMes*) 3 [N(SiMe 3 ) 2 ]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes*) 4 (4), was isolated from the reaction of U(BH 4 ) 4 and KSMes*. The first homoleptic thiolate complex of uranium(III), U(SMes*) 3 (5), was synthesized by proton-lysis of U[N(SiMe 3 ) 2 ] 3 with HSMes* in cyclohexane. The crystal structure of 5 exhibits the novel η 3 ligation mode for the aryl-thiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes*) 3 (Ln) La, Ce, Pr, and Nd) indicates that the U-S, U-C ipso , and U-C ortho bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U center dot center dot center dot H-C ε agostic interaction of each thiolate ligand is shorter, by ∼ 0.05 angstrom, than that expected from a purely ionic bonding model. The lanthanide( III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M) U and ion-covalent (i.e. strongly ionic with low orbital interaction), for M) Ln. The strength of the U center dot center dot center dot H-C ε agostic interaction is proposed to be controlled by the maximization of the interaction between U + and S - under steric constraints. The η 3 ligation mode of the aryl-thiolate ligand is also obtained from DFT. (authors)

  15. Lanthanides, thorium, iodine in terrestrail invertebrates

    International Nuclear Information System (INIS)

    Zhulidov, A.V.; Pokarzhevskij, A.D.; Katargin, N.V.; AN SSSR, Moscow

    1991-01-01

    It is shown that among examined terrestrial invertebrates the highest levels on lanthanide and thorium concentration are typical for animals, feeding on plant tissues - earthworms, molluscs, diploid. It is shown that there are no reasons to hope, that regularities of migration of transuranium elements and lanthanides in tropic chains are identical

  16. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  17. Preparation, characterization and thermal behaviour study of 4-dimethyl amino benzal pyruvate of lanthanides (III) and yttrium (III) in solid state

    International Nuclear Information System (INIS)

    Miyano, M.H.

    1990-01-01

    Solid state compounds involving Ln and DMBP, where Ln trivalent lanthanides (except promethium) and yttrium; DMBP 4-dimethyl amino benzylidene pyruvate, were prepared by addition of ligand to the corresponding metal ions chlorides, both in aqueous solution. The precipitates were washed with distilled water and dried at 40 0 C in a forced circulation oven. Complexometry with EDTA, thermogravimetry (TG), differential thermal analysis (DTA), infra-red absorption and X-ray diffraction have been used in the study of these compounds. (author)

  18. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity. The lanthanide interaction with clad in metallic fuels is recognized as a long-term, high-burnup cause of the clad failures. Therefore, one of the key concerns of using metallic fuels is the redistribution of lanthanide fission products and migration to the fuel surface. It is believed that lanthanide migration is in part due to the thermal gradient between the center and the fuel-cladding interface, but also largely in part due to the low solubility of lanthanides within the uranium-based metal fuel. PIE of EBR-II fuels shows that lanthanides precipitate directly and do not dissolve to an appreciable extent in the fuel matrix. Based on the PIE data from EBR-II, a recent study recommended a so-called “liquid-like” transport mechanism for lanthanides and certain other species. The liquid-like transport model readily accounts for redistribution of Ln, noble metal fission products, and cladding components in the fuel matrix. According to the novel mechanism, fission products can transport as solutes in liquid metals, such as liquid cesium or liquid cesium–sodium, and on pore surfaces and fracture surfaces for metals near their melting temperatures. Transport in such solutions is expected to be much more rapid than solid-state diffusion. The mechanism could explain the Ln migration to the fuel slug peripheral surface and their deposition with a sludge-like form. Lanthanides have high solubility in liquid cesium but have low solubility in liquid sodium. As a

  19. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  20. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  1. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    International Nuclear Information System (INIS)

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-01

    A new tetrapodal ligand 1,1,1-tetrakis{[(2'-(2-furfurylaminoformyl))phenoxyl]methyl}methane (L) has been prepared and their coordination chemistry with Ln III ions has been investigated. The structure of {[Ln 4 L 3 (NO 3 ) 12 ].H 2 O} ∞ (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8 6 ) 3 (8 3 ) 4 notation. [DyL(NO 3 ) 3 (H 2 O) 2 ].0.5CH 3 OH and [ErL(NO 3 ) 3 (H 2 O) (CH 3 OH)].CH 3 COCH 3 is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H 2 O) 6 ].3ClO 4 .3H 2 O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu III complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  2. Experimental solubility measurements of lanthanides in liquid alkalis

    Science.gov (United States)

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  3. Separation of cerium from other lanthanides by leaching with nitric acid rare earth(III) hydroxide-cerium(IV) oxide mixtures

    International Nuclear Information System (INIS)

    Mioduski, T.; Dong Anh Hao; Hoang Hong Luan

    1989-01-01

    The objective of the present work is a method for separating Ce from other Ln in the raw natural mixtures of rare earth hydroxides obtained from Vietnamese and Mongolian fluorocarbonate ores. The method, a simple acid digestion, should combine a maximum Ln(III) concentration of the effluent solution with a nitrate counter-ion environment and high selectivity vs. leaching yield parameters. Under optimum conditions Ce (and Th, if present) virtually does not pass into solution while the yield of leaching and the sum of REE oxides concentration in the after-leach solution reach the maximum values of 97% (mass) and 0.18 kg x dm -3 , respectively. (author) 9 refs.; 8 tabs

  4. Solvent extraction of Cs(I), Zn(II), Eu(III) and Am(III) by 2-heptyl-2-methyl-nonanoic acid (Ha) from nitrate solutions

    International Nuclear Information System (INIS)

    Ramadan, A.; Elnaggar, H.A.; Souka, N.; Abdelfattah, A.

    1994-01-01

    The present work is devoted to study the extraction behavior of caesium, zinc, europium and americium radioactive isotopes using a new extractant C H 3 (C H 2 ) 6 . C(C 7 H 1 5) (C H 3 ). COOH (Ha) dissolved in benzene from aqueous nitrate media of constant ionic strength (0.1 M) using HNO 3 -Na NO 3 mixtures. The effect temperature on the extraction of these elements was also investigated to evaluate the thermodynamic functions as well as the equilibrium constant of each reaction. The extraction mechanisms were postulated on the light of the available data and the extracted species were formulated in the proposed stoichiometric equation for the extraction of each element individually and these species were suggested to be Cs (A); Zn OH(A) and Zn(A) 2 ; Eu No 3 (A) 2 and Am(A) 3 and for Cs(I), Zn(II), Eu(III) and Am(III), respectively. The thermodynamic parameters show exothermic enthalpy for all the reactions and negative entropy values reflecting very good ordering extraction mechanisms. 10 figs, 1 tab

  5. Double liquid membrane system for the removal of actinides and lanthanides from acidic nuclear wastes

    International Nuclear Information System (INIS)

    Chiarizia, R.; Danesi, P.R.

    1985-01-01

    Supported liquid membranes (SLM), consisting of an organic solution of n-octyl-(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl-phosphate (TBP) in decalin are able to perform selective separation and concentration of actinide and lanthanide ions from aqueous nitrate feed solutions and synthetic nuclear wastes. In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of nitric acid which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO 3 from the strip solution. In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HNO 3 concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion. 15 refs., 10 figs., 1 tab

  6. Evidence of different stoichiometries for the limiting carbonate complexes of lanthanides(3); Mise en evidence d'un changement de stoechiometrie du complexe carbonate limite au sein de la serie des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Philippini, V

    2007-12-15

    Two stoichiometries have been proposed by different laboratories to interpret measurements on the limiting carbonate complexes of An{sup 3+} and Ln{sup 3+} cations. The study of the solubility of double carbonates (AlkLn(CO{sub 3}){sub 2},xH{sub 2}O) in concentrated carbonate solutions at room temperature and high ionic strengths has shown that on the one hand the lightest lanthanides (La and Nd) form Ln(CO{sub 3}){sub 4}{sup 5-} whereas the heaviest (Eu and Dy) form Ln(CO{sub 3}){sub 3}{sup 3-} in the studied chemical conditions, and on the other hand, that the kinetics of precipitation of double carbonates depends on the alkali metal and the lanthanide ions. The existence of two stoichiometries for the limiting carbonate complexes was confirmed by capillary electrophoresis hyphenated to an inductively coupled plasma mass spectrometer (CE-ICP-MS), used to extend the study to the whole series of lanthanides (except Ce, Pm and Yb). Two behaviours have been put forward comparing the electrophoretic mobilities: La to Tb form Ln(CO{sub 3}){sub 4}{sup 5-} while Dy to Lu form Ln(CO{sub 3}){sub 3}{sup 3-}. Measurements by time resolved laser fluorescence spectroscopy (TRLFS) on Eu(III) indicate small variations of the geometry of Eu(CO{sub 3}){sub 3}{sup 3-} complex, specially with Cs{sup +}. Although analogies are currently used among the 4f-block trivalent elements, different aqueous speciations are evidenced in concentrated carbonate solutions across the lanthanide series. (author)

  7. Characterization of the lanthanum(III) and europium(III) trichloroacetate complexes extracted with 18-crown-6

    International Nuclear Information System (INIS)

    Imura, H.; Saito, Y.; Ohashi, K.; Meguro, Y.; Yoshida, Z.; Choppin, G.R.

    1996-01-01

    Extraction of lanthanide(III) ions with 18-crown-6 (18C6) and trichloroacetate (tca) has been studied. The composition, hydration, and structure of the La(III) and Eu(III) complexes extracted into 1,2-dichloroethane were investigated by using several methods such as the liquid-liquid distribution technique, conductimetry, Karl Fisher titration, laser luminescence spectroscopy, and 1 H NMR. The La(III) complex was found to be a monohydrate, La(tca) 3 (18C6)(H 2 O), while that of Eu(III) was a mixture of a monohydrate and a dihydrate, i.e., Eu(tca) 3 (18C6)(H 2 O) and Eu(tca) 3 (18C6)(H 2 O) 2 . The origin of the selectivity by 18C6 which gives much higher extractability of La(III) than of Eu(III) is explained by considering the hydration and probable structure of their complexes. 12 refs., 5 figs., 4 tabs

  8. Stabilization of actinides and lanthanides in unusually high oxidation states

    International Nuclear Information System (INIS)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO 3 or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF 5 /HF solution or Pu(VII) in Li 5 PuO 6 ). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs

  9. Characterization of partitioning relevant lanthanide and actinide complexes by NMR spectroscopy; Charakterisierung von partitioningrelevanten Lanthaniden- und Actinidenkomplexen mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Christian

    2016-01-15

    In the present work the interaction of N-donor ligands, such as 2,6-Bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (nPrBTP) and 2,6-Bis(5-(2,2-dimethylpropyl)1H-pyrazol)-3-yl-pyridine (C5-BPP), with trivalent lanthanide and actinide ions was studied. Ligands of this type show a high selectivity for the separation of trivalent actinide ions over lanthanides from nitric acid solutions. However, the reason for this selectivity, which is crucial for future partitioning and transmutation strategies for radioactive wastes, is still unknown. So far, the selectivity of some N-donor ligands is supposed to be an effect of an increased covalency in the actinide-ligand bond, compared to the lanthanide compounds. NMR spectroscopy on paramagnetic metal complexes is an excellent tool for the elucidation of bonding modes. The overall paramagnetic chemical shift consists of two contributions, the Fermi Contact Shift (FCS), due to electron spin delocalisation through covalent bonds, and the Pseudo Contact Shift (PCS), which describes the dipolar coupling of the electron magnetic moment and the nuclear spin. By assessing the FCS share in the paramagnetic shift, the degree of covalency in the metal-ligand bond can be gauged. Several methods to discriminate FCS and PCS have been used on the data of the nPrBTP- and C5-BPP-complexes and were evaluated regarding their applicability on lanthanide and actinide complexes with N-donor ligands. The study comprised the synthesis of all Ln(III) complexes with the exceptions of Pm(III) and Gd(III) as well as the Am(III) complex as a representative of the actinide series with both ligands. All complexes were fully characterised ({sup 1}H, {sup 13}C and {sup 15}N spectra) using NMR spectroscopy. By isotope enrichment with the NMR-active {sup 15}N in positions 8 and 9 in both ligands, resonance signals of these nitrogen atoms were detected for all complexes. The Bleaneymethod relies on different temperature dependencies for FCS (T{sup -1}) and PCS (T

  10. Lanthanide(III) complexes of a mono(methylphosphonate) analogue of H4dota: the influence of protonation of the phosphonate moiety on the TSAP/SAP isomer ratio and the water exchange rate.

    Science.gov (United States)

    Rudovský, Jakub; Cígler, Petr; Kotek, Jan; Hermann, Petr; Vojtísek, Pavel; Lukes, Ivan; Peters, Joop A; Vander Elst, Luce; Muller, Robert N

    2005-04-08

    A monophosphonate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid (H5do3aP), and its complexes with lanthanides were synthesized. Multinuclear NMR studies reveal that, in aqueous solution, lanthanide(III) complexes of the ligand exhibit structures analogous to those of H4dota complexes. Thus, the central ion is nine-coordinate, surrounded by four nitrogen atoms, three acetate and one phosphonate oxygen atoms, and one water molecule in an apical position. For complexes of H5do3aP with Ln(III) ions in the middle of the series, the abundance of the desired twisted square-antiprismatic (TSAP) isomer is higher than for the corresponding H4dota complexes. The TSAP/square-antiprismatic (SAP) isomer ratio is highly sensitive to protonation of the phosphonate group: a higher abundance of the TSAP isomer was found in acidic solutions. The microscopic protonation constants of the TSAP isomers are higher than those of the SAP isomers. The presence of one water molecule in the first coordination sphere of the complexes in the pH region studied (pH 2.5-7.0) is confirmed by 17O NMR spectroscopy. The results of a simultaneous fit of variable-temperature 17O NMR relaxation data and 1H NMRD profiles show that the residence time of water (tauM) in the Gd(III) complex is much smaller than for [Gd(dota)(H2O)]-. The exchange rate appears to be dependent on the pH of the solution. The values of tauM are 37, 40, and 14 ns at pH 2.5, 4.7, and 7.0, respectively. These observations can be explained by an extensive second-sphere hydrogen-bonding network that varies with the state of protonation of the phosphonate moiety. Upon protonation of the complex, the second-sphere hydration probably becomes more ordered, which may result in a decrease in penetrability and an increase in tauM. The relaxivity of the Gd(III) complex is almost independent of the pH and is equal to 4.7 s(-1) mM(-1) (20 MHz, pH 7 and 37 degrees C). The solid

  11. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    Energy Technology Data Exchange (ETDEWEB)

    Yantasee, Wassana, E-mail: wassana.yantasee@pnl.gov [Pacific Northwest National Laboratory (PNNL), P.O. Box 999, Richland, WA 99352 (United States); Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya [Pacific Northwest National Laboratory (PNNL), P.O. Box 999, Richland, WA 99352 (United States); Xu Jide; Raymond, Kenneth N. [Chemistry Department, University of California, Berkeley, CA 94720 (United States); LBNL, Berkeley, CA 94720 (United States)

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS{sup TM}), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 {mu}g/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.

  12. Selective removal of lanthanides from natural waters, acidic streams and dialysate

    International Nuclear Information System (INIS)

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, R. Shane; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu Jide; Raymond, Kenneth N.

    2009-01-01

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, which increases public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd and Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS TM ), that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (Prop-Phos), and 1-hydroxy-2-pyridinone (1,2-HOPO), from natural waters (river, ground and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate. The affinity, capacity, and kinetics of the lanthanide sorption, as well as regenerability of SAMMS materials were investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. In acid solutions, Prop-Phos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their use in chromatographic lanthanide separation. Over 95% of 100 μg/L of Gd in dialysate was removed by the Prop-Phos-SAMMS after 1 min and 99% over 10 min. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties. Thus, they have a great potential to be used as in large-scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and in sorbent dialyzers for treatment of acute lanthanide poisoning.

  13. Lanthanide extraction with 2,5-dimethyl-2-hydroxyhexanoic acid

    International Nuclear Information System (INIS)

    Miller, J.H.

    1977-12-01

    This research is concerned with the solvent extraction into chloroform of the lanthanides, using 2,5-dimethyl-2-hydroxyhexanoic acid (DMHHA). This acid is the first α-hydroxy aliphatic acid to be studied as an extracting agent for the lanthanides. The chloroform-water DMHHA partition constant was determined to be 1.0 (at 0.1 M ionic strength and 25 0 C). The acid dimerizes in chloroform with a constant of 56. The light lanthanides can be extracted into chloroform by forming complexes with the DMHHA anions. The extracted metal species is highly aggregated. This extraction has a solubility limit which increases with the addition of unionized acid. The resultant extract is also highly aggregated. At unionized acid-to-metal ratios greater than one, extractions first occur followed by the slow precipitation of the lanthanide. At the tracer level, neodymium is extracted primarily as NdA 3 (HA) 5 and (NdA 3 ) 2 (HA)/sub q/. Very small amounts of (NdA 3 ) 2 and other metal aggregates are also present. The heavy lanthanides do not extract from solutions of DMHHA and its potassium salt, but form aqueous emulsions and precipitates. In the presence of the organic soluble tetrabutylammonium ion the heavy lanthanides can be extracted, presumably as ion pairs. The stability constants of the light lanthanides and DMHHA were determined. The separation factors obtained from DMHHA extractions of the light lanthanides were also investigated and found to be comparable to those obtained employing normal aliphatic carboxylic acid

  14. Luminescence study on solvation of americium(III), curium(III) and several lanthanide(III) ions in nonaqueous and binary mixed solvents

    International Nuclear Information System (INIS)

    Kimura, T.; Nagaishi, R.; Kato, Y.; Yoshida, Z.

    2001-01-01

    The luminescence lifetimes of An(III) and Ln(III) ions [An=Am and Cm; Ln=Nd, Sm, Eu, Tb and Dy] were measured in dimethyl sulfoxide(DMSO), N,N-dimethylformamide(DMF), methanol(MeOH), water and their perdeuterated solvents. Nonradiative decay rates of the ions were in the order of H 2 O > MeOH > DMF > DMSO, indicating that O-H vibration is more effective quencher than C-H, C=O, and S=O vibrations in the solvent molecules. Maximal lifetime ratios τ D /τ H were observed for Eu(III) in H 2 O, for Sm(III) in MeOH and DMF, and for Sm(III) and Dy(III) in DMSO. The solvent composition in the first coordination sphere of Cm(III) and Ln(III) in binary mixed solvents was also studied by measuring the luminescence lifetime. Cm(III) and Ln(III) were preferentially solvated by DMSO in DMSO-H 2 O, by DMF in DMF-H 2 O, and by H 2 O in MeOH-H 2 O over the whole range of the solvent composition. The order of the preferential solvation, i.e., DMSO > DMF > H 2 O > MeOH, correlates with the relative basicity of these solvents. The Gibbs free energy of transfer of ions from water to nonaqueous solvents was further estimated from the degree of the preferential solvation. (orig.)

  15. Separation and estimation of lanthanides using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Vasudeva Rao, P.R.

    2012-01-01

    The separation efficiency of individual lanthanides depends on the stability constant of the metal-ligand complex. Therefore, stability constant data of lanthanide complexes is important in the development of high performance separation procedures. The dynamic ion exchange HPLC technique was employed at our laboratory to estimate the stability constant of lanthanides with various complexing agents. In these studies, the retention times as well as capacity factors of lanthanides and some actinides were measured as a function of CSA, complexing agent concentrations and mobile phase pH. From these studies, a correlation has been established between capacity factor of a metal ion, concentrations of ion-pairing reagent and complexing agent with the stability constant of lanthanide complex

  16. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  17. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  18. Comparative study of the addition compounds between lanthanides methane sulfonates (III) and aromatic amino-oxides as ligands

    International Nuclear Information System (INIS)

    Rosario Matos, J. do.

    1989-01-01

    The main goal of this thesis is to further develop the studies on the preparation and characterization of addition compounds obtained from the reaction of lanthanide methane sulfonates and aromatic amino oxides as ligands, pyridine-N-oxides as the picoline-N-oxides (2-pic NO, 3-pic NO and 4-picNO) in order to make a comparative study. (author)

  19. Optimization of the radio lanthanides separation device

    International Nuclear Information System (INIS)

    Vera T, A. L.

    2009-01-01

    At present, cancer is a major cause of mortality in our country, therefore, its prevention, diagnosis and treatment are vital to health systems. The cancer treatment and other diseases, from monoclonal antibodies, peptides, or amino macro aggregates marked with beta particle emitting radionuclides, is a highly promising field. The radioactive lanthanides: Pm, Tb, Ho, and Lu are beta emitters, which possess nuclear and chemical properties, which have shown their feasibility as radioisotopes of radiotherapeutic use. However, these radioisotopes are not available commercially in this connection, the Research Laboratory of Radioactive Materials of the National Institute of Nuclear Research, has developed the methodology of production of these radioisotopes and based on this work is designed, constructed and installed the radio lanthanides separation device for the radioisotopes production routinely. This device is part of the cell, , which has and auxiliary air service, an extraction system and is protected with a 10 cm of lead shielding. The radio lanthanides separation device is manual and easy to handle. The main function of this equipment is the radio lanthanides separation from extractive chromatography through packed columns with a commercial resin (Ln SPS) and coated on the top and bottom by fiberglass. The radio lanthanides separation device comprises a main carrousel where the separation columns and elution containers are mounted. It also has a system of open irradiation vials, carrier samples for columns and glassware. This paper presents a detailed description of the radio lanthanides separation device and its management, which allows the radioisotopes production Pm, Tb, Ho, and Lu from the separation of its parents Nd, Dy, Gd, and Yb respectively. (Author)

  20. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  1. Structural Characterization of Am(III)- and Pu(III)-DOTA Complexes.

    Science.gov (United States)

    Audras, Matthieu; Berthon, Laurence; Berthon, Claude; Guillaumont, Dominique; Dumas, Thomas; Illy, Marie-Claire; Martin, Nicolas; Zilbermann, Israel; Moiseev, Yulia; Ben-Eliyahu, Yeshayahu; Bettelheim, Armand; Cammelli, Sebastiano; Hennig, Christoph; Moisy, Philippe

    2017-10-16

    The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am 3+ and Pu 3+ ) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H 2 O)] - , where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

  2. Spectroscopic studies on the interaction of europium(III) and curium(III) with components of the human mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Claudia; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    To evaluate the health risks of lanthanides (Ln) and radiotoxic actinides (An) in case of ingestion accidents etc., investigations into the chemical reactions of these metals in the human gastrointestinal tract are necessary. Our previous study revealed that mucin, an important part of the protective mucosa layer in the digestive system, shows a strong interaction with Eu(III). Based on these results, the present study focuses on the components of this glycoprotein and identified N-acetylneuraminic acid (NANA) as the dominant binding carbohydrate of mucin. TRLFS measurements suggest the formation of a 1: 1 complex with log β of 3.2 ± 0.1 for Eu(III) and 3.3 ± 0.1 for Cm(III), respectively.

  3. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2).

    Science.gov (United States)

    Löble, Matthias W; Keith, Jason M; Altman, Alison B; Stieber, S Chantal E; Batista, Enrique R; Boland, Kevin S; Conradson, Steven D; Clark, David L; Lezama Pacheco, Juan; Kozimor, Stosh A; Martin, Richard L; Minasian, Stefan G; Olson, Angela C; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Zehnder, Ralph A

    2015-02-25

    Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

  4. Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jintai [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zeng, Zhi [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng Cheng [Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas (United States)

    2014-08-11

    Graphical abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been reported. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. - Highlights: • The pH probe offers a very wide working range in water (pH 1–14). • The emission changes have multiple colors. • Long-lived excited state lifetimes of Eu(III) has been used. • Two types of pH sensitive hydrogels were fabricated. - Abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been presented. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. During the concentration dependence experiments, the photoluminescence studies on the complex showed that the excitation of this pH probe can occur at a very long wavelength which extends to visible range (Ex = 427 nm). Furthermore, the functional complex was successfully incorporated into soft networks and two novel luminescent hydrogels (rod and film) were fabricated. The soft materials also exhibited specific responses towards the pH variation. Finally, the onion cell-stain experiments were carried out to further confirm the validity of pH dependence and the results support the idea that the material will be suitable for monitoring biological samples in the future.

  5. Extraction of trivalent lanthanides and actinides by a synergistic mixture of thenoyltrifluoroacetone and a linear polyether

    International Nuclear Information System (INIS)

    Ensor, D.D.; Shah, A.H.

    1984-01-01

    Mixtures of a two component system, a linear polyether, 1,13-bis[8-quinolyl]-1,4,7,10,13-pentaoxatridecane, K-5, and thenoyltrifluoroacetone, HTTA, have been shown to exhibit synergistic character in the extraction of trivalent lanthanides and actinides. The effect of the addition of K-5 to the organic phase on the extractions of Ce(III), Eu(III), Tm(III), Am(III), Cm(III), Bk(III), and Cf(III) by HTTA in chloroform from 0.5M NaNO 3 at 25 0 C has been measured. These results indicate the extraction is enhanced by the formation of M(TTA) 3 K-5 adduct in the organic phase. The organic phase stability constants for the formation of these synergistic species have been calculated for all the metals studied. The magnitude of these organic phase stability constants for K-5 are similar to other common neutral donors. The order of stability does not follow the normal trend based on charge-to-radius ratio, but follows a pattern based on size, with Am(III) being the most stable

  6. Preparation, spectroscopic studies and X-ray structure of homobinuclear lanthanide(III complexes derived from 2,6-diformyl-4-chlorophénol-bis-(2’-hydroxy-benzoylhydrazone

    Directory of Open Access Journals (Sweden)

    Pepe Marcel Haba

    2006-06-01

    Full Text Available Reaction of the 2,6-diformyl-4-chlorophenol-bis-(2'-hydroxy-benzoylhydrazone with Ln(NO33.nH2O (n = 5 or 6 and Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er and Yb produces homobinuclear complexes. These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data showed 1:3 (metal:ligand stoichiometry. Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also found to be ionic in all the complexes. An X-ray structure determination of [C66H48N12O15Cl3Er2]Cl2NO3.5H2O confirms the conclusion from the spectroscopic studies and show that the erbium is at the centre of a tricapped trigonal prism with coordination number nine. In all the complexes the lanthanide ions have substantially similar coordination.

  7. Influence of the diluents on the extraction behaviour of Eu(III), and tm (III) by thenoytrifluoro acetone and/or 18-crown-6 or 15-crown-5 from nitrate aqueous medium. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, F A; El-Hefny, N; Aly, H F [Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The effects of different diluents on the synergistic extraction of Eu(III), and Tm (III) by thenoyltrifluoroacetone (HTTA) and/or 18-crown-5 was investigated from nitrate aqueous medium. For these systems, it is found that the diluent affects the extracted species in the organic phase. The composition of the extracted species have been proposed on the basis of slope analysis method. With HTTA alone, the stoichiometry of the extracted species was found to be M(TTA){sub 3} or M(NO{sub 3}) (TTA){sub 2} (HTTA) where M=Eu(III) or Tm(III). With HTA-Crown mixture the extracted species were M(TTA){sub 3}. CE or M(NO{sub 3}) (TTA){sub 2}. CE. The respective extraction and formation constants were evaluated. Different thermodynamic parameters of Eu (III), and Tm (III) extraction were determined from the experimental results. The variations obtained in the distribution was explained in terms of the interaction between the solute and the diluents. Correlations between the extraction and formation constants of the extracted species of Eu and Tm and the physicochemical parameter of the diluents used are given and discussed. 3 figs.,1 tab.

  8. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  9. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  10. Lanthanides in the frame of Molecular Magnetism

    Directory of Open Access Journals (Sweden)

    Gatteschi D.

    2014-07-01

    Full Text Available Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  11. Citrate-based open-quotes Talspeakclose quotes actinide-lanthanide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Toth, L.M.; Bond, W.D.

    1997-01-01

    Lanthanide elements are produced in relatively high yield by fission of 235 U. Almost all the lanthanide isotopes decay to stable nonradioactive lanthanide isotopes in a relatively short time. Consequently, it is highly advantageous to separate the relatively small actinide fraction from the relatively large quantities of lanthanide isotopes. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. Previous work based on the use of lactic or glycolic acid has shown deleterious effects of some impurity ions such as zirconium(IV), even at concentrations on the order of 10 -4 M. Other perceived problems were the need to maintain the pH and reagent concentrations within a narrow range and a significant solubility of the organic phase at high carboxylic acid concentrations. The authors' cold experiments showed that replacing the traditional extractants glycolic or lactic acid with citric acid eliminates or greatly reduces the deleterious effects produced by impurities such as zirconium. An extensive series of batch tests was done using a wide range of reagent concentrations at different pH values, temperatures, and contact times. The results demonstrated that the citrate-based TALSPEAK can tolerate appreciable changes in pH and reagent concentrations while maintaining an adequate lanthanide extraction. Experiments using a three-stage glass mixer-settler showed a good lanthanide extraction, appropriate phase disengagement, no appreciable deleterious effects due to the presence of impurities such as zirconium, excellent pH buffering, and no significant loss of organic phase

  12. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  13. Study on the fabrication and photoluminescence characteristics of LiBO2 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Sin, S. W.; Hwang, J. H.; Choi, S. H.; Sumarokov, S. Yu.

    2002-01-01

    LiBO 2 glass scintillators were fabricated, and lanthanides(except Pm) oxides or chlorides were used as an activator. For the fabrication of LiBO 2 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time are 1000 .deg. C and 40 min, respectively. The result of photoluminescence analysis shows that Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu are not good as activator. Because emission spectrum of samples with them was equal to that of sample without activator. In the case of samples with Europium, the peak of emission spectrum of Eu(III) is 810 nm. And Samples with Ce(III) are 760 nm, and Tb(III) are about 535 nm. Samples with Ce(III) and Tb(III) have the best PL intensity with added sugar in Ar reduction atmosphere, and sample with Eu(III) has the best intensity without a reducing process

  14. Lanthanide co-ordination frameworks: Opportunities and diversity

    International Nuclear Information System (INIS)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter; Schroeder, Martin; Champness, Neil R.

    2005-01-01

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials

  15. Syntheses, structures, and magnetic properties of a family of heterometallic heptanuclear [Cu5Ln2] (Ln = Y(III), Lu(III), Dy(III), Ho(III), Er(III), and Yb(III)) complexes: observation of SMM behavior for the Dy(III) and Ho(III) analogues.

    Science.gov (United States)

    Chandrasekhar, Vadapalli; Dey, Atanu; Das, Sourav; Rouzières, Mathieu; Clérac, Rodolphe

    2013-03-04

    Sequential reaction of the multisite coordination ligand (LH3) with Cu(OAc)2·H2O, followed by the addition of a rare-earth(III) nitrate salt in the presence of triethylamine, afforded a series of heterometallic heptanuclear complexes containing a [Cu5Ln2] core {Ln = Y(1), Lu(2), Dy(3), Ho(4), Er(5), and Yb(6)}. Single-crystal X-ray crystallography reveals that all the complexes are dicationic species that crystallize with two nitrate anions to compensate the charge. The heptanuclear aggregates in 1-6 are centrosymmetrical complexes, with a hexagonal-like arrangement of six peripheral metal ions (two rare-earth and four copper) around a central Cu(II) situated on a crystallographic inversion center. An all-oxygen environment is found to be present around the rare-earth metal ions, which adopt a distorted square-antiprismatic geometry. Three different Cu(II) sites are present in the heptanuclear complexes: two possess a distorted octahedral coordination sphere while the remaining one displays a distorted square-pyramidal geometry. Detailed static and dynamic magnetic properties of all the complexes have been studied and revealed the single-molecule magnet behavior of the Dy(III) and Ho(III) derivatives.

  16. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    International Nuclear Information System (INIS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-01-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C 6 H 2 O 5 )(C 6 H 3 O 5 )(H 2 O)] n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted

  17. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  18. Accurate determination of trace amounts of lanthanum, yttrium and all stable lanthanides in biological materials by Ion Chromatography

    International Nuclear Information System (INIS)

    Dybczynski, R.S.; Kulisa, K.; Danko, B.; Samczynski, Z.

    2007-01-01

    The analytical procedure for the isolation and preconcentration of La, Y and the lanthanides from biological materials and their determination by ion chromatography (IC) with the use of Dionex Ion Pac CS3 + CG3 column (sulfonic acid type), α-hydroxyisobutyric acid (α-HIBA) as an eluent, and PAR or Arsenazo III as color forming reagents, was elaborated. The scheme originally devised for NAA, involving microwave assisted digestion and multi step separation employing ion exchange and extraction chromatography columns was used to selectively recover REE fraction (without scandium) with 100% yield. The REE fraction was analyzed by IC at 25 and 70 o C. The run at 70 o C enabled resolution of Y and Dy peaks and as a result made possible quantitative determination of La, Y, and all lanthanides. Investigation on the mechanism of band spreading revealed that longitudinal diffusion in the stationary phase considerably contributed to the total plate height. Surprisingly, the plate height (H) calculated from Y peak was distinctly lower than H values of the adjacent lanthanides. The method was validated by analyzing several certified reference materials (CRMs). (authors)

  19. A Linear Tetranuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hongshan; Xu, Gong Feng; Guo, Yun-Nan; Gamez, Patrick; Beavers, Christine M; Teat, Simon J; Tang, Jinkui

    2010-04-20

    Although magnetic measurements reveal a single-relaxation time for a linear tetranuclear Dy(III) compound, the wide distribution of the relaxation time observed clearly suggests the presence of two slightly different anisotropic centres, therefore opening new avenues for investigating the relaxation dynamics of lanthanide aggregates.

  20. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    Science.gov (United States)

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  1. Lanthanide ions as spectral converters for solar cells

    NARCIS (Netherlands)

    van der Ende, B.M.; Aarts, L.; Meijerink, A.

    2009-01-01

    The use of lanthanide ions to convert photons to different, more useful, wavelengths is well-known from a wide range of applications (e.g. fluorescent tubes, lasers, white light LEDs). Recently, a new potential application has emerged: the use of lanthanide ions for spectral conversion in solar

  2. High temperature vaporization/decomposition studies of lanthanide and actinide fluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1987-01-01

    Binary fluorides of the lanthanide and actinide elements comprise a fundamental class of compounds. The authors' investigations of their basic high temperature vaporization and/or decomposition behavior are aimed at elucidating more fully the thermal properties of selected tri- and tetrafluorides and extending such investigations to fluorides which have not been studied previously. Depending on the particular system and the specific experimental conditions, the authors' measurements can provide such information as the enthalpy associated with a congruent vaporization process and/or the relative stabilities of fluorides containing a lanthanide/actinide element in different oxidation states. The authors are also studying the congruent vaporization of selected lanthanide trifluorides with particular emphasis on two areas. The first concerns the variation in the enthalpies of sublimation of the trifluorides across the lanthanide series. Although this variation is rather small (δ5 kcal where ΔH/sub subl/ is approximately 100 kcal), it is larger than observed for other lanthanide trihalides and is unusually irregular. To examine this reported variation more closely, they are attempting to measure relative vapor pressures/enthalpies of vaporization by studying mixtures of two or more lanthanide trifluorides by the technique discussed above

  3. Kinetics and selectivity of the oxidation of methylbenzenes in Co(III)-CH3COOH-CF3COOH solutions. Comparison with nitration and hydroxylation reactions

    International Nuclear Information System (INIS)

    Rudakov, E.S.; Lobachev, V.L.

    1989-01-01

    Data have been obtained concerning the kinetics, substrate selectivity, and kinetic isotope effect for the first stage in the oxidation of a series of arenes, from benzene to hexamethylbenzene, by Co(III) acetate in CH 3 COOH-CF 3 COOH (1.9 M) solutions at 25 degree C. A similarity was noted between substrate selectivity for reactions of alkylbenzenes with Co(III) and electrophilic nitration reactions, which occur via an electron transfer step. It was also found that substrate selectivity for these reactions differs significantly from that found for electrophilic hydroxylation reactions, which occur via an intermediate slow step involving σ-complex formation

  4. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  5. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  6. The Properties of Trilaurylmethylammonium Nitrate as an Extractant for Trivalent Actinides. RCN Report

    International Nuclear Information System (INIS)

    Ooyen, J. van

    1970-03-01

    The concept of the group of the actinide elements as a f-type transition series within the periodic system was first launched by G.T. Seaborg in 1944]. In this transition series the filling up of the 5 f electron shell would cause a close similarity with the lanthanide series. This proved to be a very fruitful hypothesis in the prediction of the properties of the new elements americium and curium that soon were discovered. The new hypothesis necessitated a shift of the accepted ideas concerning the place of the elements thorium, protactinium and uranium in the periodic table. In fact, the chemistry of these elements had never been considered to be so closely parallel to that of the lanthanides. On the contrary, the trend in the stability of the oxidation states had been interpreted to indicate that these elements would belong to group IVA, VA and VIA respectively. It is undeniable that there are marked differences in oxidation states between the lanthanide elements and the first six elements of the actinide series. However, physical and chemical investigations both of the newly discovered elements and the elements actinium to uranium disclosed many resemblances with the lanthanides that had not been noticed before in this group. The actinide elements - and more in particular the transuranium elements - have been the subject of a number of monographs covering the discovery, the synthesis, the systematics, the chemistry, and (or) the nuclear properties of these elements. It is for this reason that the scope of the following sections in this chapter will be limited to a summary of the chemistry in sofar as it is relevant to the investigations described in the following chapters, viz., the properties of the elements in aqueous systems and more in particular in those systems containing nitrate ions

  7. Factors in the complexation of lanthanides

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The lanthanide cations are classified as hard acids and thus will coordinate strongly with oxygen and fluorine donor atoms. The electrostatic model is applied to lanthanide complexes with the dielectric constant as a parameter; the plot of ΔG vs sum of ionic radii confirm the ionic nature of the bonding. The enthalpy and entropy changes are shown to compensate each other to produce an almost linear variation in the free energy of complexation. Outer-sphere and inner-sphere complexation is discussed

  8. Concurrent nitrate and Fe(III) reduction during anaerobic biodegradation of phenols in a sandstone aquifer

    DEFF Research Database (Denmark)

    Broholm, Mette; Crouzet, C.; Arvin, Erik

    2000-01-01

    The biodegradation of phenols (similar to 5, 60, 600 mg 1(-1)) under anaerobic conditions (nitrate enriched and unamended) was studied in laboratory microcosms with sandstone material and groundwater from within an anaerobic ammonium plume in an aquifer, The aqueous phase was sampled and analyzed...... for phenols and selected redox sensitive parameters on a regular basis. An experiment with sandstone material from specific depth intervals from a vertical profile across the ammonium plume was also conducted. The miniature microcosms used in this experiment were sacrificed for sampling for phenols...... and selected redox sensitive parameters at the end of the experiment. The sandstone material was characterized with respect to oxidation and reduction potential and Fe(II) and Fe(III) speciation prior to use for all microcosms and at the end of the experiments for selected microcosms. The redox conditions...

  9. The outer membrane protein Omp35 affects the reduction of Fe(III, nitrate, and fumarate by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Myers Charles R

    2004-06-01

    Full Text Available Abstract Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III and manganese(IV oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM. Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35 in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1 was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III. Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe(III

  10. Lanthanide(III) complexes with tridentate Schiff base ligand ...

    African Journals Online (AJOL)

    The X-ray study reveals isotopic Nd/Sm binuclear structures were each metal ion is nine-coordinated in the same fashion. Both metal centers have distorted tricapped trigonal prism geometry, with the Schiff base acting as tridentate ligand. The DPPH· radical scavenging effects of the Schiff base ligand and its Ln(III) ...

  11. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  12. The effect of peroxynitrite decomposition catalyst MnTBAP on aldehyde dehydrogenase-2 nitration by organic nitrates: role in nitrate tolerance.

    Science.gov (United States)

    Mollace, Vincenzo; Muscoli, Carolina; Dagostino, Concetta; Giancotti, Luigino Antonio; Gliozzi, Micaela; Sacco, Iolanda; Visalli, Valeria; Gratteri, Santo; Palma, Ernesto; Malara, Natalia; Musolino, Vincenzo; Carresi, Cristina; Muscoli, Saverio; Vitale, Cristiana; Salvemini, Daniela; Romeo, Francesco

    2014-11-01

    Bioconversion of glyceryl trinitrate (GTN) into nitric oxide (NO) by aldehyde dehydrogenase-2 (ALDH-2) is a crucial mechanism which drives vasodilatory and antiplatelet effect of organic nitrates in vitro and in vivo. Oxidative stress generated by overproduction of free radical species, mostly superoxide anions and NO-derived peroxynitrite, has been suggested to play a pivotal role in the development of nitrate tolerance, though the mechanism still remains unclear. Here we studied the free radical-dependent impairment of ALDH-2 in platelets as well as vascular tissues undergoing organic nitrate ester tolerance and potential benefit when using the selective peroxynitrite decomposition catalyst Mn(III) tetrakis (4-Benzoic acid) porphyrin (MnTBAP). Washed human platelets were made tolerant to nitrates via incubation with GTN for 4h. This was expressed by attenuation of platelet aggregation induced by thrombin (40U/mL), an effect accompanied by GTN-related induction of cGMP levels in platelets undergoing thrombin-induced aggregation. Both effects were associated to attenuated GTN-induced nitrite formation in platelets supernatants and to prominent nitration of ALDH-2, the GTN to NO metabolizing enzyme, suggesting that GTN tolerance was associated to reduced NO formation via impairment of ALDH-2. These effects were all antagonized by co-incubation of platelets with MnTBAP, which restored GTN-induced responses in tolerant platelets. Comparable effect was found under in in vivo settings. Indeed, MnTBAP (10mg/kg, i.p.) significantly restored the hypotensive effect of bolus injection of GTN in rats made tolerants to organic nitrates via chronic administration of isosorbide-5-mononitrate (IS-5-MN), thus confirming the role of peroxynitrite overproduction in the development of tolerance to vascular responses induced by organic nitrates. In conclusion, oxidative stress subsequent to prolonged use of organic nitrates, which occurs via nitration of ALDH-2, represents a key event

  13. Efficient Separation of Lanthanides Using Poly (Styrene-Divinyl Benzene) Aminated Anion Exchanger

    International Nuclear Information System (INIS)

    Borai, E.H.; Hassan, R.S.; El- Dessouky, M.I.; Ghonem, A.

    2008-01-01

    New chromatographic method was developed for the determination and separation of lanthanides using AS4A anionic column. The behavior of the column towards lanthanides was studied through many parameters, From the data obtained it is found that, affinity of the column toward investigated ions increase by increasing eluent concentration and it decrease retention factors. With the two investigated eluent (oxalic and citric acids), elution order for lanthanide elements was obtained in their atomic number from La to Lu. Retention times and retention orders obtained at these conditions clearly show that, lanthanides in AS4A are displaced according to anion exchange mechanism. More over separation of lanthanides using AS4A was studied using isocratic and gradient elution programs. Light and the first intermediate lanthanide elements were separated successfully by applying a gradient program containing 70% oxalic acid (100 mM) and 30% water. The problem of separation for heavy and the last intermediate lanthanide elements was solved using 100 mM alpha hydroxy isobutyric acid (α-HIBA)

  14. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  15. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    Science.gov (United States)

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  16. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  17. Thermodynamics of complexation of lanthanides and some of transition metal ions by 5,5-dimethyl-cyclohexane-2-(2-hydroxyphenyl)-hydrazono-1,3-dione (DCPHD) and its derivatives

    International Nuclear Information System (INIS)

    Ramadan, A.A.T.; Abdel-Moez, M.S.; El-Shetary, B.A.; Seleim, H.S.

    1993-01-01

    Equilibrium between DCPHD, DC-4-Cl-PHD, and DC-4-Me-PHD and protons, transition, and lanthanide ions have been investigated at 30 o C by means of potentiometric titration in 75%(v/v) methanol-water mixture containing 0.10M KNO 3 as a constant ionic medium. Thermodynamic parameters(ΔG,ΔH and ΔS) referring to the formation of species HL - ,L -- ,ML +n-2 and ML 2 +n-4 (L -- denotes the ligand anion) have been determined in solutions. The solvent effects on the thermodynamic parameters of the complex formation are discussed in terms of differences in the donor ability of methanol and water solvents. The plots of thermodynamic parameters versus ionic potential (Z 2 /r) of the lanthanide elements is not linear as expected from ionic theory. The obtained curve can be resolved in an initial group (the lighter lanthanides), an intermediate group (Sm-Dy), and a final group (the heavier ones, Tb-Lu). This behavior was explained in terms of differences in the dehydration of lighter lanthanide(III) from that of heavier ones

  18. Extraction chromatographic method for the separation of actinides and lanthanides using EDHBA grafted AXAD-16 polymer

    Energy Technology Data Exchange (ETDEWEB)

    Akhila Maheswari, M.; Subramanian, M.S. [Department of Chemistry, Indian Institute of Technology, Chennai (India)

    2005-02-15

    A new extraction chromatographic method has been developed by grafting chloromethylated polymer support with 4-ethoxy-N,N-dihexylbutanamide (EDHBA), for the selective extraction of U(VI), Th(IV), La(III) and Nd(III) from highly acidic matrices. The developed grafted polymer has been characterized using {sup 13}C-CPMAS NMR spectroscopy, FT-NIR spectroscopy and also by CHN elemental analysis. The water regaining capacity of the grafted polymer is studied by TGA measurements and the active participation of the amide moiety towards metal ion complexation has been confirmed by Far IR spectroscopy. For the quantitative extraction of metal ions to the resin phase, various physico-chemical parameters are optimized by both static and dynamic methods. The developed amide grafted polymeric matrix shows good distribution ratio values even at high acidities, with the maximum metal sorption capacity values being 0.36, 0.69, 0.32 and 0.42mmolg{sup -1} for U(VI), Th(IV), La(III) and Nd(III), respectively, at 6M HNO{sub 3} medium. The kinetics of metal ion phase equilibration is found to be moderately fast, with t{sub 1/2} values of <6min, for all the analytes of interest. The limits of analyte quantification (LOQ) using the developed method are in the range of 15-30{mu}gL{sup -1}. Moreover, the sequential separation of the sorbed actinides and lanthanides could be achieved by first eluting with 100mL of distilled water (for actinides) followed by elution with 20mL of 0.1M EDTA (for lanthanides). The selectivity behavior and the practical applicability of the developed resin are tested using synthetic low level nuclear reprocessing mixtures and also with monazite sand. The analytical data are within 3.8% relative standard deviation, reflecting the reproducibility and reliability of the developed method.

  19. Three phenoxo-bridged dinuclear lanthanide complexes. Syntheses, crystal structures, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Chao; Dai, Rui-Peng; Yang, En-Cui [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal University (China); Dong, Hui-Ming; Zhao, Xiao-Jun [College of Chemistry, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal University (China); Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin (China)

    2018-03-15

    Three dinuclear lanthanide complexes [Ln{sub 2}(H{sub 2}L){sub 2}(NO{sub 3}){sub 4}] [Ln = Dy (1), Tb (2), and Gd (3)] [H{sub 3}L = 2-hydroxyimino-N'-[(2-hydroxy-3-methoxyphenyl)methylidene]- propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single-crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric Ln{sup III} ions aggregated by a pair of monodeprotonated H{sub 2}L{sup -} anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single-ion anisotropy. Additionally, the Dy{sup III}-based entity shows the strongest anisotropy exhibits field-induced single-molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic Gd{sup III} ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J.kg{sup -1}.K{sup -1} at 2.0 K and 70.0 kOe. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  1. Spectral intensities and bonding parameters for some praseodymium(III) and neodymium(III) complexes with benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, P C; Ojha, C K; Mittal, S; Joshi, G K

    1988-09-01

    The electronic spectral intensity parameters (Judd-Ofelt; Tsub(lambda)) calculated from absorption spectral data for the complexes of praseodymium(III) and neodymium(III) nitrates with benzimidazole and 2-methyl-, 2-ethyl- and 2-n-propyl-benzimidazoles are reported. The conductance of these derivatives in dimethylformamide suggests 1:1 electrolytic nature. The infrared spectral data indicate the presence of Csub(2v) as well Dsub(2h)-nitrate ions in the complexes. The correlation of the intensity of hypersensitive transitions with bonding (nephelauxetic ratio and degree of covalency) parameters are also reported. (author). 13 refs., 2 tables.

  2. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Durand, S.

    1999-01-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA 4- , ethylene-diamino-tri-acetate-acetic acid EDTA(H) 3- , tetra-aza-cyclo-dodecane-tetra-acetate DOTA 4- , methylene-imidine-acetate MIDA 2- ) are reported. First, a consistent set of Lennard-Jones parameters for La 3+ , Eu 3+ and Lu 3+ cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA 4- , EDTA(H) 3- , DOTA 4- and 1:2 complexes of lanthanide cations with MIDA 2- were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca 2+ vs Sr 2+ and vs Ba 2+ on the one hand, and with La 3+ vs Eu 3+ and vs Lu 3+ on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  3. Amides with nitrogenous heterocyclic substituent, their manufacturing process and their use to draw out selectively Actinium series (III) and to separate them in particular from Lanthanides (III)

    International Nuclear Information System (INIS)

    Cuillerdier, C.; Musikas, C.

    1993-01-01

    Present invention is concerned with new amides with nitrogenous heterocyclic substituent utilizable to separate trivalent actinium series from trivalent lanthanides. In these molecules, it is possible to obtain particularly covalent liaison which has more affinity with 5f series, that is to say actinium series; included a manufacturing process for these amides with nitrogenous heterocyclic substituent

  4. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation.

    Science.gov (United States)

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-10-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575(T) under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575(T) grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575(T) are dominant under anoxic conditions. Furthermore, strain DSM 6575(T) forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575(T) , and could contribute to biogeochemical cycles of Fe and N in the environment. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  5. The spectroscopy and structure of some lanthanide chlorides in amide solutions

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Bukietynska, K; Jezowsky-Trzebiatowska, B.

    1974-01-01

    The absorption spectra of Pr, Nd, Ho, and Er anhydrous and hydrated chlorides in formamide, methyl-, dimethyl-, and diethylformamide solutions have been investigated in the range of 8000 - 4200 cm -1 . By the Judd-Oefelt method of intensity analysis and by calculating the nepheloauxetic effect, the first coordination sphere of lanthanide ions and the approximate symmetry of amide solvates of anhydrous and hydrated lanthanide chlorides were determined. A difference between symmetry and coordination numbers for light and heavy lanthanide solvates has been found. Some considerations regarding the structure of lanthanide solvates and structure of amide molecules have been made. (B.T.)

  6. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  7. Static and dynamic modelling of lanthanide and actinide cations in solution

    International Nuclear Information System (INIS)

    Marjolin, A.

    2012-01-01

    We propose a theoretical approach, based on both quantum analyses (energy decomposition analysis and topological analysis of the chemical bond) and classical molecular dynamics, for the study of f-element complexes. First, we introduce the different QM methods adapted to the study of f-elements and use them for geometry optimization and interaction energy calculations of the model system [M-(OH 2 )] m+ where M is a lanthanide or actinide cation. We then perform energy decomposition analysis to quantify the physical nature of the metal-ligand interaction in terms of the different contributions. Furthermore, the different energy contributions will be used as reference curves for the parameterization of the polarizable force fields AMOEBA and SIBFA. Next, starting from the optimized geometries, we establish the reference diabatic dissociation curves at high level of theory so as to take into account the multi-reference nature of the systems. These dissociation curves will also be used for parameterization of the AMOEBA potential. We then propose a three step validation protocol as well as a first application, it being the computation of Gibbs hydration free energies for the f-element cations. We also propose an extension of the SIBFA force field to trivalent lanthanide ions and tetravalent actinide ions. Last, we use the topological analysis approaches of ELF and NCI to investigate the nature of the different interactions in Gadolinium(III) model and real systems. The aim of the whole study was to develop and apply different theoretical approaches so as to be able to discriminate between lanthanide and actinide cations. Indeed, despite their similar chemical behavior, they still feature a selective character that we wish to be able to both explain and predict. (author) [fr

  8. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  9. PIXE analysis of tumors and localization behavior of a lanthanide in nude mice

    Science.gov (United States)

    Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu

    1984-04-01

    We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.

  10. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  11. Lanthanide-doped nanoparticles as the active optical medium in polymer-based devices

    NARCIS (Netherlands)

    Stouwdam, J.W.

    2004-01-01

    The luminescence of lanthanide ions in organic environment is greatly reduced compared to inorganic materials. This thesis describes the doping of the lanthanide ions in the core of inorganic nanoparticles that are soluble in organic solvents as a way to shield the lanthanide ions from the organic

  12. Transport behaviour of the lanthanide 152Eu(III), 153Gd(III) and 170Tm(III) and transplutonium element 254Es(III), 244Cm(III), 241Am(III), 249Cf(III) and 249Bk(III) ions in aqueous solutions at 298 K

    International Nuclear Information System (INIS)

    Ouerfelli, N.

    2014-01-01

    Ionic self-diffusion coefficients (D) for trivalent radiotracers, lanthanide and actinide ions have been determined in concentrated aqueous solutions of supporting electrolytes of Gd(NO 3 ) 3 -HNO 3 or Nd(ClO 3 ) 4 -HClO 4 up to 1.5 mol L -1 at 298.15 K and pH 2.50 by the open-end capillary method. The data obtained in large range of concentrations, allow to derive the limiting value D deg, the validity of the Onsager limiting law and a more extended law. This study contributes to demonstrate similarities in transport and structure properties between 4f and 5f trivalent ions explained by a similar electronic configuration, ionic radius and hydration number. An empirical equation is suggested for predicting ionic hydration number with a good precision. (author)

  13. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory ...

  14. Open-Source Photometric System for Enzymatic Nitrate Quantification.

    Science.gov (United States)

    Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.

  15. Lanthanide complexes of 2-aminoacetophenone and 2-acetylaminoacetophenone 2-thenoylhydrazone

    International Nuclear Information System (INIS)

    Singh, Praveen K.; Singh, B.

    1998-01-01

    The reaction of lanthanide chlorides with 2-aminoacetophenone-2-thenoyl- hydrazone and 2-acetylaminoacetophenone-2-thenoylhydrazone yield complexes of the type [Ln(aath) 2 Cl 2 (H 2 )O]Cl and [Ln(acaath) 2 Cl 2 ]Cl. These complexes have been characterized by molar conductance, magnetic susceptibility, TGA, DTA and various spectroscopic techniques such as mass, IR, NMR, UV - visible and emission spectra. Mass spectral data indicate the aath complexes to be monomeric. Thermal stability of the complexes and presence of one water molecule in aath complex is indicated by TGA and DTA studies. Electronic spectra of Pr(III) and Nd(III) complexes show the coordination number to be nine and eight around the metal ions in the aath and acaath complexes, respectively. This has also been inferred from the spectral features of the hypersensitive transition in the Nd(III) complexes. The lowering in coordination number from aath to acaath complexes may be attributed to increase in chelate ring size and/or steric/inductive effect of methyl group. Emission spectral studies of the [Eu(aath) 2 Cl 2 (H 2 O)]Cl and [Eu(acaath) 2 Cl 2 ]Cl suggest tricapped trigonal prismatic (D 3h ) and square antiprismatic (D 4d ) geometry, respectively. (author)

  16. Thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Rao, Linfeng; Weger, H.T.; Felmy, A.R. [Pacific Northwest National Laboratory, WA (United States); Choppin, G.R. [Florida State University, Florida (United States); Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(III) species are lacking, the data were selected based on chemical analogy to other trivalent actinides. In this study, the Pitzer ion-interaction model is mainly used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  17. Behaviour of trivalent actinides and lanthanide elements in chloride solution; Comportement des lanthanides et transuraniens trivalents en milieu chlorhydrique

    Energy Technology Data Exchange (ETDEWEB)

    Marin, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    The aim of this work is to compare the complexation in chloride solutions of trivalent lanthanides and actinides. We have first studied the solvatation of these cations without complexation. We found a difference between Am, Cm and Rare Earths (we can separate lanthanides into Light and Heavy Rare Earths). For studying the complexation we choose the technic of electrophoresis on paper after establishing a simple theory of mobilities in complex solutions. The hydrolysis of these cations was studied and compared in chloride solutions. We have then studied the complexation with the Cl{sup -} ligand in some solutions: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. We have established that the complexation is the same in dilute HCl solutions but in concentrated solutions the trivalent actinides are more complexed. This difference is sharper in LiCl solutions. We also proposed the different models of complex in these solutions. (author) [French] Le but de ce travail est de comparer les transuraniens et lanthanides trivalents au point de vue de leur complexation en solution chlorhydrique. Nous avons ete amenes tout d'abord a etudier la solvatation de ces cations non complexes. C'est ainsi que nous pouvons constater une difference entre Am, Cm et les lanthanides. Ces derniers pouvant se separer en lanthanides legers et lanthanides lourds. Pour etudier la complexation nous avons utilise l'electrophorese sur papier apres avoir donne une theorie simple des mobilites en milieu complexant. Apres avoir etudie et compare l'hydrolyse de ces divers cations en solution chlorhydrique, nous avons etudie leur complexation avec l'ion Cl{sup -} dans dans divers milieux: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. ous avons note qu'en solution HCl les deux series se comportent de la meme facon pour des concentrations faibles en Cl{sup -} mais que les transuraniens se complexent plus fortement dans les solutions concentrees. Cette difference s'accroit encore dans les milieux

  18. Spectrophotometric, potentiometric, and gravimetric determination of lanthanides with peri-dihydroxynaphthindenone

    International Nuclear Information System (INIS)

    Hassan, S.S.M.; Mahmoud, W.H.

    1982-01-01

    Sensitive and reasonably selective methods are described for the spectrophotometric, potentiometric, and gravimetric determination of lanthanides using peri-dihydroxynaphthindenone as a novel chromogenic and precipitating reagent. The reagent forms a stable 1:2 (metal:reagent) type of complex with light lanthanides at pH 2-7 in 1:1 ethanol-water mixture. Low metal concentrations ( 4 L mol -1 cm -1 ) which obey Beer's law. Quantitative precipitation of the complexes from metal solutions of concentrations > 100 μg/mL permits both gravimetric quantitation by igniting the precipitates to the metal oxides and potentiometric titration of the excess reagent. Results with an average recovery of 98% (standard deviation 0.7%) are obtainable for 0.1 μg to 200 mg of all light lanthanides. Many foreign ions naturally occurring or frequently associated with lanthanides do not interfere or can be tolerated

  19. On-line separation of Pu(III) and Am(III) using extraction and ion chromatography

    International Nuclear Information System (INIS)

    Jernstroem, J.; Lehto, J.; Betti, M.

    2007-01-01

    An on-line method developed for separating plutonium and americium was developed. The method is based on the use of HPLC pump with three analytical chromatographic columns. Plutonium is reduced throughout the procedure to trivalent oxidation state, and is recovered in the various separation steps together with americium. Light lanthanides and trivalent actinides are separated with TEVA resin in thiocyanate/formic acid media. Trivalent plutonium and americium are pre-concentrated in a TCC-II cation-exchange column, after which the separation is performed in CS5A ion chromatography column by using two different eluents. Pu(III) is eluted with a dipicolinic acid eluent, and Am(III) with oxalic acid eluent. Radiochemical and chemical purity of the eluted plutonium and americium fractions were ensured with alpha-spectrometry. (author)

  20. Thermodynamic and structural description of europium complexation in 1-octanol - H2O solutions

    International Nuclear Information System (INIS)

    Vu, T.H.; Charbonnel, M.C.; Boubals, N.; Couston, L.; Arnaud, F.

    2008-01-01

    Polydentate N-bearing ligands such as bis-triazinyl-pyridines (BTPs) are interesting extractants for actinide(III)/lanthanide(III) separation. A description of europium complexation in 1-octanol solutions was undertaken to enhance the knowledge of the extraction mechanisms. The first solvation shell for europium(III) nitrate, chloride, and perchlorate with different amounts of water was determined by Time-Resolved Laser-Induced Fluorescence (TRLIF) spectroscopy. Europium nitrate complexation by iPr-BTP was then studied by TRLIF and micro-calorimetry; similar stability constants related to the formation of Eu(BTP) 2 3+ and Eu(BTP) 3 3+ were obtained by both techniques (log(β 2 ) = 9.0 ± 0.3 and log(β 3 ) = 13.8 ± 0.2). The presence of water in the octanol diluent has an influence on solvation of europium and also on the [Eu(BTP) 2 3+ ] / [Eu(BTP) 3 3+ ] ratio. (authors)

  1. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission

    DEFF Research Database (Denmark)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins

    2015-01-01

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency...

  2. Uranyl complexes as scaffolding or spacers for cucurbit[6]uril molecules in homo- and heterometallic species, including a uranyl-lanthanide complex

    Energy Technology Data Exchange (ETDEWEB)

    Thuery, Pierre [NIMBE, CEA, CNRS, Universite Paris-Saclay, CEA Saclay, Gif-sur-Yvette (France)

    2017-06-16

    The reaction of uranyl nitrate with cucurbit[6]uril (CB6) and carboxylic or sulfonic ligands under hydrothermal conditions and in the presence of additional metal cations (K{sup I} or Ce{sup III}) or cosolvents provided four complexes, which were crystallographically characterized. The compound [(UO{sub 2}){sub 2}K{sub 2}(CB6)(adc){sub 2}(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}].5H{sub 2}O (1), where H{sub 2}adc is 1,3-adamantanedicarboxylic acid, crystallizes in the form of a central K{sub 2}(CB6){sup 2+} column surrounded by two one-dimensional (1D) polymeric UO{sub 2}(adc)(NO{sub 3}){sup -} chains attached to the column by nitrate bridges, with a perfect match of the repeat lengths in the two subunits. The longer 1,3-adamantanediacetic acid (H{sub 2}adac) gives the complex [(UO{sub 2}){sub 2}(adac){sub 2}(HCOOH){sub 2}].CB6.6H{sub 2}O (2), in which the 1D uranyl-containing polymer and columns of CB6 molecules form a layered arrangement held by weak CH..O hydrogen bonds. The complex formed with the dipotassium salt of methanedisulfonic acid (K{sub 2}mds), [(UO{sub 2}){sub 2}K{sub 2}(CB6)(mds){sub 2}(OH){sub 2}(H{sub 2}O){sub 8}].4H{sub 2}O (3), is a 1D polymer, in which K{sub 2}(CB6){sup 2+} units are connected to one another by doubly hydroxide-bridged uranyl dimers in which the disulfonates are terminal, chelating ligands; connection between the two subunits is solely through potassium oxo-bonding to uranyl. The complex [(UO{sub 2}){sub 2}Ce{sub 2}(CB6)(C{sub 2}O{sub 4}){sub 3}(NO{sub 3}){sub 4}(H{sub 2}O){sub 6}].2H{sub 2}O (4) is a 1D polymer containing bridging oxalate ligands formed in situ, in which CB6 is coordinated to the lanthanide cations only; one nitrate ligand and one water ligand, hydrogen-bonded to each other, are included in the CB6 cavity, with the possible occurrence of interactions between nitrate oxygen atoms and ureido carbon atoms. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Interaction study of amino acids and the peptide aspartame with lanthanide (III) ions

    International Nuclear Information System (INIS)

    Carubelli, C.R.

    1990-01-01

    The interactions between the Nd(III) ion with the amino acids L-aspartic acid, L-glutamic acid and L-histidine and the peptide aspartame in aqueous solution were studied. The study was conducted by means of electronic spectroscopy with the Judd-Ofelt formalism for transition intensity parameters calculations. Several coordination compounds involving Nd(III), Eu(III), and Tb(III) and the ligands L-histidine and aspartame were synthesized and characterized in the solid state. Mixed compounds involving Eu(III) and Tb(III) with the same ligands were synthesized and characterized also. The characterization were achieved by chemical analysis, melting points, vibrational spectroscopy (IR) and powder X-ray diffractometry. (author)

  4. Separation of lanthanides through hydroxyapatite; Separacion de lantanidos mediante hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, F.G

    2006-07-01

    With the objective of obtaining from an independent way to each one of the lanthanides {sup 151} Pm, {sup 161} Tb, {sup 166} Ho and {sup 177} Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI{sub 3} (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because

  5. Synergistic solvent extraction investigation of Am (III), Eu (III), Zn(II), and Cs(I), using 2-heptyl-2-methyl-nonanoic acid mixed with different organophosphorus compounds from nitrate media. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, H A; Ramadan, A; Abdel-Fattah, A [Nuclear Chemistry Department, Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Extraction studies for investigating the effect of mixing 2-heptyl-2-methyl nonanoic acid (HA) with a number of organophosphorus compounds; namely tributyl phosphate (TBP), terphenyl phosphate oxide (TPPO); tri octyl phosphine oxide (TOPO) or bis-2-(ethyl hexyl) phosphoric acid (HDEHP) in benzene on the extraction of trace elements Am(III), Eu(III), Zn(II), and Cs(I) from nitrate media of ionic strength, I=0.1 M were carried out. The effect of adding different organophosphorus compounds to HA was tested to account for the presence or absence of the phenomenon of synergism. It was found that TBP, TPPO, and TOPO causing some antagonistic effects for the elements studied. Extraction enhancement was only observed with bis- (2-ethyl-hexyl) -phosphoric acid (HDEHP) for all the elements investigated. The extraction mechanisms as well as the thermodynamic parameters for the mixed extracted species are discussed. 19 figs.

  6. Synergistic solvent extraction investigation of Am (III), Eu (III), Zn(II), and Cs(I), using 2-heptyl-2-methyl-nonanoic acid mixed with different organophosphorus compounds from nitrate media. Vol. 3

    International Nuclear Information System (INIS)

    El-Naggar, H.A.; Ramadan, A.; Abdel-Fattah, A.

    1996-01-01

    Extraction studies for investigating the effect of mixing 2-heptyl-2-methyl nonanoic acid (HA) with a number of organophosphorus compounds; namely tributyl phosphate (TBP), terphenyl phosphate oxide (TPPO); tri octyl phosphine oxide (TOPO) or bis-2-(ethyl hexyl) phosphoric acid (HDEHP) in benzene on the extraction of trace elements Am(III), Eu(III), Zn(II), and Cs(I) from nitrate media of ionic strength, I=0.1 M were carried out. The effect of adding different organophosphorus compounds to HA was tested to account for the presence or absence of the phenomenon of synergism. It was found that TBP, TPPO, and TOPO causing some antagonistic effects for the elements studied. Extraction enhancement was only observed with bis- (2-ethyl-hexyl) -phosphoric acid (HDEHP) for all the elements investigated. The extraction mechanisms as well as the thermodynamic parameters for the mixed extracted species are discussed. 19 figs

  7. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  8. Lanthanide Cofactors for Triphosphorylation Ribozymes

    Science.gov (United States)

    Sweeney, K. J.; Müller, U. F.

    2017-07-01

    RNA world organisms could have used trimetaphosphate as energy source for thermodynamically unfavorable RNA polymerization. Using in vitro selection we show here that Lanthanides can serve as cofactors for ribozyme-catalyzed RNA triphosphorylation.

  9. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Wiencek, T.; O' Hare, E.; Fortner, J.; Wright, A. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Cheon, J.S.; Lee, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2017-02-15

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  10. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo; Wiencek, T.; O' Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  11. On halide derivatives of rare-earth metal(III) oxidomolybdates(VI) and -tungstates(VI)

    International Nuclear Information System (INIS)

    Schleid, Thomas; Hartenbach, Ingo

    2016-01-01

    Halide derivatives of rare-earth metal(III) oxidomolybdates(VI) have been investigated comprehensively over the last decade comprising the halogens fluorine, chlorine, and bromine. Iodide-containing compounds are so far unknown. The simple composition REXMoO 4 (RE=rare-earth element, X=halogen) is realized for X=F almost throughout the complete lanthanide series as well as for yttrium. While ytterbium and lutetium do not form any fluoride derivative, for lanthanum, only a fluoride-deprived compound with the formula La 3 FMo 4 O 16 is realized. Moreover, molybdenum-rich compounds with the formula REXMo 2 O 7 are also known for yttrium and the smaller lanthanoids. For X=Cl the composition REClMoO 4 is known for yttrium and the whole lanthanide series, although, four different structure types were identified. Almost the same holds for X=Br, however, only two different structure types are realized in this class of compounds. In the case of halide derivatives of rare-earth metal(III) oxidotungstates(VI) the composition REXWO 4 is found for chlorides and bromides only, so far. Due to the similar size of Mo 6+ and W 6+ cations, the structures found for the tungstates are basically the same as for the molybdates. With the larger lanthanides, the representatives for both chloride and bromide derivates exhibit similar structural motifs as seen in the molybdates, however, the crystal structure cannot be determined reliably. In case of the smaller lanthanoids, the chloride derivatives are isostructural with the respective molybdates, although the existence ranges differ slightly. The same is true for rare-earth metal(III) bromide oxidotungstates(VI).

  12. COGEMA Experience in Uranous Nitrate Preparation

    International Nuclear Information System (INIS)

    Tison, E.; Bretault, Ph.

    2006-01-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N 2 H 5 NO 3 ) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La Hague. The

  13. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu

    2006-01-01

    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  14. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Science.gov (United States)

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  15. Hydration of the lanthanide ions 152Eu(III), 153Gd(III) and 170Tm(III) in aqueous solutions at 298 K and similarity with the transplutonium element ions 254Es(III), 244Cm(III), 241Am(III), 249Cf(III) and 249Bk(III)

    International Nuclear Information System (INIS)

    Ouerfelli, N.; Latrous, H.; Ammar, M.; Das, D.; Oliver, J.

    2013-01-01

    The open-end capillary method is used for the determination of ionic self-diffusion coefficients (D) for trivalent radiotracer, lanthanide and actinide ions are reported in concentrated aqueous solutions of supporting electrolytes of Gd(NO 3 ) 3 -HNO 3 or Nd(ClO 3 ) 4 -HClO 4 up to 1.5 mol.L -1 at 298.15 K and pH 2.50. The data obtained in large range of concentrations, allow deriving the limiting value D°, the validity of the Onsager limiting law and a more extended law. This study contributes to demonstrate similarities in transport and structure properties between 4f and 5f trivalent ions explained by a similar electronic configuration, ionic radius and hydration number. (author)

  16. Interaction between diethylenetrithiodiacetic acid (H2T) derivatives and trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Matos, J.E.X.; Melo, S.M.; Fontenele, E.M.G.

    1984-01-01

    Thiopolycarboxylic acids are a class of ligands which contain, besides carboxi-groups, sulfur atoms showing a distinct affinity towards certain solft metals. Stability constant measurements were made for metaldithiocarboxylic acid systems and performed by several authors. Some soLid complexes with 1:1 and 1:2 metal-ligand ratios were isolated and their structures determined by spectroscopic and magnetic methods. Solid complexes between some lanthanides and ethylenedithiodiacetic acid were prepared and characterized by Holanda and Giesbrecht. Investigations of the crystal structure of Zn (II), Cd (II), and Nd (III) complexes with thiodiacetic acid showed, besides coordination to carboxylic groups, the ligand being linked to the metal through the sulfur atom. (Author) [pt

  17. Complexes of Y, La, and lanthanides with m-aminobenzoic acid

    International Nuclear Information System (INIS)

    Rzaczynska, Z.; Brzyska, W.

    1989-01-01

    m-Aminobenzoates of Y, La and lanthanides prepared in the reaction of the hydroxides of metal with m-aminobenzoic acid in solution have the general formula Ln(m-C 6 H 4 NH 2 COO) 3 .nH 2 O where n = 4 for Ho, Tm, n = 5 for Y, Sm, Dy, Er, Lu, and n = 6 for La, Nd, Eu, Gd, Tb, Yb. The water molecules in the hydrated compounds are in the outer coordination sphere. On heating in air at 350-410K dehydration occurs and anhydrous m-aminobenzoates Ln(m-C 6 H 4 NH 2 COO) 3 are formed. On the basis of the IR spectra it was found that the metal in hydrated m-aminobenzoate of lanthanides is simultaneously coordinated through amino- and carboxyl groups whereas in anhydrous m-aminobenzoates of lanthanides only trough the bidentate carboxyl group. From X-ray analysis it was stated that the hydrated m-aminobenzoates of lanthanides are isostructural in the whole range Y, La-Lu. (Author)

  18. Coupling of the 4f Electrons in Lanthanide Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kazhdan, Daniel [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    (C5Me5)2LnOTf where Ln = La, Ce, Sm, Gd, and Yb have been synthesized and these derivatives are good starting materials for the synthesis of (C5Me5)2LnX derivatives. (C5Me5)2Ln(2,2'-bipyridine), where Ln = La, Ce, Sm, and Gd, along with several methylated bipyridine analogues have been synthesized and their magnetic moments have been measured as a function of temperature. In lanthanum, cerium, and gadolinium complexes the bipyridine ligand ligand is unequivocally the radical anion, and the observed magnetic moment is the result of intramolecular coupling of the unpaired electron on the lanthanide fragment with the unpaired electron on the bipyridine along with the intermolecular coupling between radicals. Comparison with the magnetic moments of the known compounds (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine) leads to an understanding of the role of the SmII/SmIII and YbII/YbIII couple in the magnetic properties of (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine). In addition, crystal structures of (C5Me5)2Ln(2,2'-bipyridine) and [(C5Me5)2Ln(2,2'-bipyridine)][BPh4](Ln= Ce and Gd), where the lanthanide is unequivocally in the +3 oxidation state, give the crystallographic characteristics of bipyridine as an anion and as a neutral ligand in the same coordination environment, respectively. Substituted bipyridine ligands coordinated to (C5Me5)2Yb are studied to further understand how the magnetic coupling in (C5Me5)2Yb(2,2'-bipyridine) changes with substitutions. In the cases of (C5Me5)2Yb(5,5&apos

  19. Solvent extraction of some metal ions by dithiocarbamate types of chemically modified lipophilic chitosan

    International Nuclear Information System (INIS)

    Inoue, K.; Nakagawa, H.; Naganawa, H.; Tachimori, S.

    2001-01-01

    Chitosan is a basic polysaccharide containing primary amino groups with high reactivity. we prepared O,O'-decanoyl chitosan and dithiocarbamate O,O'-decanoyl chitosan; the former was soluble in chloroform and toluene, while latter was soluble not only these diluents but also in some aliphatic diluents such as hexane and kerosene which are employed in commercial scale solvent extraction. Solvent extraction by dithiocarbamate O,O'-decanoyl chitosan in kerosene was tested for some base metal ions from sulfuric acid solution. The sequence of selectivity for these metal ions was found to be as follows: Cu(II) >> Ni(II) > Cd(II) ∼ Fe(III) > Co(II) ∼ Zn(II). Copper(II) was quantitatively extracted at pH > 1 and quantitatively stripped with 2 M sulfuric acid solution. Solvent extraction of silver(I) and gold(III) from hydrochloric acid as well as lanthanides and americium(III) from nitrate solution were also tested. Americium was selectively extracted over trivalent lanthanides, suggesting a high possibility for the final treatment of high level radioactive wastes. (authors)

  20. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng; Han, Yu; Lim, Chinseong; Lu, Yunhao; Wang, Juan; Xu, Jun; Chen, Hongyu; Zhang, Chun; Hong, Minghui; Liu, Xiaogang

    2010-01-01

    or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal

  1. A spectroscopic screening of the chemical speciation of europium(III) in gastrointestinal tract. The intestine

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Claudia; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    To evaluate the health risks of lanthanides (Ln) and radiotoxic actinides (An), investigations into the chemical reactions of these metals in the human gastrointestinal tract are necessary. In order to identify the dominant binding partners (i.e. counter ions and/or ligands) of An/Ln in the gastrointestinal tract, a spectroscopic screening was performed by Time-Resolved Laser-induced Fluorescence Spectroscopy (TRLFS) using artificial digestive juices containing Eu(III), a representative of Ln(III) and An(III). In the intestine, Eu(III) show a strong complexation especially with organic substances of the pancreatic and bile juice like the protein mucin.

  2. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  3. Study and modeling of lanthanide(3)-L and americium(3)-L (With L = NTA, EDTA and DTPA) in high ionic strength aqueous solutions

    International Nuclear Information System (INIS)

    Rocchiccioli, F.

    2000-01-01

    The dissociation constants of NTA, EDTA, DTPA in NaCl, NaClO 4 , LiCl and LiClO 4 aqueous solutions of various ionic strengths have been gathered from the literature and from the Critical Surveys of Stability Constants. These values have been completed by a series of pKa values obtained in the same salted solution at higher ionic strengths by potentiometry involving a combined glass electrode at 25 deg C. The dependencies of the pKas versus the ionic strength have been investigated by using the Specific Interaction Theory (SIT), the parabolic model and the Pitzer model. The stability constants of complexes involving lanthanides (III), such as Nd 3+ , Eu 3+ and Lu 3+ , and americium (III), with the ligands previously mentioned in NaCl, NaClO 4 , LiCl and LiClO 4 aqueous solutions of high ionic strengths have been determined. The methods used for the determination of the stability constants for the lanthanide complexes are various: direct measurements by potentiometry when possible, UV-visible absorption spectroscopy involving Arsenazo (III) as a competitor ligand. For the actinide complexes, solvent extraction experiments have been performed. The different systems, along with the dissociation constants of several complexes in the same aqueous media, have been successfully modeled by the SIT, the parabolic method and the Pitzer method. (author)

  4. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  5. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    International Nuclear Information System (INIS)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A.

    2014-01-01

    The lanthanides(III) complexes [Ln(bza) 3 (H 2 O) n ]·mH 2 O, [Ln(ppa) 3 (H 2 O) n ]·mH 2 O and [Ln(abse) 3 (H 2 O) n ]·mH 2 O where Ln=Eu 3+ , Gd 3+ or Tb 3+ were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ∼2000 cm −1 between them. The [Eu(abse) 3 (H 2 O)] complex shows the higher degree of covalence which was verified by the centroid of 5 D 0 → 7 F 0 transition (17,248 cm −1 ). On the other hand the [Ln(abse) 3 (H 2 O) n ]·mH 2 O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa) 3 (H 2 O) n ]·mH 2 O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa) 3 ] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza) 3 (H 2 O) 2 ]·3/2(H 2 O) and [Eu(abse) 3 (H 2 O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by changing the triplet state energy in the range of ∼2000 cm −1 . The changes in the energy transfer rates from triplet state to europium(III) levels are not

  6. Citrate based ''TALSPEAK'' lanthanide-actinide separation process

    International Nuclear Information System (INIS)

    Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ''geological'' periods of time. The costs of building, maintaining, and operating a ''geological TRU repository'' can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ''TALSPEAK'' process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced

  7. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  8. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  9. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  10. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  11. Adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution

    International Nuclear Information System (INIS)

    Tatsuya Suzuki

    2013-01-01

    The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution. (author)

  12. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Lippuner, Jonas; Roberts, Luke F., E-mail: jlippuner@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, MC 350-17, 1200 E California Boulevard, Pasadena CA 91125 (United States)

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  13. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    International Nuclear Information System (INIS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-01-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y e , initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y e ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y e lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y e , but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y e , s, and τ to estimate whether or not the ejecta is lanthanide-rich

  14. Synthesis and characterization of lanthanide picrate complexes with 4-picoline-N-oxide (4-pic N O)

    International Nuclear Information System (INIS)

    Silva, E.M. da.

    1991-01-01

    The lanthanide picrate complexes with 4-picoline-N-oxide were obtained from ethanolic solutions of the hydrated lanthanide picrate and the ligand. The lanthanide content was determined by complexometric titration with EDTA. Carbon, Nitrogen and Hydrogen were determined by microanalytical procedures. Chemical analysis of the lanthanide picrate complexes are also presented. (author)

  15. Comparative evaluation of DHDECMP [dihexyl-N,N-diethylcarbamoyl-methylphosphonate] and CMPO [octylphenyl-N,N,-diisobutylcarbamoylmethylphosphine oxide] as extractants for recovering actinides from nitric acid waste streams

    International Nuclear Information System (INIS)

    Marsh, S.F.; Yarbro, S.L.

    1988-02-01

    Certain neutral, bifunctional organophosphorous compounds are of special value to the nuclear industry. Dihexyl-N,N-diethylcarbomoylmethylphosphonate (DHDECMP) and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) are highly selective extractants for removing actinide and lanthanide elements from nitric acid. We obtained these two extractants from newly available commercial sources and evaluated them for recovering Am(III), Pu(IV), and U(VI) from nitric acid waste streams of plutonium processing operations. Variables included the extractant (DHSECMP or CMPO), extractant/tributylphosphate ratio, diluent, nitrate concentration, nitrate salt/nitric acid ratio, fluoride concentration, and contact time. Based on these experimental data, we selected DHDECMP as the perferred extractant for this application. 18 refs., 30 figs

  16. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate

    International Nuclear Information System (INIS)

    Finck, N.

    2006-10-01

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  17. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  18. Solvent extraction of anionic chelate complexes of lanthanum(III), europium(III), lutetium(III), scandium(III), and indium(III) with 2-thenoyltrifluoroacetone as ion-pairs with tetrabutylammonium ions

    International Nuclear Information System (INIS)

    Noro, Junji; Sekine, Tatsuya.

    1992-01-01

    The solvent extraction of lanthanum(III), europium(III), lutetium(III), scandium(III), and indium(III) in 0.1 mol dm -3 sodium nitrate solutions with 2-thenoyltrifluoroacetone (Htta) in the absence and presence of tetrabutylammonium ions (tba + ) into carbon tetrachloride was measured. The extraction of lanthanum(III), europium(III), and lutetium(III) was greatly enhanced by the addition of tba + ; this could be explained in terms of the extraction of a ternary complex, M(tta) 4 - tba + . However, the extractions of scandium(III) and indium(III) were nearly the same when tba + was added. The data were treated on the basis of the formation equilibrium of the ternary complex from the neutral chelate, M(tta) 3 , with the extracted ion-pairs of the reagents, tta - tba + , in the organic phase. It was concluded that the degree of association of M(tta) 3 with the ion-pair, tta - tba + , is greater in the order La(tta) 3 ≅ Eu(tta) 3 > Lu(tta) 3 , or that the stability of the ternary complex in the organic phase is higher in the order La(tta) 4 - tba + ≅ Eu(tta) 4 - tba + > Lu(tta) 4 - tba + . This is similar to those of adduct metal chelates of Htta with tributylphosphate (TBP) in synergistic extraction systems. (author)

  19. Thermodynamic and structural description of europium complexation in 1-octanol - H{sub 2}O solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vu, T.H.; Charbonnel, M.C.; Boubals, N.; Couston, L. [CEA Marcoule, DEN/DRCP/SCPS/LCAM, BP 17171, 30207 Bagnols-sur-Ceze (France); Arnaud, F. [Laboratoire de Chimie Physique, IPHC, 25 rue Becquerel, 67087 Strasbourg (France)

    2008-07-01

    Polydentate N-bearing ligands such as bis-triazinyl-pyridines (BTPs) are interesting extractants for actinide(III)/lanthanide(III) separation. A description of europium complexation in 1-octanol solutions was undertaken to enhance the knowledge of the extraction mechanisms. The first solvation shell for europium(III) nitrate, chloride, and perchlorate with different amounts of water was determined by Time-Resolved Laser-Induced Fluorescence (TRLIF) spectroscopy. Europium nitrate complexation by iPr-BTP was then studied by TRLIF and micro-calorimetry; similar stability constants related to the formation of Eu(BTP){sub 2}{sup 3+} and Eu(BTP){sub 3}{sup 3+} were obtained by both techniques (log({beta}{sub 2}) = 9.0 {+-} 0.3 and log({beta}{sub 3}) = 13.8 {+-} 0.2). The presence of water in the octanol diluent has an influence on solvation of europium and also on the [Eu(BTP){sub 2}{sup 3+}] / [Eu(BTP){sub 3}{sup 3+}] ratio. (authors)

  20. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  1. Tetraammine(carbonato-κ2O,O′cobalt(III nitrate: a powder X-ray diffraction study

    Directory of Open Access Journals (Sweden)

    Armel Le Bail

    2013-07-01

    Full Text Available Practical chemistry courses at universities very frequently propose the synthesis and characterization of [Co(CO3(NH34]NO3, but this goal is never achieved since students only obtain the hemihydrated form. The anhydrous form can be prepared, however, and its structure is presented here. Similar to the hemihydrate form, the anhydrous phase contains the CoIII ion in an octahedral O2N4 coordination by a chelating carbonate group and four ammine ligands. The structure reveals an intricate array of N—H...O hydrogen bonds involving both the chelating and the non-chelating O atoms of the carbonate ligand as hydrogen-bond acceptors of the amine H atoms, which are also involved in hydrogen-bonding interactions with the nitrate O atoms. The structure of the anhydrous form is close to that of the hemihydrate phase, suggesting a probable topotactic reaction with relatively small rotations and translations of the [Co(CO3(NH34]+ and NO3− groups during the dehydration process, which produces an unusual volume increase of 4.3%.

  2. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  3. Lanthanides in molecular magnetism: old tools in a new field.

    Science.gov (United States)

    Sorace, Lorenzo; Benelli, Cristiano; Gatteschi, Dante

    2011-06-01

    In this tutorial review we discuss some basic aspects concerning the magnetic properties of rare-earth ions, which are currently the subject of a renovated interest in the field of molecular magnetism, after the discovery that slow relaxation of the magnetization at liquid nitrogen temperature can occur in mononuclear complexes of these ions. Focusing on Dy(III) derivatives a tutorial discussion is given of the relation of the crystal field parameters, which determine the anisotropy of these systems and consequently their interesting magnetic properties, with the geometry of the coordination sphere around the lanthanide centre and with the pattern of f orbitals. The problem of systems of low point symmetry is also addressed by showing how detailed single crystal investigation, coupled to more sophisticated calculation procedures, is an absolute necessity to obtain meaningful structure-property relationships in these systems.

  4. Complexes of macrocyclic dibenzo-18-crown-6 polyether with nitrates of some rare earths

    International Nuclear Information System (INIS)

    Gren', A.I.; Zakhariya, N.F.; Vityuk, N.V.; Kalishevich, V.S.

    1984-01-01

    The purpose of the investigation is to obtain and study the structure of complexes of macrocyclic polyether dibenzo-18-crown-6(D-18-C-6) with REE nitrates (Ln, Pr, Nd, Er). Synthesis has been realized by mixing the solutions 2 mol Ln(NO 3 ) 3 and 2 mmol D-18-C-6 into 30-50 ml acetonitrile and boiling during 40-60 minutes. Study on the prepared compounds by means of UV- and IR-spectroscopy proved formation of D-18-C-6 complexes with lanthanide nitrates-Ln(NO 3 ) 3 D-18-C-6. Based on studying IR-spectra a conclusion is made on deformation of D-18-C-6 structure under complexing. Distortion of the ring structure of macrocyclic polyether manifests itself in increase of CH 2 -O-CH 2 bond lengths with simultaneous reduction of four other types of bonds C 6 H 5 -O-CH 2 . Synthesized complexes are stated to have different solubility in acetonitrile which increases in the La 3 ) 3 xD-18-C-6 is noted

  5. Thermodynamical properties of liquid lanthanides-A variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Patel, H. P. [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India); Sonvane, Y. A. [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India)

    2015-06-24

    Thermodynamical properties like Entropy (S), Internal energy (E) and Helmholtz free energy (F) of liquid lanthanides using a variation principle based on the Gibbs-Bogoliubuv (GB) inequality with Percus Yevick hard sphere reference system have been reported in the present investigation. To describe electron-ion interaction we have used our newly constructed parameter free model potential along with Sarkar et al. local field correction function. Lastly, we conclude that our newly constructed model potential is capable to explain the thermodynamical properties of liquid lanthanides.

  6. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Lanthanide complexes that respond to changes in cyanide concentration in water

    International Nuclear Information System (INIS)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen; Kenwright, Alan M.

    2017-01-01

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse ...

    Indian Academy of Sciences (India)

    found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which ... Nitric oxide and its derivatives nitrite and nitrate ion ... oxide.2 Nitrate is produced in heme proteins from oxi- ... and nitrogen assimilation.4 Iron nitrate(III) porphyrins ... one-pot method.15 ... of the compound was determined based on the lack.

  9. Effective core potential methods for the lanthanides

    International Nuclear Information System (INIS)

    Cundari, T.R.; Stevens, W.J.

    1993-01-01

    In this paper a complete set of effective core potentials (ECPs) and valence basis sets for the lanthanides (Ce to Lu) are derived. These ECPs are consistent not only within the lanthanide series, but also with the third-row transition metals which bracket them. A 46-electron core was chosen to provide the best compromise between computational savings and chemical accuracy. Thus, the 5s and 5p are included as ''outer'' core while all lower energy atomic orbitals (AOs) are replaced with the ECP. Generator states were chosen from the most chemically relevant +3 and +2 oxidation states. The results of atomic calculations indicate that the greatest error vs highly accurate numerical potential/large, even-tempered basis set calculations results from replacement of the large, even-tempered basis sets with more compact representations. However, the agreement among atomic calculations remains excellent with both basis set sizes, for a variety of spin and oxidation states, with a significant savings in time for the optimized valence basis set. It is expected that the compact representation of the ECPs and valence basis sets will eventually encourage their use by computational chemists to further explore the bonding and reactivity of lanthanide complexes

  10. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  11. Molecular and supramolecular speciations of solvent extraction systems based on malonamide and/or dialkyl-phosphoric acids for An(III)/Ln(III); Speciations moleculaire et supramoleculaire de systemes d'extraction liquide-liquide a base de malonamide et/ou d'acides dialkylphosphoriques pour la separation An(III)/Ln(III)

    Energy Technology Data Exchange (ETDEWEB)

    Gannaz, B

    2006-06-15

    The solvent extraction system used in the DIAMEX-SANEX process, developed for the actinide(III)/lanthanide(III) separation, is based on the use of mixtures of the malonamide DMDOHEMA and a dialkyl-phosphoric acid (HDEHP or HDHP), in hydrogenated tetra-propylene. The complexity of these systems urges on a novel approach to improve the conventional methods (thermodynamics, solvent extraction) which hardly explain the macroscopic behaviors observed (3. phase, over-stoichiometry). This approach combines studies on both supramolecular (VPO, SANS, SAXS) and molecular (liquid-liquid extraction, ESI-MS, IR, EXAFS) speciations of single extractant systems (DMDOHEMA or HDHP in in n-dodecane) and their mixture. In spite of safety constraints due to the handling of radio-material, they were used in the studies as much as possible, like for SAXS measurements on americium-containing samples, a worldwide first-time. In each of the investigated systems, actinides(III) and lanthanides(III) are extracted to the organic phase in polar cores of reversed micelles, the inner and outer-sphere compositions of which are proposed. Thus, the 4f and 5f cations are extracted by reversed micelles such as [(DMDOHEMA){sub 2}M(NO{sub 3}){sub 3}]{sub inn} (DMDOHEMA){sub x}(HNO{sub 3}){sub z}(H{sub 2}O){sub w}]{sub out} and M(DHP){sub 3}(HDHP){sub y-3}(H{sub 2}O){sub w} with y = 3 to 6, for the single extractant systems. In the case of the two extractants system, the less concentrated one acts like a co-surfactant regarding the mixed aggregate formation [(DMDOHEMA){sub 2}M(NO{sub 3}){sub 3-v}(DHP){sub v}]{sub inn} [(DMDOFIEMA){sub x}(HDHP){sub y}(HNO{sub 3})z(H{sub 2}O){sub w}]{sub out}. (author)

  12. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    Science.gov (United States)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  13. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  14. Electrospray mass spectrometry for actinides and lanthanide speciation

    International Nuclear Information System (INIS)

    Moulin, C.; Amekraz, B.; Colette, S.; Doizi, D.; Jacopin, C.; Lamouroux, C.; Plancque, G.

    2006-01-01

    Electrospray mass spectrometry (ES-MS) is a new speciation technique that has the great interest to be able to probe the element, the ligand and the complex in order to reach the speciation. This paper will focus on the use of ES-MS for the speciation of actinides/lanthanides on several systems of interest in various fields such as the interaction between DTPA (decorporant) and europium, HEBP and uranium, BTP (new extracting agent) and lanthanides with comparison with known chemistry as well as whenever possible with other speciation techniques

  15. Production of thorium nitrate from uranothorianite ores

    International Nuclear Information System (INIS)

    Brodsky, M.; Sartorius, R.; Sousseuer, Y.

    1959-01-01

    The separation of thorium and uranium from uranothorianite ores, either by precipitation or solvent-extraction methods, are discussed, and an industrial process for the manufacture of thorium nitrate is described. Reprint of a paper published in 'Progress in Nuclear Energy' Series III, Vol. 2 - Process Chemistry, 1959, p. 68-76 [fr

  16. Aqueous complexes of lanthanides(III) and actinides(III) with the carbonate and sulphate ions. Thermodynamic study by time-resolved laser-induced fluorescence spectroscopy and electro-spray-ionisation mass spectrometry; Complexes aqueux de lanthanides (3) et actinides (3) avec les ions carbonate et sulfate. Etude thermodynamique par spectrofluorimetrie laser resolue en temps et spectrometrie de masse a ionisation electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Vercouter, Th

    2005-03-15

    The prediction of the environmental impact of a possible geological disposal of radioactive wastes is supported by the thermodynamic modelling of the radionuclides behaviour in the groundwater. In this framework, the analogy between lanthanides and actinides(III) is confirmed by a critical analysis of the literature and the comparison with experimental results obtained here. The limiting complex, Eu(CO{sub 3}){sub 3}{sup 3-}, is identified by solubility measurements in Na{sub 2}CO{sub 3} solutions. Then the formation constants of the complexes Eu(CO{sub 3}){sub i}{sup 3-2i} (i=1-3) and Eu(SO{sub 4}){sub i}{sup 3-2i} (i=1-2) are measured by TRLFS. The formation of aqueous LaSO{sub 4}{sup +} is studied by ESI-MS and is in good agreement with the expected speciation. The enthalpy and entropy of the reaction Cm(CO{sub 3}){sub 2}{sup -} + CO{sub 3}{sup 2-} {r_reversible} Cm(CO{sub 3}){sub 3}{sup 3-} are deduced from TRLFS measurements of the equilibrium constant between 10 and 70 C. The ionic strength effect is calculated using the SIT formula. (author)

  17. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  18. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    Science.gov (United States)

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  19. Lanthanide and actinide separation studies using liquid chromatography

    International Nuclear Information System (INIS)

    Datta, Arpita; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Gradient elution procedure for isolation of individual lanthanides was studied extensively at our laboratory using monolith support. A large number of gradients were developed by varying the concentrations of CSA, α-HIBA, mobile phase pH and mobile phase flow rate. In a typical gradient run, the concentration of CSA and mobile phase flow rate were kept constant and only α-HIBA concentration was varied. Based on these studies, a binary gradient elution method was developed for the rapid separation of lanthanides, from La to Lu in about 2.8 min, with a mobile phase CSA, α-HIBA and pH being 0.03M, 0.05 to 0.15M and 3.4-3.8 respectively. The direct injection of dissolver solution from FBTR spent fuel into HPLC was investigated and the results are shown. The lanthanides present in dissolver solution were mutually separated as well as resolved from uranium and plutonium under dynamic ion exchange conditions using the monolithic column. The concentration of La, Ce, Pr, Nd and Sm were determined in the dissolver solution using a calibration plot

  20. AND Dy(III)

    African Journals Online (AJOL)

    userpc

    elemental analysis, molar conductivity, thermal analysis and IR spectroscopy.The elemental ... and lanthanide metal ions in a various oxidation state through nitrogen ..... Z.Q., (2007); “Synthesis of alkaline earth and Lanthanide cryptates with.

  1. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  2. Coordination symmetry determination of some lanthanide complexes by x-ray diffraction

    International Nuclear Information System (INIS)

    Oliveira Paiva Santos, C. de.

    1983-01-01

    The x-ray determination of the crystal and molecular structures of three lanthanide complexes is described. The work is a contribution to the study of the coordination chemistry of lanthanide ions with organic ligands and in particular, it aims to compare the observed point symmetry of the ion environment with spectroscopic predictions. (author)

  3. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  4. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several

  5. Novel open-framework architectures in lanthanide phosphonates

    Science.gov (United States)

    Groves, John A.; Stephens, Nicholas F.; Wright, Paul A.; Lightfoot, Philip

    2006-03-01

    Two novel three-dimensional lanthanide coordination polymers have been prepared hydrothermally with the phosphonic acid N,N-piperazine bis(methylenephosphonic acid), H 2O 3PCH 2N(C 2H 4) 2NCH 2PO 3H 2 ( LH 4). The structures of Gd 2( LH 2) 3ṡ3H 2O (I) and Nd 2( LH 2) 3ṡ9H 2O (II) have been characterised by single crystal X-ray techniques. One-dimensional 'lanthanide-phosphate' chains are a key feature in both structures, although there are major structural differences between the chains, with (I) displaying octahedral GdO 6 coordination and (II) showing eight-coordinate NdO 8 polyhedra. In each case, three-dimensional connectivity is completed by coordination of the phosphonate group resulting in open framework structures encapsulating loosely bound water molecules. Isostructural Y 3+ and Yb 3+ analogues of (I) have been prepared, suggesting that cation size is a key factor in controlling the differing reaction products. In the case of Y 2( LH 2) 3ṡ5H 2O, isostructural to (I), it is shown that the extra-framework water molecules may be removed reversibly without framework collapse. Structural relationships to other known lanthanide phosphonates are discussed.

  6. Detection of Sugars via Chirality Induced in Europium(III) Compounds

    Czech Academy of Sciences Publication Activity Database

    Wu, Tao; Průša, Jiří; Kessler, Jiří; Dračínský, Martin; Valenta, J.; Bouř, Petr

    2016-01-01

    Roč. 88, č. 17 (2016), s. 8878-8885 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR(CZ) GJ16-08764Y; GA ČR GA15-11223S; GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : Raman optical activity * molecular dynamics simulations * D-3 lanthanide(III) complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.320, year: 2016

  7. Determination of the thermodynamic properties of complexation and extraction by micro-calorimetry; Determination de grandeurs thermodynamiques de complexation et d'extraction d'ions lanthanide(3) par microcalorimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnel, M.Ch.; Flandin, J.L. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    medium must be further characterized before the calorimetry data can be fully interpreted. Additional studies were performed using specific methods (time-resolved laser-induced fluorescence spectrometry) to confirm the existence of one or more complexes and to more accurately determine the relevant complexation constant(s). The overall heat values measured were compared using a McMillan-Mayer approach; the thermodynamic excess functions (reflecting the deviation from ideality) were expressed as a sum of pair and triplet interactions among the solutes in solution: H{sup E} = h{sub ii}c{sub i}{sup 2} + h{sub jj}c{sub j}{sup 2} + 2h{sub ij}c{sub i}c{sub j} + h{sub iii}c{sub i}{sup 3} +... where hii and hiii are the interaction parameters for the i-i pairs or i-i-i triplets, and c{sub i} and c{sub j} are the concentrations of solutes i and j. Unlike the measured heat values, the interaction parameters are intensive, i.e. independent of the experimental conditions. After evaluating the heat of dilution of TEMA in water, the theory was applied to the Nd(Ill)-TEMA complexation reaction. The linearity of the Q{sub r}/V[Nd]{sub tot} versus [TEMA] curve is consistent with the expression of the excess enthalpy H{sup E} h{sub Nd-TEMA} [TEMA][Nd], confirming the existence of an interaction between the TEMA ligand and neodymium in the aqueous phase. The results obtained were analyzed in this way, and the h{sub Nd-TEMA} interaction parameters compared. A study of various media revealed the following variations h{sub Nd-TEMA}(neutral NO{sub 3}{sup -}) > h{sub Nd-TEMA}(HNO{sub 3}) > h{sub Nd-TEMA}(H{sub 2}O) indicating a weaker interaction between Nd(111) and TEMA in the presence of nitrate ions. The variation over the lanthanide series was also investigated in water: the h{sub Nd-TEMA} parameter was characterized by a monotonic increase for the light lanthanides, followed by stabilization. Tests were also conducted to measure the enthalpy of Nd(III) extraction by DMDBTDMA, a lipophilic

  8. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows

    NARCIS (Netherlands)

    Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A.

    2018-01-01

    Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the

  9. Tetra-ammine-(carbonato-κ(2) O,O')cobalt(III) nitrate: a powder X-ray diffraction study.

    Science.gov (United States)

    Le Bail, Armel

    2013-01-01

    Practical chemistry courses at universities very frequently propose the synthesis and characterization of [Co(CO3)(NH3)4]NO3, but this goal is never achieved since students only obtain the hemihydrated form. The anhydrous form can be prepared, however, and its structure is presented here. Similar to the hemihydrate form, the anhydrous phase contains the Co(III) ion in an octahedral O2N4 coordination by a chelating carbonate group and four ammine ligands. The structure reveals an intricate array of N-H⋯O hydrogen bonds involving both the chelating and the non-chelating O atoms of the carbonate ligand as hydrogen-bond acceptors of the amine H atoms, which are also involved in hydrogen-bonding inter-actions with the nitrate O atoms. The structure of the anhydrous form is close to that of the hemihydrate phase, suggesting a probable topotactic reaction with relatively small rotations and translations of the [Co(CO3)(NH3)4](+) and NO3 (-) groups during the dehydration process, which produces an unusual volume increase of 4.3%.

  10. Determination of stability constants of lanthanide complexes with tetracycline

    International Nuclear Information System (INIS)

    Saiki, Mitiko

    1975-01-01

    The stability constants of complexes compounds formed with tetracycline and lanthanides elements were determined for all lanthanides except promethium. The experimental procedure used was solvent extraction of the lanthanides labelled with their radioactive isotopes. It was shown that the formed complexes are mononuclear and that no hydroxo complexes or negatively charged complexes are formed in the experimental conditions of this work. Four methods of calculation were used for all complexes studied: the method of the average number of ligands, the method of limiting value, the method of two parameters and the method of weighted least squares. A comparison was made of the graphical methods with the method of least squares, showing the convenience of preceding least squares calculation by the graphical methods, in order to verify eventual mistakes of numerical data. It was shown the advantage of using radioisotopes of the elements for such a study, specially if the solvent extraction technique is used to-get the experimental data. (author)

  11. Study on the fabrication and photoluminescence characteristics of LiPO3 glass scintillators with the lanthanides activators

    International Nuclear Information System (INIS)

    Jeong, S. Z.; Lee, J. M.; Hwang, J. H.; Choi, S. H.

    2001-01-01

    In this syudy, LiPO 3 glass scintillators were fabricated, and lanthanides (except Pm) oxides or chlorides were used as an activator. For the fabrication of LiPO 3 glasses, optimum heating conditions were obtained, and the photoluminescence of the glasses was measured by the monochromator. For the best transparency of the glass samples, optimum heating temperature and time is 950 .deg. C and 90 min, respectively. As the result of photoluminescence analysis, it was impossible to apply Pr, Nd, Gd, Ho, Er, Tm, Yb, and Lu to activator. Because emission spectrum of samples with them was equal to that of sample without activator. In case of samples with Europium, the peak of emission spectrum of Eu(II) and Eu(III) is 420 nm and 620 nm, separately. And Samples with Ce(III) are about 380 nm, and Tb(III) are about 550 nm. On the fabrication of LiPO 3 glass samples, PL intensity was increased by adding sugar as reductant, and using Ar reduction atmosphere. And the optimum reduction conditions were differed as to the kinds of activators. Samples with Eu(II) and Tb(III) have the best PL intensity in the Ar reduction atmosphere, and sample with Ce(III) have the best intensity by added sugar

  12. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  13. Detection of Fluorescence for Lanthanides in LiCl-KCl Molten Salt Medium

    International Nuclear Information System (INIS)

    Im, Hee Jung; Kim, Tack Jin; Song, Kyu Seok; Jee, Kwang Yong

    2007-01-01

    In the electrorefining step of the pyrochemical process, actinide ions dissolved in the LiCl-KCl eutectic salt are recovered as pure actinide metals at a cathode for a re-use as a nuclear fuel from the aspect of its nonproliferation of the nuclear fuel cycles. The lanthanide species dissolved in the LiCl-KCl eutectic salt play an important role in an effective metal purification during the electrorefining step, so it is necessary to understand the chemical and physical behaviors of lanthanides in molten salt. The in situ spectroscopic measurement system and studies according to temperature changes are essential for better understandable information. To our knowledge, the absorption studies of lanthanides at high temperatures have been reported before, but the fluorescence studies of those at high temperature are not reported yet. We will discuss here the fluorescence behaviors of lanthanides in LiCl-KCl molten salt medium according to a changing temperature

  14. Far-infrared spectroscopy of lanthanide-based molecular magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Sabrina

    2015-05-13

    This thesis demonstrates the applicability of far-infrared spectroscopy for the study of the crystal-field splitting of lanthanides in single-molecular magnetic materials. The far-infrared studies of three different kinds of single-molecular-magnetic materials, a single-ion magnet, a single-chain magnet and an exchange-coupled cluster, yielded a deeper understanding of the crystal-field splitting of the lanthanides in these materials. In addition, our results offered the opportunity to gain a deeper insight into the relaxation processes of these materials.

  15. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    Science.gov (United States)

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  16. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations

    International Nuclear Information System (INIS)

    Aury, S.

    2002-12-01

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  17. cis-Aquabis(2,2′-bipyridine-κ2N,N′fluoridochromium(III bis(perchlorate dihydrate

    Directory of Open Access Journals (Sweden)

    Torben Birk

    2010-02-01

    Full Text Available The title mixed aqua–fluoride complex, [CrF(C10H8N22(H2O](ClO42·2H2O, has been synthesized by aquation of the corresponding difluoride complex using lanthanide(III ions as F− acceptors. The complex crystallizes with a CrIII ion at the center of a distorted octahedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water molecules, the coordinated F atom and the perchlorate anions

  18. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks

    Science.gov (United States)

    Liu, Kun-hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen

    2018-01-01

    Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report novel Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators orchestrating primary nitrate responses. A chemical switch with the engineered CPK10(M141G) kinase enables conditional analyses of cpk10,30,32 to define comprehensive nitrate-associated regulatory and developmental programs, circumventing embryo lethality. Nitrate-CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors (TFs) to specify reprogramming of gene sets for downstream TFs, transporters, N-assimilation, C/N-metabolism, redox, signalling, hormones, and proliferation. Conditional cpk10,30,32 and nlp7 similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture. PMID:28489820

  19. Investigation of the photoluminescence properties of composite optical resins containing high lanthanide content

    International Nuclear Information System (INIS)

    Wang Dongmei; Wang Fuxiang; Peng Weixian

    2012-01-01

    Novel composite optical resins with high lanthanide content have been synthesized through a free radical copolymerization of methacrylic acid (MA), styrene (St) and Eu(DBM) 3 ·H 2 O nanocrystals. We characterized the structure, the thermal properties, dimensions and photoluminescence properties of Eu(DBM) 3 ·H 2 O nanocrystals. Our results indicated that the diameters of the Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. These materials exhibited characteristic europium ion luminescence. The europium-bearing nanocrystals and were then incorporated into the copolymer systems of MA/St and luminescence functional optical resins with high lanthanide content (50 wt%) were obtained. The combination of these particles and optical resins is facile because the diameter of Eu(DBM) 3 ·H 2 O is decreased. These copolymer-based optical resins not only possess good transparency and mechanical performance, but also exhibit an intense narrow band emission of lanthanide complexes and longer fluorescence lifetimes under UV excitation at room temperature. - Highlights: ► Novel composite optical resins with high lanthanide content have been synthesized. ► The Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. ► Fluorescent resins with high lanthanide content (50 wt%) were obtained. ► Resins exhibit intense emission of lanthanide and longer fluorescence lifetimes. ► Variety properties of Eu(DBM) 3 ·H 2 O nanocrystals were characterized.

  20. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  1. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  2. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    Science.gov (United States)

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  3. Separation of interfering elements in the neutron activation analysis of lanthanides in geological materials

    International Nuclear Information System (INIS)

    Saiki, M.

    1988-01-01

    A chemical procedure has been developed for the separation of U, Th, Fe, Sc, Na,Ta, and Mo which interfere in the neutron activation analysis of the lanthanide elements in geological materials. This procedure is based on the solvent extraction of interferents using a solution of tetracycline in benzyl alcohol. The lanthanide elements remaining in the aqueous phase are coprecipitated on calcium oxalate or ferric hydroxide for irradiation and subsequent determination by gamma ray spectrometry. The chemical separation procedure was applied in the analysis of lanthanides in two international geological reference materials GSP-1 (USGS), GS-N (CRPG) and in the analysis of a volcanic rock from Pocos de Caldas, MG, Brazil. The sensitivities for all the lanthanides were determined. (author) [pt

  4. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates.

    Science.gov (United States)

    Shahbazi, Shayan; Stratz, S Adam; Auxier, John D; Hanson, Daniel E; Marsh, Matthew L; Hall, Howard L

    2017-01-01

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  5. Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics.

    Science.gov (United States)

    Mathis Ii, Stephan R; Golafale, Saki T; Bacsa, John; Steiner, Alexander; Ingram, Conrad W; Doty, F Patrick; Auden, Elizabeth; Hattar, Khalid

    2017-01-03

    Ultra large pore isostructural metal organic frameworks (MOFs) which exhibit both photoluminescence and scintillation properties, were synthesized from trans-4,4'-stilbenedicarboxylic acid (H 2 L) and trivalent lanthanide (Ln) metal salts under solvothermal conditions (Ln = Er 3+ (1) and Tm 3+ (2)). This new class of mesoporous materials is a non-interpenetrating network that features ultra-large diamond shaped pores of dimensions with approximate cross-sectional dimensions of 28 Å × 12 Å. The fully deprotonated ligand, L, is isolated and rigidified as it serves as the organic linker component of the MOF structure. Its low density unit cells possess asymmetric units with two crystallographically independent Ln 3+ ions in seven coordinate arrangements. A distinct feature of the structure is the bis-bidentate carboxylate groups. They serve as a ligand that coordinates two Ln(iii) ions while each L connects four Ln(iii) ions yielding an exceptionally large diamond-shaped rectangular network. The structure exhibits ligand-based photoluminescence with increased lifetime compared to free stilbene molecules on exposure to UV radiation, and also exhibits strong scintillation characteristics, comprising of both prompt and delayed radioluminescence features, on exposure to ionizing radiation.

  6. Intercalation of lanthanide trichlorides in graphite

    International Nuclear Information System (INIS)

    Stumpp, E.; Nietfeld, G.

    1979-01-01

    The reactions of the whole series of lanthanide trichlorides with graphite have been investigated. Intercalation compounds have been prepared with the chlorides of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y whereas LaCl 3 , CeCl 3 , PrCl 3 and NdCl 3 do not intercalate. The compounds were characterized by chemical and X-ray analysis. The amount of c-axis increase is consistent with the assumption that the chlorides are intercalated in form of a chloride layer sandwich resmbling the sheets in YCl 3 . The chlorides which do not intercalate crystallize in the UCl 3 structure having 3 D arrangements of ions. Obviously, these chlorides cannot form sheets between the carbon layers. The ability of AlCl 3 to volatilize lanthanide chlorides through complex formation in the gas phase can be used to increase the intercalation rate strikingly. (author)

  7. Giant exchange interaction in mixed lanthanides

    Science.gov (United States)

    Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F.

    2016-01-01

    Combining strong magnetic anisotropy with strong exchange interaction is a long standing goal in the design of quantum magnets. The lanthanide complexes, while exhibiting a very strong ionic anisotropy, usually display a weak exchange coupling, amounting to only a few wavenumbers. Recently, an isostructural series of mixed (Ln = Gd, Tb, Dy, Ho, Er) have been reported, in which the exchange splitting is estimated to reach hundreds wavenumbers. The microscopic mechanism governing the unusual exchange interaction in these compounds is revealed here by combining detailed modeling with density-functional theory and ab initio calculations. We find it to be basically kinetic and highly complex, involving non-negligible contributions up to seventh power of total angular momentum of each lanthanide site. The performed analysis also elucidates the origin of magnetization blocking in these compounds. Contrary to general expectations the latter is not always favored by strong exchange interaction. PMID:27087470

  8. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Science.gov (United States)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  9. Insight into the Extraction Mechanism of Americium(III) over Europium(III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study.

    Science.gov (United States)

    Kong, Xiang-He; Wu, Qun-Yan; Wang, Cong-Zhi; Lan, Jian-Hui; Chai, Zhi-Fang; Nie, Chang-Ming; Shi, Wei-Qun

    2018-05-10

    Separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) is one of the most important steps in spent nuclear fuel reprocessing. However, it is very difficult and challenging to separate them due to their similar chemical properties. Recently the pyridylpyrazole ligand (PypzH) has been identified to show good separation ability toward Am(III) over Eu(III). In this work, to explore the Am(III)/Eu(III) separation mechanism of PypzH at the molecular level, the geometrical structures, bonding nature, and thermodynamic behaviors of the Am(III) and Eu(III) complexes with PypzH ligands modified by alkyl chains (Cn-PypzH, n = 2, 4, 8) have been systematically investigated using scalar relativistic density functional theory (DFT). According to the NBO (natural bonding orbital) and QTAIM (quantum theory of atoms in molecules) analyses, the M-N bonds exhibit a certain degree of covalent character, and more covalency appears in Am-N bonds compared to Eu-N bonds. Thermodynamic analyses suggest that the 1:1 extraction reaction, [M(NO 3 )(H 2 O) 6 ] 2+ + PypzH + 2NO 3 - → M(PypzH)(NO 3 ) 3 (H 2 O) + 5H 2 O, is the most suitable for Am(III)/Eu(III) separation. Furthermore, the extraction ability and the Am(III)/Eu(III) selectivity of the ligand PypzH is indeed enhanced by adding alkyl-substituted chains in agreement with experimental observations. Besides this, the nitrogen atom of pyrazole ring plays a more significant role in the extraction reactions related to Am(III)/Eu(III) separation compared to that of pyridine ring. This work could identify the mechanism of the Am(III)/Eu(III) selectivity of the ligand PypzH and provide valuable theoretical information for achieving an efficient Am(III)/Eu(III) separation process for spent nuclear fuel reprocessing.

  10. Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence.

    Science.gov (United States)

    Deng, Zhao-Peng; Kang, Wei; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2010-07-21

    The first example of rare-earth organic frameworks with 3-aminopyrazine-2-carboxylic acid (Hapca) was synthesized under hydrothermal conditions and characterized by elemental analysis, IR, PL, TG, powder and single-crystal X-ray diffraction. These ten complexes exhibit three different structure types with decreasing lanthanide radii: [La(apca)(3)](n) () for type I, {[Ln(apca)(ox)(H(2)O)(2)].H(2)O}(n) (Ln = Pr (2), Nd (3), ox = oxalate) for type II, and [Ln(2)(apca)(4)(OH)(2)(H(2)O)(2)](n) (Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Y (10)) for type III. The structure of type I consists of 1D "snowflake" chains along a-axis, which are further interconnected by hydrogen bonds to produce a 3D sra net topology containing infinite (-C-O-La-)(n) rod-shaped SBU. Type II has 2D Ln-apca-ox 4(4)-net, in which a planar udud water tetramers (H(2)O)(4) are formed by coordinated and free water molecules. Type III also comprises of 2D 4(4)-layer network constructed from Ln-apca-OH. The structure diversity is mainly caused by the variation of coordinated ligand and lanthanide contraction effect. Remarkably, the oxalate in type II was in situ synthesized from 3-aminopyrazine-2-carboxylic acid through an oxidation-hydrolysis reaction. The luminescent investigations reveal that complex exhibits strong blue emission and complex exhibits characteristic luminescence of Eu(3+).

  11. Lanthanide and actinide complexation studies with tetradentate 'N' donor ligands

    International Nuclear Information System (INIS)

    Bhattacharyya, A.; Mohapatra, M.; Mohapatra, P.K.; Rawat, N.; Tomar, B.S.; Gadly, T.; Ghosh, S.K.; Manna, D.; Ghanty, T.K.

    2014-01-01

    Because of their similar charge and chemical behaviour separation of trivalent actinides and lanthanides is an important and challenging task in nuclear fuel cycle. Soft (S,N) donor ligands show selectivity towards the trivalent actinides over the lanthanides. Out of various 'N' donor ligands studied, bis(1,2,4)triazinyl bipyridine (BTBP) and bis(1,2,4)triazinyl phenanthroline (BTPhen) were found to be most promising. In order to understand the separation behaviour of these ligands, their complexation studies with these 'f' block elements are essential. In the present work, complexation studies of various lanthanide ions (La 3+ , Eu 3+ and Er 3+ ) was studied with ethyl derivatives of BTBP (C 2 BTBP) and BTBPhen (C 2 BTPhen) and pentyl derivative of BTBP (C 5 BTBP) in acetonitrile medium using UV-Vis spectrophotometry, fluorescence spectroscopy and solution calorimetry. Computational studies were also carried out to understand the experimental results

  12. The electronic structure of the lanthanides and actinides, a comparison

    International Nuclear Information System (INIS)

    Edelstein, N.M.

    1998-01-01

    Full text: Optical spectra of the two f-element series (the lanthanides and actinides) are comparable in many respects. For the trivalent ions isolated in single crystals, both series exhibit rich, narrow line spectra. These data can be analysed in terms of a parametric model based on a free-ion Hamiltonian plus the addition of a crystal field Hamiltonian. For most systems the agreement between the calculated and experimental energy levels is quite good. In the actinide series there appears to be a correlation between the magnitude of the crystal field and the inadequacy of the fits. The early actinides exhibit multiple oxidation states for which there is no precedent in the lanthanide series. The parametric model mentioned earlier has been utilized for some tetravalent actinide systems with reasonably good results. A selective survey of results describing the similarities and differences of various lanthanide and actinide systems will be given

  13. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Madeleine [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Schwieters, Charles D. [National Institutes of Health, Office of Intramural Research, Center for Information Technology (United States); Göbl, Christoph [Technische Universität München, Department of Chemistry (Germany); Opina, Ana C. L. [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Strub, Marie-Paule [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States); Swenson, Rolf E.; Vasalatiy, Olga [National Institutes of Health, Imaging Probe Development Center, National Heart, Lung, and Blood Institute (United States); Tjandra, Nico, E-mail: tjandran@nhlbi.nih.gov [National Institutes of Health, Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute (United States)

    2016-10-15

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using {sup 17}O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  14. Characterizing the magnetic susceptibility tensor of lanthanide-containing polymethylated-DOTA complexes

    International Nuclear Information System (INIS)

    Strickland, Madeleine; Schwieters, Charles D.; Göbl, Christoph; Opina, Ana C. L.; Strub, Marie-Paule; Swenson, Rolf E.; Vasalatiy, Olga; Tjandra, Nico

    2016-01-01

    Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide’s magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using "1"7O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0–7.4) were not significant.

  15. Simultaneous determination of uranium and thorium with Arsenazo III by second-derivative spectrophotometry

    International Nuclear Information System (INIS)

    Kuroda, Rokuro; Kurosaki, Mayumi; Hayashibe, Yutaka; Ishimaru, Satomi

    1990-01-01

    A derivative spectrophotometric method has been developed for the simultaneous determination of microgram quantities of uranium and thorium with Arsenazo III in hydrochloric acid medium. The second-derivative absorbances of the uranium and thorium Arsenazo III complexes at 679.5 and 684.4 nm are used for their quantification. Uranium and thorium, both in the range 0.1-0.7 μg/ml have been determined simultaneously with good precision. The procedure does not require separation of uranium and thorium, and allows the determination of both metals in the presence of alkaline-earth metals and zirconium, but lanthanides interfere. (author)

  16. Valencies of the lanthanides

    OpenAIRE

    Johnson, David A.; Nelson, Peter G.

    2018-01-01

    The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.

  17. Bioaccumulation pattern of lanthanides in pteridophytes and magnoliophytes species from Atlantic Forest

    International Nuclear Information System (INIS)

    Andre Luis Lima de Araujo; De Nadai Fernandes, E.A.; Marcio Arruda Bacchi; Elvis Joacir De Franca

    2012-01-01

    The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C plant :C soil ) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C soil -b ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii. (author)

  18. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers

    International Nuclear Information System (INIS)

    Du, H.S.; Wood, D.J.; Elshani, Sadik; Wai, C.M.

    1993-01-01

    Thorium and the lanthanides are extracted by α-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed. (author)

  19. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    Energy Technology Data Exchange (ETDEWEB)

    Pindwal, Aradhana [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  20. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Extraction chromatography of indium (III) on silica gel impregnated with high molecular weight carboxylic acid and its analytical applications

    International Nuclear Information System (INIS)

    Majumdar, P.S.; Ray, U.S.

    1991-01-01

    Indium(III) was separated by extraction chromatography with Versatic 10 as a stationary phase on a column of silica gel from acetic acid and sodium acetate solution (pH 4.5-6.0). The optimum condition for extraction was studied based on the critical study of the relevant factors as effects of pH, flow rate on extraction and elution. Role of stripping agents on the elution was studied. The separation of indium from a number of elements was carried out. Indium(III) was separated from Alsup(III), Gasup(III), Tlsup(III), Zrsup(IV) and trivalent lanthanides which interfere under the recommended extraction condition by exploiting the differences in their stripping behaviour. (author). 7 refs., 1 tab., 1 fig

  2. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  3. Separation of valence forms of chromium(III) and chromium(VI) by coprecipitation with iron(III) hydroxide

    International Nuclear Information System (INIS)

    Nazirmadov, B.; Khamidov, B.O.; Egorova, L.A.

    1989-01-01

    The sorption of 9.62·10 -5 M of Cr (III) and Cr (VI) with iron hydroxide in 1 M potassium nitrate and potassium chloride was investigated in relation to the pH of the medium. Experimental data on the sorption of chromium(III) and chromium(VI) with iron(III) hydroxide made it possible to determine the region of practically complete concentration of Cr (III) and Cr (VI) (pH = 3-6.5). The results from spectrophotometric investigations, calculated data on the distribution of the hydroxocationic forms of chromium(III) and the anions of chromium(IV), and their sorption by iron-(III) hydroxide made it possible to characterize the sorbability of the cationic and anionic forms of chromium in various degrees of oxidation. On this basis a method was developed for the separation of chromium(III) and chromium(VI) by coprecipitation on iron(III) hydroxide and their separation from the iron(III) hydroxide support

  4. Highly efficient separation materials created by computational approach. For the separation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Goto, Masahiro; Uezu, Kazuya; Aoshima, Atsushi; Koma, Yoshikazu

    2002-05-01

    In this study, efficient separation materials have been created by the computational approach. Based on the computational calculation, novel organophosphorus extractants, which have two functional moieties in the molecular structure, were developed for the recycle system of transuranium elements using liquid-liquid extraction. Furthermore, molecularly imprinted resins were prepared by the surface-imprint polymerization technique. Thorough this research project, we obtained two principal results: 1) design of novel extractants by computational approach, and 2) preparation of highly selective resins by the molecular imprinting technique. The synthesized extractants showed extremely high extractability to rare earth metals compared to those of commercially available extractants. The results of extraction equilibrium suggested that the structural effect of extractants is one of the key factors to enhance the selectivity and extractability in rare earth extractions. Furthermore, a computational analysis was carried out to evaluate the extraction properties for the extraction of rare earth metals by the synthesized extractants. The computer simulation was shown to be very useful for designing new extractants. The new concept to connect some functional moieties with a spacer is very useful and is a promising method to develop novel extractants for the treatment of nuclear fuel. In the second part, we proposed a novel molecular imprinting technique (surface template polymerization) for the separation of lanthanides and actinides. A surface-templated resin is prepared by an emulsion polymerization using an ion-binding (host) monomer, a resin matrix-forming monomer and the target Nd(III) metal ion. A host monomer which has amphiphilic nature forms a complex with a metal ion at the interface, and the complex remains as it is. After the matrix is polymerized, the coordination structure is 'imprinted' at the resin interface. Adsorption of Nd(III) and La(III) ions onto the

  5. Role of ion transfer membrane in the production of uranous nitrate

    International Nuclear Information System (INIS)

    Nair, M.K.T.; Singh, R.K.; Bajpai, D.D.; Venugopalan, A.K.; Singh, R.R.; Gurba, P.B.; Thomas, Mathew

    1992-01-01

    In Purex process, plutonium and uranium are co-extracted into organic phase and these are partitioned by reducing Pu(IV) to Pu(III) using hydrazine stabilized uranous nitrate solution. Usually, uranous nitrate is added in much higher quantity than the stoichiometric requirement to effect complete reduction of plutonium. In conventional electrolytic cells only 60 to 70% of uranyl to uranous conversion is achieved. Use of this solution results in dilution of plutonium product. In addition to this, each externally fed uranous nitrate batch increases uranium processing load and affects the plant throughput. In order to keep the additional uranium processing load to a minimum, it is necessary to increase the uranous content to near cent percent level in the externally fed uranous nitrate solution. The studies carried out at PREFRE (Power Reactor Fuel Reprocessing) laboratory have shown that it is possible to produce concentrated uranous nitrate solution, nearly free from uranyl nitrate, by using a cation exchange membrane. This paper describes the development work carried out at PREFRE plant, Tarapur for production of cent percent uranous nitrate solution. Development of electrolytic cells for uranous production, from laboratory scale to pilot plant scale, has been explained. (author). 24 refs., 8 figs., 8 tabs

  6. The commercial production of compounds of the lanthanides and yttrium as CRT phosphor precursors

    International Nuclear Information System (INIS)

    Kilbourn, B.T.

    1987-01-01

    The consumer acceptance of color television at the start of the 60's was triggered by the phosphor industry's discovery and production of a satisfactory red phosphor using the element europium. This element, in the middle of the lanthanide series, had until that time been an academic curiosity, prepared only in gram quantities for research. The large-scale production by the lanthanide industry, in order to meet the demand for commercial quantities of high purity europium oxide, required the introduction of new technology. Lanthanide elements other than europium, such as cerium and terbium, are also needed as the active ions for many phosphors. In addition, the inert host lattice for those emitting ions can be provided by compounds of yttrium, the element above the lanthanides in the periodic table, with comparable properties. The lanthanide industry has developed processes to produce compounds of such elements in the required quantities and purities. For commercial separation of these elements a technology known as counter-current liquid-liquid extraction has been developed. This technique, commonly called solvent extraction, is illustrated and described. The initial ore preparation steps, together with the final high purity oxide production is also mentioned

  7. The best and the brightest: exploiting tryptophan-sensitized Tb(3+) luminescence to engineer lanthanide-binding tags.

    Science.gov (United States)

    Martin, Langdon J; Imperiali, Barbara

    2015-01-01

    Consider the lanthanide metals, comprising lanthanum through lutetium. Lanthanides form stable cations with a +3 charge, and these ions exhibit a variety of useful physical properties (long-lifetime luminescence, paramagnetism, anomalous X-ray scattering) that are amenable to studies of biomolecules. The absence of lanthanide ions in living systems means that background signals are generally a nonissue; however, to exploit the advantageous properties it is necessary to engineer a robust lanthanide-binding sequence that can be appended to any macromolecules of interest. To this end, the luminescence produced by tryptophan-sensitized Tb(3+) has been used as a selection marker for peptide sequences that avidly chelate these ions. A combinatorial split-and-pool library that uses two orthogonal linkers-one that is cleaved for selection and one that is cleaved for sequencing and characterization-has been used to develop lanthanide-binding tags (LBTs): peptides of 15-20 amino acids with low-nM affinity for Tb(3+). Further validating the success of this screen, knowledge about LBTs has enabled the introduction of a lanthanide-binding loop in place of one of the four native calcium-binding loops within the protein calcineurin B.

  8. The nitrate-reduction gene cluster components exert lineage-dependent contributions to optimization of Sinorhizobium symbiosis with soybeans.

    Science.gov (United States)

    Liu, Li Xue; Li, Qin Qin; Zhang, Yun Zeng; Hu, Yue; Jiao, Jian; Guo, Hui Juan; Zhang, Xing Xing; Zhang, Biliang; Chen, Wen Xin; Tian, Chang Fu

    2017-12-01

    Receiving nodulation and nitrogen fixation genes does not guarantee rhizobia an effective symbiosis with legumes. Here, variations in gene content were determined for three Sinorhizobium species showing contrasting symbiotic efficiency on soybeans. A nitrate-reduction gene cluster absent in S. sojae was found to be essential for symbiotic adaptations of S. fredii and S. sp. III. In S. fredii, the deletion mutation of the nap (nitrate reductase), instead of nir (nitrite reductase) and nor (nitric oxide reductase), led to defects in nitrogen-fixation (Fix - ). By contrast, none of these core nitrate-reduction genes were required for the symbiosis of S. sp. III. However, within the same gene cluster, the deletion of hemN1 (encoding oxygen-independent coproporphyrinogen III oxidase) in both S. fredii and S. sp. III led to the formation of nitrogen-fixing (Fix + ) but ineffective (Eff - ) nodules. These Fix + /Eff - nodules were characterized by significantly lower enzyme activity of glutamine synthetase indicating rhizobial modulation of nitrogen-assimilation by plants. A distant homologue of HemN1 from S. sojae can complement this defect in S. fredii and S. sp. III, but exhibited a more pleotropic role in symbiosis establishment. These findings highlighted the lineage-dependent optimization of symbiotic functions in different rhizobial species associated with the same host. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Handbook on the physics and chemistry of rare earths: Volume 19: Lanthanides/Actinides: Physics, 2

    International Nuclear Information System (INIS)

    Gschneidner, Karl A.; Eyring, LeRoy; Choppin, G.R.; Lander, G.H.

    1994-01-01

    This handbook comprises five chapters on the lanthanide and actinide materials. In the first chapter the inelastic neutron scattering behaviors of the lanthanides and actinides are compared. In the next chapter the focus is on neutron scattering by heavy fermion single crystal materials, including metallic materials with a paramagnetic ground state, superconductors, metallic and semiconducting antiferromagnets and nearly insulating paramagnets. In chapter three a comprehensive review of intermediate valence and heavy fermions in a wide variety of lanthanide and actinide compounds is given, ranging from metallic to insulating materials. In chapter four two issues on the high pressure behaviours of anomalous cerium, ytterbium and uranium compounds are dealt with. In the final chapter an extensive review is given the thermodynamic properties of lanthanide and actinide metallic systems

  10. Complexation of some trivalent lanthanides, scandium(III) and thorium(IV) by benzylidenepyruvates in aqueous solution

    International Nuclear Information System (INIS)

    Marques, R.N.; Moraes, M. de; Ionashiro, M.

    1997-01-01

    The protonation constants of 4-methylbenzylidenepyruvate (4Me-BP) and 4-isopropylbenzylidenepyruvate (4IP-BP) as well as the stability constants of their binary 1:1 complexes with Cu(II), La(III), Pr(III), Sm(III), Eu(III), Yb(III), Sc(III) and Th(IV) have been determined spectrophotometrically in aqueous solution at 25 C and ionic strength 0.500 M, maintained with sodium perchlorate. For all metal ions considered, the stability changes move in the same direction as the pK a of the ligands. Linear free energy relationships, as applied to oxygen donor substances, suggest the -COCOO - moiety as the metal binding site of the ligands. The results are discussed mainly taking into account that benzylidenepyruvates, besides the α-keto canonical form, may display other forms in aqueous solution with changing pH and the possible occurrence of extra intra-ligand charge polarization, induced by metal ions. (orig.)

  11. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    Science.gov (United States)

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  12. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  13. Selective extraction of americium(III) over europium(III) ions with pyridylpyrazole ligands. Structure-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dongping; Liu, Ying; Li, Shimeng; Ding, Songdong; Jin, Yongdong; Wang, Zhipeng; Hu, Xiaoyang; Zhang, Lirong [Department of chemistry, Sichuan University, Chengdu (China)

    2017-01-18

    To clarify the structure-property relationships of pyridylpyrazole ligands and provide guidance for the design of new and more efficient ligands for the selective extraction of actinides over lanthanides, a series of alkyl-substituted pyridylpyrazole ligands with different branched chains at different positions of the pyrazole ring were synthesized. Extraction experiments showed that the pyridylpyrazole ligands exhibited good selective extraction abilities for Am{sup III} ions, and the steric effects of the branched chain had a significant impact on the distribution ratios of Am{sup III} and Eu{sup III} ions as well as the separation factor. Moreover, both slope analyses and UV/Vis spectrometry titrations indicated the formation of a 1:1 complex of 2-(1-octyl-1H-pyrazol-3-yl)pyridine (C8-PypzH) with Eu{sup III} ions. The stability constant (log K) for this complex obtained from the UV/Vis titration was 4.45 ± 0.04. Single crystals of the complexes of 3-(2-pyridyl)pyrazole (PypzH) with Eu(NO{sub 3}){sub 3} and Sm(NO{sub 3}){sub 3} were obtained; PypzH acts as a bidentate ligand in the crystal structures, and the N atom with a bound H atom did not participate in the coordination. In general, this study revealed some interesting findings on the effects of the alkyl-chain structure and the special complexation between pyridylpyrazole ligands and Ln{sup III} ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. QSAR studies of multidentate nitrogen ligands used in lanthanide and actinide extraction processes

    International Nuclear Information System (INIS)

    Drew, Michael G.B.; Hudson, Michael J.; Youngs, Tristan G.A.

    2004-01-01

    Quantitative structure activity relationships (QSARs) have been developed to optimise the choice of nitrogen heterocyclic molecules that can be used to separate the minor actinides such as americium(III) from europium(III) in the aqueous PUREX raffinate of nuclear waste. Experimental data on distribution coefficients and separation factors (SFs) for 47 such ligands have been obtained and show SF values ranging from 0.61 to 100. The ligands were divided into a training set of 36 molecules to develop the QSAR and a test set of 11 molecules to validate the QSAR. Over 1500 molecular descriptors were calculated for each heterocycle and the Genetic Algorithm was used to select the most appropriate for use in multiple regression equations. Equations were developed fitting the separation factors to 6-8 molecular descriptors which gave r 2 values of >0.8 for the training set and values of >0.7 for the test set, thus showing good predictive quality. The descriptors used in the equations were primarily electronic and steric. These equations can be used to predict the separation factors of nitrogen heterocycles not yet synthesised and/or tested and hence obtain the most efficient ligands for lanthanide and actinide separation

  15. Nitrate biosensors and biological methods for nitrate determination.

    Science.gov (United States)

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Wulin [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Zheng Jun [Center of Modern Experimental Technology, Anhui University, Hefei 230039 (China); Yu Huiyou [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Wang Jianguo, E-mail: jgw@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.

  17. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  18. Synthesis and Structural Investigation of New Bio-Relevant Complexes of Lanthanides with 5-Hydroxyflavone: DNA Binding and Protein Interaction Studies

    Directory of Open Access Journals (Sweden)

    Alexandra-Cristina Munteanu

    2016-12-01

    Full Text Available In the present work, we attempted to develop new metal coordination complexes of the natural flavonoid 5-hydroxyflavone with Sm(III, Eu(III, Gd(III, Tb(III. The resultant hydroxo complexes have been characterized by a variety of spectroscopic techniques, including fluorescence, FT-IR, UV-Vis, EPR and mass spectral studies. The general chemical formula of the complexes is [Ln(C15H9O33(OH2(H2Ox]·nH2O, where Ln is the lanthanide cation and x = 0 for Sm(III, x = 1 for Eu(III, Gd(III, Tb(III and n = 0 for Sm(III, Gd(III, Tb(III, n = 1 for Eu(III, respectively. The proposed structures of the complexes were optimized by DFT calculations. Theoretical calculations and experimental determinations sustain the proposed structures of the hydroxo complexes, with two molecules of 5-hydroxyflavone acting as monoanionic bidentate chelate ligands. The interaction of the complexes with calf thymus DNA has been explored by fluorescence titration and UV-Vis absorption binding studies, and revealed that the synthesized complexes interact with DNA with binding constants (Kb ~ 104. Human serum albumin (HSA and transferrin (Tf binding studies have also been performed by fluorescence titration techniques (fluorescence quenching studies, synchronous fluorescence spectra. The apparent association constants (Ka and thermodynamic parameters have been calculated from the fluorescence quenching experiment at 299 K, 308 K, and 318 K. The quenching curves indicate that the complexes bind to HSA with smaller affinity than the ligand, but to Tf with higher binding affinities than the ligand.

  19. Theoretical study of the structure and the reactivity of lanthanides and actinides complexes: Activation of small molecules

    International Nuclear Information System (INIS)

    Castro, Ludovic

    2012-01-01

    This PhD thesis presents a theoretical study of the structure and the reactivity of organometallic complexes of lanthanides and actinides at the DFT level. After a general introduction of the methods of theoretical chemistry used for the modelling of organometallic reactivity, a study of the participation of 5f electrons in uranium(IV) reactivity is presented. The results show that the large core ECP can be used safely in order to treat the actinide and so that 5f electrons can be treated implicitly. Then, the reactivity of uranium(III) complexes with CO 2 and other analogous molecules is studied via multiple examples from the literature. These studies show that the steric nature of the ligands is very important and controls the reactivity. This study is then extended to samarium(II) complex. Eventually, the reactivity of a hydride complex of cerium(III) with MeOSO 2 Me is investigated and theoretical results are compared with experimental observations. (author) [fr

  20. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  1. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Uzun, Lokman; Uzek, Recep; Şenel, Serap; Say, Ridvan; Denizli, Adil

    2013-01-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring

  2. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Uzek, Recep; Şenel, Serap [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Say, Ridvan [Anadolu University, Department of Chemistry, 26470, Eskisehir (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey)

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring.

  3. Dietary intake and burden of lanthanide in main organs and tissues for Chinese man

    International Nuclear Information System (INIS)

    Zhu Hongda; Liu Qingfeng; Ouyang Li; Liu Husheng; Wang Naifen; Liu Yaqiong; Zhang Yongbao; Wang Ke; Chen Rusong

    2004-01-01

    Objective: To determine lanthanide concentrations in dietary foods and main organs or tissues for Chinese adult man and to estimate their daily intakes by ingestion and organ or tissue burdens. Methods: Ten kinds of organ or tissue samples collected in autopsy from 21 supplemental subjects of 4 areas with different dietary types in China who died suddenly, and had been healthy and normal before death. The concentrations of 11 lanthanide in foods and 14 lanthanide in these organ or tissue samples, including those collected from 31 subjects in the past, were analyzed by using ICP-MS or INAA technique as well as necessary QC measures. With uses of the local diet composition and relevant organ or tissue weights for Chinese Reference Man, their daily intakes and organ or tissue burdens were estimated. Results: The concentrations of 14 lanthanide in 12 categories of foods and 10 kinds of organ or tissue samples, their dietary daily intakes and organ or tissue burdens for Chinese adult men were obtained. Conclusion: Besides updating the relevant data of La, Ce and Eu in 5 kinds of organ or tissue and diet, this research obtained data on concentrations of other 11 lanthanide in Chinese foods and 10 kinds of organ or tissue, their daily intakes and burdens for the first time in China. The results provide more systematic bases for developing the parameters of Chinese Reference Man than before. This study provides also comparative data for different kinds of lanthanide, foods, organs or tissues and also the background values of Chinese soil

  4. Microwave synthesis of nanostructured oxide sorbents doped with lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, Andrey A., E-mail: mitrofanov-a@icloud.com; Silyavka, Elena S.; Shilovskikh, Vladimir V.; Kolonitckii, Petr D.; Sukhodolov, Nikolai G.; Selyutin, Artem A., E-mail: selutin@inbox.ru [Saint Petersburg State University, 7/9, Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)

    2016-06-17

    A number of nanostructured mesoporous oxide systems based on aluminum oxide, doped with lanthanide ions have been obtained in this study. Structure and morphology of oxides obtained have been examined by X-ray diffraction analysis, thermogravimetric analysis, scanning electron microscopy. The surface area of the samples was determined by the BET method. The dependence of the adsorption of insulin on synthesized oxides from the concentration was investigated. The containing of insulin in solutions after adsorption was determined by the Bradford method. The isotherms of adsorption of insulin on resulting oxide sorbents were plotted, the dependence capacity of the sorption of insulin from the lanthanide dopant was determined.

  5. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Florian Mayer

    2018-01-01

    Full Text Available Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth. We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  6. A dynamic model to explain hydration behaviour along the lanthanide series

    International Nuclear Information System (INIS)

    Duvail, M.; Spezia, R.; Vitorge, P.

    2008-01-01

    An understanding of the hydration structure of heavy atoms, such as transition metals, lanthanides and actinides, in aqueous solution is of fundamental importance in order to address their solvation properties and chemical reactivity. Herein we present a systematic molecular dynamics study of Ln 3+ hydration in bulk water that can be used as reference for experimental and theoretical research in this and related fields. Our study of hydration structure and dynamics along the entire Ln 3+ series provides a dynamic picture of the CN behavioural change from light (CN=9 predominating) to heavy (CN=8 predominating) lanthanides consistent with the exchange mechanism proposed by Helm, Merbach and co-workers. This scenario is summarized in this work. The hydrated light lanthanides are stable TTP structures containing two kinds of water molecules: six molecules forming the trigonal prism and three in the centre triangle. Towards the middle of the series both ionic radii and polarizabilities decrease, such that first-shell water-water repulsion increases and water-cation attraction decreases. This mainly applies for molecules of the centre triangle of the nine-fold structure. Thus, one of these molecules stay in the second hydration sphere of the lanthanide for longer average times, as one progresses along the lanthanide series. The interchange between predominantly CN=9 and CN=8 is found between Tb and Dy. Therefore, we propose a model that determines the properties governing the change in the first-shell coordination number across the series, confirming the basic hypothesis proposed by Helm and Merbach. We show that it is not a sudden change in behaviour, but rather that it results from a statistical predominance of one first hydration shell structure containing nine water molecules over one containing eight. This is observed progressively across the series. (O.M.)

  7. Yttrium and lanthanides in human lung fluids, probing the exposure to atmospheric fallout

    Energy Technology Data Exchange (ETDEWEB)

    Censi, P., E-mail: censi@unipa.it [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Tamburo, E. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); Speziale, S. [Deutsches GeoForschungsZentrum, Telegrafenberg, Potsdam, 14473 (Germany); Zuddas, P. [Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Randazzo, L.A. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy); I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); En.Bio.Tech. - Via Aquileia, 35 90100 Palermo (Italy); Institut Genie de l' Environnement et Ecodeveloppement and Departement Sciences de la Terre, UMR 5125, Universite Claude Bernard Lyon 1, 2 rue R. Dubois, Bat GEODE 69622 Villeurbanne Cedex (France); Punturo, R. [Dipartimento di Scienze Geologiche, Universita di Catania, Corso Italia, 55 - 95129 Catania (Italy); Cuttitta, A. [I.A.M.C.-CNR - UOS di Capo Granitola, Via faro, 1 - 91026 Torretta Granitola, Campobello di Mazara (TP) (Italy); Arico, P. [Dipartimento C.F.T.A., Universita di Palermo, Via Archirafi, 36 90123 - Palermo (Italy)

    2011-02-28

    Inhalation of airborne particles can produce crystallization of phosphatic microcrysts in intraaveolar areas of lungs, sometimes degenerating into pulmonary fibrosis. Results of this study indicate that these pathologies are induced by interactions between lung fluids and inhaled atmospheric dust in people exposed to volcanic dust ejected from Mount Etna in 2001. Here, the lung solid-liquid interaction is evaluated by the distribution of yttrium and lanthanides (YLn) in fluid bronchoalveolar lavages on selected individuals according the classical geochemical approaches. We found that shale-normalised patterns of yttrium and lanthanides have a 'V shaped' feature corresponding to the depletion of elements from Nd to Tb when compared to the variable enrichments of heavy lanthanides, Y, La and Ce. These features and concurrent thermodynamic simulations suggest that phosphate precipitation can occur in lungs due to interactions between volcanic particles and fluids. We propose that patterns of yttrium and lanthanides can represent a viable explanation of some pathology observed in patients after prolonged exposure to atmospheric fallout and are suitable to become a diagnostic parameter of chemical environmental stresses.

  8. Modeling and flowsheet design of an Am separation process using TODGA and H{sub 4}TPAEN

    Energy Technology Data Exchange (ETDEWEB)

    Vanel, V.; Marie, C.; Montuir, M.; Boubals, N.; Sorel, C. [CEA, Centre de Marcoule, Nuclear Energy Division, Radiochemistry and Processes Department, Bagnols-sur-Ceze, F-30207 (France); Kaufholz, P.; Modolo, G. [Forschungszentrum Juelich GmbH, Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety, D-52428 (Germany); Geist, A. [Karlsruher Institut fuer Technologie - KIT, Institut fuer Nukleare Entsorgung - INE, Karlsruhe (Germany)

    2016-07-01

    Recycling americium from spent fuels is an important consideration for the future nuclear fuel cycle, as americium is the main contributor to the long-term radiotoxicity and heat power of the final waste, after separation of uranium and plutonium using the PUREX process. The separation of americium alone from a PUREX raffinate can be achieved by co-extracting lanthanide (Ln(III)) and actinide (An(III)) cations into an organic phase containing the diglycolamide extractant TODGA, and then stripping Am(III) with selectivity towards Cm(III) and lanthanides. The water soluble ligand H{sub 4}TPAEN was tested to selectively strip Am from a loaded organic phase. Based on experimental data obtained by Juelich, NNL and CEA laboratories since 2013, a phenomenological model has been developed to simulate the behavior of americium, curium and lanthanides during their extraction by TODGA and their complexation by H{sub 4}TPAEN (complex stoichiometry, extraction and complexation constants, kinetics). The model was gradually implemented in the PAREX code and helped to narrow down the best operating conditions. Thus, the following 2 modifications of initial operating conditions were proposed: -) an increase in the concentration of TPAEN as much as the solubility limit allows, and -) an improvement of the lanthanide scrubbing from the americium flow by adding nitrates to the aqueous phase. A qualification of the model was begun by comparing on the one hand constants determined with the model to those measured experimentally, and on the other hand, simulation results and experimental data on new independent batch experiments. A first sensitivity analysis identified which parameter has the most dominant effect on the process. A flowsheet was proposed for a spiked test in centrifugal contactors performed with a simulated PUREX raffinate with trace amounts of Am and Cm. If the feasibility of the process is confirmed, the results of this test will be used to consolidate the model and to

  9. On the growth of ammonium nitrate(III) crystals

    NARCIS (Netherlands)

    Vogels, L.J.P.; Marsman, H.A.M.; Verheijen, M.A.; Bennema, P.; Elwenspoek, Michael Curt

    The growth rate of NH4NO3 phase III crystals is measured and interpreted using two models. The first is a standard crystal growth model based on a spiral growth mechanism, the second outlines the concept of kinetical roughening. As the crystal becomes rough a critical supersaturation can be

  10. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  11. Estimation of rare earth elements in uranium matrix after solvent extraction of uranium as uranium-antipyrine-anion complex using chloroform as solvent

    International Nuclear Information System (INIS)

    Bose, Roopa; Murthy, D.S.R.; Malhotra, R.K.

    1999-01-01

    The neutron economy in a nuclear reactor dictates the occurrence of neutron absorbers at very low levels. Hence the determination of lanthanides especially Sm, Eu, Gd and Dy is one of the most difficult and complicated analytical tasks particularly in high uranium matrix. Solvent extraction is a potent and versatile technique for the separation of lanthanides. The systems generally used for lanthanide extraction are TBP-nitrate, TBP-chloride, TBP-thiocyanate TOPO, DEHPA-nitrate etc. However, these methods of extraction of lanthanides fail to give a clear cut separation for their determination from uranium matrix. Hence analytical procedures have been standardised for extraction of uranium matrix into the organic phase leaving lanthanides unextracted in the aqueous phase. In this direction Cyanex-923 a mixture of 4 trialkyl phosphine oxides, TBP- TOPO and trioctylamine in xylene have been used for extraction of uranium and consequent determination of lanthanides by ICP-AES in the aqueous phase. In this paper the authors have investigated uranium -antipyrine -anion, a different combination other than the well known phosphine oxides and tertiary amines for extraction of uranium

  12. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    International Nuclear Information System (INIS)

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238 Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from 238 Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain 238 Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed

  13. Predicting Efficient Antenna Ligands for Tb(III) Emission

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P.S.; Xu, Jide; Raymond, Kenneth

    2008-10-06

    A series of highly luminescent Tb(III) complexes of para-substituted 2-hydroxyisophthalamide ligands (5LI-IAM-X) has been prepared (X = H, CH{sub 3}, (C=O)NHCH{sub 3}, SO{sub 3}{sup -}, NO{sub 2}, OCH{sub 3}, F, Cl, Br) to probe the effect of substituting the isophthalamide ring on ligand and Tb(III) emission in order to establish a method for predicting the effects of chromophore modification on Tb(III) luminescence. The energies of the ligand singlet and triplet excited states are found to increase linearly with the {pi}-withdrawing ability of the substituent. The experimental results are supported by time-dependent density functional theory (TD-DFT) calculations performed on model systems, which predict ligand singlet and triplet energies within {approx}5% of the experimental values. The quantum yield ({Phi}) values of the Tb(III) complex increases with the triplet energy of the ligand, which is in part due to the decreased non-radiative deactivation caused by thermal repopulation of the triplet. Together, the experimental and theoretical results serve as a predictive tool that can be used to guide the synthesis of ligands used to sensitize lanthanide luminescence.

  14. Energy transfer and quenching processes of excited uranyl ion and lanthanide ions in solutions

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Tomiyasu, Hiroshi

    1995-01-01

    Deactivation processes of photoexcited uranyl ion by various lanthanide ions in aqueous solution were studied. Each lanthanide ions show different interaction with excited uranyl ion depending on its lowest excited energy level, the number of 4f electrons and the acid concentration of the solution. (author)

  15. Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments

    Science.gov (United States)

    Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.

    2011-12-01

    enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.

  16. Coordination chemistry of several radius-sensitive complexones and applications to lanthanide-actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Potter, M.W.

    1981-10-01

    The relationships between the lanthanide complex formation equilibria and the lanthanide-actinide separation application of three radius sensitive ligands have been studied. The consecutive stepwise formation constants of the 1:1, 2:1, and 3:1 chelate species formed by the interaction of DHDMB and the tripositive lanthanides and yttrium were determined potentiometrically at 0.1 M ionic strength and 25/sup 0/C. Results indicate that three different coordination modes, one tridentate and two bidentate are in evidence. Tracer level /sup 241/Am - /sup 155/Eu cation-exchange experiments utilizing DHDMB eluents indicate that this dihydroxycarboxylate does not form a sufficiently strong americium complex to elute that actinide ahead of europium. The overall stability of the americium 3:1 complex appears intermediate between samarium and europium. Cation-exchange elutions of /sup 241/Am, /sup 155/Eu, and /sup 160/Tb mixtures with EEDTA solutions prove that the EEDTA ligand is capable of eluting americium ahead of all of the tripositive lanthanide cations. The minimum separation occurs with terbium, where the Am-Tb separation factor is 1.71. 1,5-diaminopentane-N,N,N',N'-tetraacetic acid (PMDTA) was synthesized using cation exchange. A mathematical method was developed for the formation constants of the protonated and unprotonated lanthanide-PMDTA complexes from potentiometry. Cation-exchange elutions of tracer quantities of Am, Eu, and Tb revealed that terbium is eluted ahead of both americium and europium.

  17. Syntheses and luminescence properties of two novel lanthanide (III) perchlorate complexes with phenacyl p-tolyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shu-Yan [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Li, Wen-Xian, E-mail: nmglwx@163.com [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Yu-Shan [Inner Mongolia Autonomous Region Product Quality Inspection Institute, Hohhot 010070 (China); Xin, Xiao-Dong; Guo, Feng; Cao, Xiao-Fang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China)

    2015-06-15

    Two novel solid binary complexes of rare earth perchlorate with phenacyl p-tolyl sulfoxide were synthesized and characterized by elemental analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, {sup 1}HNMR and UV spectra. The results indicated that the composition of these complexes was REL{sub 7} (ClO{sub 4}){sub 3}·6H{sub 2}O (RE=Eu (III), Tb (III), L=C{sub 6}H{sub 5}COCH{sub 2}SOC{sub 6}H{sub 4}CH{sub 3}). The study on IR spectra and {sup 1}HNMR spectra revealed that phenacyl p-tolyl sulfoxide bonded with RE{sup 3+} ions by the oxygen atom in sulfinyl group. The emission spectra illustrated that both the Eu (III) and Tb (III) complexes displayed excellent luminescence in solid state, and The most intensive characteristic emission of the Eu(III) and Tb(III) complexes were 245,400 a.u. and 298,000 a.u. respectively. The slit with was 1 nm. By analysis luminescence and phosphorescence spectrum, it was found that the ligand had the advantage to absorb energy and transfer it to the Eu (III) and Tb (III) ions. The fluorescence lifetimes of the complexes were measured as well as the quantum yield of the Eu (III) complex.

  18. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    International Nuclear Information System (INIS)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C.; Lourenco, Ana V. S.; Brito, Hermi F.

    2009-01-01

    The importance of the luminescence of lanthanide ions and UO 2 2+ is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu 3+ and Tb 3+ ions, and now UO 2 2+ are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  19. Development of ion imprinted polymers for the selective extraction of lanthanides from environmental samples

    International Nuclear Information System (INIS)

    Moussa, Manel

    2016-01-01

    The analysis of the lanthanide ions present at trace level in complex environmental matrices requires often a purification and preconcentration step. The solid phase extraction (SPE) is the most used sample preparation technique. To improve the selectivity of this step, Ion Imprinted Polymers (IIPs) can be used as SPE solid supports. The aim of this work was the development of IIPs for the selective extraction of lanthanide ions from environmental samples. In a first part, IIPs were prepared according to the trapping approach using 5,7-dichloroquinoline-8-ol as non-vinylated ligand. For the first time, the loss of the trapped ligand during template ion removal and sedimentation steps was demonstrated by HPLC-UV. Moreover, this loss was not repeatable, which led to a lack of repeatability of the SPE profiles. It was then demonstrated that the trapping approach is not appropriate for the IIPs synthesis. In a second part, IIPs were synthesized by chemical immobilization of methacrylic acid as vinylated monomer. The repeatability of the synthesis and the SPE protocol were confirmed. A good selectivity of the IIPs for all the lanthanide ions was obtained. IIPs were successfully used to selectively extract lanthanide ions from tap and river water. Finally, IIPs were synthesized by chemical immobilization of methacrylic acid and 4-vinylpyridine as functional monomers and either a light (Nd 3+ ) or a heavy (Er 3+ ) lanthanide ion as template. Both kinds of IIPs led to a similar selectivity for all lanthanide ions. Nevertheless, this selectivity can be modified by changing the nature and the pH of the washing solution used in the SPE protocol. (author)

  20. Optimization of the radio lanthanides separation device; Optimizacion de dispositivo para separacion de radiolantanidos

    Energy Technology Data Exchange (ETDEWEB)

    Vera T, A. L.

    2009-07-01

    At present, cancer is a major cause of mortality in our country, therefore, its prevention, diagnosis and treatment are vital to health systems. The cancer treatment and other diseases, from monoclonal antibodies, peptides, or amino macro aggregates marked with beta particle emitting radionuclides, is a highly promising field. The radioactive lanthanides: Pm, Tb, Ho, and Lu are beta emitters, which possess nuclear and chemical properties, which have shown their feasibility as radioisotopes of radiotherapeutic use. However, these radioisotopes are not available commercially in this connection, the Research Laboratory of Radioactive Materials of the National Institute of Nuclear Research, has developed the methodology of production of these radioisotopes and based on this work is designed, constructed and installed the radio lanthanides separation device for the radioisotopes production routinely. This device is part of the cell, , which has and auxiliary air service, an extraction system and is protected with a 10 cm of lead shielding. The radio lanthanides separation device is manual and easy to handle. The main function of this equipment is the radio lanthanides separation from extractive chromatography through packed columns with a commercial resin (Ln SPS) and coated on the top and bottom by fiberglass. The radio lanthanides separation device comprises a main carrousel where the separation columns and elution containers are mounted. It also has a system of open irradiation vials, carrier samples for columns and glassware. This paper presents a detailed description of the radio lanthanides separation device and its management, which allows the radioisotopes production Pm, Tb, Ho, and Lu from the separation of its parents Nd, Dy, Gd, and Yb respectively. (Author)