WorldWideScience

Sample records for lanthanideiii nitrate complexes

  1. Studies of Some Lanthanide(III Nitrate Complexes of Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Kishor Arora Mukesh Sharma

    2009-01-01

    Full Text Available The studies of 16 new lanthanide(III nitrate complexes of Schiff base ligands are discussed. Schiff bases were obtained by the condensation of 2–methyl–4–N,N–bis–2' –cyanoethyl aminobenzaldehyde with aniline and 3 different substituted anilines. Lanthanide(III nitrates, viz. gadolinium(III nitrate, lanthanum(III nitrate, samarium(III nitrate and cerium(III nitrate were chosen to synthesize new complexes. The complexes were characterized on the basis of physicochemical studies viz. elemental analysis, spectral, viz. IR and electronic spectral and magnetic studies. TGA studies of some of the representative complexes were also done. Some of the representative complexes were also screened for the anti microbial studies.

  2. Spectroscopic studies of some lanthanide(III nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A.S. Sall

    2003-06-01

    Full Text Available The ligand 2,6-bis-(salicylaldehydehydrazone-4-chlorophenol (H5L and its binuclear lanthanide(III nitrate complexes {[Ln2(H4L3(NO3](NO32.mH2O} where Ln = La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb and Y, have been synthesized. The complexes were characterized by chemical analysis, conductance, magnetic moment measurements and infrared spectra. Infrared study indicates that the ligand behaves both as neutral and ionic O donors and as neutral N donors.

  3. Synthesis and Characterization of Lanthanide(III Nitrate Complexes with Terdentate ONO Donor Hydrazone Derived from 2-Benzimidazolyl Mercaptoaceto Hydrazide and o-Hydroxy Aromatic Aldehyde

    Directory of Open Access Journals (Sweden)

    Vinayak M. Naik

    2011-01-01

    Full Text Available A few eight coordinated complexes of lanthanide(III nitrate with 2-benzimidazolyl mercaptoaceto hydrazone ligand (LH2 with the general formula [Ln(LH2NO2]H2O (where Ln = La, Pr, Nd, Sm and Gd have been synthesized and characterized by elemental analysis, magnetic susceptibility, molar conductance, UV-Visible, IR and 1H NMR spectral studies. The experimental data sustain stoichiometry of 1:2 (metal/ligand for the complexes. The spectral data shows that the ligand reacts in keto form and behaves as monobasic terdentate in nature. The nitrate appears to coordinate in the bidentate fashion to the metal ion. The thermal stabilities of the complexes have been studied by TGA and their kinetic parameters were calculated using Coats-Redfern and MKN methods. The antimicrobial activity studies have been under taken and results are discussed.

  4. Synthesis and spectroscopic characterization of some lanthanide(III nitrate complexes of ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate

    Directory of Open Access Journals (Sweden)

    CHEMPAKAM JANARDHANAN ATHIRA

    2011-02-01

    Full Text Available Ethyl 2-[2-(1-acetyl-2-oxopropylazo]-4,5-dimethyl-3-thiophenecarboxyate was synthesized by coupling diazotized ethyl 2-amino-4,5-dimethylthiophene-3-carboxylate with acetylacetone. Based on various spectral studies and elemental analysis, an intramolecularly hydrogen-bonded azo-enol structural form was assigned for the ligand. This ligand is versatile in forming a series of lanthanide(III complexes, viz., lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III and gadolinium(III, which were characterized through various spectral studies, elemental analysis, magnetic susceptibility measurements, molar conductance and thermal analysis. The spectral data revealed that the ligand acted as a neutral tridentate, coordinating to the metal ion through one of the azo nitrogen atoms, the ester carbonyl and the enolic oxygen of the acetylacetone moiety, without deprotonation. Molar conductance values adequately supported their non-electrolytic nature. The ligand and lanthanum(III complex were subjected to X-ray diffraction studies. In addition, the lanthanum(III complex underwent a facile transesterification reaction on refluxing with methanol for a long period. The thermal behaviour of the lanthanum(III complex was also examined

  5. Extraction of lanthanide(III) nitrates from water-salt solutions with n.-octanol

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Kudrova, A.V.; Valueva, O.V.; Pyartman, A.K.

    2004-01-01

    Extraction of lanthanide(III) nitrates (Ln=La-Nd, Sm-Gd) from aqueous-salt solutions at 298.15 K was studied using solution of n.-octanol, its concentration 6.31 mol/l. It was ascertained that at Ln(NO 3 ) 3 concentration in aqueous phase below 0.6 mol/l, there is actually no extraction. At higher concentrations of nitrates in aqueous phase the content of lanthanides(III) in organic phase increases in the series La-Gd. Isotherms of extraction were ascertained, its phase equilibria being described mathematically. It is shown that extraction of lanthanide(III) nitrates with n.-octanol should be realized from concentrated aqueous solutions [ru

  6. Coordination polymers of some lanthanide(III) nitrate with schiff bases

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Shukla, B.K.; Shukla, R.K.

    1991-01-01

    The Schiff bases derived from 2-hydroxy-1-naphthaldehyde and salicylaldehyde with o-dianisidine, p-phenylene diamine and benzidine and their lanthanide(III) complexes have been synthesized and characterized by elemental, I.R., thermal, magnetic and D.R.S. studies. (author). 7 refs

  7. SPECTROSCOPIC STUDIES OF SOME LANTHANIDE(III) NITRATE ...

    African Journals Online (AJOL)

    a

    The first method involves condensation of keto precursors with polyamines by the template method [11, 12] and in the second method, the ligand is first synthesized and isolated and the metal ion added to prepare the complexes [13, 14]. In our previous research on transition metal complexes we have used both routes ...

  8. 2,2',-bipyridine and 1,10-phenanthroline complexes of lanthanide(III) trifluoroacetates

    International Nuclear Information System (INIS)

    Misra, S.N.; Singh, M.

    1983-01-01

    The syntheses and characterization of lanthanide(III) triflloroacetate complexes with 2,2'-bipyridine and 1,10-phenanthroline are reported. Lanthanide(III) trifluoroacetates yield compounds of the type Ln(CF 3 COO) 3 .bipy or phen with 2,2'-bipyridine and 1,10-phenanthroline. Their properties and structures have been studied using chemical analyses. electronic and infrared spectra. Thermal analysis of a few complexes have also been done. The infrared data show that the trifluoroacetate group acts as a bidentate ligand making the coordination number of lanthanide eight. (author)

  9. Magneto and spectral behaviour of lanthanide(III) perchlorate complexes of n-isonicotinamidoanisalaldimine

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Sarin, R.K.

    1996-01-01

    A new series of lanthanide(III) perchlorate complexes of N-isonicotinamidoanisalaldimine (INH-SAL) with the general composition (Ln(INH-SAL) 4 )(ClO) 4 ) 3 (Ln=La, Pr, Nd, Sm, Gd, Tb or Dy) were synthesized and characterized by elemental analyses, conductance, molecular weight, infrared and electronic spectral data. INH-SAL acts as a bidentate (N, O) chelating agents. The tentative coordination number eight has been assigned. Thermal behaviour of some representative chelates has also been investigated. (author). 14 refs., 2 tabs

  10. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  11. Synthesis and spectral studies of some lanthanide(III) complexes ...

    African Journals Online (AJOL)

    ... compounds were characterized through various physico-chemical studies. The coordinating ligand DABAAPS behave as tridentate N,N,O-donors. The central metal ion displays the coordination number nine in these complexes. Thermal stabilities of these complexes were also studied through thermogravimetric analysis.

  12. Lanthanide(III) Complexes with Tridentate Schiff Base Ligand ...

    African Journals Online (AJOL)

    Lanthanide complexes, hydrazino, antioxidant activity, X-ray structure. 1. Introduction ... measured using a Johnson Matthey scientific magnetic suscepti- bility balance. 2.1. .... of the ligand and that the nitrogen atom supporting this proton is not involved in the ... 4f-electrons are not involved in the coordination. These facts.

  13. Stability constants of mixed ligand complexes of lanthanide(III) and yttrium(III) with complexone and substituted salicylic acids

    International Nuclear Information System (INIS)

    Kolhe, Vishnu; Dwivedi, K.

    1996-01-01

    Salicylic acid and substituted salicylic acids are potential antimicrobial agents. Binary complexes of salicylic acid and its substituted derivatives with lanthanide(III) and yttrium(III) metal ions have been reported. There are reports on the ternary metal complexing equilibria with some lanthanide(III) and yttrium(III) metal ions involving aminopolycarboxylic acid as one ligand and salicylic acid (SA) and other related compounds as the second ligands. Ethylene glycol bis(2-aminoethylether)- N, N, N', N'-tetraacetic acid (EGTA) is an important member of aminopolycarboxylic acid and finds many applications in medicine and biology. Recently, few ternary complexes have been reported using EGTA as ligand. In view of biological importance of simple and mixed ligand complexes EGTA, SA and DNSA (3,5-dinitrosalicylic acid), a systematic study has been undertaken for the determination of stability constant and the results are reported. (author). 6 refs., 1 fig., 2 tabs

  14. Formation constants of lanthanide(III)- aminopolycarboxylate- ATP mixed ligand complexes and their systematics

    International Nuclear Information System (INIS)

    Verma, Sangeeta; Limaye, S.N.; Saxena, M.C.

    1993-01-01

    Formation constants (log Ksub(MAL)sup(MA), log Ksub(ML)sup(M) and log Ksub(ML)sup(ML) of mixed ligand lanthanide(III) complexes of the type [Ln(III).A.ATP[ 2 , where LN(III)=La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ or Dy 3+ ' A=NTA(nitrilotriacetate) or HEDTA (2-hydroxyethylethylenediamine triacetate) and ATP=adenosine 5'-triphosphate (L), and of the binary [Ln(III).ATP[ and [Ln(III).(ATP) 2 [ complexes have been determined by potentiometric pH titrations using the Irving-Rossotti approach at three temperatures 20, 30 and 40 degC and at a fixed ionic strength, I=0.2 mol dm -3 (NAclO 4 ). The solution stabilities (log Ksub(MAL)sup(MA) values) are influenced by the electrostatic effect involved in ternary complexation and increase with temperature. The enthalpy factor (ΔH) has been found to be small but unfavourable and the entropy factor (ΔS) large and favourable. The log Ksub(MAL)sup(MA) values lie in the order NTA>HEDTA with respect to A and La 3+ 3+ 3+ 3+ 3+ 3+ >Gd 3+ 3+ 3+ with respect to lanthanides. Tetrad effect is present in the formation constant values; its magnitude has been found to lie in the sequence f 7 >f 3 -f 4 ≅ f 10 -f 11 for the Ln(III) ions. Systematics in the formation constant values has been further studied by evaluating changes in the inter-electronic repulsion Racah parameters, extra stabilisation of specific 4f 9 -configurations and nephelauxetic ratio using experimental values of the formation constants. (author). 24 refs., 2 figs., 3 tabs

  15. An enantiomerically pure siderophore type ligand for the diastereoselective 1 : 1 complexation of lanthanide(III ions

    Directory of Open Access Journals (Sweden)

    Markus Albrecht

    2009-12-01

    Full Text Available A facile synthesis of a highly preorganized tripodal enterobactine-type ligand 1a-H3 consisting of a chiral C3-symmetric macrocyclic peptide and three tridentate 2-amido-8-hydroxyquinoline coordinating units is presented. Complex formation with various metal ions (Al3+, Ga3+, Fe3+, La3+ and Eu3+ was investigated by spectrophotometric methods. Only in the case of La3+ and Eu3+ were well defined 1 : 1 complexes formed. On the basis of CD spectroscopy and DFT calculations the configuration at the metal centre of the La3+ complex was determined to show Λ helicity. The coordination compounds [(1aLn] presented should be prototypes for further lanthanide(III complexes with an enterobactine analogue binding situation.

  16. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    Science.gov (United States)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  17. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    Science.gov (United States)

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  18. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  19. Subnanodimensional thermometrical NMR-sensors on the basis of lanthanide(III) paramagnetic complexes with EDTA for temperature control in aqueous media and magnetoresonance tomography

    International Nuclear Information System (INIS)

    Babajlov, S.P.

    2008-01-01

    It is proposed that temperature dependence of paramagnetic lanthanide-induced shifts (LIS) in NMR spectra on nuclei of EDTA type synthetic organic complexes in kinetically unstable compounds with paramagnetic lanthanide(III) cations is used for ascertaining the temperature of samples placed directly into a NMR spectrometer and formed on the basis of aqueous solutions of diverse chemical substances. It was revealed that complex [Ho III (EDTA)] can be used as an internal or an external thermometric NMR-sensor. For identification and control of temperature in a sample one can make use of LIS for individual signals from CH 2 groups (taken in relation to water or inner DCC standard signals). A higher temperature measurement accuracy (≤0.08 K) is attained by using LIS difference corresponding to the relevant nonequivalent CH 2 groups [ru

  20. Electro-spray Ionization Mass Spectrometry Investigation of BTBP - Lanthanide(III) and Actinide(III) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Retegan, T.; Ekberg, Ch. [Chalmers, Dept Chem and Biol Engn, SE-41296 Gothenburg, (Sweden); Berthon, L.; Zorz, N. [DEN DRCP SCPS LCSE, CEA Marcoule, Bagnols Sur Ceze, (France)

    2009-07-01

    In the framework of nuclear waste reprocessing, the separation processes of minor actinides from fission products are developed using liquid-liquid extraction. To gain an understanding of the mechanism involved in the extraction process, a complex formation of actinides and lanthanides with BTBPs (6, 6'-bis(5, 6-dialkyl-1, 2, 4-triazin-3-yl)-2, 2'-bipyridines) was characterized using the Electro-spray Ionization Mass Spectrometry (ESI-MS) technique. This study was carried out to compare the influence of diluents and side groups of the extractants on complex formation. Three different diluents, nitrobenzene, octanol and cyclohexanone, and two extractants, C5-BTBP and CyMe{sub 4}-BTBP, were selected for this experiment. It was found that the change of the diluent and of the substituent on the BTBP moiety does not modify the stoichiometry of the complexes which is L{sub 2}M(NO{sub 3}){sub 3}. It is proposed that one nitrate is directly coordinated to the metal ion, the two other anions probably remaining in the outer coordination sphere. The difference observed in extracting properties is probably due to the solvation of the complexes by the diluent. The noncovalent force that holds complexes together are likely to be largely governed by electrostatic interactions even if the hydrophobic exterior of the complexes plays an important role in the complexation/extraction mechanism. The study of the stability of the ions in the gas phase shows that the C5-BTBP ligand has a labile hydrogen atom, which is a fragility point of C5-BTBP. (authors)

  1. Mutual solubility between hexane and three-n-butyl phosphate solvates of lanthanide(III) and thorium(IV) nitrates at various temperatures

    International Nuclear Information System (INIS)

    Keskinov, V.A.; Lishuk, V.V.; Pyartman, A.K.

    2007-01-01

    Phase diagrams of binary liquid systems of hexane-rare earth(III) nitrates solvates (rare earth - neodymium, gadolinium, yttrium, ytterbium, lutetium) and thorium(IV) with tri-n-butylphosphate are studied at different temperatures. Phase diagrams of binary systems consist of fields of homogeneous solutions and field of stratification into two liquid phases (I, II): phase I is enriched by hexane, and phase II - [Ln(NO 3 ) 3 (TBP) 3 ] (Ln=Nd, Gd, Y, Yb and Lu) or [Th(NO 3 ) 4 (TBP) 2 ]. Field of stratification into two liquid phases are decreased with growing temperature in binary systems [ru

  2. Investigation of complexing of trivalent lanthanoids in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Proyaev, V.V.; Edinakova, V.

    1985-01-01

    Complexing of trivalent lanthanoids (Ce, Eu) with nitrate-ions in concentrated solutions of lithium and sodium nitrates has been studied in a wide range of ionic forces (1.0-7.0), using the extractional, densimetric and solubility methods. Nitrate complexes registered by the extraction and solubility methods mainly are of second sphere character. During rare earth extraction from concentrated nitrate solutions in the range of nitrate-ion concentrations <= 5 mol/l second sphere neutral nitrate complexes take part in distribution, at higher values of nitrate-ion concentration formation of intrasphere monoligand complexes of lanthanoids should be taken into account

  3. Lanthanide (III) complexes of 2-(N-salicylideneamino)-4-phenylthiazole

    International Nuclear Information System (INIS)

    Sasidharan, G.N.; Mohanan, K.; Lakshmi Prabha, A.N.

    2002-01-01

    Lanthanide(III) complexes of 2-(N-salicylideneamino)-4- phenylthiazole (HSAT) have been synthesised and characterised by elemental, analytical, thermogravimetric, molar conductance, UV- visible, IR and NMR spectral data. The ligand coordinates to the lanthanide(III) ion in a tridentate fashion without deprotonation, giving complexes of the type [Ln(HSAT) 2 (NO 3 ) 3 ] and [Ln(HSAT) 2 (H 2 0) 3 Cl 3 ]. The spectral data reveal that the ligand is bonded to the lanthanide ion through azomethine nitrogen, ring nitrogen and phenolic oxygen without deprotonation. The nitrate group acts in a bidentate fashion. The ligand and the metal complexes exhibit antibacterial and antifungal activities. (author)

  4. Synthesis, characterization and magnetic properties of novel μ-oxamido heterodinuclear copper(II) - lanthanide(III) complexes

    International Nuclear Information System (INIS)

    Li, Y.T.; Miao, M.M.; Liao, D.Z.; Jiang, Z.H.; Wang, G.L.

    1995-01-01

    Six novel μ-oxamido heterobinuclear complexes have been prepared and identified as Cu(oxpn)Ln(L) 2 (ClO 4 ) 3 , where oxpn denotes the N, N'-bis(3-aminopropyl)oxamido dianion, L, 1,10-phenanthroline (phen) and Ln stands for La, Nd, Gd, Tb, Ho, Er. The complexes Cu(oxpn)Gd(oxpn)Gd(phen) 2 (ClO 4 ) 3 were characterized with variable temperature magnetic susceptibility (4-300 K). The exchange integral J (Cu-Gd) was found to be 2.03 cm -1 . The result is commensurate with ferromagnetic interaction between the adjacent metal ions. One plausible mechanism that can cause a ferromagnetic coupling between Gd(III) and Cu(II) is also discussed in terms of spin polarized. (author). 32 refs, 3 figs, 3 tabs

  5. A [Cyclentetrakis(methylene)]tetrakis[2-hydroxybenzamide]Ligand That Complexes and Sensitizes Lanthanide(III) Ions

    Energy Technology Data Exchange (ETDEWEB)

    D' Aleo, Anthony; Xu, Jide; Do, King; Muller, Gilles; Raymond, Kenneth N.

    2009-04-30

    The synthesis of a cyclen derivative containing four isophthalamide groups (L{sup 1}) is described. The spectroscopic properties of the Ln(III) complexes of L{sup 1} (Ln = Gd, Tb, Yb, Eu) reveal changes of the UV/visible absorption, circular dichroism absorption, luminescence and circularly polarized luminescence properties. It is shown that at least two metal complex species are present in solution, whose relative amounts are pH dependent. When at pH > 8.0, an intense long lived emission is observed (for [L{sup 1}Tb] and [L{sup 1}Yb]) while at pH < 8.0, a weaker, shorter-lived species predominates. Unconventional Ln(III) emitters (Pr, Nd, Sm, Dy and Tm) were sensitized in basic solution, both in the visible and in the near infra-red, to measure the emission of these ions.

  6. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in producing...

  7. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    Science.gov (United States)

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  8. Complexes of pentavalent plutonium in lithium nitrate solutions

    International Nuclear Information System (INIS)

    Mekhail, F.M.; Zaki, M.R.

    1977-01-01

    Pu 0 2 ion can form nitrate complexes in concentrated solution of lithium nitrate of PH 3.5. Spectrophotometric and ion exchange studies revealed the existence of two complexes, presumably the mono-and the dinitro. The rate of adsorption of the dinitrato complex, formed in 4 to 6 M-lithium nitrate solutions, on De-Acidite FF has been investigated and suggested to be diffusion controlled. The adsorption isotherm found to obey satisfactorily Freundlich equation

  9. New lanthanide(III) complexes of chiral nonadendate macrocyclic amine derived from (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, Marta [Department of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland); Lisowski, Jerzy [Department of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland)], E-mail: jurekl@wchuwr.chem.uni.wroc.pl

    2008-02-28

    The series of complexes [LnH{sub 4}L(NO{sub 3}){sub 2}](NO{sub 3}){sub 2}.nH{sub 2}O (Ln = La, Ce, Pr, Nd, Gd, Tb, Ho, Er, Tm) of the positively charged protonated form of a chiral macrocyclic amine H{sub 4}L{sup +}, derived from the 3 + 3 condensation product of (1R,2R)-1,2-diaminocyclohexane and 2,6-diformyl-4-methylphenol, have been synthesized. The series of complexes Na{sub x}[LnL](X){sub y}(OH){sub x-y}.n(solv) (X = NO{sup 3-} or Cl{sup -}, and Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) of the deprotonated anionic form of the ligand, L{sup 3-}, have also been synthesised. The complexes have been characterised by elemental analyses, {sup 1}H NMR and ESI MS spectra. The X-ray crystal structures of the [LaH{sub 4}L(NO{sub 3}){sub 2}](NO{sub 3}){sub 2}.5CH{sub 3}OH and [GdH{sub 4}L(NO{sub 3}){sub 2}](NO{sub 3}){sub 2}.5CH{sub 3}OH complexes have been determined. The two complexes are isostructural, and the protonated macrocycle acts as pentadentate ligand. The Ln(III) ion is bound to three phenolate oxygen atoms and two amine nitrogen atoms of the macrocyclic ligand and its coordination sphere is completed by the two axial bidendate nitrate anions.

  10. Lanthanide(III) complexes of a mono(methylphosphonate) analogue of H4dota: the influence of protonation of the phosphonate moiety on the TSAP/SAP isomer ratio and the water exchange rate.

    Science.gov (United States)

    Rudovský, Jakub; Cígler, Petr; Kotek, Jan; Hermann, Petr; Vojtísek, Pavel; Lukes, Ivan; Peters, Joop A; Vander Elst, Luce; Muller, Robert N

    2005-04-08

    A monophosphonate analogue of H4dota, 1,4,7,10-tetraazacyclododecane-4,7,10-tris(carboxymethyl)-1-methylphosphonic acid (H5do3aP), and its complexes with lanthanides were synthesized. Multinuclear NMR studies reveal that, in aqueous solution, lanthanide(III) complexes of the ligand exhibit structures analogous to those of H4dota complexes. Thus, the central ion is nine-coordinate, surrounded by four nitrogen atoms, three acetate and one phosphonate oxygen atoms, and one water molecule in an apical position. For complexes of H5do3aP with Ln(III) ions in the middle of the series, the abundance of the desired twisted square-antiprismatic (TSAP) isomer is higher than for the corresponding H4dota complexes. The TSAP/square-antiprismatic (SAP) isomer ratio is highly sensitive to protonation of the phosphonate group: a higher abundance of the TSAP isomer was found in acidic solutions. The microscopic protonation constants of the TSAP isomers are higher than those of the SAP isomers. The presence of one water molecule in the first coordination sphere of the complexes in the pH region studied (pH 2.5-7.0) is confirmed by 17O NMR spectroscopy. The results of a simultaneous fit of variable-temperature 17O NMR relaxation data and 1H NMRD profiles show that the residence time of water (tauM) in the Gd(III) complex is much smaller than for [Gd(dota)(H2O)]-. The exchange rate appears to be dependent on the pH of the solution. The values of tauM are 37, 40, and 14 ns at pH 2.5, 4.7, and 7.0, respectively. These observations can be explained by an extensive second-sphere hydrogen-bonding network that varies with the state of protonation of the phosphonate moiety. Upon protonation of the complex, the second-sphere hydration probably becomes more ordered, which may result in a decrease in penetrability and an increase in tauM. The relaxivity of the Gd(III) complex is almost independent of the pH and is equal to 4.7 s(-1) mM(-1) (20 MHz, pH 7 and 37 degrees C). The solid

  11. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.

    Science.gov (United States)

    Elrod, Lee Taylor; Kim, Eunsuk

    2018-03-05

    The reduction of nitrate (NO 3 - ) to nitrite (NO 2 - ) is of significant biological and environmental importance. While Mo IV (O) and Mo VI (O) 2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst Mo IV (O)(SN) 2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf) 3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to Mo VI (O) 2 (SN) 2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N 2 O and O 2 . This work highlights the ability of Sc 3+ additives to expand the reactivity scope of an existing Mo IV (O) complex together with which Sc 3+ can convert nitrate to stable gaseous molecules.

  12. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    Science.gov (United States)

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  13. Investigation of uranyl nitrate complexes with trialkylphosphine oxides

    International Nuclear Information System (INIS)

    Kobets, L.V.; Kopashova, I.M.; Dik, T.A.; Volodin, I.A.; Kovalenko, M.A.; Semenij, V.Ya.

    1982-01-01

    Using the methods of vibrational spectroscopy and thermal analysis a number of uranyl complexes with trialkylphosphine oxides of the general formula UO 2 (NO 3 ) 2 x2R 3 PO, where R-C 2 H 5 -C 10 H 21 have been studied. Infrared and Raman spectra are interpreted according to vibration types. Comparison of vibrational spectra of the complexes in solid phase and solutions of organic solvents permitted to find the differences in position and amount of acids responsible for complexing. It is detected that in the series of complexes investigated the strength of uranyl bond with phosphoryl group oxygen practically remains stable, whereas degree of covalence of nitrate groups is observed. The pointed out peculiarities are interpreted proceeding from the presence of bridge nitrate groups in the structure of the complexes. Thermal stability of the complexes is studied, chemism of their decomposition being suggested

  14. Synthesis, spectroscopic characterization, solid state d.c. electrical conductivity and biological studies of some lanthanide(III chloride complexes with a heterocyclic Schiff base ligand

    Directory of Open Access Journals (Sweden)

    K. Mohanan

    2016-07-01

    Full Text Available Condensation of 2-hydroxy-1-naphthaldehyde with 2-amino-3-carboxyethyl-4,5-dimethylthiophene in 1:1 molar ratio, yielded a potentially tridentate Schiff base viz. 2-[N-(2′-hydroxy-1-naphthylideneamino]-3-carboxyethyl-4,5-dimethylthiophene (HNAT. This ligand formed complexes with lanthanum(III, cerium(III, praseodymium(III, neodymium(III, samarium(III, europium(III and gadolinium(III chloride under well defined conditions. These complexes were characterized through elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, FAB mass and 1H NMR spectral studies. Analytical data showed that all the metal complexes exhibited 1:1 metal–ligand ratio. Molar conductance values adequately confirmed the non-electrolytic nature of the metal complexes. The proton NMR spectral observations supplement the IR spectral assignments. The spectral data revealed that the ligand acted as neutral tridentate, coordinating to the metal ion through azomethine nitrogen, ester carbonyl and naphtholate oxygen without deprotonation. The ligand and its lanthanum(III chloride complex were subjected to XRD studies. The lanthanum(III chloride complex has undergone a facile transesterification reaction. The solid state d.c. electrical conductivity of some selected complexes were measured as a function of temperature, indicating the semiconducting nature of the metal complexes. The antimicrobial activities were examined by disk diffusion method against some pathogenic bacterial and fungal species.

  15. Lanthanide(III) complexes of bis-semicarbazone and bis-imine-substituted phenanthroline ligands: solid-state structures, photophysical properties, and anion sensing.

    Science.gov (United States)

    Nadella, Sandeep; Selvakumar, Paulraj M; Suresh, Eringathodi; Subramanian, Palani S; Albrecht, Markus; Giese, Michael; Fröhlich, Roland

    2012-12-21

    Phenanthroline-based hexadentate ligands L(1) and L(2) bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as La(III), Eu(III), Tb(III), Lu(III), and Y(III) metal ions, were synthesized, and the crystal structures of [ML(1)Cl(3)] (M=La(III), Eu(III), Tb(III), Lu(III), or Y(III)) complexes were determined. Solvent or water molecules act as coligands for the rare-earth metals in addition to halide anions. The big Ln(III) ion exhibits a coordination number (CN) of 10, whereas the corresponding Eu(III), Tb(III), Lu(III), and Y(III) centers with smaller ionic radii show CN=9. Complexes of L(2), namely [ML(2)Cl(3)] (M=Eu(III), Tb(III), Lu(III), or Y(III)) ions could also be prepared. Only the complex of Eu(III) showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine-5'-triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) was found. (31)P NMR spectroscopic studies revealed the formation of a [EuL(2)(ATP)] coordination species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  17. Studies on the Interaction of a Novel 6,6''-bis(1,2,4-triazin-3-yl)- 2,2':6',2''-terpyridine Ligand with Lanthanide(III) Ions and Americium(III)

    International Nuclear Information System (INIS)

    Lewis, Frank W.; Harwood, Laurence M.; Hudson, Michael J.; Drew, Michael G.B.; Modolo, Giuseppe; Sypula, Michal; Desreux, Jean F.; Bouslimani, Nouri; Vidick, Geoffrey

    2010-01-01

    The new solvent extraction reagent 6,6''-bis(5,5,8,8-tetramethyl- 5,6,7,8-tetrahydro-1,2,4-benzo-triazin-3-yl)-2,2':6',2''-terpyridine (CyMe 4 -BTTP) has been synthesized in 4 steps from 2,2':6',2''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1:2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1:1 complexes are formed with lanthanide(III) nitrates where the aliphatic rings are conformationally mobile. An optimized structure of the 1:2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-ray crystallographic structures of the ligand and of its 1:1 complex with Y(III) were also obtained. In the absence of a phase-modifier, CyMe 4 -BTTP in 1-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (±20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid solution. The metal(III) cations are extracted as the 1:1 complex from nitric acid solutions. The generally low distribution coefficients observed compared with the BTBPs arise because the 1:1 complex of CyMe 4 -BTTP is considerably less hydrophobic than the 1:2 complexes formed by the BTBPs. In M(BTTP) 3+ complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal. (authors)

  18. Preparation, spectroscopic studies and X-ray structure of homobinuclear lanthanide(III complexes derived from 2,6-diformyl-4-chlorophénol-bis-(2’-hydroxy-benzoylhydrazone

    Directory of Open Access Journals (Sweden)

    Pepe Marcel Haba

    2006-06-01

    Full Text Available Reaction of the 2,6-diformyl-4-chlorophenol-bis-(2'-hydroxy-benzoylhydrazone with Ln(NO33.nH2O (n = 5 or 6 and Ln = Y, La, Ce, Pr, Nd, Sm, Gd, Dy, Er and Yb produces homobinuclear complexes. These complexes have been characterized by analysis, molar conductance, magnetic measurements, infrared spectral studies and X-ray diffraction. The analytical data showed 1:3 (metal:ligand stoichiometry. Molar conductance measurements in dmf indicate 1:3 electrolytes in all cases. Magnetic moment values are close proximity of the Van Vleck values. IR studies suggest the coordination of the ligand is through the azomethine, the phenolic oxygen atom and the carbonyl oxygen of the hydrazonic moiety. The nitrate ion is also found to be ionic in all the complexes. An X-ray structure determination of [C66H48N12O15Cl3Er2]Cl2NO3.5H2O confirms the conclusion from the spectroscopic studies and show that the erbium is at the centre of a tricapped trigonal prism with coordination number nine. In all the complexes the lanthanide ions have substantially similar coordination.

  19. Determination of stability constants of lanthanide nitrate complex formation using a solvent extraction technique

    International Nuclear Information System (INIS)

    Andersson, S.; Ekberg, C.; Liljenzin, J.O.; Nilsson, M.; Skarnemark, G.; Eberhardt, K.

    2006-01-01

    For lanthanides and actinides, nitrate complex formation is an important factor with respect to the reprocessing of nuclear fuels and in studies that treat partitioning and transmutation/conditioning. Different techniques, including microcalorimetry, various kinds of spectroscopy, ion-exchange and solvent extraction, can be used to determine stability constants of nitrate complex formation. However, it is uncommon that all lanthanides are studied at the same time, using the same experimental conditions and technique. The strengths of the complexes are different for lanthanides and actinides, a feature that may assist in the separation of the two groups. This paper deals with nitrate complex formation of lanthanides using a solvent extraction technique. Trace amounts of radioactive isotopes of lanthanides were produced at the TRIGA Mainz research reactor and at the Institutt for Energiteknikk in Kjeller, Norway (JEEP II reactor). The extraction of lanthanide ions into an organic phase consisting of 2, 6-bis-(benzoxazolyl)-4-dodecyloxylpyridine, 2-bromodecanoic acid and tert-butyl benzene as a function of nitrate ion concentration in the aqueous phase was studied in order to estimate the stability constants of nitrate complex formation. When the nitrate ion concentration is increased in the aqueous phase, the nitrate complex formation starts to compete with the extraction of metal ions. Thus the stability constants of nitrate complex formation can be estimated by measuring the decrease in extraction and successive fitting of an appropriate model. Extraction curves for La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho and Er were obtained and stability constants for their nitrate complex formation were estimated. Tb, Tm, Yb and Lu were also investigated, but no stability constants could be determined. The distribution ratios for the metal ions at low nitrate ion concentration were obtained at the same time, showing the effect of lanthanide contraction resulting in decreasing

  20. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  1. Spectrophotometric study of neptunium (VI) complexation by nitrate ions; Etude par spectrophotometrie de la complexation du neptunium au degre d'oxydation (VI) par les ions nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification (DRRV), 30 - Marcoule (France)]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[Centre Regional Associe de Lyon, 69 (France)

    2000-07-01

    Neptunium(VI) complexation by nitrate ions was investigated by visible and near-infrared spectrophotometry, a technique suitable for observing the appearance and evolution of the species in solution. In the absence of reference spectra for Np(VI) nitrate- complexes, mathematical (factor analysis) tools were used to interpret the spectra. These chemo-metric techniques were first tested and validated on a simpler chemical system: Np(VI)complexation by the SiW{sub 11}O{sub 39}{sup 8-} anion. The test media used to investigate Np(VI) nitrate- complexes generally contain nitrate and perchlorate salts at high concentrations (high ionic strength). Media effects arising from the presence of cations, acidity or the perchlorate ion concentration are therefore significant, and no doubt account for the scattered values of the complexation constants published in the literature. The evolution of the neptunium spectra according to the parameters of the reaction medium illustrated these effects and allowed them to be quantified by a global 'perturbation constant'. In order to minimize the spectrum modifications due to media effects, the neptunium nitrate-complexes were studied at constant ionic strength in weak acidic media (2 mol.kg{sup -1}{sub H2O}) in the presence of sodium salts. The bulk formation constants and the spectrum of the NpO{sub 2}(NO{sub 3}){sup +} complex were determined for ionic strength values of 2.2, 4, 6 and 8 mol.kg{sup -1}{sub H2O}. The constants remained on the same order of magnitude regardless of the ionic strength; the thermodynamic constant {beta}{sub 1}{sup 0} determined from them according to specific interaction theory is thus probably of little significance. Conversely, the bulk constants can be corrected for the effects of the perchlorate ions by taking the global 'perturbation constant' into account. (author)

  2. Nitrate adsorption from aqueous solution using granular chitosan-Fe{sup 3+} complex

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qili [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083 (China); Key Laboratory of Groundwater Cycle and Environment Evolution,China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083 (China); Chen, Nan, E-mail: chennan@cugb.edu.cn [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083 (China); Key Laboratory of Groundwater Cycle and Environment Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083 (China); Feng, Chuanping [School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083 (China); Key Laboratory of Groundwater Cycle and Environment Evolution, China University of Geosciences (Beijing), Ministry of Education, Beijing, 100083 (China); Hu, WeiWu [The Journal Center, China University of Geosciences (Beijing), Beijing, 100083 (China)

    2015-08-30

    Highlights: • Granular chitosan-Fe{sup 3+} complex had high performance for nitrate adsorption. • Granular chitosan-Fe{sup 3+} complex had shorter equilibrium time (1.5 h). • Nitrate adsorption was ascribed to ion exchange and electrostatic attraction. • Granular chitosan-Fe{sup 3+} complex could be regenerated using NaCl solution. - Abstract: In the present study, In order to efficiently remove nitrate, granular chitosan-Fe{sup 3+} complex with high chemical stability and good environmental adaptation was synthesized through precipitation method and characterized using SEM, XRD, BET and FTIR. The nitrate adsorption performance was evaluated by batch experiments. The results indicated that granular chitosan-Fe{sup 3+} complex was an amorphous and mesoporous material. The BET specific surface area and average pore size were 8.98 m{sup 2} g{sup −1} and 56.94 Å, respectively. The point of zero charge was obtained at pH 5. The maximum adsorption capacity reached 8.35 mg NO{sub 3}{sup −}-N g{sup −1} based on Langmuir–Freundlich model. Moreover, no significant change in the nitrate removal efficiency was observed in the pH range of 3.0–10.0. The adverse influence of sulphate on nitrate removal was the most significant, followed by bicarbonate and fluoride, whereas chloride had slightly adverse effect. Adsorption process followed the pseudo-second-order kinetic model, and the experimental equilibrium data were fitted well with the Langmuir–Freundlich and D–R isotherm models. Thermodynamic parameters revealed that nitrate adsorption was a spontaneous and exothermic process. Granular chitosan-Fe{sup 3+} complex could be effectively regenerated by NaCl solution.

  3. Complexes of uranyl nitrate with 2,6-pyridinedicarboxamides: synthesis, crystal structure, and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Alyapyshev, Mikhail; Babain, Vasiliy [ITMO University, 49, Kronverksky pr., 197101, St. Petersburg (Russian Federation); ThreeArc Mining Ltd., 5, Stary Tolmachevskiy per., 115184, Moscow (Russian Federation); Tkachenko, Lyudmila; Lumpov, Alexander [Khlopin Radium Institute, 28, 2nd Murinskiy pr., 194021, St. Petersburg (Russian Federation); Gurzhiy, Vladislav; Zolotarev, Andrey; Dar' in, Dmitriy [St. Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg (Russian Federation); Ustynyuk, Yuriy; Gloriozov, Igor [M.V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Paulenova, Alena [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States)

    2017-05-04

    Two complexes of uranyl nitrate with N,N,N',N'-tetrabutyl-2,6-pyridinedicarboxamide (TBuDPA) and N,N'-diethyl-N,N'-diphenyl-2,6-pyridinedicarboxamide (EtPhDPA) were synthesized and studied. The complex of tetraalkyl-2,6-pyridinedicarboxamide with metal nitrate was synthesized for the first time. XRD analysis revealed the different type of complexation: a 1:1 metal:ligand complex for EtPhDPA and complex with polymeric structure for TBuDPA. The quantum chemical calculations (DFT) confirm that both ligands form the most stable complexes that match the minimal values pre-organization energy of the ligands. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    Science.gov (United States)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  5. Is the stoichiometry of the europium nitrate complexes with neutral organophosphorus extractants be anticipated?

    International Nuclear Information System (INIS)

    Beudaert, Ph.; Lamare, V.; Wipff, G.

    2001-01-01

    Molecular dynamics simulations have been performed in water on europium nitrate complexes with three neutral organophosphorus extractants (TBP, TPPO and CMPO) in order to determine on what criteria it is possible to obtain by simulations the experimental 1:3 stoichiometry in organic solution. This stoichiometry was investigated by progressive saturation of the cation coordination sphere. When the nitrate counter-ions are bidentate, the 1:3 stoichiometry corresponds to the degree of saturation where the interaction energy between europium and water becomes repulsive. Beyond this stoichiometry, complexes with TPPO and CMPO are unstable, although a 1:4 complex with TBP may exist but its formation appears to be energetically unfavored. (author)

  6. Electron spectra and mechanism of complexing of uranyl nitrate in water-acetone solutions

    International Nuclear Information System (INIS)

    Zazhogin, A.A.; Zazhogin, A.P.; Komyak, A.I.; Serafimovich, A.I.

    2003-01-01

    Based on the analysis of the luminescence and electronic absorption spectra, the processes of complexing in an aqueous solution of UO 2 (NO 3 ) 2 ·6H 2 O with small additions of acetone have been studied. In a pure aqueous solution, uranyl exists as the complex UO 2 ·5H 2 O. It is shown that the addition of acetone to the solution leads to the displacement of some water molecules out of the first coordination sphere of uranyl and the formation of the uranyl nitrate dihydrate complexes UO 2 (NO 3 ) 2 ·2H 2 O. It has been established that the stability of these complexes is determined by the decrease in the water activity and in the degree of hydration of uranyl and nitrate, which is the result of the local increase in the concentration of acetone molecules (due to their hydrophobicity) in the regions of the solution where uranyl and nitrate ions are found. The experimental facts supported the mechanism proposed are presented. (authors)

  7. Uranium and lanthanide complexes with the 2-mercapto benzothiazolate ligand: Evidence for a specific covalent binding site in the differentiation of isostructural lanthanide(III) and actinide(III) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Roger, M.; Arliguie, T.; Thuery, P.; Ephritikhine, M. [CEA Saclay, DSM, DRECAM, Serv Chim Mol, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Belkhiri, L. [Univ Mentouri Constantine, Fac Sci, Dept Chim, Lab Chim Mol LACMOM, Constantine 25017, (Algeria); Boucekkine, A. [Univ Rennes 1, CNRS, UMR Sci Chim Rennes 6226, F-35042 Rennes, (France)

    2008-07-01

    Treatment Of [U(Cp*){sub 2}Cl{sub 2}] with KSBT in THF gave [U(Cp*){sub 2}(SBT){sub 2}], which exhibits the usual bent sandwich configuration in the solid state with the two SBT ligands adopting the bidentate ligation mode. The mono-cyclopentadienyl compound [U(Cp*)(SBT){sub 3}] was synthesized by reaction of [U(Cp*)(BH{sub 4}){sub 3}] with KSBT in THF, and its reduction with potassium amalgam in the presence of 18-crown-6 afforded the corresponding anionic complex [K(18-crown-6)(THF){sub 2}][U(Cp*)(SBT){sub 3}]. The lanthanide analogues [K(THF){sub 2}Ln(Cp*)(SBT){sub 3}] were obtained by treating [Ln(BH{sub 4}){sub 3}(THF){sub 3}] with KSBT and KCp*; isomorphous crystals of [K(15-crown-5){sub 2}] [Ln(Cp*)(SBT){sub 3}].THF [Ln = La, Ce, Nd] were formed upon addition of 15-crown-5. Comparison of the crystal structures of the pentagonal bipyramidal complexes [M(Cp*)(SBT){sub 3}]{sup -} reveals that the M-Nax distances are shorter than the M-Neq distances, whatever the metal, the phenomenon being enhanced in the U(III) compound versus the Ln(III) analogues. The structural data obtained by relativistic density functional theory (DFT) calculations reproduce experimental trends. Electronic population and molecular orbital analyses show that the structural differences in the series of [M(Cp*)(SBT){sub 3}]{sup -} anions are related to the uranium 5f orbital-ligand mixing, which is greater than the lanthanide 4f orbital-ligand mixing. Moreover, the consideration of the corresponding bond orders and the analysis of the bonding energy bring to light a strong and specific interaction between the uranium and apical nitrogen atoms. (authors)

  8. Yttrium and lanthanide nitrate complexes of N,N1-bis(4-antipyryl methylidene) ethylenediamine

    International Nuclear Information System (INIS)

    Joseph, Siby; Radhakrishnan, P.K.

    1998-01-01

    Complexes of yttrium and lanthanide nitrates with a Schiff base, N, N 1 -bis(4-antipyrylmethylidene)ethylenediamine (BAME) having the general formula [Ln(BAME) 2 (NO 3 )](NO 3 ) 2 , where Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho and Er have been synthesised and characterised by elemental analyses, molar conductance in non-aqueous solvents, electronic, infrared and proton NMR spectra. BAME acts as a neutral bidentate ligand coordinating through both azomethine nitrogen atoms. One of the nitrate groups is coordinated in a bidentate manner. A coordination number of six may be assigned to the metal ion in these complexes. The covalency parameters evaluated from the solid state electronic spectra suggest weak covalent character of the metal-ligand bond. (author)

  9. Bis(pentamethylene)urea complexes of the lanthanide nitrates: synthesis, characterization, properties

    International Nuclear Information System (INIS)

    Souza, H.K.S. de; Pedrosa, A.M.G.; Marinho, E.P.M.; Batista, M.K.S.; Melo, D.M.A.; Zinner, K.; Zinner, L.B.; Zukerman-Schpector, J.; Vicentini, G.

    2003-01-01

    Lanthanide nitrate complexes of bis(pentamethylene)urea (BPMU) with general formula Ln(NO 3 ) 3 3BPMU, where Ln: La, Nd, Sm, Eu, Ho and Er have been prepared and characterized based on CHN elemental analyses, lanthanide titration with EDTA, molar conductivity, spectroscopic data and thermal studies. The infrared spectra show that ligands (BPMU) are bonded through the carbonyl oxygen, nitrate counter-ions are bidentate linked to the central ions. The structure of the neodymium complex was determined. The crystal is monoclinic, P2 1/c ,Z=4, with the following parameters: a=10.148(1) A, b=21.879(2), c=19.154(2) A, β=104.11(1) deg., V=4124.3(7) A 3 . The polyhedron is a distorted tricapped trigonal prism, coordination number nine

  10. Plutonium (IV) complexation by nitrate in acid solutions of ionic strengths from 2 to 19 molal

    International Nuclear Information System (INIS)

    Berg, J.M.; Veirs, D.K.; Vaughn, R.B.; Cisneros, M.A.; Smith, C.A.

    1997-01-01

    Titrations of Pu(IV) with HNO 3 in a series of aqueous HClO 4 solutions ranging in ionic strength from 2 to 19 molal were followed using absorption spectrophotometry. The Pu 5f-5f spectra in the visible and near IR range change with complex formation. At each ionic strength, a series of spectra were obtained by varying nitrate concentration. Each series was deconvoluted into spectra f Pu 4+ (aq), Pu(NO 3 ) 3+ and Pu(NO 3 ) 2 2+ complexes, and simultaneously their formation constants were determined. When corrected for the incomplete dissociation of nitric acid, the ionic strength dependence of each formation constant can be described by two parameters, β 0 and Δ var-epsilon using the formulae of specific ion interaction theory. The difficulties with extending this analysis to higher nitrate coordination numbers are discussed

  11. Lanthanide(III) complexes with μ-SnSe{sub 4} and μ-Sn{sub 2}Se{sub 6} linkers. Solvothermal syntheses and properties of new Ln(III) selenidostannates decorated with linear polyamine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuzhen; Sun, Peipei; Shen, Yali; Han, Jingyu; Sun, Hui; Jia, Dingxian [Soochow Univ., Suzhou (China). College of Chemistry, Chemical Engineering and Materials Science

    2017-06-01

    New lanthanide-selenidostannate complexes [{La(peha)(Cl)}{La(peha)(NO_3)}(μ-1κ{sup 2}:2κ{sup 2}-SnSe{sub 4})] (1), [H{sub 2}trien][{La(trien)_2}{sub 2}(μ-1-κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}].H{sub 2}O (2) and [{Ln(tepa)(μ-OH)}{sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}.nH{sub 2}O (Ln=Sm(3), Eu(4)) were prepared by solvothermal methods in pentaethylenehexamine (peha), triethylenetetramine (trien) and tetraethylenepentamine (tepa), respectively. Acting as a tetradentate chelating and bridging ligand, μ-1κ{sup 2}:2κ{sup 2}-SnSe{sub 4}, the tetrahedral SnSe{sub 4} unit joins {La(peha)(Cl)}{sup 2+} and {La(peha)(NO_3)}{sup 2+} complex fragments to generate the neutral coordination compound 1. The tetradentate μ-1κ{sup 2}:2κ{sup 2} bridge in 1 represents a new coordination mode for the SnSe{sub 4} tetrahedron. In 2, dinuclear [Sn{sub 2}Se{sub 6}]{sup 4-} anions are formed of SnSe{sub 4} tetrahedra via edge-sharing. One [Sn{sub 2}Se{sub 6}]{sup 4-} anion acts as a bidentate bridging ligand in a μ-1κ:2κ coordination mode to join two {La(trien)_2}{sup 3+} units, and the other [Sn{sub 2}Se{sub 6}]{sup 4-} anion exists as a free charge compensating ion. In 3 and 4, the [Sn{sub 2}Se{sub 6}]{sup 4-} anion connects binuclear [{Ln(tepa)(μ-OH)}{sub 2}]{sup 2+}(Ln=Sm, Eu) units with a bidentate μ-1κ:2κ mode, giving neutral coordination polymers [{Ln(tepa)(μ-OH)}{sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}. The La(2){sup 3+} ion in 1 is in a 10-fold coordination environment of LaN{sub 6}O{sub 2}Se{sub 2}, whereas the La(1){sup 3+} ions in 1 and 2 are in 9-fold coordinated environments forming polyhedra LaN{sub 6}ClSe{sub 2} and LaN{sub 8}Se, respectively. The Sm{sup 3+} and Eu{sup 3+} ions in 3 and 4 are both in an 8-fold coordination environment of LnN{sub 5}O{sub 2}Se. Compounds 1-4 exhibit optical band gaps between 2.21 and 2.42 eV. Their thermal stabilities were investigated by thermogravimetric analyses.

  12. Lanthanide(III) complexes with tridentate Schiff base ligand ...

    African Journals Online (AJOL)

    The X-ray study reveals isotopic Nd/Sm binuclear structures were each metal ion is nine-coordinated in the same fashion. Both metal centers have distorted tricapped trigonal prism geometry, with the Schiff base acting as tridentate ligand. The DPPH· radical scavenging effects of the Schiff base ligand and its Ln(III) ...

  13. Complexes of macrocyclic dibenzo-18-crown-6 polyether with nitrates of some rare earths

    International Nuclear Information System (INIS)

    Gren', A.I.; Zakhariya, N.F.; Vityuk, N.V.; Kalishevich, V.S.

    1984-01-01

    The purpose of the investigation is to obtain and study the structure of complexes of macrocyclic polyether dibenzo-18-crown-6(D-18-C-6) with REE nitrates (Ln, Pr, Nd, Er). Synthesis has been realized by mixing the solutions 2 mol Ln(NO 3 ) 3 and 2 mmol D-18-C-6 into 30-50 ml acetonitrile and boiling during 40-60 minutes. Study on the prepared compounds by means of UV- and IR-spectroscopy proved formation of D-18-C-6 complexes with lanthanide nitrates-Ln(NO 3 ) 3 D-18-C-6. Based on studying IR-spectra a conclusion is made on deformation of D-18-C-6 structure under complexing. Distortion of the ring structure of macrocyclic polyether manifests itself in increase of CH 2 -O-CH 2 bond lengths with simultaneous reduction of four other types of bonds C 6 H 5 -O-CH 2 . Synthesized complexes are stated to have different solubility in acetonitrile which increases in the La 3 ) 3 xD-18-C-6 is noted

  14. Complexes of Th(IV) perchlorates, nitrates and thiocyanates with some heterocyclic bases

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Srivastava, A.K.; Srivastava, M.; Bhakru, N.; Srivastava, T.N.

    1980-01-01

    Some Th(IV) perchlorate complexes of heterocyclic bases have been reported previously. Adducts of Th(IV) nitrates and thiocyanates with some heterocyclic N-oxides have been prepared and physico-chemical properties investigated. Comparatively little is known about the complexes of Th(IV) ion with the ligands containing nitrogen atom acting as electron donating centres. In view of this, the adducts of Th(IV) ion with certain nitrogen heterocyclic bases such as pyridine (Py), α-picoline (Pic), 2-amino pyridine (NH 2 Py), 2:4-lutidine (2,4LN), 2:6-lutidine, (2,6LN), quinoline (Q), isoquinoline (Isoq), 2,2'-bipyridine (Bipy) and 1,10-phenanthroline (Phen) were synthesised and characterised by analysis and IR absorption spectra. The results are presented and discussed. (author)

  15. Preparation, characterization, and kinetics of thermolysis of nickel and copper nitrate complexes with 2,2 Prime -bipyridine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Kapoor, I.P.S. [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009 (India); Singh, Gurdip, E-mail: gsingh4us@yahoo.com [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009 (India); Froehlich, Roland [Institut fuer Organische Chemie, Universitaet Muenster, D-48149 Muenster (Germany)

    2012-10-10

    Graphical abstract: Nickel and copper nitrate complexes with 2,2 Prime -bipyridine, nitrate and water ligands have been prepared and characterized by single crystal X-ray diffraction, FT-IR and CHN analyses. Thermolysis was performed by using TG, DTA and ignition delay measurements. The kinetics of thermolysis were also evaluated. Highlights: Black-Right-Pointing-Pointer Preparation and characterization of Ni and Cu nitrate complexes have been reported. Black-Right-Pointing-Pointer Thermolysis has been carried out using TG-DTA and ignition delay measurements. Black-Right-Pointing-Pointer Their thermal decomposition pathways have been proposed. Black-Right-Pointing-Pointer Oxides residues as end product of thermolysis were revealed by XRD patterns. Black-Right-Pointing-Pointer Kinetics of their isothermal decomposition was evaluated. - Abstract: Nickel and copper nitrate complexes with 2,2 Prime -bipyridine (bipy) as a N donor and nitrate and water as oxygen donor ligands of the general formula [M(NO{sub 3})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 3}](NO{sub 3}), where M = Ni and Cu, have been obtained from the corresponding metal nitrate salts. These complexes were characterized by X-ray crystallography, FT-IR, and CHN analysis. Both the complexes have been found to be six coordinated. Their thermal decomposition behaviour was investigated by TG, DTA, and ignition delay measurements. TG-DTA examinations of these complexes revealed multistep thermal decomposition. The corresponding metal oxide residues obtained after thermolysis were identified from their X-ray diffraction patterns (XRD). Kinetics of isothermal decomposition of the complexes was established from both the model-fitting as well as isoconversional methods.

  16. Influence of nitric acid on the kinetic of complexation of uranyl nitrate extracted by TBP

    International Nuclear Information System (INIS)

    Pushlenkov, M.F.; Zimenkov, V.V.

    1982-02-01

    The effect of nitric acid on the solvatation rate of uranyl nitrate with tributyl phosphate is studied. In the process of mass transfer, it is shown that nitric acid enables the extraction of uranyl nitrate, therefore its concentration in the organic phase exceeds that in equilibrium solution. Subsequently uranyl nitrate ''displaces'' nitric acid. The presence of the acid in aqueous and organic phases affects in a complicated manner the rate of solvatation of uranyl nitrate with tributyl phosphate [fr

  17. Crystal structures of bis- and hexakis[(6,6′-dihydroxybipyridinecopper(II] nitrate coordination complexes

    Directory of Open Access Journals (Sweden)

    Deidra L. Gerlach

    2015-12-01

    Full Text Available Two multinuclear complexes synthesized from Cu(NO32 and 6,6′-dihydroxybipyridine (dhbp exhibit bridging nitrate and hydroxide ligands. The dinuclear complex (6,6′-dihydroxybipyridine-2κ2N,N′[μ-6-(6-hydroxypyridin-2-ylpyridin-2-olato-1:2κ3N,N′:O2](μ-hydroxido-1:2κ2O:O′(μ-nitrato-1:2κ2O:O′(nitrato-1κOdicopper(II, [Cu2(C10H7N2O2(OH(NO32(C10H8N2O2] or [Cu(6-OH-6′-O-bpy(NO3(μ-OH(μ-NO3Cu(6,6′-dhbp], (I, with a 2:1 ratio of nitrate to hydroxide anions and one partially deprotonated dhbp ligand, forms from a water–ethanol mixture at neutral pH. The hexanuclear complex bis(μ3-bipyridine-2,2′-diolato-κ3O:N,N′:O′tetrakis(6,6′-dihydroxybipyridine-κ2N,N′tetrakis(μ-hydroxido-κ2O:O′bis(methanol-κOtetrakis(μ-nitrato-κ2O:O′hexacopper(II, [Cu6(C10H6N2O22(CH4O2(OH4(NO34(C10H8N2O24] or [Cu(6,6′-dhbp(μ-NO32(μ-OHCu(6,6′-O-bpy(μ-OHCu(6,6′dhbp(CH3OH]2, (II, with a 1:1 NO3–OH ratio and two fully protonated and fully deprotonated dhbp ligands, was obtained by methanol recrystallization of material obtained at pH 3. Complex (II lies across an inversion center. Complexes (I and (II both display intramolecular O—H...O hydrogen bonding. Intermolecular O—H...O hydrogen bonding links symmetry-related molecules forming chains along [100] for complex (I with π-stacking along [010] and [001]. Complex (II forms intermolecular O—H...O hydrogen-bonded chains along [010] with π-stacking along [100] and [001].

  18. The gas-phase bis-uranyl nitrate complex ((UO2)2(NO3)5)-: infrared spectrum and structure

    International Nuclear Information System (INIS)

    Groenewold, G.S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIlwain, Michael E.

    2011-01-01

    The infrared spectrum of the bis-uranyl nitrate complex ((UO 2 ) 2 (NO 3 ) 5 ) - was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v 3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex ((UO 2 ) 2 (NO 3 ) 5 ) - compared to the mono-complex (UO 2 (NO 3 ) 3 ) - , as indicated by a higher O-U-O asymmetric stretching (v 3 ) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v 3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  19. The gas-phase bis-uranyl nitrate complex ((UO2)2(NO3)5)-: infrared spectrum and structure

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; van Stipdonk, Michael J.; Oomens, Jos; de Jong, Wibe; McIlwain, Michael E.

    2011-01-01

    The infrared spectrum of the bis-uranyl nitrate complex ((UO 2 ) 2 (NO 3 ) 5 ) - was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate nu3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex ((UO 2 ) 2 (NO 3 ) 5 ) - compared to the mono-complex (UO 2 (NO 3 ) 3 ) - , as indicated by a higher O-U-O asymmetric stretching (nu3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the ν 3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The structure was calculated using density functional theory (B3LYP functional), which produced a structure in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  20. Dioxouranium (VI) nitrate complexes of some schiff bases derived from furfural and 2-acetylfuran with certain amino compounds

    International Nuclear Information System (INIS)

    Sobhanadevi, G.; Indrasenan, P.

    1989-01-01

    Dioxouranium(VI) nitrate complexes with 10 schiff bases obtained by the condensation of furfural and 2-acetylfuran with isonicotinoylhydrazine, benzoylhydrazine, salicyloylhydrazine, anthranilic acid, and 4-aminoantipyrine have been synthesized and characterized on the basis of IR spectra, conductance, magnetic, elemental analyses and molecular weight data. (author). 1 tab., 10 refs

  1. Stability constant determinations for technetium (IV) complexation with selected amino carboxylate ligands in high nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Omoto, Trevor; Wall, Nathalie A. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2017-10-01

    The stability constants for Tc(IV) complexation with the ligands IDA, NTA, HEDTA, and DTPA were determined in varied nitrate concentrations using liquid-liquid extraction methods. The determined log β{sub 101} stability constants at 0.5 M NaNO{sub 3} were found to be 9.2±0.3, 10.3±0.3, and 15.3±0.3 for IDA, NTA, and HEDTA, respectively. The log β{sub 111} stability constant for DTPA was determined to be 22.0±0.6. These determined stability constants show a slight decrease in magnitude as a function of increasing NaNO{sub 3} concentration. These stability constants were used to model the total dissolution of Tc(IV) in acidic aqueous solutions in the presence of each ligand. The results of these predictive models indicate that amino carboxylic ligands have a high potential for increasing the aqueous dissolution of Tc(IV); at pH 2.3, 0.01 M ligand yield dissolved Tc(IV) concentrations of 1.42.10{sup -5} M, 1.33.10{sup -5} M, 6.07.10{sup -6} M, 9.65.10{sup -7} M, for DTPA, HEDTA, NTA, and IDA, respectively.

  2. Critical Parameters of Complex Geometries of Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    J. B. Briggs (INEEL POC); R. E. Rothe

    1999-06-14

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  3. Critical Parameters of Complex Geometry Intersecting Cylinders Containing Uranyl Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Robert Emil; Briggs, Joseph Blair

    1999-06-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a "tree") having long, thin arms (or "branches") extending up to four directions off the column. Arms are equally spaced from one another in vertical planes; and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves when each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year.

  4. Critical Parameters of Complex Geometries of Intersecting Cylinders Containing Uranyl Nitrate Solution

    International Nuclear Information System (INIS)

    Rothe, R. E.

    1999-01-01

    About three dozen previously unreported critical configurations are presented for very complex geometries filled with high concentration enriched uranyl nitrate solution. These geometries resemble a tall, thin Central Column (or trunk of a ''tree'') having long, thin arms (or ''branches'') extending up to four directions off the column. Arms are equally spaced from one another in vertical planes, and that spacing ranges from arms in contact to quite wide spacings. Both the Central Column and the many different arms are critically safe by themselves with each, alone, is filled with fissile solution; but, in combination, criticality occurs due to the interactions between arms and the column. Such neutronic interactions formed the principal focus of this study. While these results are fresh to the nuclear criticality safety industry and to those seeking novel experiments against which to validate computer codes, the experiments, themselves, are not recent. Over 100 experiments were performed at the Rocky Flats Critical Mass Laboratory between September, 1967, and February of the following year

  5. Nitrates of rare earths

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Pushkina, L.Ya.

    1984-01-01

    The systematization of experimental data with account of the last achievements in the field of studying the RE nitrate properties is realized. The methods of production, solubility in aqueous solutions structure, thermodynamic characteristics and thermal stability of nitrate hydrates, RE anhydrous and basic nitrates are considered. The data on RE nirtrate complexing in aqueous solutions are given. Binary nitrates, nitrate solvates and RE nitrate adducts with organic compounds are described. The use of RE nitrates in the course of RE production, in the processes of separation and fine cleaning of RE preparations is considered

  6. Preparation and luminescence of silica aerogel composites containing an europium (III) phenanthroline nitrate complex

    Energy Technology Data Exchange (ETDEWEB)

    Gutzov, Stoyan, E-mail: sgutzov@chem.uni-sofia.bg [University of Sofia “St. Kliment Ohridski”, Department of Physical Chemistry, J. Bourchier Blvd. 1, 1164 Sofia (Bulgaria); Danchova, Nina; Kirilova, Rada; Petrov, Vesselin [University of Sofia “St. Kliment Ohridski”, Department of Physical Chemistry, J. Bourchier Blvd. 1, 1164 Sofia (Bulgaria); Yordanova, Stanislava [University of Sofia “St. Kliment Ohridski”, Department of Organic Chemistry, J. Bourchier Blvd. 1, 1164 Sofia (Bulgaria)

    2017-03-15

    A simple two step procedure for the functionalization of hydrophobic silica aerogel microgranules with europium ions and/or 1,10 - phenanthroline is demonstrated. The activation procedure is based on soaking aerogels in a europium nitrate solution, followed by functionalization with 1,10 – phenanthroline. The functionalized materials display strong red or blue emission at UV-excitation, coming from the formation of [Eu(phen){sub 2}](NO{sub 3}){sub 3} or Si(IV)– 1,10-phenathroline complexes in the porous system of the aerogels. The most probable site symmetry of the europium cation is C{sub 2v} confirmed by luminescence spectra analysis. Room temperature diffuse reflectance spectra and excitation/luminescence spectra are used to describe the optical properties of the hybrid composites. Excitation spectra prove an efficient energy transfer between 1,10 – phenanthroline and the Eu{sup 3+} ion. - Graphical abstract: An effective activation procedure for functionalization of silica aerogel granules with [Eu(phen){sub 2}](NO{sub 3}){sub 3} and/or 1,10 – phenanthroline /phen/ has been demonstrated in order to obtain red or blue emitting materials. Luminescence spectra (excitation at 355 nm) of functionalized aerogel granules: 1 – SiO{sub 2}:0.18phen; 2 – [Eu(phen){sub 2}](NO{sub 3}){sub 3}; 3– SiO{sub 2}:0.007Eu(phen){sub 2}(NO{sub 3}){sub 3}. The Eu{sup 3+} f-f {sup 5}D{sub 0} →{sup 7}F {sub 0,1,2,3,4} emission transitions are denoted as 0-0, 0-1, 0-2, 0-3, 0-4. The most probable site symmetry of Eu3{sup +} ion is C{sub 2v}.

  7. On the complexing of phosphoric acid vinyl esters with praseodymium (3) and europium (3) nitrates in acetonitrile

    International Nuclear Information System (INIS)

    Goryushko, A.G.; Gololobov, Yu.G.; Boldeskul, A.E.; Oganesyan, A.S.; Yartsev, V.G.

    1990-01-01

    By the methods of electron, IR and PMR spectroscopy interaction of vinyl esters of phosphoric acid with praseodymium (3) and europium (3) nitrates in acetonitrile solutions has been studied. It is shown that the character of metal-ligand interaction is determined by chemical nature of the ligands: for a compound of ionic structure partially covalent bond is formed, and for a compound of betaine structure the interaction has mainly dipole character. Addition of molecule with betaine structure to praseodymium nitrate causes a change in geometry of Pr 3+ close surrounding and increase in its coordination number. The possibility of formation of the complex with metal-ligand ratio equal to 1:3 is shown

  8. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  9. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  10. Spectral characterization and DNA binding properties of lanthanide(III)

    African Journals Online (AJOL)

    Spectral data of complexes suggest that the ligand binds metal ion through pyridine- nitrogen, azomethine-nitrogen and amido-oxygen donor atoms. Electrochemical behaviour of metal complexes was investigated by using cyclic voltammetry. The complexes undergo quasi-reversible one electron reduction. The binding ...

  11. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2016-01-01

    Silver nitrate hexamethylenetetramine [Ag(NO 3 )·N 4 (CH 2 ) 6 ] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H 2 O 2 electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO 3 )·N 4 (CH 2 ) 6 ] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO 3 )·N 4 (CH 2 ) 6 ] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  12. Extraction of Uranium (VI) Nitrate Complexes By Adogen 464. Vol. 3

    International Nuclear Information System (INIS)

    El-Yamani, I.S.; Abd El-Messieh, E.N.

    1996-01-01

    Long-chain amines are frequently used for the extraction of actinides and offer several advantages for their use in the reprocessing of high burn-up nuclear fuels. The present investigation was undertaken to obtain some information on the extraction of Uranium (VI)by adogen 464 from nitrate medium. Extraction parameters studied include: acidity, salting agent, metal and extractant concentrations, diluent type, and temperature. Extraction mechanism was proposed on the basis of results obtained. Best results were attained at 6 M H N O 3 and sodium nitrate was found to increase appreciably the extraction. It was infrared that extraction was dominated by solvation, and ion exchange reaction mechanisms at lower (<6 M) and higher acidities, respectively. As far as diluents are concerned, the dielectric constant, solvation power and donor characteristics were used to explain the variation in the extraction efficiency of the diluents. Kerosene, the most economic particularly when used on industrial scale, was recommended as optimal diluent. Extractability decreases markedly with rise of temperature, suggesting that the extraction behaviour is exothermic; the thermodynamic functions were also calculated and discussed. A method for the separation of uranium (VI) from some fission products existing in high liquid waste was outlined. 3 figs., 2 tabs

  13. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    Energy Technology Data Exchange (ETDEWEB)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver sponges exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.

  14. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    However, the effects of potassium nitrate were higher than sodium nitrate, which was due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism. In conclusion, potassium nitrate has better effect on the nitrate assimilatory ...

  15. spectral characterization and dna binding properties of lanthanide(iii)

    African Journals Online (AJOL)

    nitrogen, azomethine-nitrogen and amido-oxygen donor atoms. .... (singlet 3 H), are respectively assigned to pyridine, isonicotine, -NH and methyl ... In the electronic spectra of complexes a broad peak is observed in the high energy region at.

  16. Structural studies of lanthanide nitrate-N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxyamide complexes

    International Nuclear Information System (INIS)

    Fujiwara, Asako; Nakano, Yoshiharu; Yaita, Tsuyoshi; Okuno, Kenji

    2008-01-01

    The tridentate ligand N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxyamide (DMDPhPDA) and the corresponding lanthanum complex [La(NO 3 ) 3 (DMDPhPDA) 2 ] have been prepared and structurally characterised. The crystal structure of DMDPhPDA shows syn-anti conformation. In the lanthanum complex, two DMDPhPDA molecules coordinated to La(III) in a tridentate fashion and to three nitrate ions in a bidentate fashion make the lanthanum atom 12-coordinate. The crystal structure of [La(NO 3 ) 3 (DMDPhPDA) 2 ] has a C 2 symmetry. The stability constants determined by spectrophotometric titration suggest that [Ln(DMDPhPDA) 2 ] 3+ is the primary product in CH 3 CN solution and [Ln(DMDPhPDA) 3 ] 3+ is difficult to form. However, [Ln(DMDPhPDA) 2 ] 3+ could not be distinguished in 1 H NMR spectra. The 1 H NMR titration results imply that a fast ligand exchange process takes place

  17. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  18. Electrochemical studies of plutonium(IV) complexes in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Kim, Seong-Yun; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    Electrochemistry has been used to investigate the behavior of plutonium (IV) in 1-7 M HNO 3 solutions. These Pu(IV) complexes were found to be reduced quasi-reversibly to Pu(III) species. The formal redox potentials (E 0 ) for Pu(IV)/Pu(III) couples were determined to be +0.721, +0.712, +0.706, +0.705, +0.704, 0.694, and +0.696 V (vs. Ag/AgCl(SSE)) for Pu(IV) complexes in 1, 2, 3, 4, 5, 6, 7 M HNO 3 solutions, respectively. These results indicate that the reduction product of Pu(IV) is Pu(III), which is considerably stable in HNO 3 solution. (author)

  19. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    International Nuclear Information System (INIS)

    Eliseeva, Svetlana V.; Golovach, Iurii P.; Liasotskyi, Valerii S.; Antonovich, Valery P.; Petoud, Stéphane; Meshkova, Svetlana B.

    2016-01-01

    Most of the existing optical methods for Cu II detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of Cu II ions based on both visible (Tb III , Eu III ) and near-infrared (Nd III , Yb III ) emission. Quantum yields of the characteristic Ln III emission signals increases by at least two-orders of magnitude upon addition of Cu II into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu II ions does not significantly affect the energy positions of the singlet (32,260 cm −1 ) and triplet (25,640–25,970 cm −1 ) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu II to Cu I has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu II over other transition metal ions: the addition of divalent Zn II , Cd II , Pd II , Ni II , Co II or trivalent Fe III , Ga III , In III ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu II results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the

  20. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Eliseeva, Svetlana V., E-mail: svetlana.eliseeva@cnrs-orleans.fr [Centre de Biophysique Moléculaire CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2 (France); Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans (France); Golovach, Iurii P.; Liasotskyi, Valerii S. [I.I.Mechnikov Odessa National University, 2 Dvoryanska street, 65082 Odessa (Ukraine); Antonovich, Valery P. [A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine); Petoud, Stéphane, E-mail: stephane.petoud@inserm.fr [Centre de Biophysique Moléculaire CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2 (France); Meshkova, Svetlana B., E-mail: s_meshkova@ukr.net [A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine)

    2016-03-15

    Most of the existing optical methods for Cu{sup II} detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a 'turn-on' lanthanide(III)-based molecular probe for the specific detection of Cu{sup II} ions based on both visible (Tb{sup III}, Eu{sup III}) and near-infrared (Nd{sup III}, Yb{sup III}) emission. Quantum yields of the characteristic Ln{sup III} emission signals increases by at least two-orders of magnitude upon addition of Cu{sup II} into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu{sup II} ions does not significantly affect the energy positions of the singlet (32,260 cm{sup −1}) and triplet (25,640–25,970 cm{sup −1}) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu{sup II} to Cu{sup I} has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu{sup II} over other transition metal ions: the addition of divalent Zn{sup II}, Cd{sup II}, Pd{sup II}, Ni{sup II}, Co{sup II} or trivalent Fe{sup III}, Ga{sup III}, In{sup III} ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu{sup II} results in a 20- to 30-times

  1. Study of the formation of complexes of nitrosyl-rhutenium nitrates with thiourea

    International Nuclear Information System (INIS)

    Floh, B.

    1977-01-01

    A method for the treatment of spent uranium fuel is presented, based on the Purex process using thiourea to increase the ruthenium decontamination factor. Thiourea exhibits a strong tendency for the formation of coordination compounds in acidic media. This tendency serves as a basis to transform nitrosyl-ruthenium species into Ru/SC(NH)(NH 2 )/ 2+ and Ru/SC(NH)(NH 2 )/ 3 complexes which are unextractable by TBP-varsol. The best conditions for the ruthenium-thiourea complex formation were found to be: thiourea-ruthenium ratio (mass/mass) close to 42, at 75 0 C, 30 minutes reaction time and aging period of 60 minutes. The ruthenium decontamination factor for a single uranium extraction are ca. 80-100, not interfering with extraction of actinides. These values are rather high in comparison to those obtained using the conventional Purex process (e.g. F.D. sub(Ru)=10). For this reason, the method developed here is suitable for the treatment of spent uranium fuels. Thiourea (100 g/l) scrubbing experiments of ruthenium, partially co-extracted with actinides, confirmed the possibility of its removal from the extract. With this procedure a decontamination greater than 83,5% for ruthenium as fission product is obtained in two stages [pt

  2. Enhanced electrical stability of nitrate ligand-based hexaaqua complexes solution-processed ultrathin a-IGZO transistors

    Science.gov (United States)

    Choi, C.; Baek, Y.; Lee, B. M.; Kim, K. H.; Rim, Y. S.

    2017-12-01

    We report solution-processed, amorphous indium-gallium-zinc-oxide-based (a-IGZO-based) thin-film transistors (TFTs). Our proposed solution-processed a-IGZO films, using a simple spin-coating method, were formed through nitrate ligand-based metal complexes, and they were annealed at low temperature (250 °C) to achieve high-quality oxide films and devices. We investigated solution-processed a-IGZO TFTs with various thicknesses, ranging from 4 to 16 nm. The 4 nm-thick TFT films had smooth morphology and high-density, and they exhibited excellent performance, i.e. a high saturation mobility of 7.73  ±  0.44 cm2 V-1 s-1, a sub-threshold swing of 0.27 V dec-1, an on/off ratio of ~108, and a low threshold voltage of 3.10  ±  0.30 V. However, the performance of the TFTs degraded as the film thickness was increased. We further performed positive and negative bias stress tests to examine their electrical stability, and it was noted that the operating behavior of the devices was highly stable. Despite a small number of free charges, the high performance of the ultrathin a-IGZO TFTs was attributed to the small effect of the thickness of the channel, low bulk resistance, the quality of the a-IGZO/SiO2 interface, and high film density.

  3. Magneto, spectral and thermal studies of lanthanum and lanthanide(3) bromide and nitrate complexes of 2,2'bipyridine mono N-oxide

    International Nuclear Information System (INIS)

    Agarwal, R.K.

    1988-01-01

    Lanthanide(3) bromide and nitrate complexes of 2,2'-bipyridine mono N-oxide (BipyNO) having the composition Ln(BipyNO) 3 Br 3 and Ln(BipyNO) 2 (NO 3 ) 3 (Ln=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Yb) have been prepared and characterized by means of conductance, molecular weight, magnetic and spectral studies. The ligand acts as a bidentate O,N-chelating agent. The coordination number nine or ten for lanthanide ions has been assigned to these complexes. 3 tabs., 25 refs. (author)

  4. Probability distribution functions of δ15N and δ18O in groundwater nitrate to probabilistically solve complex mixing scenarios

    Science.gov (United States)

    Chrystal, A.; Heikoop, J. M.; Davis, P.; Syme, J.; Hagerty, S.; Perkins, G.; Larson, T. E.; Longmire, P.; Fessenden, J. E.

    2010-12-01

    Elevated nitrate (NO3-) concentrations in drinking water pose a health risk to the public. The dual stable isotopic signatures of δ15N and δ18O in NO3- in surface- and groundwater are often used to identify and distinguish among sources of NO3- (e.g., sewage, fertilizer, atmospheric deposition). In oxic groundwaters where no denitrification is occurring, direct calculations of mixing fractions using a mass balance approach can be performed if three or fewer sources of NO3- are present, and if the stable isotope ratios of the source terms are defined. There are several limitations to this approach. First, direct calculations of mixing fractions are not possible when four or more NO3- sources may be present. Simple mixing calculations also rely upon treating source isotopic compositions as a single value; however these sources themselves exhibit ranges in stable isotope ratios. More information can be gained by using a probabilistic approach to account for the range and distribution of stable isotope ratios in each source. Fitting probability density functions (PDFs) to the isotopic compositions for each source term reveals that some values within a given isotopic range are more likely to occur than others. We compiled a data set of dual isotopes in NO3- sources by combining our measurements with data collected through extensive literature review. We fit each source term with a PDF, and show a new method to probabilistically solve multiple component mixing scenarios with source isotopic composition uncertainty. This method is based on a modified use of a tri-linear diagram. First, source term PDFs are sampled numerous times using a variation of stratified random sampling, Latin Hypercube Sampling. For each set of sampled source isotopic compositions, a reference point is generated close to the measured groundwater sample isotopic composition. This point is used as a vertex to form all possible triangles between all pairs of sampled source isotopic compositions

  5. Crystal structures of two mononuclear complexes of terbium(III nitrate with the tripodal alcohol 1,1,1-tris(hydroxymethylpropane

    Directory of Open Access Journals (Sweden)

    Thaiane Gregório

    2017-02-01

    Full Text Available Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris(hydroxymethylpropane (H3LEt, C6H14O3 were prepared from Tb(NO33·5H2O and had their crystal and molecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris(hydroxymethylpropane]terbium(III nitrate dimethoxyethane hemisolvate, [Tb(NO32(H3LEt2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-antiprismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-molecule of dimethoxyethane (completed by a crystallographic twofold rotation axis is also present. In product aquanitratobis[1,1,1-tris(hydroxymethylpropane]terbium(III dinitrate, [Tb(NO3(H3LEt2(H2O](NO32, 2, one bidentate nitrate ion and one water molecule are bound to the nine-coordinate terbium(III centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water molecule was found in either of the crystal structures and, only in the case of 1, dimethoxyethane acts as a crystallizing solvent. In both molecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and intermolecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  6. Determination of stability constants of K and Cs nitrate complex with dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 in isopropanol aqueous solutions

    International Nuclear Information System (INIS)

    Myasoedova, T.G.; Ponomareva, A.V.; Zagorets, P.A.; Filippov, E.A.

    1984-01-01

    Total stability constants of K and Cs nitrate complexes with dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 in isopropanol aqueous solutions were determined by the method of low-frequency contact conductometry. Clearly defined K/Cs selectivity is observed for the system with dibenzo-18-crown-6. It is shown that lgβ depends on permittivity of the solvent. The decrease of permittivity of isopropanol aqueous solutions results in reduction of K/Cs selectivity of DB18C6

  7. Determination of stability constants of K and Cs nitrate complex with dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 in isopropanol aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Myasoedova, T G; Ponomareva, A V; Zagorets, P A; Filippov, E A [Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR)

    1984-08-01

    Total stability constants of K and Cs nitrate complexes with dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 in isopropanol aqueous solutions were determined by the method of low-frequency contact conductometry. Clearly defined K/Cs selectivity is observed for the system with dibenzo-18-crown-6. It is shown that lg..beta.. depends on permittivity of the solvent. The decrease of permittivity of isopropanol aqueous solutions results in reduction of K/Cs selectivity of DB18C6.

  8. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  9. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  10. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  11. Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Kai [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States); Zuo, Yuegang, E-mail: yzuo@umassd.edu [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 (United States)

    2013-10-01

    The photochemical behavior of a natural estrogen estriol (E3) was investigated in the presence of the natural photoreactive constituents including nitrate, iron(III), and humic acid (HA). The direct photodegradation of E3 increased with increasing incident light intensity, decreasing initial concentration of E3 and increasing pH in the range of 6.0 to 10.0. The direct photodegradation of the deprotonated speciation of E3 was much faster than that of its protonated form. The presence of NO{sub 3}{sup −} and iron(III) promoted the photochemical loss of E3 in the aqueous solutions. The quenching experiments verified that hydroxyl radicals were predominantly responsible for the indirect photodegradation of E3. HA could act as photosensitizer, light screening agent and free radical quencher. For the first time, the enhancement or inhibition effect of HA on photodegradation was found to depend on the irradiation light intensity. HA enhanced the photodegradation of E3 under sunlight or weak irradiation of simulated sunlight. In contrast, under high irradiation light intensity, HA inhibited the photodegradation. The hydroxylation photoproducts were identified using GC-MS and the photodegradation pathway of E3 was proposed. - Highlights: • Direct and indirect photodegradation of estriol (E3) were first investigated. • The direct photodegradation of E3 increased with increasing pH of the solutions. • The light intensity affected the photosensitization effect of humic acid. • Nitrate and iron(III) promoted the photodecomposition of estriol in water. • The ·OH oxidation products of E3 was first determined.

  12. Investigation of Uranyl Nitrate Ion Pairs Complexed with Amide Ligands using Electrospray Ionization Ion Trap Mass Spectrometry and Density Functional Theory

    International Nuclear Information System (INIS)

    Groenewold, Gary S.; Dinescu, Adriana; Benson, Michael T.; Gresham, Garold L.; van Stipdonk, Michael J.

    2011-01-01

    Ion populations formed from electrospray of uranyl nitrate solutions containing different amides vary depending on ligand nucleophilicity and steric crowding at the metal center. The most abundant species were ion pair complexes having the general formula (UO2(NO3)(amide)n=2,3)+, and complexes containing the amide conjugate base, reduced uranyl UO2+, and a 2+ charge were also formed. The formamide experiment produced the greatest diversity of species that stems from weaker amide binding leading to dissociation and subsequent solvent coordination or metal reduction. Experiments using methyl formamide, dimethyl formamide, acetamide, and methyl acetamide produced ion pair and doubly charged complexes that were more abundant, and less abundant complexes containing solvent or reduced uranyl. This pattern is reversed in the dimethylacetamide experiment, which displayed reduced doubly charged complexes and augmented reduced uranyl complexes. DFT investigations of the tris-amide ion pair complexes showed that inter-ligand repulsion distorts the amide ligands out of the uranyl equatorial plane, and that complex stabilities do not increase with increasing amide nucleophilicity. Elimination of an amide ligand largely relieves the interligand repulsion, and the remaining amide ligands become closely aligned with the equatorial plane in the structures of the bis-amide ligands. The studies show that the phenomenological distribution of coordination complexes in a metal-ligand electrospray experiment is a function of both ligand nucleophilicity and interligand repulsion, and that the latter factor begins exerting influence even in the case of relatively small ligands like the substituted methyl-formamide and methyl-acetamide ligands.

  13. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  14. Neodymium nitrate-tetraethylammonium nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.

    1987-01-01

    Method of isothermal cross sections at 25 and 50 deg C is used to study solid phase solubility in the neodymium nitrate-tetraethylammonium nitrate-water system. Crystallization fields of congruently soluble compounds, the salt component ratio being 1:1:4H 2 O and 1:3:2H 2 O are detected. New solid phases are preparatively obtained and subjected to chemical, differential thermal, IR spectroscopic and X-ray diffraction analyses. The obtained compounds are acido-complexes in which nitrate groups enter into the first coordination sphere

  15. Reaction of uranyl nitrate with carboxylic di-acids under hydrothermal conditions. Crystal structure of complexes with L(+)-tartaric and oxalic acids

    International Nuclear Information System (INIS)

    Thuery, P.

    2007-01-01

    L(+)-tartaric acid reacts with uranyl nitrate in the presence of KOH, under mild hydrothermal conditions, to give the complex [UO 2 (C 4 H 4 O 6 )(H 2 O)] (1), the first uranyl tartrate to be crystallographically characterized. Each tartrate ligand bridges three uranyl ions, one of them in chelating fashion through proximal carboxylate and hydroxyl groups. The resulting assemblage is two-dimensional, with the uranyl pentagonal bipyramidal coordination polyhedra separated from one another. Prolonged heating of an uranyl tartrate solution resulted in oxidative cleavage of the acid and formation of the oxalate complex [(UO 2 ) 2 (C 2 O 4 ) 2 (OH)Na(H 2 O) 2 ] (2). The bis-bidentate oxalate and bridging hydroxide groups ensure the formation of sheets with corner-sharing uranyl pentagonal bipyramidal coordination polyhedra, in which six-membered metallacycles encompass the sodium ions. These sheets are assembled into a three-dimensional framework through further oxo-bonding of the sodium ions. (authors)

  16. Studies on trivalent lanthanide complexes of bis-vanillin p-phenylenediamine

    International Nuclear Information System (INIS)

    Shahma, Abu; Ahmad, Naseer

    1983-01-01

    The coordination interaction of lanthanide(III) chlorides with bis-vanillin o-phenylenediamine was studied by Ansari and Ahmad (1977). It was thought fruitful to compare these with the complexes of trivalent lanthanide ions with bis-vanillin p-phenylenediamine. The newly synthesized complexes were subjected to elemental, thermogravimetric and differential thermal analyses and their melting points, magnetic susceptibilities, molar conductances determined and infrared and electronic spectra taken. (author)

  17. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  18. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    CERN Document Server

    Modarress, H

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo sub 3) and electron donor benzylcyanide (C sub 6 H sub 5 -CH sub 2 -C ident to N) in solvent ethyleneglycol [(CH sub 2 OH) sub 2] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 sup d ig sup C. The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO sub 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the a...

  19. Differentiation among Multiple Sources of Anthropogenic Nitrate in a Complex Groundwater System using Dual Isotope Systematics: A case study from Mortandad Canyon, New Mexico

    Science.gov (United States)

    Larson, T. E.; Perkins, G.; Longmire, P.; Heikoop, J. M.; Fessenden, J. E.; Rearick, M.; Fabyrka-Martin, J.; Chrystal, A. E.; Dale, M.; Simmons, A. M.

    2009-12-01

    The groundwater system beneath Los Alamos National Laboratory has been affected by multiple sources of anthropogenic nitrate contamination. Average NO3-N concentrations of up to 18.2±1.7 mg/L have been found in wells in the perched intermediate aquifer beneath one of the more affected sites within Mortandad Canyon. Sources of nitrate potentially reaching the alluvial and intermediate aquifers include: (1) sewage effluent, (2) neutralized nitric acid, (3) neutralized 15N-depleted nitric acid (treated waste from an experiment enriching nitric acid in 15N), and (4) natural background nitrate. Each of these sources is unique in δ18O and δ15N space. Using nitrate stable isotope ratios, a mixing model for the three anthropogenic sources of nitrate was established, after applying a linear subtraction of the background component. The spatial and temporal variability in nitrate contaminant sources through Mortandad Canyon is clearly shown in ternary plots. While microbial denitrification has been shown to change groundwater nitrate stable isotope ratios in other settings, the redox potential, relatively high dissolved oxygen content, increasing nitrate concentrations over time, and lack of observed NO2 in these wells suggest minimal changes to the stable isotope ratios have occurred. Temporal trends indicate that the earliest form of anthropogenic nitrate in this watershed was neutralized nitric acid. Alluvial wells preserve a trend of decreasing nitrate concentrations and mixing models show decreasing contributions of 15N-depleted nitric acid. Nearby intermediate wells show increasing nitrate concentrations and mixing models indicate a larger component derived from 15N-depleted nitric acid. These data indicate that the pulse of neutralized 15N-depleted nitric acid that was released into Mortandad Canyon between 1986 and 1989 has infiltrated through the alluvial aquifer and is currently affecting two intermediate wells. This hypothesis is consistent with previous

  20. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buelow, S.J.; Robinson, J.M.

    1998-01-01

    'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'

  1. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    International Nuclear Information System (INIS)

    Modarress, H.; Shekaari, H.

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo 3 ) and electron donor benzylcyanide (C 6 H 5 -CH 2 -C≡N) in solvent ethyleneglycol [(CH 2 OH) 2 ] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 d ig C . The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the appropriate formation constant should be expressed in terms of activities. Also an equation have been derived to eliminate the undesirable effects on the nuclear magnetic resonance measured chemical shifts in calculating the constant. The selection of concentration domains and its effect on the calculated formation constant has been discussed and the new equation is modified to be independent of the concentration domains. In this equation the solution nationalised, by considering coefficients, have been taken in to account

  2. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Buelow, S.

    1997-01-01

    'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

  3. Aminoethyl nitrate – the novel super nitrate?

    Science.gov (United States)

    Bauersachs, Johann

    2009-01-01

    Long-term use of most organic nitrates is limited by development of tolerance, induction of oxidative stress and endothelial dysfunction. In this issue of the BJP, Schuhmacher et al. characterized a novel class of organic nitrates with amino moieties (aminoalkyl nitrates). Aminoethyl nitrate was identified as a novel organic mononitrate with high potency but devoid of induction of mitochondrial oxidative stress. Cross-tolerance to nitroglycerin or the endothelium-dependent agonist acetylcholine after in vivo treatment was not observed. Like all nitrates, aminoethyl nitrate induced vasorelaxation by activation of soluble guanylate cyclase. Thus, in contrast to the prevailing view, high potency in an organic nitrate is not necessarily accompanied by induction of oxidative stress or endothelial dysfunction. This work from Daiber's group is an important step forward in the understanding of nitrate bioactivation, tolerance phenomena and towards the development of better organic nitrates for clinical use. PMID:19732062

  4. Nitrate metabolism in the gromiid microbial universe

    DEFF Research Database (Denmark)

    Høgslund, Signe; Risgaard-Petersen, Nils; Cedhagen, Tomas

    enclose and regulate a small biogeochemical universe within their cell. Their transparent proteinaceous cell wall surrounds a complex matrix consisting of sediment, bacteria and nitrate which is concentrated to hundreds of mM in the gromiid cell. The nitrate is respired to dinitrogen, but in contrast...

  5. Molecular dynamics simulations of ter-pyridine and bis-triazinyl-pyridine complexes with lanthanide cations; Etude de dynamique moleculaire de complexes de la bis-triazinyl-pyridine (BTP) et de la terpyridine avec des lanthanides(3)

    Energy Technology Data Exchange (ETDEWEB)

    Guilbaud, Ph. [CEA Valrho, (DCC/DRRV/SEMP), 30 - Marcoule (France)

    2000-07-01

    The search for ligands which specifically separate actinides(III) from lanthanides(III) by liquid-liquid extraction has prompted considerable research in the Process Design and Modeling Department ('Service d'Etude et de Modelisation des Procedes'- SEMP). Ligands with soft donor atoms AS) that are able to perform this separation have already been investigated and research is currently under way to improve their performance for high acidic feeds. Theoretical chemistry research is conducted in the Theoretical and Structural Chemistry Laboratory ('Laboratoire de Chimie Theorique et Structurale') to improve our understanding of the complexation and extraction of these cations with such ligands. Theoretical studies were first carried out for the ter-pyridine (TPY) and bis-triazinyl-pyridine (BTP) ligands that display fairly good ability to separate and extract actinide(III) from lanthanide(III) ions. Molecular dynamics simulations were performed on ter-pyridine and bis-triazinyl-pyridine complexes with three lanthanide cations (La{sup 3+}, Eu{sup 3+} and Lu{sup 3+}) for vacuum and for water solutions. These calculations were carried out without counter-ions, with three nitrate (NO{sub 3}{sup -}) ions, and, in the case of ter-pyridine, with three {alpha}-bromo-caprate anions that are likely to be used experimentally as synergistic agents for the separation and extraction of An(III) from Ln(III). Molecular dynamics simulations were first performed for vacuum to evaluate the distances between nitrogen and lanthanide atoms (Ln{sup 3+},N) and intrinsic interaction energies to poly-nitrogenous ligands with or without NO{sub 3} ions, and for both ligands. The (Ln{sup 3+},N) distances decrease and the cation/ligand interaction energies increase along the La{sup 3+}, Eu{sup 3+}, Lu{sup 3+} series, with decreasing Ln(III) ion radii. The introduction of nitrate counter-ions makes the (Ln{sup 3+},N) distances slightly higher, and the TPY/Ln{sup 3+} and BTP

  6. Synthesis, magnetic and spectral studies of lanthanide(III) chloride complexes of hydrazones of isonicotinic acid hydrazide

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Prasad, Ram

    1996-01-01

    The synthesis, magnetic and spectral properties of trivalent lanthanide chlorides with N-isonicotinamidobenzalaldimine (INH-BENZ), N-isonicotinamidoanisalaldimine (INH-ANSL) and N-isonicotinamido-p-dimethylaminobenzalaldimine (INH-PDAB) are described. 13 refs., 2 tabs

  7. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  8. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations

    International Nuclear Information System (INIS)

    Aury, S.

    2002-12-01

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  9. Structural and thermodynamic study of rare earth(III) complexation by poly-hydroxylated carboxylic acids: synthesis of new extractants and outlook for the extraction of these cations; Etude structurale et thermodynamique de la complexation de lanthanides (III) par des acides carboxyliques polyhydroxyles: synthese de nouveaux extractants et perspectives pour l'extraction de ces cations

    Energy Technology Data Exchange (ETDEWEB)

    Aury, S

    2002-12-15

    The aim of this work is: to improve the knowledge on the binding sites of the poly-hydroxylated carboxylic acids with the trivalent lanthanide(III) ions by comparing them to gluconic acid (previously studied) and to molecules with different configuration and with a variable number of OH functions (threonic acid, glyceric acid, 2-hydroxy-butanoic acid, 3-hydroxy-butanoic acid). To find the best complexing agent among different acids (aldonic acids, aldaric acids, di-hydroxybenzoic acids) (determination of the set of complexes and their stability constants by potentiometry, NMR and UV-Visible spectroscopy). To synthesize hydrophobic monoamides from one lactone form of saccharic acid, to study their complexing power and their capacity to extract the trivalent lanthanide(III) ions. (author)

  10. Sodium nitrate-cerium nitrate-water ternary system at 25 deg C

    International Nuclear Information System (INIS)

    Fedorenko, T.P.; Onishchenko, M.K.

    1978-01-01

    Solubility isotherm of sodium nitrate-cerium nitrate-water system at 25 deg C consists of three crystallization branches of initial salts and double compound of the composition 2NaNO 3 xCe(NO 3 ) 3 x2H 2 O. Sodium nitrate introduced in the solution strengthens complexing. Physico-chemical characteristics are in a good agreement with solubility curve

  11. Identification of Lanthanide(III) Luminophores in Magnetic Circularly Polarized Luminescence Using Raman Optical Activity Instrumentation

    Czech Academy of Sciences Publication Activity Database

    Wu, Tao; Kapitán, J.; Andrushchenko, Valery; Bouř, Petr

    2017-01-01

    Roč. 89, č. 9 (2017), s. 5043-5049 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GJ16-08764Y; GA ČR GA15-09072S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : rare earth ions * photophysical properties * europium(III) complexes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.320, year: 2016

  12. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  13. The silver(I nitrate complex of the ligand N-(pyridin-2-ylmethylpyrazine-2-carboxamide: a metal–organic framework (MOF structure

    Directory of Open Access Journals (Sweden)

    Dilovan S. Cati

    2017-04-01

    Full Text Available The reaction of silver(I nitrate with the mono-substituted pyrazine carboxamide ligand, N-(pyridin-2-ylmethylpyrazine-2-carboxamide (L, led to the formation of the title compound with a metal–organic framework (MOF structure, [Ag(C11H10N4O(NO3]n, poly[μ-nitrato-[μ-N-(pyridin-2-ylmethyl-κNpyrazine-2-carboxamide-κN4]silver(I]. The silver(I atom is coordinated by a pyrazine N atom, a pyridine N atom, and two O atoms of two symmetry-related nitrate anions. It has a fourfold N2O2 coordination sphere, which can be described as distorted trigonal–pyramidal. The ligands are bridged by the silver atoms forming –Ag–L–Ag–L– zigzag chains along the a-axis direction. The chains are arranged in pairs related by a twofold screw axis. They are linked via the nitrate anions, which bridge the silver(I atoms in a μ2 fashion, forming the MOF structure. Within the framework there are N—H...O and C—H...O hydrogen bonds present.

  14. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  15. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes

  16. Do nitrates differ?

    Science.gov (United States)

    Fung, H.-L.

    1992-01-01

    1 The organic nitrates all share a common biochemical and physiological mechanism of action. 2 The organic nitrates differ substantially in their pharmacologic potency and pharmacokinetics. In vitro potency differences appear larger than the corresponding in vivo activities. 3 The duration of action of organic nitrates, after a single immediate-release dose, is governed by the pharmacokinetics of the drug. However, the duration of action of available sustained-release preparations, whatever the nitrate or formulation, is limited to about 12 h, due to the development of pharmacologic tolerance. 4 Nitrates do not appear to differ in their production of undesirable effects. PMID:1633079

  17. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1986-01-01

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  18. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  19. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  20. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  1. Nitrate leaching index

    Science.gov (United States)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  2. Complexes of trivalent lanthanide ions with schiff base derived from vanillin and triethylenetetraamine

    International Nuclear Information System (INIS)

    Shahma, A.; Athar, M.; Ahmad, N.

    1982-01-01

    Complexes of lanthanide(III) ions with the schiff base derived from vanillin and triethylenetetraamine have been synthesised and characterised on the basis of elemental analyses, molar conductance, magnetic moment, IR and thermal analysis data. The thermograms show the elimination (OH)(OCH 3 )C 6 H 3 CH-group at low temperatures before the elimination of triethylenetetraamine part corroborating the observation made on the basis of IR spectral data. This is a clear indication of the non-coordination of the phenolic hydroxyl groups. The lanthanide ions in the complexes exhibit eight coordination numbers. (author)

  3. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration*

    Science.gov (United States)

    Olah, George A.; Narang, Subhash C.; Olah, Judith A.

    1981-01-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an α-nitronaphthalene to β-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (σ complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  4. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration.

    Science.gov (United States)

    Olah, G A; Narang, S C; Olah, J A

    1981-06-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an alpha-nitronaphthalene to beta-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (sigma complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity.

  5. A new [(1R,2R)-1,2-diaminocyclohexane]platinum(II) complex: formation by nitrate-acetonitrile ligand exchange

    Czech Academy of Sciences Publication Activity Database

    Pažout, R.; Housková, J.; Dušek, Michal; Maixner, J.; Cibulková, J.; Kačer, P.

    2010-01-01

    Roč. 66, Part 10 (2010), m273-m275 ISSN 0108-2701 Institutional research plan: CEZ:AV0Z10100521 Keywords : platinum complexes * structure analysis * disorder * cyclohexane * diamine Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.745, year: 2010

  6. Thermochemical nitrate reduction

    International Nuclear Information System (INIS)

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with ∼3 wt% NO 3 - solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200 degrees C to 350 degrees C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia ∼ methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics

  7. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  9. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660±0.092 at 25 C, and extraction enthalpy is -5. 46±0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 x 10 6 ±3.56 x 10 4 at 25 C; reaction enthalpy was -9.610±0.594 kcal/mol. Nitration complexation constant is 8.412±0.579, with an enthalpy of -10.72±1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured

  10. Associated equilibria with participatian of single and mixed silver, lead and cadmium halide complexes in mixtures of molten alkali and alkaline earth metal nitrates

    International Nuclear Information System (INIS)

    Gouk, Kh.S.; Gupta, R.K.; Vekma, K.V.

    1983-01-01

    Associated equilibria in the systems, which contain single and mixed silver, cadmium and lead halide complexes in the KNO 3 -Ba(N0 3 ) 2 (87.6:12.4 and 89:11 mol.%) and NaNO 3 -Ba(NO 3 ) 2 (94.2-5.8 mol%) melts in the temperature range from 568.2 up to 698.2 K are investigated. Applicability of equations derivated on the base of quasi-lattice model to description of temperature coefficients of association constants is analized

  11. Reactivity of Metal Nitrates.

    Science.gov (United States)

    1982-07-20

    02NOCuOH Any mechanism suggested for the nitration of aromatic systems by titanium(IV) nitrate must take into account the observed similarity, in...occurs. -26- References 1. For recent reviews see (a) R. B. Moodie and K. Schofield, Accounts Chem. Res., 1976, 9, 287; (b) G. A. Olah and S. J. Kuhn...Ithaca, N.Y., 1969, Chapter VI; L. M. Stock, Prog. Phys. Org. Chem., 1976, 12, 21; J. G. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield

  12. Phase extraction equilibria in systems rare earth (3) nitrates-ammonium nitrate-water-trialkylmethylammonium nitrate

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The distribution of rare earth metals (3) between aqueous and organic phases in the systems rare earth metal (3) (praseodymium-lutetium (3), yttrium (3)) nitrate-ammonium nitrate-water-trialkylmethylammonium (kerosene diluent nitrate has been studied. It is shown that in organic phase di- and trisolvates of metals (3) with tralkylmethylammonium nitrate are formed. The influence of concentration of rare earth metal (3) nitrate and ammonium nitrate on the values of extraction concentrational constants has been ascertained: they decrease with increase in the ordinal number of lanthanide (3). 11 refs., 4 figs. 1 tab

  13. Nitrate Leaching Management

    Science.gov (United States)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  14. Waterproofing Materials for Ammonium Nitrate

    OpenAIRE

    R.S. Damse

    2004-01-01

    This study explores the possibility of overcoming the problem of hygroscopicity of ammonium nitrate by coating the particles with selected waterproofing materials. Gravimetric analysis ofthe samples of ammonium nitrate coated with eight different waterproofing materials, vis-a-vis, uncoated ammonium nitrate, were conducted at different relative humidity and exposuretime. The results indicate that mineral jelly is the promising waterproofing material for ammonium nitrate among the materials te...

  15. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    International Nuclear Information System (INIS)

    Zhao Jing; Liang Jingjing; Pan Yingli; Zhang Yong; Jia Dingxian

    2011-01-01

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en) 2 (dien)(η 2 -SbSe 4 )] (Ln=Ce(1a), Nd(1b)), [Ln(en) 2 (dien)(SbSe 4 )] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)(μ-η 1 ,η 2 -SbSe 4 )] ∞ (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)(η 2 -SbSe 4 )] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe 4 ] 3- acts as a monodentate ligand mono-SbSe 4 , a bidentate chelating ligand η 2 -SbSe 4 or a tridentate bridging ligand μ-η 1 ,η 2 -SbSe 4 to the lanthanide(III) center depending on the Ln 3+ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E g between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: → Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. → The [SbSe 4 ] 3- anion acts as a mono-SbSe 4 , a η 2 -SbSe 4 or a μ-η 1 ,η 2 -SbSe 4 ligand to the Ln 3+ ions. → The soft base ligand [SbSe 4 ] 3- can be controlled to coordinate to the Ln 3+ ions with en+dien and en+trien as co-ligands.

  16. Understanding organic nitrates – a vein hope?

    Science.gov (United States)

    Miller, Mark R; Wadsworth, Roger M

    2009-01-01

    The organic nitrate drugs, such as glyceryl trinitrate (GTN; nitroglycerin), are clinically effective in angina because of their dilator profile in veins and arteries. The exact mechanism of intracellular delivery of nitric oxide (NO), or another NO-containing species, from these compounds is not understood. However, mitochondrial aldehyde dehydrogenase (mtALDH) has recently been identified as an organic nitrate bioactivation enzyme. Nitrate tolerance, the loss of effect of organic nitrates over time, is caused by reduced bioactivation and/or generation of NO-scavenging oxygen-free radicals. In a recent issue of the British Journal of Pharmacology, Wenzl et al. show that guinea-pigs, deficient in ascorbate, also have impaired responsiveness to GTN, but nitrate tolerance was not due to ascorbate deficiency that exhibited divergent changes in mtALDH activity. Thus, the complex function of mtALDH appears to be the key to activation of GTN, the active NO species formed and the induction of tolerance that can limit clinical effectiveness of organic nitrate drugs. British Journal of Pharmacology (2009) 157, 565–567; doi:10.1111/j.1476-5381.2009.00193.x This article is part of a themed section on Endothelium in Pharmacology. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 The paper by Wenzl et al. is available from http://www3.interscience.wiley.com/cgi-bin/fulltext/122221718/PDFSTART PMID:19630835

  17. Nitrate pollution and its distribution in the groundwater of Srikakulam district, Andhra Pradesh, India

    Science.gov (United States)

    Rao, Nagireddi Srinivasa

    2006-12-01

    The complex depositional pattern of clay and sand in most of the areas controlled the vertical and lateral movement of nitrate in groundwater. The variation of nitrate concentration at different groundwater levels and the lateral distribution of nitrate in the groundwater at two sites indicated the filtration of nitrate by clayey formations. A rural agricultural district located in the Vamsadhara river basin, India was selected for studying the lateral and vertical distribution of nitrate in the groundwater and the association of nitrate with other chemical constituents. The nitrate concentrations in the groundwater are observed to vary between below detectable limit and 450 mg NO3/L. The sources for nitrate are mainly point sources (poultry farms, cattleshed and leakages from septic tanks) and non-point sources (nitrogenous fertilisers). The nitrate concentrations are increased after fertiliser applications. However, very high concentrations of nitrate are derived from animal wastes. Relatively better correlations between nitrate and potassium are observed ( R = 0.74 to 0.82). The better relationship between these two chemical constituents in the groundwater may be due to the release of potassium and nitrate from both point and non-point sources. The nitrate and potassium concentrations are high in the groundwater from clayey formations.

  18. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  19. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg

    is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter......Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  20. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  1. Thermal characterization of aminium nitrate nanoparticles.

    Science.gov (United States)

    Salo, Kent; Westerlund, Jonathan; Andersson, Patrik U; Nielsen, Claus; D'Anna, Barbara; Hallquist, Mattias

    2011-10-27

    Amines are widely used and originate from both anthropogenic and natural sources. Recently, there is, in addition, a raised concern about emissions of small amines formed as degradation products of the more complex amines used in CO(2) capture and storage systems. Amines are bases and can readily contribute to aerosol mass and number concentration via acid-base reactions but are also subject to gas phase oxidation forming secondary organic aerosols. To provide more insight into the atmospheric fate of the amines, this paper addresses the volatility properties of aminium nitrates suggested to be produced in the atmosphere from acid-base reactions of amines with nitric acid. The enthalpy of vaporization has been determined for the aminium nitrates of mono-, di-, trimethylamine, ethylamine, and monoethanolamine. The enthalpy of vaporization was determined from volatility measurements of laboratory generated aerosol nanoparticles using a volatility tandem differential mobility analyzer set up. The determined enthalpy of vaporization for aminium nitrates range from 54 up to 74 kJ mol(-1), and the calculated vapor pressures at 298 K are around 10(-4) Pa. These values indicate that aminium nitrates can take part in gas-to-particle partitioning at ambient conditions and have the potential to nucleate under high NO(x) conditions, e.g., in combustion plumes.

  2. Lanthanum (samarium) nitrate-4-aminoantipyrine nitrate-water systems

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.

    1985-01-01

    Using the isothermal method of cross-sections at 50 deg C systems lanthanum nitrate-4-aminoantipyrine nitrate-water (1), samarium nitrate-4-aminoantipyrine nitrate-water (2), are studied. Isotherms of system 1 consist of two crystallization branches of initial salt components. In system 2 formation of congruently soluble compounds of the composition Sm(No) 3 ) 3 xC 11 H 13 ON 3 xHNO 3 is established. Analytical, X-ray phase and thermogravimetric analysis of the isolated binary salt are carried out

  3. Nitrate biosensors and biological methods for nitrate determination.

    Science.gov (United States)

    Sohail, Manzar; Adeloju, Samuel B

    2016-06-01

    The inorganic nitrate (NO3‾) anion is present under a variety of both natural and artificial environmental conditions. Nitrate is ubiquitous within the environment, food, industrial and physiological systems and is mostly present as hydrated anion of a corresponding dissolved salt. Due to the significant environmental and toxicological effects of nitrate, its determination and monitoring in environmental and industrial waters are often necessary. A wide range of analytical techniques are available for nitrate determination in various sample matrices. This review discusses biosensors available for nitrate determination using the enzyme nitrate reductase (NaR). We conclude that nitrate determination using biosensors is an excellent non-toxic alternative to all other available analytical methods. Over the last fifteen years biosensing technology for nitrate analysis has progressed very well, however, there is a need to expedite the development of nitrate biosensors as a suitable alternative to non-enzymatic techniques through the use of different polymers, nanostructures, mediators and strategies to overcome oxygen interference. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Radiolysis studies of uranyl nitrate solution in nitric acid medium

    International Nuclear Information System (INIS)

    Siri, Sandra; Mondino, Angel V.

    2005-01-01

    The radiolysis of acidic uranyl nitrate solutions was investigated using Co-60 gamma radiation. Hydrogen peroxide was determined as a function of increasing dose. The UV-vis absorption spectra of the irradiated solutions were measured and the spectral changes were analyzed. The increasing dose increases the absorbance intensities, possibly by an increment in nitrate concentration produced by radiolysis, which can originate the formation of different uranyl complexes in solution. (author)

  5. Complexation of f elements by tripodal ligands containing aromatic nitrogens. Application to the selective extraction of actinides(III)

    International Nuclear Information System (INIS)

    Wietzke, Raphael

    1999-01-01

    This work initiates a research project, whose aim is the actinides(lll)/lanthanides(III) separation by liquid-liquid extraction. We were interested in the study of the coordination chemistry of lanthanides(III) and uranium(III) (uranium(III) as model for the actinides(III)), with the aim to show differences between the two families and to better understand the coordination properties involved in the extraction process. We studied the lanthanide(III) and uranium(III) complexation with tripodal ligands containing aromatic nitrogens. Several tripodal ligands were synthesized varying the type and the number of the donor atoms. The lanthanide(III) complexes have been characterized in the solid state and in solution (by several techniques: "1H NMR, ESMS, luminescence, UV spectrophotometry, conductometry). Differences in the coordination were found depending on the nature of the donor atoms. The new ligands, tris(2-pyrazinylmethyl)amine (tpza) et tris(N,N-diethyl-2-carbamoyl-6- pyridylmethyl)amine (tpaa), have shown a selectivity for the actinides(III) with promising results in liquid-liquid extraction. The comparison between the lanthanum(III) and uranium(III) complexes with the ligand tpza showed differences in the bonding nature, which could be attributed to a covalent contribution to the metal-ligand bond. (author) [fr

  6. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  7. Unusual bridging of three nitrates with two bridgehead protons in an octaprotonated azacryptand

    Science.gov (United States)

    Saeed, Musabbir A.; Fronczek, Frank R.; Huang, Ming-Ju; Hossain, Md. Alamgir

    2010-01-01

    Structural analysis of the nitrate complex of a thiophene-based azacryptand suggests that three nitrates are bridged with two bridgehead protons which play the topological role of two transition metal ions in a classical Werner type coordination complex bridging three anions. PMID:20066306

  8. dl-Asparaginium nitrate

    Science.gov (United States)

    Moussa Slimane, Nabila; Cherouana, Aouatef; Bendjeddou, Lamia; Dahaoui, Slimane; Lecomte, Claude

    2009-01-01

    In the title compound, C4H9N2O3 +·NO3 −, alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H⋯O hydrogen bond in the structure, together with other strong cation–cation N—H⋯O hydrogen bonds, generates a succession of infinite chains of R 2 2(8) rings along the b axis. Additional cation–cation C—H⋯O hydrogen bonds link these chains into two-dimensional layers formed by alternating R 4 4(24) and R 4 2(12) rings. Connections between these layers are provided by the strong cation–anion N—H⋯O hydrogen bonds, as well as by one weak C—H⋯O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H⋯O hydrogen bonds are bifurcated of the type D—H⋯(A 1,A 2). PMID:21577586

  9. The ytterbium nitrate-quinoline (piperidine) nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.; Zhuravlev, E.F.

    1985-01-01

    Using the method of cross sections the solubility of solid phases in the ytterbium nitrate-quinoline nitrate - water (1) and ytterbium nitrate-piperidine nitrate-water (2) systems is studied at 25 and 50 deg C. It is established, that in system 1 congruently melting compound of the composition Yb(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x3H 2 O is formed. The new solid phase has been isolated as a preparation and subjected to chemical X-ray diffraction, differential thermal and IR spectroscopic analyses. Isotherms of system 2 in the studied range of concentrations and temperatures consist of two branches, corresponding to crystallization of tetruaqueous ytterbi um nitrate and nitric acid piperidine

  10. Estimation of nitrate in aqueous discharge streams in presence of other anionic species

    International Nuclear Information System (INIS)

    Dhara, Amrita; Sonar, N.L.; Valsala, T.P.; Vishwaraj, I.

    2017-01-01

    In the PUREX process the spent fuel is dissolved in concentrated nitric acid for the recovery of U and Pu using 30% TBP solvent system. The added nitrates are reporting in the waste streams of reprocessing plant. In view of the environmental concern for nitrate discharges, it is essential to monitor the nitrate content in the radioactive waste streams. An analytical method based on nitration of salicylic acid in acidic medium was studied for its applicability in the estimation of nitrate in radioactive waste containing various other anions. The yellow colored complex formed absorbs at 410 nm in alkaline media. Interference of various anionic species like sulphide, chloride, ferrocyanide, phosphate etc present in different waste streams on the estimation of nitrate was studied. Nitrate could be estimated in radioactive waste in presence of other anionic species within an error of less than 6%. (author)

  11. Intracellular nitrate of marine diatoms as a driver of anaerobic nitrogen cycling in sinking aggregates

    DEFF Research Database (Denmark)

    Kamp, Anja; Stief, Peter; Bristow, Laura A.

    2016-01-01

    % was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before...... store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom......-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly...

  12. Evaluation of nitrate destruction methods

    International Nuclear Information System (INIS)

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-01-01

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy's Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream

  13. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  14. Mortality of nitrate fertiliser workers.

    Science.gov (United States)

    Al-Dabbagh, S; Forman, D; Bryson, D; Stratton, I; Doll, R

    1986-01-01

    An epidemiological cohort study was conducted to investigate the mortality patterns among a group of workers engaged in the production of nitrate based fertilisers. This study was designed to test the hypothesis that individuals exposed to high concentrations of nitrates might be at increased risk of developing cancers, particularly gastric cancer. A total of 1327 male workers who had been employed in the production of fertilisers between 1946 and 1981 and who had been occupationally exposed to nitrates for at least one year were followed up until 1 March 1981. In total, 304 deaths were observed in this group and these were compared with expected numbers calculated from mortality rates in the northern region of England, where the factory was located. Analysis was also carried out separately for a subgroup of the cohort who had been heavily exposed to nitrates--that is, working in an environment likely to contain more than 10 mg nitrate/m3 for a year or longer. In neither the entire cohort nor the subgroup was any significant excess observed for all causes of mortality or for mortality from any of five broad categories of cause or from four specific types of cancer. A small excess of lung cancer was noted more than 20 years after first exposure in men heavily exposed for more than 10 years. That men were exposed to high concentrations of nitrate was confirmed by comparing concentrations of nitrates in the saliva of a sample of currently employed men with control men, employed at the same factory but not in fertiliser production. The men exposed to nitrate had substantially raised concentrations of nitrate in their saliva compared with both controls within the industry and with men in the general population and resident nearby. The results of this study therefore weight against the idea that exposure to nitrates in the environment leads to the formation in vivo of material amounts of carcinogens. PMID:3015194

  15. Effects of continuous addition of nitrate to a thermophilic anaerobic digestion system

    International Nuclear Information System (INIS)

    Rivard, C.J.

    1983-01-01

    The biodegradation of complex organic matter is regulated partially by the ability to dump electrons which build up in the form of reduced nicotinamide adenine dinucleotide (NAD). The effects of the continuous addition of the oxidant, nitrate, were investigated on a single-stage, thermophilic, anaerobic digester. The digester acclimated rapidly to nitrate addition. The continuous addition of nitrate resulted in a constant inhibition of total gas (30%) and methane production (36%). Reduction in total gas and methane production was accompanied by increases in sludge pH and acetate, propionate, and ammonium ion pools. Effluent particle size distribution revealed a shift to smaller particle sizes in the nitrate-pumped sludge. The continuous addition of nitrate resulted in lower numbers of methanogens and sulfate reducers in the sludge, with increases in nitrate-reducing and cellulose-degrading microorganisms. These findings indicate that added nitrate underwent dissimilatory reduction to ammonium ion, as determined from gas analysis, ammonium pools, and 15 N-nitrate-label experiments. Continuous nitrate addition to a single-phase digestion system was determined to inhibit methane production from biomass and wastes. Thus for the single-stage digestion system in which maximum methane production is desired, the addition of nitrate is not recommended. However, in a multistage digestion system, the continuous addition of nitrate in the primary stage to increase the rate and extent of degradation of organic matter to volatile fatty acids, which then would serve as feed to a second stage, may be advantageous

  16. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants

    International Nuclear Information System (INIS)

    Toulemonde, V.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1995-01-01

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author)

  17. Technical Report on Hydroxylamine Nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Harlow, Donald G. [Dept. of Energy (DOE), Washington DC (United States); Felt, Rowland E. [Dept. of Energy (DOE), Washington DC (United States); Agnew, Steve [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barney, G. Scott [B& W Hanford Company, Richland, WA (United States); McKibben, J. Malvyn [Westinghouse Savannah River Company, Aiken, SC (United States); Garber, Robert [Parallax Inc., Rocklin, CA (United States); Lewis, Margie [Parallax Inc., Rocklin, CA (United States)

    1998-02-01

    This report presents the chemical properties and safe conditions for handling and storing solutions of hydroxylamine nitrate (HAN, NH2OH•HNO3 or NH3OH+) in nitric acid (HNO3). Section 1.0 summarizes the accidents experienced within the Department of Energy (DOE) weapons complex involving HAN or hydroxylamine sulfate (HAS), a chemical with similar properties. Section 2.0 describes past and current uses of HAN by DOE, the U.S. Military and foreign countries. Section 3.0 presents the basic chemistry of HAN, including chemical reaction and energy content equations. Section 4.0 provides experience and insights gained from previous uncontrolled reactions involving HAN and experimental data from Hanford & Savannah River Site (SRS). This information was used to develop safe conditions for the storage and handling of HAN as presented in Section 5.0. Section 6.0 summarizes recommendations for safe facility operations involving HAN and future research needs.

  18. Nitrate photolysis in salty snow

    Science.gov (United States)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  19. Yttrium Nitrate mediated Nitration of Phenols at room temperature in ...

    Indian Academy of Sciences (India)

    The described method is selective for phenols. ... the significant cause of post translational modification that can ... decades, significant attention was paid on nitration of phenols to .... Progress of the reaction can be noted visually. Yttrium.

  20. Variability of nitrate and phosphate

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sundar, D.

    Nitrate and phosphate are important elements of the biogeochemical system of an estuary. Observations carried out during the dry season April-May 2002, and March 2003 and wet season September 2002, show temporal and spatial variability of these two...

  1. Vasodilator Therapy: Nitrates and Nicorandil.

    Science.gov (United States)

    Tarkin, Jason M; Kaski, Juan Carlos

    2016-08-01

    Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.

  2. Headspace Analysis of Ammonium Nitrate

    Science.gov (United States)

    2017-01-25

    explosive ammonium nitrate produces ammonia and nitric acid in the gaseous headspace above bulk solids, but the concentrations of the products have been...and NO2-, a product of nitrate fragmentation (Figure 7). Brief spikes in the background and dips in oxalic acid signal were observed at the time of...either filtered air or experimental nitric acid vapor sources so that analyte signal could be measured directly opposite background. With oxalic

  3. Quantifying an aquifer nitrate budget and future nitrate discharge using field data from streambeds and well nests

    Science.gov (United States)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Farrell, Kathleen M.; Mitasova, Helena

    2016-11-01

    Novel groundwater sampling (age, flux, and nitrate) carried out beneath a streambed and in wells was used to estimate (1) the current rate of change of nitrate storage, dSNO3/dt, in a contaminated unconfined aquifer, and (2) future [NO3-]FWM (the flow-weighted mean nitrate concentration in groundwater discharge) and fNO3 (the nitrate flux from aquifer to stream). Estimates of dSNO3/dt suggested that at the time of sampling (2013) the nitrate storage in the aquifer was decreasing at an annual rate (mean = -9 mmol/m2yr) equal to about one-tenth the rate of nitrate input by recharge. This is consistent with data showing a slow decrease in the [NO3-] of groundwater recharge in recent years. Regarding future [NO3-]FWM and fNO3, predictions based on well data show an immediate decrease that becomes more rapid after ˜5 years before leveling out in the early 2040s. Predictions based on streambed data generally show an increase in future [NO3-]FWM and fNO3 until the late 2020s, followed by a decrease before leveling out in the 2040s. Differences show the potential value of using information directly from the groundwater—surface water interface to quantify the future impact of groundwater nitrate on surface water quality. The choice of denitrification kinetics was similarly important; compared to zero-order kinetics, a first-order rate law levels out estimates of future [NO3-]FWM and fNO3 (lower peak, higher minimum) as legacy nitrate is flushed from the aquifer. Major fundamental questions about nonpoint-source aquifer contamination can be answered without a complex numerical model or long-term monitoring program.

  4. Evaluation of the nitrate content in leaf vegetables produced through different agricultural systems.

    Science.gov (United States)

    Guadagnin, S G; Rath, S; Reyes, F G R

    2005-12-01

    The nitrate content of leafy vegetables (watercress, lettuce and arugula) produced by different agricultural systems (conventional, organic and hydroponic) was determined. The daily nitrate intake from the consumption of these crop species by the average Brazilian consumer was also estimated. Sampling was carried out between June 2001 to February 2003 in Campinas, São Paulo State, Brazil. Nitrate was extracted from the samples using the procedure recommended by the AOAC. Flow injection analysis with spectrophotometric detection at 460 nm was used for nitrate determination through the ternary complex FeSCNNO+. For lettuce and arugula, the average nitrate content varied (p hydroponic system. For watercress, no difference (p hydroponic samples, both having higher nitrate contents (p hydroponic system, represented 29% of the acceptable daily intake established for this ion.

  5. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    de Almeida, Valmor F.; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  6. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  7. FIP1 Plays an Important Role in Nitrate Signaling and Regulates CIPK8 and CIPK23 Expression in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2018-05-01

    Full Text Available Unraveling the molecular mechanisms of nitrate regulation and deciphering the underlying genetic network is vital for elucidating nitrate uptake and utilization in plants. Such knowledge could lead to the improvement of nitrogen-use efficiency in agriculture. Here, we report that the FIP1 gene (factor interacting with poly(A polymerase 1 plays an important role in nitrate signaling in Arabidopsis thaliana. FIP1 encodes a putative core component of the polyadenylation factor complex. We found that FIP1 interacts with the cleavage and polyadenylation specificity factor 30-L (CPSF30-L, which is also an essential player in nitrate signaling. The induction of nitrate-responsive genes following nitrate treatment was inhibited in the fip1 mutant. The nitrate content was also reduced in fip1 seedlings due to their decreased nitrate uptake activity. Furthermore, the nitrate content was higher in the roots but lower in the roots of fip1, which may result from the downregulation of NRT1.8 and the upregulation of the nitrate assimilation genes. In addition, qPCR analyses revealed that FIP1 negatively regulated the expression of CIPK8 and CIPK23, two protein kinases involved in nitrate signaling. In the fip1 mutant, the increased expression of CIPK23 may affect nitrate uptake, resulting in its lower nitrate content. Genetic and molecular evidence suggests that FIP1 and CPSF30-L function in the same nitrate-signaling pathway, with FIP1 mediating signaling through its interaction with CPSF30-L and its regulation of CIPK8 and CIPK23. Analysis of the 3′-UTR of NRT1.1 showed that the pattern of polyadenylation sites was altered in the fip1 mutant. These findings add a novel component to the nitrate regulation network and enhance our understanding of the underlying mechanisms for nitrate signaling.

  8. A thermal analysis - mass spectrometric study of the reactions in the binary nitrate system UO2(NO3)2.6H2O-Ba(NO3)2

    International Nuclear Information System (INIS)

    Kalekar, B.B.; Rajagopalan, K.V.; Ravindran, P.V.

    2008-01-01

    Solid state reaction between uranyl nitrate hexahydrate and barium nitrate at elevated temperatures has been studied. Barium nitrate does not react directly with uranyl nitrate hexahydrate (UNH). The decomposition product of the latter, UO 3 , however, reacts with molten barium nitrate to form nitrato complexes which decompose to form barium uranates. The decomposition of the nitrato complex is often attended by a change of oxidation state of uranium. Uranyl-nitrate-rich compositions form uranates with uranium in oxidation state V, whereas barium-nitrate-rich compositions form uranates with uranium in oxidation state VI. The tendency for hydrolysis of uranyl nitrate hexahydrate at elevated temperatures is lowered in presence of barium nitrate and, unlike in the case of dehydration of pure UNH, uranyl nitrate dihydrate is formed as dehydration intermediate. (author)

  9. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  10. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH 3 , hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH 4 NO 3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO 3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  11. Quantification of naphazoline nitrate by UV-spectrophoto-metry

    Directory of Open Access Journals (Sweden)

    O. I. Panasenko

    2013-12-01

    Full Text Available One of the main tasks of pharmaceutical chemistry – medical drugs study. Spectrophotometry is widely used in studying of the structure and composition (complexes, dyes, analytical reagents, etc. of various compounds. It widely used for qualitative and quantitative determination of substances (determination of elements traces in metals, alloys, technical facilities. The dependence between substance structure and its electronic spectrum is being studied by many researchers till nowadays. The aim of this work was to highlight the issues of naphazoline quantify definition techniques by the UV-spectrophotometry. According to the existing methods of quality control (MQC, naphazoline nitrate is a substance quantitatively determined by acid-base titration among a mixture of anhydrous acetic acid and acetic anhydride. Titration is carried out with a solution of 0,1 M perchloric acid (indicator - crystal violet. To check the quality of nasal drops nafazoline nitrate MQC is recommended UV-spectrophotometry: drug is dissolved in boric acid solution (20 g/l as the reference solution used solution pharmacopoeia standard sample substance nafazoline nitrate. The character of UV-spectra of the nafazoline nitrate in solvents of different polarity (water, 95% ethanol, 0,1 M NaOH, 0,1 M HCl, 5M H2SO4, was defined and studied. Standard sample of nafazoline nitrate was obtained from the State Enterprise "Scientific and Expert Pharmacopoeia Centre Ukraine". In order to study UV-spectra nafazoline nitrate spectrophotometer SPECORD 200-222U214 (Germany was used. UV-spectrum of nafazoline nitrate in water and 95% ethanol are characterized by two maxima at 270 and 280 nm. Absorption band of nafazoline nitrate in 0, 1 M sodium hydroxide has two maxima at 271 and 280 nm, and in 0, 1 M solution of hydrochloric acid and 5 M solution of sulfuric acid maxima coincide with the maxima spectrum of the drug in water, 95% ethanol. In order to avoid errors associated with

  12. Studies on mixed ligand complexes of lanthanide (III) ions

    International Nuclear Information System (INIS)

    Rajendran, G.; Usha Devi, K.G.

    2002-01-01

    As part of our research programme, we have prepared and characterized a few nitrato, thiocyanato and perchlorato complexes of lanthanide(III) ions with ligands, viz., a Schiff base derived from p-anisidine and vanillin and diphenyl sulphoxide. The complexes were characterized by the measurement of electrical conductances and magnetic susceptibilities, molecular mass and metal percentage and spectral analysis. The thermal decompositions were studied by TG and DTG techniques. The thiocyanato complexes were prepared by substitution method from nitrato complexes. p-Anisidine-vanillin (HDDA) and diphenyl sulphoxide (DPSO) are coordinated to the metal ion in unidentate fashion. All the anions were involved in coordination in these complexes. Thus they were found to have non- electrolytic behaviour with composition [Ln(HDDA) 2 (DPSO)X 3 ] where X = NO 3 ) or SCN perchlorato complexes were prepared from metal perchlorate as done in the case of nitrato complexes. They were found to have electrical conductance which corresponds to 1 : 1 electrolyte. Hence one of the perchlorate ions is outside the coordination sphere. The composition of this complex is found to be [Ln(HDDA) 3 (DPSO)(ClO 4 ) 2 ]ClO 4 . (author)

  13. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    International Nuclear Information System (INIS)

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238 Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from 238 Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain 238 Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed

  14. Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates

    Directory of Open Access Journals (Sweden)

    Anja Kamp

    2016-11-01

    Full Text Available Diatom-bacteria aggregates are key for the vertical transport of organic carbon in the ocean. Sinking aggregates also represent pelagic microniches with intensified microbial activity, oxygen depletion in the center, and anaerobic nitrogen cycling. Since some of the aggregate-forming diatom species store nitrate intracellularly, we explored the fate of intracellular nitrate and its availability for microbial metabolism within anoxic diatom-bacteria aggregates. The ubiquitous nitrate-storing diatom Skeletonema marinoi was studied as both axenic cultures and laboratory-produced diatom-bacteria aggregates. Stable 15N isotope incubations under dark and anoxic conditions revealed that axenic S. marinoi is able to reduce intracellular nitrate to ammonium that is immediately excreted by the cells. When exposed to a light:dark cycle and oxic conditions, S. marinoi stored nitrate intracellularly in concentrations > 60 mmol L-1 both as free-living cells and associated to aggregates. Intracellular nitrate concentrations exceeded extracellular concentrations by three orders of magnitude. Intracellular nitrate was used up within 2-3 days after shifting diatom-bacteria aggregates to dark and anoxic conditions. Thirty-one percent of the diatom-derived nitrate was converted to nitrogen gas, indicating that a substantial fraction of the intracellular nitrate pool of S. marinoi becomes available to the aggregate-associated bacterial community. Only 5% of the intracellular nitrate was reduced to ammonium, while 59% was recovered as nitrite. Hence, aggregate-associated diatoms accumulate nitrate from the surrounding water and sustain complex nitrogen transformations, including loss of fixed nitrogen, in anoxic, pelagic microniches. Additionally, it may be expected that intracellular nitrate not converted before the aggregates have settled onto the seafloor could fuel benthic nitrogen transformations.

  15. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W

    1999-01-01

    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration.

  16. Thermal Decomposition Of Hydroxylamine Nitrate

    Science.gov (United States)

    Oxley, Jimmie C.; Brower, Kay R.

    1988-05-01

    used hydroxylamine nitrate decomposes within a few minutes in the temperature range 130-140°C. Added ammonium ion is converted to N2, while hydrazinium ion is converted to HN3. Nitrous acid is an intermediate and its formation is rate-determining. A hygride transfer process is postulated. The reaction pathways have been elucidated by use of N tracers.

  17. Nitrate and bicarbonate selective CHEMFETs

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Engbersen, Johannes F.J.; Reinhoudt, David

    1995-01-01

    The development of durable anion selective CHEMFET micro sensors is described. Selectivity in these sensors is either obtained from differences in hydration energy of the anions (the Hlofmeister series, giving nitrate selectivity) or by introduction of a new class of uranyl salophene ionophores

  18. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  19. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed with...

  20. Interaction in triple systems of neodymium nitrate, water and nitrates of trimethylammonium and tetramethylammonium

    International Nuclear Information System (INIS)

    Boeva, M.K.; Zhuravlev, E.F.

    1977-01-01

    At 20 and 40 deg C the mutual solubility is studied in systems neodymium nitrate-water-trimethylamine nitrate and neodymium nitrate-water-tetramethylammonium nitrate. It has been established that the above systems belong to those with chemical interaction of the components. The compounds have been isolated preparatively, their composition has been confirmed analytically, and their thermal behaviour studied

  1. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  2. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  3. Preparation of acid deficient solutions of uranyl nitrate and thorium nitrate by steam denitration

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Takahashi, Yoshihisa

    1996-01-01

    Acid deficient heavy metal (HM) nitrate solutions are often required in the internal gelation processes for nuclear fuel fabrication. The stoichiometric HM-nitrate solutions are needed in a sol-gel process for fuel fabrication. A method for preparing such nitrate solutions with a controlled molar ratio of nitrate/metal by denitration of acid-excess nitrate solutions was developed. The denitration was conducted by bubbling a nitrate solution with a mixture of steam+Ar. It was found that steam was more effective for the denitration than Ar. The acid deficient uranyl nitrate solution with nitrate/U=1.55 was yielded by steam bubbling, while not by only Ar bubbling. As for thorium nitrate, acid deficient solutions of nitrate/Th≥3.1 were obtained by steam bubbling. (author)

  4. High temperature interaction studies on equimolar nitrate mixture of uranyl nitrate hexahydrate and gadolinium nitrate hexahydrate

    International Nuclear Information System (INIS)

    Kalekar, Bhupesh B.; Raje, Naina; Reddy, A.V.R.

    2015-01-01

    Rare earths including gadolinium form a sizeable fraction of the fission products in the nuclear fission of fissile material in the reactor. These fission products can interact with uranium dioxide fuel and can form various compounds which can alter the thermal behavior of the fuel. The mixed oxide formed due to the high temperature interactions of mixture of uranyl nitrate hexahydrate (UNH) and gadolinium nitrate hexahydrate (GdNH) has been studied using thermal and X- ray diffraction techniques. The equimolar mixture of UNH and GdNH was prepared by mixing the weighed amount of individual nitrates and grinding gently with mortar and pestle. Thermogravimetry (TG) measurements were carried out by separately heating 100 mg of mixture and individual nitrates at heating rate of 10°C min -1 using Netzsch thermal analyzer (Model No.: STA 409 PC Luxx) in high purity nitrogen atmosphere with a flow rate of 120 mL min -1 . The XRD measurement was carried out on a Philips X-ray diffractometer (Model PW1710) using nickel-filtered Cu-Kα radiation

  5. Plasma nitrate and nitrite are increased by a high nitrate supplement, but not by high nitrate foods in older adults

    Science.gov (United States)

    Miller, Gary D.; Marsh, Anthony P.; Dove, Robin W.; Beavers, Daniel; Presley, Tennille; Helms, Christine; Bechtold, Erika; King, S. Bruce; Kim-Shapiro, Daniel

    2012-01-01

    Little is known about the effect of dietary nitrate on the nitrate/nitrite/NO (nitric oxide) cycle in older adults. We examined the effect of a 3-day control diet vs. high nitrate diet, with and without a high nitrate supplement (beetroot juice), on plasma nitrate and nitrite kinetics, and blood pressure using a randomized four period cross-over controlled design. We hypothesized that the high nitrate diet would show higher levels of plasma nitrate/nitrite and blood pressure compared to the control diet, which would be potentiated by the supplement. Participants were eight normotensive older men and women (5 female, 3 male, 72.5±4.7 yrs) with no overt disease or medications that affect NO metabolism. Plasma nitrate and nitrite levels and blood pressure were measured prior to and hourly for 3 hours after each meal. The mean daily changes in plasma nitrate and nitrite were significantly different from baseline for both control diet+supplement (pnitrate and nitrite, respectively) and high nitrate diet+supplement (p=0.001 and 0.002), but not for control diet (p=0.713 and 0.741) or high nitrate diet (p=0.852 and 0.500). Blood pressure decreased from the morning baseline measure to the three 2 hr post-meal follow-up time-points for all treatments, but there was no main effect for treatment. In healthy older adults, a high nitrate supplement consumed at breakfast elevated plasma nitrate and nitrite levels throughout the day. This observation may have practical utility for the timing of intake of a nitrate supplement with physical activity for older adults with vascular dysfunction. PMID:22464802

  6. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  7. Continuous flow nitration in miniaturized devices

    Directory of Open Access Journals (Sweden)

    Amol A. Kulkarni

    2014-02-01

    Full Text Available This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed.

  8. Prism inside. Spectroscopic and magnetic properties of the lanthanide(III) chloride oxidotungstates(VI) Ln{sub 3}Cl{sub 3}[WO{sub 6}] (Ln = La - Nd, Sm - Tb)

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Katharina V.; Blaschkowski, Bjoern; Hartenbach, Ingo [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Foerg, Katharina; Netzsch, Philip; Hoeppe, Henning A. [Institute for Physics, University of Augsburg (Germany)

    2017-11-17

    The lanthanide(III) chloride oxidotungstates(VI) with the formula Ln{sub 3}Cl{sub 3}[WO{sub 6}] for Ln = La - Nd, Sm - Tb were synthesized by solid-state reactions utilizing the respective lanthanide trichloride, lanthanide sesquioxide (where available), and tungsten trioxide together with lithium chloride as flux. The title compounds crystallize hexagonally in space group P6{sub 3}/m (no. 176, a = 941-909, c = 543-525 pm, Z = 2). The structures comprise crystallographically unique Ln{sup 3+} cations surrounded by six O{sup 2-} and four Cl{sup -} anions (C.N. = 10) forming distorted tetracapped trigonal prisms as well as rather uncommon trigonal prismatic [WO{sub 6}]{sup 6-} units, whose edges are coordinated by nine Ln{sup 3+} cations. Thus, a {sup 3}{sub ∞}{([WO_6]Ln"e_9_/_3)"3"+} framework (e = edge-sharing) is created, which contains tube-shaped channels along [001] lined with chloride anions. To elucidate the spectroscopic and magnetic properties of the obtained pure phase samples, single-crystal Raman (for Ln = La - Nd, Sm-Tb), diffuse reflectance (for Ln = La, Pr, Nd, Gd), and luminescence spectroscopy (for bulk Ln{sub 3}Cl{sub 3}[WO{sub 6}] (Ln = La, Eu, Gd, Tb) and Eu{sup 3+}- or Tb{sup 3+}-doped derivatives of La{sub 3}Cl{sub 3}[WO{sub 6}] and Gd{sub 3}Cl{sub 3}[WO{sub 6}], respectively) were performed and their temperature-dependent magnetic moments (for Ln = Pr, Nd, Gd) were determined. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Michaels, S.L.; Michel, R.C.; Terpandjian, P.D.; Vora, J.N.

    1976-01-01

    Bacterial denitrification by Pseudomonas Stutzeri has been chosen as the method for removing nitrate from the effluent stream of the Y-12 uranium purification process. A model was developed to predict bacterial growth and carbon and nitrate depletion during the induction period and steady state operation. Modification of analytical procedures and automatic control of the pH in the reactor are recommended to improve agreement between the prediction of the model and experimental data. An initial carbon-to-nitrogen (C/N) mass ratio of 1.4-1.5 insures adequate population growth during the induction period. Further experiments in batch reactors and in steady state flow reactors are recommended to obtain more reliable kinetic rate constants

  10. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Science.gov (United States)

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more than...

  11. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  12. Relationship Between Urinary Nitrate Excretion and Blood Pressure in the InChianti Cohort.

    Science.gov (United States)

    Smallwood, Miranda J; Ble, Alessandro; Melzer, David; Winyard, Paul G; Benjamin, Nigel; Shore, Angela C; Gilchrist, Mark

    2017-07-01

    Inorganic nitrate from the oxidation of endogenously synthesized nitric oxide (NO) or consumed in the diet can be reduced to NO via a complex enterosalivary circulation pathway. The relationship between total nitrate exposure by measured urinary nitrate excretion and blood pressure in a large population sample has not been assessed previously. For this cross-sectional study, 24-hour urinary nitrate excretion was measured by spectrophotometry in the 919 participants from the InChianti cohort at baseline and blood pressure measured with a mercury sphygmomanometer. After adjusting for age and sex only, diastolic blood pressure was 1.9 mm Hg lower in subjects with ≥2 mmol urinary nitrate excretion compared with those excreting nitrate in 24 hours: systolic blood pressure was 3.4 mm Hg (95% confidence interval (CI): -3.5 to -0.4) lower in subjects for the same comparison. Effect sizes in fully adjusted models (for age, sex, potassium intake, use of antihypertensive medications, diabetes, HS-CRP, or current smoking status) were marginally larger: systolic blood pressure in the ≥2 mmol urinary nitrate excretion group was 3.9 (CI: -7.1 to -0.7) mm Hg lower than in the comparison nitrate exposure are associated with lower blood pressure. These differences are at least equivalent to those seen from substantial (100 mmol) reductions in sodium intake. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Manurial properties of lead nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R A

    1924-01-01

    Water culture, pot and field experiments were conducted in order to determine the toxic and stimulating limit of lead nitrate in solution. Oats and rye grass were evaluated for evidence of lead poisoning. Results indicate that except in solutions of fairly high concentration, soil adsorbs the lead and destroys the toxicity of soluble lead salts. There was evidence to show that the addition of lead salts increased the rate of nitrification in soil.

  14. Nitration of sym-trichlorobenzene

    International Nuclear Information System (INIS)

    Quinlin, W.T.

    1981-02-01

    Basic thermal and kinetic data were obtained for the nitration of 1,3,5-trichlorobenzene to trichlorotrinitrobenzene in the presence of oleum/nitric acid. A limiting specific production rate of 5.4 kg/l/hr was determined for the addition of the first two nitro groups at 130 C and a rate of 0.16 kg/l/hr was obtained at 150 C for the addition of the third nitro group

  15. 2-Amino-5-chloropyridinium nitrate

    Directory of Open Access Journals (Sweden)

    Donia Zaouali Zgolli

    2009-11-01

    Full Text Available The title structure, C5H6ClN2+·NO3−, is held together by extensive hydrogen bonding between the NO3− ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H...O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.

  16. Electrolytic production of uranous nitrate

    International Nuclear Information System (INIS)

    Orebaugh, E.G.; Propst, R.C.

    1980-04-01

    Efficient production of uranous nitrate is important in nuclear fuel reprocessing because U(IV) acts as a plutonium reductant in solvent extraction and can be coprecipitated with plutonium and/or throium as oxalates during fuel reprocessing. Experimental conditions are described for the efficient electrolytic production of uranous nitrate for use as a reductant in the SRP Purex process. The bench-scale, continuous-flow, electrolysis cell exhibits a current efficiency approaching 100% in combination with high conversion rates of U(VI) to U(IV) in simulated and actual SRP Purex solutions. High current efficiency is achieved with a voltage-controlled mercury-plated platinum electrode and the use of hydrazine as a nitrite scavenger. Conversion of U(VI) to U(IV) proceeds at 100% efficiency. Cathodic gas generation is minimal. The low rate of gas generation permits a long residence time within the cathode, a necessary condition for high conversions on a continuous basis. Design proposals are given for a plant-scale, continuous-flow unit to meet SRP production requirements. Results from the bench-scale tests indicate that an 8-kW unit can supply sufficient uranous nitrate reductant to meet the needs of the Purex process at SRP

  17. Photochemical reduction of uranyl nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Duerksen, W.K.

    1993-10-20

    The photochemical reduction of uranyl nitrate solutions to tetravalent uranium was investigated as a means of producing uranium dioxide feed for the saltless direct oxide reduction (SDOR) process. At high uranium concentrations, reoxidation of U{sup +4} occurs rapidly. The kinetics of the nitric oxidation of tetravalent uranium depend on the concentrations of hydrogen ion, nitrate ion, nitrous acid, and tetravalent uranium in the same manner as was reported elsewhere for the nitrate oxidation of PU{sup +3}. Reaction rate data were successfully correlated with a mechanism in which nitrogen dioxide is the reactive intermediate. Addition of a nitrous acid scavenger suppresses the reoxidation reaction. An immersion reactor employing a mercury vapor lamp gave reduction times fast enough for routine production usage. Precipitation techniques for conversion of aqueous U(NO{sub 3}){sub 4} to hydrous UO{sub 2} were evaluated. Prolonged dewatering times tended to make the process time consuming. Use of 3- to 4-M aqueous NaOH gave the best dewatering times observed. Reoxidation of the UO{sub 2} by water of hydration was encountered, which required the drying process to be carried out under a reducing atmosphere.

  18. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion

    Science.gov (United States)

    Fewtrell, Lorna

    2004-01-01

    On behalf of the World Health Organization (WHO), I have undertaken a series of literature-based investigations examining the global burden of disease related to a number of environmental risk factors associated with drinking water. In this article I outline the investigation of drinking-water nitrate concentration and methemoglobinemia. The exposure assessment was based on levels of nitrate in drinking water greater than the WHO guideline value of 50 mg/L. No exposure–response relationship, however, could be identified that related drinking-water nitrate level to methemoglobinemia. Indeed, although it has previously been accepted that consumption of drinking water high in nitrates causes methemoglobinemia in infants, it appears now that nitrate may be one of a number of co-factors that play a sometimes complex role in causing the disease. I conclude that, given the apparently low incidence of possible water-related methemoglobinemia, the complex nature of the role of nitrates, and that of individual behavior, it is currently inappropriate to attempt to link illness rates with drinking-water nitrate levels. PMID:15471727

  19. Synthesis and characterization of a cobalt(II) complex with(E)-ń-(2-Hydroxy-3-Methoxybenzylidene)isonicotinohydrazide and (E)-ń-(2-Hydroxy-3-Methoxybenzylidene)isonicotinohydrazidanium nitrate as a by-product

    Czech Academy of Sciences Publication Activity Database

    Tabatabaee, M.; Taghinezhadkoshknou, A.; Dušek, Michal; Fejfarová, Karla

    2015-01-01

    Roč. 45, č. 10 (2015), 1506-1512 ISSN 1553-3174 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : Schiff base ligand * cobalt complex * isonicotinic acid hydrazide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.493, year: 2015

  20. Extraction of tetravalent and hexavalent actinide ions by tetraheptylammonium nitrate

    International Nuclear Information System (INIS)

    Swarup, Rajendra; Patil, S.K.

    1977-01-01

    Extraction of Th(IV), Np(IV), Pu(IV), U(VI), Np(VI), and Pu(VI) by tetraheptylammonium nitrate in Solvesso-100 has been studied from nitric acid medium. Attempts were made to identify the complex species in the organic phase by studying the dependence of the distribution coefficient of the actinide on amine concentration and taking the absorption spectra of the organic phase containing actinide ions. A compound tetraheptylammonium trinitratodioxouranate (VI) has been isolated and characterised. (author)

  1. Electrochemical Destruction of Nitrates and Organics FY1995 Progress Report

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1995-01-01

    Production of nuclear materials within the DOE complex has yielded large volumes of high-level waste containing hazardous species such as nitrate, nitrite, chromium, and mercury. Processes being developed for the permanent disposal of these wastes are aimed at separating the bulk of the radioactivity, primarily 137-Cs and 90-Sr, into a small volume for incorporation into a vitrified wasteform, with the remainder being incorporated into a low-level wasteform

  2. Selective Nitrate Recognition by a Halogen‐Bonding Four‐Station [3]Rotaxane Molecular Shuttle

    Science.gov (United States)

    Barendt, Timothy A.; Docker, Andrew; Marques, Igor; Félix, Vítor

    2016-01-01

    Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results. PMID:27436297

  3. Identifying Efficient Nitrate Reduction Strategies in the Upper Danube

    Directory of Open Access Journals (Sweden)

    Angel Udias

    2016-08-01

    Full Text Available Nitrogen losses in the form of Nitrate (N-NO3 from point and diffuse sources of pollution are recognized to be the leading cause of water body impairment throughout Europe. Implementation of conservation programs is perceived as being crucial for restoring and protecting the good ecological status of freshwater bodies. The success of conservation programs depends on the efficient identification of management solutions with respect to the envisaged environmental and economic objectives. This is a complex task, especially considering that costs and effectiveness of conservation strategies depend on their locations. We applied a multi-objective, spatially explicit analysis tool, the R-SWAT-DM framework, to search for efficient, spatially-targeted solution of Nitrate abatement in the Upper Danube Basin. The Soil Water Assessment Tool (SWAT model served as the nonpoint source pollution estimator for current conditions as well as for scenarios with modified agricultural practices and waste water treatment upgrading. A spatially explicit optimization analysis that considered point and diffuse sources of Nitrate was performed to search for strategies that could achieve largest pollution abatement at minimum cost. The set of optimal spatial conservation strategies identified in the Basin indicated that it could be possible to reduce Nitrate loads by more than 50% while simultaneously provide a higher income.

  4. Aqueous-salt system containing ytterbium nitrate and pyridine nitrate

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Izmajlova, L.V.

    1983-01-01

    Cross-section method has been used to study solubility in ternary aqueous-salt system Yb(NO 3 ) 3 -C 5 H 5 NxHNO 3 -H 2 0 at 25 and 50 deg C. It is established that the system is characterized by chemical interaction. Congruently soluble compound of Yb(NO 3 ) 3 x2[C 5 H 5 NxHNO 3 ] composition is discovered in the system. Composition of the compound is confirmed by chemical analysis; its infrared spectra are studied. Interplanar distances are determined; derivatogram of the compound is given. The results of the works are compared with analogous investigations of another rare earth nitrates

  5. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    Science.gov (United States)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are

  6. Liquid-liquid extraction kinetics of uranyl nitrate and actinides (III)-lanthanides nitrates by extractants with amide function

    International Nuclear Information System (INIS)

    Toulemonde, V.

    1995-01-01

    Nowadays, the most important part of electric power is generated by fission energy. But spent fuels have then to be reprocessed. The production of these reprocessed materials separately and with a high purity level is done according to a liquid-liquid extraction process (Purex process) with the use of tributyl phosphate as solvent. Optimization studies concerning the extracting agent have been undertaken. This work gives the results obtained for the uranyl nitrate and the actinides (III)-lanthanides (III) nitrates extraction by extractants with amide function (monoamide for U(VI) and diamide for actinides (III) and lanthanides (III)). The extraction kinetics have been studied in the case of a metallic specie transfer from the aqueous phase towards the organic phase. The experiments show that the nitrates extraction kinetics is limited by the complexation chemical reaction of the species at the interface between the two liquids. An adsorption-desorption interfacial reactional mechanism (Langmuir theory) is proposed for the uranyl nitrate. (O.M.)

  7. Workgroup report: Drinking-water nitrate and health - Recent findings and research needs

    Science.gov (United States)

    Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  8. Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs

    Science.gov (United States)

    Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519

  9. Sulfate, nitrate and blood pressure - An EPIC interaction between sulfur and nitrogen.

    Science.gov (United States)

    Kuhnle, Gunter G; Luben, Robert; Khaw, Kay-Tee; Feelisch, Martin

    2017-08-01

    Nitrate (NO 3 - )-rich foods such as green leafy vegetables are not only part of a healthy diet, but increasingly marketed for primary prevention of cardiovascular disease (CVD) and used as ergogenic aids by competitive athletes. While there is abundant evidence for mild hypotensive effects of nitrate on acute application there is limited data on chronic intake in humans, and results from animal studies suggest no long-term benefit. This is important as nitrate can also promote the formation of nitrosamines. It is therefore classified as 'probably carcinogenic to humans', although a beneficial effect on CVD risk might compensate for an increased cancer risk. Dietary nitrate requires reduction to nitrite (NO 2 - ) by oral commensal bacteria to contribute to the formation of nitric oxide (NO). The extensive crosstalk between NO and hydrogen sulfide (H 2 S) related metabolites may further affect nitrate's bioactivity. Using nitrate and nitrite concentrations of drinking water - the only dietary source continuously monitored for which detailed data exist - in conjunction with data of >14,000 participants of the EPIC-Norfolk study, we found no inverse associations with blood pressure or CVD risk. Instead, we found a strong interaction with sulfate (SO 4 2- ). At low sulfate concentrations, nitrate was inversely associated with BP (-4mmHg in top quintile) whereas this was reversed at higher concentrations (+3mmHg in top quintile). Our findings have a potentially significant impact for pharmacology, physiology and public health, redirecting our attention from the oral microbiome and mouthwash use to interaction with sulfur-containing dietary constituents. These results also indicate that nitrate bioactivation is more complex than hitherto assumed. The modulation of nitrate bioactivity by sulfate may render dietary lifestyle interventions aimed at increasing nitrate intake ineffective and even reverse potential antihypertensive effects, warranting further investigation

  10. Impacts of management and climate change on nitrate leaching in a forested karst area.

    Science.gov (United States)

    Dirnböck, Thomas; Kobler, Johannes; Kraus, David; Grote, Rüdiger; Kiese, Ralf

    2016-01-01

    Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nitrate contamination of groundwater and its countermeasures

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Hisayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environment remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, measures for reducing nitrate level, etc. (author)

  12. Nitrates

    Science.gov (United States)

    ... Rounds Seminar Series & Daily Conferences Fellowships and Residencies School of Perfusion Technology Education Resources Library & Learning Resource Center CME Resources THI Journal THI Cardiac Society Register for the Cardiac Society ...

  13. Nitrat i drikkevandet og vores sundhed

    DEFF Research Database (Denmark)

    Hansen, Birgitte; Schullehner, Jörg; Sigsgaard, Torben

    2014-01-01

    Nitrat i drikkevandet er uønsket, da det kan påvirke vores sundhed negativt. Den øvre grænse for hvor meget nitrat der tillades i drikkevandet er fastsat i forhold til risikoen for akut forgiftning med nitrit og blå børn-syndromet. Men nitrat i drikkevandet mistænkes også for at være medvirkende...

  14. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1977-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artificial test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiography by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (Auth.)

  15. Alpha autoradiography by cellulose nitrate layer

    International Nuclear Information System (INIS)

    Simonovic, J.; Vukovic, J.; Antanasijevic, R.

    1976-01-01

    From domestic cellulose nitrate bulk material thin layers for α-particle autoradiography were prepared. An artifical test specimen of a uniformly alpha labelled grid source was used. The efficiency of autoradiographs by cellulose nitrate was calculated comparing with data from an Ilford K2 nuclear emulsion exposed under the same conditions as the cellulose nitrate film. The resolution was determined as the distance from grid pitch edge at which the track density fell considerably. (orig.) [de

  16. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.

    1987-01-01

    The major objective of this project is to determine dose-effect relationships of inhaled plutonium nitrate in dogs to aid in predicting health effects of accidental exposure in man. For lifespan dose-effect studies, beagle dogs were given a single inhalation exposure to 239 Pu(NO 3 ) 4 , in 1976 and 1977. The earliest biological effect was on the hematopoietic system; lymphopenia and neutropenia occurred at the two highest dose levels. They have also observed radiation pneumonitis, lung cancer, and bone cancer at the three highest dose levels. 1 figure, 3 tables

  17. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  18. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.

    1986-01-01

    The major objective of this project is to determine dose-effect relationships of inhaled plutonium nitrate in dogs to aid in predicting health effects of accidental exposure in man. For lifespan dose-effect studies, beagle dogs were given a single inhalation exposure to 239 Pu(NO 3 ) 4 , in 1976 and 1977. The earliest biological effect was on the hematopoietic system; lymphopenia and neutropenia occurred at the two highest dose levels. The authors have also observed radiation pneumonitis, lung cancer, and bone cancer at the three highest dose levels. 1 figure, 4 tables

  19. Inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.

    1982-01-01

    The major objective of this project is to determine dose-effect relationships of inhaled plutonium nitrate in dogs to aid in the prediction of health effects of accidental exposure in man. For lifespan dose-effect studies, beagle dogs were given a single inhalation exposure to 239 Pu(NO 3 ) 4 , in 1976 and 1977. The earliest biological effect was on the hematopoietic system; as described in previous Annual Reports, lymphopenia and neutropenia occurred at the two highest dose levels. Radiation pneumonitis, lung cancer, and bone cancer have been observed at the highest dose levels

  20. 76 FR 46907 - Ammonium Nitrate Security Program

    Science.gov (United States)

    2011-08-03

    ... Maritime Transportation Security Act NAICS North American Industrial Classification System NPRM Notice of.... Commenters noted, for example, that equipment used for transporting bulk ammonium nitrate, such as hoppers...

  1. Automated analysis for nitrate by hydrazine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kamphake, L J; Hannah, S A; Cohen, J M

    1967-01-01

    An automated procedure for the simultaneous determinations of nitrate and nitrite in water is presented. Nitrite initially present in the sample is determined by a conventional diazotization-coupling reaction. Nitrate in another portion of sample is quantitatively reduced with hydrazine sulfate to nitrite which is then determined by the same diazotization-coupling reaction. Subtracting the nitrite initially present in the sample from that after reduction yields nitrite equivalent to nitrate initially in the sample. The rate of analysis is 20 samples/hr. Applicable range of the described method is 0.05-10 mg/l nitrite or nitrate nitrogen; however, increased sensitivity can be obtained by suitable modifications.

  2. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Master's thesis in Biological Chemistry Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecu...

  3. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    Science.gov (United States)

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations.

  4. The influence of nitrate concentrations and acidity on the electrocatalytic reduction of nitrate on platinum

    NARCIS (Netherlands)

    Groot, de M.T.; Koper, M.T.M.

    2004-01-01

    A study was performed to determine the influence of nitrate concentration and acidity on the reaction rate and selectivity of the electrocatalytic nitrate reduction on platinum. There are two different nitrate reduction mechanisms on platinum: a direct mechanism (0.4–0.1 V vs. SHE) and an indirect

  5. California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

    2010-04-14

    study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.

  6. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane

    Directory of Open Access Journals (Sweden)

    LIANG Jia-xiang

    2017-05-01

    Full Text Available Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3 systems. As to the (CH3CO2O-HNO3 system, the main activator is CH3COONO2.

  7. The systems terbium (holmium) nitrate-piperidine nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C solubility in the systems Tb(NO 3 ) 2 -C 5 H 10 NHxHNO 3 -H 2 O and Ho(NO 3 ) 3 -C 5 H 10 NHxHNO 3 -H 2 O has been studied. The systems are characterized by chemical interaction of components. Solubility isotherms have crystallization fields of solid phases of the composition Tb(NO 3 ) 3 x3[C 5 H 10 NHxHNO 3 ]x3H 2 O and Ho(NO 3 ) 3 x2[C 5 H 10 NHxHNO 3 ]. The compounds detected are singled out preparatively, their IR spectra are studied, their thermogravimetric analysis is carried out. Investigation results are compared with similar systems formed by nitrates of other representatives of rare earth group

  8. The influence of Metisevit on biochemical and morphological indicators of blood of piglets under nitrate loading

    Directory of Open Access Journals (Sweden)

    B. Gutyj

    2017-07-01

    Full Text Available The article presents the results of research on the influence of the developed complex preparation Metisevit on the dynamics of morphological and biochemical blood indicators of piglets under nitrate loading. The research established that sodium nitrate intoxication causes disbalance of the physiological level of hematological indicators of the tested animals’ organisms. This was indicated by the manifestations of subclinical chronic nitrate-nitrite toxicosis: the increase in the level of nitrates, nitrites and methemoglobin in the blood. After prolonged feeding of the piglets with sodium nitrate at a dose of 0.3 g nitrate ion/kg, the concentration of nitrates and nitrites in the blood serum reached its maximum on the 60th day of the experiment. Also, the number of leukocytes and erythrocytes in the blood increased, and the activity of aspartate- and alanineaminotransferase in the blood serum increased. We rank the extent of liver intoxication with nitrates according to intensity of aminotransferase in the blood serum of the tested piglets. The normalization of morphological and biochemical blood indicators of piglets under nitrate-nitrite intoxication requires usage of a preparation which contains vitamins, zeolites and antioxidants. If the fodder contains high doses of nitrates, 1.0 mg/kg dose of Metisevit is added to the fodder for preventing subclinical nitrate-nitrite toxicosis. Metisevit contains the following agents: phenozan acid, methionine, zeolite, selenium, vitamins E and C. The research conducted proved the feasibility of using Metisevit for preventing chronic nitrate-nitrite toxicosis in piglets. This preparation caused a decrease in the concentration of nitrates, nitrites and in the level of methemoglobin in the blood of piglets. Usage of Metisevit on piglets showed normalization of the number of erythrocytes and hemoglobin in the blood on the 10th day, and normalization of ASAT and ALAT on 30th and 90th days. The mechanism of

  9. Intracomplex {pi}-{pi} stacking interaction between adjacent phenanthroline molecules in complexes with rare-earth nitrates: Crystal and molecular structures of bis(1,10-Phenanthroline)trinitratoytterbium and bis(1,10-Phenanthroline)trinitratolanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Antsyshkina, A. S.; Rodnikova, M. N.; Solonina, I. A. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2009-01-15

    Crystals of the compounds Yb(NO{sub 3}){sub 3}(Phen){sub 2} and La(NO{sub 3}){sub 3}(Phen){sub 2} (Phen = 1,10-phenanthroline) are investigated using X-ray diffraction. It is established that there exist two different crystalline modifications: the main modification (phase 1) is characteristic of all members of the isostructural series, and the second modification (phase 2) is observed only for the Eu, Er, and Yb elements. It is assumed that the stability and universality of main phase 1 are associated with the occurrence of the nonbonded {pi}-{pi} stacking interactions between the adjacent phenanthroline ligands in the complexes. The indication of the interactions is a distortion of the planar shape of the Phen molecule (the folding of the metallocycle along the N-N line with a folding angle of 11{sup o}-13{sup o} and its 'boomerang' distortion). The assumption regarding the {pi}-{pi} stacking interaction is very consistent with the shape of the ellipsoids of atomic thermal vibrations, as well as with the data obtained from thermography and IR spectroscopy. An analysis of the structures of a number of rare-earth compounds has demonstrated that the intracomplex {pi}-{pi} stacking interactions directly contribute to the formation of supramolecular associates in the crystals, such as molecular dimers, supramolecules, chain and layered ensembles, and framework systems.

  10. The crystal structure of urea nitrate

    NARCIS (Netherlands)

    Harkema, Sybolt; Feil, D.

    1969-01-01

    The structure of urea nitrate has been solved, by the use of three-dimensional X-ray data. Data were collected using Cu Ke and Mo K0~ radiations. The structure consists of layers with urea and nitrate groups held together by hydrogen bonds. The positions of all hydrogen atoms were found. The final R

  11. Spectrophotometric Determination of Nitrate in Vegetables Using ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    ABSTRACT: A rapid and sensitive spectrophotometric method for the determination of nitrate in vegetables is described. The method is based on the measurement of the absorbance of yellow sodium nitrophenoxide formed via the reaction of phenol with the vegetable-based nitrate in presence of sulphuric acid.

  12. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  13. 4-Methoxy-N,N′-diphenylbenzamidinium nitrate

    Directory of Open Access Journals (Sweden)

    Renata S. Silva

    2016-09-01

    Full Text Available The asymmetric unit of the title salt N,N′-diphenyl-4-methoxybenzamidinium nitrate, C20H19N2O+·NO3−, comprises two independent N,N′-diphenyl-4-methoxybenzamidinium cations and two nitrate anions. The crystal structure features N—H...O hydrogen bonds and C—H...O contacts responsible for the packing.

  14. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model?

    Science.gov (United States)

    Liang, Hao; Qi, Zhiming; Hu, Kelin; Prasher, Shiv O; Zhang, Yuanpei

    2016-10-01

    Nitrate contamination of groundwater is an environmental concern in intensively cultivated desert oases where this polluted groundwater is in turn used as a major irrigation water resource. However, nitrate fluxes from root zone to groundwater are difficult to monitor in this complex system. The objectives of this study were to validate and apply the WHCNS (soil Water Heat Carbon Nitrogen Simulator) model to simulate water drainage and nitrate leaching under different irrigation and nitrogen (N) management practices, and to assess the utilization of groundwater nitrate as an approach to remediate nitrate contaminated groundwater while maintain crop yield. A two-year field experiment was conducted in a corn field irrigated with high nitrate groundwater (20 mg N L(-1)) in Alxa, Inner Mongolia, China. The experiment consisted of two irrigation treatments (Istd, standard, 750 mm per season; Icsv, conservation, 570 mm per season) factorially combined with two N fertilization treatments (Nstd, standard, 138 kg ha(-1); Ncsv, conservation, 92 kg ha(-1)). The validated results showed that the WHCNS model simulated values of crop dry matter, yield, soil water content and soil N concentration in soil profile all agreed well with the observed values. Compared to the standard water management (Istd), the simulated drainage and nitrate leaching decreased about 65% and 59%, respectively, under the conservation water management (Icsv). Nearly 55% of input N was lost by leaching under the IstdNstd and IstdNcsv treatments, compared to only 26% under the IcsvNstd and IcsvNcsv treatments. Simulations with more than 240 scenarios combing different levels of irrigation and fertilization indicated that irrigation was the main reason leading to the high risk of nitrate leaching, and the nitrate in irrigation groundwater can be best utilized without corn yield loss when the total irrigation was reduced from the current 750 mm to 491 mm. This reduced irrigation rate facilitated

  15. Kinetic of liquid-liquid extraction for uranyl nitrate and actinides (III) and lanthanides (III) nitrates by amide extractants; Cinetique d`extraction liquide-liquide du nitrate d`uranyle et des nitrates d`actinides (III) et de lanthanides (III) par des extractants a fonction amide

    Energy Technology Data Exchange (ETDEWEB)

    Toulemonde, V [CEA Centre d` Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France); [CEA Centre d` Etudes de la Vallee du Rhone, 30 -Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement

    1995-12-20

    The kinetics of liquid-liquid extraction by amide extractants have been investigated for uranyl nitrate (monoamide extractants), actinides (III) and lanthanides (III) nitrates (diamide extractants). The transfer of the metallic species from the aqueous phase to the organic phase was studied using two experimental devices: ARMOLLEX (Argonne Modified Lewis cell for Liquid Liquid Extraction) and RSC (Rotating Stabilized Cell). The main conclusions are: for the extraction of uranyl nitrate by DEHDMBA monoamide, the rate-controlling step is the complexation of the species at the interface of the two liquids. Thus, an absorption-desorption (according to Langmuir theory) reaction mechanism was proposed; for the extraction of actinides (III) and lanthanides (III) nitrates in nitric acid media by DMDBTDMA diamide, the kinetic is also limited by interfacial reactions. The behavior of Americium and Europium is very similar as fare as their reaction kinetics are concerned. (author). 89 refs.

  16. Dietary nitrates, nitrites, and cardiovascular disease.

    Science.gov (United States)

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  17. Use of nitrates in ischemic heart disease.

    Science.gov (United States)

    Giuseppe, Cocco; Paul, Jerie; Hans-Ulrich, Iselin

    2015-01-01

    Short-acting nitrates are beneficial in acute myocardial ischemia. However, many unresolved questions remain about the use of long-acting nitrates in stable ischemic heart disease. The use of long-acting nitrates is weakened by the development of endothelial dysfunction and tolerance. Also, we currently ignore whether lower doses of transdermal nitroglycerin would be better than those presently used. Multivariate analysis data from large nonrandomized studies suggested that long-acting nitrates increase the incidence of acute coronary syndromes, while data from another multivariate study indicate that they have positive effects. Because of methodological differences and open questions, the two studies cannot be compared. A study in Japanese patients with vasospastic angina has shown that, when compared with calcium antagonists, long-acting nitrates do not improve long-term prognosis and that the risk for cardiac adverse events increases with the combined therapy. We have many unanswered questions.

  18. Nitrate reduction in an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Boesen, Carsten; Kristiansen, Henning

    1991-01-01

    of total dissolved ions in the NO3- free anoxic zone indicates the downward migration of contaminants and that active nitrate reduction is taking place. Nitrate is apparently reduced to N2 because both nitrite and ammonia are absent or found at very low concentrations. Possible electron donors......Nitrate distribution and reduction processes were investigated in an unconfined sandy aquifer of Quaternary age. Groundwater chemistry was studied in a series of eight multilevel samplers along a flow line, deriving water from both arable and forested land. Results show that plumes of nitrate...... processes of O2 and NO3- occur at rates that are fast compared to the rate of downward water transport. Nitrate-contaminated groundwater contains total contents of dissolved ions that are two to four times higher than in groundwater derived from the forested area. The persistence of the high content...

  19. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    Science.gov (United States)

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  20. The systems lanthanum (cerium, samarium) nitrate-tetramethyl-ammonium nitrate-water

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Semenova, Eh.B.

    1984-01-01

    The method of cross sections at 25 and 50 deg C has been applied to study solubility in the systems lanthanum nitrate-tetramethyl ammonium nitrate-water (1), cesium (3) nitrate-tetramethyl ammonium nitrate-water (2) and samarium nitrate-tetramethyl ammonium nitrate-water (3). Crystallization fields of congruently dissolving compounds with 1:3 ratio of salt components (in system 1) and 1:2 ratio (in systems 2 and 3) are found in the systems. New solid phases are separated preparatively and subjected to chemical, differential thermal and IR spectroscopic analyses. Compositions of formed compounds are compared with the compositions known for nitrates of other representatives of light lanthanides

  1. Phase diagram of ammonium nitrate

    International Nuclear Information System (INIS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-01-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N 2 , N 2 O, and H 2 O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV ′ transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C

  2. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  3. Cloud point extraction: an alternative to traditional liquid-liquid extraction for lanthanides(III) separation.

    Science.gov (United States)

    Favre-Réguillon, Alain; Draye, Micheline; Lebuzit, Gérard; Thomas, Sylvie; Foos, Jacques; Cote, Gérard; Guy, Alain

    2004-06-17

    Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.

  4. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    weeks. Additionally, Fe(II)-oxidizing, nitrate-reducing microbial enrichment cultures were obtained from aquifer sediments. Growth experiments with the cultures sequentially produced nitrite and nitrous oxide from nitrate while simultaneously oxidizing Fe(II). Field and culture results suggest that nitrogen oxide reduction and Fe(II) oxidation in the aquifer are a complex interaction of coupled biotic and abiotic reactions. Overall, the results of this study demonstrate that anoxic nitrate-dependent iron oxidation can occur in groundwater; that it could control iron speciation; and that the process can impact the mobility of other chemical species (e.g., phosphate and arsenic) not directly involved in the oxidation–reduction reaction.

  5. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability

    Science.gov (United States)

    Debernardi, Laura; de Luca, Domenico Antonio; Lasagna, Manuela

    2008-08-01

    the complex phenomena affecting nitrate concentrations in soil, subsoil and groundwater. In particular, the traditional methods for vulnerability analysis do not analyze physical processes in aquifers, such as denitrification and nitrate dilution. According to a recent study in the shallow unconfined aquifer of the Piemonte plain, dilution can be considered as the main cause for nitrate attenuation in groundwater.

  6. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    Science.gov (United States)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  7. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  8. CARBON-BASED REACTIVE BARRIER FOR NITRATE ...

    Science.gov (United States)

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constructed for in-situ bioremediation of a ground water nitrate plume caused by leakage from a swine CAFO (concentrated animal feeding operation) lagoon. The swine CAFO, located in Logan County, Oklahoma, was in operation from 1992-1999. The overall site remediation strategy includes an ammonia recovery trench to intercept ammonia-contaminated ground water and a hay straw PRB which is used to intercept a nitrate plume caused by nitrification of sorbed ammonia. The PRB extends approximately 260 m to intercept the nitrate plume. The depth of the trench averages 6 m and corresponds to the thickness of the surficial saturated zone; the width of the trench is 1.2 m. Detailed quarterly monitoring of the PRB began in March, 2004, about 1 year after construction activities ended. Nitrate concentrations hydraulically upgradient of the PRB have ranged from 23 to 77 mg/L N, from 0 to 3.2 mg/L N in the PRB, and from 0 to 65 mg/L N hydraulically downgradient of the PRB. Nitrate concentrations have generally decreased in downgradient locations with successive monitoring events. Mass balance considerations indicate that nitrate attenuation is dominantly from denitrification but with some component of

  9. Comparative evaluation of nitrate removal technologies

    International Nuclear Information System (INIS)

    Darbi, A.; Viraraghavan, T.; Butler, R.; Corkal, D.

    2002-01-01

    Due to the extensive application of artificial nitrogen-based fertilizers and animal manure on land, many water agencies face problems of increasing concentrations of nitrate in groundwater. The contamination of groundwater by nitrate may pose a significant public health problem. The threat of methemoglobinemia is well documented and reflected in the U.S. drinking water standard of 10 mg/L as nitrate-nitrogen. Approximately 45% of Saskatchewan's population use groundwater for drinking purposes, out of which, approximately 23% (230,000) are rural residents. The water used is made available from over 48,000 privately owned wells in regions where there is an extensive application of chemical fertilizers. Biological denitrification, ion exchange and reveres osmosis (RO) processes were selected for further study. Field studies were conducted on these processes. The sulfur/limestone autotrophic denitrification (SLAD) process was selected to achieve biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions. An ion exchange study was conducted using Ionac A554 which is strong anion exchange resins. In the case of groundwater containing low sulfate concentrations, A554 offered high nitrate removal. However, the disposal of regenerant brine can be a problem. A reverse osmosis unit with Filmtec membrane elements (FT30-Element Family) was used in the study on nitrate removal. The unit effluent average nitrate concentration was less than the maximum allowable concentration. (author)

  10. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    Science.gov (United States)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  11. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  12. Photodegradation of Paracetamol in Nitrate Solution

    Science.gov (United States)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  13. Photodegradation of Paracetamol in Nitrate Solution

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Meng; Ruijuan, Qu; Jinyan, Liang; Xi, Yang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  14. Photodegradation of Paracetamol in Nitrate Solution

    International Nuclear Information System (INIS)

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-01-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  15. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    International Nuclear Information System (INIS)

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-01-01

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO_3"− concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ"1"8O, δ"2H) analysis, "3H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO_3"− concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO_3"− concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the

  16. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongmei [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Cao, Guoliang [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Center for Water Research, College of Engineering, Peking University, Beijing 100871 (China); McCallum, James [National Centre for Groundwater Research and Training, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Song, Xianfang [Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China)

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33–521 mg/L) in NO{sub 3}{sup −} concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ{sup 18}O, δ{sup 2}H) analysis, {sup 3}H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from − 8.5 to − 7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92–467 years) and the NO{sub 3}{sup −} concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8–411 years) and the NO{sub 3}{sup −} concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be

  17. Impact of Sulfide on Nitrate Conversion in Eutrophic Nitrate-Rich Marine Sludge

    DEFF Research Database (Denmark)

    Schwermer, Carsten U.; Krieger, Bärbel; Lavik, Gaute

    2006-01-01

    IMPACT OF SULFIDE ON NITRATE CONVERSION IN EUTROPHIC NITRATE-RICH MARINE SLUDGE C.U. Schwermer 1, B.U. Krieger 2, G. Lavik 1, A. Schramm 3, J. van Rijn 4, D. de Beer 1, D. Minz 5, E. Cytryn 4, M. Kuypers 1, A. Gieseke 1 1 Max Planck Institute for Marine Microbiology, Bremen, Germany; 2 Dept...... nitrate conversion from denitrification to dissimilatory nitrate-reduction to ammonium (DNRA). In situ microsensor profiling in stagnant sludge revealed the typical stratification of nitrate reduction on top of sulfate reduction. Increasing the bulk nitrate concentration lead to a downward shift....... Our results show that the presence of sulfide generally decreased growth rates but increased N2O production. We conclude that sulfide plays a key role in causing incomplete denitrification, presumably by inhibiting the N2O reductase, and enhancing DNRA compared to denitrification.  ...

  18. Nitrate removal from alkaline high nitrate effluent by in situ generation of hydrogen using zinc dust

    International Nuclear Information System (INIS)

    Rajagopal, S.; Chitra, S.; Paul, Biplob

    2016-01-01

    Alkaline radioactive low level waste generated in Nuclear Fuel Cycle contains substantial amount of nitrate and needs to be treated to meet Central Pollution Control Board discharge limits of 90 mg/L in marine coastal area. Several denitrification methods like chemical treatment, electrochemical reduction, biological denitrification, ion exchange, reverse osmosis, photochemical reduction etc are followed for removal of nitrate. In effluent treatment plants where chemical treatment is carried out, chemical denitrification can be easily adapted without any additional set up. Reducing agents like zinc and aluminum are suitable for reducing nitrate in alkaline solution. Study on denitrification with zinc dust was taken up in this work. Not much work has been done with zinc dust on reduction of nitrate to nitrogen in alkaline waste with high nitrate content. In the present work, nitrate is reduced by nascent hydrogen generated in situ, caused by reaction between zinc dust and sodium hydroxide

  19. CONCENTRATED CALCIUM NITRATE IS AN EFFECTIVE SOLUTION FOR MINERAL NUTRITION OF VEGETABLES GROWN THROUGH PROTECTED CULTIVATION

    Directory of Open Access Journals (Sweden)

    T. V. Grebennikova

    2017-01-01

    Full Text Available One of the basis water-soluble fertilizers that are used in greenhouse enterprises is  a Calcium  nitrate,  where  its production  and demand raise. At present time, calcium nitrate is produced  in a granulated and crystaline   form consisted of tetrahydrate, dihydrate and concentrated variants. These forms  are significantly distinguished  by their  chemical  composition.  Besides the  basic  form  of nitrogen – nitrate – there is ammoniacal nitrogen in the composition of Calcium nitrate that is found to be undesirable element, particularly with drip irrigation system in the  greenhouse. The new  product,  calcium  nitrate  has been worked out with minimal content of ammoniacal nitrogen  at  URALCHIM. The study  showed  the  advantages of the product for such characteristics as solubility and time of dissolving. It dissolves 3.4-7 time faster than those of tetrahydrate and dihydrate analogues. At present time, the concentrated  calcium  nitrate is used in many greenhouse  industrial  complexes  and  enterprises,  and has shown its efficiency in practice.

  20. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Patrick Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chamberlin, Rebecca M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worley, Christopher Gordon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garduno, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Elmer J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borrego, Andres Patricio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Colletti, Lisa Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fulwyler, James Brent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holland, Charlotte S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Russell C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klundt, Dylan James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martin, Frances Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montoya, Dennis Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porterfield, Donivan R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schake, Ann Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schappert, Michael Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Soderberg, Constance B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spencer, Khalil J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanley, Floyd E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thomas, Mariam R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Townsend, Lisa Ellen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xu, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  1. Phase diagram of ammonium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Dunuwille, Mihindra; Yoo, Choong-Shik, E-mail: csyoo@wsu.edu [Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164 (United States)

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  2. Denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Bertolami, R.J.; Chao, E.I.; Choi, W.M.; Johnson, B.R.; Varlet, J.L.P.

    1976-01-01

    Growth rates for the denitrifying bacteria Pseudomonas Stutzeri were studied to minimize the time necessary to start up a bacterial denitrification reactor. Batch experiments were performed in nine 250-ml Erlenmeyer flasks, a 7-liter fermentor, and a 67-liter fermentor. All reactors maintained an anaerobic environment. Initial microorganism inoculum concentration was varied over four orders of magnitude. Initial nitrate and substrate carbon concentrations were varied from 200 to 6000 ppm and from 56 to 1596 ppm, respectively, with a carbon-to-nitrogen weight ratio of 1.18. In all experiments, except those with the highest initial substrate-to-bacteria ratio, no growth was observed due to substrate depletion during the lag period. In those experiments which did exhibit an increase in bacterial population, growth also stopped due to substrate depletion. A model simulating microbe growth during the induction period was developed, but insufficient data were available to properly adjust the model constants. Because of this, the model does not accurately predict microbe growth. The metabolism of Pseudomonas Stutzeri was studied in detail. This resulted in a prediction of the denitrification stoichiometry during steady state reactor operation. Iron was found to be an important component for bacterial anabolism

  3. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    OpenAIRE

    Samuelsson, M O

    1985-01-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sod...

  4. Does thiosemicarbazide lead nitrate (TSLN) crystal exist?

    OpenAIRE

    Fernandes, R.; Srinivasan, Bikshandarkoil R.

    2016-01-01

    The authors of a recent paper (Optik 125 (2014) 2022-2025) claim to have grown a so called thiosemicarbazide lead nitrate (TSLN) crystal by the slow evaporation method. In this comment we prove that TSLN is actually thiosemicarbazide.

  5. Nitrate reduction in geologically heterogeneous catchments

    DEFF Research Database (Denmark)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface...... conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root...... the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface...

  6. [Nitrate concentrations in tap water in Spain].

    Science.gov (United States)

    Vitoria, Isidro; Maraver, Francisco; Sánchez-Valverde, Félix; Armijo, Francisco

    2015-01-01

    To determine nitrate concentrations in drinking water in a sample of Spanish cities. We used ion chromatography to analyze the nitrate concentrations of public drinking water in 108 Spanish municipalities with more than 50,000 inhabitants (supplying 21,290,707 potential individuals). The samples were collected between January and April 2012. The total number of samples tested was 324. The median nitrate concentration was 3.47 mg/L (range: 0.38-66.76; interquartile range: 4.51). The water from 94% of the municipalities contained less than 15 mg/L. The concentration was higher than 25mg/L in only 3 municipalities and was greater than 50mg/L in one. Nitrate levels in most public drinking water supplies in municipalities inhabited by almost half of the Spanish population are below 15 mg/L. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  7. Nitrate Waste Treatment Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Holterman, Luciana R. [Los Alamos National Laboratory; Martinez, Patrick Thomas [Los Alamos National Laboratory; Garcia, Terrence Kerwin [Los Alamos National Laboratory

    2017-07-05

    This plan is designed to outline the collection and analysis of nitrate salt-bearing waste samples required by the New Mexico Environment Department- Hazardous Waste Bureau in the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (Permit).

  8. High dose potassium-nitrate chemical dosimeter

    International Nuclear Information System (INIS)

    Dorda de Cancio, E.M.; Munoz, S.S.

    1982-01-01

    This dosimeter is used to control 10 kGY-order doses (1 Mrad). Nitrate suffers a radiolitic reduction phenomena, which is related to the given dose. The method to use potassium nitrate as dosimeter is described, as well as effects of the temperature of irradiation, pH, nitrate concentration and post-irradiation stability. Nitrate powder was irradiated at a Semi-Industrial Plant, at Centro Atomico Ezeiza, and also in a Gammacell-220 irradiator. The dose rates used were 2,60 and 1,80 KGY/hour, and the given doses varied between 1,0 and 150 KGY. The uncertainty was +-3% in all the range. (author) [es

  9. Potentiometric determination of free nitric-acid in trilaurylamine solutions containing plutonium nitrate

    International Nuclear Information System (INIS)

    Perez, J.J.; Saey, J.C.

    1965-01-01

    A potentiometric method of determination of the free nitric acid in trilaurylamine solutions containing plutonium or thorium nitrates is described. The potentiometric titration is carried out in a mixture of benzene and 1,2-dichloro ethane with a standard solution of trilaurylamine as the titrant. When thorium nitrate is present the metal complex is not dissociated then the titration has a single end-point. In the case of plutonium nitrate the partial dissociation of the plutonium complex corresponds to a second point. The experimental error in duplicate analyses of 50 samples is about 1 per cent for free acid concentrations in the range of 0,03 to 0,1 N and plutonium concentrations between 1 to 5 g/l. (authors) [fr

  10. Ternary systems, consist of erbium nitrates, water and nitrates of pyridines, quinolines

    International Nuclear Information System (INIS)

    Starikova, L.I.; Zhuravlev, E.F.; Khalfina, L.R.

    1979-01-01

    At 25 and 50 deg C investigated is solubility of solid phases in ternary water salt systems: erbium nitrate-pyridine nitrate-water; erbium nitrate-quinoline nitrate-water. Formation of congruently soluble compounds of the Er(NO 3 ) 3 x2C 5 H 5 NxHNO 3 , Er(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x4H 2 O composition is established. X-ray phase and thermogravimetric analyses have been carried out

  11. Data on nitrate and nitrate of Taham dam in Zanjan (Iran

    Directory of Open Access Journals (Sweden)

    Mohammadreza Massoudinejad

    2018-04-01

    Full Text Available In recent years, contamination of water resources, with pollutants such as nitrate and nitrite, has significantly increased. These compounds can have harmful effects on human health, especially children such as methemoglobinemia. The main objective of this study was to measure the concentration of nitrate and nitrite and its health-risk assessment in the rivers entering Taham dam in Zanjan. USEPA Method was used to assess the health-risk of nitrate and nitrite. According to the obtained results, the concentration of nitrate and nitrite was in the range of 0.51–14.93 mg/l and 0.001–0.061 mg/l, respectively. According to the results, the mean of the CDI for nitrate and nitrite was 9.52*10−2 and 3.63*10−4 mg/kg/day, respectively. Furthermore, the mean HI for nitrate and nitrite was 5.97*10−2 and 3.63*10−3, respectively. The concentration of nitrate and nitrite in rivers was lower than the WHO and Iran guidelines. Based on the results, the HI value in all samples was less than 1 which indicating the non-carcinogenic effects of nitrate and nitrite in these rivers. Keywords: Nitrate, Nitrite, Water quality, Dam

  12. Bio nitrate Project: a new technology for water nitrate elimination by means of ionic exchange resins

    International Nuclear Information System (INIS)

    Arellano Ortiz, J.

    2009-01-01

    The use of ion exchange resins for nitrate elimination from water generates a waste containing a sodium chloride mixture plus the retained nitrates. this waste must be correctly disposed. In this project, the resin ionic form is modified to be regenerated with other compounds, different from the common salt, which are interesting because of the presence of mineral nutrition. So, with Bio nitrate Project, nitrates are recovered and the regeneration waste is apt to be use as fertilizer, for agricultural uses, or as complementary contribution of nutrients in biological water treatment. (Author) 27 refs.

  13. Criticality parameters for uranyl nitrate or plutonium nitrate systems in tributyl phosphate/kerosine and water

    International Nuclear Information System (INIS)

    Weber, W.

    1985-01-01

    This report presents the calculated values of smallest critical masses and volumina and neutron physical parameters for uranyl nitrate (3, 4, 5% U-235) or plutonium nitrate (5% Pu-240), each in a 30 per cent solution of tributyl phosphate (TBP)/kerosine. For the corresponding nitrate-water solutions, newly calculated results are presented together with a revised solution density model. A comparison of the data shows to what extent the criticality of nitrate-TBP/kerosine systems can be assessed on the basis of nitrate-water parameters, revealing that such data can be applied to uranyl nitrate/water systems, taking into account that the smallest critical mass of uranyl nitrate-TBP/kerosine systems, up to a 5 p.c. U-235 enrichment, is by 4.5 p.c. at the most smaller than that of UNH-water solutions. Plutonium nitrate (5% Pu-240) in the TBP/kerosine solution will have a smallest critical mass of up to 7 p.c. smaller, as compared with the water data. The suitability of the computing methods and cross-sections used is verified by recalculating experiments carried out to determine the lowest critical enrichment of uranyl nitrate. The calculated results are well in agreement with experimental data. The lowest critical enrichment is calculated to be 2.10 p.c. in the isotope U-235. (orig.) [de

  14. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  15. Studies in Aromatic and Amine Nitration.

    Science.gov (United States)

    1980-05-20

    of Commerce, May 1978. 4. J. Hoggett , R. Moodie, F. Penton, and K. Schofield, Nitration and Aromatic Reactivity (Cambridge University Press, 1971). 5...Moodie, K. Schofield, and G. Tobin, J. Chem. Soc., Chem. Comm., 180 (1978); (b) J. Hoggett , R. Moodie, and K. Schofield, Chem. Comm. 605 (1969). 10. (a) S...Lawrence Livermore Laboratories (Received, 5th Februaty 1980; Com. 124.) 42 ’(a) J. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield, in ’Nitration

  16. The dehydration of uranyl nitrate hexahydrate

    International Nuclear Information System (INIS)

    Badalov, A.; Kamalov, D.D.; Khamidov, B.O.; Mirsaidov, I.U.; Eshbekov, N.R.

    2010-01-01

    Present article is devoted to study of dehydration process of uranyl nitrate hexahydrate. The dehydration process of uranyl nitrate hexahydrate was studied by means of tensimeter method with membrane zero-manometer. The research was carried out under equilibrium conditions. It was defined that in studied temperature ranges (300-450 K) the dehydration process of UO_2(NO_3)_2 has a three stage character.

  17. The UK Nitrate Time Bomb (Invited)

    Science.gov (United States)

    Ward, R.; Wang, L.; Stuart, M.; Bloomfield, J.; Gooddy, D.; Lewis, M.; McKenzie, A.

    2013-12-01

    The developed world has benefitted enormously from the intensification of agriculture and the increased availability and use of synthetic fertilizers during the last century. However there has also been unintended adverse impact on the natural environment (water and ecosystems) with nitrate the most significant cause of water pollution and ecosystem damage . Many countries have introduced controls on nitrate, e.g. the European Union's Water Framework and Nitrate Directives, but despite this are continuing to see a serious decline in water quality. The purpose of our research is to investigate and quantify the importance of the unsaturated (vadose) zone pathway and groundwater in contributing to the decline. Understanding nutrient behaviour in the sub-surface environment and, in particular, the time lag between action and improvement is critical to effective management and remediation of nutrient pollution. A readily-transferable process-based model has been used to predict temporal loading of nitrate at the water table across the UK. A time-varying nitrate input function has been developed based on nitrate usage since 1925. Depth to the water table has been calculated from groundwater levels based on regional-scale observations in-filled by interpolated river base levels and vertical unsaturated zone velocities estimated from hydrogeological properties and mapping. The model has been validated using the results of more than 300 unsaturated zone nitrate profiles. Results show that for about 60% of the Chalk - the principal aquifer in the UK - peak nitrate input has yet to reach the water table and concentrations will continue to rise over the next 60 years. The implications are hugely significant especially where environmental objectives must be achieved in much shorter timescales. Current environmental and regulatory management strategies rarely take lag times into account and as a result will be poorly informed, leading to inappropriate controls and conflicts

  18. Supercritical fluid extraction of uranium and neodymium nitrates

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Supercritical fluid extraction (SFE) of uranyl nitrate and neodymium nitrate salts from a mixture was investigated in the present study using Sc-CO 2 modified with various ligands such as organophosphorous compounds, amides, and diketones. Preferential extraction of uranyl nitrate over neodymium nitrate was demonstrated using Sc-CO 2 modified with amide, di-(2ethylhexyl) isobutyramide (D2EHIBA). (author)

  19. Systems of cerium(3) nitrate-dimethyl amine nitrate-water and cerium(3) nitrate-dimethyl amine nitrate-water

    International Nuclear Information System (INIS)

    Mininkov, N.E.; Zhuravlev, E.F.

    1976-01-01

    Solubility of solid phases in the systems cerium(3)nitrate-water-dimethyl amine nitrate and cerium(3)nitrate-water-dimethyl amine nitrate has been st ed by the method of isothermal sections at 25 and 50 deo. C. It has been shown that one anhydrous compound is formed in each system with a ratio of cerium(3) nitrate to amine nitrate 1:5. The compounds formed in the systems have been separated from the corresponding solutions and studied by microcrystalloscopic, X-ray phase, thermal and infrared spectroscopic methods. On the basis of spectroscopic studies the following formula has been assigned to the compound: [(CH 3 ) 2 NH 2 + ] 5 x[Ce(NO 3 ) 8 ]. The thermal analysis of the compound has shown that its melting point is 106 deg C. The solubility isotherms in the system Ce(NO 3 ) 3 -H 2 O-(C 2 H 5 ) 2 NHxHNO 3 consist of three branches which intersect in two eutonic points

  20. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  1. Anaerobic columnar denitrification of high nitrate wastewater

    International Nuclear Information System (INIS)

    Francis, C.W.; Malone, C.D.

    1975-01-01

    Anaerobic columns were used to test the effectiveness of biological denitrification of nitrate solutions ranging in concentration from 1 to 10 kg NO 3 /m 3 . Several sources of nitrate (Ca(CNO 3 ) 2 , NaNO 3 , NH 4 NO 3 , and actual nitrate wastes from a UO 2 fuel fabrication plant) were evaluated as well as two packing media. The packing media were anthracite coal particles, whose effective diameter size ranged between 2 and 3 mm, and polypropylene Raschig rings 1.6 x 1.6 diameter. The anthracite coal proved to be the better packing media as excessive hydraulic short circuiting occurred in a 120 x 15 cm diameter glass column packed with the polypropylene rings after 40 days operation. With anthracite coal, floatation of the bed occurred at flow rates greater than 0.80 cm 3 /s. Tapered columns packed with anthracite coal eliminated the floatation problem, even at flow rates as high as 5 cm 3 /s. Under optimum operating conditions the anthracite coal behaved as a fluidized bed. Maximum denitrification rates were 1.0--1.4 g NO 3 /m 3 /s based on initial bed volume. Denitrification kinetics indicated that rates of denitrification became substrate inhibited at nitrate concentrations greater than 6.5 kg NO 3 /m 3 Anaerobic columns packed with anthracite coal appear to be an effective method of nitrate disposal for nitrate rich wastewater generated at UO 2 fuel fabrication plants and fuel reprocessing facilities. (U.S.)

  2. Protein tyrosine nitration in the cell cycle

    International Nuclear Information System (INIS)

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-01-01

    Highlights: → Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. → Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. → Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  3. Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Kammer Hansen, Kent; Wallenberg, L.R.

    2007-01-01

    The objective of the present investigation was to develop a technique to synthesize submicronic particles of Nb-doped strontium titanate with a homogeneous composition. This was achieved by a modified glycine-nitrate process, using Ti-lactate, Nb-oxalate, and Sr(NO3)(2) as starting materials....... A combination of both citric acid and glycine was needed in order to integrate the useful features of both complexation and combustion natures of citric acid and glycine, respectively. The amount of citric acid, glycine, and nitrates in the starting solution, as well as the source for extra nitrates...

  4. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    Science.gov (United States)

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  5. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    Science.gov (United States)

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  6. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.; Moisy, P.

    2012-01-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with circle NO 2 radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during γ-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  7. Radiation-induced nitration of organic compounds in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Inst. of Physical Chemistry and Electrochemistry; Moisy, P. [CEA, Bagnols sur Ceze (France). Nuclear Energy Div.

    2012-07-01

    Radiolysis in aqueous nitrate and acetic acid solutions and nitrate/nitric acid and phenol was studied. The radiolysis of these solutes occurs with {sup circle} NO{sup 2} radical, which is the active nitrating agent. Accumulation of nitromethane and nitrite was determined during {gamma}-irradiation of aqueous solutions containing acetic and nitrate solutions. Irradiation of aqueous phenol-nitrate/nitric acid solutions results in the formation of 2- and 4-nitrophenols.

  8. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  9. Formation, Evaporation, and Hydrolysis of Organic Nitrates from Nitrate Radical Oxidation of Monoterpenes

    Science.gov (United States)

    Ng, N. L.; Takeuchi, M.; Eris, G.; Berkemeier, T.; Boyd, C.; Nah, T.; Xu, L.

    2017-12-01

    Organic nitrates play an important role in the cycling of NOx and secondary organic aerosol (SOA) formation, yet their formation mechanisms and fates remain highly uncertain. The interactions of biogenic VOCs with NO3 radicals represent a direct way for positively linking anthropogenic and biogenic emissions. Results from ambient studies suggest that organic nitrates have a relatively short lifetime, though corresponding laboratory data are limited. SOA and organic nitrates produced at night may evaporate the following morning due to increasing temperatures or dilution of semi-volatile compounds. Once formed, organic nitrates can also undergo hydrolysis in the presence of particle water. In this work, we investigate the formation, evaporation, and hydrolysis of organic nitrates generated from the nitrate radical oxidation of a-pinene, b-pinene, and limonene. Experiments are conducted in the Georgia Environmental Chamber facility (GTEC) under dry and humid conditions and different temperatures. Experiments are also designed to probe different peroxy radical pathways (RO2+HO2 vs RO2+NO3). Speciated gas-phase and particle-phase organic nitrates are continuously monitored by a Filter Inlet for Gases and AEROsols High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (FIGAERO-HR-ToF-CIMS). Bulk aerosol composition is measured by a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A large suite of highly oxygenated gas- and particle-phase organic nitrates are formed rapidly. We find a resistance to aerosol evaporation when it is heated. The extent of organic nitrate hydrolysis in the humid experiments is evaluated. The dynamics of the speciated organic nitrates over the course of the experiments will also be discussed. Results from this chamber study provide fundamental data for understanding the dynamics of organic nitrate aerosols over its atmospheric lifetime.

  10. Timescales for nitrate contamination of spring waters, northern Florida, USA

    Science.gov (United States)

    Katz, B.G.; Böhlke, J.K.; Hornsby, H.D.

    2001-01-01

    Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium (3H), and tritium/helium-3 (3H/3He) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997–1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20±2 years from CFC-12, CFC-113, 3H, and 3He, with evidence of partial CFC-11 degradation. The EMM gave a reasonable fit to CFC-113, CFC-12, and 3H data, but did not reproduce the observed 3He concentrations or 3H/3He ratios, nor did a combination PFM–EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had 3H concentrations not much different from modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC-113, with evidence of partial CFC-11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10–20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwanee County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio

  11. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    Science.gov (United States)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  12. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  13. The systems cerium(3) (samarium) nitrate-quinoline nitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Zhuravlev, E.F.; Semenova, Eh.B.

    1982-01-01

    Using the method of cross sections at 25 and 50 deg C the solubility in the systems cerium (3) nitrate-quinoline nitrate-water and samarium nitrate-quinoline nitrate-water has been studied. It is established that in the systems during chemical interaction of components congruently melting compounds of the composition: Ce(NO 3 ) 2 x2[C 9 H 7 NxHNO 3 ]x6H 2 O and Sm(NO 3 ) 3 x2[C 9 H 7 NxHNO 3 ]x2H 2 O are formed. New solid phases are separated preparatively and are subjected to chemical, differential thermal and IR spectroscopic analyses. The investigation results are compared with similar ones for nitrates of other representatives of lanthanide group

  14. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in Vaccinium species.

    Science.gov (United States)

    Poonnachit, U; Darnell, R

    2004-04-01

    Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.

  15. Nitrate radical oxidation of γ-terpinene: hydroxy nitrate, total organic nitrate, and secondary organic aerosol yields

    Science.gov (United States)

    Slade, Jonathan H.; de Perre, Chloé; Lee, Linda; Shepson, Paul B.

    2017-07-01

    Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield = 4(+1/-3) %, total ON yield = 14(+3/-2) %, and SOA yield ≤ 10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography-mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest.

  16. Ion dynamics in moltmolti melkaltal nitrates

    International Nuclear Information System (INIS)

    Kamiyama, Takashi; Nakamura, Yoshio; Shibata, Kaoru; Suzuki, Kenji.

    1993-01-01

    Quasielastic neutron scattering experiments have been performed on simple molten alkali metal nitrates, RbNO 3 and LiNO 3 . The experiments were carried out by the medium resolution inverted geometry spectrometer LAM-40 at KENS neutron scattering facility in Japan. The measured spectra are composed of narrow and broad quasielastic spectra. We assigned that the broad component corresponds to the fast intra-ionic motions in a nitrate ion. From momentum dependence of integrated intensity for this component it is found that the motion of nitrate ions in RbNO 3 melt is mainly the librational one centered C 3 axis on the ion. On the other hand the intra-ionic motion in LiNo 3 is the librational motion cnetered C 3 axis on the nitrate ion which amplitude is smaller than in RbNO 3 melt. This fact shows that the motion of nitrate ions in LiNO 3 is restricted strongly by surrounding cations. (author)

  17. In situ biodenitrification of nitrate surface water

    International Nuclear Information System (INIS)

    Schmidt, G.C.; Ballew, M.B.

    1995-01-01

    The US Department of Energy's Weldon Spring Site Remedial Action Project has successfully operated a full-scale in situ biodenitrification system to treat water with elevated nitrate levels in abandoned raffinate pits. Bench- and pilot-scale studies were conducted to evaluate the feasibility of the process and to support its full-scale design and application. Bench testing evaluated variables that would influence development of an active denitrifying biological culture. The variables were carbon source, phosphate source, presence and absence of raffinate sludge, addition of a commercially available denitrifying microbial culture, and the use of a microbial growth medium. Nitrate levels were reduced from 750 mg/L NO 3 -N to below 10 mg/L NO 3 -N within 17 days. Pilot testing simulated the full-scale process to determine if nitrate levels could be reduced to less than 10 mg/L NO 3 -N when high levels are present below the sludge surface. Four separate test systems were examined along with two control systems. Nitrates were reduced from 1,200 mg/L NO 3 -N to below 2 mg/L NO 3 -N within 21 days. Full-scale operation has been initiated to denitrify 900,000-gal batches alternating between two 1-acre ponds. The process used commercially available calcium acetate solution and monosodium/disodium phosphate solution as a nutrient source for indigenous microorganisms to convert nitrates to molecular nitrogen and water

  18. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or without

  19. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community

    NARCIS (Netherlands)

    Nijburg, J.W.; Laanbroek, H.J.

    1997-01-01

    The influence of nitrate addition and the presence of Glyceria maxima (reed sweetgrass) on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community was investigated. Anoxic freshwater sediment was incubated in pots with or without G. maxima and with or

  20. MITIGASI PELINDIAN NITRAT PADA TANAH INCEPTISOL MELALUI PEMANFAATAN BAHAN NITRAT INHIBITOR ALAMI

    Directory of Open Access Journals (Sweden)

    Joko Pramono

    2012-05-01

    Full Text Available Mitigation of Nitrate Leaching in Inceptisol Soil Through the Use of Natural Nitrate Inhibitor ABSTRAK Pelindian NO3- merupakan salah satu mekanisme kehilangan N dalam aktivitas pertanian, yang dapat berdampak terhadap pencemaran lingkungan. Tujuan dari penelitian adalah untuk mengetahui penggunaan bahan alami sebagai nitrat inhibitor terhadap pelindian nitrat pada tanah Inceptisol. Pada penelitian ini diuji tiga jenis bahan nitrat inhibitor (NI alami yang berasal dari; serbuk biji Mimba (SBM, serbuk kulit kayu bakau (SKKB, dan serbuk daun kopi (SDK,yang dikombinasikan dengan tiga taraf dosis NI, yaitu: 20 %, 30 % dan 40 % dari urea yang diberikan, dan ditambah satu perlakuan kontrol tanpa NI. Bahan nitrat inhibitor diberikan bersama urea pada permukaan tanah dalam pot percobaan yang telah dibasahi dengan air suling. Hasil penelitian menunjukkan bahwa bahan NI yang berbeda memberikan respon terhadap penghambatan nitrifi kasi yang berbeda. Bahan NI yang berasal dari serbuk biji mimba memberikan tingkat penghambatan tertinggi sebesar (25,6 %, serbuk kulit kayu bakau sebesar (19,1 %, dan serbuk daun kopi sebesar 11,8 %. Bahan NI alami mampu menghambat nitrifi kasi melalui penghambatan pertumbuhan bakteri nitrifi kasi (pengoksida ammonium yang bersifat sementara pada kisaran 7-14 hari setelah aplikasi. Perlakuan berbagai bahan dan dosis NI mampu menekan pelindian nitrat rata-rata pada kisaran antara 56,6 sampai 62,8 % dan berbeda sangat nyata terhadap perlakuan kontrol tanpa NI. Bahan NI yang mampu menurunkan rata-rata pelindian nitrat pada pengamatan 14 hari setelah aplikasi tertinggi adalah SBM sebesar 74,15 %. Dosis optimal dua bahan NI terpilih yang menunjukkan kinerja penghambatan nitrifi kasi terbaik (SBM dan SKKB pada 7 hsa, masing-masing 18,30 % (R2 = 0,694 dan 21,67 % (R2=0.691 dari dosis urea yang diberikan. Kata kunci: Nitrifi kasi, nitrat inhibitor, pelindian nitrat ABSTRACT NO3 - leaching is one mechanism of N reduction in agricultural

  1. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate; Densite et conductibilite de sels fondus. Etude comparative des melanges binaires nitrates alcalins-nitrate d'argent et nitrates alcalins-nitrate de thallium

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, S [Commissariat a l' Energie Atomique Saclay (France). Centre d' Etudes Nucleaires

    1967-10-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [French] Le choix des methodes et le nombre de mesures effectuees nous permettent de donner les resultats de densite et de conductibilite electrique des melanges fondus binaires nitrate alcalin-nitrate d'argent et nitrate alcalin-nitrate de thallium sous forme d'equations. Les ecarts a la linearite des isothermes de volume et de conductibilite molaire sont precises en calculant les grandeurs d'exces correspondantes dont les variations sont analysees en fonction du parametre de Tobolsky. Nous justifions l'absence de relation de signe entre l'entropie et le volume d'exces. Nous montrons que les nitrates d'argent et de thallium, vis-a-vis de la conductibilite d'exces, contrairement aux proprietes thermodynamiques, se conduisent comme les nitrates alcalins. Ce resultat est confirme par l'etude des variations des enthalpies d'activation de conductibilite partielle molaire qui met d'autre part en evidence le comportement particulier du nitrate de lithium. (auteur)

  2. Some high coordination compounds of lanthanides(III derived from N-isonicotinamidosalicyaldimine

    Directory of Open Access Journals (Sweden)

    Ram K. Agarwal

    2000-12-01

    Full Text Available A new series of lanthanide(III nitrates, isothiocyanates and perchlorates coordination complexes of N-isonicotinamidosalicyaldimine (INH-SAL with the general composition LnX3.n(INH-SAL (Ln = La, Pr, Nd, Sm, Gd, Tb or Dy; X = NO3-, n = 2; X = NCS-, n = 2 or 3 and X = ClO4-, n = 4 have been reported. All the complexes were characterized by chemical analyses, conductance, molar weight, magnetic moment measurements, infrared and electronic spectra. IR spectra indicate that the ligand behaves as a neutral N,O-donors. Thermal properties of the complexes have also been studied.

  3. Organic nitrates: past, present and future.

    Science.gov (United States)

    França-Silva, Maria S; Balarini, Camille M; Cruz, Josiane C; Khan, Barkat A; Rampelotto, Pabulo H; Braga, Valdir A

    2014-09-24

    Nitric oxide (NO) is one of the most important vasodilator molecules produced by the endothelium. It has already been established that NO/cGMP signaling pathway deficiencies are involved in the pathophysiological mechanisms of many cardiovascular diseases. In this context, the development of NO-releasing drugs for therapeutic use appears to be an effective alternative to replace the deficient endogenous NO and mimic the role of this molecule in the body. Organic nitrates represent the oldest class of NO donors that have been clinically used. Considering that tolerance can occur when these drugs are applied chronically, the search for new compounds of this class with lower tolerance potential is increasing. Here, we briefly discuss the mechanisms involved in nitrate tolerance and highlight some achievements from our group in the development of new organic nitrates and their preclinical application in cardiovascular disorders.

  4. [Can nitrates lead to indirect toxicity?].

    Science.gov (United States)

    Hamon, M

    2007-09-01

    For many years, nitrates have been used, at low dosages, as an additive in salted food. New laws have been promulgated to limit their concentration in water due to increased levels found in soils, rivers and even the aquifer. Although nitrate ions themselves have not toxic properties, bacterial reduction into nitrite ions (occurring even in aqueous medium) can lead to nitrous anhydride, which in turn generates nitrosonium ions. Nitrosium ions react with secondary amine to give nitrosamines, many of which are cancer-inducing agents at very low doses. Opinions on this toxicity are clear-cut and difficult to reconcile. In fact, increased levels are due, in a large part, to the use of nitrates as fertiliéers but also to bacterial transformation of human and animal nitrogenous wastes such as urea.

  5. Ammonium and nitrate tolerance in lichens

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, Markus, E-mail: mhauck@gwdg.d [Department of Plant Ecology, Albrecht von Haller Institute of Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen (Germany)

    2010-05-15

    Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen. - Eutrophication has become a global threat for lichen diversity.

  6. Parsimonious Hydrologic and Nitrate Response Models For Silver Springs, Florida

    Science.gov (United States)

    Klammler, Harald; Yaquian-Luna, Jose Antonio; Jawitz, James W.; Annable, Michael D.; Hatfield, Kirk

    2014-05-01

    Silver Springs with an approximate discharge of 25 m3/sec is one of Florida's first magnitude springs and among the largest springs worldwide. Its 2500-km2 springshed overlies the mostly unconfined Upper Floridan Aquifer. The aquifer is approximately 100 m thick and predominantly consists of porous, fractured and cavernous limestone, which leads to excellent surface drainage properties (no major stream network other than Silver Springs run) and complex groundwater flow patterns through both rock matrix and fast conduits. Over the past few decades, discharge from Silver Springs has been observed to slowly but continuously decline, while nitrate concentrations in the spring water have enormously increased from a background level of 0.05 mg/l to over 1 mg/l. In combination with concurrent increases in algae growth and turbidity, for example, and despite an otherwise relatively stable water quality, this has given rise to concerns about the ecological equilibrium in and near the spring run as well as possible impacts on tourism. The purpose of the present work is to elaborate parsimonious lumped parameter models that may be used by resource managers for evaluating the springshed's hydrologic and nitrate transport responses. Instead of attempting to explicitly consider the complex hydrogeologic features of the aquifer in a typically numerical and / or stochastic approach, we use a transfer function approach wherein input signals (i.e., time series of groundwater recharge and nitrate loading) are transformed into output signals (i.e., time series of spring discharge and spring nitrate concentrations) by some linear and time-invariant law. The dynamic response types and parameters are inferred from comparing input and output time series in frequency domain (e.g., after Fourier transformation). Results are converted into impulse (or step) response functions, which describe at what time and to what magnitude a unitary change in input manifests at the output. For the

  7. Factors controlling nitrate cracking of mild steel

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1977-01-01

    Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth

  8. Preparation of high-purity cerium nitrate

    International Nuclear Information System (INIS)

    Avila, Daniela Moraes; Silva Queiroz, Carlos Alberto da; Santos Mucillo, Eliana Navarro dos

    1995-01-01

    The preparation of high-purity cerium nitrate has been carried out Cerium oxide has been prepared by fractioned precipitation and ionic exchange techniques, using a concentrate with approximately 85% of cerium oxide from NUCLEMON as raw material. Five sequential ion-exchange columns with a retention capacity of 170 g each have been used. The ethylenediamine-tetraacetic acid (EDTA) was used as eluent. The cerium content has been determined by gravimetry and iodometry techniques. The resulting cerium oxide has a purity > 99%. This material was transformed in cerium nitrate to be used as precursor for the preparation of Zirconia-ceria ceramics by the coprecipitation technique. (author)

  9. Methylhydrazinium nitrate. [rocket plume deposit chemistry

    Science.gov (United States)

    Lawton, E. A.; Moran, C. M.

    1983-01-01

    Methylhydrazinium nitrate was synthesized by the reaction of dilute nitric acid with methylhydrazine in water and in methanol. The white needles formed are extremely hygroscopic and melt at 37.5-40.5 C. The IR spectrum differs from that reported elsewhere. The mass spectrum exhibited no parent peak at 109 m/z, and thermogravimetric analysis indicated that the compound decomposed slowly at 63-103 C to give ammonium and methylammonium nitrate. The density is near 1.55 g/cu cm.

  10. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    Science.gov (United States)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate.

    Science.gov (United States)

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2015-09-10

    We report the use of silver (Ag)-modified carbon and Ag ultramicroelectrodes (UMEs) for electrochemical detection of nitrate. We investigated several methods for electrodeposition of Ag; our results show that the addition of a complexation agent (ammonium sulfate) in the Ag deposition solution is necessary for electrodeposition of nanostructured Ag that adheres well to the electrode. The electrodeposited Ag on both types of electrodes has branch-like structures that are well-suited for electrocatalytic reduction of nitrate. The use of UMEs is advantageous; the sigmoidal-shaped cyclic voltammogram allows for sensitive detection of nitrate by reducing the capacitive current, as well as enabling easy quantification of the nitrate reduction current. Both cyclic voltammetry and chronoamperometry were used to characterize the electrodes; and independent of the electrochemical interrogation technique, both UMEs were found to have a wide linear dynamic range (4-1000 μM) and a low limit of detection (3.2-5.1 μM). More importantly, they are reusable up to ∼100 interrogation cycles and are selective enough to be used for direct detection of nitrate in a synthetic aquifer sample without any sample pretreatment and/or pH adjustment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Density and electrical conductivity of molten salts. Comparative study of binary mixtures of alkali nitrates with silver nitrate and with thallium nitrate

    International Nuclear Information System (INIS)

    Brillant, S.

    1968-01-01

    The choice of methods and the number of measurements made enable us to give results on the density and electrical conductivity of molten binary mixtures, alkali nitrate and silver nitrate, and alkali nitrate and thallium nitrate, in the form of equations. The deviations from linearity of the volume and the molar conductivity are determined by calculating the corresponding excess values whose variations are analyzed as a function of the Tobolsky parameter. The absence of any relationship in the sign of the entropy and the excess volume is justified. It is shown that the silver and thallium nitrates, in contrast to the thermodynamic properties, behave as the alkali nitrates in so far as the excess conductivity is concerned. This result is confirmed by the study of changes in the activation enthalpy for the partial molar conductivity; this study also shows the particular behaviour of lithium nitrate. (author) [fr

  13. Determination of the total nitrate content of thorium nitrate solution with a selective electrode

    International Nuclear Information System (INIS)

    Wirkner, F.M.

    1979-01-01

    The nitrate content of thorium nitrate solutions is determined with a liquid membrane nitrate selective electrode utilizing the known addition method in 0.1 M potassium fluoride medium as ionic strength adjustor. It is studied the influence of pH and the presence of chloride, sulphate, phosphate, meta-silicate, thorium, rare earths, iron, titanium, uranium and zirconium at the same concentrations as for the aqueous feed solutions in the thorium purification process. The method is tested in synthetic samples and in samples proceeding from nitric dissolutions of thorium hidroxide and thorium oxicarbonate utilized as thorium concentrates to be purified [pt

  14. COGEMA Experience in Uranous Nitrate Preparation

    International Nuclear Information System (INIS)

    Tison, E.; Bretault, Ph.

    2006-01-01

    Separation and purification of plutonium by PUREX process is based on a sequence of extraction and back extraction which requires reducing plutonium Pu IV (extractable form) into Pu III (inextractable form) Different reducers can be used to reduce Pu IV into Pu III. Early plants such as that for Magnox fuel at Sellafield used ferrous sulfamate while UP 1 at Marcoule used uranous sulfamate. These reducers are efficient and easy to prepare but generates ferric and/or sulphate ions and so complicates management of the wastes from the plutonium purification cycle. Recent plants such as UP3 and UP2 800 at La Hague, THORP at Sellafield, and RRP at Rokkasho Mura (currently under tests) use uranous nitrate (U IV) stabilized by hydrazinium nitrate (N 2 H 5 NO 3 ) and hydroxyl ammonium nitrate (HAN). In the French plants, uranous nitrate is used in U-Pu separation and alpha barrier and HAN is used in Pu purification. Compared to sulfamate, U IV does not generate extraneous chemical species and uranyl nitrate (U VI) generated by reducing Pu IV follows the main uranium stream. More over uranous nitrate is prepared from reprocessed purified uranyl nitrate taken at the outlet of the reprocessing plant. Hydrazine and HAN offer the advantage to be salt-free reagents. Uranous nitrate can be generated either by electrolysis or by catalytic hydrogenation process. Electrolytic process has been implemented in early plant UP 1 at Marcoule (when changing reducer from uranous sulfamate to uranous nitrate) and was used again in UP2 plant at La Hague. However, the electrolytic process presented several disadvantages such as a low conversion rate and problems associated with the use of mercury. Electrolysis cells with no mercury were developed for the Eurochemic plant in Belgium and then implemented in the first Japanese reprocessing plant in Tokai-Mura. But finally, in 1975, the electrolytic process was abandoned in favor of the catalytic hydrogenation process developed at La Hague. The

  15. X-ray induced inactivation of the capacity for photosynthetic oxygen evolution and nitrate reduction in blue-green algae

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Simic, M.G.; Rao, V.S.K.

    1975-01-01

    The level of inactivation of oxygen evolving photosynthesis in the green alga, Chlorella pyrenoidosa was 12 percent in N 2 at a dose of 100 krad of x irradiation. Under similar conditions, as well as under O 2 , there resulted a 20 percent inactivation of the same function in the blue-green algae, Agmenellum quadruplicatum, strains PR-6 and AQ-6. Nitrate reduction capacity in the mutant AQ-6 was inactivated to 40 percent in N 2 and to 7 percent in O 2 . Catalase and formate provided some protection from irradiation in O 2 , suggesting some inactivation by H 2 O 2 . Most of the damage to the nitrate reduction system resulted from the direct action of x irradiation on a constitutive subunit of the nitrate reductase complex. Moreover, the slight inactivation of the O 2 evolving system, a function which is associated with photosystem II, cannot account for the inactivation of nitrate reduction

  16. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    Directory of Open Access Journals (Sweden)

    Harry R Beller

    2013-08-01

    Full Text Available Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV and Fe(II oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II oxidation, namely (a whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV oxides as electron donors under denitrifying conditions], (b Fe(II oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c random transposon-mutagenesis studies with screening for Fe(II oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III, which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV oxidation, nor have other c-type cytochromes yet been implicated in the process.

  18. Denitration of High Nitrate Salts Using Reductants

    Energy Technology Data Exchange (ETDEWEB)

    HD Smith; EO Jones; AJ Schmidt; AH Zacher; MD Brown; MR Elmore; SR Gano

    1999-05-03

    This report describes work conducted by Pacific Northwest National Laboratory (PNNL), in conjunction with Idaho National Engineering and Environmental Laboratory (INEEL), to remove nitrates in simulated low-activity waste (LAW). The major objective of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization (grout).

  19. The Path to Nitrate Salt Disposition

    Energy Technology Data Exchange (ETDEWEB)

    Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-16

    The topic is presented in a series of slides arranged according to the following outline: LANL nitrate salt incident as thermal runaway (thermally sensitive surrogates, full-scale tests), temperature control for processing, treatment options and down selection, assessment of engineering options, anticipated control set for treatment, and summary of the overall steps for RNS.

  20. 76 FR 47238 - Ammonium Nitrate From Russia

    Science.gov (United States)

    2011-08-04

    ... Russia Determination On the basis of the record \\1\\ developed in the subject five-year review, the United... nitrate from Russia would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1\\ The record is defined in sec. 207.2...

  1. Nitrates, Nitrites, and Health. Bulletin 750.

    Science.gov (United States)

    Deeb, Barbara S.; Sloan, Kenneth W.

    This review is intended to assess available literature in order to define the range of nitrate/nitrite effects on animals. Though the literature deals primarily with livestock and experimental animals, much of the contemporary research is concerned with human nitrite intoxication. Thus, the effects on man are discussed where appropriate. Some of…

  2. Trend Analyses of Nitrate in Danish Groundwater

    DEFF Research Database (Denmark)

    Hansen, B.; Thorling, L.; Dalgaard, Tommy

    2012-01-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribut......This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis...... of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first...... two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded...

  3. Revitalising Silver Nitrate for Caries Management

    Directory of Open Access Journals (Sweden)

    Sherry Shiqian Gao

    2018-01-01

    Full Text Available Silver nitrate has been adopted for medical use as a disinfectant for eye disease and burned wounds. In dentistry, it is an active ingredient of Howe’s solution used to prevent and arrest dental caries. While medical use of silver nitrate as a disinfectant became subsidiary with the discovery of antibiotics, its use in caries treatment also diminished with the use of fluoride in caries prevention. Since then, fluoride agents, particularly sodium fluoride, have gained popularity in caries prevention. However, caries is an infection caused by cariogenic bacteria, which demineralise enamel and dentine. Caries can progress and cause pulpal infection, but its progression can be halted through remineralisation. Sodium fluoride promotes remineralisation and silver nitrate has a profound antimicrobial effect. Hence, silver nitrate solution has been reintroduced for use with sodium fluoride varnish to arrest caries as a medical model strategy of caries management. Although the treatment permanently stains caries lesions black, this treatment protocol is simple, painless, non-invasive, and low-cost. It is well accepted by many clinicians and patients and therefore appears to be a promising strategy for caries control, particularly for young children, the elderly, and patients with severe caries risk or special needs.

  4. Modular Regiospecific Synthesis of Nitrated Fatty Acids

    DEFF Research Database (Denmark)

    Hock, Katharina J.; Grimmer, Jennifer; Göbel, Dominik

    2016-01-01

    Endogenous nitrated fatty acids are an important class of signaling molecules. Herein a modular route for the efficient and regiospecific preparation of nitrooleic acids as well as various analogues is described. The approach is based on a simple set of alkyl halides as common building blocks...

  5. Spectrophotometric Determination of Nitrate and Phosphate Levels ...

    African Journals Online (AJOL)

    Twelve drinking water samples from boreholes were collected from various sampling sites around the vicinity of Kura irrigated farmlands using polythene plastic containers and were analysed for the nitrate and phosphate levels using uV – visible spectrophotometer. From the results, it was found that all the samples had ...

  6. Production of thorium nitrate from uranothorianite ores

    International Nuclear Information System (INIS)

    Brodsky, M.; Sartorius, R.; Sousseuer, Y.

    1959-01-01

    The separation of thorium and uranium from uranothorianite ores, either by precipitation or solvent-extraction methods, are discussed, and an industrial process for the manufacture of thorium nitrate is described. Reprint of a paper published in 'Progress in Nuclear Energy' Series III, Vol. 2 - Process Chemistry, 1959, p. 68-76 [fr

  7. Detonation characteristics of ammonium nitrate products

    NARCIS (Netherlands)

    Kersten, R.J.A.; Hengel, E.I.V. van den; Steen, A.C. van der

    2006-01-01

    The detonation properties of ammonium nitrate (AN) products depend on many factors and are therefore, despite the large amount of information on this topic, difficult to assess. In order to further improve the understanding of the safety properties of AN, the European Fertilizer Manufacturers

  8. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake: reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time the basic differences in the two processes, and the differences in their measurement, the authors conclude that the Nr activity measures the current nitrate-reducing potential, which reflects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling

  9. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    Science.gov (United States)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  10. Nitrates in surface waters, inputs and seasonality: Phase 2

    OpenAIRE

    Casey, H.; Clarke, R.T.; Smith, S.

    1988-01-01

    Changes in management practices and agricultural productivity over the past twenty years have lead to nitrate pollution and eutrophication of lakes and rivers. Information on nitrate concentrations and discharge has been collected on the River Frome at East Stoke since 1965, using the same analytical nitrate method so that the results are comparable. These records of weekly spot values of nitrate concentration and daily mean discharges have been analysed for trends and seasonal patterns in bo...

  11. Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment

    Science.gov (United States)

    Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay

    2017-04-01

    During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower

  12. Electrochemical processing of nitrate waste solutions

    International Nuclear Information System (INIS)

    Genders, D.; Weinberg, N.; Hartsough, D.

    1992-01-01

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F - ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions

  13. Evaluation of Nitrate Transport in Clay Soil

    Directory of Open Access Journals (Sweden)

    Morteza Seyedian

    2016-09-01

    Full Text Available  Background and purpose: With the increase in world population and the need to provide food, farmers are now using a variety of chemical fertilizers, organic pesticides have turned. Indiscriminate use of these inputs without considering its side effects, both environmental problems and brings in terms of human health. Among these, organic fertilizers contain soluble compounds such as nitrate. These compounds through precipitation or irrigation of the soil solution, groundwater and surface water resources are. The purpose of this study was to determine the amount of nitrate transport in clay and simulation software using HYDRUS2D. Methods: In order to perform it, 5 different height of soil column 20, 40, 60, 80 and 100 cm selected. In thicknesses of 20, 40, 60 and 80 cm respectively output levels after a period of 6, 12, 18 and 22 hours to input the concentration of nitrate (50 mg/lit is. In thicknesses of 20, 40, 60 and 80 cm, respectively, after the time of 5/6, 5/12, 21, and 25-hour concentration of 50 mg/lit is output. In thickness 20, 40, 60 and 80cm, outlet concentration after 6, 12, 18 and 22 minutes inlet concentration (50mg/lit. Results: The result showed that Hydrus software ability of simulates nitrate movement in soil and result of Hydrus software and laboratory data near. Conclusions: With increasing soil thickness difference HYDRUS2D results and experimental data more and more time to transfer nitrate were spent with increasing thickness. 

  14. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    Energy Technology Data Exchange (ETDEWEB)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif, E-mail: e.erhan@gyte.edu.tr

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44-1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 {mu}g/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: Black-Right-Pointing-Pointer K{sub 3}Fe(CN){sub 6} has been used for the first time as mediator for nitrate reductase. Black-Right-Pointing-Pointer Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. Black-Right-Pointing-Pointer Analytical parameters were better than standard nitrate analysis methods.

  15. Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode

    International Nuclear Information System (INIS)

    Can, Faruk; Korkut Ozoner, Seyda; Ergenekon, Pinar; Erhan, Elif

    2012-01-01

    This study describes the construction and characterization of an amperometric nitrate biosensor based on the Polypyrrole (PPy)/Carbon nanotubes (CNTs) film. Nitrate reductase (NR) was both entrapped into the growing PPy film and chemically immobilized via the carboxyl groups of CNTs to the CNT/PPy film electrode. The optimum amperometric response for nitrate was obtained in 0.1 M phosphate buffer solution (PBS), pH 7.5 including 0.1 M lithium chloride and 7 mM potassium ferricyanide with an applied potential of 0.13 V (vs. Ag/AgCl, 3 M NaCl). Sensitivity was found to be 300 nA/mM in a linear range of 0.44–1.45 mM with a regression coefficient of 0.97. The biosensor response showed a higher linear range in comparison to standard nitrate analysis methods which were tested in this study and NADH based nitrate biosensors. A minimum detectable concentration of 0.17 mM (S/N = 3) with a relative standard deviation (RSD) of 5.4% (n = 7) was obtained for the biosensor. Phenol and glucose inhibit the electrochemical reaction strictly at a concentration of 1 μg/L and 20 mg/L, respectively. The biosensor response retained 70% of its initial response over 10 day usage period when used everyday. - Highlights: ► K 3 Fe(CN) 6 has been used for the first time as mediator for nitrate reductase. ► Better performance was obtained in comparison to other nitrate biosensor studies operated with various mediators. ► Analytical parameters were better than standard nitrate analysis methods.

  16. Nitrate removal from high strength nitrate-bearing wastes in granular sludge sequencing batch reactors.

    Science.gov (United States)

    Krishna Mohan, Tulasi Venkata; Renu, Kadali; Nancharaiah, Yarlagadda Venkata; Satya Sai, Pedapati Murali; Venugopalan, Vayalam Purath

    2016-02-01

    A 6-L sequencing batch reactor (SBR) was operated for development of granular sludge capable of denitrification of high strength nitrates. Complete and stable denitrification of up to 5420 mg L(-1) nitrate-N (2710 mg L(-1) nitrate-N in reactor) was achieved by feeding simulated nitrate waste at a C/N ratio of 3. Compact and dense denitrifying granular sludge with relatively stable microbial community was developed during reactor operation. Accumulation of large amounts of nitrite due to incomplete denitrification occurred when the SBR was fed with 5420 mg L(-1) NO3-N at a C/N ratio of 2. Complete denitrification could not be achieved at this C/N ratio, even after one week of reactor operation as the nitrite levels continued to accumulate. In order to improve denitrification performance, the reactor was fed with nitrate concentrations of 1354 mg L(-1), while keeping C/N ratio at 2. Subsequently, nitrate concentration in the feed was increased in a step-wise manner to establish complete denitrification of 5420 mg L(-1) NO3-N at a C/N ratio of 2. The results show that substrate concentration plays an important role in denitrification of high strength nitrate by influencing nitrite accumulation. Complete denitrification of high strength nitrates can be achieved at lower substrate concentrations, by an appropriate acclimatization strategy. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. The contribution of bnnrt1 and bnnrt2 to nitrate accumulation varied ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... stronger ability to assimilate absorbed nitrate in SYM than the low accumulator, HGQGC. Key words: ... studied the mechanism of nitrate accumulation in plant ..... Elevated carbon dioxide increases nitrate uptake and nitrate.

  18. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-01-01

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO 3 - reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  19. Inactivation of Yersinia enterocolitica by nitrite and nitrate in food.

    Science.gov (United States)

    de Giusti, M; de Vito, E

    1992-01-01

    The antimicrobial effects of sodium nitrite and sodium and potassium nitrate against Yersinia enterocolitica were investigated in solution and in treated pork meat. Potassium nitrate and sodium nitrate showed only feeble antimicrobial activity in cultures; no antimicrobial activity was detected with sodium nitrite. Conversely, all three salts displayed apparent antimicrobial activity in pork meat, possibly due to selective effects on competitive flora.

  20. 9 CFR 319.2 - Products and nitrates and nitrites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be prepared...

  1. A nitrate sensitive planar optode; performance and interferences

    DEFF Research Database (Denmark)

    Pedersen, Lasse; Dechesne, Arnaud; Smets, Barth F.

    2015-01-01

    We present a newly developed nitrate sensitive planar optode. It exhibits a linear response to nitrate from 1 to 50 mM at pH 8.0, a fast response time below 10 s and a good lifetime, allowing for fast two dimensional nitrate measurements over long periods of time. Interference from nitrite...

  2. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    NARCIS (Netherlands)

    Balk, M.; Laverman, A.M.; Keuskamp, J.A.; Laanbroek, H.J.

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought

  3. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    Science.gov (United States)

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. A Unified Experimental Approach for Estimation of Irrigationwater and Nitrate Leaching in Tree Crops

    Science.gov (United States)

    Hopmans, J. W.; Kandelous, M. M.; Moradi, A. B.

    2014-12-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other(semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, as well as root growth and associated nitrate and water uptake, interact with soil properties and fertilizer source(s) in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modeling studies are required to allow for unraveling of the relevant complexities that result from typical field-wide spatial variations of soil texture and layering across farmer-managed fields. We present experimental approaches across a network of tree crop orchards in the San Joaquin Valley, that provide the necessary soil data of soil moisture, water potential and nitrate concentration to evaluate and optimize irrigation water management practices. Specifically, deep tensiometers were used to monitor in-situ continuous soil water potential gradients, for the purpose to compute leaching fluxes of water and nitrate at both the individual tree and field scale.

  5. Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems

    Science.gov (United States)

    Stewart, S. D.; Young, M. B.; Horton, T. W.; Harding, J. S.

    2011-12-01

    Nitrogenous fertilizers increase agricultural productivity, ultimately feeding the planet. Yet, it is possible to have too much of a good thing, and nitrogen is no exception. When in excess nitrogen has been shown to accelerate eutrophication of water bodies, and act as a chronic toxin (e.g. methemoglobinemia). As land-use intensity continues to rise in response to increases in agricultural productivity, the risk of adverse effects of nitrogen loading on surface water bodies will also increase. Stable isotope proxies are potential tracers of nitrate, the most common nitrogenous phase in surface waters. Applying stable isotope proxies therefore presents an opportunity to identify and manage sources of excess nitrogen before aquatic systems are severely degraded. However, the heterogeneous nature of potential pollution sources themselves, and their distribution with a modified catchment network, make understanding this issue highly complex. The Banks Peninsula, an eroded late tertiary volcanic complex located on the east coast of the South Island New Zealand, presents a unique opportunity to study and understand the sources and fates of nitrate within streams in a contemporary mixed land-use setting. Within this small geographic area there a variety of agricultural activities are practiced, including: heavily fertilized golf courses; stands of regenerating native forest; and areas of fallow gorse (Ulex europaeus; a invasive N-fixing shrub). Each of these landuse classes has its own unique nitrogen budget. Multivariate analysis was used on stream nitrate concentrations to reveal that stream reaches dominated by gorse had significantly higher nitrate concentrations than other land-use classes. Nitrate δ15N & δ18O data from these sites show strong covariance, plotting along a distinct fractionation line (r2 = 0.96). This finding facilitates interpretation of what processes are controlling nitrate concentration within these systems. Further, complementary aquatic

  6. The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone.

    Science.gov (United States)

    Wang, L; Butcher, A S; Stuart, M E; Gooddy, D C; Bloomfield, J P

    2013-10-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the 'store' of nitrate and its potentially long travel time in the unsaturated and saturated zones. However, this time lag is rarely considered in current water nitrate management and policy development. The aim of this study was to develop a catchment-scale integrated numerical method to investigate the nitrate lag time in the groundwater system, and the Eden Valley, UK, was selected as a case study area. The method involves three models, namely the nitrate time bomb-a process-based model to simulate the nitrate transport in the unsaturated zone (USZ), GISGroundwater--a GISGroundwater flow model, and N-FM--a model to simulate the nitrate transport in the saturated zone. This study answers the scientific questions of when the nitrate currently in the groundwater was loaded into the unsaturated zones and eventually reached the water table; is the rising groundwater nitrate concentration in the study area caused by historic nitrate load; what caused the uneven distribution of groundwater nitrate concentration in the study area; and whether the historic peak nitrate loading has reached the water table in the area. The groundwater nitrate in the area was mainly from the 1980s to 2000s, whilst the groundwater nitrate in most of the source protection zones leached into the system during 1940s-1970s; the large and spatially variable thickness of the USZ is one of the major reasons for unevenly distributed groundwater nitrate concentrations in the study area; the peak nitrate loading around 1983 has affected most of the study area. For areas around the Bowscar, Beacon Edge, Low Plains, Nord Vue

  7. The nitrate time bomb : a numerical way to investigate nitrate storage and lag time in the unsaturated zone

    OpenAIRE

    Wang, L.; Butcher, A.S.; Stuart, M.E.; Gooddy, D.C.; Bloomfield, J.P.

    2013-01-01

    Nitrate pollution in groundwater, which is mainly from agricultural activities, remains an international problem. It threatens the environment, economics and human health. There is a rising trend in nitrate concentrations in many UK groundwater bodies. Research has shown it can take decades for leached nitrate from the soil to discharge into groundwater and surface water due to the ‘store’ of nitrate and its potentially long travel time in the unsaturated and satura...

  8. Development of a continuous process for adjusting nitrate, zirconium, and free hydrofluoric acid concentrations in zirconium fuel dissolver product

    International Nuclear Information System (INIS)

    Cresap, D.A.; Halverson, D.S.

    1993-04-01

    In the Fluorinel Dissolution Process (FDP) upgrade, excess hydrofluoric acid in the dissolver product must be complexed with aluminum nitrate (ANN) to eliminate corrosion concerns, adjusted with nitrate to facilitate extraction, and diluted with water to ensure solution stability. This is currently accomplished via batch processing in large vessels. However, to accommodate increases in projected throughput and reduce water production in a cost-effective manner, a semi-continuous system (In-line Complexing (ILC)) has been developed. The major conclusions drawn from tests demonstrating the feasibility of this concept are given in this report

  9. Protein Tyrosine Nitration : Selectivity, Physicochemical and Biological Consequences, Denitration, and Proteomics Methods for the Identification of Tyrosine-Nitrated Proteins

    NARCIS (Netherlands)

    Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer

    Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO(2)). In the present article, we review the main nitration reactions and

  10. Highly active Pd–In/mesoporous alumina catalyst for nitrate reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Werth, Charles J. [Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX 78712 (United States); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China)

    2015-04-09

    Highlights: • Pd–In nanoparticles (6–7 nm) uniformly form in the mesopores of alumina (4 nm). • Pd–In nanoparticles aggregation is prevented during the synthesis process. • The reduction rate of nitrate is efficient by using the obtained catalyst. • The selectivity toward N{sub 2} is ideal by using the obtained catalyst. - Abstract: The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd–In/Al{sub 2}O{sub 3} with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO{sub 2}-buffered water and under continuous H{sub 2} as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd–In ratio of 4, with a first-order rate constant (k{sub obs} = 0.241 L min{sup −1} g{sub cata}{sup −1}) that was 1.3× higher than that of conventional Pd–In/Al{sub 2}O{sub 3} (5 wt% Pd; 0.19 L min{sup −1} g{sub cata}{sup −1}). The Pd–In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  11. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    Science.gov (United States)

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  12. Open-Source Photometric System for Enzymatic Nitrate Quantification.

    Science.gov (United States)

    Wittbrodt, B T; Squires, D A; Walbeck, J; Campbell, E; Campbell, W H; Pearce, J M

    2015-01-01

    Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.

  13. Observations on particulate organic nitrates and unidentified components of NOy

    DEFF Research Database (Denmark)

    Nielsen, T.; Egeløv, A.H.; Granby, K.

    1995-01-01

    A method to determine the total content of particulate organic nitrates (PON) has been developed and ambient air measurements of PON, NO, NO2, HNO3, peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), gas NOy and particulate inorganic nitrate have been performed in the spring and early...... summer al an agricultural site in Denmark and compared with measurements of ozone, H2O2, SO2, formic acid, acetic acid and methane sulphonic acid. The gas NOy detector determines the sum NO + NO2 + HNO2 + HNO3 + PAN + PPN + gas phase organic nitrates + 2 x N2O5 + NO3. The content of residual gas NOy...... = gas NOy + particulate inorganic nitrate). Residual gas NOy was much higher than the particulate fraction of organic nitrates (PON). PON was only 0.25 +/- 0.11% of concentrations of photochemical oxidants in connection with high-pressure systems suggesting atmospheric processes being the major source...

  14. Direct analysis in real time mass spectrometry of potential by-products from homemade nitrate ester explosive synthesis.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2016-04-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. Published by Elsevier B.V.

  15. Review on Thermal Decomposition of Ammonium Nitrate

    Science.gov (United States)

    Chaturvedi, Shalini; Dave, Pragnesh N.

    2013-01-01

    In this review data from the literature on thermal decomposition of ammonium nitrate (AN) and the effect of additives to their thermal decomposition are summarized. The effect of additives like oxides, cations, inorganic acids, organic compounds, phase-stablized CuO, etc., is discussed. The effect of an additive mainly occurs at the exothermic peak of pure AN in a temperature range of 200°C to 140°C.

  16. Genetic basis for nitrate resistance in Desulfovibrio strains

    Directory of Open Access Journals (Sweden)

    Hannah eKorte

    2014-04-01

    Full Text Available Nitrate is an inhibitor of sulfate-reducing bacteria (SRB. In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702, as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605 that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.

  17. Simultaneous analysis of uranium and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    1978-04-01

    A direct spectrophotometric method has been developed for the determination of 20 to 200 g/l of uranium in the presence of 3 to 5 M nitric acid. A dual-wavelength analysis is used to eliminate the enhancing effect of nitrate ion on the uranium visible spectra. The precision and accuracy of the simultaneous analysis of uranium and nitrate were compared using combinations of the four uranium wavelength maxima, occurring at 426, 416, 403 and 359 nm. Calculations based on 426 and 416 nm data yielded the most accurate results. The calculated relative standard deviation of uranium and nitrate concentrations was 5.4 percent and 15.5 percent, respectively. The photometric procedure is slightly affected by temperature; an increase of one degree centigrade results in a 0.2 g/l overestimation of uranium concentration. Because the method is non-destructive, it is directly applicable to the continuous in-line analysis of dissolved uranium in aqueous fuel reprocessing streams.

  18. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols

    International Nuclear Information System (INIS)

    Brykala, M.; Deptula, A.; Rogowski, M.; Lada, W.; Olczak, T.; Wawszczak, D.; Smolinski, T.; Wojtowicz, P.; Modolo, G.

    2014-01-01

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide. (author)

  19. Characterization of the lanthanum(III) and europium(III) trichloroacetate complexes extracted with 18-crown-6

    International Nuclear Information System (INIS)

    Imura, H.; Saito, Y.; Ohashi, K.; Meguro, Y.; Yoshida, Z.; Choppin, G.R.

    1996-01-01

    Extraction of lanthanide(III) ions with 18-crown-6 (18C6) and trichloroacetate (tca) has been studied. The composition, hydration, and structure of the La(III) and Eu(III) complexes extracted into 1,2-dichloroethane were investigated by using several methods such as the liquid-liquid distribution technique, conductimetry, Karl Fisher titration, laser luminescence spectroscopy, and 1 H NMR. The La(III) complex was found to be a monohydrate, La(tca) 3 (18C6)(H 2 O), while that of Eu(III) was a mixture of a monohydrate and a dihydrate, i.e., Eu(tca) 3 (18C6)(H 2 O) and Eu(tca) 3 (18C6)(H 2 O) 2 . The origin of the selectivity by 18C6 which gives much higher extractability of La(III) than of Eu(III) is explained by considering the hydration and probable structure of their complexes. 12 refs., 5 figs., 4 tabs

  20. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air.

    Science.gov (United States)

    Quan, De; Shim, Jun Ho; Kim, Jong Dae; Park, Hyung Soo; Cha, Geun Sig; Nam, Hakhyun

    2005-07-15

    Nitrate monitoring biosensors were prepared by immobilizing nitrate reductase derived from yeast on a glassy carbon electrode (GCE, d = 3 mm) or screen-printed carbon paste electrode (SPCE, d = 3 mm) using a polymer (poly(vinyl alcohol)) entrapment method. The sensor could directly determine the nitrate in an unpurged aqueous solution with the aid of an appropriate oxygen scavenger: the nitrate reduction reaction driven by the enzyme and an electron-transfer mediator, methyl viologen, at -0.85 V (GCE vs Ag/AgCl) or at -0.90 V (SPCE vs Ag/AgCl) exhibited no oxygen interference in a sulfite-added solution. The electroanalytical properties of optimized biosensors were measured: the sensitivity, linear response range, and detection limit of the sensors based on GCE were 7.3 nA/microM, 15-300 microM (r2 = 0.995), and 4.1 microM (S/N = 3), respectively, and those of SPCE were 5.5 nA/microM, 15-250 microM (r2 = 0.996), and 5.5 microM (S/N = 3), respectively. The disposable SPCE-based biosensor with a built-in well- or capillary-type sample cell provided high sensor-to-sensor reproducibility (RSD sensor system was demonstrated by determining nitrate in real samples.

  1. Plutonium purification cycle in centrifugal extractors: comparative study of flowsheets using uranous nitrate and hydroxylamine nitrate

    International Nuclear Information System (INIS)

    Baron, P.; Dinh, B.; Mauborgne, B.; Drain, F.; Gillet, B.

    1998-01-01

    The extension of the UP2 plant at La Hague includes a new plutonium purification cycle using multi-stage centrifugal extractors, to replace the present cycle which uses mixer/settler banks. The advantage of this type of extractor is basically the compactness of the equipment and the short residence time, which limits solvent degradation, particularly when reprocessing fuel containing a high proportion of plutonium 238. Two types of reducing agents have been considered for the plutonium stripping operation, uranous nitrate and hydroxylamine nitrate. Uranous nitrate displays a very fast reduction kinetics, ideal for the very short residence time of the phases in the centrifugal extractors. However, its extractability in the organic phase exacerbates the undesirable re-oxidation of plutonium, which is present in high concentration in this stage of the process. The short residence time of the centrifugal extractors is an advantage in as much as it could conceivably be adequate to obtain a sufficient reduction efficiency, while minimizing undesirable re-oxidation mechanisms. Hydroxylamine nitrate helps to minimize undesirable re-oxidation and is the normal choice for this type of operation. However, the plutonium (IV) reduction kinetics obtained is slower than with uranous nitrate, making it necessary to check whether its use is compatible with the very short residence times of centrifugal extractors.This article discusses the feasibility studies employing these two reducing agents. (author)

  2. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    International Nuclear Information System (INIS)

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  3. Abiotic nitrate and sulphate reduction by hydrogen: a comparative experimental study

    International Nuclear Information System (INIS)

    Truche, L.; Berger, G.; Albrecht, A.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. The bituminous waste which is part of the intermediate level, long-lived waste (MAVL) is characterised, amongst others, by the coexistence of nitrates, sulphates, organic matter, native metals and hydrogen gas in the waste mixture and package. It can be considered as the most complex example that will be used to discuss redox reactions occurring in such waste mixtures. The evaluation of the redox conditions requires quantification of the amount of electron acceptors and donors and definition of the kinetics of redox reaction. The objectives of an experimental study to unravel some of these reaction complexities are: - to investigate nature and rate of sulphate and nitrate reduction by hydrogen in the presence of different catalysts (stainless steel, hastelloy, magnetite and argillite); - to compare sulphate and nitrate as electron acceptors; - to provide a mechanistic model of these reactions. It is well known that reduction of sulphate and nitrate requires high activation energies, usually supplied either by thermal processes or via bacterial and surface catalysis, of which the latter has been investigated in this study. Preliminary experiments performed at 150 deg. C and under H 2 pressure show that sulphate reduction is enhanced in the presence of magnetite, but essentially under the restricted condition of low sulphate concentration and at a pH below the Point of Zero Charge of magnetite. This suggests that sorption of sulphate contributes to the catalysed reaction (at low pH) but provided that the magnetite surface sites are not saturated with respect to aqueous sulphate (low concentration). On the contrary, nitrate reduction is observed whatever the pH and the nitrate concentration in the presence of both magnetite and hastelloy C276 (Ni, Cr, Mo, W, Fe alloy). The effect of temperature on the rate of nitrate reduction (500 ppm KNO 3 solution) is shown by comparing three different experiments conducted in

  4. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Durand, S.

    1999-01-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA 4- , ethylene-diamino-tri-acetate-acetic acid EDTA(H) 3- , tetra-aza-cyclo-dodecane-tetra-acetate DOTA 4- , methylene-imidine-acetate MIDA 2- ) are reported. First, a consistent set of Lennard-Jones parameters for La 3+ , Eu 3+ and Lu 3+ cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA 4- , EDTA(H) 3- , DOTA 4- and 1:2 complexes of lanthanide cations with MIDA 2- were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca 2+ vs Sr 2+ and vs Ba 2+ on the one hand, and with La 3+ vs Eu 3+ and vs Lu 3+ on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  5. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    Science.gov (United States)

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is

  6. Nitrates for acute heart failure syndromes.

    Science.gov (United States)

    Wakai, Abel; McCabe, Aileen; Kidney, Rachel; Brooks, Steven C; Seupaul, Rawle A; Diercks, Deborah B; Salter, Nigel; Fermann, Gregory J; Pospisil, Caroline

    2013-08-06

    Current drug therapy for acute heart failure syndromes (AHFS) consists mainly of diuretics supplemented by vasodilators or inotropes. Nitrates have been used as vasodilators in AHFS for many years and have been shown to improve some aspects of AHFS in some small studies. The aim of this review was to determine the clinical efficacy and safety of nitrate vasodilators in AHFS. To quantify the effect of different nitrate preparations (isosorbide dinitrate and nitroglycerin) and the effect of route of administration of nitrates on clinical outcome, and to evaluate the safety and tolerability of nitrates in the management of AHFS. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 3), MEDLINE (1950 to July week 2 2011) and EMBASE (1980 to week 28 2011). We searched the Current Controlled Trials MetaRegister of Clinical Trials (compiled by Current Science) (July 2011). We checked the reference lists of trials and contacted trial authors. We imposed no language restriction. Randomised controlled trials comparing nitrates (isosorbide dinitrate and nitroglycerin) with alternative interventions (frusemide and morphine, frusemide alone, hydralazine, prenalterol, intravenous nesiritide and placebo) in the management of AHFS in adults aged 18 and over. Two authors independently performed data extraction. Two authors performed trial quality assessment. We used mean difference (MD), odds ratio (OR) and 95% confidence intervals (CI) to measure effect sizes. Two authors independently assessed and rated the methodological quality of each trial using the Cochrane Collaboration tool for assessing risk of bias. Four studies (634 participants) met the inclusion criteria. Two of the included studies included only patients with AHFS following acute myocardial infarction (AMI); one study excluded patients with overt AMI; and one study included participants with AHFS with and without acute coronary syndromes.Based on a single study

  7. Atomic structure of nitrate-binding protein crucial for photosynthetic productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

    2006-06-27

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (Nrt

  8. Properties and thermal decomposition of the double salts of uranyl nitrate-ammonium nitrate

    International Nuclear Information System (INIS)

    Notz, K.J.; Haas, R.A.

    1989-01-01

    The formation of ammonium nitrate-uranyl nitrate double salts has important effects on the thermal denitration process for the preparation of UO 3 and on the physical properties of the resulting product. Analyses were performed, and properties and decomposition behavior were determined for three double salts: NH 4 UO 2 (NO 3 ) 3 , (NH 4 ) 2 UO 2 (NO 3 ) 4 , and (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O. The tinitrate salt decomposes without melting at 270-300 C to give a γ-UO 3 powder of ∼3-μm average size, with good ceramic properties for fabrication into UO 2 nuclear fuel pellets. The tetranitrate dihydrate melts at 48 C; it also dehydrates to the anhydrous salt. The anhydrous tetranitrate decomposes exothermically, without melting, at 170-270 C by losing one mole of ammonium nitrate to form the trinitrate salt

  9. Pollution par les nitrates des eaux souterraines du bassin d'Essaouira (Maroc)

    Science.gov (United States)

    Laftouhi, Nour-Eddine; Vanclooster, Marnik; Jalal, Mohammed; Witam, Omar; Aboufirassi, Mohamed; Bahir, Mohamed; Persoons, Étienne

    2003-03-01

    The Essaouira Basin (Morocco) contains a multi-layered aquifer situated in fractured and karstic materials from the Middle and Upper Cretaceous (the Cenomanian, Turonian and Senonian). Water percolates through the limestone and dolomite formations of the Turonian stage either through the marls and calcareous marls of the Cenomanian or through the calcareous marly materials of the Senonian. The aquifer system may be interconnected since the marl layer separating the Turonian, Cenomanian and Senonian aquifers is thin or intensively fractured. In that case, the water is transported through a network of fractures and stratification joints. This paper describes the extent of the nitrate pollution in the area and its origin. Most of the wells and drillholes located in the Kourimat perimeter are contaminated by nitrates with some concentrations over 400 mg l-1. Nitrate contamination is also observed in the surface water of the Qsob River, which constitutes the natural outlet of the multi-layered complex aquifer system. In this area, agriculture is more developed than in the rest of the Essaouira Basin. Diffuse pollution of the karstic groundwater body by agricultural fertiliser residues may therefore partially explain the observed nitrate pollution. However, point pollution around the wells, springs and drillholes from human wastewater, livestock faeces and the mineralisation of organic debris close to the Muslim cemeteries cannot be excluded.

  10. Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations

    International Nuclear Information System (INIS)

    Duvail, M.; Guilbaud, Ph.

    2011-01-01

    Coordination of nitrate anions with lanthanoid cations (Ln 3+ ) in water, methanol and octanol-1 has been studied by means of molecular dynamics simulations with explicit polarization. Potential of mean force (PMF) profiles have been calculated for a mono-complex of lanthanoid nitrate (Ln(NO 3 ) 2+ ) in these solvents using umbrella-sampling molecular dynamics. In pure water, no difference in the nitrato coordination to lanthanoids (Nd 3+ , Eu 3+ and Dy 3+ ) is observed, i.e. the nitrate anion prefers the monodentate coordination, which promotes the salt dissociation. Then, the influence of the nature of the solvating molecules on the nitrato coordination to Eu 3+ has been investigated. PMF profiles point out that both monodentate and bidentate coordinations are stable in neat methanol, while in neat octanol, only the bidentate one is. MD simulations of Eu(NO 3 ) 3 in water-octanol mixtures with different concentrations of water have been then performed and confirm the importance of the water molecules' presence on the nitrate ion's coordination mode. (authors)

  11. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    Science.gov (United States)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  12. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    Science.gov (United States)

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  13. Concentration of Nitrate in Bottled Drinking Water in Qom, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Saberi Bidgoli

    2013-11-01

    Full Text Available Background & Aims of the Study: The global consumption of bottled water is growing with substantial growth in sales volumes on every continent. The highest growth rates are occurring in Asia and South America. Biological and chemical monitoring of these waters is necessary. The aim of current study was determination of nitrate concentration in bottled drinking water in Qom, Iran in 2012. Materials & Methods: A cross-sectional study carried out in Qom, Iran. First of all, 18 most frequent brands of bottled drinking waters were purchased in June 2012 randomly. Then concentration of nitrate was measured according to the spectrophotometric method. In next step, experiment data were analyzed by Excel Software and P value was obtained by statistical calculations. Finally data were comprised with written nitrate concentration on labels and recommended permissible values . Results: The median nitrate concentration was 2.1 mg/L with the minimum 0.8 mg/L and maximum 8.1 mg/L. In 66.7 % of the samples, the measured nitrate concentrations were less than the written nitrate concentrations and in 33.3% of samples, the nitrate concentration was higher. The statistical calculation proved the significant difference between the median of written nitrate concentration on the label and investigated nitrate concentration (P value > 0.05. Conclusions: It be concluded that the measured nitrate concentration in all of the water samples is below the recommended permissible level.

  14. Management of Nitrate m Groundwater: A Simulation Study

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2001-01-01

    Full Text Available Agriculture may cause nitrate and other chemicals to enter into groundwater systems. Nitrate in drinking water is considered a health hazard. A study was conducted to assess the extent of nitrate pollution of groundwater caused by agriculture and to evaluate the possibility of using the LEACHN model to manage nitrate entry into groundwater of agricultural areas of Al-Batinah, which is the most important agricultural region of Oman. Groundwater samples were collected and analyzed to assess the problem and to detect possible trends. Soil sampling and analyses were done to demonstrate the difference in the nitrate concentration in agricultural and non-agricultural soils. A questionnaire survey was conducted to gather information on agricultural practices, fertilizer input, and other possible sources of nitrate pollution. Results from the study show that 23% of groundwater samples have a concentration of nitrate-N concentration of 10 mg/l and 34% samples exceed 8 mg/l. Agricultural soils have higher levels of nitrate compared to non- agricultural soils. Results also demonstrate that nitrate levels in groundwater in Al-Batinah are rising. Application of the ‘LEACHN’ model demonstrated its suitability for use as a management tool to reduce nitrate leaching to groundwater by controlling fertilizer and water input.

  15. Chronic nitrate exposure alters reproductive physiology in fathead minnows.

    Science.gov (United States)

    Kellock, Kristen A; Moore, Adrian P; Bringolf, Robert B

    2018-01-01

    Nitrate is a ubiquitous aquatic pollutant that is commonly associated with eutrophication and dead zones in estuaries around the world. At high concentrations nitrate is toxic to aquatic life but at environmental concentrations it has also been purported as an endocrine disruptor in fish. To investigate the potential for nitrate to cause endocrine disruption in fish, we conducted a lifecycle study with fathead minnows (Pimephales promelas) exposed to nitrate (0, 11.3, and 56.5 mg/L (total nitrate-nitrogen (NO 3 -N)) from nitrate-exposed males both 11-KT and vitellogenin were significantly induced when compared with controls. No significant differences occurred for body mass, condition factor, or GSI among males and intersex was not observed in any of the nitrate treatments. Nitrate-exposed females also had significant increases in vitellogenin compared to controls but no significant differences for mass, condition factor, or GSI were observed in nitrate exposed groups. Estradiol was used as a positive control for vitellogenin induction. Our findings suggest that environmentally relevant nitrate levels may disrupt steroid hormone synthesis and/or metabolism in male and female fish and may have implications for fish reproduction, watershed management, and regulation of nutrient pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    Science.gov (United States)

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  17. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  18. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  19. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  20. Impact of ammonium nitrate and sodium nitrate on tadpoles of Alytes obstetricans.

    Science.gov (United States)

    Garriga, Núria; Montori, A; Llorente, G A

    2017-07-01

    The presence of pesticides, herbicides and fertilisers negatively affect aquatic communities in general, and particularly amphibians in their larval phase, even though sensitivity to pollutants is highly variable among species. The Llobregat Delta (Barcelona, Spain) has experienced a decline of amphibian populations, possibly related to the reduction in water quality due to the high levels of farming activity, but also to habitat loss and alteration. We studied the effects of increasing ammonium nitrate and sodium nitrate levels on the survival and growth rate of Alytes obstetricans tadpoles under experimental conditions. We exposed larvae to increasing concentrations of nitrate and ammonium for 14 days and then exposed them to water without pollutants for a further 14 days. Only the higher concentrations of ammonium (>33.75 mg/L) caused larval mortality. The growth rate of larvae was reduced at ≥22.5 mg/L NH 4 + , although individuals recovered and even increased their growth rate once exposure to the pollutant ended. The effect of nitrate on growth rate was detected at ≥80 mg/L concentrations, and the growth rate reduction in tadpoles was even observed during the post-exposure phase. The concentrations of ammonium with adverse effects on larvae are within the range levels found in the study area, while the nitrate concentrations with some adverse effect are close to the upper range limit of current concentrations in the study area. Therefore, only the presence of ammonium in the study area is likely to be considered of concern for the population of this species, even though the presence of nitrate could cause some sublethal effects. These negative effects could have an impact on population dynamics, which in this species is highly sensitive to larval mortality due to its small clutch size and prolonged larval period compared to other anuran amphibians.

  1. The Effect of Nitrate Levels and Harvest Times on Fe, Zn, Cu, and K, Concentrations and Nitrate Reductase Activity in Lettuce and Spinach

    OpenAIRE

    Z. Gheshlaghi; R. Khorassani; G.H. Haghnia; M. Kafi

    2015-01-01

    Leafy vegetables are considered as the main sources of nitrate in the human diet. In order to investigate the effect of nitrate levels and harvest times on nitrate accumulation, nitrate reductase activity, concentrations of Fe, Zn, Cu and K in Lettuce and Spinach and their relation to nitrate accumulation in these leafy vegetables, two harvest times (29 and 46 days after transplanting), two vegetable species of lettuce and spinach and two concentrations of nitrate (10 and 20 mM) were used in ...

  2. Ammonium nitrate with 15 wt % potassium nitrate-ethylenediamine dinitrate-nitroguanidine system

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W.; Cady, H.H.

    1981-01-01

    The phase diagram for the ternary system ammonium nitrate(AN) with 15 wt % potassium nitrate(AN:15KN)-ethylenediamine dinitrate(EDD)-nitroguanidine(NQ) has been determined from room temperature to the melting point. The ternary eutectic temperature, measured for a mixture containing 67.24, 25.30, and 7.46 mole % of AN:15KN, EDD, and NQ, respectively, was found to be 98.9/sup 0/C. The binary phase diagrams for the systems AN:15KN-EDD, AN:15KN-NQ, and EDD-NQ were also determined.

  3. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  4. Stability constants of scandium complexes, 1

    International Nuclear Information System (INIS)

    Itoh, Hisako; Itoh, Naomi; Suzuki, Yasuo

    1984-01-01

    The stability constants of scandium complexes with some carboxylate ligands were determined potentiometrically at 25.0 and 40.0 0 C and at an ionic strength of 0.10 with potassium nitrate as supporting electrolyte. The constants of the scandium complexes were appreciably greater than those of the corresponding lanthanoid complexes, as expected. The changes in free energy, enthalpy, and entropy for the formation of the scandium complexes were calculated from the stability constants at two temperatures. (author)

  5. Using Nitrate Isotopes to Distinguish Pathways along which Unprocessed Atmospheric Nitrate is Transported through Forests to Streams

    Science.gov (United States)

    Sebestyen, S. D.

    2013-12-01

    Evaluation of natural abundance oxygen and nitrogen isotopes in nitrate has revealed that atmospheric deposition of nitrate to forests sometimes has direct effects on the timing and magnitude of stream nitrate concentrations. Large amounts of unprocessed atmospheric nitrate have sometimes been found in streams during snowmelt and stormflow events. Despite increasing evidence that unprocessed atmospheric nitrate may be transported without biological processing to streams at various times and multiple locations, little has been reported about specific hydrological processes. I synthesized research findings from a number of studies in which nitrate isotopes have been measured over the past decade. Unprocessed nitrate may predominate in surficial soil waters after rainfall and snowmelt events relative to nitrate that originated from nitrification. Although transport to deep groundwater may be important in the most nitrogen saturated catchments, the transport of unprocessed atmospheric nitrate along shallow subsurface flowpaths is likely more important in many moderately N-polluted ecosystems, which predominate in the northeastern USA where most of my study sites are located. The presence of unprocessed atmospheric nitrate in surficial soils was linked to stream nitrate concentrations when large amounts of unprocessed nitrate were occasionally routed along lateral, shallow subsurface flowpaths during stormflow events. During these events, water tables rose to saturate shallow-depth soils. When catchments were drying or dryer, atmospheric nitrate was completely consumed by biological processing as flowpaths shifted from lateral to vertical transport through soils. The source areas of unprocessed atmospheric nitrate were usually limited to soils that were adjacent to streams, with little to no near-surface saturation and transport of unprocessed nitrate from more distal hillslope positions. The occasional large amounts of unprocessed atmospheric nitrate in soil water

  6. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    Science.gov (United States)

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  7. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.

    Science.gov (United States)

    Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang

    2008-09-01

    Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.

  8. Determination of free nitric acid in uranyl nitrate solution

    International Nuclear Information System (INIS)

    Mayankutty, P.C.; Ravi, S.; Nadkarni, M.N.

    1981-01-01

    Potentiometric titration of uranyl nitrate solution with sodium hydroxide exhibits two peaks. The first peak characterises the following reaction, UO 2 (C 2 O 4 )+NaOH Na[UO 2 (C 2 O 4 )(OH)]. This reaction, indicating the partial hydrolysis of uranyl oxalate complex, appears to be complete at pH9. If the titration is carried out to this end-point pH, the total alkali consumed can be equated to the sum of uranium content and the free acidity present in the sample volume. Based on this, a method was standardised to determine the free acidity in uranyl nitrate solution. The sample, taken in a solution of potassium oxalate previously adjusted to pH9, is titrated to this pH with standard sodium hydroxide. The free acidity in the sample can be computed by subtracting the alkali reacted with uranium from the total alkali consumed. Analyses of several synthetic samples containing uranium and nitric acid in a wide range of combinations indicate that the free acidity can be accurately determined by this method, if uranium concentration in the sample is known. The results are compared to those obtained by two other widely used methods, viz., (i) titration of pH7 in the presence of neutral potassium oxalate to suppress hydrolysis and (ii) separation of hydrolyzable ions on a cationic resin and alkali titration of the free acid released. The advantages of and the precision obtained with the present method over the above two methods are discussed. (author)

  9. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  10. Magnetic properties of cyano-bridged Ln3+-M3+ complexes. Part I: trinuclear complexes (Ln3+ = La, Ce, Pr, Nd, Sm; M3+ = FeLS, Co) with bpy as blocking ligand.

    Science.gov (United States)

    Figuerola, Albert; Ribas, Joan; Llunell, Miquel; Casanova, David; Maestro, Miguel; Alvarez, Santiago; Diaz, Carmen

    2005-10-03

    The reaction of Ln(NO3)3(aq) with K3[Fe(CN)6] or K3[Co(CN)6] and 2,2'-bipyridine in water/ethanol led to eight trinuclear complexes: trans-[M(CN)4(mu-CN)2{Ln(H2O)4(bpy)2}2][M(CN)6].8H2O (M = Fe3+ or Co3+, Ln = La3+, Ce3+, Pr3+, Nd3+, and Sm3+). The structures for the eight complexes [La2Fe] (1), [Ce2Fe] (2), [Pr2Fe] (3), [Nd2Fe] (4), [Ce2Co] (5), [Pr2Co] (6), [Nd2Co] (7), and [Sm2Co] (8) have been solved; they crystallize in the triclinic space group P and are isomorphous. They exhibit a supramolecular 3D architecture through hydrogen bonding and pi-pi stacking interactions. A stereochemical study of the nine-vertex polyhedra of the lanthanide ions, based on continuous shape measures, is presented. No significant magnetic interaction was found between the lanthanide(III) and the iron(III) ions.

  11. Quantum mechanics and molecular dynamics simulations of complexation of alkaline-earth and lanthanide cations by poly-amino-carboxylate ligands; Simulations par mecanique quantique et dynamique moleculaire de la complexation de cations alcalino-terreux et lanthanides par des ligands polyaminocarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Durand, S

    1999-07-01

    Molecular dynamics (MD) simulations on lanthanide(III) and alkaline-earth(II) complexes with poly-amino-carboxylates (ethylene-diamino-tetra-acetate EDTA{sup 4-}, ethylene-diamino-tri-acetate-acetic acid EDTA(H){sup 3-}, tetra-aza-cyclo-dodecane-tetra-acetate DOTA{sup 4-}, methylene-imidine-acetate MIDA{sup 2-}) are reported. First, a consistent set of Lennard-Jones parameters for La{sup 3+}, Eu{sup 3+} and Lu{sup 3+} cations has been derived from free energy calculations in aqueous solution. Observed differences in hydration free energies, coordination distances and hydration numbers are reproduced. Then, the solution structures of 1:1 complexes of alkaline-earth and/or lanthanide cations with EDTA{sup 4-}, EDTA(H){sup 3-}, DOTA{sup 4-} and 1:2 complexes of lanthanide cations with MIDA{sup 2-} were studied by MD in water. In addition, free energy calculations were performed to study, for each ligand, the relative thermodynamic stabilities of complexes with Ca{sup 2+} vs Sr{sup 2+} and vs Ba{sup 2+} on the one hand, and with La{sup 3+} vs Eu{sup 3+} and vs Lu{sup 3+} on the other hand. Model does not take into account explicitly polarization and charge transfer. However, the results qualitatively agree with experimental complexation data (structure and selectivities). (author)

  12. Thermal denitration of high concentration nitrate salts waste water

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Latge, C.

    2003-01-01

    This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at 250 .deg. C and 730 . deg. C, respectively. Sodium nitrate could be decomposed at 450 .deg. C in the case of adding alumina for converting unstable Na 2 O into stable Na 2 O.Al 2 O 3 . The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation

  13. The Nitrate/(Per)Chlorate Relationship on Mars

    Science.gov (United States)

    Stern, Jennifer C.; Sutter, Brad; Jackson, W. Andrew; Navarro-Gonzalez, Rafael; McKay, Christopher P.; Ming, Douglas W.; Archer, P. Douglas; Mahaffy, Paul R.

    2017-01-01

    Nitrate was recently detected in Gale Crater sediments on Mars at abundances up to approximately 600 mg/kg, confirming predictions of its presence at abundances consistent with models based on impact-generated nitrate and other sources of fixed nitrogen. Terrestrial Mars analogs, Mars meteorites, and other solar system materials help establish a context for interpreting in situ nitrate measurements on Mars, particularly in relation to other cooccuring salts. We compare the relative abundance of nitrates to oxychlorine (chlorate and/or perchlorate, hereafter (per)chlorate) salts on Mars and Earth. The nitrate/(per)chlorate ratio on Mars is greater than 1, significantly lower than on Earth (nitrate/(per)chlorate greater than 10(exp.3)), suggesting not only the absence of biological activity but also different (per)chlorate formation mechanisms on Mars than on Earth.

  14. Sustainability of natural attenuation of nitrate in agricultural aquifers

    Science.gov (United States)

    Green, Christopher T.; Bekins, Barbara A.

    2010-01-01

    Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.

  15. Is nitrate an endocrine active compound in fish?

    DEFF Research Database (Denmark)

    Mose, M. P.; Kinnberg, Karin Lund; Bjerregaard, Poul

    Nitrate and nitrite taken up into fish may be reduced to NO which is known to be a signalling compound in the organism contributing to the regulation of i.e. steroid synthesis. Exposure of male rats to nitrate and nitrite results in reduced plasma concentrations of testosterone (also nitrate...... concentrations around or below the limits for drinking water). Nitrate concentrations in streams may be elevated due to releases from agricultural practices. The effects of nitrate and nitrite on endocrine relevant endpoints were investigated in zebrafish (Danio rerio) and brown trout (Salmo trutta). Zebrafish...... were exposed to nitrate and nitrite from hatch to sexual maturation (60 d) and sex ratio and vitellogenin concentrations were determined. Juvenile brown trout were exposed in a short-term experiment and the concentrations of vitellogenin were determined. The sex ratio in zebrafish was not affected...

  16. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  17. Nitrate and nitrite in biology, nutrition and therapeutics

    Science.gov (United States)

    Lundberg, Jon O.; Gladwin, Mark T.; Ahluwalia, Amrita; Benjamin, Nigel; Bryan, Nathan S.; Butler, Anthony; Cabrales, Pedro; Fago, Angela; Feelisch, Martin; Ford, Peter C.; Freeman, Bruce A.; Frenneau, Michael; Friedman, Joel; Kelm, Malte; Kevil, Christopher G.; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Lancaster, Jack R.; Lefer, David J.; McColl, Kenneth; McCurry, Kenneth; Patel, Rakesh; Petersson, Joel; Rassaf, Tienush; Reutov, Valentin P.; Richter-Addo, George B.; Schechter, Alan; Shiva, Sruti; Tsuchiya, Koichiro; van Faassen, Ernst E.; Webb, Andrew J.; Zuckerbraun, Brian S.; Zweier, Jay L.; Weitzberg, Eddie

    2014-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent two-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm. PMID:19915529

  18. Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN)

    Science.gov (United States)

    2015-04-01

    determined. From the results of the study, UN is safe to store under normal operating conditions. 15. SUBJECT TERMS urea, nitrate , sensitivity, thermal ...HNO3). Due to its simple composition, ease of manufacture, and higher detonation parameters than ammonium nitrate , it has become one of the...an H50 value of 10.054 ± 0.620 inches. 5. Conclusions From the results of the thermal analysis study, it can be concluded that urea nitrate is

  19. Evaluation of ferrocyanide/nitrate explosive hazard

    International Nuclear Information System (INIS)

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed

  20. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  1. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1

    Czech Academy of Sciences Publication Activity Database

    Bouguyon, E.; Brun, F.; Meynard, D.; Kubeš, Martin; Pervent, M.; Leran, S.; Lacombe, B.; Krouk, G.; Guiderdoni, E.; Zažímalová, Eva; Hoyerová, Klára; Nacry, P.; Gojon, A.

    2015-01-01

    Roč. 1, March (2015), s. 15015 ISSN 2055-026X R&D Projects: GA ČR(CZ) GAP305/11/0797 Institutional support: RVO:61389030 Keywords : nitrate transceptor * Arabidopsis * lateral root development Subject RIV: EB - Genetics ; Molecular Biology

  2. Triple nitrate isotopes indicate differing nitrate source contributions to streams across a nitrogen saturation gradient

    Science.gov (United States)

    Lucy A. Rose; Emily M. Elliott; Mary Beth. Adams

    2015-01-01

    Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO3-) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-...

  3. Immobilization of nitrate reductase onto epoxy affixed silver nanoparticles for determination of soil nitrates.

    Science.gov (United States)

    Sachdeva, Veena; Hooda, Vinita

    2015-08-01

    Epoxy glued silver nanoparticles were used as immobilization support for nitrate reductase (NR). The resulting epoxy/AgNPs/NR conjugates were characterized at successive stages of fabrication by scanning electron microscopy and fourier transform infrared spectroscopy. The immobilized enzyme system exhibited reasonably high conjugation yield (37.6±0.01 μg/cm(2)), with 93.54±0.88% retention of specific activity. Most favorable working conditions of pH, temperature and substrate concentration were ascertained to optimize the performance of epoxy/AgNPs/NR conjugates for soil nitrate quantification. The analytical results for soil nitrate determination were consistent, reliable and reproducible. Minimum detection limit of the method was 0.05 mM with linearity from 0.1 to 11.0 mM. The % recoveries of added nitrates (0.1 and 0.2 mM) were<95.0% and within-day and between-day coefficients of variations were 0.556% and 1.63% respectively. The method showed good correlation (R(2)=0.998) with the popular Griess reaction method. Epoxy/AgNPs bound NR had a half-life of 18 days at 4 °C and retained 50% activity after 15 reuses. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens.

    Science.gov (United States)

    Samuelsson, M O

    1985-10-01

    The influence of redox potential on dissimilatory nitrate reduction to ammonium was investigated on a marine bacterium, Pseudomonas putrefaciens. Nitrate was consumed (3.1 mmol liter-1), and ammonium was produced in cultures with glucose and without sodium thioglycolate. When sodium thioglycolate was added, nitrate was consumed at a lower rate (1.1 mmol liter-1), and no significant amounts of nitrite or ammonium were produced. No growth was detected in glucose media either with or without sodium thioglycolate. When grown on tryptic soy broth, the production of nitrous oxide paralleled growth. In the same medium, but with sodium thioglycolate, nitrous oxide was first produced during growth and then consumed. Acetylene caused the nitrous oxide to accumulate. These results and the mass balance calculations for different nitrogen components indicate that P. putrefaciens has the capacity to dissimilate nitrate to ammonium as well as to dinitrogen gas and nitrous oxide (denitrification). The dissimilatory pathway to ammonium dominates except when sodium thioglycolate is added to the medium.

  5. Relationship between nitrate reductase and nitrate uptake in phytoplankton in the Peru upwelling region

    International Nuclear Information System (INIS)

    Blasco, D.; MacIsaac, J.J.; Packard, T.T.; Dugdale, R.C.

    1984-01-01

    Nitrate reductase (NR) activity and 15 NO 3 - uptake in phytoplankton were compared under different environmental conditions on two cruises in the upwelling region off Peru. The NR activity and NO 3 - uptake rates responded differently to light and nutrients and the differences led to variations in the uptake:reductase ratio. Analysis of these variations suggests that the re-equilibration time of the two processes in response to environmental perturbation is an important source of variability. The nitrate uptake system responds faster than the nitrate reductase system. Considering these differences in response time, the basic differences in the two processes, and the differences in their measurement, the authors conclude that the NR activity measures the current nitrate-reducing potential, which relfects NO 3 - assimilation before the sampling time, while 15 NO 3 - uptake measures NO 3 - assimilation in the 6-h period following sampling. Thus, considering the sampling time as a point of reference, the former is a measure of the past and the latter is a measure of the future

  6. Determination of nitrate in effluents from Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Dudwadkar, Ayushi; Kumar, Sangita D.; Reddy, A.V.R.

    2014-01-01

    Determination of nitrate concentration in the effluent samples from Uranium Extraction Plant is required before its safe discharge. As the different streams are diluted with sea water these samples contain high concentration of chloride. The large concentration of chloride poses a challenge in the determination of nitrate; hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The present study was carried out to develop a simple, accurate and rapid analytical methodology for the determination of nitrate in the above matrices. The quantitative determination of nitrate was accomplished using anion exchange chromatography with conductometric detection. (author)

  7. Headache characteristics during the development of tolerance to nitrates

    DEFF Research Database (Denmark)

    Christiansen, I; Iversen, Helle Klingenberg; Olesen, J

    2000-01-01

    Recent studies suggest that nitric oxide (NO) plays an important role in nitrate-induced headache and in spontaneous migraine attacks. Organic nitrates act as prodrugs for NO and headache is a predominant adverse effect of nitrates but often disappears during continuous treatment. Insight...... into tolerance to headache could lead to insight into vascular headache mechanisms in general. The specific aim of the present study was therefore to characterize the headache and accompanying symptoms during continuous nitrate administration until a state of tolerance to headache had developed. 5-isosorbide...

  8. Development of technology for ammonium nitrate dissociation process

    International Nuclear Information System (INIS)

    Zakharkin, B.S.; Varykhanov, V.P.; Kucherenko, V.S.; Solov'yeva, L.N.; Revyakin, V.V.

    2000-01-01

    Ammonia and ammonium carbonate are frequently used as reagents in fuel production and processing of liquid radioactive wastes. In particular, liquid radioactive wastes that contain ammonium nitrate are generated during operations of metal precipitation. In closed vessels at elevated temperature, for example in evaporators or deposits in tubing, ammonium nitrate may explode due to generation of gaseous nitrogen oxides [2]. In this connection, steps have to be taken to rule out conditions that result in explosion. To do that, ammonium nitrate should be removed even prior to the initial stage of its formation. This report gives results of development of a method of dissociating ammonium nitrate

  9. Extraction with tributyl phosphate (TBP) from ferric nitrate solutions

    International Nuclear Information System (INIS)

    Kolarik, Z.; Grudpan, K.

    1985-01-01

    Ferric nitrate acts as a strong salting-out agent in the extraction of thorium(IV), uranyl, europium(III), samarium(III) and zirconium(IV) nitrates as well as of nitric acid with tributyl phosphate in dodecane. Nitric acid, if present in the extraction system together with large amounts of ferric nitrate, markedly suppresses the extraction of thorium(IV) and lanthanides(III) but significantly supports the extraction of zirconium(IV). Separation factors of different metal pairs are presented as functions of the concentrations of ferric nitrate and nitric acid

  10. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  11. Decomposition of ammonium nitrate in homogeneous and catalytic denitration

    International Nuclear Information System (INIS)

    Anan'ev, A. V.; Tananaev, I. G.; Shilov, V. P.

    2005-01-01

    Ammonium nitrate is one of potentially explosive by-products of spent fuel reprocessing. Decomposition of ammonium nitrate in the HNO 3 -HCOOH system was studied in the presence or absence of Pt/SiO 2 catalyst. It was found that decomposition of ammonium nitrate is due to homogeneous noncatalytic oxidation of ammonium ion with nitrous acid generated in the HNO 3 -HCOOH system during denitration. The platinum catalyst initiates the reaction of HNO 3 with HCOOH to form HNO 2 . The regular trends were revealed and the optimal conditions of decomposition of ammonium nitrate in nitric acid solutions were found [ru

  12. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    DEFF Research Database (Denmark)

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    communities of large Thioploca species live along the Pacific coast of South America and in other upwelling areas of high organic matter sedimentation with bottom waters poor in oxygen and rich in nitrate. Each cell of these thioplocas harbors a large liquid vacuole which is used as a storage for nitrate...... with a concentration of lip to 506 mM. The nitrate is used as an electron acceptor for sulfide oxidation and the bacteria may grow autotrophically or mixotrophically using acetate or other organic molecules as carbon source. The filaments stretch up into the overlying seawater, from which they take up nitrate...

  13. The reaction of hydrazine nitrate with nitric acid

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu

    2004-03-01

    It is known that hydrazine nitrate used in nuclear fuel reprocessing plants is an unstable substance thermochemically like hydroxylamine nitrate. In order to take the basic data regarding the reaction of hydrazine nitrate with nitric acid, initiation temperatures and heats of this reaction, effect of impurity on initiation temperature and self-accelerating reaction when it holds at constant temperature for a long time were measured by the pressure vessel type reaction calorimeter etc. In this paper, the experimental data and evaluation of the safe handling of hydrazine nitrate in nuclear fuel reprocessing plants are described. (author)

  14. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

    1991-09-01

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment

  15. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Megan K., E-mail: megan.horton@mssm.edu [Department of Preventive Medicine, Icahn School of Medicine, New York, New York (United States); Blount, Benjamin C.; Valentin-Blasini, Liza [National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia (United States); Wapner, Ronald [Department of Obstetrics and Gynecology, Columbia University, New York, New York (United States); Whyatt, Robin [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York (United States); Gennings, Chris [Department of Preventive Medicine, Icahn School of Medicine, New York, New York (United States); Factor-Litvak, Pam [Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York (United States)

    2015-11-15

    Background: Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy Objectives: We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New York City using weighted quantile sum (WQS) regression. Methods: We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (±2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results: Individual analyte concentrations in urine were significantly correlated (Spearman's r 0.4–0.5, p<0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions: Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. - Highlights: • Perchlorate, nitrate, thiocyanate and iodide measured in maternal urine. • Thyroid function (TSH and Free T4) measured in maternal blood

  16. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    International Nuclear Information System (INIS)

    Horton, Megan K.; Blount, Benjamin C.; Valentin-Blasini, Liza; Wapner, Ronald; Whyatt, Robin; Gennings, Chris; Factor-Litvak, Pam

    2015-01-01

    Background: Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy Objectives: We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New York City using weighted quantile sum (WQS) regression. Methods: We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (±2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results: Individual analyte concentrations in urine were significantly correlated (Spearman's r 0.4–0.5, p<0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions: Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. - Highlights: • Perchlorate, nitrate, thiocyanate and iodide measured in maternal urine. • Thyroid function (TSH and Free T4) measured in maternal blood

  17. Derivation of an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions

    International Nuclear Information System (INIS)

    Min, Duck Kee; Choi, Byung Il; Ro, Seung Gy; Eom, Tae Yoon; Kim, Zong Goo

    1986-01-01

    Densities of a large number of mixed uranyl nitrate-thorium nitrate solutions were measured with pycnometer. By the least squares analysis of the experimental result, an empirical formula for determining water content of mixed uranyl nitrate-thorium nitrate solutions as functions of uranium concentration, thorium concentration and nitric acid normality is derived; W=1.0-0.3580 C u -0.4538 C Th -0.0307H + where W, C u , C Th , and H + stand for water content(g/cc), uranium concentration (g/cc), thorium concentration(g/cc), and nitric acid normality, respectively. Water contents of the mixed uranyl nitrate-thorium nitrate solutions are calculated by using the empirical formular, and compared with the values calculated by Bouly's equation in which an additional data, solution density, is required. The two results show good agreements within 2.7%. (Author)

  18. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    billion gallons of water that reaches the Chesapeake Bay each day, nearly 27 billion gallons is base flow. Generalized lithology (siliciclastic, carbonate, crystalline, and unconsolidated) was combined with physiographic province (the Appalachian Plateau, the Valley and Ridge, the Blue Ridge, the Piedmont, including the Mesozoic Lowland section, and the Coastal Plain) to delineate 11 hydrogeomorphic regions. Areal variation of base flow and base-flow nitrate yield were assessed by means of nonparametric, one-way analysis of variance on basins grouped by the dominant hydrogeomorphic region and by correlation analysis of base flow or base-flow nitrate yield with the percentage of land area of a given hydrogeomorphic region within a basin. Base flow appeared to have a significant relation to the hydrogeomorphic regions. The highest percentages of base flow were found in areas underlain by carbonate rock, crystalline rock with relatively low relief, and unconsolidated sediments. Lower percentages were found in areas underlain by siliclastic rocks and crystalline rocks with relatively high relief. The relation between base-flow nitrate yield and hydrogeomorphic region is less clear. Although there is a relation between low nitrate yields and areas underlain by highrelief siliciclastic rocks, and a relation between high yields and carbonate rocks, much of this relation can be explained by the strong association between the hydrogeomorphic units and land use. In addition, most basins are mixtures of several hydrogeomorphic regions, so the nitrate yield from a basin depends on a large number of complex interacting factors. These unclear results indicate that the sample of available data used here may not be adequate to fully assess the relation between base-flow nitrate yield and the hydrogeomorphic setting of the basin. The results appear to show, however, that ground-water discharge is an important component of the total nontidal streamflow, and that ground

  19. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Science.gov (United States)

    van Grinsven, Hans JM; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-01-01

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution. PMID:16989661

  20. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Science.gov (United States)

    van Grinsven, Hans J M; Ward, Mary H; Benjamin, Nigel; de Kok, Theo M

    2006-09-21

    Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables) and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2-3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  1. Does the evidence about health risks associated with nitrate ingestion warrant an increase of the nitrate standard for drinking water?

    Directory of Open Access Journals (Sweden)

    Benjamin Nigel

    2006-09-01

    Full Text Available Abstract Several authors have suggested that it is safe to raise the health standard for nitrate in drinking water, and save money on measures associated with nitrate pollution of drinking water resources. The major argument has been that the epidemiologic evidence for acute and chronic health effects related to drinking water nitrate at concentrations near the health standard is inconclusive. With respect to the chronic effects, the argument was motivated by the absence of evidence for adverse health effects related to ingestion of nitrate from dietary sources. An interdisciplinary discussion of these arguments led to three important observations. First, there have been only a few well-designed epidemiologic studies that evaluated ingestion of nitrate in drinking water and risk of specific cancers or adverse reproductive outcomes among potentially susceptible subgroups likely to have elevated endogenous nitrosation. Positive associations have been observed for some but not all health outcomes evaluated. Second, the epidemiologic studies of cancer do not support an association between ingestion of dietary nitrate (vegetables and an increased risk of cancer, because intake of dietary nitrate is associated with intake of antioxidants and other beneficial phytochemicals. Third, 2–3 % of the population in Western Europe and the US could be exposed to nitrate levels in drinking water exceeding the WHO standard of 50 mg/l nitrate, particularly those living in rural areas. The health losses due to this exposure cannot be estimated. Therefore, we conclude that it is not possible to weigh the costs and benefits from changing the nitrate standard for drinking water and groundwater resources by considering the potential consequences for human health and by considering the potential savings due to reduced costs for nitrate removal and prevention of nitrate pollution.

  2. Characterization of organic nitrate constituents of secondary organic aerosol (SOA from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    C. Faxon

    2018-04-01

    Full Text Available The gas-phase nitrate radical (NO3⚫ initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS combined with a Filter Inlet for Gases and AEROsols (FIGAERO. Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7 that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  3. Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Le Breton, Michael; Kant Pathak, Ravi; Hallquist, Mattias

    2018-04-01

    The gas-phase nitrate radical (NO3⚫) initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA) formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) combined with a Filter Inlet for Gases and AEROsols (FIGAERO). Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM) limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7) that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  4. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    Science.gov (United States)

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  5. Thermal decomposition of supported lithium nitrate catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  6. Safety Testing of Ammonium Nitrate Based Mixtures

    Science.gov (United States)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  7. Recycle and biodestruction of hazardous nitrate wastes

    International Nuclear Information System (INIS)

    Napier, J.M.; Kosinski, F.E.

    1987-01-01

    The US Department of Energy (DOE) owns the Oak Ridge Y-12 Plant located in Oak Ridge, Tennessee. The plant is operated for DOE by Martin Marietta Energy Systems, Inc. One of the plant's functions involves the purification and recycling of uranium wastes. The uranium recycle operation uses nitric acid in a solvent extraction purification process, and a waste stream containing nitric acid and other impurities is generated. Before 1976 the wastes were discarded into four unlined percolation ponds. In 1976, processes were developed and installed to recycle 50% of the wastes and to biologically decompose the rest of the nitrates. In 1983 process development studies began for in situ treatment of the four percolation ponds, and the ponds were treated and discharged by May 1986. The treatment processes involved neutralization and precipitation to remove metallic impurities, followed by anaerobic denitrification to reduce the 40,000 ug/g nitrate concentration to less than 50 ug/g. The final steps included flocculation and filtration. Approximately 10 million gallons of water in the ponds were treated and discharged

  8. Nitrate radicals and biogenic volatile organic compounds ...

    Science.gov (United States)

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  9. Crystallization of sodium nitrate from radioactive waste

    International Nuclear Information System (INIS)

    Krapukhin, V.B.; Krasavina, E.P.; Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs

  10. Electrochemical processing of nitrate waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. (Electrosynthesis Co., Inc., Cheektowaga, NY (United States))

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F[sup [minus

  11. Efficient uranous nitrate production using membrane electrolysis

    International Nuclear Information System (INIS)

    Zhongwei Yuan; Taihong Yan; Weifang Zheng; Hongying Shuang; Liang Xian; Xiaoyan Bian; Chen Zuo; Chuanbo Li; Zhi Cao

    2013-01-01

    Electrochemical reduction of uranyl nitrate is a green, simple way to make uranous ion. In order to improve the ratio of uranous ion to the total uranium and maintain high current efficiency, an electrolyser with very thin cathodic and anodic compartment, which were separated by a cation exchange membrane, was setup, and its performance was tested. The effects of various parameters on the reduction were also evaluated. The results show that the apparatus is quite positive. It runs well with 120 mA/cm 2 current density (72 cm 2 cathode, constant current batch operation). U(IV) yield can achieve 93.1 % (500 mL feed, total uranium 199 g/L) after 180 min electrolysis. It was also shown that when U(IV) yield was below 80 %, very high current efficiency was maintained, and there was almost a linear relationship between uranous ion yield and electrolysis time; under the range of experimental conditions, the concentration of uranyl nitrate, hydrazine, and nitric acid had little effect on the reduction. (author)

  12. Development and manufacturing cycle for potassium nitrate and phosphate producing by conversion method

    Directory of Open Access Journals (Sweden)

    А. И. Алексеев

    2016-11-01

    Full Text Available Analysis of the Russian market of potash mineral fertilizers in 2014 and forecast for 2015-2019 show [http://businesstat.ru/images/demo/potash_fertilizers_russia.pdf] that today the most widespread potash fertilizer is  the potassium chloride. But chloride-free potassium-containing products are in the highest demand at the fertilizer market. One of possible solutions to this problem is recrystallization of the potassium chloride or potassium-containing mineral ores using nitrate-containing or phosphorus-containing salt products. The basis for justifying processing conditions for polymineral potassium-containing salt raw materials and salt mineral ores is the data on phase equilibria in multicomponent water-salt systems. Knowledge of the regularities of phase equilibria in multicomponent salt systems helps to develop optimal conditions for complex processing of polymineral natural and technical raw materials. Below it is present the results of technological calculations for processing potash mineral raw materials with account of the complex nature of its utilization. Based on the analysis of the solubility diagrams of mutual salt systems different cyclic processes for production of potassium dihydrogen phosphate and nitrate and sodium chloride from dihydrogen phosphate and sodium nitrate and potassium chloride by conversion method have been designed, and ways of these processes optimization have been proposed for reducing the cost of certain technical  operations.

  13. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14 CO 2 pulse, the total 14 C incorporation of the mutant leaves was approximately 20 5 of that of the control. The 14 C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14 CO 2 pulse followed by a 60 second chase with normal CO 2 , 14 C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus

  14. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  15. Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism.

    Science.gov (United States)

    López-Berges, Manuel S; Schäfer, Katja; Hera, Concepción; Di Pietro, Antonio

    2014-01-01

    Velvet is a conserved protein complex that functions as a regulator of fungal development and secondary metabolism. In the soil-inhabiting pathogen Fusarium oxysporum, velvet governs mycotoxin production and virulence on plant and mammalian hosts. Here we report a previously unrecognized role of the velvet complex in regulation of nitrate metabolism. F. oxysporum mutants lacking VeA or LaeA, two key components of the complex, were impaired in growth on the non-preferred nitrogen sources nitrate and nitrite. Both velvet and the general nitrogen response GATA factor AreA were required for transcriptional activation of nitrate (nit1) and nitrite (nii1) reductase genes under de-repressing conditions, as well as for the nitrate-triggered increase in chromatin accessibility at the nit1 locus. AreA also contributed to chromatin accessibility and expression of two velvet-regulated gene clusters, encoding biosynthesis of the mycotoxin beauvericin and of the siderophore ferricrocin. Thus, velvet and AreA coordinately orchestrate primary and secondary metabolism as well as virulence functions in F. oxysporum. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  17. The effects of organic nitrates on osteoporosis: a systematic review.

    Science.gov (United States)

    Jamal, S A; Reid, L S; Hamilton, C J

    2013-03-01

    Current treatments for osteoporosis are limited by lack of effect on cortical bone, side effects, and, in some cases, cost. Organic nitrates, which act as nitric oxide donors, may be a potential alternative. This systematic review summarizes the clinical data that reports on the effects of organic nitrates and bone. Organic nitrates, which act as nitric oxide donors, are novel agents that have several advantages over the currently available treatments for osteoporosis. This systematic review summarizes the clinical data that reports on the effects of organic nitrates on bone. We searched Medline (1966 to November 2012), EMBASE (1980 to November 2012), and the Cochrane Central Register of Controlled Trials (Issue 11, 2012). Keywords included nitrates, osteoporosis, bone mineral density (BMD), and fractures. We identified 200 citations. Of these, a total of 29 were retrieved for more detailed evaluation and we excluded 19 manuscripts: 15 because they did not present original data and four because they did not provide data on the intervention or outcome of interest. As such, we included ten studies in literature review. Of these ten studies two were observational cohort studies reporting nitrate use was associated with increased BMD; two were case control studies reporting that use of nitrates were associated with lower risk of hip fracture; two were randomized controlled trials (RCT) comparing alendronate to organic nitrates for treatment of postmenopausal women and demonstrating that both agents increased lumbar spine BMD. The two largest RCT with the longest follow-up, both of which compared effects of organic nitrates to placebo on BMD in women without osteoporosis, reported conflicting results. Headaches were the most common adverse event among women taking nitrates. No studies have reported on fracture efficacy. Further research is needed before recommending organic nitrates for the treatment of postmenopausal osteoporosis.

  18. Distribution of iron during full loading of amberlite IRC-72 resin with uranium from nitrate solutions at 300C

    International Nuclear Information System (INIS)

    Shaffer, J.H.; Greene, C.W.

    1979-01-01

    The integrity of resin-based fuel kernels used in the fabrication of fuel elements for a high-temperature gas-cooled reactor will depend, in part, on the concentration of iron incorporated in the resin particles during their loading with uranium. Consequently, assessment of chemical specifications for iron as an impurity in uranyl nitrate solution should be based on its distribution during the resin loading operation. For this purpose, the behavior of iron, as an impurity in uranyl nitrate solutions, was investigated under equilibrium conditions at 30 0 C during full loading of Amberlite IRC-72 cation exchange reaction were derived from calculations based on complex coordination of ferric ion with the resin over the nitrate ion concentration range of approx. 0.5 to 2 N

  19. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route

    International Nuclear Information System (INIS)

    Saberi, Ali; Golestani-Fard, Farhad; Sarpoolaky, Hosein; Willert-Porada, Monika; Gerdes, Thorsten; Simon, Reinhard

    2008-01-01

    Nanocrystalline magnesium aluminate spinel (MgAl 2 O 4 ) was synthesized using metal nitrates, citric acid and ammonium solutions. The precursor and the calcined powders at different temperatures were characterized by X-ray diffraction (XRD), simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The combustion mechanism was also studied by a quadrupole mass spectrometer (QMS) which coupled to STA. The generated heat through the combustion of the mixture of ammonium nitrate and citrate based complexes decreased the synthesis temperature of MgAl 2 O 4 spinel. The synthesized MgAl 2 O 4 spinel at 900 deg. C has faced shape with crystallite size in the range of 18-24 nm

  20. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  1. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.

    Science.gov (United States)

    Krause, Stefan; Jacobs, Joerg; Voss, Anja; Bronstert, Axel; Zehe, Erwin

    2008-01-15

    In many European lowland rivers and riparian floodplains diffuse nutrient pollution is causing a major risk for the surface waters and groundwater to not achieve a good status as demanded by the European Water Framework Directive. In order to delimit the impact of diffuse nutrient pollution substantial and often controversial changes in landuse and management are under discussion. In this study we investigate the impact of two complex scenarios considering changes in landuse and land management practices on the nitrate loads of a typical lowland stream and the riparian groundwater in the North German Plains. Therefore the impacts of both scenarios on the nitrate dynamics, the attenuation efficiency and the nitrate exchange between groundwater and surface water were investigated for a 998.1 km(2) riparian floodplain of the Lower and Central Havel River and compared with the current conditions. Both scenarios target a substantial improvement of the ecological conditions and the water quality in the research area but promote different typical riparian landscape functions and consider a different grade of economical and legal feasibility of the proposed measures. Scenario 1 focuses on the optimisation of conservation measures for all natural resources of the riparian floodplain, scenario 2 considers measures in order to restore a good status of the water bodies mainly. The IWAN model was setup for the simulation of water balance and nitrate dynamics of the floodplain for a perennial simulation period of the current landuse and management conditions and of the scenario assumptions. The proposed landuse and management changes result in reduced rates of nitrate leaching from the root zone into the riparian groundwater (85% for scenario 1, 43% for scenario 2). The net contributions of nitrate from the floodplain can be reduced substantially for both scenarios. In case of scenario 2 a decrease by 70% can be obtained. For scenario 1 the nitrate exfiltration rates to the

  2. Solid state interaction studies on binary nitrate mixtures of uranyl nitrate hexahydrate and lanthanum nitrate hexahydrate at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kalekar, Bhupesh; Raje, Naina, E-mail: nraje@barc.gov.in; Reddy, A.V.R.

    2017-02-15

    Interaction behavior of uranyl nitrate hexahydrate (UNH) and lanthanum nitrate hexahydrate (LaNH) have been investigated on the mixtures in different molar ratios of the two precursors and monitoring the reactions at elevated temperatures with thermoanalytical and X-ray diffraction measurement techniques. During the decomposition of equimolar mixture of LaNH and UNH, formation of lanthanum uranate (U{sub 0.5}La{sub 0.5})O{sub 2}, was seen by the temperature of 500 °C along with lanthanum oxide (La{sub 2}O{sub 3}) and uranium trioxide (UO{sub 3}). By the temperature of 700 °C, the formation of uranium sesquioxide (U{sub 3}O{sub 8}) was observed along with (U{sub 0.5}La{sub 0.5})O{sub 2} as end products in uranium rich mixtures. Lanthanum rich compositions decomposed by the temperature of 700 °C to give (U{sub 0.5}La{sub 0.5})O{sub 2} and La{sub 2}O{sub 3} as end products. - Highlights: • UO{sub 2}(NO{sub 3}){sub 2}.6H{sub 2}O and La(NO{sub 3}){sub 3}.6H{sub 2}O interact through their intermediates. • Formation of (U{sub 0.5}La{sub 0.5})O{sub 2} by 500 °C. • La deficient mixtures decompose to give U{sub 3}O{sub 8} and (U{sub 0.5}La{sub 0.5})O{sub 2} as end products. • La rich mixtures decompose to give La{sub 2}O{sub 3} and (U{sub 0.5}La{sub 0.5})O{sub 2} as end product.

  3. Determination of the formation constant for the inclusion complex between Lanthanide ions and Dansyl chloride derivative by fluorescence spectroscopy: Theoretical and experimental investigation

    Science.gov (United States)

    Riahi, Siavash; Ganjali, Mohammad Reza; Hariri, Maryam; Abdolahzadeh, Shaghayegh; Norouzi, Parviz

    2009-09-01

    In this paper, a sensitive, easy, efficient, and suitable method for the calculation of Kf values of complexation between one derivative of Dansyl chloride [5-(dimethylamino) naphthalene-1-sulfonyl 4-phenylsemicarbazide] (DMNP) and Lanthanide(III) (Ln) ions is proposed, using both spectrofluorometric and spectrophotometric methods. Determination of Kf showed that DMNP was mostly selective towards the erbium (III) ion. The validity of the method was also confirmed calculating the Stern-Volmer fluorescence quenching constants ( Ksv) that resulted in the same consequence, obtained by calculating the Kf of complexation values. In addition, the UV-vis spectroscopy was applied for the determination of Kf only for the Ln ions that had interactions with DMNP. Finally, the DFT studies were done on Er 3+ and the DMNP complex for distinguishing the active sites and estimating the pair wise interaction energy. It can be concluded that this derivative of Dansyl chloride with inherent high fluorescence intensity is a suitable reagent for the selective determination of the Er 3+ ion which can be used in constructing selective Er 3+ sensors.

  4. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p<0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area. Published by Elsevier B.V.

  5. Closure of the condensed-phase organic-nitrate reaction unreviewed safety question at Hanford site

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    A discovery Unreviewed Safety Question (USQ) was declared on the underground waste storage tanks at the Hanford Site in May 1996. The USQ was for condensed-phase organic-nitrate reactions (sometimes called organic complexant reactions) in the tanks. This paper outlines the steps taken to close the USQ, and resolve the related safety issue. Several processes were used at the Hanford Site to extract and/or process plutonium. These processes resulted in organic complexants (for chelating multivalent cations) and organic extraction solvents being sent to the underground waste storage tanks. This paper addresses the organic complexant hazard. The organic complexants are in waste matrices that include inert material, diluents, and potential oxidizers. In the presence of oxidizing material, the complexant salts can be made to react exothermically by heating to high temperatures or by applying an external ignition source of sufficient energy. The first organic complexant hazard assessments focused on determining whether a hulk runaway reaction could occur, similar to the 1957 accident at Kyshtm (a reprocessing plant in the former U.S.S.R.). Early analyses (1977 through 1994) examined organic-nitrate reaction onset temperatures and concluded that a bulk runaway reaction could not occur at the Hanford Site because tank temperatures were well below that necessary for bulk runaway. Therefore, it was believed that organic-nitrate reactions were adequately described in the then current Authorization Basis (AB). Subsequent studies examined a different accident scenario, propagation resulting from an external ignition source (e.g., lightning or welding slag) that initiates a combustion front that propagates through the organic waste. A USQ evaluation determined that localized high energy ignition sources were credible, and that point source ignition of organic complexant waste was not adequately addressed i n the then existing AB. Consequently, the USQ was declared on the

  6. Nitrate and nitrite in biology, nutrition and therapeutics

    NARCIS (Netherlands)

    Lundberg, J.O.; van Faassen, E.E.H.; Gladwin, M.T.; Ahluwalia, A.; Benjamin, N.

    2009-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia.

  7. Nitrate-nitrogen removal with small-scale reverse osmosis ...

    African Journals Online (AJOL)

    The nitrate-nitrogen concentration in water supplied to clinics in Limpopo Province is too high to be fit for human consumption (35 to 75 mg/ℓ NO3-N). Therefore, small-scale technologies (reverse osmosis, ion-exchange and electrodialysis) were evaluated for nitrate-nitrogen removal to make the water potable (< 10 mg/ℓ ...

  8. Spatial assessment of animal manure spreading and groundwater nitrate pollution

    Directory of Open Access Journals (Sweden)

    Roberta Infascelli

    2009-11-01

    Full Text Available Nitrate concentration in groundwater has frequently been linked to non-point pollution. At the same time the existence of intensive agriculture and extremely intensive livestock activity increases the potential for nitrate pollution in shallow groundwater. Nitrate used in agriculture could cause adverse effects on human and animal health. In order to evaluate the groundwater nitrate pollution, and how it might evolve in time, it is essential to develop control systems and to improve policies and incentives aimed at controlling the amount of nitrate entering downstream water systems. The province of Caserta in southern Italy is characterized by high levels of animal manure loading. A comparison between manure nitrogen production and nitrate concentration in groundwater was carried out in this area, using geostatistical tools and spatial statistics. The results show a discrepancy between modelling of nitrate leaching and monitoring of the groundwater and, moreover, no spatial correlation between nitrogen production in livestock farms and nitrate concentration in groundwater, suggesting that producers are not following the regulatory procedures for the agronomic use of manure. The methodology developed in this paper could be applied also in other regions in which European Union fertilization plans are not adequately followed.

  9. Relationship of stand age to streamwater nitrate in New Hampshire

    Science.gov (United States)

    William B. Leak; C. Wayne Martin

    1975-01-01

    Streamwater nitrate content of six watersheds during spring and summer was apparently related to stand age or age since disturbance. Nitrate concentration averaged 10.3 ppm right after cutting, dropped to a trace in medium-aged stands, and then rose again to a maximum of 4.8 ppm as stands became overmature.

  10. Nitrate leaching and pesticide use in energy crops

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2006-01-01

    Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well.......Nitrate leaching measured below willow and miscanthus is very low from the established crops. Pesticide use in energy crops is low as well....

  11. Nitrate Water Activities, Science Study Aid No. 4.

    Science.gov (United States)

    Agricultural Research Service (USDA), Washington, DC.

    Intended to supplement a regular program, this pamphlet provides background information, related activities, and suggestions for other activities on the subject of nitrate as a water pollutant. Two activities related to plant nutrient pollution, nitrate filtration and measuring mitrate used by plants, are explained in detail, outlining objectives,…

  12. Isotopic evidence for the diverse origins of nitrate minerals

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1987-01-01

    Nitrate minerals are rare and, apart from their occasional value as economic deposits of fertilizer, not of general importance in geology. The mechanisms by which they are formed, however, are still the subject of considerable debate. This brief discussion indicates that the study of the 15 N/ 14 N ratios of nitrate minerals can yield useful information on their origins. The low 15 N/ 14 N ratios for nitrate in desert environments indicate that soil or animal waste sources of nitrogen are unlikely. Derivation from atmospheric precipitation is consistent with the presently limited knowledge of the isotopic characteristics of atmospheric compounds, but can only be confirmed when data for these compounds in desert areas become available. For nitrates in wetter environments the 15 N/ 14 N ratios indicate that atmospheric sources are not important, and that the formation of nitrate from gaseous ammonia emanating from animal waste is probably not a significant mechanism. The nitrate appears to be chiefly derived either by direct solution of animal waste nitrate (Lydenburg cave and Prieskapoort) or from soil-derived nitrate brought in by groundwater (Autana and possibly Abjaterskop caves). In the case of Sveite special conditions involving bacterial processes are also implied

  13. 78 FR 32690 - Certain Ammonium Nitrate From Ukraine

    Science.gov (United States)

    2013-05-31

    ... From Ukraine Determination On the basis of the record \\1\\ developed in the subject five-year review... certain ammonium nitrate from Ukraine would be likely to lead to continuation or recurrence of material... Ammonium Nitrate from Ukraine: Investigation No. 731-TA-894 (Second Review). By order of the Commission...

  14. Method for improved decomposition of metal nitrate solutions

    Science.gov (United States)

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  15. Removal of phosphate and nitrate from aqueous solution using ...

    African Journals Online (AJOL)

    The aim of the present study was the removal of phosphate and nitrate by sodium alginate seagrass (Cymodocea rotundata) beads from aqueous solutions. The adsorption characteristics of phosphate and nitrate on the seagrass beads were optimized under different operational parameters like adsorbent dosage, initial ...

  16. Biological nitrate removal from synthetic wastewater using a fungal ...

    African Journals Online (AJOL)

    A series of lignocellulosic fungi, capable of cellulase and/or xylanase production, were isolated from soil to be used for cellulose degradation and nitrate removal from nitrate-rich wastewater in simple one-stage anaerobic bioreactors containing grass cuttings as source of cellulose. The fungal consortium, consisting of six ...

  17. Distribution and Sources of Nitrate-Nitrogen in Kansas Groundwater

    Directory of Open Access Journals (Sweden)

    Margaret A. Townsend

    2001-01-01

    Full Text Available Kansas is primarily an agricultural state. Irrigation water and fertilizer use data show long- term increasing trends. Similarly, nitrate-N concentrations in groundwater show long-term increases and exceed the drinking-water standard of 10 mg/l in many areas. A statistical analysis of nitrate-N data collected for local and regional studies in Kansas from 1990 to 1998 (747 samples found significant relationships between nitrate-N concentration with depth, age, and geographic location of wells. Sources of nitrate-N have been identified for 297 water samples by using nitrogen stable isotopes. Of these samples, 48% showed fertilizer sources (+2 to +8 and 34% showed either animal waste sources (+10 to +15 with nitrate-N greater than 10 mg/l or indication that enrichment processes had occurred (+10 or above with variable nitrate-N or both. Ultimate sources for nitrate include nonpoint sources associated with past farming and fertilization practices, and point sources such as animal feed lots, septic systems, and commercial fertilizer storage units. Detection of nitrate from various sources in aquifers of different depths in geographically varied areas of the state indicates that nonpoint and point sources currently impact and will continue to impact groundwater under current land uses.

  18. Trends in Nitrate Drinking Water Violations Across the US

    Science.gov (United States)

    Background/Question/Methods Safe drinking water is essential for the health and well-being of humans and life on Earth. Previous studies have shown that groundwater and other sources of drinking water can be contaminated with nitrate above the 10 mg nitrate-N L-1 maximum contami...

  19. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  20. Removal of Nitrate From Aqueous Solution Using Rice Chaff

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-09-01

    Full Text Available Background Nitrate is largely dissolved in the surface and ground water, due to its high solubility. Continual uptake of nitrite through drinking water can lead to problems and diseases (such as blue baby for humans, especially children. Objectives The aim of this study was to develop a new and inexpensive method for the removal of nitrate from water. In this regard, the possibility of using chaff for removal of nitrate from aqueous solutions was studied and the optimum operating conditions of nitrate removal was determined. Materials and Methods This is a cross-sectional study conducted in laboratory scale. The UV spectrophotometer at a wavelength of maximum absorbance (220 nm was used to determine the nitrate concentration. The effect of pH, amount of chaff, temperature, and contact time were investigated. Results The result of this study revealed that chaff as an absorbent could remove nitrate from solutions, and the efficiency of adsorption increased as contact time increased from 5 to 30 minutes, amount of chaff increased from 1 to 3 g, temperature increased in a range of 300 - 400°C and the amount of pH decreased from 10 to 3. The maximum adsorption rate was around pH 3 (53.14%. Conclusions It was shown that the removal efficiency of nitrate was directly proportional to the amount of chaff, temperature, and contact time but inversely to the pH. This study showed that nitrate removal by chaff is a promising technique.

  1. NITRITE AND NITRATE DETERMINATIONS IN PLASMA - A CRITICAL-EVALUATION

    NARCIS (Netherlands)

    MOSHAGE, H; KOK, B; HUIZENGA, [No Value; JANSEN, PLM

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  2. Nitrite and nitrate determinations in plasma: a critical evaluation

    NARCIS (Netherlands)

    Moshage, H.; Kok, B.; Huizenga, J. R.; Jansen, P. L.

    1995-01-01

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  3. Radiation-induced nitration of organic compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.

    2009-01-01

    Radiation-induced nitration of organic compounds in aqueous solutions was studied. It was found that γ-irradiation of solutions containing acetic and nitric acid and/or their salts gives nitromethane. Dependences of the product yield on the absorbed dose and the contents of components were established. The mechanism of radiation nitration involving radicals is discussed. (author)

  4. Light-induced protein nitration and degradation with HONO emission

    Science.gov (United States)

    Meusel, Hannah; Elshorbany, Yasin; Kuhn, Uwe; Bartels-Rausch, Thorsten; Reinmuth-Selzle, Kathrin; Kampf, Christopher J.; Li, Guo; Wang, Xiaoxiang; Lelieveld, Jos; Pöschl, Ulrich; Hoffmann, Thorsten; Su, Hang; Ammann, Markus; Cheng, Yafang

    2017-10-01

    Proteins can be nitrated by air pollutants (NO2), enhancing their allergenic potential. This work provides insight into protein nitration and subsequent decomposition in the presence of solar radiation. We also investigated light-induced formation of nitrous acid (HONO) from protein surfaces that were nitrated either online with instantaneous gas-phase exposure to NO2 or offline by an efficient nitration agent (tetranitromethane, TNM). Bovine serum albumin (BSA) and ovalbumin (OVA) were used as model substances for proteins. Nitration degrees of about 1 % were derived applying NO2 concentrations of 100 ppb under VIS/UV illuminated conditions, while simultaneous decomposition of (nitrated) proteins was also found during long-term (20 h) irradiation exposure. Measurements of gas exchange on TNM-nitrated proteins revealed that HONO can be formed and released even without contribution of instantaneous heterogeneous NO2 conversion. NO2 exposure was found to increase HONO emissions substantially. In particular, a strong dependence of HONO emissions on light intensity, relative humidity, NO2 concentrations and the applied coating thickness was found. The 20 h long-term studies revealed sustained HONO formation, even when concentrations of the intact (nitrated) proteins were too low to be detected after the gas exchange measurements. A reaction mechanism for the NO2 conversion based on the Langmuir-Hinshelwood kinetics is proposed.

  5. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  6. Diatoms respire nitrate to survive dark and anoxic conditions

    DEFF Research Database (Denmark)

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.

    2011-01-01

    +, indicating dissimilatory nitrate reduction to ammo- nium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dis- similatory nitrate reduction pathway used by a eukaryotic photo- troph. Similar to large sulfur bacteria and benthic foraminifera...

  7. Densities concentrations of aqueous of uranyl nitrate solutions

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodriguez Hernandez, B.; Fernandez Rodriguez, L.

    1966-01-01

    The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U 3 O 8 grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs

  8. Ginger-supplemented diet ameliorates ammonium nitrate-induced ...

    African Journals Online (AJOL)

    The present study was designed to evaluate the capacity of ginger to repair the oxidative stress induced by ammonium nitrate. 50 male rats were divided into 5 groups; they underwent an oral treatment of ammonium nitrate and/or ginger (N mg/kg body weight + G% in diet) during 30 days. Group I served as control (C); ...

  9. Use of tensiometer for in situ measurement of nitrate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  10. Predicting SOA from organic nitrates in the southeastern United States

    Science.gov (United States)

    Organic nitrates have been identified as an important component of ambient aerosol in the Southeast United States. In this work, we use the Community Multiscale Air Quality (CMAQ) model to explore the relationship between gas-phase production of organic nitrates and their subsequ...

  11. Nitrate-Rich Vegetables Increase Plasma Nitrate and Nitrite Concentrations and Lower Blood Pressure in Healthy Adults.

    Science.gov (United States)

    Jonvik, Kristin L; Nyakayiru, Jean; Pinckaers, Philippe Jm; Senden, Joan Mg; van Loon, Luc Jc; Verdijk, Lex B

    2016-05-01

    Dietary nitrate is receiving increased attention due to its reported ergogenic and cardioprotective properties. The extent to which ingestion of various nitrate-rich vegetables increases postprandial plasma nitrate and nitrite concentrations and lowers blood pressure is currently unknown. We aimed to assess the impact of ingesting different nitrate-rich vegetables on subsequent plasma nitrate and nitrite concentrations and resting blood pressure in healthy normotensive individuals. With the use of a semirandomized crossover design, 11 men and 7 women [mean ± SEM age: 28 ± 1 y; mean ± SEM body mass index (BMI, in kg/m(2)): 23 ± 1; exercise: 1-10 h/wk] ingested 4 different beverages, each containing 800 mg (∼12.9 mmol) nitrate: sodium nitrate (NaNO3), concentrated beetroot juice, a rocket salad beverage, and a spinach beverage. Plasma nitrate and nitrite concentrations and blood pressure were determined before and up to 300 min after beverage ingestion. Data were analyzed using repeated-measures ANOVA. Plasma nitrate and nitrite concentrations increased after ingestion of all 4 beverages (P nitrate concentrations were similar for all treatments (all values presented as means ± SEMs: NaNO3: 583 ± 29 μmol/L; beetroot juice: 597 ± 23 μmol/L; rocket salad beverage: 584 ± 24 μmol/L; spinach beverage: 584 ± 23 μmol/L). Peak plasma nitrite concentrations were different between treatments (NaNO3: 580 ± 58 nmol/L; beetroot juice: 557 ± 57 nmol/L; rocket salad beverage: 643 ± 63 nmol/L; spinach beverage: 980 ± 160 nmol/L; P = 0.016). When compared with baseline, systolic blood pressure declined 150 min after ingestion of beetroot juice (from 118 ± 2 to 113 ± 2 mm Hg; P nitrate-rich beetroot juice, rocket salad beverage, and spinach beverage effectively increases plasma nitrate and nitrite concentrations and lowers blood pressure to a greater extent than sodium nitrate. These findings show that nitrate-rich vegetables can be used as dietary nitrate

  12. Assessment of nitrate export from a high elevation watershed

    International Nuclear Information System (INIS)

    Williams, E.M.; Nodvin, S.C.

    1991-01-01

    Nitrate leaching from forest soils can be detrimental to both the forest ecosystems and stream water quality. Nitrate moving through the soil transports plant nutrients and acidifying agents, hydrogen and aluminum, and can export them to streams. In the high elevation spruce-fir forests in the Great Smoky Mountains National Park (GRSM) nitrate has been found to be leaching from the rooting zone. Streams associated with these ecosystems are poorly buffered. Therefore rapid export of nitrate from the soils to the streams could lead to episodic acidification. The purpose of the Noland Divide watershed study is to assess the levels of nitrate export from the watershed to the streams and the potential impacts of the export to the ecosystem

  13. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph

    2014-01-01

    in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide...... additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters....... The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ 15N, δ 18O, and Δ 17O). From these measurements an average photolytic isotopic fractionation of 15ε = (- 15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation...

  14. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    was with the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor......An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow...... for frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design...

  15. Method of processing nitrate-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Ogawa, Norito; Nagase, Kiyoharu; Otsuka, Katsuyuki; Ouchi, Jin.

    1983-01-01

    Purpose: To efficiently concentrate nitrate-containing low level radioactive liquid wastes by electrolytically dialyzing radioactive liquid wastes to decompose the nitrate salt by using an electrolytic cell comprising three chambers having ion exchange membranes and anodes made of special materials. Method: Nitrate-containing low level radioactive liquid wastes are supplied to and electrolytically dialyzed in a central chamber of an electrolytic cell comprising three chambers having cationic exchange membranes and anionic exchange membranes made of flouro-polymer as partition membranes, whereby the nitrate is decomposed to form nitric acid in the anode chamber and alkali hydroxide compound or ammonium hydroxide in the cathode chamber, as well as concentrate the radioactive substance in the central chamber. Coated metals of at least one type of platinum metal is used as the anode for the electrolytic cell. This enables efficient industrial concentration of nitrate-containing low level radioactive liquid wastes. (Yoshihara, H.)

  16. Removal of gadolinium nitrate from heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss and a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).

  17. Investigation into kinetics of decomposition of nitrates

    International Nuclear Information System (INIS)

    Belov, B.A.; Gorozhankin, Eh.V.; Efremov, V.N.; Sal'nikova, N.S.; Suris, A.L.

    1985-01-01

    Using the method of thermogravimetry, the decomposition of nitrates, Cd(NO 3 ) 2 x4H 2 O, La(NO 3 ) 2 x6H 2 O, Sr(NO 3 ) 2 , ZrO(NO 3 ) 2 x2H 2 O, Y(NO 3 ) 3 x6H 2 O, in particular, is studied in the 20-1000 deg C range. It is shown, that gaseous pyrolysis, products, remaining in the material, hamper greatly the heat transfer required for the decomposition which reduces the reaction order. An effective activation energy of the process is in a satisfactory agreement with the characteristic temperature of the last endotherm. Kinetic parameters are calculated by the minimization method using a computer

  18. Thermal Decomposition of Nitrated Tributyl Phosphate

    International Nuclear Information System (INIS)

    Paddleford, D.F.; Hou, Y.; Barefield, E.K.; Tedder, D.W.; Abdel-Khalik, S.I.

    1995-01-01

    Contact between tributyl phosphate and aqueous solutions of nitric acid and/or heavy metal nitrate salts at elevated temperatures can lead to exothermic reactions of explosive violence. Even though such operations have been routinely performed safely for decades as an intrinsic part of the Purex separation processes, several so-called ''red oil'' explosions are known to have occurred in the United States, Canada, and the former Soviet Union. The most recent red oil explosion occurred at the Tomsk-7 separations facility in Siberia, in April 1993. That explosion destroyed part of the unreinforced masonry walls of the canyon-type building in which the process was housed, and allowed the release of a significant quantity of radioactive material

  19. Ammonium nitrate-polymer glasses: a new concept for phase and thermal stabilization of ammonium nitrate.

    Science.gov (United States)

    Lang, Anthony J; Vyazovkin, Sergey

    2008-09-11

    Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.

  20. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    Science.gov (United States)

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  1. The effect of nitrate on ethylene biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hun, E-mail: lee323@alumni.purdue.edu [Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN (United States); Li, Congna; Heber, Albert J. [Department of Agricultural and Biological Engineering, Purdue University, 225 South University St., West Lafayette, 47907-2093 IN (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Ethylene biofiltration strongly depends on nitrate concentrations and media types. Black-Right-Pointing-Pointer We examine reduced N supply can increase ethylene removals in biofilters. Black-Right-Pointing-Pointer Perlite medium is better for ethylene biofiltration than activated carbon medium. - Abstract: This study investigated the effects of filter media types and nitrate (NO{sub 3}{sup -}) concentrations in nutrient solutions on C{sub 2}H{sub 4} biofiltration. A new nutrient solution with zero NO{sub 3}{sup -} concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L{sup -1} of NO{sub 3}{sup -} was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min{sup -1}, and inlet C{sub 2}H{sub 4} concentrations of 20-30 mg m{sup -3}. NO{sub 3}{sup -} concentration and media type significantly affected the C{sub 2}H{sub 4} removal efficiencies in all types of biofiltration. The perlite media with no NO{sub 3}{sup -} achieved C{sub 2}H{sub 4} removal efficiencies 10-50% higher than the others. A NO{sub 3}{sup -} concentration as high as 2 g L{sup -1} in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C{sub 2}H{sub 4} degraders. In addition, the perlite media resulted in higher C{sub 2}H{sub 4} removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.

  2. The effect of nitrate on ethylene biofiltration

    International Nuclear Information System (INIS)

    Lee, Sang-Hun; Li, Congna; Heber, Albert J.

    2012-01-01

    Highlights: ► Ethylene biofiltration strongly depends on nitrate concentrations and media types. ► We examine reduced N supply can increase ethylene removals in biofilters. ► Perlite medium is better for ethylene biofiltration than activated carbon medium. - Abstract: This study investigated the effects of filter media types and nitrate (NO 3 − ) concentrations in nutrient solutions on C 2 H 4 biofiltration. A new nutrient solution with zero NO 3 − concentration was supplied to two perlite-bed biotrickling filters, two perlite-bed biofilters, and two GAC (Granular Activated Carbon)-bed biofilters, while the other with 2 g L −1 of NO 3 − was used for the other two GAC biofilters. All reactors underwent a total test duration of over 175 days with an EBRT (Empty Bed Residence Time) of 30 s, inlet gas flow rate of 7 L min −1 , and inlet C 2 H 4 concentrations of 20–30 mg m −3 . NO 3 − concentration and media type significantly affected the C 2 H 4 removal efficiencies in all types of biofiltration. The perlite media with no NO 3 − achieved C 2 H 4 removal efficiencies 10–50% higher than the others. A NO 3 − concentration as high as 2 g L −1 in the original nutrient solution may act as an inhibitor that suppresses the growth or activity of C 2 H 4 degraders. In addition, the perlite media resulted in higher C 2 H 4 removal efficiencies than GAC media, because the hydrophilic surface of the perlite leads to a higher moisture content and thus to favorable microbial growth.

  3. The oral bioavailability of nitrate from vegetables investigated in healthy volunteers

    OpenAIRE

    Lambers AC; Kortboyer JM; Schothorst RC; Sips AJAM; Cleven RFMJ; Meulenbelt J; VIC; LBM; ARO; LAC

    2000-01-01

    The major source of human nitrate exposure comes from vegetables. Several studies were performed to estimate the total daily dietary nitrate intake based on the nitrate contents of food and drinking water. However, only nitrate that is absorbed from the gastro-intestinal tract may contribute to the toxicity of nitrate in the body. At present no data are available on the bioavailability of nitrate from vegetables. Therefore the present study was performed to evaluate the oral bioavailability o...

  4. Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2009-09-01

    Full Text Available Alkyl nitrates and secondary organic aerosol (SOA produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber chamber. A 16 h dark experiment was conducted with temperatures at 289–301 K, and maximum concentrations of 11 ppb isoprene, 62.4 ppb O3 and 31.1 ppb NOx. We find the yield of nitrates is 70±8% from the isoprene + NO3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO3 is 40±20%. We find an effective rate constant for reaction of NO3 with the group of first generation oxidation products to be 7×10−14 molecule−1 cm3 s−1. At the low total organic aerosol concentration in the chamber (max=0.52 μg m−3 we observed a mass yield (ΔSOA mass/Δisoprene mass of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.7% while the further oxidation of the initial products leads to a yield of 14% (defined as ΔSOA/Δisoprene2x where Δisoprene2x is the mass of isoprene which reacted twice with NO3. The SOA yield of 14% is consistent with equilibrium partitioning of highly functionalized C5 products of isoprene oxidation.

  5. Nitrate concentrations in drainage water in marine clay areas : exploratory research of the causes of increased nitrate concentrations

    NARCIS (Netherlands)

    Boekel, van E.M.P.M.; Roelsma, J.; Massop, H.T.L.; Hendriks, R.F.A.; Goedhart, P.W.; Jansen, P.C.

    2013-01-01

    The nitrate concentrations measured in drainage water and groundwater at LMM farms (farms participating in the National Manure Policy Effects Measurement Network (LLM)) in marine clay areas have decreased with 50% since the mid-nineties. The nitrate concentrations in marine clay areas are on average

  6. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    Science.gov (United States)

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  7. Rationalization of Anomalous Pseudocontact Shifts and Their Solvent Dependence in a Series of C3-Symmetric Lanthanide Complexes.

    Science.gov (United States)

    Vonci, Michele; Mason, Kevin; Suturina, Elizaveta A; Frawley, Andrew T; Worswick, Steven G; Kuprov, Ilya; Parker, David; McInnes, Eric J L; Chilton, Nicholas F

    2017-10-11

    Bleaney's long-standing theory of magnetic anisotropy has been employed with some success for many decades to explain paramagnetic NMR pseudocontact shifts, and has been the subject of many subsequent approximations. Here, we present a detailed experimental and theoretical investigation accounting for the anomalous solvent dependence of NMR shifts for a series of lanthanide(III) complexes, namely [LnL 1 ] (Ln = Eu, Tb, Dy, Ho, Er, Tm, and Yb; L 1 : 1,4,7-tris[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane), taking into account the effect of subtle ligand flexibility on the electronic structure. We show that the anisotropy of the room temperature magnetic susceptibility tensor, which in turn affects the sign and magnitude of the pseudocontact chemical shift, is extremely sensitive to minimal structural changes in the first coordination sphere of L 1 . We show that DFT structural optimizations do not give accurate structural models, as assessed by the experimental chemical shifts, and thus we determine a magnetostructural correlation and employ this to evaluate the accurate solution structure for each [LnL 1 ]. This approach allows us to explain the counterintuitive pseudocontact shift behavior, as well as a striking solvent dependence. These results have important consequences for the analysis and design of novel magnetic resonance shift and optical emission probes that are sensitive to the local solution environment and polarity.

  8. Recovery of uranium from uranyl nitrate raffinate. Contributed Paper PE-06

    International Nuclear Information System (INIS)

    Anilkumar Reddy, A.M.; Shiva Kumar, M.; Varadan, K.M.K.; Babaji, P.; Sairam, S. Sheela; Saibaba, N.

    2014-01-01

    At New Uranium Oxide Fuel Plant, NUOFP(O) of Nuclear Fuel Complex (NFC), the Uranyl Nitrate Raffinate (UNR) generated during solvent extraction process is washed with Treated Lean Solvent(TLS) to recover residual U. Earlier this UNR consisting of 0.5-1 gm/l and 2.5 FA was neutralised with vapour ammonia. The slurry was then filtered over pre coat drum filter and the resultant Uranyl Nitrate Raffinate cake (UNRC) was stored in polyethylene lined MS drums. The valuable U was thus being locked up in UNRC. Also, the storage of UNRC drums required lot of floor space which have to be repacked frequently to contain the radioactivity. Hence the need has come to avoid the generation of UNRC and the recovery of U from the already generated UNRC. The generation of UNRC was avoided by developing alternate process of UNR treatment with Treated Lean Solvent for the removal of residual U and the resulting Acidic Raffinate Slurry (ARS) is disposed. The Uranium recovery from UNRC is done by dissolving the cake in Uranyl Nitrate Raffinate solution to leach the hexavalent Uranium by utilizing the free acidity in UNR. The leaching time is about six hours and the uranium forms uranyl nitrate. The resulting leach solutions are relatively dilute but complex acidic nitrate solutions containing wide variety of ions. Metallic ions commonly present include uranium, iron, magnesium, aluminium, sodium, calcium etc. The uranium concentration is normally 1-1.5 g/L. This uranium is separated by solvent extraction. The active agent in solvent extraction is Tri Butyl Phosphate in kerosene that can selectively extract uranium into an organic complex which is insoluble in aqueous. The organic used for extraction is Treated Lean Solvent in the quality of freshly prepared solvent and the resulting Acidic Raffinate Slurry is disposed by sale. The leaching of Uranium from UNRC was done in plant scale and about 1200 kgs of UNRC was successfully processed in trial batch. The paper deals with details of

  9. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate

    International Nuclear Information System (INIS)

    Tasat, D.R.; Orona, N.S.; Mandalunis, P.M.; Cabrini, R.L.; Ubios, A.M.

    2007-01-01

    Exposure to uranium is an occupational hazard to workers who continually handle uranium and an environmental risk to the population at large. Since the cellular and molecular pathways of uranium toxicity in osteoblast cells are still unknown, the aim of the present work was to evaluate the adverse effects of uranyl nitrate (UN) on osteoblasts both in vivo and in vitro. Herein we studied the osteoblastic ultrastructural changes induced by UN in vivo and analyzed cell proliferation, generation of reactive oxygen species (ROS), apoptosis, and alkaline phosphatase (APh) activity in osteoblasts exposed to various UN concentrations (0.1, 1, 10, and 100 μM) in vitro. Cell proliferation was quantified by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, ROS was determined using the nitro blue tetrazolium test, apoptosis was morphologically determined using Hoechst 3332 and APh activity was assayed spectrophotometrically. Electron microscopy revealed that the ultrastructure of active and inactive osteoblasts exposed to uranium presented cytoplasmic and nuclear alterations. In vitro, 1-100 μM UN failed to modify cell proliferation ratio and to induce apoptosis. ROS generation increased in a dose-dependent manner in all tested doses. APh activity was found to decrease in 1-100 μM UN-treated cells vs. controls. Our results show that UN modifies osteoblast cell metabolism by increasing ROS generation and reducing APh activity, suggesting that ROS may play a more complex role in cell physiology than simply causing oxidative damage. (orig.)

  10. Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

    Science.gov (United States)

    Gambelli, Lavinia; Guerrero-Cruz, Simon; Mesman, Rob J; Cremers, Geert; Jetten, Mike S M; Op den Camp, Huub J M; Kartal, Boran; Lueke, Claudia; van Niftrik, Laura

    2018-02-01

    methane oxidation are important in both natural and man-made ecosystems, such as wastewater treatment plants. In both systems, complex microbial interactions take place that are largely unknown. Revealing these microbial interactions would enable us to understand how the oxidation of the important greenhouse gas methane occurs in nature and pave the way for the application of these microbes in wastewater treatment plants. Here, we elucidated the microbial composition, ultrastructure, and physiology of a nitrate-dependent AOM community of archaea and bacteria and describe the cell plan of " Ca Methanoperedens"-like methanotrophic archaea. Copyright © 2018 American Society for Microbiology.

  11. Multiobjective optimization for Groundwater Nitrate Pollution Control. Application to El Salobral-Los Llanos aquifer (Spain).

    Science.gov (United States)

    Llopis-Albert, C.; Peña-Haro, S.; Pulido-Velazquez, M.; Molina, J.

    2012-04-01

    Water quality management is complex due to the inter-relations between socio-political, environmental and economic constraints and objectives. In order to choose an appropriate policy to reduce nitrate pollution in groundwater it is necessary to consider different objectives, often in conflict. In this paper, a hydro-economic modeling framework, based on a non-linear optimization(CONOPT) technique, which embeds simulation of groundwater mass transport through concentration response matrices, is used to study optimal policies for groundwater nitrate pollution control under different objectives and constraints. Three objectives were considered: recovery time (for meeting the environmental standards, as required by the EU Water Framework Directive and Groundwater Directive), maximum nitrate concentration in groundwater, and net benefits in agriculture. Another criterion was added: the reliability of meeting the nitrate concentration standards. The approach allows deriving the trade-offs between the reliability of meeting the standard, the net benefits from agricultural production and the recovery time. Two different policies were considered: spatially distributed fertilizer standards or quotas (obtained through multi-objective optimization) and fertilizer prices. The multi-objective analysis allows to compare the achievement of the different policies, Pareto fronts (or efficiency frontiers) and tradeoffs for the set of mutually conflicting objectives. The constraint method is applied to generate the set of non-dominated solutions. The multi-objective framework can be used to design groundwater management policies taking into consideration different stakeholders' interests (e.g., policy makers, agricultures or environmental groups). The methodology was applied to the El Salobral-Los Llanos aquifer in Spain. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has

  12. Modeling groundwater nitrate concentrations in private wells in Iowa.

    Science.gov (United States)

    Wheeler, David C; Nolan, Bernard T; Flory, Abigail R; DellaValle, Curt T; Ward, Mary H

    2015-12-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square=0.77) and was acceptable in the testing set (r-square=0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Global Patterns of Legacy Nitrate Storage in the Vadose Zone

    Science.gov (United States)

    Ascott, M.; Gooddy, D.; Wang, L.; Stuart, M.; Lewis, M.; Ward, R.; Binley, A. M.

    2017-12-01

    Global-scale nitrogen (N) budgets have been developed to quantify the impact of man's influence on the nitrogen cycle. However, these budgets often do not consider legacy effects such as accumulation of nitrate in the deep vadose zone. In this presentation we show that the vadose zone is an important store of nitrate which should be considered in future nitrogen budgets for effective policymaking. Using estimates of depth to groundwater and nitrate leaching for 1900-2000, we quantify for the first time the peak global storage of nitrate in the vadose zone, estimated as 605 - 1814 Teragrams (Tg). Estimates of nitrate storage are validated using previous national and basin scale estimates of N storage and observed groundwater nitrate data for North America and Europe. Nitrate accumulation per unit area is greatest in North America, China and Central and Eastern Europe where thick vadose zones are present and there is an extensive history of agriculture. In these areas the long solute travel time in the vadose zone means that the anticipated impact of changes in agricultural practices on groundwater quality may be substantially delayed. We argue that in these areas use of conventional nitrogen budget approaches is inappropriate and their continued use will lead to significant errors.

  14. Chemical and electrochemical behaviour of halides in nitrate melts

    International Nuclear Information System (INIS)

    Tkalenko, D.A.; Kudrya, S.A.; Delimarskij, Yu.K.; Antropov, L.I.

    1978-01-01

    The possibility of improving the positive electrode characteristics of medium temperature lithium-nitrate element by means of adding alkali metal halogenides into nitrate melt is considered. The experiments have been made at the temperature of 150 deg C in (K, Na, Li) NO 3 melts of eutectic composition. It has been found that only at temperatures higher than 250 deg C in nitrate melts containing Li + and Na + cations, an interaction of nitrate ions with the added iodides is possible. The interaction does not take place in case of chloride, bromide, and fluoride additions. The waves of halogenide oxidation and reduction of the corresponding halogens have been identified. The analysis of the obtained experimental data shows that halogenide addition into nitrate melt does not result in speed increase of cathodic reduction of nitrate ions or in formation of a new cathode process at more positive potentials. A conclusion is made that halogenide addition into electrolyte of lithium-nitrate current source is inexpedient

  15. Nitrate contamination of groundwater: A conceptual management framework

    International Nuclear Information System (INIS)

    Almasri, Mohammad N.

    2007-01-01

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO 3 ) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO 3 -N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources

  16. Modeling groundwater nitrate concentrations in private wells in Iowa

    Science.gov (United States)

    Wheeler, David C.; Nolan, Bernard T.; Flory, Abigail R.; DellaValle, Curt T.; Ward, Mary H.

    2015-01-01

    Contamination of drinking water by nitrate is a growing problem in many agricultural areas of the country. Ingested nitrate can lead to the endogenous formation of N-nitroso compounds, potent carcinogens. We developed a predictive model for nitrate concentrations in private wells in Iowa. Using 34,084 measurements of nitrate in private wells, we trained and tested random forest models to predict log nitrate levels by systematically assessing the predictive performance of 179 variables in 36 thematic groups (well depth, distance to sinkholes, location, land use, soil characteristics, nitrogen inputs, meteorology, and other factors). The final model contained 66 variables in 17 groups. Some of the most important variables were well depth, slope length within 1 km of the well, year of sample, and distance to nearest animal feeding operation. The correlation between observed and estimated nitrate concentrations was excellent in the training set (r-square = 0.77) and was acceptable in the testing set (r-square = 0.38). The random forest model had substantially better predictive performance than a traditional linear regression model or a regression tree. Our model will be used to investigate the association between nitrate levels in drinking water and cancer risk in the Iowa participants of the Agricultural Health Study cohort.

  17. Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes.

    Science.gov (United States)

    Meng, Sitong; Wu, Hang; Wang, Lei; Zhang, Buchang; Bai, Linquan

    2017-07-01

    Nitrate is necessary for primary and secondary metabolism of actinomycetes and stimulates the production of a few antibiotics, such as lincomycin and rifamycin. However, the mechanism of this nitrate-stimulating effect was not fully understood. Two putative ABC-type nitrate transporters were identified in Streptomyces lincolnensis NRRL2936 and verified to be involved in lincomycin biosynthesis. With nitrate supplementation, the transcription of nitrogen assimilation genes, nitrate-specific ABC1 transporter genes, and lincomycin exporter gene lmrA was found to be enhanced and positively regulated by the global regulator GlnR, whose expression was also improved. Moreover, heterologous expression of ABC2 transporter genes in Streptomyces coelicolor M145 resulted in an increased actinorhodin production. Further incorporation of a nitrite-specific transporter gene nirC, as in nirC-ABC2 cassette, led to an even higher actinorhodin production. Similarly, the titers of salinomycin, ansamitocin, lincomycin, and geldanamycin were increased with the integration of this cassette to Streptomyces albus BK3-25, Actinosynnema pretiosum ATCC31280, S. lincolnensis LC-G, and Streptomyces hygroscopicus XM201, respectively. Our work expanded the nitrate-stimulating effect to many antibiotic producers by utilizing the nirC-ABC2 cassette for enhanced nitrate utilization, which could become a general tool for titer increase of antibiotics in actinomycetes.

  18. Nitrate in groundwater of the United States, 1991-2003

    Science.gov (United States)

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  19. Circuit Design for Sensor Detection Signal Conditioner Nitrate Content

    Directory of Open Access Journals (Sweden)

    Robeth Manurung

    2011-09-01

    Full Text Available Nitrate is one of macro nutrients very important for agriculture. The availability of nitrate in soil is limited because it is very easy to leaching by rain, therefore nitrate could be contaminated ground water by  over-process of fertilizer. This process could also produce inefficiency in agriculture if it happened continuesly without pre-analysis of farm field. The answer those problems, it is need to develop the ion sensor system to measure concentrations of nitrat in soil. The system is consist of nitrate ion sensor device, signal conditioning and data acquisition circuit. The design and fabrications of signal conditioning circuit which integrated into ion nitrate sensor system and will apply for agriculture. This sensor has been used amperometric with three electrodes configuration: working, reference  and auxiliarry; the ion senstive membrane has use conductive polymer. The screen printing technique has been choosen to fabricate electrodes and deposition technique for ion sensitive membrane is electropolymerization. The characterization of sensor has been conducted using nitrate standard solution with range of concentration between 1 µM–1 mM. The characterization has shown that sensor has a good response with cureent output between 2.8–4.71 µA, liniearity factor is 99.65% and time response 250 second.

  20. Inner-sphere and outer-sphere complexes of yttrium(III), lanthanum (III), neodymium(III), terbium(III) and thulium(III) with halide ions in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Takahashi, Ryouta; Ishiguro, Shin-ichi

    1991-01-01

    The formation of chloro, bromo and iodo complexes of yttrium(III), and bromo and iodo complexes of lanthanum(III), neodymium(III), terbium(III) and thulium(III) has been studied by precise titration calorimetry in N,N-dimethylformamide (DMF) at 25 o C. The formation of [YCl] 2+ , [YCl 2 ] + , [YCl 3 ] and [YCl 4 ] - , and [MBr] 2+ and [MBr 2 ] + (M = Y, La, Nd, Tb, Tm) was revealed, and their formation constants, enthalpies and entropies were determined. It is found that the formation enthalpies change in the sequence ΔH o (Cl) > ΔH o (l), which is unusual for hard metal (III) ions. This implies that, unlike the chloride ion, the bromide ion forms outer-sphere complexes with the lanthanide(III) and yttrium(III) ions in DMF. Evidence for either an inner- or outer-sphere complex was obtained from 89 Y NMR spectra for Y(ClO 4 ) 3 , YCl 3 and YBr 3 DMF solutions at room temperature. (author)