WorldWideScience

Sample records for lanl plutonium facility

  1. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-01-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  2. Waste minimization at a plutonium processing facility

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    As part of Los Alamos National Laboratory's (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management

  3. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  4. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  5. The impact of two Department of Energy orders on the design and cost of select plutonium facilities at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Rey, V.C.

    1999-01-01

    The Los Alamos National Laboratory (LANL) is a research and development facility in northern New Mexico, owned by the federal government and operated for the US Department of Energy (DOE) by the University of California (UC). LANL conducts research and experiments in many arenas including plutonium. Its plutonium facilities are required to meet the facility design and safety criteria of applicable DOE orders as specified in the UC contract. Although DOE 420.1, Facility Safety, superseded DOE 6430.1A, General Design Criteria, the UC contract requires LANL to adhere to DOE 6430.1A, Division 13 in its special nuclear facilities. A comparison of costs and savings relative to installation of double-wall piping at two LANL plutonium facilities is demonstrated. DOE 6430.1A is prescriptive in its design criteria whereas DOE 420.1 is a performance-based directive. The differences in these orders impact time and design costs in nuclear construction projects. LANL's approach to integrated quality and conduct of operations for design, needs to be re-evaluated. In conclusion, there is a need for highly-technical, knowledgeable people and an integrated, quality/conduct of operations-based approach to assure that nuclear facilities are designed and constructed in a safe and cost-effective manner

  6. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  7. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    International Nuclear Information System (INIS)

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques

  8. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO 2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO 2 powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule

  9. LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

  10. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  11. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium sharing existing facilities at Hanford with pit disassembly and conversion facility: alternative 11

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report by LANL, will also be located in the FMEF in this co-location option

  12. Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements

    International Nuclear Information System (INIS)

    French, Sean B.; Johns-Hughes, Kathryn W.

    2011-01-01

    Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

  13. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  14. Decontamination and demolition of a former plutonium processing facility's process exhaust system, firescreen, and filter plenum buildings

    International Nuclear Information System (INIS)

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-21). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases

  15. Preliminary lifetime predictions for 304 stainless steel as the LANL ABC blanket material

    International Nuclear Information System (INIS)

    Park, J.J.; Buksa, J.J.; Houts, M.G.; Arthur, E.D.

    1997-11-01

    The prediction of materials lifetime in the preconceptual Los Alamos National Laboratory (LANL) Accelerator-Based Conversion of Plutonium (ABC) is of utmost interest. Because Hastelloy N showed good corrosion resistance to the Oak Ridge National Laboratory Molten Salt Reactor Experiment fuel salt that is similar to the LANL ABC fuel salt, Hastelloy N was originally proposed for the LANL ABC blanket material. In this paper, the possibility of using 304 stainless steel as a replacement for the Hastelloy N is investigated in terms of corrosion issues and fluence-limit considerations. An attempt is made, based on the previous Fast Flux Test Facility design data, to predict the preliminary lifetime estimate of the 304 stainless steel used in the blanket region of the LANL ABC

  16. Independent Review of Siesmic Performance Assessments for the Plutonium Facility PF-4

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Andrew [State Univ. of New York (SUNY), Buffalo, NY (United States); Goen, Lawrence Kenneth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kennedy, Robert [RPK Structural Mechanics, San Diego, CA (United States); McDonald, Brian [Exponent, Los Angeles, CA (United States); Morgan, Troy [Exponent, Los Angeles, CA (United States); Wyllie, Loring [Degenkolb Engineers, San Francisco, CA (United States)

    2015-11-25

    The Plutonium Facility, designated PF-4, is located in Technical Area 55 at the Los Alamos National Laboratory (LANL). The facility is a one-story rectangular structure above a complete basement; the building was constructed of cast-in-place reinforced concrete, with small interior frames of structural steel. The plan dimensions of the building are 265’×284’. The overall height of the building varies between 39’-0” at the north and south ends, and 40’-6” at the center ridge. The programmatic work performed in the building is vital to our national security and its functions and storage purposes are not replicated elsewhere in the United States Department of Energy (DOE).

  17. An environmentally benign plutonium processing future at Los Alamos

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    In recent years, the U.S. Department of Energy (DOE) has elevated environmental restoration and waste management to major mission areas, and it has established the reduction of wastes from DOE facilities as a major objective. The DOE facilities must now comply with all environmental regulations, including special regulations required of federal facilities. In recognition of this shift in philosophy, the plutonium processing facility at Los Alamos National Laboratory (LANL) has adopted the goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste. Becoming a facility with zero radionuclide and mixed-waste discharge is an extremely challenging goal and one that requires the technical contributions of a multidisciplinary team of experts. While all the technologies necessary to achieve this goal are not yet available, an extensive knowledge base does exist that can be applied to solving the remaining problems. Working toward this goal is a worthwhile endeavor, not only for LANL, but for the nuclear complex of the future

  18. Plutonium metal burning facility

    International Nuclear Information System (INIS)

    Hausburg, D.E.; Leebl, R.G.

    1977-01-01

    A glove-box facility was designed to convert plutonium skull metal or unburned oxide to an oxide acceptable for plutonium recovery and purification. A discussion of the operation, safety aspects, and electrical schematics are included

  19. Environmental safety and health vulnerabilities of plutonium at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    A national effort to assess the environmental safety and health issues of plutonium at nuclear facilities included an assessment of such vulnerabilities at the Los Alamos National Laboratory (LANL). LANL was well below the most serious problem sites, however, the problems are serious enough to require immediate attention and resources are being sought to address the most serious vulnerabilities

  20. Disposition of plutonium as non-fertile fuel for water reactors

    International Nuclear Information System (INIS)

    Chidester, K.; Eaton, S.L.; Ramsey, K.B.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The original intent of this project was to investigate the possible use of a new fuel form as a means of dispositioning the declared surplus inventory of weapons-grade plutonium. The focus soon changed, however, to managing the larger and rapidly growing inventories of plutonium arising in commercial spent nuclear fuel through implementation of a new fuel form in existing nuclear reactors. LANL embarked on a parallel path effort to study fuel performance using advanced physics codes, while also demonstrating the ability to fabricate a new fuel form using standard processes in LANL's Plutonium Facility. An evolutionary fuel form was also examined which could provide enhanced performance over standard fuel forms, but which could be implemented in a much shorter time frame than a completely new fuel form. Recent efforts have focused on implementation of results into global energy models and development of follow-on funding to continue this research

  1. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  2. Recent trends of plutonium facilities and their control

    Energy Technology Data Exchange (ETDEWEB)

    Muto, T [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1974-02-01

    Much interest has been focussed on Pu recycle since the oil crisis because of an expected shortage of enriched uranium. Plutonium handling techniques and plutonium fuel fabricating facilities should be developed to meet the future demand of plutonium, but the radioactive property of plutonium to be reprocessed from spent fuel and recycled plutonium is remarkably different, and it has to be handled safely. Technical criteria for plutonium facilities are specified in the USAEC regulatory guides and other rules. Some of these criteria are location condition, quality of confinement, protection against accidents and so on. The control conditions for plutonium facilities are exposure control, criticality control, measurement control and new system of safeguard. These problems are under development to meet the future requirement for the safe handling of Pu material.

  3. Ventilation design for new plutonium recovery facility

    International Nuclear Information System (INIS)

    Oliver, A.J.; Amos, C.L.

    1975-01-01

    In 1972 the Atomic Energy Commission (AEC) issued revised guidelines on ''Minimum Design Criteria for New Plutonium Facilities.'' With these criteria as guidelines, a new Plutonium Recovery Facility is being designed and constructed at the AEC Rocky Flats Plant. The methods by which the confinement of contamination and air treatment are being handled in this facility are described. (U.S.)

  4. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  5. Design of an integrated non-destructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.

    1984-01-01

    The Department of Energy requires improved technology for nuclear materials accounting as an essential part of new plutonium processing facilities. New facilities are being constructed at the Savannah River Plant by the Du Pont Company, Operating Contractor, to recover plutonium from scrap and waste material generated at SRP and other DOE contract processing facilities. This paper covers design concepts and planning required to incorporate state-of-the-art plutonium assay instruments developed at several national laboratories into an integrated, at-line nuclear material accounting facility operating in the production area. 3 figures

  6. Status of the pit disassembly and conversion facility

    International Nuclear Information System (INIS)

    Wood, Warren T.; Christensen, Lowell T.

    2000-01-01

    A planned new facility, the Pit Disassembly and Conversion Facility (PDCF), will be used to disassemble the nation's inventory of surplus nuclear weapons pits and convert the plutonium from those pits into a form suitable for storage, international inspection, and final disposition. Sized to handle 35 metric tons of plutonium from pits and other sources over its 10-year operating life, the PDCF will apply the Advanced Recovery and Integrated Extraction System (ARIES) technology. ARIES process technology has been developed at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL), and an integrated system is being demonstrated at LANL. The Los Alamos National Laboratory is the lead for technical design oversight of the PDCF. Technical data gained from the ARIES demonstrations is integral for the proper design of the PDCF

  7. 233-S Plutonium Concentration Facility data quality objectives

    International Nuclear Information System (INIS)

    Encke, D.B.

    1996-08-01

    This document is a summary of the decision-making associated with the Data Quality Objective process that pertains to the characterization activities in the 233-S Plutonium Concentration Facility at the Hanford Site in Richland, Washington. The 233-S Plutonium Concentration Facility is located adjacent to, and north of, the REDOX Plant. The facility was used to concentrate the plutonium nitrate product solution from the REDOX facility. The 233-S Pipe Gallery, Control Room, SWP Change Room, Toilet, Equipment Room and the Electrical Cubicle are currently scheduled for decontamination and cleanout to support future demolition (D and D). Identification of the radiological contamination and presence of hazardous materials is needed to allow for disposal of the D and D debris

  8. Guide to good practices at plutonium facilities

    International Nuclear Information System (INIS)

    Faust, L.G.; Brackenbush, L.W.; Carter, L.A.; Endres, G.W.R.; Glenn, R.D.; Jech, J.J.; Selby, J.M.; Smith, R.C.; Waite, D.A.; Walsh, W.P.

    1977-09-01

    This manual establishes guidelines and principles for use in setting up a sound radiation protection program for work with plutonium. The guidance presented is based on the experiences of Energy Research and Development Administration (ERDA) contractors and those portions of private industry concerned with the operation of plutonium facilities, specifically with the fabrication of mixed oxide reactor fuel. The manual is directed primarily to those facilities which have as their sole purpose the handling of large quantities of plutonium for military or industrial uses. It is not intended for use by facilities engaged in reactor or chemical separation operations nor for partial or occasional use by analytical laboratories; while these facilities would find the manual beneficial, it would be incomplete for their needs. The manual addresses good practices that should be observed by management, staff and designers, since the benefits of a good radiation protection program are the result of their joint efforts. Methods for the diagnostic evaluation of internally deposited Pu are included

  9. Health physics manual of good practices for plutonium facilities. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Heid, K.R.; Herrington, W.N.; Kenoyer, J.L.; Munson, L.F.; Munson, L.H.; Selby, J.M.; Soldat, K.L.; Stoetzel, G.A.; Traub, R.J.

    1988-05-01

    This manual consists of six sections: Properties of Plutonium, Siting of Plutonium Facilities, Facility Design, Radiation Protection, Emergency Preparedness, and Decontamination and Decommissioning. While not the final authority, the manual is an assemblage of information, rules of thumb, regulations, and good practices to assist those who are intimately involved in plutonium operations. An in-depth understanding of the nuclear, physical, chemical, and biological properties of plutonium is important in establishing a viable radiation protection and control program at a plutonium facility. These properties of plutonium provide the basis and perspective necessary for appreciating the quality of control needed in handling and processing the material. Guidance in selecting the location of a new plutonium facility may not be directly useful to most readers. However, it provides a perspective for the development and implementation of the environmental surveillance program and the in-plant controls required to ensure that the facility is and remains a good neighbor. The criteria, guidance, and good practices for the design of a plutonium facility are also applicable to the operation and modification of existing facilities. The design activity provides many opportunities for implementation of features to promote more effective protection and control. The application of ''as low as reasonably achievable'' (ALARA) principles and optimization analyses are generally most cost-effective during the design phase. 335 refs., 8 figs., 20 tabs.

  10. Survey of Technologies to Support Reuse of Gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.

    1998-01-01

    This report is a summary of ideas and technologies available to support reuse of plutonium gloveboxes at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). This work is the second of two deliverables in the task to enhance glovebox design for longevity and reusability at TA-55. The report presents several design change suggestions to be evaluated for their feasibility by LANL glovebox designers. The report also describes some techniques to be evaluated by LANL for their usefulness in reducing glovebox waste

  11. Science, technology and engineering at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

    2011-01-06

    The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

  12. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  13. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  14. Accountability control system in plutonium fuel facility

    International Nuclear Information System (INIS)

    Naruki, Kaoru; Aoki, Minoru; Mizuno, Ohichi; Mishima, Tsuyoshi

    1979-01-01

    More than 30 tons of plutonium-uranium mixed-oxide fuel have been manufactured at the Plutonium Facility in PNC for JOYO, FUGEN and DCA (Deuterium Critical Assembly) and for the purpose of irradiation tests. This report reviews the nuclear material accountability control system adopted in the Plutonium Facility. Initially, the main objective of the system was the criticality control of fissible materials at various stages of fuel manufacturing. The first part of this report describes the functions and the structure of the control system. A flow chart is provided to show the various stages of material flow and their associated computer files. The system is composed of the following three sub-systems: procedures of nuclear material transfer; PIT (Physical Inventory Taking); data retrieval, report preparation and file maintenance. OMR (Optical Mark Reader) sheets are used to record the nuclear material transfer. The MUF (Materials Unaccounted For) are evaluated by PIT every three months through computer processing based on the OMR sheets. The MUF ratio of Pu handled in the facility every year from 1966 to 1977 are presented by a curve, indicating that the MUF ratio was kept well under 0.5% for every project (JOYO, FUGEN, and DCA). As for the Pu safeguards, the MBA (Material Balance Area) and the KMP (Key Measurement Point) in the facility of PNC are illustrated. The general idea of the projected PINC (Plutonium Inventory Control) system in PNC is also shortly explained. (Aoki, K.)

  15. R.4. Innovative concept for plutonium finishing facility

    International Nuclear Information System (INIS)

    Bertolotti, G.; Laguerie, I.V. de; Richter, R.; Gillet, B.

    1998-01-01

    After complete shutdown of the units of the previous UP2 plant, the new R4 facility will ensure the purification of Plutonium of the UP2-800 plant for the whole range of fuel to be reprocessed in the years to come. This facility features four main units: - Purification of plutonium nitrate; - Conversion into plutonium oxide; - PuO 2 conditioning into cans; Acid recovery. An extensive R and D program resulted in significant innovations. From a technological aspect the centrifugal extractor and the sub-critical tube bundle tank contributed to the reduction of the building dimensions. The extensive use of on-line analyses enables a more efficient follow-up of the process while minimizing the effluent production. On the other hand, the organization of the building which consists in grouping the rooms presenting the same risk of dispersal of nuclear materials also contributed to reduce the active zone volume. This facility, as any other facilities on the LA HAGUE site, will be remotely operated. (author)

  16. Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report - March 2012

    International Nuclear Information System (INIS)

    McLaughlin, Anastasia Dawn; Storey, Bradford G.; Bowidowicz, Martin; Robertson, William G.; Hobson, Beverly F.

    2012-01-01

    In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

  17. An autoradiographical method using an imaging plate for the analyses of plutonium contamination in a plutonium handling facility

    International Nuclear Information System (INIS)

    Takasaki, Koji; Sagawa, Naoki; Kurosawa, Shigeyuki; Mizuniwa, Harumi

    2011-01-01

    An autoradiographical method using an imaging plate (IP) was developed to analyze plutonium contamination in a plutonium handling facility. The IPs were exposed to ten specimens having a single plutonium particle. Photostimulated luminescence (PSL) images of the specimens were taken using a laser scanning machine. One relatively large spot induced by α-radioactivity from plutonium was observed in each PSL image. The plutonium-induced spots were discriminated by a threshold derived from background and the size of the spot. A good relationship between the PSL intensities of the spots and α-radioactivities measured using a radiation counter was obtained by least-square fitting, taking the fading effect into consideration. This method was applied to workplace monitoring in an actual uranium-plutonium mixed oxide (MOX) fuel fabrication facility. Plutonium contaminations were analyzed in ten other specimens having more than two plutonium spots. The α-radioactivities of plutonium contamination were derived from the PSL images and their relative errors were evaluated from exposure time. (author)

  18. Design of plutonium processing facilities

    International Nuclear Information System (INIS)

    Derbyshire, W.; Sills, R.J.

    1982-01-01

    Five considerations for the design of plutonium processing facilities are identified. These are: Toxicity, Radiation, Criticality, Containment and Remote Operation. They are examined with reference to reprocessing spent nuclear fuel and application is detailed both for liquid and dry processes. (author)

  19. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  20. Human factors aspects of the major upgrade to control systems at the Los Alamos National Laboratory Plutonium Facility

    International Nuclear Information System (INIS)

    Higgins, J.; Pope, N.

    1997-01-01

    The Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL) has been in operation for over 15 years. It handles projects such as: stockpile maintenance, surveillance, and dismantlement; pit rebuild; plutonium power source fabrication for long duration spacecraft missions (e.g., Cassini); nuclear materials technology research; nuclear materials storage; and remediation of nuclear waste. The Operations Center of TA-55 is the nerve center of the facility where operators are on duty around the clock and monitor several thousand data points using the Facility Control System (FCS). The FCS monitors, displays, alarms, and provides some limited control of the following systems; HVAC, fire detection and suppression, radiation detection, electrical, and other miscellaneous systems. The FCS was originally based on late 1970s digital technology, which is not longer supported by the vendors. Additionally, the equipment failure rates increased notably in the 1990s. Thus, plans were put into place to upgrade and replace the FCS hardware, software, and display components with modernized equipment. The process was complicated by the facts that: the facility was operational and could not be totally closed for the modifications; complete documentation was not available for the existing system; the Safety Analyses for the facility were in the process of being upgraded at the same time; and of course limited time and budgets. This paper will discuss the human factors aspects of the design, installation, and testing of the new FCS within the above noted constraints. Particular items to be discussed include the functional requirements definition, operating experience review, screen designs, test program, operator training, and phased activation of the new circuits in an operational facility

  1. Interim Storage of Plutonium in Existing Facilities

    International Nuclear Information System (INIS)

    Woodsmall, T.D.

    1999-01-01

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  2. Decommissioning and Decontamination Program: Battelle Plutonium Facility, Environmental assessment

    International Nuclear Information System (INIS)

    1979-09-01

    This assessment describes the decontamination of Battelle-Columbus Plutonium Facility and removal from the site of all material contamination which was associated with or produced by the Plutonium Facility. Useable uncontaminated material will be disposed of by procedures normally employed in scrap declaration and transfer. Contaminated waste will be transported to approved radioactive waste storage sites. 5 refs., 1 fig

  3. 2006 LANL Radionuclide Air Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  4. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    International Nuclear Information System (INIS)

    French, Sean B.; Shuman, Robert

    2012-01-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  5. Demolition of Building 12, an old plutonium filter facility

    International Nuclear Information System (INIS)

    Christensen, E.L.; Garde, R.; Valentine, A.M.

    1975-01-01

    This report discusses the decommissioning and disposal of a plutonium-contaminated air filter facility that provided ventilation for the main plutonium processing plant at Los Alamos from 1945 until 1973. The health physics, waste management, and environmental aspects of the demolition are also discussed

  6. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, R E [Los Alamos National Laboratory, NMT Division, Los Alamos, NM (United States); Balkey, J J; Kleinsteuber, J F [Los Alamos National Laboratory, NMT Division, Los Alamos, NM (United States)

    2001-07-01

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire workforce. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  7. Success in behaviour-based safety at Los Alamos National Laboratory's plutonium facility

    International Nuclear Information System (INIS)

    Wieneke, R.E.; Balkey, J.J.; Kleinsteuber, J.F.

    2001-01-01

    Los Alamos National Laboratory's (LANL's) Plutonium Facility is responsible for a wide variety of actinide processing operations in support of the United States Department of Energy's (DOE's) stockpile stewardship of the nation's nuclear arsenal. Both engineered and administrative controls are used to mitigate hazards inherent in these activities. Nuclear facilities have engineered safety systems that are extensively evaluated and documented, and are monitored regularly for operability and performance. Personnel undergo comprehensive training, including annual recertification of their operations. They must thoroughly understand the hazards involved in their work and the controls that are in place to mitigate those hazards. A series of hazard-control plans and work instructions are used to define and authorize the work that is done. Primary hazards associated with chemicals and radioactive materials are well controlled with minimal risk to the workforce and public. The majority of injuries are physical or ergonomic in nature. In an effort to increase safety awareness and to decrease accidents and incidents, a program focusing on the identification and elimination of unsafe behaviours was initiated. Workers are trained on how to conduct safety observations and given guidance on specific behaviours to note. Observations are structured to have minimal impact upon workload and are shared by the entire workforce. This program has effectively decreased a low accident rate and will make long-term sustainability possible. (author)

  8. A probabilistic risk assessment of the LLNL Plutonium facility's evaluation basis fire operational accident

    International Nuclear Information System (INIS)

    Brumburgh, G.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  9. Plutonium production story at the Hanford site: processes and facilities history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  10. Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility

    International Nuclear Information System (INIS)

    Knepper, P.; Whiteson, R.; Strittmatter, R.; Mousseau, K.

    1999-01-01

    Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material (SNM). A facility conducting research and development (R and D) activities using SNM must satisfy material accountability guidelines. All processes involving SNM or tritium processing, at LANL, require a process accountability flow diagram (PAFD). At LANL a technique was developed to generate PAFDs that can be coupled to a relational database for use in material accountancy. These techniques could also be used for propagation of variance, measurement control, and inventory difference analysis. The PAFD is a graphical representation of the material flow during a specific process. PAFDs are currently stored as PowerPoint files. In the PowerPoint format, the data captured by the PAFD are not easily accessible. Converting the PAFDs to an accessible electronic format is desirable for several reasons. Any program will be able to access the data contained in the PAFD. For the PAFD data to be useful in applications such as an expert system for data checking, SNM accountability, inventory difference evaluation, measurement control, and other kinds of analysis, it is necessary to interface directly with the information contained within the PAFD. The PAFDs can be approved and distributed electronically, eliminating the paper copies of the PAFDs and ensuring that material handlers have the current PAFDs. Modifications to the PAFDs are often global. Storing the data in an accessible format would eliminate the need to manually update each of the PAFDs when a global change has occurred. The goal was to determine a software package that would store the

  11. Seismic safety of the LLL plutonium facility (Building 332)

    International Nuclear Information System (INIS)

    Torkarz, F.J.; Shaw, G.

    1980-01-01

    This report states the basis for the Lawrence Livermore Laboratory's assurance to the public that the plutonium operations at the Laboratory pose essentially no risk to anyone's health or safety, either under normal circumstances or in the event of an earthquake or a fire. The report is intended for a general audience, and so for the most part it is not highly technical. It summarizes the steps taken to ensure the seismic safety of the plutonium facility (Bldg. 332). It describes plutonium and its potential hazard and how the facility copes with that hazard. It recounts the geologic investigations and interpretations that led to the design-basis earthquake (DBE) for the Livermore site, and presents a summary analysis of the facility structure in relation to the DBE. An appendix presents a quantitative calculation of the health risk to the public associated with the worst-case hypothetical fire. The document supports the conclusions that the facility will continue to function safely after the maximum earthquake ground motion to which it may be subjected and that there is no evidence of a potential for surface offset under it

  12. LANL/Green Star spectrometer tests

    International Nuclear Information System (INIS)

    Sampson, T.E.; Cremers, T.L.; Vo, D.T.; Seldiakov, Y.P.; Dorin, A.B.; Kondrashov, M.V.; Timoshin, V.I.

    1997-12-01

    The US and Russia have agreed to the joint development of a nondestructive assay system for use to support the dismantlement of nuclear weapons in Russia. This nondestructive assay system will be used to measure plutonium produced by the conversion of Russian nuclear weapons. The NDA system for Russia will be patterned after the ARIES NDA system being constructed at Los Alamos. One goal of the program is to produce an NDA system for use in Russia that maximizes the use of Russian resources to facilitate maintenance and future upgrades. The Green Star SBS50 Single Board Spectrometer system (Green Star Ltd., Moscow, Russia) has been suggested for use as the data acquisition component for gamma ray instruments in the system. Possible uses are for plutonium isotopic analysis and also segmented gamma scanning. Green Star has also developed analysis software for the SBS50. This software, both plutonium isotopic analysis and uranium enrichment analysis, was developed specifically for customs/border inspection applications (low counting rate applications and identification as opposed to quantification) and was not intended for MC and A applications. Because of the relative immaturity of the Green Star plutonium isotopic analysis software (it has been under development for only one year and is patterned after US development circa 1980), it was tentatively agreed, before the tests, that the Russian NDA system would use the Los Alamos PC/FRAM software for plutonium isotopic analysis. However, it was also decided to include the Green Star plutonium isotopic software in the testing, both to quantify its performance for MC and A applications and also to provide additional data to Green Star for further development of their software. The main purpose of the testing was to evaluate the SBS-50 spectrometer as a data acquisition device for use with LANL software

  13. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  14. LANL operating experience with the WAND and HERCULES prototype systems

    International Nuclear Information System (INIS)

    Gruetzmacher, K. M.; Foxx, C. L.; MYERS, S. C.

    2000-01-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's past practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the

  15. Issues for reuse of gloveboxes at LANL TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization.

  16. Issues for reuse of gloveboxes at LANL TA-55

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Pinson, P.A.; Miller, C.F.

    1998-08-01

    This report is a summary of issues that face plutonium glovebox designers and users at the Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55). Characterizing the issues is a step in the task of enhancing the next generation glovebox design to minimize waste streams while providing the other design functions. This report gives an initial assessment of eight important design and operation issues that can benefit from waste minimization

  17. Technical report for generic site add-on facility for plutonium polishing

    International Nuclear Information System (INIS)

    1998-06-01

    The purpose of this report is to provide environmental data and reference process information associated with incorporating plutonium polishing steps (dissolution, impurity removal, and conversion to oxide powder) into the genetic-site Mixed-Oxide Fuel Fabrication Facility (MOXFF). The incorporation of the plutonium polishing steps will enable the removal of undesirable impurities, such as gallium and americium, known to be associated with the plutonium. Moreover, unanticipated impurities can be removed, including those that may be contained in (1) poorly characterized feed materials, (2) corrosion products added from processing equipment, and (3) miscellaneous materials contained in scrap recycle streams. These impurities will be removed to the extent necessary to meet plutonium product purity specifications for MOX fuels. Incorporation of the plutonium polishing steps will mean that the Pit Disassembly and Conversion Facility (PDCF) will need to produce a plutonium product that can be dissolved at the MOXFF in nitric acid at a suitable rate (sufficient to meet overall production requirements) with the minimal usage of hydrofluoric acid, and its complexing agent, aluminum nitrate. This function will require that if the PDCF product is plutonium oxide powder, that powder must be produced, stored, and shipped without exceeding a temperature of 600 C

  18. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Yearwood, D.D.

    1988-01-01

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs

  19. Dismantlement and decontamination of a plutonium-238 facility at SRS

    International Nuclear Information System (INIS)

    Smith, R.H. Jr.; Hootman, H.E.

    1994-01-01

    There has been very little, documented decontamination and decommissioning (D ampersand D) experience on which to project cleanup costs and schedules for plutonium facilities at SRS and other DOE sites. A portion of the HB-Line, a plutonium-238 processing facility at SRS, has been undergoing D ampersand D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been project has demonstrated effective methods of accumulated, and the performing D ampersand D work, and has demonstrated cleanup equipment and techniques under conditions of high contamination. Plutonium facilities where D ampersand D is already underway provide an opportunity for' timely field testing of characterization, size reduction, and decontamination techniques. Some data are presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned ''Integrated D ampersand D Demonstration'' managed by EM-50 to develop and demonstrate technology for D ampersand D and surplus facilities deactivation. Both the remainder of this project and the Integrated D ampersand D Demonstration Program can benefit from a joint effort, and the, overall costs should be reduced

  20. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-05

    This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.

  1. Disposition of TA-33-21, a plutonium contaminated experimental facility

    International Nuclear Information System (INIS)

    Cox, E.J.; Garde, R.; Valentine, A.M.

    1975-01-01

    The report discusses the decontamination, demolition and disposal of a plutonium contaminated experimental physics facility which housed physics experiments with plutonium from 1951 until 1960. The results of preliminary decontamination efforts in 1960 are reported along with health physics, waste management, and environmental aspects of final disposition work accomplished during 1974 and 1975. (auth)

  2. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    BERLIN, G.T.; ORGILL, T.K.

    2004-01-01

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 233-S Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather

  3. PROJECT EXPERIENCE REPORT DEMOLITION OF HANFORDS 233-S PLUTONIUM CONCENTRATION FACILITY

    International Nuclear Information System (INIS)

    BERLIN, G.T.

    2004-01-01

    This report provides a summary of the preparation, operations, innovative work practices, and lessons learned associated with demolition of the 2334 Plutonium Concentration Facility. This project represented the first open-air demolition of a highly-contaminated plutonium facility at the Hanford Site. This project may also represent the first plutonium facility in the US. Department of Energy (DOE) complex to have been demolished without first decontaminating surfaces to near ''free release'' standards. Demolition of plutonium contaminated structures, if not properly managed, can subject cleanup personnel and the environment to significant risk. However, with proper sequencing and innovative use of commercially available equipment, materials, and services, this project demonstrated that a plutonium processing facility can be demolished while avoiding the need to perform extensive decontamination or to construct large enclosures. This project utilized an excavator with concrete shears, diamond circular saws, water misting and fogging equipment, commercially available fixatives and dust suppressants, conventional mobile crane and rigging services, and near real-time modeling of meteorological and radiological conditions. Following a significant amount of preparation, actual demolition of the 2333 Facility began in October 2003 and was completed in late April 2004. The knowledge and experience gained on this project are important to the Hanford Site as additional plutonium processing facilities are scheduled for demolition in the near future. Other sites throughout the DOE Complex may also be faced with similar challenges. Numerous innovations and effective work practices were implemented on this project. Accordingly, a series of ''Lessons Learned and Innovative Practices Fact Sheets'' were developed and are included as an appendix to this report. This collection of fact sheets is not intended to capture every innovative work practice and lesson learned, but rather to

  4. Materials @ LANL: Solutions for National Security Challenges

    Science.gov (United States)

    Teter, David

    2012-10-01

    Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.

  5. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site

  6. A probabilistic risk assessment of the LLNL Plutonium Facility's evaluation basis fire operational accident. Revision 1

    International Nuclear Information System (INIS)

    Brumburgh, G.P.

    1995-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous programmatic activities involving plutonium to include device fabrication, development of improved and/or unique fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed in July 1994 to address operational safety and acceptable risk to employees, the public, government property, and the environmental. This paper outlines the PRA analysis of the Evaluation Basis Fire (EBF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  7. Los Alamos County Fire Department LAFD: TA-55 PF-4 Facility Familiarization Tour, OJT 55260

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-13

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for Los Alamos County Fire Department (LAFD) personnel at the Plutonium Facility (PF-4) at Technical Area (TA)-55. These familiarization tours are official LANL business; the purpose of these tours is to orient the firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes the ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills and abilities to perform firefighting operations and other emergency response tasks that cannot be provided by other LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.

  8. Self-imposed self-assessment program at a DOE Nuclear Facility

    International Nuclear Information System (INIS)

    Geoffrion, R.R.; Loud, J.J.; Walter, E.C.

    1996-01-01

    The Nuclear Materials and Technology (NMT) Division at Los Alamos National Laboratory (LANL) has implemented a performance-based self-assessment program at the TA-55 plutonium facility. The program was conceptualized and developed by LANL's internal assessment group, AA-2. The management walkaround program fosters continuous improvement in NMT products and performance of its activities. The program, based on experience from the Institute of Nuclear Power Operations, is endorsed at the site by the U.S. Department of Energy (DOE) Environment, Safety, and Health (ES ampersand H) personnel and by the Defense Nuclear Facility Safety Board. The self-assessment program focuses on how work is actually performed rather than on paperwork or process compliance. Managers critically and continually assess ES ampersand H, conduct of operations, and other functional area requirements

  9. 2008 LANL radionuclide air emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  10. 2010 LANL radionuclide air emissions report /

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  11. Seismic evaluation of the LLNL plutonium facility (Building 332)

    International Nuclear Information System (INIS)

    Hall, W.J.; Sozen, M.A.

    1982-03-01

    The expected performance of the Lawrence Livermore National Laboratory (LLNL) Plutonium Facility (Building 332) subjected to earthquake ground motion has been evaluated. Anticipated behavior of the building, glove boxes, ventilation system and other systems critical for containment of plutonium is described for three severe postulated earthquake excitations. Based upon this evaluation, some damage to the building, glove boxes and ventilation system would be expected but no collapse of any structure is anticipated as a result of the postulated earthquake ground motions

  12. Plutonium metal exchange program : current status and statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, L. (Lav); Eglin, J. L. (Judith Lynn); Michalak, S. E. (Sarah E.); Picard, R. R.; Temer, D. J. (Donald J.)

    2004-01-01

    The Rocky Flats Plutonium (Pu) Metal Sample Exchange program was conducted to insure the quality and intercomparability of measurements such as Pu assay, Pu isotopics, and impurity analyses. The Rocky Flats program was discontinued in 1989 after more than 30 years. In 2001, Los Alamos National Laboratory (LANL) reestablished the Pu Metal Exchange program. In addition to the Atomic Weapons Establishment (AWE) at Aldermaston, six Department of Energy (DOE) facilities Argonne East, Argonne West, Livermore, Los Alamos, New Brunswick Laboratory, and Savannah River are currently participating in the program. Plutonium metal samples are prepared and distributed to the sites for destructive measurements to determine elemental concentration, isotopic abundance, and both metallic and nonmetallic impurity levels. The program provides independent verification of analytical measurement capabilies for each participating facility and allows problems in analytical methods to be identified. The current status of the program will be discussed with emphasis on the unique statistical analysis and modeling of the data developed for the program. The discussion includes the definition of the consensus values for each analyte (in the presence and absence of anomalous values and/or censored values), and interesting features of the data and the results.

  13. U.S. DOE 2004 LANL Radionuclide Air Emissions

    International Nuclear Information System (INIS)

    K.W. Jacobson

    2005-01-01

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2004

  14. Guide of good practices for occupational radiological protection in plutonium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

  15. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  16. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  17. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume 2, Appendix B, Part 3: Los Alamos National Laboratory site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    Environmental safety and health (ES and H) vulnerabilities are defined as conditions or weaknesses that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public. In response to the initiative by the Secretary of Energy, Los Alamos National Laboratory (LANL) has performed a self assessment of the ES and H vulnerabilities of plutonium inventories at the laboratory. The objective of this site-specific self assessment is to identify and report ES and H vulnerabilities associated with the storage, handling, and processing of plutonium and maintenance of plutonium-contaminated facilities. This self-assessment of ES and H vulnerabilities and validation by a peer group is not another compliance audit or fault-finding exercise. It has a fact finding mission to develop a database of potential environment, safety, and health vulnerabilities that may lead to unnecessary or increased radiation exposure of the workers, release of radioactive materials to the environment, or radiation exposure of the public

  18. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Frances [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-07-18

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Tool for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.

  19. Passive neutron survey of the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    1996-08-01

    A passive neutron survey was performed at the 233-S Plutonium Concentration Facility (located at the Hanford Site in Richland, Washington) during late 1994 and early 1995. Four areas were surveyed: an abandoned filter box and pipe trench, column laydown trench, load-out hood, and process hood. The primary purpose of the survey was to identify locations that had plutonium to help direct decontamination and decommissioning activities. A secondary purpose of the survey was to determine the quantity of material when its presence was identified

  20. Decontamination and decommissioning criteria for use in design of new plutonium facilities

    International Nuclear Information System (INIS)

    Paschall, R.K.

    1975-01-01

    Decontamination and decommissioning (D and D) criteria were assembled for use in designing new plutonium facilities. These criteria were gathered from literature searches and visits to many plutonium facilities around the country. The recommendations of reports and experienced personnel were used. Since total D and D costs can be millions of dollars, improved designs to facilitate D and D will result in considerable savings in cost and time and will help to leave the site for unrestricted future use after D and D. Finally, better design will reduce hazards and improve safety during the D and D effort

  1. Upgrade of the Los Alamos Plutonium Facility control system

    International Nuclear Information System (INIS)

    Pope, N.G.; Turner, W.J.; Brown, R.E.; Bibeau, R.A.; Davis, R.R.; Hogan, K.

    1996-01-01

    After 20 yrs service, the Los Alamos Plutonium Facility is undergoing an upgrade to its aging Facility Control System. The new system design includes a network of redundantly-paired programmable logic controllers that will interface with about 2200 field data points. The data communications network that has been designed includes a redundant, self-healing fiber optic data highway as well as a fiber optic ethernet. Commercially available human-machine interface software running on a UNIX-based system displays facility subsystem status operator X-terminals. Project design features, methods, costs, and schedule are discussed

  2. Management Academy LANL Business Systems: Property Management, Course #31036

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Michael J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rinke, Helen Mae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hanson, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolfe, Randy P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-08

    Los Alamos National Laboratory (LANL) is responsible for the efficient economical management of all government property in its stewardship. This training explains the role LANL managers have in managing, controlling, and disposing of government property. The Laboratory's goal is good asset management. By properly managing property across the facility, Laboratory managers can help ASM improve government property utilization and extend asset life, while reducing asset-related operating costs and expenditures.

  3. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions

    International Nuclear Information System (INIS)

    Harty, D.P.

    1993-12-01

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified

  4. Development of the Los Alamos National Laboratory Plutonium Facility decontamination room

    International Nuclear Information System (INIS)

    Mosso, J.S.; Smith, F.E.; Owen, M.J.; Treadaway, W.A.

    1987-01-01

    For several years the Health Protection Group attempted to remedy the problem of a facility to adequately handle personnel plutonium contamination incidents. Through the efforts of our Quality Circle a presentation was made to management, which immediately appropriated space and funds for the construction of a complete decontamination facility. 9 refs

  5. Process control and safeguards system plutonium inventory conrol for MOX fuel facility

    International Nuclear Information System (INIS)

    Mishima, T.; Aoki, M.; Muto, T.; Amanuma, T.

    1979-01-01

    The plutonium inventory control (PINC) system is a real-time material accountability control system that is expected to be applied to a new large-scale plutonium fuel production facility for both fast breeder reactor and heavy water reactor at the Power Reactor and Nuclear Development Corporation. The PINC is basically a system for material control but is expected to develop into a whole facility control system, including criticality control, process control, quality control, facility protection, and so forth. Under PINC, every process and storage area is divided into a unit area, which is the smallest unit for both accountability and process control. Item and material weight automatically are accounted for at every unit area, and data are simultaneously treated by a computer network system. Sensors necessary for the system are being developed. 9 figures

  6. Design of ventilation and air cleaning systems for the new Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Mitchell, R.; DeField, J.; Stafford, R.; McNeese, W.; Eberhardt, W.; Laushkin, N.

    1975-01-01

    The Los Alamos Scientific Laboratory's new plutonium facility will conform to AECM Appendix 6301-Part II, Section H-Minimum Design Criteria for New Plutonium Facilities. The glove box process exhaust air is filtered through three or four stages of HEPA filters. The design of this multi-stage filter installation is shown with a method of in-place testing of each stage individually. A glove box filter holder and the in-place test procedure is described. General room air from plutonium work areas is recirculated at the rate of eight air changes per hour with a 10 percent fresh air make-up. The filter plenums for the recirculated air are designed to permit in-place testing of each of the two filter stages. (U.S.)

  7. Gum-compliant uncertainty propagations for Pu and U concentration measurements using the 1st-prototype XOS/LANL hiRX instrument; an SRNL H-Canyon Test Bed performance evaluation project

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Michael K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, Patrick E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-04

    An SRNL H-Canyon Test Bed performance evaluation project was completed jointly by SRNL and LANL on a prototype monochromatic energy dispersive x-ray fluorescence instrument, the hiRX. A series of uncertainty propagations were generated based upon plutonium and uranium measurements performed using the alpha-prototype hiRX instrument. Data reduction and uncertainty modeling provided in this report were performed by the SRNL authors. Observations and lessons learned from this evaluation were also used to predict the expected uncertainties that should be achievable at multiple plutonium and uranium concentration levels provided instrument hardware and software upgrades being recommended by LANL and SRNL are performed.

  8. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF.

  9. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    International Nuclear Information System (INIS)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae

    2016-01-01

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF

  10. Analysis of historical delta values for IAEA/LANL NDA training courses

    International Nuclear Information System (INIS)

    Geist, William; Santi, Peter; Swinhoe, Martyn; Bonner, Elisa

    2009-01-01

    The Los Alamos National Laboratory (LANL) supports the International Atomic Energy Agency (IAEA) by providing training for IAEA inspectors in neutron and gamma-ray Nondestructive Assay (NDA) of nuclear material. Since 1980, all new IAEA inspectors attend this two week course at LANL gaining hands-on experience in the application of NDA techniques, procedures and analysis to measure plutonium and uranium nuclear material standards with well known pedigrees. As part of the course the inspectors conduct an inventory verification exercise. This exercise provides inspectors the opportunity to test their abilities in performing verification measurements using the various NDA techniques. For an inspector, the verification of an item is nominally based on whether the measured assay value agrees with the declared value to within three times the historical delta value. The historical delta value represents the average difference between measured and declared values from previous measurements taken on similar material with the same measurement technology. If the measurement falls outside a limit of three times the historical delta value, the declaration is not verified. This paper uses measurement data from five years of IAEA courses to calculate a historical delta for five non-destructive assay methods: Gamma-ray Enrichment, Gamma-ray Plutonium Isotopics, Passive Neutron Coincidence Counting, Active Neutron Coincidence Counting and the Neutron Coincidence Collar. These historical deltas provide information as to the precision and accuracy of these measurement techniques under realistic conditions.

  11. Continuous Material Balance Reconciliation for a Modern Plutonium Processing Facility

    International Nuclear Information System (INIS)

    CLARK, THOMASG.

    2004-01-01

    This paper describes a safeguards approach that can be deployed at any modern plutonium processing facility to increase the level of safeguards assurance and significantly reduce the impact of safeguards on process operations. One of the most perplexing problems facing the designers of plutonium processing facilities is the constraint placed upon the limit of error of the inventory difference (LEID). The current DOE manual constrains the LEID for Category I and II material balance areas to 2 per cent of active inventory up to a Category II quantity of the material being processed. For 239Pu a Category II quantity is two kilograms. Due to the large material throughput anticipated for some of the modern plutonium facilities, the required LEID cannot be achieved reliably during a nominal two month inventory period, even by using state-of-the-science non-destructive assay (NDA) methods. The most cost-effective and least disruptive solution appears to be increasing the frequency of material balance closure and thus reducing the throughput being measured during each inventory period. Current inventory accounting practices and systems can already provide the book inventory values at any point in time. However, closing the material balance with measured values has typically required the process to be cleaned out, and in-process materials packaged and measured. This process requires one to two weeks of facility down time every two months for each inventory, thus significantly reducing productivity. To provide a solution to this problem, a non-traditional approach is proposed that will include using in-line instruments to provide measurement of the process materials on a near real-time basis. A new software component will be developed that will operate with the standard LANMAS application to provide the running material balance reconciliation, including the calculation of the inventory difference and variance propagation. The combined measurement system and software

  12. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    International Nuclear Information System (INIS)

    Mullins, L.J.; Morgan, A.N.

    1981-12-01

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed

  13. U.S. Department of Energy Report, 2005 LANL Radionuclide Air Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Keith W. Jacobson, David P. Fuehne

    2006-09-01

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2006.

  14. Development of an expert system for analysis of plutonium processing operations

    International Nuclear Information System (INIS)

    Boeringter, S.T.; Fasel, J.H.; Kornreich, D.E.

    2001-01-01

    At Los Alamos National Laboratory (LANL) an expert system has been developed for the analysis and assessment of plutonium processing operations. This system is based upon an object-oriented simulation environment specifically developed for the needs of nuclear material processing. The simulation environment, called the ''Process Modeling System'' (ProMoS), contains a library of over 250 plutonium-based unit process operations ranging from analytical chemistry, oxide operations, recycle and recovery, waste management, and component fabrication. (author)

  15. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  16. Stack released plutonium in the environment of a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Horton, J.H.; Sanders, S.M.; Corey, J.C.

    1979-01-01

    Chemical separations facilities at the Savannah River Plant have released very small quantities of plutonium to the environment since 1955. Characterization studies of airborne particulates from the process stack show that the plutonium is nearly always attached to nonradioactive particles. The geometric mean diameter of plutonium-bearing particulates in the stack gas is 5.43 μm. Most of the particles contain less than 10 -15 Ci of 239 Pu. Studies with cascade impactors 1.1 m above the ground indicated that the average annual air concentration was 612 x 10 -18 Ci/m 3 (less than 0.1% of the maximum permissible concentration recommended by the ICRP). Cropping studies showed plutonium concentrations of 3 x 10 -3 pCi/g in wheat, 5.5 x 10 -4 in soybeans, and 1.7 x 10 -4 in corn. The 70-year dose-to-bone from ingesting 10 5 g of grain would be less than 1 mrem

  17. LANL Research Library

    Science.gov (United States)

    Los Alamos National Laboratory The LANL Research Library website has been moved to http ://www.lanl.gov/library/. Please update your bookmarks. If you are not redirected to the new location within 10 http:// | Last Modified: Send email to the Library

  18. Liquid waste treatment at plutonium fuels fabrication facility, 2

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Itoh, Ichiroh; Ohuchi, Jin; Miyo, Hiroaki

    1974-01-01

    The economics in the management of the radioactive liquid waste from Plutonium Fuels Fabrication Facility with sludge-blanket type flocculators has been evaluated. (1) Cost calculation: The cost of chemicals and electricity to treat 1 cubic meter of liquid waste is about 876 yen, while the total operating cost is 250 thousand yen per cubic meter in the case of 140 m 3 /year treatment. These figures are much higher than those for ordinary wastes, due to the particular operation against plutonium. (2) Proposal of the closed system for liquid waste treatment at PFFF: In the case of a closed system using evaporator, ion exchange column and rotary-kiln calciner, the operating cost is estimated at 40 thousand yen per cubic meter of liquid waste. Final radioactivity of treated liquid is below 10 -8 micro curies/ml. (Mori, K.)

  19. Study of possibility using LANL PSA-methodology for accident probability RBMK researches

    International Nuclear Information System (INIS)

    Petrin, S.V.; Yuferev, V.Y.; Zlobin, A.M.

    1995-01-01

    The reactor facility probabilistic safety analysis methodologies are considered which are used at U.S. LANL and RF NIKIET. The methodologies are compared in order to reveal their similarity and differences, determine possibilities of using the LANL technique for RBMK type reactor safety analysis. It is found that at the PSA-1 level the methodologies practically do not differ. At LANL the PHA, HAZOP hazards analysis methods are used for more complete specification of the accounted initial event list which can be also useful at performance of PSA for RBMK. Exchange of information regarding the methodology of detection of dependent faults and consideration of human factor impact on reactor safety is reasonable. It is accepted as useful to make a comparative study result analysis for test problems or PSA fragments using various computer programs employed at NIKIET and LANL

  20. Progress on plutonium stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, D. [Defense Nuclear Facilities Safety Board, Washington, DC (United States)

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  1. Progress on plutonium stabilization

    International Nuclear Information System (INIS)

    Hurt, D.

    1996-01-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE's stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities

  2. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    Much of the US Department of Energy's (DOE's) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL's main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers

  3. An MCNP model of glove boxes in a plutonium processing facility

    International Nuclear Information System (INIS)

    Dooley, D.E.; Kornreich, D.E.

    1998-01-01

    Nuclear material processing usually occurs simultaneously in several glove boxes whose primary purpose is to contain radioactive materials and prevent inhalation or ingestion of radioactive materials by workers. A room in the plutonium facility at Los Alamos National Laboratory has been slated for installation of a glove box for storing plutonium metal in various shapes during processing. This storage glove box will be located in a room containing other glove boxes used daily by workers processing plutonium parts. An MCNP model of the room and glove boxes has been constructed to estimate the neutron flux at various locations in the room for two different locations of the storage glove box and to determine the effect of placing polyethylene shielding around the storage glove box. A neutron dose survey of the room with sources dispersed as during normal production operations was used as a benchmark to compare the neutron dose equivalent rates calculated by the MCNP model

  4. LANL continuity of operations plan

    Energy Technology Data Exchange (ETDEWEB)

    Senutovitch, Diane M [Los Alamos National Laboratory

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratory EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may

  5. Sampling and Analysis Plan for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Mihalic, M.A.

    1998-02-01

    This Sampling and Analysis Plan (SAP) provides the information and instructions to be used for sampling and analysis activities in the 233-S Plutonium Concentration Facility. The information and instructions herein are separated into three parts and address the Data Quality Objective (DQO) Summary Report, Quality Assurance Project Plan (QAP), and SAP

  6. Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1994-02-01

    To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal

  7. Plutonium storage criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D. [Scientech, Inc., Germantown, MD (United States); Ascanio, X. [Dept. of Energy, Germantown, MD (United States)

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  8. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  9. Plutonium Reclamation Facility incident response project progress report

    Energy Technology Data Exchange (ETDEWEB)

    Austin, B.A.

    1997-11-25

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

  10. Plutonium Reclamation Facility incident response project progress report

    International Nuclear Information System (INIS)

    Austin, B.A.

    1997-01-01

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies

  11. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    International Nuclear Information System (INIS)

    LLOYD, E.R.

    2007-01-01

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques

  12. Preparation of high purity plutonium oxide for radiochemistry instrument calibration standards and working standards

    International Nuclear Information System (INIS)

    Wong, A.S.; Stalnaker, N.D.

    1997-04-01

    Due to the lack of suitable high level National Institute of Standards and Technology (NIST) traceable plutonium solution standards from the NIST or commercial vendors, the CST-8 Radiochemistry team at Los Alamos National Laboratory (LANL) has prepared instrument calibration standards and working standards from a well-characterized plutonium oxide. All the aliquoting steps were performed gravimetrically. When a 241 Am standardized solution obtained from a commercial vendor was compared to these calibration solutions, the results agreed to within 0.04% for the total alpha activity. The aliquots of the plutonium standard solutions and dilutions were sealed in glass ampules for long term storage

  13. Nondestructive assay system development for a plutonium scrap recovery facility

    International Nuclear Information System (INIS)

    Hsue, S.T.; Baker, M.P.

    1984-01-01

    A plutonium scrap recovery facility is being constructed at the Savannah River Plant (SRP). The safeguards groups of the Los Alamos National Laboratory have been working since the early design stage of the facility with SRP and other national laboratories to develop a state-of-the-art assay system for this new facility. Not only will the most current assay techniques be incorporated into the system, but also the various nondestructive assay (NDA) instruments are to be integrated with an Instrument Control Computer (ICC). This undertaking is both challenging and ambitious; an entire assay system of this type has never been done before in a working facility. This paper will describe, in particular, the effort of the Los Alamos Safeguards Assay Group in this endeavor. Our effort in this project can be roughly divided into three phases: NDA development, system integration, and integral testing. 6 references

  14. Addressing mixed waste in plutonium processing

    International Nuclear Information System (INIS)

    Christensen, D.C.; Sohn, C.L.; Reid, R.A.

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed

  15. Containers for short-term storage of nuclear materials at the Los Alamos plutonium facility

    International Nuclear Information System (INIS)

    Hagan, R.; Gladson, J.

    1997-01-01

    The Los Alamos Plutonium Facility for the past 18 yr has stored nuclear samples for archiving and in support of nuclear materials research and processing programs. In the past several years, a small number of storage containers have been found in a deteriorated condition. A failed plutonium container can cause personnel contamination exposure and expensive physical area decontamination. Containers are stored in a physically secure radiation area vault, making close inspection costly in the form of personnel radiation exposure and work time. A moderate number of these containers are used in support of plutonium processing and must withstand daily handling abuse. A 2-yr evaluation of failed containers and those that have shown no deterioration has been conducted. Based on that study, a program was established to formalize our packing methods and materials and standardize the size and shape of containers that are used for short-term use. A standardized set of containers was designed, evaluated, tested, and procured for use in the facility. This paper reviews our vault storage problems, shows some failed containers, and presents our planned solutions to provide safe and secure containment of nuclear materials

  16. French en engineering and operation rules for plutonium facilities

    International Nuclear Information System (INIS)

    Bertolotti, G.; Drain, F.; Dubois, G.; Monnatte, J.; Mathieu, P.

    1998-01-01

    COGEMA is operating large size purifying and conditioning plutonium facilities at LA HAGUE and MOX fuels fabrication plant at Marcoule. A high safety standard is recognised for these facilities. It is mainly based on : - prevention of spreading of radioactive materials to workers and environment by physical barriers ensuring static containment and by a cascade of pressure differentials ensuring dynamic containment, - radiation shielding and remote controlled processes ensuring very low dose to workers, - prevention of criticality accident by criticality control methods and double contingency principle, - prevention of fire risks by control of ignition sources, adequate management of combustible materials, physical separation between zones where there is a risk of fire and the remainder of the facility. The facilities are operated while respecting safety requirements as described in the General Operating Rules. The equipment involved in safety functions are monitored and periodically checked. Continuous improvement by incorporation of feed back of safety experience results in: - effective decrease of exposure to operating staff; - reduction of solid waste, liquid and gaseous effluents; - no significant incident recorded. (author)

  17. Design of an error-free nondestructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.; Steward, W.E.

    1987-01-01

    An automated, at-line nondestructive assay (NDA) laboratory is installed in facilities recently constructed at the Savannah River Plant. The laboratory will enhance nuclear materials accounting in new plutonium scrap and waste recovery facilities. The advantages of at-line NDA operations will not be realized if results are clouded by errors in analytical procedures, sample identification, record keeping, or techniques for extracting samples from process streams. Minimization of such errors has been a primary design objective for the new facility. Concepts for achieving that objective include mechanizing the administrative tasks of scheduling activities in the laboratory, identifying samples, recording and storing assay data, and transmitting results information to process control and materials accounting functions. These concepts have been implemented in an analytical computer system that is programmed to avoid the obvious sources of error encountered in laboratory operations. The laboratory computer exchanges information with process control and materials accounting computers, transmitting results information and obtaining process data and accounting information as required to guide process operations and maintain current records of materials flow through the new facility

  18. Surplus plutonium disposition draft environmental impact statement. Volume 2

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. Volume 2 contains the appendices to the report and describe the following: Federal Register notices; contractor nondisclosure statement; adjunct melter

  19. Gap Analysis of Storage Conditions between NNSS and LANL for SAVY 4000 Use

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stone, Timothy Amos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, Chandler Gus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karns, Tristan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    As part of the gap analysis for utilizing the SAVY 4000® at NNSS, the hydrogen gas generation rate and the effect of atmospheric pressure changes on the maximum normal operating pressure (MNOP) of the SAVY container must be evaluated because the nuclear material characteristics and atmospheric conditions will not be the same for NNSS and LANL. This paper documents this analysis and demonstrates that the LANL SAVY Safety Analysis Report (SAR) is bounding with respect to the Nevada facilities.

  20. A feasibility study for the storage of plutonium pits in non-partitioned warehouse facilities

    International Nuclear Information System (INIS)

    James, D.; Parameswaren, S.; Nagendran, S.

    1999-02-01

    It is projected that up to 20,000 plutonium pits will be stored at Pantex for up to 50 years. The proposed storage system has to meet longevity, safety and cost requirements. Thermal, mechanical, chemical, nuclear criticality and safety performance characteristics of any proposed plutonium container design need to be formally analyzed. Plutonium generates thermal energy as it decays. The generated thermal energy may cause excessive rise of temperature. For safety and other considerations, it is important that the plutonium temperature remains relatively constant and no hot spots develop. Plutonium containers should not be disassembled for routine monitoring and there are various reasons for the need to monitor the plutonium non-obtrusively. Therefore, accurate predictions of the temperature distribution within the storage container based upon external monitoring within the storage facility needs to be developed. A heat transfer analysis of the storage container is required. The heat transfer analysis, however, requires the knowledge of the temperature and velocity of the air circulating around the containers in order to determine the heat transferred to the air from the containers by convection. Therefore, a complete flow field analysis is required prior to performing the conduction analysis of each pit. The objective of this research is, therefore, to develop and validate a numerical model to predict the temperature distribution within the plutonium storage container as a function of the ambient air temperature within the warehouse

  1. Nuclear criticality safety aspects of emergency response at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Baker, J.S.

    2003-01-01

    Emergency response at Los Alamos National Laboratory (LANL) is handled through a graded approach depending on the specific emergency situation . LANL maintains a comprehensive capability to respond to events ranging from minor facility events (alerts) through major community events (general emergencies), including criticality accidents . Criticality safety and emergency response apply to all activities involving significant quantities of fissile material at LANL, primarily at Technical Area 18 (TA-18, the Los Alamos Critical Experiments Facility) and Technical Area 55 (TA-55, the Plutonium Facility). This discussion focuses on response to a criticality accident at TA-55; the approach at TA-18 is comparable .

  2. Surplus plutonium disposition draft environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel

  3. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program

  4. Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

  5. Plutonium Disposition Now exclamation point

    International Nuclear Information System (INIS)

    Buckner, M.R.

    1995-01-01

    A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000's. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries

  6. Seismic qualification of equipment for the TA-55 Plutonium Processing Facility

    International Nuclear Information System (INIS)

    Pellette, P.R.; Endebrock, E.G.; Giles, P.M.; Shaw, R.H.

    1977-04-01

    The techniques employed by the Los Alamos Scientific Laboratory (LASL) for the seismic qualification of internal equipment for the TA-55 Plutonium Facility are discussed. The structural analysis of the plutonium building and critical associated structures was performed by the Architect-Engineer (A-E), and the calculations were checked by LASL. The specifications and procedures used by LASL produced dramatic improvement in the responses by qualified vendors to the seismic requirements. There was an increase from about a 20% bid ratio to greater than 90% because prospective vendors could be competitive without having had previous seismic experience with their equipment. The equipment seismic qualification for TA-55 is in compliance with the Code of Federal Regulations, Nuclear Regulatory Commission (NRC) Guides, Energy Research and Development Administration (ERDA) Manual Chapters and Appendices, and Institute of Electrical and Electronic Engineers (IEEE) Standard 344

  7. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Tandon, Lav; Kuhn, Kevin J.; Drake, Lawrence R.; Decker, Diana L.; Walker, Laurie F.; Colletti, Lisa M.; Spencer, Khalil J.; Peterson, Dominic S.; Herrera, Jaclyn A.; Wong, Amy S.

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  8. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume I: Summary

    International Nuclear Information System (INIS)

    1994-11-01

    At the conclusion of the Cold War, the Department of Energy (DOE) stopped plutonium processing for nuclear weapons production. Facilities used for that purpose now hold significant quantities of plutonium in various forms. Unless properly stored and handled, plutonium can present environment, safety and health (ES ampersand H) hazards. Improperly stored plutonium poses a variety of hazards. When containers or packaging fail to fully protect plutonium metal from exposure to air, oxidation can occur and cause packaging failures and personnel contamination. Contamination can also result when plutonium solutions leak from bottles, tanks or piping. Plutonium in the form of scrap or residues generated by weapons production are often very corrosive, chemically reactive and difficult to contain. Buildings and equipment that are aging, poorly maintained or of obsolete design contribute to the overall problem. Inadvertent accumulations of plutonium of any form in sufficient quantities within facilities can result in nuclear criticality events that could emit large amounts of radiation locally. Contamination events and precursors of criticality events are causing safety and health concerns for workers at the Department's plutonium facilities. Contamination events also potentially threaten the public and the surrounding environment

  9. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    International Nuclear Information System (INIS)

    Rudolph, A.; Kirsch, G.; Toy, H.L.

    1984-01-01

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980

  10. Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Rugg, J.E.

    1996-08-01

    The 100, 200, 300 and 1100 Areas of the Hanford Site were placed on the U. S. Environmental Protection Agency's National Priorities List in November 1989 under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Located in the 200 Area is the deactivated 233-S Plutonium Concentration Facility (used in the REDOX process). The facility has undergone severe degradation due to exposure to extreme weather conditions. An expedited response is proposed to ensure protection of human health and the environment. The Department of Energy, Richland Operations Office (RL) in cooperation with the Washington State Department of Ecology, has prepared this Engineering Evaluation/Cost Analysis pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health or the environment, and that an expedited removal action is warranted for decommissioning of the facility

  11. Evaluation of existing United States' facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    International Nuclear Information System (INIS)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-01-01

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications

  12. Radiological safety aspects of handling plutonium

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2016-01-01

    Department of Atomic Energy in its scheme of harnessing the nuclear energy for electrical power generation and strategic applications has given a huge role to utilization of plutonium. In the power production programme, fast reactors with plutonium as fuel are expected to play a major role. This would require establishing fuel reprocessing plants to handle both thermal and fast reactor fuels. So in the nuclear fuel cycle facilities variety of chemical, metallurgical, mechanical operations have to be carried out involving significant inventories of "2"3"9 Pu and associated radionuclides. Plutonium is the most radiotoxic radionuclide and therefore any facility handling it has to be designed and operated with utmost care. Two problems of major concern in the protection of persons working in plutonium handling facilities are the internal exposure to the operating personnel from uptake of plutonium and transplutonic nuclides as they are highly radiotoxic and the radiation exposure of hands and eye lens during fuel fabrication operations especially while handling recycled high burn up plutonium. In view of the fact that annual limit for intake is very small for "2"3"9Pu and its radiation emission characteristics are such that it is a huge challenge for the health physicists to detect Pu in air and in workers. This paper discusses the principles and practices followed in providing radiological surveillance to workers in plutonium handling areas. The challenges in protecting the workers from receiving exposures to hands and eye lens in handling high burn up plutonium are also discussed. The sites having Pu fuel cycle facilities should have trained medical staff to handle cases involving excessive intake of plutonium. (author)

  13. The radiological hazard of plutonium isotopes and specific plutonium mixtures

    International Nuclear Information System (INIS)

    Heindel, G.; Clow, J.; Inkret, W.; Miller, G.

    1995-11-01

    The US Department of Energy defines the hazard categories of its nuclear facilities based upon the potential for accidents to have significant effects on specific populations and the environment. In this report, the authors consider the time dependence of hazard category 2 (significant on-site effects) for facilities with inventories of plutonium isotopes and specific weapons-grade and heat-source mixtures of plutonium isotopes. The authors also define relative hazard as the reciprocal of the hazard category 2 threshold value and determine its time dependence. The time dependence of both hazard category 2 thresholds and relative hazards are determined and plotted for 10,000 years to provide useful information for planning long-term storage or disposal facilities

  14. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  15. Plutonium storage phenomenology

    International Nuclear Information System (INIS)

    Szempruch, R.

    1995-12-01

    Plutonium has been produced, handled, and stored at Department of Energy (DOE) facilities since the 1940s. Many changes have occurred during the last 40 years in the sources, production demands, and end uses of plutonium. These have resulted in corresponding changes in the isotopic composition as well as the chemical and physical forms of the processed and stored plutonium. Thousands of ordinary food pack tin cans have been used successfully for many years to handle and store plutonium. Other containers have been used with equal success. This paper addressees the exceptions to this satisfactory experience. To aid in understanding the challenges of handling plutonium for storage or immobilization the lessons learned from past storage experience and the necessary countermeasures to improve storage performance are discussed

  16. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  17. Engineering study of generic site criteria for selected DOE plutonium facilities

    International Nuclear Information System (INIS)

    Kingsbury, R.J.; Greenwood, J.M.; Sandoval, M.D.

    1980-09-01

    The objectives of this study were to identify criteria that would be applied to selection of a site for plutonium facilities such as those at the Rocky Flats Plant, to establish the relative importance of these criteria, and to identify suitable areas within the United States for location of plutonium facilities with respect to these criteria. Sources of the site criteria identified include federal laws, federal agency regulations, state laws and regulations, and requirements associated with operations to be performed at the site. The criteria identified during the study were organized into 14 major categories. The relative importnace of each category and each criterion within the categories were established using group decision-making techniques. The major criteria categories, their assigned weight on a scale of 1 to 10, and their relative priority ranks are as follows: geology/seismicity; public safety; environmental impact; meteorology; hydrology; topography; transportation; utilities; personnel; safeguards/security; land area and availability; land use compatibility; and, public acceptance. A suitability analysis of the continental United States was performed using only those criteria that could be mapped at a national scale. Suitability was assessed with respect to each of these criteria, and individual suitability maps were prepared. A composite suitability map was generated using computerized overlay techniques. This map provides a starting point for identifying specific candidate sites if an actual site selection were to be conducted

  18. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE DECOMMISSIONG AND DECONTAMINATION OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-01

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place

  19. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  20. An Introduction to LANL Mixed Potential Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric Lanich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kreller, Cortney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-26

    These are slides for a webinar given on the topics of an introduction to LANL mixed potential sensors. Topics include the history of LANL electrochemical sensor work, an introduction to mixed potential sensors, LANL uniqueness, and an application of LANL mixed potential sensors. The summary is as follows: Improved understanding of the mixed-potential sensor mechanism (factors controlling the sensor response identified), sensor design optimized to maximize sensor sensitivity and durability (porous electrolyte/dense electrodes), electrodes selected for various specific applications (CO, HC, H2), sensor operating parameters optimized for improved gas selectivity (NOx, NH3).

  1. Plutonium vulnerability issues at Hanford's Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Feldt, E.; Templeton, D.W.; Tholen, E.

    1995-01-01

    The Plutonium Finishing Plant (PFP) at the Hanford, Washington Site was operated to produce plutonium (Pu) metal and oxide for national defense purposes. Due to the production requirements and methods utilized to meet national needs and the abrupt shutdown of the plant in the late 1980s, the plant was left in a condition that poses a risk of radiation exposure to plant workers, of accidental radioactive material release to the environment, and of radiation exposure to the public. In early 1994, an Environmental Impact Statement (EIS) to determine the best methods for cleaning out and stabilizing Pu materials in the PFP was started. While the EIS is being prepared, a number of immediate actions have been completed or are underway to significantly reduce the greatest hazards in the PFP. Recently, increased attention his been paid to Pu risks at Department of Energy (DOE) facilities resulting in the Department-wide Plutonium Vulnerability Assessment and a recommendation by the Defense Nuclear Facilities Safety Board (DNFSB) for DOE to develop integrated plans for managing its nuclear materials

  2. Safe handling of plutonium: a panel report

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This guide results from a meeting of a Panel of Experts held by the International Atomic Energy Agency on 8 to 12 November 1971. It is directed to workers in research laboratories handling plutonium in gram amounts. Contents: aspects of the physical and chemical properties of plutonium; metabolic features of plutonium; facility design features for safe handling of plutonium (layout of facility, working zones, decontamination room, etc.); glove boxes; health surveillance (surveillance of environment and supervision of workers); emergencies; organization. Annexes: types of glove boxes; tables; mobile ..cap alpha.. air sampler; aerosol monitor; bio-assay limits of detection; examples of contamination control monitors.

  3. Installation places of criticality accident detectors in the plutonium conversion development facility

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Tsujimura, Norio; Shimizu, Yoshio; Izaki, Kenji; Furuta, Sadaaki

    2008-01-01

    At the Plutonium Conversion Development Facility (PCDF) in the Nuclear Fuel Cycle Engineering Laboratories, the co-conversion technologies to purify the mixed plutonium and uranium nitrate solution discharged from a reprocessing plant have been developed. The probability of a criticality accident in PCDF is extremely low. However, the criticality accident alarm system (CAAS) has been in place since 1982 to reduce the radiation dose to workers in case of such a rare criticality accident. The CAAS contains criticality accident detector units (CADs), one unit consisting of three plastic scintillation detectors, and using the 2 out of 3 voting system for the purpose of high reliability. Currently, eight CADs are installed in PCDF evaluating the dose using a simple equation allowing for a safety margin. The purpose of this study is to show the determination procedures for the adequate relocation of the CADs which adequately ensures safety in PCDF. (author)

  4. Plutonium Immobilization Can Loading Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  5. Plutonium Immobilization Can Loading Conceptual Design

    International Nuclear Information System (INIS)

    Kriikku, E.

    1999-01-01

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  6. LANL Contacts

    Science.gov (United States)

    : (505) 665-3664 ethics@lanl.gov Journalist queries Communications Office (505) 667-7000 Media contacts programs and employee resources. General Employee directory Emergency communication Communications Office (505) 667-7000 Ethics & Audits Internal Audit: (505) 665-3104 Ethics Office: (505) 667-7506 Fax

  7. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium using existing facilities at Hanford: alternative 11B

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF)

  8. Surveillance and Maintenance Plan for the Plutonium Uranium Extraction (PUREX) Facility

    International Nuclear Information System (INIS)

    Woods, P.J.

    1998-05-01

    This document provides a plan for implementing surveillance and maintenance (S ampersand M) activities to ensure the Plutonium Uranium Extraction (PUREX) Facility is maintained in a safe, environmentally secure, and cost-effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE), Office of Environmental Management (EM) Decommissioning Resource Manual (DOE/EM-0246) (DOE 1995), and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996). Specific objectives of the S ampersand M program are: Ensure adequate containment of remaining radioactive and hazardous material. Provide security control for access into the facility and physical safety to surveillance personnel. Maintain the facility in a manner that will minimize potential hazards to the public, the environment, and surveillance personnel. Provide a plan for the identification and compliance with applicable environmental, safety, health, safeguards, and security requirements

  9. Plutonium in the aquatic environment around the Rocky Flats facility

    International Nuclear Information System (INIS)

    Thompson, M.A.

    1975-01-01

    The Rocky Flats Plant of the United States Energy Research and Development Administration has been fabricating and chemically recovering plutonium for over 20 years. During that time, small amounts of plutonium have been released with liquid process and sanitary waste discharges. The liquid waste flows through a series of holding ponds from which it is discharged into a creek that is part of a municipal drinking water supply. The water flows for about 1.5 km between the last holding pond and the municipal drinking water reservoir. In addition, liquid wastes containing high levels of chemical contaminants and plutonium concentrations less than allowable drinking water standards have been discharged to large evaporation ponds. The fate of the plutonium in both the surface and subsurface aquatic environment has been extensively monitored and studied. It has been found that plutonium does not move very far or very rapidly through subsurface water. The majority of the plutonium released through surface water has been contained in the sediments of the plant holding ponds. Small amounts of plutonium have also been found in the sediments of the draining creek and in the sediments of the receiving reservoir. Higher than normal amounts of plutonium were released from the waste treatment plants during times when suspended solids were high. Various biological species have been examined and plutonium concentration factors determined. Considerably less than 1% of the 210 mCi of plutonium released has been detected in biological systems including man. After more than 20 years of large scale operations, no health or environmental hazard has been identified due to the release of small amounts of plutonium. (author)

  10. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    International Nuclear Information System (INIS)

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  11. Comparison of neutron dose measured by Albedo TLD and etched tracks detector at PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Momose, T.; Shinohara, K.; Ishiguro, H.

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has fabricated Plutonium and Uranium Mixed OXide (MOX) fuel for FBR MONJU at Tokai works. In this site, PNC/Panasonic albedo TLDs/1/ are used for personnel neutron monitoring. And a part of workers wore Etched Tracks Detector (ETD) combined with TLD in order to check the accuracy of the neutron dose estimated by albedo TLD. In this paper, the neutron dose measured by TLD and ETD in the routine monitoring is compared at PNC plutonium fuel facilities. (author)

  12. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part A

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume includes background information; purpose of and need for the proposed action; alternatives for disposition of surplus weapons useable plutonium; and

  13. LANL Environmental ALARA Program Status Report for CY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcnaughton, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ruedig, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-24

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection (LANL2016a). In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residual radioactive material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective in 2014 (LANL 2014a). The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.

  14. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  15. Remote handling in the Plutonium Immobilization Project: Plutonium conversion and first stage immobilization

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    Since the break up of the Soviet Union at the end of the Cold War, the United States and Russia have been negotiating ways to reduce their nuclear stockpiles. Economics is one of the reasons behind this, but another important reason is safeguarding these materials from unstable organizations and countries. With the downsizing of the nuclear stockpiles, large quantities of plutonium are being declared excess and must be safely disposed of. The Savannah River Site (SRS) has been selected as the site where the immobilization facility will be located. Conceptual design and process development commenced in 1998. SRS will immobilize excess plutonium in a ceramic waste form and encapsulate it in vitrified high level waste in the Defense Waste Processing Facility (DWPF) canister. These canisters will then be interred in the national repository at Yucca Mountain, New Mexico. The facility is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. This paper will discuss the first two operations

  16. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium sharing existing facilities at Hanford with MOX fuel fabrication facility: alternative 4B

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The MOX Fuel Fabrication Facility (MFFF), which is being costed in a separate report, will also be located in the FMEF in this co-location option

  17. Surplus plutonium disposition draft environmental impact statement. Volume 1, Part B

    International Nuclear Information System (INIS)

    1998-07-01

    On May 22, 1997, DOE published a Notice of Intent (NOI) in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS). DOE's disposition strategy allows for both the immobilization of surplus plutonium and its use as mixed oxide (MOX) fuel in existing domestic, commercial reactors. The disposition of surplus plutonium would also involve disposal of the immobilized plutonium and MOX fuel (as spent nuclear fuel) in a geologic repository. The Surplus Plutonium Disposition Environmental Impact Statement analyzes alternatives that would use the immobilization approach (for some of the surplus plutonium) and the MOX fuel approach (for some of the surplus plutonium); alternatives that would immobilize all of the surplus plutonium; and the No Action Alternative. The alternatives include three disposition facilities that would be designed so that they could collectively accomplish disposition of up to 50 metric tons (55 tons) of surplus plutonium over their operating lives: (1) the pit disassembly and conversion facility would disassemble pits (a weapons component) and convert the recovered plutonium, as well as plutonium metal from other sources, into plutonium dioxide suitable for disposition; (2) the immobilization facility would include a collocated capability for converting nonpit plutonium materials into plutonium dioxide suitable for immobilization and would be located at either Hanford or SRS. DOE has identified SRS as the preferred site for an immobilization facility; (3) the MOX fuel fabrication facility would fabricate plutonium dioxide into MOX fuel. This volume has chapters on environmental consequences; environmental regulations, permits, and consultations; a glossary; list of preparers; distribution list

  18. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  19. Water bath and air bath calorimeter qualification for measuring 3013 containers of plutonium oxide at the Hanford Plutonium Finishing Plant (PFP)

    International Nuclear Information System (INIS)

    WELSH, T.L.

    2003-01-01

    The purpose of this paper is to present qualification data generated from water and air-bath calorimeters measuring radioactive decay heat from plutonium oxide in DOE STD-3013-2000 (3013) containers at the Hanford Plutonium Finishing Plant (PFP). Published data concerning air and water bath calorimeters and especially 3013-qualified calorimeters is minimal at best. This paper will address the data from the measurement/qualification test plan, the heat standards used, and the calorimeter precision and accuracy results. The 3013 package is physically larger than earlier plutonium oxide storage containers, thereby necessitating a larger measurement chamber. To accommodate the measurements of the 3013 containers at PFP, Los Alamos National Laboratory (LANL) supplied a water bath dual-chambered unit and the Savannah River Technology Center (SRTC) provided two air-bath calorimeters. Both types of Calorimeters were installed in the analytical laboratory at PFP. The larger 3013 containers presented a new set of potential measurement problems: longer counting times, heat conductivity through a much larger container mass and wall thickness, and larger amounts of copper shot to assist sample thermal conductivity. These potential problems were addressed and included in the measurement/qualification test plan

  20. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Rock, J.C.; Kiffe, J.; McNerney, M.T.; Turen, T.A.

    1998-06-01

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10 -6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  1. International and institutional aspects of reprocessing and plutonium management

    International Nuclear Information System (INIS)

    1978-09-01

    Various institutional alternatives applicable to reprocessing, plutonium management and recycle are considered, not as a definitive analysis but rather as a basis for identifying the institutional approaches and measures which the Working Group might wish to examine more thoroughly. Seven alternatives arrangements for reprocessing are presented. These range from suspending the operation of existing reprocessing plants through placing national facilities under safeguards to limiting reprocessing to a few large facilities subject to plutonium management, multinational or international control. Finally, the comprehensive alternative of an International Nuclear Fuel Authority with worldwide responsibility for reprocessing and plutonium management is considered. Plutonium management alternatives to complement the reprocessing options, are then outlined. These include national discretion on the separation and disposition of plutonium under safeguards, an agreed Code of Practice for plutonium management at national facilities and the international storage of plutonium. The advantages and disadvantages of the alternative are discussed tentatively. It is recognised that the alternatives are presented in a simplified form and that their elements can be combined or separated in many ways. Although strengthening the institutions relating to the peaceful uses of nuclear energy is imperative and can contribute to non-proliferation, such arrangements might open other proliferation risks through the spread of sensitive materials, facilities and technology. While there are risks with any fuel cycle, where plutonium in quantity is separated these risks are of a high order. Although these can be mitigated, they will have to be set against the energy and economic case for reprocessing and alternatives other than plutonium considered

  2. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  3. Computerized plutonium laboratory-stack monitoring system

    International Nuclear Information System (INIS)

    Stafford, R.G.; DeVore, R.K.

    1977-01-01

    The Los Alamos Scientific Laboratory has recently designed and constructed a Plutonium Research and Development Facility to meet design criteria imposed by the United States Energy Research and Development Administration. A primary objective of the design criteria is to assure environmental protection and to reliably monitor plutonium effluent via the ventilation exhaust systems. A state-of-the-art facility exhaust air monitoring system is described which establishes near ideal conditions for evaluating plutonium activity in the stack effluent. Total and static pressure sensing manifolds are incorporated to measure average velocity and integrated total discharge air volume. These data are logged at a computer which receives instrument data through a multiplex scanning system. A multipoint isokinetic sampling assembly with associated instrumentation is described. Continuous air monitors have been designed to sample from the isokinetic sampling assembly and transmit both instantaneous and integrated stack effluent concentration data to the computer and various cathode ray tube displays. The continuous air monitors also serve as room air monitors in the plutonium facility with the primary objective of timely evacuation of personnel if an above tolerance airborne plutonium concentration is detected. Several continuous air monitors are incorporated in the ventilation system to assist in identification of release problem areas

  4. Assessment of LANL transportation policies and procedures

    International Nuclear Information System (INIS)

    Danna, J.G.; Jennrich, E.A.; Lund, D.M.; Davis, K.D.; Hoevemeyer, S.S.

    1991-04-01

    In order to determine whether activities related to the transportation of waste at Los Alamos National Laboratory (LANL) were being conducted in accordance with DOE policy, requirements stated in applicable DOE Orders were reviewed and compared with LANL policies and procedures described in the Administrative Requirements and the On-Site Transportation Manual. The following DOE Orders were determined to pertain to waste transportation and thus reviewed to identify requirements for which LANL is responsible for satisfying: Order 5820.2A Radioactive Waste Management; Order 1540.1 Materials Transportation and Traffic Management; and Order 5480.3 Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes. The LANL On-Site Transportation Manual and the Administrative Requirements contained in the LANL Environment, Safety, and Health Manual were reviewed to verify that each of the requirements identified through the review of the Orders and 10 CFR Part 71 were being satisfied. The following Administrative Requirements were considered in this task: Shipment of Radioactive Materials; Radioactive Liquid Waste; Low-Level Radioactive Solid Waste; Chemical, Hazardous, and Mixed Waste; Polychlorinated Biphenyls; and Transuranic (TRU) Solid Waste

  5. Plutonium Finishing Plant safety evaluation report

    International Nuclear Information System (INIS)

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE's independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91

  6. 2014 LANL Radionuclide Air Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  7. Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

  8. Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site

    International Nuclear Information System (INIS)

    1991-10-01

    This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation

  9. Ion exchange separation of plutonium and gallium (1) resource and inventory requirements, (2) waste, emissions, and effluent, and (3) facility size

    International Nuclear Information System (INIS)

    DeMuth, S.

    1997-01-01

    The following report summarizes an effort intended to estimate within an order-of-magnitude the (1) resource and inventory requirements, (2) waste, emissions, and effluent amounts, and (3) facility size, for ion exchange (IX) separation of plutonium and gallium. This analysis is based upon processing 3.5 MT-Pu/yr. The technical basis for this summary is detailed in a separate document, open-quotes Preconceptual Design for Separation of Plutonium and Gallium by Ion Exchangeclose quotes. The material balances of this separate document are based strictly on stoichiometric amounts rather than details of actual operating experience, in order to avoid classification as Unclassified Controlled Nuclear Information. This approximation neglets the thermodynamics and kinetics which can significantly impact the amount of reagents required. Consequently, the material resource requirements and waste amounts presented here would normally be considered minimums for processing 3.5 MT-Pu/yr; however, the author has compared the inventory estimates presented with that of an actual operating facility and found them similar. Additionally, the facility floor space presented here is based upon actual plutonium processing systems and can be considered a nominal estimate

  10. Solution In-Line Alpha Counter (SILAC) Instruction Manual-Version 4.00

    International Nuclear Information System (INIS)

    Alferink, Steven M.; Farnham, Joel E.; Fowler, Malcolm M.; Wong, Amy S.

    2002-01-01

    The Solution In-Line Alpha Counter (SILAC) provides near real-time alpha activity measurements of aqueous solutions in gloveboxes located in the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The SILAC detector and its interface software were first developed by Joel Farnham at LANL [1]. This instruction manual describes the features of the SILAC interface software and contains the schematic and fabrication instructions for the detector

  11. Replacement of HEPA Filters at the LANL CMR Facility: Risks Reduced by Comprehensive Waste Characterization

    International Nuclear Information System (INIS)

    Corpion, J.; Barr, A.; Martinez, P.; Bader, M.

    2002-01-01

    In March 2001, the Los Alamos National Laboratory (LANL) completed the replacement of 720 radioactively contaminated HEPA filters for $5.7M. This project was completed five months ahead of schedule and $6.0M under budget with no worker injuries or contaminations. Numerous health and safety, environmental, and waste disposal problems were overcome, including having to perform work in a radioactively contaminated work environment, that was also contaminated with perchlorates (potential explosive). High waste disposal costs were also an issue. A project risk analysis and government cost estimate determined that the cost of performing the work would be $11.8M. To reduce risk, a $1.2M comprehensive condition assessment was performed to determine the degree of toxic and radioactive contamination trapped on the HEPA filters; and to determine whether explosive concentrations of perchlorates were present. Workers from LANL and personnel from Waldheim International of Knoxville, TN collected hundreds of samples wearing personnel protective gear against radioactive, toxic, and explosive hazards. LANL also funded research at the New Mexico Institute of Mining and Technology to determine the explosivity of perchlorates. The data acquired from the condition assessment showed that toxic metals, toxic organic compounds, and explosive concentrations of perchlorates were absent. The data also showed that the extent of actinide metal contamination was less than expected, reducing the potential of transuranic waste generation by 50%. Consequently, $4.2M in cost savings and $1.8M in risk reduction were realized by increased worker productivity and waste segregation

  12. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Tingey, Joel M.; Jones, Susan A.

    2005-01-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  13. Role of non-destructive examinations in leak testing of glove boxes for industrial scale plutonium handling at nuclear fuel fabrication facility along with case study

    International Nuclear Information System (INIS)

    Aher, Sachin

    2015-01-01

    Non Destructive Examinations has the prominent role at Nuclear Fuel Fabrication Facilities. Specifically NDE has contributed at utmost stratum in Leak Testing of Glove Boxes and qualifying them as a Class-I confinement for safe Plutonium handling at industrial scale. Advanced Fuel Fabrication Facility, BARC, Tarapur is engaged in fabrication of Plutonium based MOX (PuO 2 , DDUO 2 ) fuel with different enrichments for first core of PFBR reactor. Alpha- Leak Tight Glove Boxes along with HEPA Filters and dynamic ventilation form the promising engineering system for safe and reliable handling of plutonium bearing materials considering the radiotoxicity and risk associated with handling of plutonium. Leak Testing of Glove Boxes which involves the leak detection, leak rectification and leak quantifications is major challenging task. To accomplish this challenge, various Non Destructive Testing methods have assisted in promising way to achieve the stringent leak rate criterion for commissioning of Glove Box facilities for plutonium handling. This paper highlights the Role of various NDE techniques like Soap Solution Test, Argon Sniffer Test, Pressure Drop/Rise Test etc. in Glove Box Leak Testing along with procedure and methodology for effective rectification of leakage points. A Flow Chart consisting of Glove Box leak testing procedure starting from preliminary stage up to qualification stage along with a case study and observations are discussed in this paper. (author)

  14. Plutonium Vulnerability Management Plan

    International Nuclear Information System (INIS)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy's response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department's Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B

  15. Upgrading a 1944 plutonium-extraction plant to a modern decontamination facility

    International Nuclear Information System (INIS)

    Wills, C.E.; Millikin, R.M.; Cruz, E.A.

    1993-10-01

    The Hanford Site, located in south-central Washington State, is currently undergoing extensive modifications as its mission changes from defense material production to one of waste management and environmental restoration. Starting in World War II, Hanford's mission for over four decades was the production of plutonium for defense needs. With the removal of such defense requirements over the last several years, the Hanford Site has refocused its efforts on the issues of cleanup and safety. The T Plant Complex is the first of the existing facilities to begin conversion from the old mission to the new. This conversion process and associated problems are described

  16. Plutonium safe handling

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2000-01-01

    The abstract, prepared on the basis of materials of the IAEA new leadership on the plutonium safe handling and its storage (the publication no. 9 in the Safety Reports Series), aimed at presenting internationally acknowledged criteria on the radiation danger evaluation and summarizing the experience in the safe management of great quantities of plutonium, accumulated in the nuclear states, is presented. The data on the weapon-class and civil plutonium, the degree of its danger, the measures for provision of its safety, including the data on accident radiation consequences with the fission number 10 18 , are presented. The recommendations, making it possible to eliminate the super- criticality danger, as well as ignition and explosion, to maintain the tightness of the facility, aimed at excluding the radioactive contamination and the possibility of internal irradiation, to provide for the plutonium security, physical protection and to reduce irradiation are given [ru

  17. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  18. Engineering evaluation/cost analysis for the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    1997-01-01

    The deactivated 233-S Plutonium Concentration Facility (233-S Facility) is located in the 200 Area. The facility has undergone severe degradation due to exposure to extreme weather conditions. A rapid freeze and thaw cycle occurred at the Hanford Site during February 1996, which caused cracking to occur on portions of the building's roof. This has resulted in significantly infiltration of water into the facility, which provides a pathway for potential release of radioactive material into the environment (air and/or ground). The weather caused several existing cracks in the concrete portions of the structure to lengthen, increasing the potential for failed confinement of the radioactive material in the building. Differential settlement has also occurred, causing portions of the facility to separate from the main building structure thus creating a potential for release of radioactive material t the environment. An expedited removal action is proposed to ensure that a release from the 233-S Facility does not occur. The US Department of Energy (DOE), Richland Operations Office (RL), in cooperation with the EPA, has prepared this Engineering Evaluation/Cost Analysis (EE/CA) pursuant to CERCLA. Based on the evaluation, RL has determined that hazardous substances in the 233-S Facility may present a potential threat to human health and/or the environment, and that an expedited removal action is warranted. The purpose of the EE/CA is to provide the framework for the evaluation and selection of a technology from a viable set of alternatives for a removal action

  19. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at Hanford: alternatives 4A/8/10

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility, the Fuels and Materials Examination Facility (FMEF), at Hanford

  20. A performance indicator for reduction in vulnerability through stabilization of plutonium

    International Nuclear Information System (INIS)

    Marchese, A.R.; Neogy, P.; Azarm, M.A.

    1997-01-01

    The US Department of Energy (DOE) is currently storing several metric tons of plutonium in various forms in a variety of facilities throughout the DOE complex. Since the cessation of weapons production in 1990, many of these facilities with plutonium in storage have not operated. Since the shutdown was regarded as temporary, little attempt was made at that time to empty the process lines of plutonium, or to place the plutonium in containers or packages that would provide safe storage for extended periods of time. As a result, the packages and containers providing interim storage are vulnerable to failure through leakage, rupture and other modes, and pose potential hazards to facility workers, the public and the environment. Here, an approach to measuring and tracking the reduction in vulnerabilities resulting from stabilizing and repackaging plutonium is developed and presented. The approach utilizes results obtained by the DOE Working Group on the vulnerabilities associated with plutonium storage

  1. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  2. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  3. Technological alternatives for plutonium transport

    International Nuclear Information System (INIS)

    1978-12-01

    This paper considers alternative transport modes (air, sea, road, rail) for moving (1) plutonium from a reprocessing plant to a store or a fuel fabrication facility, and (2) MOX fuel from the latter to a reactor. These transport modes and differing forms of plutonium are considered in terms of: their proliferation resistance and safeguards; environmental and safety aspects; and economic aspects. It is tentatively proposed that the transport of plutonium could continue by air or sea where long distances are involved and by road or rail over shorter distances; this would be acceptable from the non-proliferation, environmental impact and economic aspects - there may be advantages in protection if plutonium is transported in the form of mixed oxide

  4. Automation of plutonium spectrophotometry

    International Nuclear Information System (INIS)

    Perez, J.J.; Boisde, G.; Goujon de Beauvivier, M.; Chevalier, G.; Isaac, M.

    1980-01-01

    Instrumentation was designed and constructed for automatic control of plutonium by molecular absorption spectrophotometry, on behalf of the reprocessing facilities, to meet two objectives: on-line measurement, of the valency state of plutonium, on by-pass, with the measured concentration covering the process concentration range up to a few mg.l -1 ; laboratory measurement of plutonium adjusted to valency VI, with operation carried out using a preparative system meeting the required containment specifications. For this two objectives, the photometer, optical cell connections are made by optical fibers resistant to β, γ radiation. Except this characteristic the devices are different according to the quality required for result [fr

  5. Pyro-oxidation of plutonium spent salts with sodium carbonate

    International Nuclear Information System (INIS)

    Bourges, G.; Godot, A.; Valot, C.; Devillard, D.

    2001-01-01

    The purification of plutonium generates spent salts, which are temporarily stored in a nuclear building. A development programme for pyrochemical treatment is in progress to stabilize and concentrate these salts in order to reduce the quantities for long-term disposal. The treatment, inspired by work previously done by LANL, consists of a pyro-oxidation of the salt with sodium carbonate to convert the actinides into oxides, then of a vacuum distillation to separate the oxides from the volatile salt matrix. Pyro-oxidation of NaCl/KCl base spent salts first produces a 'black salt' which contains more than 97% of the initial actinides. XRD analyses indicate PuO 2 as major plutonium species and sodium plutonates or plutonium sub-oxides PuO 2-x can also be identified. Next appears a 'white salt' containing less than 500 ppm of plutonium, which meets the operational criterion for LLW discard. For these salts, the pyro-oxidation process in and of itself is expected to reduce the quantities to be stored on-site by more than one-third. The pyro-oxidation of CaCl 2 /NaCl base americium extraction salts leads to oxides PuO 2 and probably AmO 2 , but the yield of concentration in the black salt is lower and the white salt cannot be discarded as LLW. During vacuum distillation, excess carbonate can dissociate and damage the efficiency of the process. Appropriate chlorine sparging at the end of the oxidation can eliminate this carbonate. (authors)

  6. THE DEACTIVATION, DECONTAMINATION AND DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT, A FORMER PLUTONIUM PROCESSING FACILITY AT DOE'S HANFORD SITE

    International Nuclear Information System (INIS)

    CHARBONEAU, S.L.

    2006-01-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington,; DC--and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (DandD) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP DandD effort includes descriptions of negotiations with the State of Washington concerning consent

  7. Rough order of magnitude cost estimate for immobilization of 50MT of plutonium using new facilities at the Savannah River site: alternative 12A

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in a new facility at Savannah River Site (SRS)

  8. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 3: Los Alamos National Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The Los Alamos National Laboratory (LANL) was established in 1943 with its sole mission to develop a fission bomb. Since that time, the mission of the Laboratory has expanded to include not only the primary one of nuclear weapon stockpile stewardship, but also one that supports energy, biomedical, environmental, and physical research. As part of the Laboratory's primary and diverse missions, many forms of plutonium materials are used and stored. Over the years of production and use of plutonium at Department of Energy (DOE) sites, some events have occurred that were unexpected and that have resulted in environmental, safety, and/or health concerns. Some of these events have led to improvements that will preclude these concerns from arising again. However, the end of the cold war and the expansion of the Laboratory mission have introduced the possibility of new vulnerabilities

  9. Special Analysis: 2016-003 Upgrade of Area G PA=CA Model to Updated Versions of GoldSim Software and to LANL Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shuman, Rob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several onsite and offsite exposure scenarios. The assessments are based on existing site and disposal facility data, and assumptions about future rates and methods of waste disposal.

  10. Validation of the method for determination of plutonium isotopes in urine samples and its application in a nuclear facility at Otwock

    Directory of Open Access Journals (Sweden)

    Rzemek Katarzyna

    2015-03-01

    Full Text Available The studies aimed at determining low activities of alpha radioactive elements are widely recognized as essential for the human health, because of their high radiotoxicity in case of internal contamination. Some groups of workers of nuclear facility at Otwock are potentially exposed to contamination with plutonium isotopes. For this reason, the method for determination of plutonium isotopes has been introduced and validated in Radiation Protection Measurements Laboratory (LPD of the National Centre for Nuclear Research (NCBJ. In this method the plutonium is isolated from a sample by coprecipitation with phosphates and separated on a AG 1-X2 Resin. After electrodeposition, the sample is measured by alpha spectrometry. Validation was performed in order to assess parameters such as: selectivity, accuracy (trueness and precision and linearity of the method. The results of plutonium determination in urine samples of persons potentially exposed to internal contamination are presented in this work.

  11. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium using existing facilities at the Savannah River site: alternative 12B

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in an existing facility (221-F) at an Savannah River Site (SRS)

  12. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1995-01-01

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficiently reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  13. Technical considerations and policy requirements for plutonium management

    International Nuclear Information System (INIS)

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1996-01-01

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficient reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public

  14. Confinement facilities for handling plutonium

    International Nuclear Information System (INIS)

    Maraman, W.J.; McNeese, W.D.; Stafford, R.G.

    1975-01-01

    Plutonium handling on a multigram scale began in 1944. Early criteria, equipment, and techniques for confining contamination have been superseded by more stringent criteria and vastly improved equipment and techniques for in-process contamination control, effluent air cleaning and treatment of liquid wastes. This paper describes the evolution of equipment and practices to minimize exposure of workers and escape of contamination into work areas and into the environment. Early and current contamination controls are compared. (author)

  15. Preventing pollution from plutonium processing

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through (a) process modifications, (b) use of alternative chemicals and sorbents for residue removal, (c) acid recycling, and (d) judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor, not only for Los Alamos, but for the Nuclear Complex of the future

  16. Preventing pollution from plutonium processing

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through process modifications, use of alternative chemicals and sorbents for residue removal, acid recycling, and judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor , not only for Los Alamos, but for the Nuclear Complex of the future. (author) 12 refs.; 2 figs

  17. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  18. The cement solidification systems at LANL

    International Nuclear Information System (INIS)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing

  19. Precautions for preventing criticality at plutonium fuel treatment facilities

    International Nuclear Information System (INIS)

    Deworm, J.P.; Fieuw, G.; Cank, H. de

    1976-01-01

    Four criticality accidents took place between 1958 and 1964 at fuel processing plants using wet methods. So far accident of this type has taken place at production units where fissionable material is used. The prevention of criticality is one of the major concerns of the officials in charge of the plutonium fuel research laboratories operated at the Mol Nuclear Energy Study Centre by the SCK/CEN-Belgonucleaire Association. The means of preventing such an accident are of three types: introducing different types of treatment in well-defined work units; thorough analysis of planned experiments or fabrication programmes to determine the sub-criticality factors; application of technical and administrative procedures which ensure that the facilities are always sub-critical during the treatment and storage of fissionable materials. The installation includes a detection and warning system and provision is made for the immediate evacuation of staff should a crticality incident occur. The effects of a critical excursion on the building have been assessed. (author)

  20. HB-Line Plutonium Oxide Data Collection Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R. [Savannah River Nuclear Solutions; Varble, J. [Savannah River Nuclear Solutions; Jordan, J. [Savannah River Nuclear Solutions

    2015-05-26

    HB-Line and H-Canyon will handle and process plutonium material to produce plutonium oxide for feed to the Mixed Oxide Fuel Fabrication Facility (MFFF). However, the plutonium oxide product will not be transferred to the MFFF directly from HB-Line until it is packaged into a qualified DOE-STD-3013-2012 container. In the interim, HB-Line will load plutonium oxide into an inner, filtered can. The inner can will be placed in a filtered bag, which will be loaded into a filtered outer can. The outer can will be loaded into a certified 9975 with getter assembly in compliance with onsite transportation requirement, for subsequent storage and transfer to the K-Area Complex (KAC). After DOE-STD-3013-2012 container packaging capabilities are established, the product will be returned to HB-Line to be packaged into a qualified DOE-STD-3013-2012 container. To support the transfer of plutonium oxide to KAC and then eventually to MFFF, various material and packaging data will have to be collected and retained. In addition, data from initial HB-Line processing operations will be needed to support future DOE-STD-3013-2012 qualification as amended by the HB-Line DOE Standard equivalency. As production increases, the volume of data to collect will increase. The HB-Line data collected will be in the form of paper copies and electronic media. Paper copy data will, at a minimum, consist of facility procedures, nonconformance reports (NCRs), and DCS print outs. Electronic data will be in the form of Adobe portable document formats (PDFs). Collecting all the required data for each plutonium oxide can will be no small effort for HB-Line, and will become more challenging once the maximum annual oxide production throughput is achieved due to the sheer volume of data to be collected. The majority of the data collected will be in the form of facility procedures, DCS print outs, and laboratory results. To facilitate complete collection of this data, a traveler form will be developed which

  1. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu; Nakamura, Hironobu; Tanaka, Izumi

    2007-01-01

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  2. International shipment of plutonium by air

    International Nuclear Information System (INIS)

    Mercado, J.E.; McGrogan, J.P.

    1995-05-01

    In support of the United States (US) Government's decision to place excess plutonium oxide at the US Department of Energy's (DOE) Hanford Site under International Atomic Energy Agency (IAEA) safeguards, the Department of State notified the Congress that a plutonium storage vault at the Plutonium Finishing Plant at the Hanford Site would be added to the eligible facilities list. As part of the preparations to transfer the plutonium oxide under IAEA safeguards, samples of the powder were taken from the inventory to be shipped to the IAEA headquarters in Vienna, Austria, for laboratory analysis. The analysis of these samples was of high priority, and the IAEA requested that the material be shipped by aircraft, the most expeditious method

  3. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO 2 and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program

  4. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program

  5. Plutonium scrap processing at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Nixon, A.E.; McKerley, B.J.; Christensen, E.L.

    1980-01-01

    The Los Alamos Scientific Laboratory currently has the newest plutonium handling facility in the nation. Los Alamos has been active in the processing of plutonium almost since the discovery of this man-made element in 1941. One of the functions of the new facility is the processing of plutonium scrap generated at LASL and other sites. The feed for the scrap processing program is extremely varied, and a wide variety of contaminants are often encountered. Depending upon the scrap matrix and contaminants present, the majority of material receives a nitric acid/hydrofluoric acid or nitric acid/calcium fluoride leach. The plutonium nitrate solutions are then loaded onto an anion exchange column charged with DOWEX 1 x 4, 50 to 100 mesh, nitrate form resin. The column is eluted with 0.48 M hydroxyl amine nitrate. The Pu(NO 3 ) 3 is then precipitated as plutonium III oxalate which is calcined at 450 to 500 0 C to yield a purified PuO 2 product

  6. Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans

  7. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  8. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Dodge, Robert L.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  9. Transuranic (TRU) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.; Dodge, Robert L.

    2011-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actinide Processing Group at TA-55 uses one-meter or longer glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glovebox as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste volume generation by almost 2½ times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  10. GrayQbTM Single-Faced Version 2 (SF2) Hanford Plutonium Reclamation Facility (PRF) deployment report

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, J. R. [Savannah River Site (SRS), Aiken, SC (United States); Immel, D. M. [Savannah River Site (SRS), Aiken, SC (United States); Serrato, M. G. [Savannah River Site (SRS), Aiken, SC (United States); Dalmaso, M. J. [Savannah River Site (SRS), Aiken, SC (United States); Shull, D. J. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-11-18

    The Savannah River National Laboratory (SRNL) in partnership with CH2M Plateau Remediation Company (CHPRC) deployed the GrayQbTM SF2 radiation imaging device at the Hanford Plutonium Reclamation Facility (PRF) to assist in the radiological characterization of the canyon. The deployment goal was to locate radiological contamination hot spots in the PRF canyon, where pencil tanks were removed and decontamination/debris removal operations are on-going, to support the CHPRC facility decontamination and decommissioning (D&D) effort. The PRF canyon D&D effort supports completion of the CHPRC Plutonium Finishing Plant Decommissioning Project. The GrayQbTM SF2 (Single Faced Version 2) is a non-destructive examination device developed by SRNL to generate radiation contour maps showing source locations and relative radiological levels present in the area under examination. The Hanford PRF GrayQbTM Deployment was sponsored by CH2M Plateau Remediation Company (CHPRC) through the DOE Richland Operations Office, Inter-Entity Work Order (IEWO), DOE-RL IEWO- M0SR900210.

  11. Plutonium Immobilization Can Loading Concepts

    International Nuclear Information System (INIS)

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item

  12. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  13. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    International Nuclear Information System (INIS)

    Bronson, M.C.

    1997-01-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium

  14. Impact of receipt of coprocessed uranium/plutonium on advanced accountability concepts and fabrication facilities. Addendum 1 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Randall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to assess the effect of coprocessed UO 2 --PuO 2 feed on the observations made in the original Phase I effort and on the proposed Phase II program. The retention of plutonium mixed with uranium throughout the process was also considered. This addendum reports that coprocessed feed would have minimal effect on the DYMAC program, except in the areas of material specifications, starting material delivery schedule, and labor requirements. Each of these areas is addressed, as are the impact of coprocessed feed at a large fuel fabrication facility and the changes needed in the dirty scrap recovery process to maintain the lower plutonium levels which may be required by future nonproliferation philosophy. An amended schedule for Phase II is included

  15. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    During the past decade, IAEA inspectors, national inspectors, and facility operators have used neutron coincidence counters and gamma-ray isotopics measurements extensively to measure the plutonium content of various forms of nuclear materials in the fuel cycle. Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector''s oversight of measurement operations, reduce the inspector''s workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained form unattended assays could be used by independent inspectors such as the IAEA. The standardized containers and robot-controlled fuel movements in automated facilities enable more accurate nondestructive assay (NDA) measurements than are possible in conventional nonautomated facilities. The NDA instrumentation can be custom designed and optimized for the particular measurement goal in the automated facility

  16. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-12-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

  17. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-01-01

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO 2 , Mg(OH) 2 precipitation, supercritical H 2 O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination ampersand Decommissioning (D ampersand D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations

  18. Evaluation of the seismic integrity of a plutonium-handling facility

    International Nuclear Information System (INIS)

    Coats, D.W.

    1981-01-01

    Many studies have been made by and for the Lawrence Livermore National Laboratory (LLNL) to ensure the seismic safety of its Plutonium Facility (Building 332). These studies have included seismological and geologic field investigations to define the actual seismic hazard existing at the Laboratory site as well as structural studies of the Facility itself. Because the basic seismic design criteria has undergone changes over the years, numerous structural studies and upgrades have been completed. The seismic criteria in use at the LLNL site is reviewed on a continuing basis as new information on the seismicity and geology of the Livermore Valley is obtained. At present, the Laboratory's Earth Sciences Division is conducting a multi-million dollar program to identify and characterize the geologic hazards at the Livermore site, with the primary emphasis on earthquake hazards in the Livermore Valley. This effort is undergoing an independent review by Woodward-Clyde Associates. Additionally, because of increased concerns over the seismic safety of Building 332, the Laboratory has initiated an independent structural review. This review effort will be monitored by the California Seismic Safety Commission to ensure its independence. Both of these studiies are in their early stages and results are not yet available

  19. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    Energy Technology Data Exchange (ETDEWEB)

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  20. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    International Nuclear Information System (INIS)

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy

  1. Nondestructive analysis of plutonium contaminated soil

    International Nuclear Information System (INIS)

    Smith, H.E.; Taylor, L.H.

    1977-01-01

    Plutonium contaminated soil is currently being removed from a covered liquid waste disposal trench near the Pu Processing facility on the Hanford Project. This soil with the plutonium is being mined using remote techniques and equipment. The mined soil is being packaged for placement into retrievable storage, pending possible recovery. To meet the requirements of criticality safety and materials accountability, a nondestructive analysis program has been developed to determine the quantity of plutonium in each packing-storage container. This paper describes the total measurement program: equipment systems, calibration techniques, matrix assumption, instrument control program and a review of laboratory operating experience

  2. Plutonium production in a remote cell

    International Nuclear Information System (INIS)

    Maddux, E.P.; Purcell, J.A.

    1987-01-01

    Production of 239 Pu metal has traditionally been carried out in glovebox enclosures for protection of operating personnel and the environment. With the advent of more stringent federal regulations for protecting personnel, the environment, and security of special nuclear materials, it is proposed that plutonium be processed in a totally remote environment using automated work stations and robotic materials transfer and equipment maintenance. At the Savannah River Plant, the existing plutonium production facility is a batch-type glovebox operation built in the 1950s. A viable alternative to restoration of the existing glovebox operation is to provide a facility that uses remote cell operation

  3. Improved practices for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-09-03293) - 16280

    International Nuclear Information System (INIS)

    Goyal, Kapil K.; Carson, Peter H.

    2009-01-01

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure that hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is implemented before they are shipped to WIPP. A defensive approach was used for many years to minimize the number of problematic drums. However, based on review of data associated with headspace gas sampling, NDA and RTR results, and enhanced coordination with the entities responsible for waste certification, many changes have been implemented to facilitate packaging of TRU waste drums with higher isotopic loading at the Plutonium Facility at an unprecedented rate while ensuring compliance with waste acceptance criteria. This paper summarizes the details of technical changes and related administrative coordination activities, such as information sharing among the certification entities, generators, waste packagers, and shippers. It discusses the results of all such cumulative changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL has accomplished to expeditiously certify and dispose of newly generated TRU waste. (authors)

  4. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    International Nuclear Information System (INIS)

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-01-01

    This paper presents an overview of potential technologies for stabilization of 238 Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from 238 Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented

  5. A vision for environmentally conscious plutonium processing

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.

    1998-01-01

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power and remediation. An unavoidable aspect of plutonium processing is that radioactive contaminated gas, liquid, and solid streams are generated. These streams need to be handled in a manner that is not only in full compliance with today's laws,but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. The theme of this paper is that recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to our children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. This paper will describe such a vision for plutonium processing that could be implemented fully within five years at a facility such as the Los Alamos Plutonium Facility (TA55). As a significant bonus, even on this short time scale, the initial technology investment is handsomely returned in avoided waste management costs

  6. Regulatory issues for deep borehole plutonium disposition

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission

  7. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  8. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  9. Possible combustion hazards in 3013 plutonium waste container

    International Nuclear Information System (INIS)

    Sherman, M.P.

    1999-01-01

    Are there combustion hazards in plutonium-contaminated waste containers caused by combustible gas generation? Current gas generation models in which the only reaction considered is radiolysis must inevitably predict eventual complete dissociation of any water present into hydrogen and oxygen. Waste prepared for the 3013 container should be less subject to this problem because organic material and most of the absorbed water should have been removed. Depending on the waste form, moisture content, organic content, temperature, and container material, the pressure rise due to gas generation will be bounded by backreactions, recombination of the hydrogen and oxygen, absorption of the oxygen by plutonium oxide, and possibly other chemical reactions. Examination of a variety of food pack waste containers at Los Alamos National Laboratory (LANL) has shown little pressure rise, indeed often subatmospheric pressures. In a few cases large hydrogen concentrations up to 47% mole fraction were observed, but with negligible oxygen content. The only fuel seen in significant quantities was H 2 and, in one case, CO; the only oxidizer seen in significant quantities was O 2 . Considerable work on measuring gas generation is being done at Westinghouse Savannah River Company and LANL. In a mixture of H 2 , O 2 , and other diluent gases, if the hydrogen concentration is below the value at the lean flammability limit, or if the oxygen concentration is below that at the rich flammability limit, a flame will not propagate from an ignition source. Assuming H 2 is the only fuel present in significant quantities, a mixture leaner than the lean limit will get only leaner if mixed with air and is therefore no combustion hazard. However, when a mixture containing large amounts of H 2 is nonflammable because there is insufficient O 2 , there is a hazard. If the mixture should leak into a volume containing O 2 , or the container is opened into the surrounding air, the mixture will pass through the

  10. Treatment of plutonium contaminated ashes by electrogenerated Ag(II): a new, simple and efficient process

    International Nuclear Information System (INIS)

    Madic, C.; Saulze, J.L.; Bourges, J.; Lecomte, M.; Koehly, G.

    1990-01-01

    Incineration is a very attractive technique for managing plutonium contaminated solid wastes, allowing for large volume and mass reduction factors. After waste incineration, the plutonium is concentrated in the ashes and an efficient method must be designed for its recovery. To achieve this goal, a process based on the dissolution of plutonium in nitric solution under the agressive action of electrogenerated Ag(II) was developed. This process is very simple, requiring very few steps. Plutonium recovery yields up to 98% can be obtained and, in addition, the plutonium bearing solutions generated by the treatment can be processed by the PUREX technique for plutonium recovery. This process constitutes the basis for the development of industrial facilities: 1) a pilot facility is being built in MARCOULE (COGEMA, UP1 plant), to treat active ash in 1990; 2) an industrial facility will be built in the MELOX plant under construction at MARCOULE (COGEMA plant)

  11. ZPR-9 airborne plutonium monitoring system

    International Nuclear Information System (INIS)

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  12. Status summary of chemical processing development in plutonium-238 supply program

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wham, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DePaoli, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sherman, Steven R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-01

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO2 product to Los Alamos National Laboratory (LANL) at an average rate of 1.5 kg/y.

  13. Plutonium fires; Incendies de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, E.

    1959-06-23

    The author reports an information survey on accidents which occurred when handling plutonium. He first addresses accidents reported in documents. He indicates the circumstances and consequences of these accidents (explosion in glove boxes, fires of plutonium chips, plutonium fire followed by filter destruction, explosion during plutonium chip dissolution followed by chip fire). He describes hazards associated with plutonium fires: atmosphere and surface contamination, criticality. The author gives some advices to avoid plutonium fires. These advices concern electric installations, the use of flammable solvents, general cautions associated with plutonium handling, venting and filtration. He finally describes how to fight plutonium fires, and measures to be taken after the fire (staff contamination control, atmosphere control)

  14. Plutonium immobilization program - Cold pour Phase 1 test results

    International Nuclear Information System (INIS)

    Hamilton, L.

    2000-01-01

    The Plutonium Immobilization Project will disposition excess weapons grade plutonium. It uses the can-in-canister approach that involves placing plutonium-ceramic pucks in sealed cans that are then placed into Defense Waste Processing Facility canisters. These canisters are subsequently filled with high-level radioactive waste glass. This process puts the plutonium in a stable form and makes it unattractive for reuse. A cold (non-radioactive) glass pour program was performed to develop and verify the baseline design for the canister and internal hardware. This paper describes the Phase 1 scoping test results

  15. Plutonium Immobilization Program - Cold pour Phase 1 test results

    International Nuclear Information System (INIS)

    Hamilton, L.

    2000-01-01

    The Plutonium Immobilization Project will disposition excess weapons grade plutonium. It uses the can-in-canister approach that involves placing plutonium-ceramic pucks in sealed cans that are then placed into Defense Waste Processing Facility canisters. These canisters are subsequently filled with high-level radioactive waste glass. This process puts the plutonium in a stable form and makes it unattractive for reuse. A cold (non-radioactive) glass pour program was performed to develop and verify the baseline design for the canister and internal hardware. This paper describes the Phase 1 scoping test results

  16. Stop plutonium; Stop plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  17. Final characterization report for the non-process areas of the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Encke, D.B.; Harris, R.A.

    1997-04-01

    This report addresses the 233-S Plutonium Concentration Facility characterization survey data collected from January 21, 1997 through February 3, 1997. The characterization activities evaluated the radiological status and identified the hazardous materials locations. The scope of this report is limited to the nonprocess areas in the facility, which include the special work permit (SWP) change room, toilet, equipment room, electrical cubicle, control room, and pipe gallery. A portion of the roof (excluding the roof over the process hood and viewing room) was also included. Information in this report will be used to identify waste streams, provide specific chemical and radiological data to aid in planning decontamination and demolition activities, and allow proper disposal of the demolition debris, as required by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  18. Smart unattended systems for plutonium safeguards

    International Nuclear Information System (INIS)

    Menlove, H.O.; Abhold, M.; Eccleston, G.; Puckett, J.M.

    1996-01-01

    Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. The robotics used for automation require special containers for nuclear material that cannot be easily removed from the production line. Safety and radiation protection considerations also require that the assay instrumentation be installed in the fuel production lines because, in general, personnel cannot be in the fuel-handling area with nuclear material during operations. Such operational constraints are common in many of the modern facilities that have been designed for fabricating and processing plutonium fuel. A bilateral safeguards agreement between the US Department of Energy (DOE) and Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan was signed to develop and implement nondestructive assay (NDA) systems to provide continuous safeguards measurements for material accountancy in the robot-automated Plutonium Fuel Fabrication Facility (PFFF). The PFFF assay systems were required to operate in unattended mode with a size and fuel mass capability to match the robotics fuel manipulators. Unattended assay systems reduce the requirement for inspector's oversight of measurement operations, reduce the inspector's workload, and improve inspection efficiencies. In addition, unattended measurements become essential when facility constraints limit the access of inspectors to the operations area during material processing. Authentication techniques were incorporated into the NDA systems so that data obtained from unattended assays could be used by independent inspectors such as the IAEA

  19. A vision for environmentally conscious plutonium processing

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Christensen, D.C.; Miller, W.L.

    1998-01-01

    Regardless of individual technical and political opinions about the uses of plutonium, it is virtually certain that plutonium processing will continue on a significant global scale for many decades for the purposes of national defense, nuclear power, and remediation. An unavoidable aspect of plutonium processing is that radioactively contaminated gas, liquid, and solid waste streams are generated. These streams need to be handled in a manner that not only is in full compliance with today's laws but also will be considered environmentally and economically responsible now and in the future. In this regard, it is indeed ironic that the multibillion dollar and multidecade radioactive cleanup mortgage that the US Department of Energy (and its Russian counterpart) now owns resulted from waste management practices that were at the time in full legal compliance. It is now abundantly evident that in the long run, these practices have proven to be neither environmentally nor economically sound. Recent dramatic advances in actinide science and technology now make it possible to drastically minimize or even eliminate the problematic waste streams of traditional plutonium processing operations. Advanced technology thereby provides the means to avoid passing on to children and grandchildren significant environmental and economic legacies that traditional processing inevitably produces. The authors describe such a vision for plutonium processing that could be implemented fully within 5 yr at a facility such as the Los Alamos National Laboratory Plutonium Facility (TA55). As a significant bonus, even on this short timescale, the initial technology investment is handsomely returned in avoided waste management costs

  20. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  1. Final Report for the Restart of the Waste Characterization, Reduction and Repackaging Facility (WCRRF) Contractor Readiness Assessment (CRA)

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Gregory Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-22

    The Los Alamos National Laboratory (LANL or Laboratory) Contractor Readiness Assessment (CRA) required for restart of the Technical Area (TA) 50 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) for remediated nitrate salt (RNS) waste operations was performed in compliance with the requirements of Department of Energy (DOE) Order (O) 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, and LANL procedure FSD-115-001, Verification of Readiness to Start Up or Restart LANL Nuclear Facilities, Activities, and Operations.

  2. Plutonium inventories for stabilization and stabilized materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  3. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  4. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    International Nuclear Information System (INIS)

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-01

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility

  5. Compositions of airborne plutonium-bearing particles from a plutonium finishing operation

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-11-01

    The elemental composition of 111 plutonium-bearing particles was determined (using an electron microprobe) as part of a program to investigate the origin and behavior of the long-lived transuranic radionuclides released from fuel reprocessing facilities at the Savannah River Plant. These particles, collected from wet-cabinet and room-air exhausts from the plutonium finishing operation (JB-Line), were between 0.4 and 36 μm in diameter. Ninety-nine of the particles were found to be aggregates of various minerals and metals, six were quartz, and six were small (less than 2-μm-diameter) pieces of iron oxide. Collectively, these particles contained less minerals and more metals than natural dusts contain. The metallic constituents included elements normally not found in dusts, e.g., chromium, nickel, copper, and zinc. Concentrations of aluminum and iron exceeded those normally found in minerals. Elemental concentrations in individual particles covered a wide range: one 2-μm-diameter particle contained 97 percent NiO, a 9-μm-diameter particle contained 72 percent Cr 2 O 3 . Although the particles were selected because they produced plutonium fission tracks, the plutonium concentration was too low to be estimated by microprobe analysis in all but a 1-μm-diameter particle. This plutonium-bearing particle contained 73 percent PuO 2 by weight in combination with Fe 2 O 3 and mica; its activity was estimated at 0.17 pCi of 239 Pu

  6. Remote handling in the Plutonium Immobilization Project: Puck handling

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    Since the break up of the Soviet Union at the end of the Cold War, the US and Russia have been negotiating ways to reduce their nuclear stockpiles. Economics is one of the reasons behind this, but another important reason is safeguarding these materials from unstable organizations and countries. With the downsizing of the nuclear stockpiles, large quantities of plutonium are being declared excess and must be safely disposed of. The Savannah River Site (SRS) has been selected as the site where the immobilization facility will be located. Conceptual design and process development commenced in 1998. SRS will immobilize excess plutonium in a ceramic waste form and encapsulate it in vitrified high level waste in the Defense Waste Processing Facility (DWPF) canister. These canisters will then be interred in the national repository at Yucca Mountain, New Mexico. The facility is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. This paper will discuss the first two operations

  7. Summary of the last step of active test at separation facility and purification facility in Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kuroishi, Yuuki; Iseki, Tadahiro; Mitani, Akira; Takahashi, Naoki; Tsujimura, Akino; Sato, Nobuharu; Inaba, Makoto; Itagaki, Takashi

    2008-01-01

    During the last step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performance of the Separation Facility, mainly for pulsed columns and mixer-settlers were tested; Diluent washing efficiency, Plutonium extraction and stripping efficiency, Decontamination factors of fission products and Uranium and plutonium losses into wastes. Also, those of the Plutonium purification unit in the Purification Facility have been checked; Diluent washing efficiency, Plutonium extraction and stripping efficiency and Plutonium losses into wastes. Test results were equivalent to or better than expected values. (author)

  8. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  9. Impact of dynamic certification requirements on the Nuclear Materials Technology Division's transuranic waste management program

    International Nuclear Information System (INIS)

    Balkey, J.J.; Montoya, A.J.; Wieneke, Ronald E.

    2002-01-01

    The issuance of the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit in August of 2000, specifically the attachment I3 Waste Analysis Plan (WAP),had a profound impact upon transuranic (TRU) waste certification at Los Alamos National Laboratory's (LANL) Plutonium Facility. Program certification was lost until Laboratory internal program documents could be amended to meet the new WAP requirements, waste management personnel could be retrained to incorporate the changes into waste operations and the entire program successfully pass subsequent Carlsbad Field Ofice (CBFO) audit. This action resulted in the suspension of transuranic waste shipments from LANL to WIPP. In addition the changes unnecessarily increased the complexity of TRU waste program activities in waste handling.

  10. Los Alamos National Laboratory new generation standard nuclear material storage container - the SAVY4000 design

    International Nuclear Information System (INIS)

    Stone, Timothy Amos

    2010-01-01

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based standard involving storage of nuclear material (RD003). This RD003 requirements document has sense been updated to reflect requirements as identified with recently issued DOE M 441.1-1 'Nuclear Material Packaging Manual'. The new packaging manual was issued at the encouragement of the Defense Nuclear Facilities Safety Board with a clear directive for protecting the worker from exposure due to loss of containment of stored materials. The Manual specifies a detailed and all inclusive approach to achieve a high level of protection; from package design and performance requirements, design life determinations of limited life components, authorized contents evaluations, and surveillance/maintenance to ensure in use package integrity over time. Materials in scope involve those stored outside an approved engineered-contamination barrier that would result in a worker exposure of in excess of 5 rem Committed Effective Does Equivalent (CEDE). Key aspects of meeting the challenge as developed around the SAVY-3000 vented storage container design will be discussed. Design performance and acceptance criteria against the manual, bounding conditions as established that the user must ensure are met to authorize contents in the package (based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide), interface as a safety class system within the facility under the LANL plutonium facility DSA, design life determinations for limited life components, and a sense of design specific surveillance program

  11. Systems work for Plutonium Fuel Production Facility (PFPF) near-real-time accounting

    International Nuclear Information System (INIS)

    Picard, R.R.; Hafer, J.F.; Pillay, K.K.S.; Takahashi, S.; Ohtani, T.; Eguchi, K.; Seya, M.

    1990-01-01

    A joint effort by the Los Alamos National Laboratory and the Power Reactor and Nuclear Fuel Development Corporation of Japan examines materials accounting for the Plutonium Fuel Production Facility. A unique feature of the systems work is a sophisticated data generator. This software follows individual items throughout the process, creating detailed data files for variance propagation. The data generator deals with user-specified process operations and handles related accounting problems, such as the tracking of individual measurements through numerous blending and splitting procedure, frequent decay correction (important for large inventories), scrap recovery, and automated determination of static inventory. There is no need to rely on simplified assumptions regarding process operation and material measurement. Also, the joint study applies recent theoretical work on stratified inspection of nonhomogeneous inventories and sequential analysis of MUF -- D. 4 refs

  12. The future of plutonium - an overview

    International Nuclear Information System (INIS)

    Larson, C.E.

    1975-01-01

    Plutonium is the underpinning of the nuclear industry. Without it it is estimated that the fuel will run out not long after the turn of the century. With plutonium in fast breeders nuclear reactors can be operated for tens of thousands of years and the depleted uranium now available can be utilized The fuel cycle contemplated is similar to that of the light water reactor with some important differences at least partially related to the greater radioactivity of the resulting mixture of plutonium isotopes. The regulatory program does recognize the problems, including those of toxicity, safeguards and transportation. The concept of an integrated fuel cycle facility at a single location must be seriously considered. (author)

  13. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  14. Shielding calculational system for plutonium

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Thomsen, D.H.

    1975-08-01

    A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)

  15. Capabilities required to conduct the LLNL plutonium mission

    International Nuclear Information System (INIS)

    Kass, J.; Bish, W.; Copeland, A.; West, J.; Sack, S.; Myers, B.

    1991-01-01

    This report outlines the LLNL plutonium related mission anticipated over the next decade and defines the capabilities required to meet that mission wherever the Plutonium Facility is located. If plutonium work is relocated to a place where the facility is shared, then some capabilities can be commonly used by the sharing parties. However, it is essential that LLNL independently control about 20000 sq ft of net lab space, filled with LLNL controlled equipment, and staffed by LLNL employees. It is estimated that the cost to construct this facility should range from $140M to $200M. Purchase and installation of equipment to replace that already in Bldg 332 along with additional equipment identified as being needed to meet the mission for the next ten to fifteen years, is estimated to cost $118M. About $29M of the equipment could be shared. The Hardened Engineering Test Building (HETB) with its additional 8000 sq ft of unique test capability must also be replaced. The fully equipped replacement cost is estimated to be about $10M. About 40000 sq ft of setup and support space are needed along with office and related facilities for a 130 person resident staff. The setup space is estimated to cost $8M. The annual cost of a 130 person resident staff (100 programmatic and 30 facility operation) is estimated to be $20M

  16. Long-term plutonium storage: Design concepts

    International Nuclear Information System (INIS)

    Wilkey, D.D.; Wood, W.T.; Guenther, C.D.

    1994-01-01

    An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs

  17. International plutonium policy

    International Nuclear Information System (INIS)

    1978-12-01

    The need to distinguish between diversion by sub-national groups and by governments is clearly stated. The paper identifies the international safeguards measures which already exist for the handling of plutonium. It proposes that the implementation of Article XII A5 of the IAEA statute concerning the international storage of plutonium could be an important additional measure. The paper also mentions the concept of using confinement as a complimentary safeguards measure and identifies the PIPEX concept. In addition, greater use is proposed of containment and surveillance procedures. The multiplication of small reprocessing plants spread over many countries is perceived as a proliferation risk. Other means such as co-location of reprocessing and fuel fabrication facilities are relevant to diversion by sub-national groups

  18. The Plutonium Temperature Effect Experimental Program

    Energy Technology Data Exchange (ETDEWEB)

    Haeck, Wim; Leclaire, Nicolas; Letang, Eric [IRSN, Fontenay-aux-Roses (France); Girault, Emmanuel; Fouillaud, Patrick [CEA, VALDUC (France)

    2008-07-01

    Various theoretical studies have shown that highly diluted plutonium solutions could have a positive temperature effect but (up to now) no experimental program has confirmed this effect. The main goal of the French Plutonium Temperature Effect Experimental Program (or PU+ in short) is to effectively show that such a positive temperature effect exists for diluted plutonium solutions. The experiments were conducted in the 'Apparatus B' facility at the CEA Valduc research centre in France and involved several sub-critical approach type of experiments using plutonium nitrate solutions with concentrations of 14.3, 15 and 20 g/l at temperatures ranging from 20 to 40 deg. C. A total number of 14 phase I experiments (consisting of independent subcritical approaches) have been performed (5 at 20 g/l, 4 at 15 g/l and 5 at 14.3 g/l) between 2006 and 2007. The impact of the uncertainties on the solution acidity and the plutonium concentration makes it difficult to clearly demonstrate the positive temperature effect, requiring an additional phase II experiment (in which the use of the same plutonium solution was ensured) from 22 to 28 deg. C performed in July 2007. This experiment has shown the existence of a positive temperature effect approx +2 pcm/deg. C (from 22 to 28 deg. C for a plutonium concentration of 14.3 g/l). (authors)

  19. Appraisal of BWR plutonium burners for energy centers

    International Nuclear Information System (INIS)

    Williamson, H.E.

    1976-01-01

    The design of BWR cores with plutonium loadings beyond the self-generation recycle (SGR) level is investigated with regard to their possible role as plutonium burners in a nuclear energy center. Alternative plutonium burner approaches are also examined including the substitution of thorium for uranium as fertile material in the BWR and the use of a high-temperature gas reactor (HTGR) as a plutonium burner. Effects on core design, fuel cycle facility requirements, economics, and actinide residues are considered. Differences in net fissile material consumption among the various plutonium-burning systems examined were small in comparison to uncertainties in HTGR, thorium cycle, and high plutonium-loaded LWR technology. Variation in the actinide content of high-level wastes is not likely to be a significant factor in determining the feasibility of alternate systems of plutonium utilization. It was found that after 10,000 years the toxicity of actinide high-level wastes from the plutonium-burning fuel cycles was less than would have existed if the processed natural ores had not been used for nuclear fuel. The implications of plutonium burning and possible future fuel cycle options on uranium resource conservation are examined in the framework of current ERDA estimates of minable uranium resources

  20. Detection and measurement of gamma-ray self-attenuation in plutonium residues

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Estep, R.J.

    1996-01-01

    A new method to correct for self-attenuation in gamma-ray assays of plutonium is presented. The underlying assumptions of the technique are based on a simple but accurate physical model of plutonium residues, particularly pyrochemical salts, in which it is assumed that the plutonium is divided into two portions, each of which can be treated separately from the standpoint of gamma-ray analysis: a portion that is in the form of plutonium metal shot; and a dilute portion that is mixed with the matrix. The performance of the technique is evaluated using assays of plutonium residues by tomographic gamma scanning at the Los Alamos Plutonium Facility. The ability of the method to detect saturation conditions is examined

  1. Repository and deep borehole disposition of plutonium

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1996-02-01

    Control and disposition of excess weapons plutonium is a growing issue as both the US and Russia retire a large number of nuclear weapons> A variety of options are under consideration to ultimately dispose of this material. Permanent disposition includes tow broad categories: direct Pu disposal where the material is considered waste and disposed of, and Pu utilization, where the potential energy content of the material is exploited via fissioning. The primary alternative to a high-level radioactive waste repository for the ultimate disposal of plutonium is development of a custom geologic facility. A variety of geologic facility types have been considered, but the concept currently being assessed is the deep borehole

  2. LAFD: TA-55 General Facility Familiarization Tour, Course #55261

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Joshua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mason, Robert Clifford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-10

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for personnel of the Los Alamos County Fire Department (LAFD) at the TA-55 General Facility. These familiarization tours are official LANL business; the purpose of these tours is to orient LAFD firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes, among other topics, ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills and abilities to perform firefighting operations and other emergency response tasks that cannot be provided by LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.

  3. LAFD: TA-16 HE Facility Familiarization Tour, OJT 55258

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-31

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for personnel of the Los Alamos County Fire Department (LAFD) at TA-16 high explosives (HE) facilities. These familiarization tours are official LANL business; the purpose of these tours is to orient LAFD firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes, among other topics, ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills and abilities to perform firefighting operations and other emergency response tasks that cannot be provided by LANL personnel who have the required clearance. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.

  4. Cost/benefit analysis for selected waste minimization technologies at TA-55

    International Nuclear Information System (INIS)

    Boerigter, S.T.

    1996-01-01

    The TA-55 plutonium facility at LANL is one of the remaining plutonium-handling facilities in the United States with significant operational capability. In recent years a great deal of attention has been focused on the waste streams generated by this facility. Costs of properly treating these streams have risen significantly. This paper discusses the characterization of several proposed radioactive waste minimization technologies as a function of Return on Investment (ROI). In particular, the DOE Environmental Management program has identified a specific funding channel for such technology development activities, but this funding channel requires a restrictive definition of ROI. Here, a simple extension to the required ROI equation is used to capture the lifecycle ROI due to offsets in future capital charges resulting from present spending

  5. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses

  6. Mortality among plutonium and other workers at a nuclear facility

    International Nuclear Information System (INIS)

    Wilkinson, G.S.; Voelz, G.L.; Acquavella, J.F.; Tietjen, G.L.; Reyes, M.; Brackbill, R.; Wiggs, L.

    1983-01-01

    Mortality among plutonium and other nuclear workers has been investigated to assess the effects of exposures to low levels of internal and external radiation. Standarized mortality ratios (SMRs) for white male workers employed at least two years from 1951 through 1977 were significantly lower than expected for all causes, all cancers, cancers of the respiratory system, and lung cancer. Benign neoplasms, all of which were intracranial tumors, were significantly elevated. No bone cancers were discovered and other radiogenic cancers did not differ significantly from expectation. Duration of employment and latency did not affect these results. SMRs for a subcohort of plutonium exposed workers were significantly low for all causes of deaths and all cancers. Estimates of relative risk for workers exposed to 2 or more nCi compared to unexposed workers were not significantly higher or lower than unity. These findings do not support the hypothesis of increased mortality among plutonium and other nuclear workers. The excess for benign and unspecified intracranial tumors is not consistent with previous studies on radiation induced brain tumors in terms of latency and exposure levels

  7. Electrical Safety Program: Nonelectrical Crafts at LANL, Live #12175

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-22

    Los Alamos National Laboratory (LANL) and the federal government require those working with or near electrical equipment to be trained on electrical hazards and how to avoid them. Although you might not be trained to work on electrical systems, your understanding of electricity, how it can hurt you, and what precautions to take when working near electricity could save you or others from injury or death. This course, Electrical Safety Program: Nonelectrical Crafts at LANL (12175), provides knowledge of basic electrical concepts, such as current, voltage, and resistance, and their relationship to each other. You will learn how to apply these concepts to safe work practices while learning about the dangers of electricity—and associated hazards—that you may encounter on the job. The course also discusses what you can do to prevent electrical accidents and what you should do in the event of an electrical emergency. The LANL Electrical Safety Program is defined by LANL Procedure (P) 101-13. An electrical safety officer (ESO) is well versed in this document and should be consulted regarding electrical questions. Appointed by the responsible line manager (RLM), ESOs can tell you if a piece of equipment or an operation is safe or how to make it safe.

  8. Excess Weapons Plutonium Immobilization in Russia

    International Nuclear Information System (INIS)

    Jardine, L.; Borisov, G.B.

    2000-01-01

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R and D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R and D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the

  9. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    Science.gov (United States)

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  10. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  11. An analysis of radioactive waste minimization efforts at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Voit, S.L.; Boerigter, S.T.

    1997-09-30

    LANL will be the primary DOE facility for plutonium research and development and plutonium processing. A summary of the currently generated waste types, volumes, generating facilities or programs, and disposal costs are given in this report along with future waste generation projections. Several key existing technologies have been identified that could be introduced to reduce the generated waste at LANL. Four of these are discussed in detail in this report: (1) electrolytic surface decontamination, (2) electrochemical treatment of mixed wastes, (3) Long Range Alpha Detection (LRAD), and (4) Segmented Gate and Containerized Vat Leach System (SGS/CVL). These technologies may be implemented as modifications in upstream processes as well as more efficient volume reduction and segregation. The four technologies are mature enough to be implemented in the next two to three years and can be done so with the support for capital and operational costs. Also discussed in this report is a small sample of some of the recent waste minimization success stories that have been implemented. Several technologies are presented that are either currently being investigated or on hold due to lack of funding at LANL but show potential for making significant gains in waste minimization. This report is intended to provide a review of the waste minimization issues and analysis of the impact of implementing a few of these technologies.

  12. An analysis of radioactive waste minimization efforts at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Voit, S.L.; Boerigter, S.T.

    1997-01-01

    LANL will be the primary DOE facility for plutonium research and development and plutonium processing. A summary of the currently generated waste types, volumes, generating facilities or programs, and disposal costs are given in this report along with future waste generation projections. Several key existing technologies have been identified that could be introduced to reduce the generated waste at LANL. Four of these are discussed in detail in this report: (1) electrolytic surface decontamination, (2) electrochemical treatment of mixed wastes, (3) Long Range Alpha Detection (LRAD), and (4) Segmented Gate and Containerized Vat Leach System (SGS/CVL). These technologies may be implemented as modifications in upstream processes as well as more efficient volume reduction and segregation. The four technologies are mature enough to be implemented in the next two to three years and can be done so with the support for capital and operational costs. Also discussed in this report is a small sample of some of the recent waste minimization success stories that have been implemented. Several technologies are presented that are either currently being investigated or on hold due to lack of funding at LANL but show potential for making significant gains in waste minimization. This report is intended to provide a review of the waste minimization issues and analysis of the impact of implementing a few of these technologies

  13. Characterizing Surplus US Plutonium for Disposition - 13199

    Energy Technology Data Exchange (ETDEWEB)

    Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  14. LANL Safety Conscious Work Environment (SCWE) Self-Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Barbara C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-29

    On December 21, 2012 Secretary of Energy Chu transmitted to the Defense Nuclear Facilities Safety Board (DNFSB) revised commitments on the implementation plan for Safety Culture at the Waste Treatment and Immobilization Plant. Action 2-5 was revised to require contractors and federal organizations to complete Safety Conscious Work Environment (SCWE) selfassessments and provide reports to the appropriate U.S. Department of Energy (DOE) - Headquarters Program Office by September 2013. Los Alamos National Laboratory (LANL) planned and conducted a Safety Conscious Work Environment (SCWE) Self-Assessment over the time period July through August, 2013 in accordance with the SCWE Self-Assessment Guidance provided by DOE. Significant field work was conducted over the 2-week period August 5-16, 2013. The purpose of the self-assessment was to evaluate whether programs and processes associated with a SCWE are in place and whether they are effective in supporting and promoting a SCWE.

  15. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    International Nuclear Information System (INIS)

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-01-01

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail

  16. Support to LANL: Cost estimation. Final report

    International Nuclear Information System (INIS)

    1993-01-01

    This report summarizes the activities and progress by ICF Kaiser Engineers conducted on behalf of Los Alamos National Laboratories (LANL) for the US Department of Energy, Office of Waste Management (EM-33) in the area of improving methods for Cost Estimation. This work was conducted between October 1, 1992 and September 30, 1993. ICF Kaiser Engineers supported LANL in providing the Office of Waste Management with planning and document preparation services for a Cost and Schedule Estimating Guide (Guide). The intent of the Guide was to use Activity-Based Cost (ABC) estimation as a basic method in preparing cost estimates for DOE planning and budgeting documents, including Activity Data Sheets (ADSs), which form the basis for the Five Year Plan document. Prior to the initiation of the present contract with LANL, ICF Kaiser Engineers was tasked to initiate planning efforts directed toward a Guide. This work, accomplished from June to September, 1992, included visits to eight DOE field offices and consultation with DOE Headquarters staff to determine the need for a Guide, the desired contents of a Guide, and the types of ABC estimation methods and documentation requirements that would be compatible with current or potential practices and expertise in existence at DOE field offices and their contractors

  17. Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena

    International Nuclear Information System (INIS)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 μCi/m 2 . The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline

  18. In-line measurement of plutonium and americium in mixed solutions

    International Nuclear Information System (INIS)

    Li, T.K.

    1981-01-01

    A solution assay instrument (SAI) has been developed at the Los Alamos National Laboratory and installed in the plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument is designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and Am/Pu ratios. For a 25-mL sample, the assay precision is 5 g/L within a 2000-s count time

  19. Plutonium use - Present status and prospects

    International Nuclear Information System (INIS)

    Dievoet, J. van; Fossoul, E.; Jonckheere, E.; Bemden, E. van den

    1977-01-01

    The use of plutonium in thermal and fast reactors is a demonstrated, if not proven, technology. Moreover, plutonium is being produced in increasing quantities. Evaluation of this production on a world scale shows that it would be theoretically possible to construct numerous breeders and thus to make the best use of plutonium, while considerably reducing uranium consumption. This source of plutonium is nevertheless dependent on the reprocessing of irradiated fuel. Long delays in installing and adequate world reprocessing capacity are weakening the prospects for introducing breeders. Furthermore, the critical situation regarding reprocessing may delay the development of complementary reprocessing methods for fuels with a high plutonium content and high burnup. The recycling of plutonium is now a well-known technique and any objections to it hardly bear analysis. Utilization of plutonium offers an appreciable saving in terms of uranium and separative work units; and it can also be shown that immediate reprocessing of the recycling fuel is not essential for the economics of the concept. Temporary storage of recycled fuel is a particularly safe form of concentrating plutonium, namely in irradiated plutonium-bearing fuel assemblies. Finally, recycling offers such flexibility that it represents no obstacle to fuel management at power plants with light-water reactors. These strategic considerations imply that the technology of using plutonium for fabricating thermal or fast reactor fuels is both technically reliable and economically viable. The methods used in industrial facilities are fully reassuring in this respect. Although various unsolved problems exist, none seems likely to impede current developments, while the industrial experience gained has enabled the economics and reliability of the methods to be improved appreciably. Apart from the techno-economic aspects, the plutonium industry must face extremely important problems in connection with the safety of personnel

  20. Natural hazards that may trigger a radiological release from a plutonium processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Selvidge, J. E.

    1977-04-28

    Calculations show the probability of a tornado striking a plutonium area at Rocky Flats is 2.2 x 10/sup -4/ per year. The source term (expected value of plutonium release) should such an event occur is calculated at 3.3 x 10/sup -7/ grams. The source term for high-velocity, downslope winds is higher--2.2 x 10/sup -3/ grams. The probability of a meteorite that weighs one or more pounds (453 grams) striking a plutonium area is estimated at 8.88 x 10/sup -7/ per year. Because of this small probability and the remote chance that a plutonium release would occur even if a meteorite hit occurred, the hazard from meteorite impact is considered negligible. Conservative assumptions result in all calculated frequencies being almost certainly too high. Empirical observations have indicated lower frequencies than those calculated.

  1. Natural hazards that may trigger a radiological release from a plutonium processing facility

    International Nuclear Information System (INIS)

    Selvidge, J.E.

    1977-01-01

    Calculations show the probability of a tornado striking a plutonium area at Rocky Flats is 2.2 x 10 -4 per year. The source term (expected value of plutonium release) should such an event occur is calculated at 3.3 x 10 -7 grams. The source term for high-velocity, downslope winds is higher--2.2 x 10 -3 grams. The probability of a meteorite that weighs one or more pounds (453 grams) striking a plutonium area is estimated at 8.88 x 10 -7 per year. Because of this small probability and the remote chance that a plutonium release would occur even if a meteorite hit occurred, the hazard from meteorite impact is considered negligible. Conservative assumptions result in all calculated frequencies being almost certainly too high. Empirical observations have indicated lower frequencies than those calculated

  2. Acid-digestion treatment of plutonium-containing waste

    International Nuclear Information System (INIS)

    Wieczorek, H.; Kemmler, G.; Krause, H.

    1981-01-01

    The Radioactive Acid-Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the acid-digestion process for treating combustible transuranic wastes and scrap materials. The RADTU, with its original tray digestion vessel, has recently completed a six-month campaign processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the acid-waste contact and the water boil-off rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve-hour day, five-day week basis. Following this campaign, a new annular high-rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat-transfer surface, which is expected to provide at least twice the water boil-off rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form. (author)

  3. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    International Nuclear Information System (INIS)

    JOHNSTON GA

    2008-01-01

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D and D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D and D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D and D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  4. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  5. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information

  6. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF

  7. LANL environmental restoration site ranking system: System description. Final report

    International Nuclear Information System (INIS)

    Merkhofer, L.; Kann, A.; Voth, M.

    1992-01-01

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides

  8. LANL environmental restoration site ranking system: System description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merkhofer, L.; Kann, A.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States)

    1992-10-13

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides.

  9. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  10. Matrix Characterization of Plutonium Residues by Alpha-Particle Self-Interrogation

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Foster, L.A.; Staples, P.

    1998-01-01

    Legacy plutonium residues often have inadequate item descriptions. Nondestructive characterization can help segregate these items for reprocessing or provide information needed for disposal or storage. Alpha particle-induced gamma-ray spectra contain a wealth of information that can be used for matrix characterization. We demonstrate how this information can be used for item identification. Gamma-ray spectra were recorded at the Los Alamos Plutonium Facility from a variety of legacy, plutonium-processing residues and product materials. The comparison and analysis of these spectra are presented

  11. Plutonium contents of field crops in the southeastern US

    International Nuclear Information System (INIS)

    Adriano, D.C.; Corey, J.C.; Dahlman, R.C.

    1980-01-01

    Agricultural crops were grown at the US Department of Energy Savannah River Plant (SRP) and at Oak Ridge National Laboratory (ORNL) on soils at field sites containing plutonium concentrations above background levels from nuclear weapon tests. Major US grain crops were grown adjacent to a reprocessing facility at SRP, which releases low chronic levels of plutonium through an emission stack. Major vegetable crops were grown at the ORNL White Oak Creek floodplain, which received plutonium effluent wastes in 1944 from the Manhattan Project weapon development. In general, the concentration ratios of vegetative parts of crops at SRP were approximately one order of magnitude higher than those at ORNL, which indicates the influence of aerial deposition of plutonium at the SRP site

  12. Chemical characterization of local and stratospheric plutonium in Ohio soils

    International Nuclear Information System (INIS)

    Muller, R.N.

    1978-01-01

    The chemical nature of plutonium derived from stratospheric fallout and industrial sources was studied in three agricultural soils. The majority of the soil plutonium was associated with a reductant-soluble, hydrous oxide phase that, under most conditions of terrestrial ecosystems, remains essentially immobile. The proportion of plutonium associated with organic matter (0.1N NaOH-extractable) varied among soils, and increased with decreasing particle size in the same soil. In a soil containing 238 Pu from a local fabrication facility and 239 , 240 Pu from stratospheric fallout, isotopic ratios between the NaOH-extractable and residual phases were essentially constant, indicating that, in these soils, plutonium from both sources behaves similarly. The distribution of soil plutonium with particle size appears to be most directly related to the mass of the soil particle

  13. MEMORANDUM OF UNDERSTANDING between Los Alamos National Laboratory (LANL) and Savannah River National Laboratory (SRNL) for Analytical Chemistry Support for Oxide Production Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, Jane Alexandria [Los Alamos National Laboratory

    2015-12-01

    This MOU establishes the responsibilities and requirements for the packaging and transport of plutonium dioxide (PuO2) samples for shipment from LANL to SRNL. The scope includes the shipping, packaging, quality assurance (QA), inspection, and documentation requirements to successfully obtain the chemical and isotopic characteristics of the PuO2. The requirements in this document are necessary, but not sufficient to execute this work and do not imply exemption from contractual requirements at either site. This document is not intended to specify all of the processes and procedures necessary to execute this work. This MOU also establishes appropriate requirements, goals, and expectations. Each party will establish a technical point of contact (POC) who will be responsible for addressing issues as they arise

  14. Fire protection considerations in the design of plutonium handling and storage facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    Unwanted fire in a facility that handles plutonium must be addressed early in the facility design. Such fires have the potential for transporting radioactive contamination throughout the building and widespread downwind dispersal. Features that mitigate such events can be severely challenged during the fire. High temperatures can cause storage containers to burst; a very efficient dispersal mechanism for radioactive contamination. The fire will also establish ventilation patterns that cause the migration of smoke and radioactive contamination throughout the facility. The smoke and soot generated by the fire will enter the exhaust system and travel to the filtration system where it will deposit on the filters. The quantity of smoke generated during a typical multi-room fire is expected to blind most High Efficiency Particulate Airfilter (HEPA) media. The blinding can have two possible outcomes. (1) The air movement though the facility is reduced, compromising the negative pressure containment and allowing contamination to leave the building though doors and other openings; or (2) the filters collapse allowing the contamination to bypass the filtration media and exit the building through the filter plenum. HEPA filter blinding during severe fires can be prevented or mitigated. Increasing the face surface area of HEPA filters will increase the smoke filtration capacity of the system, thus preventing blinding. As an alternative sandfilters can be provided to mitigate the effects of the HEPA filter bypass. Both concepts have distinct advantages. This paper will explore these two design concepts and two others; it will describe the design requirements necessary for each concept to prevent unacceptable contamination spread. The intent is to allow the filter media selection to be based on a comprehensive understanding of the four different design concepts

  15. Baseline process description for simulating plutonium oxide production for precalc project

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-26

    Savannah River National Laboratory (SRNL) started a multi-year project, the PreCalc Project, to develop a computational simulation of a plutonium oxide (PuO2) production facility with the objective to study the fundamental relationships between morphological and physicochemical properties. This report provides a detailed baseline process description to be used by SRNL personnel and collaborators to facilitate the initial design and construction of the simulation. The PreCalc Project team selected the HB-Line Plutonium Finishing Facility as the basis for a nominal baseline process since the facility is operational and significant model validation data can be obtained. The process boundary as well as process and facility design details necessary for multi-scale, multi-physics models are provided.

  16. In search of plutonium: A nonproliferation journey

    Science.gov (United States)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  17. TA-55 and Sigma Overview

    Energy Technology Data Exchange (ETDEWEB)

    Spearing, Dane Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Safeguards Science and Technology Group (NEN-1)

    2016-11-29

    These are slides from a facility overview presentation for visiting agencies to Los Alamos National Laboratory (LANL). The TA-55 Plutonium Facility (PF-4) is discussed in detail. PF-4 is a unique resource for US plutonium programs. The basic design is flexible and has adapted to changing national needs. It is a robust facility with strong safety and security implementation. It supports a variety of national programs. It will continue for many years into the future. Sigma is then discussed in detail, which handles everything from hydrogen to uranium. It has been in long term service to the Nation (nearly 60 years). It has a flexible authorization basis to handle almost the entire periodic table. It has a wide breadth of prototyping and characterization capabilities. It has integrated program and line management.

  18. Remote material handling in the Plutonium Immobilization Project. Revision 1

    International Nuclear Information System (INIS)

    Brault, J.R.

    2000-01-01

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports

  19. Safeguardability of the vitrification option for disposal of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  20. Customer service model for waste tracking at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Dorries, Alison M.; Montoya, Andrew J.; Ashbaugh, Andrew E.

    2010-01-01

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  1. US Department of Energy report 1996 LANL radionuclide air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.W.

    1997-08-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by the Los Alamos National Laboratory (LANL) in 1996. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The effective dose equivalent (EDE) to a hypothetical maximum exposed individual (MEI) of the public was calculated, using procedures specified by the EPA and described in this report. That dose was 1.93 mrem for 1996. Emissions of {sup 11}C, {sup 13}N, and {sup 15}O from a 1-mA, 800 MeV proton accelerator contributed over 92% of the EDE to LANL`s MEI. Using CAP88, the EPA`s dose assessment model, more than 86% of the total dose received by the MEI was via the air immersion pathway.

  2. Coordinated safeguards for materials management in a uranium--plutonium nitrate-to-oxide coconversion facility: Coprecal

    International Nuclear Information System (INIS)

    Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.

    1979-02-01

    This report describes the conceptual design of an advanced materials-management system for safeguarding special nuclear materials in a uranium--plutonium nitrate-to-oxide coconversion facility based on the Coprecal process. Design concepts are presented for near real-time (dynamic) accountability by forming dynamic materials balances from information provided by chemical and nondestructive analyses and from process-control instrumentation. Modeling and simulation techniques are used to compare the sensitivities of proposed dynamic materials accounting strategies to both abrupt and protracted diversion. The safeguards implications of coconversion as well as some unique features of the reference process are discussed and design criteria are identified to improve the safeguardability of the Coprecal coconversion process

  3. Bulging of cans containing plutonium residues. Summary report

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

    1996-03-01

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options

  4. NNP-LANL Utilities - Condition Assessment and Project Approach

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Grant Lorenz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    This report is a presentation on LANL Utilities & Transportation Asset Management; Utility Assets Overview; Condition Assessment; Utilities Project Nominations & Ranking; and Utilities Project Execution.

  5. Plutonium finishing plant dangerous waste training plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    1999-01-01

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas

  6. National Plutonium Workers' Study: considerations and preliminary results

    International Nuclear Information System (INIS)

    Acquavella, J.F.; Wilkinson, G.S.

    1983-03-01

    The National Plutonium Workers' Study developed from the clinical follow-up of workers with body burdens in excess of 10 nCi. The importance of plutonium to energy and weapons development and the uncertainty about its biological effects motivated the formation of an epidemiologic study of more than 125,000 workers at six Department of Energy facilities. This report reviews recent results from The National Plutonium Workers' Study, including an analysis of cancer mortality among workers at the Rocky Flats Plant and a study of malignant melanoma among employees at Los Alamos National Laboratory. The problems inherent in large-scale epidemiologic studies, as well as the future directions for the study, are discussed

  7. The US plutonium materials conversion program in Russia

    International Nuclear Information System (INIS)

    Zygmunt, S.J.; Mason, C.F.V.; Hahn, W.K.

    2000-01-01

    Progress has been made in Russia towards the conversion of weapons-grade plutonium (w-Pu) into plutonium oxide (PuO 2 ) suitable for further manufacture into mixed oxide (MOX) fuels. This program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease the available weapons-grade Pu. A similar agenda is being followed in the US to address disposition of US surplus weapons-grade Pu. In Russia a conversion process has been selected and a site proposed. This paper discusses the present state of the program in support of this future operating facility that will process up to 5 metric tons of plutonium a year. (authors)

  8. Plutonium in nature; Le plutonium dans la nature

    Energy Technology Data Exchange (ETDEWEB)

    Madic, C.

    1994-12-31

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases.

  9. LAFD: TA-55 RLUOB/CUB Facility Familiarization Tour, OJT #55265

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    Los Alamos National Laboratory (LANL) conducts familiarization tours for personnel of the Los Alamos County Fire Department (LAFD) at the RLUOB/CUB, technical area (TA)-55, 400/440, facility, Radiological Laboratory Utility Office Building (RLUOB)/Central Utility Building (CUB). These familiarization tours are official LANL business; the purpose of these tours is to orient LAFD firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes, among other topics, the ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills and abilities to perform firefighting operations and other emergency response tasks that cannot be provided by other LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout is distributed to the trainees at the time of the tour; a corresponding checklist is also used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.

  10. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  11. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  12. In-situ dismantling of plutonium-contaminated glove box

    International Nuclear Information System (INIS)

    Numata, Koji; Watanabe, Hisashi; Ishikawa, Hisashi; Miyo, Hiroaki; Ohtsuka, Katsuyuki

    1980-01-01

    A plutonium-contaminated glove box was dismantled along with the development of the treatment techniques for plutonium-bearing wastes. The objectives of this in-situ dismantling of the glove box are to reuse the Plutonium Fuel Fabrication Facility more efficiently, to reduce the volume of wastes generated during the dismantling, and to acquire dismantling techniques for decommissioning the Plutonium Fuel Fabrication Facility in the future. Prior to the dismantling works, a greenhouse for decontamination was installed, and the decontamination with surfactants was performed. Unremovable contamination was coated with paint. After this greenhouse was removed, the main greenhouse for dismantling and three greenhouses for contamination control were assembled. The main workers wearing protective devices engaged in dismantling works in the greenhouse. As the protective devices, anorak type PVC suits with air line masks, Howell type pressurized suits, and respirators were used. The tools used for the dismantling are a plasma cutter, an electric nibbler, an electric disk grinder, an electric circular saw and an electric jig saw. The results of the dismantling in-situ were compared with two previous cases of dismantling carried out by different procedures. In the case of in-situ dismantling, the volume of wastes was 1.6 - 1.8 m 3 /m 3 of glove box, and considerable reduction was realized. (Kako, I.)

  13. Assessment of plutonium storage safety issues at Department of Energy facilities

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ''Cold War'' era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations

  14. Dissolution of aerosol particles collected from nuclear facility plutonium production process

    International Nuclear Information System (INIS)

    Ning Xu; Martinez, Alex; Schappert, Michael; Montoya, D.P.; Martinez, Patrick; Tandon, Lav

    2016-01-01

    A simple, robust analytical chemistry method has been developed to dissolve plutonium containing particles in a complex matrix. The aerosol particles collected on Marple cascade impactor substrates were shown to be dissolved completely with an acid mixture of 12 M HNO 3 and 0.1 M HF. A pressurized closed vessel acid digestion technique was utilized to heat the samples at 130 deg C for 16 h to facilitate the digestion. The dissolution efficiency for plutonium particles was 99 %. The resulting particle digestate solution was suitable for trace elemental analysis and isotope composition determination, as well as radiochemistry measurements. (author)

  15. Accident investigation board report on the May 14, 1997, chemical explosion at the Plutonium Reclamation Facility, Hanford Site,Richland, Washington - final report

    International Nuclear Information System (INIS)

    Gerton, R.E.

    1997-01-01

    On May 14, 1997, at 7:53 p.m. (PDT), a chemical explosion occur-red in Tank A- 109 in Room 40 of the Plutonium Reclamation Facility (Facility) located in the 200 West Area of the Hanford Site, approximately 30 miles north of Richland, Washington. The inactive processing Facility is part of the Plutonium Finishing Plant (PFP). On May 16, 1997, Lloyd L. Piper, Deputy Manager, acting for John D. Wagoner, Manager, U.S. Department of Energy (DOE), Richland Operations Office (RL), formally established an Accident Investigation Board (Board) to investigate the explosion in accordance with DOE Order 225. 1, Accident Investigations. The Board commenced its investigation on May 15, 1997, completed the investigation on July 2, 1997, and submitted its findings to the RL Manager on July 26, 1997. The scope of the Board's investigation was to review and analyze the circumstances of the events that led to the explosion; to analyze facts and to determine the causes of the accident; and to develop conclusions and judgments of need that may help prevent a recurrence of the accident. The scope also included the application of lessons learned from similar accidents within DOE. In addition to this detailed report, a companion document has also been prepared that provides a concise summary of the facts and conclusions of this report, with an emphasis on management issues (DOE/RL-97-63)

  16. Plutonium contents of broadleaf vegetable crops grown near a nuclear fuel chemical separations facility

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K W; Alberts, J J; Adriano, D C; Pinder, III, J E

    1984-02-01

    Among agricultural crops, broadleaf vegetables are particularly prone to intercept and retain aerially released contaminants. The plutonium concentration of four broadleaf crops (broccoli, cabbage, lettuce and turnip greens) was determined, when grown in close proximity to a nuclear-fuel chemical-separations facility. Concentrations varied among species, apparently influenced by the crop morphology, with Pu concentrations increasing in the sequence: cabbage < broccoli < turnip greens < lettuce. Washing of the crops significantly reduced the Pu concentration of lettuce, but had no effect on Pu concentration of broccoli and cabbage. The vast majority of Pu found in the crops was due to direct deposition of recently released Pu and resuspension of Pu-bearing soil particles, and was not due to root uptake. Resultant doses from consumption are small relative to the annual background dose.

  17. EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans

  18. Risk-based analysis for prioritization and processing in the Los Alamos National Laboratory 94-1 program

    International Nuclear Information System (INIS)

    Boerigter, S.T.; DeMuth, N.S.; Tietjen, G.

    1996-10-01

    A previous report, open-quotes Analysis of LANL Options for Processing Plutonium Legacy Materials,close quotes LA-UR-95-4301, summarized the development of a risk-based prioritization methodology for the Los Alamos National Laboratory (LANL) Plutonium Facility at Technical Area-55 (TA-55). The methodology described in that report was developed not only to assist processing personnel in prioritizing the remediation of legacy materials but also to evaluate the risk impacts of schedule modifications and changes. Several key activities were undertaken in the development of that methodology. The most notable was that the risk assessments were based on statistically developed data from sampling containers in the vault and evaluating their condition; the data from the vault sampling programs were used as the basis for risk estimates. Also, the time-dependent behavior of the legacy materials was explicitly modeled and included in the risk analysis. The results indicated that significant reductions in program risk can be achieved by proper prioritization of the materials for processing

  19. 75 FR 41850 - Amended Notice of Intent to Modify the Scope of the Surplus Plutonium Disposition Supplemental...

    Science.gov (United States)

    2010-07-19

    ... and packaging capabilities, including direct metal oxidation, to fulfill plutonium storage..., disassemble nuclear weapons pits (a weapons component) and convert the plutonium metal to an oxide form for fabrication into mixed uranium-plutonium oxide (MOX) reactor fuel in the Mixed Oxide Fuel Fabrication Facility...

  20. Environmental Assessment Radioactive Source Recovery Program

    International Nuclear Information System (INIS)

    1995-01-01

    In a response to potential risks to public health and safety, the U.S. Department of Energy (DOE) is evaluating the recovery of sealed neutron sources under the Radioactive Source Recovery Program (RSRP). This proposed program would enhance the DOE's and the U.S. Nuclear Regulatory Commission's (NRC's) joint capabilities in the safe management of commercially held radioactive source materials. Currently there are no federal or commercial options for the recovery, storage, or disposal of sealed neutron sources. This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the DOE were to implement a program for the receipt and recovery at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, of unwanted and excess plutonium-beryllium ( 238 Pu-Be) and americium-beryllium ( 241 Am-Be) sealed neutron sources. About 1 kg (2.2 lb) plutonium and 3 kg (6.6 lb) americium would be recovered over a 15-year project. Personnel at LANL would receive neutron sources from companies, universities, source brokers, and government agencies across the country. These neutron sources would be temporarily stored in floor holes at the CMR Hot Cell Facility. Recovery reduces the neutron emissions from the source material and refers to a process by which: (1) the stainless steel cladding is removed from the neutron source material, (2) the mixture of the radioactive material (Pu-238 or Am-241) and beryllium that constitutes the neutron source material is chemically separated (recovered), and (3) the recovered Pu-238 or Am-241 is converted to an oxide form ( 238 PuO 2 or 241 AmO 2 ). The proposed action would include placing the 238 PuO 2 or 241 AmO 2 in interim storage in a special nuclear material vault at the LANL Plutonium Facility

  1. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    International Nuclear Information System (INIS)

    Eberhart, C.F.

    1998-01-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ( 234 U, 235 U, 238 U), plutonium ( 238 Pu, 239/249 Pu), and americium ( 241 Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements

  2. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  3. Fluid bed direct denitration process for plutonium nitrate to oxide conversion

    International Nuclear Information System (INIS)

    Souply, K.R.; Neal, D.H.

    1977-01-01

    The fluid bed direct-denitration process appears feasible for reprocessing Light Water Reactor fuel. Considerable experience with the fluid bed process exists in the denitration of uranyl nitrate and it shows promise for use in the denitration of plutonium nitrate. The process will require some development work before it can be used in a production-size facility. This report describes a fluid bed direct-denitration process for converting plutonium nitrate to plutonium oxide, and the information should be used when making comparisons of alternative processes or as a basis for further detailed studies

  4. Plutonium Disposition by Immobilization

    International Nuclear Information System (INIS)

    Gould, T.; DiSabatino, A.; Mitchell, M.

    2000-01-01

    The ultimate goal of the Department of Energy (DOE) Immobilization Project is to develop, construct, and operate facilities that will immobilize between 17 to 50 tonnes (MT) of U.S. surplus weapons-usable plutonium materials in waste forms that meet the ''spent fuel'' standard and are acceptable for disposal in a geologic repository. Using the ceramic can-in-canister technology selected for immobilization, surplus plutonium materials will be chemically combined into ceramic forms which will be encapsulated within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2008 and be completed within 10 years. In support of this goal, the DOE Office of Fissile Materials Disposition (MD) is conducting development and testing (D and T) activities at four DOE laboratories under the technical leadership of Lawrence Livermore National Laboratory (LLNL). The Savannah River Site has been selected as the site for the planned Plutonium Immobilization Plant (PIP). The D and T effort, now in its third year, will establish the technical bases for the design, construction, and operation of the U. S. capability to immobilize surplus plutonium in a suitable and cost-effective manner. Based on the D and T effort and on the development of a conceptual design of the PIP, automation is expected to play a key role in the design and operation of the Immobilization Plant. Automation and remote handling are needed to achieve required dose reduction and to enhance operational efficiency

  5. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL's ability to meet its missions between 1998 and 2002

  6. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  7. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    International Nuclear Information System (INIS)

    Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M.; Charboneau, S.; Bond, F.

    2006-01-01

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  8. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  9. Plutonium

    International Nuclear Information System (INIS)

    Watson, G.M.

    1976-01-01

    Discovery of the neutron made it easy to create elements which do not exist in nature. One of these is plutonium, and its isotope with mass number 239 has nuclear properties which make it both a good fuel for nuclear power reactors and a good explosive for nuclear weapons. Since it was discovered during a war the latter characteristic was put to use, but it is now evident that use of plutonium in a particular kind of nuclear reactor, the fast breeder reactor, will allow the world's resources of uranium to last for millennia as a major source of energy. Plutonium is very radiotoxic, resembling radium in this respect. Therefore the widespread introduction of fast breeder reactors to meet energy demands can be contemplated only after assurances on two points; that adequate control of the radiological hazard resulting from the handling of very large amounts of plutonium can be guaranteed, and that diversion of plutonium to illicit use can be prevented. The problems exist to a lesser degree already, since all types of nuclear reactor produce some plutonium. Some plutonium has already been dispersed in the environment, the bulk of it from atmospheric tests of nuclear weapons. (author)

  10. Plutonium Immobilization Project - Robotic canister loading

    International Nuclear Information System (INIS)

    Hamilton, R.L.

    2000-01-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF)

  11. PFPF canister counter for foreign plutonium (PCAS-3) hardware operations and procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Baca, J.; Kroncke, K.E.; Miller, M.C.; Takahashi, S.; Seki, S.; Inose, S.; Yamamoto, T.

    1993-01-01

    A neutron coincidence counter has been designed for the measurement of plutonium powder contained in tall storage canisters. The counter was designed for installation in the Plutonium Fuel Production Facility fabrication plant. Each canister contains from one to five cans of PuO 2 . The neutron counter measures the spontaneous-fission rate from the plutonium and, when this is combined with the plutonium isotopic ratios, the plutonium mass is determined. The system can accommodate plutonium loadings up to 12 kg, with 10 kg being a typical loading. Software has been developed to permit the continuous operation of the system in an unattended mode. Authentication techniques have been developed for the system. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  12. Safely disposing and controlling the various forms of excess military plutonium

    International Nuclear Information System (INIS)

    Albright, D.

    1991-01-01

    The growing surplus of plutonium will continue to pose safety, health, and verification problems. Although long term storage and disposal of plutonium seems technically feasible, or at least comparable in technical difficulty to commercial spent fuel disposal, significant political obstacles within the government and the public, may make it difficult to solve this problem. Although options to build verifiable warhead dismantlement facilities or to recycle plutonium in reactors and thus convert separated plutonium into irradiated fuel are straight forward concepts, their realization remains difficult for economic and political reasons. The plutonium recycle option also raises additional proliferation concerns about its impact on civilian nuclear programs. In the absence of a long term solution, the United States can implement various storage or interim disposal options that involve minimal processing, but that ease verification problems and provide adequate safety and protection of public health

  13. ''FIXBOX'' - a new technique for the reliable conditioning of plutonium waste solutions

    International Nuclear Information System (INIS)

    Bruchertseifer, H.; Sommer, E.; Steinemann, M.; Bart, G.

    1994-01-01

    ''FIXBOX'' - A new technique and facility for the conditioning of plutonium waste solutions has been developed and brought into operation in the Hot-laboratory at PSI, for the solidification of the waste from the research programmes. The facility is situated in glove-boxes for handling alpha activity and gamma-shielded for conditioning of fission product-containing waste. This report gives a brief description of the FIXBOX facility, the procedure and the first results of the cementation of plutonium waste solutions. As a result of this solidification, the actinide waste is homogeneous and strongly bound in the cement. The presence of gluconic acid and other complexing agents in the waste solution will not disturb this process. (author) figs., tabs., refs

  14. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 x 10 -5 of a year's atmospheric deposition is transferred to grain. Approximately 6.2 x 10 -9 of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 x 10 -10 of the soil inventory is absorbed by roots and translocated to grains

  15. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  16. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    International Nuclear Information System (INIS)

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage

  17. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system

  18. Stop plutonium

    International Nuclear Information System (INIS)

    2003-02-01

    This press document aims to inform the public on the hazards bound to the plutonium exploitation in France and especially the plutonium transport. The first part is a technical presentation of the plutonium and the MOX (Mixed Oxide Fuel). The second part presents the installation of the plutonium industry in France. The third part is devoted to the plutonium convoys safety. The highlight is done on the problem of the leak of ''secret'' of such transports. (A.L.B.)

  19. Seismic analysis of plutonium glovebox by MSC/NASTRAN

    International Nuclear Information System (INIS)

    Hirata, Masaru; Ishikawa, Kazuya; Korosawa, Makoto; Fukushima, Susumu; Hoshina, Hirofumi.

    1993-01-01

    Seismic analysis of the structural strength of gloveboxes is important for plutonium confinement evaluation. However, the analytical methods must be developed for evaluating the mutual displacement between the window frame and acrylic resin window panel with regard to plutonium confinement during an earthquake. Therefore, seismic analysis for a standard glovebox in Plutonium Fuel Research Facility at Oarai Research Establishment of JAERI has been conducted by FEM (Finite Element Method) computer code MSC/NASTRAN (MacNeal-Schwendler Corporation NASA Structural Analysis). Modelling of glovebox window frame has been investigated from the results of natural frequency analysis and static analysis. After the acquisition of a suitable model, displacement around the window frame and glovebox structural strength have been evaluated in detail by use of floor response spectrum analysis and time-history (transient response) analysis. (author)

  20. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using new facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS)

  1. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  2. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 9, Oak Ridge Site working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    The objective of the Plutonium Environmental Safety and Health (ES ampersand H) Vulnerability Assessment at the Oak Ridge (OR) Site was to conduct a comprehensive assessment of the ES ampersand H vulnerabilities arising from the storage and handling of its current plutonium holdings. The term open-quotes ES ampersand H Vulnerabilityclose quotes is defined for the purpose of this project to mean conditions or weaknesses that could lead to unnecessary or increased radiation exposure of workers, release of radioactive materials to the environment, or radiation exposure to the public. This assessment was intended to take a open-quotes snap-shotclose quotes of Oak Ridge National Laboratory (ORNL) and the Y-12 Plant's plutonium holdings and associated ES ampersand H vulnerabilities in the time frame of June 1 994. This vulnerability assessment process began with the OR Site Assessment Team (SAT) generating a self-assessment report including proposed vulnerabilities. The SAT identified 55 facilities which contain plutonium and other transuranics they considered might be in-scope for purposes of this study. The Working Group Assessment Team (WGAT), however, determined that 37 of the facilities actually contained only out-of-scope material (e.g., transuranic material not colocated with plutonium or transuranic (TRU) waste). The WGAT performed an independent assessment of the SATs report, conducted facility walkdowns, and reviewed reference documents such as Safety Analysis Reports (SARs), Operational Safety Requirements (OSRs), emergency preparedness plans, and procedures. The results of the WGAT review and open-quotes walkdownsclose quotes (a term as used here incorporating tours, document reviews, and detailed discussions with cognizant personnel) are discussed in Section 3.0. The ES ampersand H vulnerabilities that were identified are documented in Appendix A

  3. Studies on persons exposed to plutonium

    International Nuclear Information System (INIS)

    Voelz, G.L.; Stebbings, J.H.; Hempelmann, L.H.; Haxton, L.K.; York, D.A.

    1978-01-01

    The results of four studies of persons exposed, or potentially exposed, to plutonium are summarized. The studies are: a five-year update on clinical examinations and health experience of 26 Manhattan District workers heavily exposed at Los Alamos in 1944 to 1945; a 30-year mortality follow-up of 224 white male workers with plutonium body burdens of 10 nCi or more; a review of cancer mortality rates between 1950 and 1969 among Los Alamos County, New Mexico, male residents, all of whom have worked in or have lived within a few kilometers of a major plutonium plant and other nuclear facilities; and a review of cancer incidence rates between 1969 and 1974 in male residents of Los Alamos County. No excess of mortality due to any cause was observed in the 224 male subjects with the highest plutonium exposures at Los Alamos. Clinical examinations of the Manhattan District workers, whose average age in 1976 was 56 years, show them to be active persons with diseases that are not unusual for their ages. The two deaths in this group over the past 30 years have not been due to cancer. Mortality and incidence data indicate no excess of lung cancer in Los Alamos County males

  4. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3B/5B/6C/6D/7B/9B

    International Nuclear Information System (INIS)

    DiSabatino, A.

    1998-01-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in an existing facility (221-F) at Savannah River Site (SRS)

  5. HANFORD PLUTONIUM FINISHG PLAN (PFP) COMPLETES PLUTONIUM STABILIZATION KEY SAFETY ISSUES CLOSED

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2004-01-01

    A long and intense effort to stabilize and repackage nearly 18 metric tons (MT) of plutonium-bearing leftovers from defense production and nuclear experiments concluded successfully in February, bringing universal congratulations to the Department of Energy's Hanford Site in southeast Washington State. The victorious stabilization and packaging endeavor at the Plutonium Finishing Plant (PFP), managed and operated by prime contractor Fluor Hanford, Inc., finished ahead of all milestones in Hanford's cleanup agreement with regulators, and before deadlines set by the Defense Nuclear Facilities Safety Board (DNFSB), a part of the federal Executive Branch that oversees special nuclear materials. The PFP stabilization and packaging project also completed under budget for its four-year tenure, and has been nominated for a DOE Secretarial Award. It won the Project of the Year Award in the local chapter competition of the Project Management Institute, and is being considered for awards at the regional and national level

  6. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  7. Thermal Analysis of LANL Ion Exchange Column

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1999-01-01

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades

  8. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

  9. Determination of plutonium in pure plutonium nitrate solutions - Gravimetric method

    International Nuclear Information System (INIS)

    1987-01-01

    This International Standard specifies a precise and accurate gravimetric method for determining the concentration of plutonium in pure plutonium nitrate solutions and reference solutions, containing between 100 and 300 g of plutonium per litre, in a nitric acid medium. The weighed portion of the plutonium nitrate is treated with sulfuric acid and evaporated to dryness. The plutonium sulfate is decomposed and formed to oxide by heating in air. The oxide is ignited in air at 1200 to 1250 deg. C and weighed as stoichiometric plutonium dioxide, which is stable and non-hygroscopic

  10. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  11. Civil plutonium in the world: an estimate by the code REACTOR

    International Nuclear Information System (INIS)

    Braet, J.; Carchon, R.; Van der Meer, K.

    1996-11-01

    The computer code REACTOR that was developed by the Belgian Nuclear Research Centre SCK/CEN to study the built-up of plutonium stockpiles in the world is described. The code consists of a central database, containing general information about most commercial civil nuclear facilities. Using this code, an overview is given of the evolution of the nuclear energy production in the world, in the past and the medium term future. The nuclear energy production results in the accumulation of spent fuel stocks, containing vast amounts of energy enclosed in the plutonium. The presence and built-up of large stockpiles of spent fuel and separated plutonium originating from the civil fuel cycle is estimated. In this report several possible scenarios are considered for the use of that plutonium, with the aim of minimizing those stocks. According to the different national policies, scenarios such as open fuel cycle, thermal reactors or fast reactor cycle with the burning of plutonium in fast reactors are envisaged

  12. TRUEX process: a new dimension in management of liquid TRU wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1986-01-01

    The TRUEX process is one of the, if not the, most exciting and potentially useful nuclear separations processes to be developed since the PUREX process was developed and applied in the 1950s. Attesting to its potential widespread use, Rockwell Hanford and ANL investigators, in a joint effort, are developing and testing TRUEX process flow sheets for removal of TRU elements from several Hanford Site wastes including the Plutonium Finishing Plant and complexed concentrate wastes. The TRUEX process also appears to be well suited to removal of plutonium and Am from aqueous chloride wastes generated during plutonium processing operations at the Los Alamos National Lab. (LANL); collaborative efforts between LANL and ANL scientists to develop and demonstrate TRUEX process flow sheets for treatment of LANL site chloride wastes are currently under way

  13. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    International Nuclear Information System (INIS)

    Soukup, J.D.; Erpenbeck, G.J.

    1995-01-01

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection

  14. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment

  15. LANL Summer 2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Paul Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-26

    The Monte Carlo N-Particle (MCNP) transport code developed at Los Alamos National Laboratory (LANL) utilizes nuclear cross-section data in a compact ENDF (ACE) format. The accuracy of MCNP calculations depends on the accuracy of nuclear ACE data tables, which depends on the accuracy of the original ENDF files. There are some noticeable differences in ENDF files from one generation to the next, even among the more common fissile materials. As the next generation of ENDF files is being prepared, several software tools were developed to simulate a large number of benchmarks in MCNP (over 1000), collect data from these simulations, and visually represent the results.

  16. Plutonium assemblies in reload 1 of the Dodewaard Reactor

    International Nuclear Information System (INIS)

    Bairiot, H.; Deramaix, P.; Vandenberg, C.; Leenders, L.; Mostert, P.

    1977-01-01

    Since 1963, Belgonucleaire has been developing the design of plutonium assemblies of the island type (i.e., plutonium rods inserted in the control zone of the assembly and enriched uranium rods at the periphery) for light water reactors. The application to boiling water reactors (BWRs) led to the introduction, in April 1971, of two prototype plutonium island assemblies in the Dodewaard BWR (The Netherlands): Those assemblies incorporating plutonium in 42 percent of the rods are interchangeable with standard uranium assemblies of the same reload. Their design, which had to meet these criteria, was performed using the routine order in use at Belgonucleaire; experimental checks included a mock-up configuration simulated in the VENUS critical facility at Mol and open-vessel cold critical experiments performed in the Dodewaard core. The pelleted plutonium rods were fabricated and controlled by Belgonucleaire following the manufacturing procedures developed at the production plant. In one of the assemblies, three vibrated plutonium fuel rods with a lower fuel density were introduced in the three most highly rated positions to reduce the power rating. Those plutonium assemblies experienced peak pellet ratings up to 535 W/cm and were discharged in April 1974 after having reached a mean burnup of approximately 21,000 MWd/MT. In-core instrumentation during operation, visual examinations, and reactivity substitution experiments during reactor shutdown did not indicate any special feature for those assemblies compared to the standard uranium assemblies, thereby demonstrating their interchangeability

  17. Human health issues for plutonium inhalation: Perspectives from laboratory animal studies

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Hahn, F.F.; Guilmette, R.A.

    1997-01-01

    Since the first production of plutonium in the 1940s, potential health effects from plutonium have been a concern for humans. The few people exposed to plutonium and the relatively small intakes that have occurred, at least in the Western world, have resulted in very little direct information from human population studies. The Manhattan Project workers have been followed for decades, and few health effects have been observed. The situation is similar for the population of workers at the Rocky Flats facility. Some information is now being released from the former Soviet Union on selected worker populations who show biological effects, primarily pulmonary fibrosis and some increase in lung cancers

  18. Investigation of environmental samples from Fukushima with respect to uranium and plutonium by AMS; Untersuchung von Umweltproben aus Fukushima in Bezug auf Plutonium und Uran mittels AMS

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Stephanie

    2017-02-01

    In March 2011, the nuclear power plant Fukushima Dai-ichi was seriously damaged by a tsunami caused by an earthquake. During the accident large quantities of radionuclides, mainly of the volatile elements cesium and iodine, were released to the environment. In small amounts refractory elements such as plutonium and uranium have also been released. Plutonium and the uraniumisotope {sup 236}U have primarily been delivered by human activities in the environment. Large amounts were released during the atmospheric nuclear weapons tests. Additional sources are accidents in nuclear facilities, like Chernobyl. Every source has its own characteristic isotopic composition. It is therefore possible to determine the origin of the contamination by measuring the isotopic ratios of {sup 240}Pu/{sup 239}Pu and {sup 236}U/{sup 238}U. These ratios can be determined by using accelerator mass spectrometry. Due to its high sensitivity, it is possible to measure even small amounts of plutonium and especially of {sup 236}U. These measurements were performed using the compact 500 kV facility ''TANDY'' of ETH Zurich. In 2013 and 2015 vegetation, litter and soil drill core samples were taken in the contaminated area in Fukushima prefecture. In 2015 samples were taken as close to the sampling locations of the 2013 campaign as possible. After isolation of plutonium and uranium by chemical extraction, separate targets were prepared for the measurement. The {sup 240}Pu/{sup 239}Pu ratios indicate global fallout as the plutonium source for most samples. The plutonium of the reactors of Fukushima Dai-ichi is located in the upper layers like in vegetation or litter. From the uranium ratios alone the reactors could not unambigously be identified as the source of {sup 236}U. However, this is plausible in the cases were reactor plutonium was detected. None of the samples contained higher plutonium activity concentrations than in the rest of Japan, caused by global fallout. This

  19. Characterization of mixed waste for shipment to TSD Facilities Program

    International Nuclear Information System (INIS)

    Chandler, K.; Goyal, K.

    1995-01-01

    In compliance with the Federal Facilities Compliance Agreement, Los Alamos National Laboratory (LANL) is striving to ship its low-level mixed waste (LLMW) off-site for treatment and disposal. In order to ship LLMW off site to a commercial facility, LANL must request exemption from the DOE Order 5820.2A requirement that LLMW be shipped only to Department of Energy facilities. Because the process of obtaining the required information and approvals for a mixed waste shipment campaign can be very expensive, time consuming, and frustrating, a well-planned program is necessary to ensure that the elements for the exemption request package are completed successfully the first time. LANL has developed such a program, which is cost- effective, quality-driven, and compliance-based. This program encompasses selecting a qualified analytical laboratory, developing a quality project-specific sampling plan, properly sampling liquid and solid wastes, validating analytical data, documenting the waste characterization and decision processes, and maintaining quality records. The products of the program are containers of waste that meet the off-site facility's waste acceptance criteria, a quality exemption request package, documentation supporting waste characterization, and overall quality assurance for the process. The primary goal of the program is to provide an avenue for documenting decisions, procedures, and data pertinent to characterizing waste and preparing it for off-site treatment or disposal

  20. Plutonium-236 traces determination in plutonium-238 by α spectrometry

    International Nuclear Information System (INIS)

    Acena, M.L.; Pottier, R.; Berger, R.

    1969-01-01

    Two methods are described in this report for the determination of plutonium-236 traces in plutonium-238 by a spectrometry using semi-conductor detectors. The first method involves a direct comparison of the areas under the peaks of the α spectra of plutonium-236 and plutonium-238. The electrolytic preparation of the sources is carried out after preliminary purification of the plutonium. The second method makes it possible to determine the 236 Pu/ 238 Pu ratio by comparing the areas of the α peaks of uranium-232 and uranium-234, which are the decay products of the two plutonium isotopes respectively. The uranium in the source, also deposited by electrolysis, is separated from a 1 mg amount of plutonium either by a T.L.A. extraction, or by the use of ion-exchange resins. The report ends with a discussion of the results obtained with plutonium of two different origins. (authors) [fr

  1. International management and storage of plutonium and spent fuel

    International Nuclear Information System (INIS)

    1978-09-01

    The first part of this study discusses certain questions that may arise from the disseminated production and storage of plutonium and, in the light of the relevant provisions of the Agency's Statute, examines possible arrangements for the storage of separated plutonium under international auspices and its release to meet energy or research requirements. The second part of the study deals similarly with certain problems presented by growing accumulations of spent fuel from light-water reactors in various countries and examines possible solutions, including the establishment of regional or multinational spent fuel storage facilities

  2. Plutonium controversy

    International Nuclear Information System (INIS)

    Gofman, J.W.

    1976-01-01

    If the world chooses to seek a solution to the energy dilemma through nuclear energy, the element plutonium will become an article of commerce to be handled in quantities of thousands of tonnes annually. Plutonium is a uniquely potent inhalation carcinogen, the potential induction of lung cancer dwarfing other possible toxic effects. For reasons to be presented here, it is the author's opinion that plutonium's carcinogenicity has been very seriously underestimated. If one couples the corrected carcinogenicity with the probable degree of industrial containment of the plutonium, it appears that the commercialization of a plutonium-based energy economy is not an acceptable option for society. Sagan's statement that ''the experience of 30 years supports the contention that plutonium can be used safely'' is manifestly indefensible. No meaningful epidemiological study of plutonium-exposed workers for that 30-year period has ever been done. Since thousands of those possibly exposed have left the industry and are not even available to follow-up, it is doubtful that any meaningful study of ''the experience of 30 years'' will ever be accomplished

  3. Preparation of hexavalent plutonium and its determination in the presence of tetravalent plutonium; Preparation de plutonium hexavalent et dosage en presence de plutonium tetravalent

    Energy Technology Data Exchange (ETDEWEB)

    Corpel, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Corpel, J [Institut du Radium, 75 - Paris (France)

    1958-07-01

    In order to study the eventual reduction of plutonium from the VI-valent state to the IV-valent state, in sulphuric medium, under the influence of its own {alpha} radiation or of the {gamma}-rays from a cobalt-60 source, we have developed a method for preparing pure hexavalent plutonium and two methods for determining solutions containing tetravalent and hexavalent plutonium simultaneously. Hexavalent plutonium was prepared by anodic oxidation at a platinum electrode. Study of the oxidation yield as a function of various factors has made it possible to define experimental conditions giving complete oxidation. For concentrations in total plutonium greater than 1.5 x 10{sup -3} M, determination of the two valencies IV and VI was carried out by spectrophotometry at two wavelengths. For lower concentrations, the determination was done by counting, after separation of the tetravalent plutonium in the form of fluoride in the presence of a carrier. (author) [French] Afin d'etudier l'eventuelle reduction du plutonium de l'etat de valence VI a l'etat de valence IV, en milieu sulfurique sous l'influence de son propre rayonnement {alpha} ou des rayons {gamma} d'une source de cobalt-60, nous avons mis au point une methode de preparation de plutonium hexavalent pur et deux methodes de dosage des solutions contenant simultanement du plutonium tetravalent et du plutonium hexavalent. Nous avons prepare le plutonium hexavalent par oxydation anodique au contact d'une electrode de platine. L'etude de rendement de l'oxydation en fonction des divers facteurs nous a permis de definir des conditions experimentales donnant une oxydation complete. Pour des concentrations en plutonium total superieures a 1,5.10{sup -3} M, le dosage des deux valences IV et VI a ete realise par spectrophotometrie a deux longueurs d'onde. Pour des concentrations inferieures, le dosage a ete effectue par comptage apres separation du plutonium tetravalent sous la forme du fluorure en presence d'un entraineur

  4. Assessment of LANL transuranic waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    This report presents the findings that resulted from the evaluation of the Los Alamos National Laboratory (LANL) TRU Waste Characterization Procedures, conducted to determine their compliance with applicable DOE requirements. The driving requirements for the procedures appear to be contained in DOE Order 5820.2A; specific reference is made to Chapter II of that document. In addition, the WIPP-WAC sets forth specific waste forms and establishes the basis for LANL's TRU Waste Acceptance Criteria; any characterization plan must utilize procedures that address the requirements of the WIPP-WAC in order to ensure compliance with it. The purpose of the characterization procedures is to provide details to waste generators and/or waste certifiers regarding how the characterization plan is implemented for the gathering of analytical and/or knowledge-of-process information to allow certification of the waste. An annotated outline was developed from those criteria found in Sections 4.0 and 5.0 of the WIPP-WAC. The annotated outline of elements that should be addressed in characterization procedures is provided

  5. Plutonium in nature

    International Nuclear Information System (INIS)

    Madic, C.

    1994-01-01

    Plutonium in nature comes from natural sources and anthropogenic ones. Plutonium at the earth surface comes principally from anthropogenic sources. It is easily detectable in environment. The plutonium behaviour in environment is complex. It seems necessary for the future to reduce releases in environment, to improve predictive models of plutonium behaviour in geosphere, to precise biological impact of anthropogenic plutonium releases

  6. SEPARATION OF PLUTONIUM

    Science.gov (United States)

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  7. Sludge stabilization at the Plutonium Finishing Plant, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-10-01

    This Environmental Assessment evaluates the proposed action to operate two laboratory-size muffle furnaces in glovebox HC-21C, located in the Plutonium Finishing Plant (PFP), Hanford Site, Richland, Washington. The muffle furnaces would be used to stabilize chemically reactive sludges that contain approximately 25 kilograms (55 pounds) of plutonium by heating to approximately 500 to 1000 degrees C (900 to 1800 degrees F). The resulting stable powder, mostly plutonium oxide with impurities, would be stored in the PFP vaults. The presence of chemically reactive plutonium-bearing sludges in the process gloveboxes poses a risk to workers from radiation exposure and limits the availability of storage space for future plant cleanup. Therefore, there is a need to stabilize the material into a form suitable for long-term storage. This proposed action would be an interim action, which would take place prior to completion of an Environmental Impact Statement for the PFP which would evaluate stabilization of all plutonium-bearing materials and cleanout of the facility. However, only 10 percent of the total quantity of plutonium in reactive materials is in the sludges, so this action will not limit the choice of reasonable alternatives or prejudice the Record of Decision of the Plutonium Finishing Plant Environmental Impact Statement

  8. 2017 Report for New LANL Physical Vapor Deposition Capability

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Audrey Rae [Los Alamos National Laboratory; Zhao, Xinxin [Los Alamos National Laboratory; Bond, Evelyn M. [Los Alamos National Laboratory; Gooden, Matthew Edgell [Los Alamos National Laboratory; Rundberg, Robert S. [Los Alamos National Laboratory; Bredeweg, Todd Allen [Los Alamos National Laboratory

    2017-10-03

    There is an urgent need at LANL to achieve uniform, thin film actinide targets that are essential for nuclear physics experiments. The target preparation work is currently performed externally by Professor Walter Loveland at Oregon State University, who has made various evaporated actinide targets such as Th and U for use on several nuclear physics measurements at LANSCE. We are developing a vapor deposition capability, with the goal of evaporating Th and U in the Actinide Research Facility (ARF) at TA-48. In the future we plan to expand this work to evaporating transuranic elements, such as Pu. The ARF is the optimal location for evaporating actinides because this lab is specifically dedicated to actinide research. There are numerous instruments in the ARF that can be used to provide detailed characterization of the evaporated thin films such as: Table top Scanning Electron Microscope, In-situ X-Ray Diffraction, and 3D Raman spectroscopy. These techniques have the ability to determine the uniformity, surface characterization, and composition of the deposits.

  9. Summary of plutonium terrestrial research studies in the vicinity of a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Corey, J.C.; Boni, A.L.; Andriano, D.C.; Pinder, J.F.; McLeod, K.W.

    1978-01-01

    This paper reports plutonium concentrations of wheat, soybeans, and corn grown (a) on a field adjacent to one of the nuclear reprocessing facilities at the Savannah River Plant (SRP), (b) in a glasshouse, and (c) offsite. The crops on SRP were grown on a field that has been receiving both fallout plutonium and plutonium emitted at low chronic levels from an air exhaust stack since 1955. The crops grown in the glasshouse were raised on soil from the onsite agricultural field. The offsite field has received only fallout plutonium. The crop data indicate that the dose to an individual from ingesting grain grown on the field, although higher than from ingesting grain grown offsite, is still small (the 70-year dose-to-bone from eating 2 X 10 5 g (440 lb) of wheat in a year would be less than one mrem). Crop data from the field and the glasshouse experiment indicate that less than 10% of the total contamination of field-grown crops adjacent to a reprocessing facility was contributed by root uptake, the remainder by deposition on the plant surfaces. The plutonium content of the grain was generally 10 to 100 times less than that of the vegetation, again suggesting that deposition from stack emissions vegetation, again suggesting that deposition from stack emissions on the vegetation increased the plutonium content; whereas the grain, particularly corn and soybeans, was protected by thehusk or pod and contained principally plutonium from the root uptake pathway

  10. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department's plutonium storage. Volume II, part 2: Hanford working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    In a memorandum dated January 24, 1994, the Secretary of Energy initiated a department-wide assessment of current plutonium-related safety and environmental vulnerabilities at Department of Energy (DOE) nuclear facilities. In a March 15, 1994 memorandum, the Secretary directed the Office of Environment, Safety and Health (ES ampersand H) to take the lead in coordinating this assessment, which will help to establish the plutonium portion of the foundation for decision making related to the ES ampersand H aspects of national surplus fissile material disposition efforts. This DOE-wide plutonium vulnerability assessment is intended to provide the information base needed to identify and prioritize interim corrective actions for the safe management of these materials

  11. Plutonium Finishing Plant (PFP) hazards assessment

    International Nuclear Information System (INIS)

    Campbell, L.R.

    1998-01-01

    This report documents the hazards assessment for the Plutonium Finishing Plant (PFP) located on the US Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for the PFP. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  12. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section B, Renovation calculations/supporting data

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL's weapons research, development, and testing (WRD ampersand T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL's inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections. It is organized into seven parts. This document, Part V, Section B - Structural/Seismic Information provides a description of the seismic and structural analyses performed on the NMSF and their results

  13. Evaluation of the neutron self-interrogation approach for assay of plutonium in high materials

    International Nuclear Information System (INIS)

    Russo, P.A.; Menlove, H.O.; Fife, K.W.; West, M.H.

    1987-01-01

    The pyrochemical scrap recovery processes, designed to extract impurities from plutonium metal and compounds, generate a variety of plutonium-laden residues consisting of high (α,n) matrices of varying chemical composition, and often containing grams to tens of grams of americium. For such materials, multiplication corrections based on real neutron coincidence count rate, R, and total neutron count rate, T, measurements cannot be applied because of the large, unknown, and variable (α,n) component in the total neutron emission rate. A study of the prototype self-interrogation assay method is in progress at the Los Alamos plutonium facility. In the self-interrogation approach, the assay signature R(IF)/T is a function of effective fissile plutonium content, where R(IF) is the induced fission component of the measured reals rate, and T is the measured, (α,n)-dominated totals rate. The present study includes a calibration effort using standards consisting of mixtures of PuO 2 and PuF 4 in a salt-strip matrix. The neutron measurements of the standards and the process materials have been performed at the Los Alamos Plutonium Facility. The precision and accuracy of the self-interrogation method applied to pyrochemical residues is examined in this study

  14. Design safety features of containments used for handling plutonium in Reprocessing Plants

    International Nuclear Information System (INIS)

    Aherwal, P.; Achuthan, P.V.

    2016-01-01

    The plutonium present in spent fuel is separated from the associated uranium and fission products using solvent extraction cycles in process cells. Product plutonium nitrate solution containing trace concentrations of uranium and fission products is treated in the reconversion facility through a precipitation-calcination route and converted to sinterable grade plutonium oxide (PuO 2 ). All chemical operations involving materials with high plutonium content, both in solid and solution forms are carried out in glove boxes. Glove box provides an effective isolation from radioactive materials handled and acts as a barrier between the operator and the source of radiation. These glove boxes are interconnected for sequential operations and the interconnected glove box trains are installed within secondary enclosures called double skin which provides double barrier protection to operators

  15. Automatic chemical determination facility for plutonium and uranium

    International Nuclear Information System (INIS)

    Benhamou, A.

    1980-01-01

    A proposal for a fully automated chemical determination system for uranium and plutonium in (U, Pu)O 2 mixed oxide fuel, from the solid sample weighing operation to the final result is described. The steps completed to data are described. These include: test sample preparation by weighing, potentiometer titration system, cleaning and drying of glassware after titration. The process uses a Mettler SR 10 Titrator System in conjunction with others automatized equipment in corse of realization. Precision may reach 0.02% and is generally better than 0.1%. Accuracy in within +-0.1% of manual determination results or titration standards [fr

  16. Assessment of LANL transuranic mixed waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from the evaluation of the Los Alamos National Laboratory (LANL) TRU Mixed Waste Acceptance Criteria to determine its compliance with applicable DOE requirements. The driving requirements for s TRU Mixed Waste Acceptance Criteria are essentially those contained in the ''TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant'' or WIPP WAC (DOE Report WIPP-DOE-069), 40 CFR 261-270, and DOE Order 5820.2A (Radioactive Waste Management), specifically Chapter II which is entitled ''Management of Transuranic Waste''. The primary purpose of the LANL WAC is the establishment of those criteria that must be met by generators of TRU mixed waste before such waste can be accepted by the Waste Management Group. An annotated outline of a genetic TRU mixed waste acceptance criteria document was prepared from those requirements contained in the WIPP WAC, 40 CFR 261-270, and 5820.2A, and is based solely upon those requirements

  17. Shuffler calibration and measurement of mixtures of uranium and plutonium TRU-waste in a plant environment

    International Nuclear Information System (INIS)

    Hurd, J.R.

    1998-01-01

    The active-passive shuffler installed and certified a few years ago in Los Alamos National Laboratory's plutonium facility has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data presently exist for these types of measurements in plant environments where there may be sudden large changes in the neutron background radiation which causes distortions in the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the distortion effects in the data will be presented. Various solution scenarios will be indicated, along with those adopted here

  18. Aqueous nitrate flowsheet optimization and enhancement using the ATLAS facility

    International Nuclear Information System (INIS)

    Schreiber, S.B.; Punjak, W.A.; Yarbro, S.L.

    1993-08-01

    The Advanced Testing Line for Actinide Separations (ATLAS) is a pilot plant of all aqueous nitrate plutonium recovery and purification operations within the Los Alamos Plutonium Facility. The main unit operations include dissolution, anion exchange, precipitations, evaporation, calcination, and waste stream polishing. In the current political environment, the emphasis has been redirected from the traditional goal of recovering a pure plutonium product to that of generating ''clean'' effluents while placing the plutonium into a form suitable for long term storage. The ATLAS facility is uniquely suited to fulfill this new role in the development and demonstration of new or revisited technologies. This report summarizes recent work in equipment improvements to the batch dissolver, an evaluation of homogeneous hydroxide precipitations, a demonstration of nitric acid recycle, and the preparation of neptunium and plutonium standards

  19. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  20. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  1. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.; Mayancsik, B.A. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I. [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  2. Characterization of past and present solid waste streams from the plutonium finishing plant

    International Nuclear Information System (INIS)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE)

  3. Analog subsystem for the plutonium protection system

    International Nuclear Information System (INIS)

    Arlowe, H.D.

    1978-12-01

    An analog subsystem is described which monitors certain functions in the Plutonium Protection System. Rotary and linear potentiometer output signals are digitized, as are the outputs from thermistors and container ''bulge'' sensors. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program

  4. Integrated development and testing plan for the plutonium immobilization project

    International Nuclear Information System (INIS)

    Kan, T.

    1998-01-01

    This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D and T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D and T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D and T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the

  5. Plutonium

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Plutonium, which was obtained and identified for the first time in 1941 by chemist Glenn Seaborg - through neutron irradiation of uranium 238 - is closely related to the history of nuclear energy. From the very beginning, because of the high radiotoxicity of plutonium, a tremendous amount of research work has been devoted to the study of the biological effects and the consequences on the environment. It can be said that plutonium is presently one of the elements, whose nuclear and physico-chemical characteristics are the best known. The first part of this issue is a survey of the knowledge acquired on the subject, which emphasizes the sanitary effects and transfer into the environment. Then the properties of plutonium related to energy generation are dealt with. Fissionable, like uranium 235, plutonium has proved a high-performance nuclear fuel. Originally used in breeder reactors, it is now being more and more widely recycled in light water reactors, in MOX fuel. Reprocessing, recycling and manufacturing of these new types of fuel, bound of become more and more widespread, are now part of a self-consistent series of operations, whose technical, economical, industrial and strategical aspects are reviewed. (author)

  6. Learning more about plutonium

    International Nuclear Information System (INIS)

    2005-01-01

    This document offers chemical, metallurgical and economical information on the plutonium, a hard white radioelement. It deals also on the plutonium formation in the earth, the plutonium use in the nuclear industry, the plutonium in the environment and the plutonium toxicity. (A.L.B.)

  7. progress on the U.S.-Russian excess weapons plutonium disposition program. Panel discussion

    International Nuclear Information System (INIS)

    Feinroth, Herb; Sicard, Bruno; Kudryavtsev, Evgeny; Sprankle, Kenneth A.; Nesbit, Steve; Gadsby, Robert; Aratani, Kiyonori

    2001-01-01

    Full text of publication follows: On September 1, 2000, the United States and Russia signed a historic agreement to each dispose of 34 tons of excess weapons plutonium by 2025, or sooner if possible. The agreement was conditional on international financing of the Russian program. The parties are now attempting to establish a specific program for disposition of the Russian plutonium and to secure commitments for international financing of the Russian program. In the United States, efforts are moving forward to design, license, and construct the necessary facilities for its disposition program. With the assistance of France and Germany, efforts are moving forward in Russia to plan and design appropriate reactor modifications as well as the needed facilities for plutonium conversion and mixed-oxide fabrication. Japan and Canada are also participants in the Russian disposition program. This panel session will review the status of actions taken to bring this agreement to fruition. (authors)

  8. Update of epidemiologic studies of plutonium-workers

    International Nuclear Information System (INIS)

    Voelz, G.L.; Wilkinson, G.S.; Acquavella, J.F.; Tietjen, G.L.; Brackbill, R.M.; Reyes, M.; Wiggs, L.D.

    1981-01-01

    Retrospective and prospective epidemiologic studies are being conducted as part of a national survey of plutonium workers at four Department of Energy facilities (Los Alamos, NM; Rocky Flats, CO; Mound Laboratory, OH; and Savannah River, SC). A preliminary analysis of mortality was done for all white males who have worked at the Rocky Flats Plant during the period 1952 to 1979. The 452 observed deaths were significantly fewer than the 831 expected for all causes. The 107 deaths due to all malignant neoplasms were also significantly fewer than the 167 expected from these diseases. Expected deaths were derived from age and calendar-specific death rates for US white males. Deaths reported for benign and unspecified neoplasms numbered eight versus an expected two, a significant elevation. These tumors, all intracranial, are the subject of a case-control study to be reported later. Subdividing the cohort on the basis of plutonium exposures and external radiation exposures results in similar overall findings. The benign and unspecified neoplasms, however, were not significantly high in the plutonium-exposed group

  9. The generation of denatured reactor plutonium by different options of the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M.; Kessler, G. [Inst. for Neutron Physics and Reactor Technology, Research Center Karlsruhe (Germany)

    2006-11-15

    Denatured (proliferation resistant) reactor plutonium can be generated in a number of different fuel cycle options. First denatured reactor plutonium can be obtained if, instead of low enriched U-235 PWR fuel, re-enriched U-235/U-236 from reprocessed uranium is used (fuel type A). Also the envisaged existing 2,500 t of reactor plutonium (being generated world wide up to the year 2010), mostly stored in intermediate fuel storage facilities at present, could be converted during a transition phase into denatured reactor plutonium by the options fuel type B and D. Denatured reactor plutonium could have the same safeguards standard as present low enriched (<20% U-235) LWR fuel. It could be incinerated by recycling once or twice in PWRs and subsequently by multi-recycling in FRs (CAPRA type or IFRs). Once denatured, such reactor plutonium could remain denatured during multiple recycling. In a PWR, e.g., denatured reactor plutonium could be destroyed at a rate of about 250 kg/GWey. While denatured reactor plutonium could be recycled and incinerated under relieved IAEA safeguards, neptunium would still have to be monitored by the IAEA in future for all cases in which considerable amounts of neptunium are produced. (orig.)

  10. Life cycle costs for the domestic reactor-based plutonium disposition option

    International Nuclear Information System (INIS)

    Williams, K.A.

    1999-01-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission

  11. Fabrication of zircon for disposition of weapons plutonium

    International Nuclear Information System (INIS)

    Kim, K.C.; Huang, J.Y.; Serrano, P.L.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In an effort to address the problems of long term storage and nuclear waste minimization, zircon has been proposed as a host medium for plutonium and other actinides recovered from dismantled nuclear weapons. The objective of this work is to investigate the feasibility of large scale fabrication of Pu-bearing zircon. Since PuO 2 is thermodynamically less stable than ZrO 2 , it is expected that the process parameters determined for synthesizing ZrSiO 4 (zircon) would be applicable to those for PuSiO 4 (Pu-zircon). Furthermore, since the foremost concern in plutonium processing is the potential for contamination release, this work emphasizes the development of process parameters, using zircon first, to anticipate potential material problems in the containment system for reaction mixtures during processing. Stoichiometric mixtures of ZrO 2 and SiO 2 , in hundred-gram batches, have been subjected to hot isostatic pressing (HIP) at temperatures near 1,500 C and pressures approximately 10,000 psi. The product materials have been analyzed by x-ray powder diffraction, and are found to consist of zircon after approximately two hours of reaction time. From this work, it is clear that the fabrication of large quantities of Pu-zircon is feasible. The most notable result of this work is evidence for the existence of container problems. This result, in turn, suggests potential solutions to these problems. Experiments with the quartz inner container, the glass sealant, a sacrificial metal barrier, and a metal outer container are being investigated to mitigate these potential hazards

  12. Energy Referencing in LANL HE-EOS Codes

    Energy Technology Data Exchange (ETDEWEB)

    Leiding, Jeffery Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    Here, We briefly describe the choice of energy referencing in LANL's HE-EOS codes, HEOS and MAGPIE. Understanding this is essential to comparing energies produced by different EOS codes, as well as to the correct calculation of shock Hugoniots of HEs and other materials. In all equations after (3) throughout this report, all energies, enthalpies and volumes are assumed to be molar quantities.

  13. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  14. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  15. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  16. Civil plutonium management

    International Nuclear Information System (INIS)

    Sicard, B.; Zaetta, A.

    2004-01-01

    During 1960 and 1970 the researches on the plutonium recycling in fast neutrons reactors were stimulated by the fear of uranium reserves diminishing. At the beginning of 1980, the plutonium mono-recycling for water cooled reactors is implementing. After 1990 the public opinion concerning the radioactive wastes management and the consequences of the disarmament agreements between Russia and United States, modified the context. This paper presents the today situation and technology associated to the different options and strategical solutions of the plutonium management: the plutonium use in the world, the neutronic characteristics, the plutonium effect on the reactors characteristics, the MOX behavior in the reactors, the MOX fabrication and treatment, the possible improvements to the plutonium use, the concepts performance in a nuclear park. (A.L.B.)

  17. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.; Kinman, William Scott; LaMont, Stephen Philip; Podlesak, David; Tandon, Lav

    2016-01-01

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  18. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dion, Heather M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); LaMont, Stephen Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-22

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  19. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 11: Lawrence Berkeley Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    President Clinton has directed an Interagency Working Group to initiate a comprehensive review of long-term options for the disposition of surplus plutonium. As part of this initiative, Secretary of Energy, Hazel O'Leary, has directed that a Department of Energy project be initiated to develop options and recommendations for the safe storage of these materials in the interim. A step in the process is a plutonium vulnerability assessment of facilities throughout the Department. The Plutonium Vulnerability Working Group was formed to produce the Project and Assessment Plans, to manage the assessments and to produce a final report for the Secretary by September 30, 1994. The plans established the approach and methodology for the assessment. The Project Plan specifies a Working Group Assessment Team (WGAT) to examine each of the twelve DOE sites with significant holdings of plutonium. The Assessment Plan describes the methodology that the Site Assessment Team (SAT) used to report on the plutonium holdings for each specific site.This report provides results of the assessment of the Lawrence Berkeley Laboratory

  20. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  1. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    International Nuclear Information System (INIS)

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D ampersand D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project

  2. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  3. An Update on the Status of the Supply of Plutonium-238 for Future NASA Missions

    Science.gov (United States)

    Wham, R. M.

    2016-12-01

    For more than five decades, Radioisotope Power Systems (RPSs) have enabled space missions to operate in locations where the Sun's intensity is too weak, obscured, or otherwise inadequate for solar power or other conventional power‒generation technologies. The natural decay heat (0.57 W/g) from the radioisotope, plutonium-238 (238Pu), provides the thermal energy source used by an RPS to generate electricity for operation of instrumentation, as well as heat to keep key subsystems warm for missions such as Voyagers 1 and 2, the Cassini mission to Saturn, the New Horizons flyby of Pluto, and the Mars Curiosity rover which were sponsored by the National Aeronautics and Space Administration (NASA). Plutonium-238 is produced by irradiation of neptunium-237 in a nuclear reactor a relatively high neutron flux. The United States has not produced new quantities of 238Pu since the early 1990s. RPS‒powered missions have continued since then using existing 238Pu inventory managed by the U.S. Department of Energy (DOE), including material purchased from Russia. A new domestic supply is needed to ensure the continued availability of RPSs for future NASA missions. NASA and DOE are currently executing a project to reestablish a 238Pu supply capability using its existing facilities and reactors, which are much smaller than the large-scale production reactors and processing canyon equipment used previously. The project is led by the Oak Ridge National Laboratory (ORNL). Target rods, containing NpO2, will be fabricated at ORNL and irradiated in the ORNL High Flux Isotope Reactor and the Advanced Test Reactor at Idaho National Laboratory. Irradiated targets will be processed in chemical separations at the ORNL Radiochemical Engineering Center to recover the plutonium product and unconverted neptunium for recycle. The 238PuO2 product will be shipped to Los Alamos National Laboratory for fabrication of heat source pellets. Key activities, such as transport of the neptunium to ORNL

  4. The LANL C-NR counting room and fission product yields

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  5. Report on the control of the safety and security of nuclear facilities. Part 2: the reconversion of military plutonium stocks. The use of the helps given to central and eastern Europe countries and to the new independent states

    International Nuclear Information System (INIS)

    Birraux, C.

    2002-01-01

    This report deals with two different aspects of the safety and security of nuclear facilities. The first aspect concerns the reconversion of weapon grade plutonium stocks: the plutonium in excess, plutonium hazards and nuclear fuel potentialities, the US program, the Russian program, the actions of European countries (France, Germany), the intervention of other countries, the unanswered questions (political aspects, uncertainties), the solutions of the future (improvement of reactors, the helium-cooled high temperature reactor technology (gas-turbine modular helium reactor: GT-MHR), the Carlo Rubbia's project). The second aspect concerns the actions carried out by the European Union in favor of the civil nuclear facilities of central and eastern Europe: the European Union competencies through the Euratom treaty, the conclusions of the European audit office about the PHARE and TACIS nuclear programs, the status of committed actions, the coming planned actions, and the critical analysis of the policy adopted so far. (J.S.)

  6. A passive gamma scanner for estimation of plutonium in fabrication waste

    International Nuclear Information System (INIS)

    Venkatesan, P.P.; Burte, P.P.; Manohar, S.B.; Satya Prakash; Ramaniah, M.V.

    1978-01-01

    The solid plutonium wastes arising from plutonium handling laboratories and fuel fabrication facilities by their very nature (heterogeneous) are not amenable to proper sampling and hence to the standard techniques of estimation. For the proper accounting of nuclear materials a non-destructive method of waste assay is essential. A passive gamma-ray scanner developed in the Radiochemistry Division is described in the present report. The scanner detects the 384 KeV gamma complex of plutonium in a (3'' x 3'') NaI(Tl) detector. The rotation-collimation technique is used to achieve the flat response with respect to the plutonium distribution inside the waste can. The sensitivity of the scanner is 200 mg of Pu per can at 2 sigma level and 20% accuracy for a total scan time of 2000 sec. The assay results of typical waste cans and comparison of a few of these with chemical assay results are presented. This non-destructive method is fast, simple and has satisfactory accuracy. (author)

  7. The plutonium society

    International Nuclear Information System (INIS)

    Mez, L.; Richter, M.

    1981-01-01

    The lectures of an institute are reported on, which took place between 25th and 27th January 1980 in Berlin. The subsequent public panel discussion with representations from the political parties is then documentated in a few press-reports. The themes of the 8 lectures are: views and facts on plutonium, plutonium as an energy resource, military aspects of the production of plutonium, economic aspects of the plutonium economy, the position of the trade unions on the industrial reconversion, the alleged inevitability of a plutonium society and the socio-political alternatives and perspectives of nuclear waste disposal. (UA) [de

  8. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Moe, H.J.; Lahey, T.J.

    1985-02-01

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m 3 (19,000 ft 3 ) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  9. What is plutonium stabilization, and what is safe storage of plutonium?

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1995-01-01

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ''What is required for safe, multidecade, plutonium storage?'' The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided

  10. An Opportunity to Immobilize 1.6 MT or More of Weapons-Grade Plutonium at the Mayak and Krasnoyarsk-26 Sites

    International Nuclear Information System (INIS)

    Jardine, L J; Borisov, G B; Rovny, S I; Kudinov, K G; Shvedov, A A

    2001-01-01

    The Mayak Production Association (PA Mayak), an industrial site in Russia, will be assigned multiple new plutonium disposition missions in order to implement the ''Agreement Between The Government Of The United States Of America And The Government Of Russian Federation Concerning The Management And Disposition Of Plutonium Designated As No Longer Required For Defense Purposes And Related Cooperation'' signed September 1, 2000, by Gore and Kasyanov, In addition, the mission of industrial-scale mixed-oxide (MOX) fabrication will be assigned to either the Mining Chemical Combine (MCC) industrial site at Krasnoyarsk-26 (K-26) or PA Mayak. Over the next decades, these new missions will generate radioactive wastes containing weapons-grade plutonium. The existing Mayak and K-26 onsite facilities and infrastructures cannot currently treat and immobilize these Pu-containing wastes for storage and disposal. However, the wastes generated under the Agreement must be properly immobilized, treated, and managed. New waste treatment and immobilization missions at Mayak may include operating facilities for plutonium metal-to-oxide conversion processes, industrial-scale MOX fuel fabrication, BN-600 PAKET hybrid core MOX fuel fabrication, and a plutonium conversion demonstration process. The MCC K-26 site, if assigned the industrial-scale MOX fuel fabrication mission, would also need to add facilities to treat and immobilize the Pu-containing wastes. This paper explores the approach and cost of treatment and immobilization facilities at both Mayak and K-26. The current work to date at Mayak and MCC K-26 indicates that the direct immobilization of 1.6 MT of weapons-grade plutonium is a viable and cost-effective alternative

  11. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    International Nuclear Information System (INIS)

    Behrens, R.G.; Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J.

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO 2 PuO 2-x , and Pu 4 O 7 phases, of about 1μm or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 μm to liberate the plutonium from the surrounding inert matrix

  12. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, Appendix B, Part 10: Sandia National Laboratories - New Mexico site assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    On March 15, 1994, Secretary O'Leary directed the Office of Environment, Safety and Health to conduct an environment, safety and health (ES ampersand H) vulnerability study of plutonium at DOE sites. This report presents Sandia National Laboratories'/New Mexico (SNL/NM) response to that request. Sandia National Laboratories (SNL) is a multi-program laboratory operated for United States Department of Energy(DOE) by Martin Marietta Corporation. The primary mission of Sandia is research and development of nuclear weapons systems for concept to retirement. The laboratory also has extensive programs in nuclear reactor safety, nuclear safeguards, energy research, and microelectronics. The facilities addressed in the SNL/NM Site Assessment include the Hot Cell Facility (HCF), the Annular Core Research Reactor (ACRR), and dedicated on-site nuclear material storage facilities. Also included in the assessment were sealed radiation sources that contain plutonium

  13. Materials control and accountability challenges associated with plutonium inventories

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1996-01-01

    There are currently many initiatives underway within the Department of Energy (DOE) to safely and securely manage large plutonium inventories arising from weapons dismantlement, changing missions and facility operations. Plutonium inventory information is increasingly accessible to the public as a result of the secretary of energy's openness initiative. As a result, knowledge of these inventories and levels to which the department has accounted for and controlled these inventories, will be under increased scrutiny from a variety of interest groups. The quality of this accountability data and what this data means will greatly influence the public's perception of how the US is protecting its plutonium inventories. In addition, the department's safeguards program provides an essential basis for the application of International Atomic Energy Agency (IAEA) safeguards that, in addition to possibly other international control regimes, will be in place over a large portion of these future inventories. The capability and functionality of the department's nuclear safeguards program will be important contributors to the success of US programs for the responsible stewardship of these vast plutonium inventories. This paper discusses some of the challenges, in terms of specific issues relating to one part of the department's safeguards program--materials control and accountability (MC and A)--to meet the growing domestic and international requirements and expectations associated with these plutonium inventories

  14. Materials control and accountability challenges associated with plutonium inventories

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.W. [USDOE Office of Safeguards and Security, Washington, DC (United States)

    1996-07-01

    There are currently many initiatives underway within the Department of Energy (DOE) to safely and securely manage large plutonium inventories arising from weapons dismantlement, changing missions and facility operations. Plutonium inventory information is increasingly accessible to the public as a result of the secretary of energy`s openness initiative. As a result, knowledge of these inventories and levels to which the department has accounted for and controlled these inventories, will be under increased scrutiny from a variety of interest groups. The quality of this accountability data and what this data means will greatly influence the public`s perception of how the US is protecting its plutonium inventories. In addition, the department`s safeguards program provides an essential basis for the application of International Atomic Energy Agency (IAEA) safeguards that, in addition to possibly other international control regimes, will be in place over a large portion of these future inventories. The capability and functionality of the department`s nuclear safeguards program will be important contributors to the success of US programs for the responsible stewardship of these vast plutonium inventories. This paper discusses some of the challenges, in terms of specific issues relating to one part of the department`s safeguards program--materials control and accountability (MC and A)--to meet the growing domestic and international requirements and expectations associated with these plutonium inventories.

  15. Facility Operations 1993 fiscal year work plan: WBS 1.3.1

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO{sub 3}) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP).

  16. Facility Operations 1993 fiscal year work plan: WBS 1.3.1

    International Nuclear Information System (INIS)

    1992-11-01

    The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO 3 ) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP)

  17. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  18. Stabilizing plutonium materials at Hanford: systems engineering for PFP transition project effort on DNFSB 94-1

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T.E., Westinghouse Hanford

    1996-07-02

    This report discusses the basic objectives of the stabilization and packaging activities at the Plutonium Finishing Plant that satisfy the Defense Nuclear Facility Safety Board Recommendation 94-1 by transforming the plutonium materials at hanford into forms or conditions which are suitable for safe storage to appropriate storage criteria; or discard that meets appropriate waste acceptance criteria.

  19. Plutonium in uranium deposits

    International Nuclear Information System (INIS)

    Curtis, D.; Fabryka-Martin, J.; Aguilar, R.; Attrep, M. Jr.; Roensch, F.

    1992-01-01

    Plutonium-239 (t 1/2 , 24,100 yr) is one of the most persistent radioactive constituents of high-level wastes from nuclear fission power reactors. Effective containment of such a long-lived constituent will rely heavily upon its containment by the geologic environment of a repository. Uranium ore deposits offer a means to evaluate the geochemical properties of plutonium under natural conditions. In this paper, analyses of natural plutonium in several ores are compared to calculated plutonium production rates in order to evaluate the degree of retention of plutonium by the ore. The authors find that current methods for estimating production rates are neither sufficiently accurate nor precise to provide unambiguous measures of plutonium retention. However, alternative methods for evaluating plutonium mobility are being investigated, including its measurement in natural ground waters. Preliminary results are reported and establish the foundation for a comprehensive characterization of plutonium geochemistry in other natural environments

  20. Conversion of metal plutonium to plutonium dioxide by pyrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Panov, A.V.; Subbotin, V.G. [Russian Federal Nuclear Center, ALL-Russian Science and Research Institute of Technical Physics, Snezhinsk (Russian Federation); Mashirev, V.P. [ALL-Russian Science and Research Institute of Chemical Technology, Moscow (Russian Federation)

    2000-07-01

    Report contains experimental results on metal plutonium of weapon origin samples conversion to plutonium dioxide by pyrochemical method. Circuits of processes are described. Their advantages and shortcomings are shown. Parameters of plutonium dioxide powders (phase and fraction compositions, poured density) manufactured by pyrochemical method in RFNC-VNIITF are shown as well. (authors)

  1. The use of plutonium

    International Nuclear Information System (INIS)

    Marshall, W.

    1980-01-01

    The use of plutonium as a vital energy source producing maximum economic benefit with minimum proliferation risks is discussed. Having considered the production of plutonium, several possible plutonium fuel cycle options are identified and the economic value to be attached to plutonium for each examined. It is shown how the use of plutonium in fast reactors gives an opportunity for a non-proliferation policy not available when plutonium is used only in thermal reactors. From the technical considerations reviewed concerning plutonium and fast reactors it is shown that an economic regime involving international trade in spent thermal reactor fuel is possible which benefits equally those countries with fast reactors and those without and also assists in avoiding the proliferation of nuclear weapons. (U.K.)

  2. Properties of plutonium

    International Nuclear Information System (INIS)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new

  3. Properties of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jin Su; Yoon, Hwan Ki; Min, Kyung Sik; Kim, Hyun Tae; Ahn, Jong Sung; Kwag, Eon Ho; Ryu, Keon Joong [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-03-01

    Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications, in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects of corrosion, oxidation, how to produce plutonium from spent fuels by describing various chemical treatment methods, which are currently used and were used in the past. It also contains characteristics of the purex reprocessing process which is the most widely used nowadays. And show processes to purify and metalize from recovered plutonium solution. Detection and analysis methods are introduced with key pints for handling, critical safety, toxicity, and effects on peoples. This report gives not only a general idea on what plutonium is, rather than deep technical description, but also basic knowledge on plutonium production and safeguards diversion from the view point of nonproliferation. 18 refs. (Author) .new.

  4. Plutonium-238 and plutonium-239 metabolism in dairy cows following ingestion of mixed oxides

    International Nuclear Information System (INIS)

    Patzer, R.G.; Mullen, A.A.; Sutton, W.W.; Potter, G.D.; Mosley, R.E.; Efurd, D.W.; Stalnaker, N.D.

    1985-01-01

    Dairy cows were given oral dosage of plutonium-238 and plutonium-239 dioxide particles in a study to determine the relative gastrointestinal absorption and tissue distribution of the nuclides. Two cows were given particles in which the two isotopes were homogeneously mixed within the particles. A third cow was given two batches of particles which contained either plutonium-238 or plutonium-239. Results indicate that, when the two isotopes of plutonium are homogeneous within the particles, there is no difference between plutonium-238 and plutonium-239 in the relative gastrointestinal absorption and tissue distribution

  5. High-temperature enthalpies of plutonium monocarbide and plutonium sesquicarbide

    International Nuclear Information System (INIS)

    Oetting, F.L.

    1979-01-01

    The high-temperature enthalpies of plutonium monocarbide and plutonium sesquicarbide have been determined with a copper-block calorimeter of the isoperibol type. The experimental enthalpy data, which was measured relative to 298 K, covered the temperature range from 400 to 1500 K. The calculation of the temperature rise of the calorimeter takes into account the added heat evolution from the radioactive decay of the plutonium samples. These enthalpy results, combined with the heat capacity and entropy of the respective carbide at 298 K available from the literature, has made it possible to generate tables of thermodynamic functions for the plutonium carbides. The behavior of the heat capacity of both of the plutonium carbides, i.e., a relatively steep increase in the heat capacity as the temperature increases, may be attributed to a premelting effect with the formation of vacancies within the crystal lattice although a theoretical treatment of this phenomenon is not given

  6. The transports in the French Plutonium Industry. A high risk activity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    This study throws light on the scale of transport of plutonium in France nuclear industry, an activity involving quantities of high risk materials often unknown to the public. The study is a significantly extended update of the one carried out by WISE-Paris in 1995 for the Plutonium Forum. It was motivated by important developments in the French plutonium industry and the publication of numerous data concerning transport activities since 1995. The 2003 study presents, in particular, all of the flows of plutonium crossing France every year, as well as analysis of the risks associated with this particular transport activity. Putting these data into perspective in terms of a rapidly and permanently changing political and industrial context, and a description of the regulatory framework within which shipments of plutonium take place, serve as a guide and source of reference to help readers better understand the issues. The importance of transport in the plutonium ''chain'', i.e. the stages corresponding to various industrial processes, is often under-estimated, even by the nuclear industry itself. Transport is, in fact, the activity which involves the greatest quantities of plutonium in the entire nuclear chain. Plutonium, produced during the fission reactions in the cores of nuclear reactors, is transported, contained in the irradiated fuel, to the facilities at La Hague where reprocessing separates it from the other radioactive components of the spent fuel. Part of the plutonium, now isolated in powder form, is then shipped to one of the three plants able to produce the fuel known as MOX. These are located at Cadarache and Marcoule, in France, and at Dessel in Belgium. Once in the MOX form, this plutonium has to be re-transported to reactor sites to be used. Once irradiated, the spent MOX will return to the La Hague installations to be stored for an unknown period; the plutonium contained in the spent MOX is not, at present, destined to be re

  7. The transports in the French Plutonium Industry. A high risk activity

    International Nuclear Information System (INIS)

    2003-02-01

    This study throws light on the scale of transport of plutonium in France nuclear industry, an activity involving quantities of high risk materials often unknown to the public. The study is a significantly extended update of the one carried out by WISE-Paris in 1995 for the Plutonium Forum. It was motivated by important developments in the French plutonium industry and the publication of numerous data concerning transport activities since 1995. The 2003 study presents, in particular, all of the flows of plutonium crossing France every year, as well as analysis of the risks associated with this particular transport activity. Putting these data into perspective in terms of a rapidly and permanently changing political and industrial context, and a description of the regulatory framework within which shipments of plutonium take place, serve as a guide and source of reference to help readers better understand the issues. The importance of transport in the plutonium ''chain'', i.e. the stages corresponding to various industrial processes, is often under-estimated, even by the nuclear industry itself. Transport is, in fact, the activity which involves the greatest quantities of plutonium in the entire nuclear chain. Plutonium, produced during the fission reactions in the cores of nuclear reactors, is transported, contained in the irradiated fuel, to the facilities at La Hague where reprocessing separates it from the other radioactive components of the spent fuel. Part of the plutonium, now isolated in powder form, is then shipped to one of the three plants able to produce the fuel known as MOX. These are located at Cadarache and Marcoule, in France, and at Dessel in Belgium. Once in the MOX form, this plutonium has to be re-transported to reactor sites to be used. Once irradiated, the spent MOX will return to the La Hague installations to be stored for an unknown period; the plutonium contained in the spent MOX is not, at present, destined to be re-used. (author)

  8. Feedback from the operation of the ISOCS in support to the plutonium facility decommissioning project at the Marcoule UP1 reprocessing plant (France) and possible gain for new projects with new CANBERRA systems

    International Nuclear Information System (INIS)

    Dogny, S.; Toubon, H.

    2009-01-01

    After the decision was taken in 1998 to shut-down the operations of the UP1 reprocessing plant in Marcoule (France), where more than 19,000 metric tons of spent nuclear fuel have been reprocessed, decommissioning projects started in the various buildings, particularly in the Plutonium Facility. In this facility many glove boxes had to be decontaminated before dismantling. To have waste compatible with surface storage, the main objective was to prove that each glove box had on hold up of less than 37 GBq (about 10 g) and to determine the corresponding Pu isotopic composition. Historically the method used for such characterisation was based on smears and dose rate measurements to extrapolate the mass of Pu in the glove boxes with a very high uncertainty. In 1998 AREVA-NC decided to deploy new characterization tools to meet the performance goals of the Plutonium Facility Decommissioning Project. These tools consist on portable Germanium gamma spectrometer coupled with MGA Pu isotopic composition and ISOCS 3D modelling codes. (authors)

  9. Overview of LANL and ESH&Q

    Energy Technology Data Exchange (ETDEWEB)

    Dutro, Cynthia L [Los Alamos National Laboratory

    2011-01-13

    ESH&Q FY11 objectives are to: (1) Clearly define the ESH&O standards and requirements for institutional programs to ensure compliance with contractual and regulatory requirements, and communicate the relevant requirements, including specific work activities and associated priorities that must be completed, to LANL Organizations; (2) Provide qualified ESH&O subject matter expertise, training support, centralized and deployed services, tools, and procedures to meet both internal customer needs and institutional operational requirements, subject to institutional funding; and (3) Provide support to the Laboratory to meet operational commitments and performance goals.

  10. The TRIDENT laser at LANL: New “dial-a-contrast” and high-contrast experimental capabilities

    Directory of Open Access Journals (Sweden)

    Flippo K.A.

    2013-11-01

    Full Text Available The Trident laser facility at Los Alamos National Laboratory (LANL has served for more than 20 years as an important tool in inertial confinement fusion (ICF and Material Dynamics research. An energy and power upgrade of the short-pulse beam line to 100J / 200 TW was made in 2007 and contrast improvements have been made continually since. The combination of this powerful new short-pulse beamline with the two flexible long pulse beamlines, and a total of three different target areas, makes Trident a highly flexible and versatile research tool for high energy density laboratory plasma (HEDLP research. The newest “Dial-a-Contrast” (DaC features are described, along with nominal performance of the laser at the presently available highest contrast.

  11. Methods for developing seismic and extreme wind-hazard models for evaluating critical structures and equipment at US Department of Energy facilities and commercial plutonium facilities in the United States

    International Nuclear Information System (INIS)

    Coats, D.W.; Murray, R.C.; Bernreuter, D.L.

    1981-01-01

    Lawrence Livermore National Laboratory (LLNL) is developing seismic and wind hazard models for the US Department of Energy (DOE). The work is part of a three-phase effort to establish building design criteria developed with a uniform methodology for seismic and wind hazards at the various DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. Phase 2 - development of seismic and wind hazard models - is discussed in this paper, which summarizes the methodologies used by seismic and extreme-wind experts and gives sample hazard curves for the first sites to be modeled. These hazard models express the annual probability that the site will experience an earthquake (or windspeed) greater than some specified magnitude. In the final phase, the DOE will use the hazards models and LLNL-recommended uniform design criteria to evaluate critical facilities. The methodology presented in this paper also was used for a related LLNL study - involving the seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC). Details and results of this reassessment are documented in reference

  12. External radiation exposure and radiotoxicity considerations in plutonium/uranium mixed-oxide fuel fabrication

    International Nuclear Information System (INIS)

    Williams, R.A.; Crosby, E.H.

    1974-01-01

    Nuclear-reactor-produced plutonium emits significant electromagnetic and neutron radiations. In addition, because of its high specific alpha activity and its tendency to deposit in the lung and the soft tissues of the bone, plutonium presents a significant radiotoxicity hazard. Shielding, containment, and dosimetry techniques practiced at the Nuclear Materials and Equipment Corporation (NUMEC) have resulted in exemplary annual safety report statistics relevant to non-remote-handling plutonium operations. Whereas a few employees exceeded the NUMEC external exposure action level, no employee exceeded the Regulatory maximum permissible external exposure. In addition, a few employees were observed to have a lung burden in excess of the minimum sensitivity of an in vivo counting system, and one employee was observed by in vivo counting to have a lung burden in excess of the maximum permissible for a brief period. No employee was observed to have a body burden as indicated by a positive quarterly urinalysis result. Further, there were no serious incidents at the facility requiring immediate Regulatory notification, and there were no moderate incidents at the facility requiring 24-h Regulatory notification. However, there were a few reportable incidents at the facility requiring 30-day Regulatory notification, and there were a few minor incidents at the facility requiring the preparation of a NUMEC Incident Report. Details of this safety record are presented along with the health physics techniques that have contributed to the results

  13. Plutonium

    International Nuclear Information System (INIS)

    Koelzer, W.

    1989-03-01

    This report contains with regard to 'plutonium' statements on chemistry, occurrence and reactions in the environment, handling procedures in the nuclear fuel cycle, radiation protection methods, biokinetics, toxicology and medical treatment to make available reliable data for the public discussion on plutonium especially its use in nuclear power plants and its radiological assessment. (orig.) [de

  14. Plutonium

    International Nuclear Information System (INIS)

    Mueller-Christiansen, K.; Wollesen, M.

    1979-01-01

    As emotions and fear of plutonium are neither useful for the non-professionals nor for the political decision makers and the advantages and disadvantages of plutonium can only put against each other under difficulties, the paper wants to present the most essential scientific data of plutonium in a generally understandable way. Each of the individual sections is concluded and they try to give an answer to the most discussed questions. In order to make understanding easier, the scientific facts are only brought at points where it cannot be done without for the correctness of the presentation. Many details were left out knowingly. On the other hand, important details are dealt with several times if it seems necessary for making the presentation correct. The graphical presentations and the figures in many cases contain more than said in the text. They give the interested reader hints to scientific-technical coherences. The total material is to enable the reader to form his own opinion on plutonium problems which are being discussed in public. (orig./HP) [de

  15. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs

  16. Resource book: Decommissioning of contaminated facilities at Hanford

    International Nuclear Information System (INIS)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs

  17. PRODUCTION OF PLUTONIUM METAL

    Science.gov (United States)

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  18. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  19. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  20. Best Practices and Lessons Learned In LANL Approaches to Transportation Security

    Energy Technology Data Exchange (ETDEWEB)

    Drypolcher, Katherine Carr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    Presentation includes slides on Physical Protection of Material in Transit; Graded Approach for Implementation Controls; Security Requirements; LANL Lessons Learned; Shipping Violation; Unmonitored Shipment; Foreign shipment; and the Conclusion.

  1. NBS-LANL RTM injector installation

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Lindstrom, E.R.; Martin, E.R.; Mohr, D.L.; Penner, S.; Yoder, N.R.; Young, L.M.

    1983-01-01

    The injector for the NBS-LANL CW racetrack microtron consists of a 100 KeV electron gun and beam transport line followed by a 5 MeV linac. The function of the gun and transport line, which have been installed at NBS, is to provide a chopped and bunched 100 KeV and up to 0.67 mA dc or pulsed beam of very low transverse emittance for matched insertion into the linac. In this paper the authors present both the design and construction details of the 100 KeV system and the results of preliminary beam tests. The tests conducted thus far show the gun and transport system to be performing well within design specifications

  2. Plutonium controversy

    International Nuclear Information System (INIS)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated

  3. Ultratrace analysis of uranium and plutonium by mass spectrometry

    International Nuclear Information System (INIS)

    Wogman, N.A.; Wacker, J.F.; Olsen, K.B.; Petersen, S.L.; Farmer, O.T.; Kelley, J.M.; Eiden, G.C.; Maiti, T.C.

    2002-01-01

    femtogram detection limits for the TIMS analysis of plutonium in environmental samples. This talk will present an overview of the TIMS and ICPMS methods used at PNNL to measure actinide elements at the ultratrace level in environmental samples. Included will be a discussion comparing the requirements for measuring plutonium and uranium in the environment. Results from several recent studies will also be presented. These studies include a thorough characterization of the worldwide composition of global fallout, as well as environmental studies at United States nuclear production facilities. (author)

  4. Perspective on plutonium

    International Nuclear Information System (INIS)

    Sun, L.S.

    1993-01-01

    This paper is intended as a brief overview on the element plutonium. Plutonium is the first primarily man-made element to play a significant role not only in technological development, but also in the economic growth of many countries. The importance of plutonium centers around its enormous energy making it ideal for wide-scale use in reactors, while the nuclear industry continues to work toward improving safety and efficiency of plutonium as a reactor fuel politicians and the public still debate over the safety and benefits of nuclear power. (30 refs.)

  5. Safe handling, transport and storage of plutonium. Proceedings of a technical committee meeting held in Vienna, 18-21 October 1993

    International Nuclear Information System (INIS)

    1994-10-01

    Plutonium inventories and utilization rates worldwide are growing. It is important for nuclear power programmes everywhere that no incidents or accidents with plutonium occur. It is therefore important that all who deal with plutonium, do so safely. All those who deal with plutonium should have available the best information on safety handling and storage. Several countries have mature plutonium programmes. However, information exchange on plutonium has been limited. This has precluded the development until now of consensus documentation on safe handling and storage of plutonium. The Technical Committee has been established to address these problems and this Technical Document is the first product in this process. The purpose of the meeting was to bring together experts with significant experience in handling, transporting and storing plutonium; to exchange information and experiences dealing with plutonium at their facilities; to describe their practices (guidelines, procedures, regulations, etc.) for safely dealing with plutonium; to assess the need to develop and publish a consensus plutonium safety practices document(s), and to recommend possible future IAEA activities in this technical area. Refs, figs and tabs

  6. Calibration for plutonium-238 lung counting at Mound Laboratory

    International Nuclear Information System (INIS)

    Tomlinson, F.K.

    1976-01-01

    The lung counting facility at Mound Laboratory was calibrated for making plutonium-238 lung deposition assessments in the fall of 1969. Phoswich detectors have been used since that time; however, the technique of calibration has improved considerably. The current technique of calibrating the lung counter is described as well as the method of error analysis and determination of the minimum detectable activity. A Remab hybrid phantom is used along with an attenuation curve which is derived from plutonium loaded lungs and ground beef absorber measurements. The errors that are included in an analysis as well as those that are excluded are described. The method of calculating the minimum detectable activity is also included

  7. Experimental performance evaluation of two stack sampling systems in a plutonium facility

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.

    1992-04-01

    The evaluation of two routine stack sampling systems at the Z-Plant plutonium facility operated by Rockwell International for USERDA is part of a larger study, sponsored by Rockwell and conducted by Battelle, Pacific Northwest Laboratories, of gaseous effluent sampling systems. The gaseous effluent sampling systems evaluated are located at the main plant ventilation stack (291-Z-1) and at a vessel vent stack (296-Z-3). A preliminary report, which was a paper study issued in April 1976, identified many deficiencies in the existing sampling systems and made recommendations for corrective action. The objectives of this experimental evaluation of those sampling systems were as follows: Characterize the radioactive aerosols in the stack effluents; Develop a tracer aerosol technique for validating particulate effluent sampling system performance; Evaluate the performance of the existing routine sampling systems and their compliance with the sponsor's criteria; and Recommend corrective action where required. The tracer aerosol approach to sampler evaluation was chosen because the low concentrations of radioactive particulates in the effluents would otherwise require much longer sampling times and thus more time to complete this evaluation. The following report describes the sampling systems that are the subject of this study and then details the experiments performed. The results are then presented and discussed. Much of the raw and finished data are included in the appendices

  8. Plutonium controversy

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  9. Preparation and Characterization of a Master Blend of Plutonium Oxide for the 3013 Large Scale Shelf-Life Surveillance Project

    Energy Technology Data Exchange (ETDEWEB)

    Gillispie, Obie William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stroud, Mary Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Padilla, Dennis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bender, Beverly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez, Annabelle S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinex, Max A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, Leonardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilson, Edward L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-10

    A mixture of chlorine-containing, impure plutonium oxides has been produced and has been given the name Master Blend. This large quantity of well-characterized chlorinecontaining material is available for use in the Integrated Surveillance and Monitoring Program for shelf-life experiments. It is intended to be representative of materials packaged to meet DOE-STD-3013.1 The Master Blend contains a mixture of items produced in Los Alamos National Laboratory’s (LANL) electro-refining pyrochemical process in the late 1990s. Twenty items were crushed and sieved, calcined to 800ºC for four hours, and blended multiple times. This process resulted in four batches of Master Blend. Calorimetry and density data on material from the four batches indicate homogeneity.

  10. Decrease the Number of Glovebox Glove Breaches and Failures

    Energy Technology Data Exchange (ETDEWEB)

    Hurtle, Jackie C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-24

    Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and June 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.

  11. Plutonium, nuclear fuel; Le plutonium, combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Fontenay aux Roses (France). Centre d' Etudes Nucleaires, Saclay

    1960-07-01

    A review of the physical properties of metallic plutonium, its preparation, and the alloys which it forms with the main nuclear metals. Appreciation of its future as a nuclear fuel. (author) [French] Apercu sur les proprietes physiques du plutonium metallique, sa preparation, ses alliages avec les principaux metaux nucleaires. Consideration sur son avenir en tant que combustible nucleaire. (auteur)

  12. Characterization of airborne plutonium-bearing particles from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1977-11-01

    The elemental compositions, sizes, structures, and 239 Pu contents were determined for 299 plutonium-bearing particles isolated from airborne particles collected at various locations in the exhaust from a nuclear fuel reprocessing facility. These data were compared with data from natural aerosol particles. Most of the collected particles were composed of aggregates of crustal materials. Seven percent of the particles were organic and 3% were metallic, viz., iron, chromium, and nickel. High enrichment factors for titanium, manganese, chromium, nickel, zinc, and copper were evidence of the anthropic nature of some of the particles. The amount of plutonium in most particles was very small (less than one femtocurie of 239 Pu). Plutonium concentrations were determined by the fission track counting method. Only one particle contained sufficient plutonium for detection by electron microprobe analysis. This was a 1-μm-diameter particle containing 73% PuO 2 by weight (estimated to be 170 fCi of 239 Pu) in combination with Fe 2 O 3 and mica. The plutonium-bearing particles were generally larger than natural aerosols. The geometric mean diameter of those collected from the mechanical line exhaust point where plutonium is converted to the metal was larger than that of particles collected from the wet cabinet exhaust (13.7 μm vs. 4.6 μm). Particles from the mechanical line also contained more plutonium per particle than those from the wet cabinets

  13. Hazards and accident analyses, an integrated approach, for the Plutonium Facility at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.; Goen, L.K.; Letellier, B.C.; Sasser, M.K.

    1995-01-01

    This paper describes an integrated approach to perform hazards and accident analyses for the Plutonium Facility at Los Alamos National Laboratory. A comprehensive hazards analysis methodology was developed that extends the scope of the preliminary/process hazard analysis methods described in the AIChE Guidelines for Hazard Evaluations. Results fro the semi-quantitative approach constitute a full spectrum of hazards. For each accident scenario identified, there is a binning assigned for the event likelihood and consequence severity. In addition, each accident scenario is analyzed for four possible sectors (workers, on-site personnel, public, and environment). A screening process was developed to link the hazard analysis to the accident analysis. Specifically the 840 accident scenarios were screened down to about 15 accident scenarios for a more through deterministic analysis to define the operational safety envelope. The mechanics of the screening process in the selection of final scenarios for each representative accident category, i.e., fire, explosion, criticality, and spill, is described

  14. The Vapor Plume at Material Disposal Are C in Relation to Pajarito Corridor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masse, William B. [Los Alamos National Laboratory

    2012-04-02

    A vapor plume made up of volatile organic compounds is present beneath Material Disposal Area C (MDA C) at Los Alamos National Laboratory (LANL). The location and concentrations within the vapor plume are discussed in relation to existing and planned facilities and construction activities along Pajarito Road (the 'Pajarito Corridor') and in terms of worker health and safety. This document provides information that indicates that the vapor plume does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of proposed facilities along Pajarito Road. The Los Alamos National Laboratory (LANL or the Laboratory) monitors emissions, effluents, and environmental media to meet environmental compliance requirements, determine actions to protect the environment, and monitor the long-term health of the local environment. LANL also studies and characterizes 'legacy' waste from past Laboratory operations to make informed decisions regarding eventual corrective actions and the disposition of that waste. Starting in 1969, these activities have been annually reported in the LANL Environmental Report (formerly Environmental Surveillance Report), and are detailed in publicly accessible technical reports meeting environmental compliance requirements. Included among the legacy sites being investigated are several formerly used material disposal areas (MDAs) set aside by the Laboratory for the general on-site disposal of waste from mission-related activities. One such area is MDA C located in Technical Area 50 (TA-50), which was used for waste disposal between 1948 and 1974. The location of TA-50 is depicted in Figure 1. The present paper uses a series of maps and cross sections to address the public concerns raised about the vapor plume at MDA C. As illustrated here, extensive sampling and data interpretation indicate that the vapor plume at MDA C does not pose a threat to the health of LANL workers nor will it pose a

  15. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool

  16. Standard test method for plutonium assay by plutonium (III) diode array spectrophotometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method describes the determination of total plutonium as plutonium(III) in nitrate and chloride solutions. The technique is applicable to solutions of plutonium dioxide powders and pellets (Test Methods C 697), nuclear grade mixed oxides (Test Methods C 698), plutonium metal (Test Methods C 758), and plutonium nitrate solutions (Test Methods C 759). Solid samples are dissolved using the appropriate dissolution techniques described in Practice C 1168. The use of this technique for other plutonium-bearing materials has been reported (1-5), but final determination of applicability must be made by the user. The applicable concentration range for plutonium sample solutions is 10–200 g Pu/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropria...

  17. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement

  18. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  19. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  20. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  1. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  2. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  3. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  4. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    International Nuclear Information System (INIS)

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-01-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D and D process provides substantial dose reduction for the workers

  5. Automated amperometric plutonium assay system

    International Nuclear Information System (INIS)

    Burt, M.C.

    1985-01-01

    The amperometric titration for plutonium assay has been used in the nuclear industry for over twenty years and has been in routine use at the Hanford Engineering Development Laboratory since 1976 for the analysis of plutonium oxide and mixed oxide fuel material for the Fast Flux Test Facility. It has proven itself to be an accurate and reliable method. The method may be used as a direct end point titration or an excess of titrant may be added and a back titration performed to aid in determination of the end point. Due to the slowness of the PuVI-FeII reaction it is difficult to recognize when the end point is being approached and is very time consuming if the current is allowed to decay to the residual value after each titrant addition. For this reason the back titration in which the rapid FeII-CrVI reaction occurs is used by most laboratories. The back titration is performed by the addition of excess ferrous solution followed by two measured aliquots of standard dichromate with measurement of cell current after each addition

  6. Assessment of LANL waste minimization plan

    International Nuclear Information System (INIS)

    Davis, K.D.; McNair, D.A.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to evaluate the Los Alamos National Laboratory (LANL) Waste Minimization Plan to determine if it meets applicable internal (DOE) and regulatory requirements. The intent of the effort is to assess the higher level elements of the documentation to determine if they have been addressed rather than the detailed mechanics of the program's implementation. The requirement for a Waste Minimization Plan is based in several DOE Orders as well as environmental laws and regulations. Table 2-1 provides a list of the major documents or regulations that require waste minimization efforts. The table also summarizes the applicable requirements

  7. Risk ranking of LANL nuclear material storage containers for repackaging prioritization.

    Science.gov (United States)

    Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon

    2007-05-01

    Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.

  8. Comparison of simulated to actual plutonium deposition at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlson, D.C.; Garrett, A.J.; Gay, D.D.; Murphy, C.E.; Pinder, J.E. III.

    1982-01-01

    Minute amounts of plutonium are released from the Savannah River Plant (SRP) separations facilities and deposited in the surrounding environs. Long-term deposition measurements show that contributions to offsite environmental plutonium by the SRP are negligible compared to fallout from weapons tests. The Savannah River Laboratory (SRL) recently developed a deposition model and compared its predictions to the observed plutonium deposition pattern. The model reproduced the observed range of deposition rates when full and truncated lognormal distributions of particle sizes were used to represent the emissions. Model predictions of total deposition out to 30 km were low by about a factor of two relative to estimates based on integrations of the empirical deposition curves. More measurements are planned, which should reduce uncertainties about model assumptions and the observed deposition rates

  9. Toxicology of plutonium

    International Nuclear Information System (INIS)

    Bair, W.J.

    1974-01-01

    Data are reviewed from studies on the toxicity of Pu in experimental animals. Of the several plutonium isotopes, only 238 Pu and 239 Pu have been studied well. Sufficient results have been obtained to show that the behavior of 238 Pu in biological systems and the resulting biological effects cannot be precisely predicted from studies of 239 Pu. This probably applies also to other radiologically important plutonium isotopes which have half-lives ranging from 45 days to 10 7 years and decay by β-emission, electron capture, and spontaneous fission, as well as by emission of α-particles. All the biological effects of plutonium described in this review are attributed to alpha-particle radiation emitted by the plutonium. However, since plutonium is a chemically active heavy metal, one cannot ignore the possibility of chemical toxicity of the low-specific-activity isotopes, 239 Pu, 242 Pu, and 244 Pu. The preponderance of our knowledge of plutonium toxicology has come from short-term studies of relatively high dosage levels in several animal species. The consequences of high-level internal exposures can be predicted with confidence in experimental animals and probably also in man. However, considering the care with which plutonium is handled in the nuclear industry, a high-level contamination event is unlikely. Considerably less is known about the long-term effects of low levels of contamination. (250 references) (U.S.)

  10. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  11. Active test of purification facility at Rokkasho reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Ishio, Takahiro; Sato, Nobuharu; Inaba, Makoto; Itagaki, Takashi [Purification Section, Plant Operation Department, Reprocessing Plant, Reprocessing Business Division, Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-mura, Kamikita-gun, Aomori-ken (Japan)

    2009-06-15

    I. Introduction: At RRP, following the completion of Water Test, Chemical Test (CT) and Uranium Test (UT), the Active Test (AT) with actual spent fuel assemblies has been performed since March of 2006. This paper deals with the AT of the plutonium purification unit at RRP. II. Outline of plutonium purification unit: The plutonium purification unit purifies plutonium nitrate sent from the Separation Facility, and it has 5 pulsed columns and 4 mixer-settlers. Plutonium valence is adjusted to Pu{sup 4+} in plutonium nitrate sent from the Separation Facility, and then plutonium is extracted into organic phase (tri-butyl phosphate: TBP) in the extraction column. At this time, most of fission products remain in aqueous phase (nitric acid solution), which is discharged as raffinate through the diluent washing column. The fission products still contained in loaded organic solvent are removed in the FP scrubbing column, and then plutonium is stripped with nitric acid solution including hydroxylamine nitrate (HAN) as reducer. After TBP contained in purified plutonium nitrate solution is removed in the diluent washing bank with n-dodecane, it is sent to the plutonium concentration unit. Organic solvent used in the stripping column is sent to the plutonium barrier bank in order to remove remaining plutonium with uranous nitrate and hydrazine nitrate solution, and organic solvent is sent to the solvent regeneration unit. III. Active test results: The main purpose of the AT on the plutonium purification unit is (1) checking the performance of plutonium extraction and stripping, (2) checking the efficiency of diluent washing. III.A. Plutonium Extraction and Stripping performances: As a result of the neutron monitor profile on the extraction column during the representative operation, extraction was completed at the upper part of the column. As for the neutron monitor profile on the stripping column, stripping was performed at the lower part of the column. Plutonium concentration

  12. Treatment of plutonium contamined solid wastes by electrogenerated Ag(II)

    International Nuclear Information System (INIS)

    Saulze, J.L.

    1990-01-01

    A process for the treatment of plutonium contaminated solid wastes is designed. Two types of wastes have been studied; incineration ashes (COGEMA UP1) and sludges produced in the cryotreatment facility in Cadarache Center (France). The principle of the process is based on the rapid dissolution of PuO 2 (contained in the wastes) under the action of aggressive Ag(II) species, regenerated electrochemically. In the case of the treatment of incinerator ashes an electrochemical pretreatment is necessary if the chloride ion content of the ashes is high. The feasibility of the decontamination process has been proved for the two types of plutonium contaminated solid wastes at a pilot level; for example 1 Kg of ashes (or 0.75 Kg of sludges) has been treated in one experiment, and 97% (or 95%) of the total plutonium was dissolved at the end of the experiment. Industrial applications of this new process are underway [fr

  13. Cycle downstream: the plutonium question; Aval du cycle la question du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Zask, G [Electricite de France, EDF/DAC, 75 - Paris (France); Rome, M [Electricite de France, EDF, Service Etudes et Projets Thermiques et Nucleaires, 92 - Courbevoie (France); Delpech, M [CEA Cadarache, Dept. d' Etudes des Reacteurs/SPRC, 13 - Saint-Paul-lez-Durance (France); and others

    1998-06-29

    This day, organized by the SFEN, took place at Paris the 4 june 1998. Nine papers were presented. They take stock on the plutonium physics and its utilization as a nuclear fuel. This day tried to bring information to answer the following questions: do people have to keep the plutonium in the UOX fuel or in the MOX fuel in order to use it for future fast reactors? Do people have to continue obstinately the plutonium reprocessing in the MOX for the PWR type reactors? Will it be realized a underground disposal? Can it be technically developed plutonium incinerators and is it economically interesting? The plutonium physics, the experimental programs and the possible solutions are presented. (A.L.B.)

  14. The influence of plutonium concentration and solution flow rate on the effective capacity of macroporous anion exchange resin

    International Nuclear Information System (INIS)

    Marsh, S.F.; Gallegos, T.D.

    1987-07-01

    The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs

  15. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  16. The passive nondestructive assay of the plutonium content of spent-fuel assemblies from the BN-350 fast-breeder reactor in the city of Aqtau, Kazakhstan

    CERN Document Server

    Lestone, J P; Rennie, J A; Sprinkle, J K; Staples, P; Grimm, K N; Hill, R N; Cherradi, I; Islam, N; Koulikov, J; Starovich, Z

    2002-01-01

    The International Atomic Energy Agency is presently interested in developing equipment and techniques to measure the plutonium content of breeder reactor spent-fuel assemblies located in storage ponds before they are relocated to more secure facilities. We present the first quantitative nondestructive assay of the plutonium content of fast-breeder reactor spent-fuel assemblies while still underwater in their facility storage pond. We have calibrated and installed an underwater neutron coincidence counter (Spent Fuel Coincidence Counter (SFCC)) in the BN-350 reactor spent-fuel pond in Aqtau, Kazakhstan. A procedure has been developed to convert singles and doubles (coincidence) neutron rates observed by the SFCC into the total plutonium content of a given BN-350 spent-fuel assembly. The plutonium content has been successfully determined for spent-fuel assemblies with a contact radiation level as high as approx 10 sup 5 Rads/h. Using limited facility information and multiple measurements along the length of spe...

  17. The handling of plutonium hexafluoride (1962); Manipulation de l'hexafluorure de plutonium (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Berard, Ph [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1961-11-15

    The major problem posed in this work is the instability of plutonium hexafluoride. The influence of various factors on the decomposition of the fluoride has been studied: physical aspect of the walls, nature of the metal and its pretreatment, influence of the temperature. A means of detecting plutonium-239 in a metallic apparatus by {gamma}-ray counting has been developed; the sensitivity is of the order of half a milligram, but the precision is very low (about 50 per cent). Yields of over 95 per cent have been obtained for the transfer of plutonium during the preparation and sublimation of the hexafluoride. This study confirms the possibility of using plutonium hexafluoride for the extraction of plutonium from irradiated fuel elements by a dry method. (author) [French] Le probleme majeur de cette etude a ete l'instabilite de l'hexafluorure de plutonium. Nous avons etudie l'influence de divers facteurs sur la decomposition de l'hexafluorure: aspect physique des parois, nature du metal et de son pretraitement, influence de la temperature. Nous avons mis au point un mode de detection du plutonium-239 dans un appareillage metallique par comptage du rayonnement {gamma}; la sensibilite est de l'ordre du demi-milligramme, mais la precision est tres faible (50 pour cent environ). Nous avons obtenu des rendements depassant 95 pour cent dans le transfert du plutonium au cours de la fabrication et de la sublimation de l'hexafluorure. Cette etude confirme la possibilite d'utiliser l'hexafluorure de plutonium dans l'extraction du plutonium des combustibles irradies par voie seche. (auteur)

  18. Televison assessment and identification system for the plutonium protection system

    International Nuclear Information System (INIS)

    Greenwoll, D.A.

    1979-02-01

    This report covers the selection, description, and use of the components comprising the Television Assessment and Identification System in the Hanford Plutonium Protection System. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program

  19. Plutonium Round Robin Test

    International Nuclear Information System (INIS)

    Dudder, G.B.; Herbillon, G.H.

    2001-01-01

    Full text: The goal of nuclear forensics is to develop a preferred approach to illicit trafficking investigations. This approach must be widely understood and acceptable as credible. The principle objectives of the Round Robin Test are to prioritize the forensic techniques and methods, evaluate attribution capabilities, and examine the utility of database. The Plutonium Round Robin has made a tremendous contribution to fulfilling these goals through a collaborative learning experience that resulted from the outstanding efforts of the six participating international laboratories. A prioritize list of techniques and methods has been developed based on this exercise. Future work will focus on a Highly Enriched Round Robin and extent to which the techniques and methods can be generalized. The Plutonium Round Robin demonstrated a rather high level of capability to determine the important characteristics of the materials and processes using analytical methods. When this capability to was combined with the appropriate knowledge and database, it resulted in a demonstrated capability to attribute the source of the materials to a specific nuclear fuel, reactor, and reprocessing facility. A number of shortfalls were also identified in our current capabilities. These included alternative dating techniques. Light Water Reactor discrimination techniques, and the lack of a comprehensive network of data/knowledge bases. The result of the Round Robin will be used to develop guidelines or a 'recommended protocol' to be made available to the interested authorities and countries to use in real cases. The poster will present a summary of the results of the Plutonium Round Robin and describe the plans the subsequent Highly Enriched Uranium Round Robin Test. (author)

  20. Plutonium re-cycle in HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J. A.

    1974-03-15

    The study of plutonium cycles in HTRs using reprocessed plutonium from Magnox and AGR fuel cycles has shown that full core plutonium/uranium loadings are in general not feasible, burn-up is limited due the need for lower loadings of plutonium to meet reload core reactivity limits, on-line refueling is not practicable due to the need for higher burnable poison loadings, and low conversion rates in the plutonium-uranium cycles cannot be mitigated by axial loading schemes so that fissile make-up is needed if HTR plutonium recycle is desired.

  1. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  2. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  3. An improved, computer-based, on-line gamma monitor for plutonium anion exchange process control

    International Nuclear Information System (INIS)

    Pope, N.G.; Marsh, S.F.

    1987-06-01

    An improved, low-cost, computer-based system has replaced a previously developed on-line gamma monitor. Both instruments continuously profile uranium, plutonium, and americium in the nitrate anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The latest system incorporates a personal computer that provides full-feature multichannel analyzer (MCA) capabilities by means of a single-slot, plug-in integrated circuit board. In addition to controlling all MCA functions, the computer program continuously corrects for gain shift and performs all other data processing functions. This Plutonium Recovery Operations Gamma Ray Energy Spectrometer System (PROGRESS) provides on-line process operational data essential for efficient operation. By identifying abnormal conditions in real time, it allows operators to take corrective actions promptly. The decision-making capability of the computer will be of increasing value as we implement automated process-control functions in the future. 4 refs., 6 figs

  4. Optimization and plutonium equilibrium

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    The sequential simplex method has been used to estimate the extent of disproportionation of tetravalent plutonium in dilute acid. A method for simulating potentiometric titrations is proposed, and this method suggests that the stoichiometric end point and the inflection point may not always correspond in the potentiometric titration of plutonium. A possible characteristic equation for the nitrite-plutonium reaction is illustrated, and the method of proportional equations is extended to the iron-plutonium reaction

  5. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    International Nuclear Information System (INIS)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition

  6. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  7. Assesment of Plutonium 238 and Plutonium 239+240 in soils of different agricultural regions of Guatemala

    International Nuclear Information System (INIS)

    Gutierrez Martinez, E.A.

    1998-02-01

    In this report an assesment and measurement of PLUTONIUM 238, PLUTONIUM 239, and PLUTONIUM 240 are made. Samples of cultivated soils in 15 provinces of Guatemala were taken. To separate plutonium isotopes a radiochemical method was made using extraction, precipitation and ionic interchange. By electrodeposition the plutonium was measured using an alpha spectroscopy by PIPS method. The radioactivity ranges from 2.84 mBq/Kg to 36.38 mBq/Kg for plutonium 238, and 8.46 mBq/Kg to 26.61 mBq/Kg for plutonium 239+240

  8. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-01-01

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  9. Cost-benefit analysis of unfired PuO2 pellets as an alternative plutonium shipping form

    International Nuclear Information System (INIS)

    Mishima, J.; Brackenbush, L.W.; Libby, R.A.; Soldat, K.L.; White, G.D.

    1983-10-01

    A limited cost-benefit evaluation was performed concerning use of unfired plutonium dioxide pellets as a shipping form. Two specific processing operations are required for this use, one to form the pellet (pelletizing) and a second to reconstitute an acceptable powder upon receipt (reconstitution). The direct costs for the pelletizing operation are approximately $208,000 for equipment and its installation and $122 per kg of plutonium processed (based upon a 20-kg plutonium/day facility). The direct costs for reconstitution are approximately $90,000 for equipment and its installation and $81 per kg of plutonium processed. The indirect cost considered was personnel exposure from these operations. Whole body exposures ranged from 0.04 man-rem per 100 kg of low-exposure plutonium reconstituted to 0.9 man-rem per 100 kg of average-exposure plutonium pelletized. Hand exposures were much higher - 17 man-rem power 100 kg of low-exposure plutonium reconstituted to 67 man-rem per 100 kg of average plutonium pelletized. The principal benefit is a potential twentyfold reduction of airborne release in the event of an accident. An experimental plan is outlined to fill the data gaps uncovered during this study in the areas of pelletizing and reconstitution process parameters and pellet response behavior to accident-generated stresses. A study to enhance the containment potential of the inner packaging used during shipment is also outlined

  10. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    International Nuclear Information System (INIS)

    Thomas, L.L.; Strait, R.S.

    1994-10-01

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient

  11. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    International Nuclear Information System (INIS)

    1998-08-01

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared

  12. Ultratrace analysis of plutonium in environmental samples by resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Trautmann, N.; Erdmann, N.; Gruening, C.; Kratz, J. V.; Waldek, A.; Huber, G.; Nunnemann, M.; Passler, G.

    2000-01-01

    Plutonium is present in the environment mainly as a result of global fallout from nuclear weapons tests, satellite and reactor accidents as well as releases from nuclear facilities. Sensitive and fast detection methods are required for risk assessment, low-level surveillance of the environment, personnel dose monitoring, studies of biological effects and investigations of the migration behavior of plutonium. Furthermore, the isotopic composition is of interest to get information from what source the plutonium contamination originated. Alpha-spectroscopy is most frequently used for the determination of trace amounts of plutonium in the environment with the disadvantage that the detection sensitivity depends on the half-life of the isotope to be measured and that there are limitations in the isotopic resolution. Conventional mass spectrometry may suffer from isobaric interferences. Therefore, in the last years resonant laser ionization mass spectrometry (RIMS) has been explored as an alternative for ultratrace analysis of plutonium. This method provides a high element and isotope selectivity and a good overall efficiency, resulting in a detection limit of ∼10 6 atoms (∼0.4 fg). RIMS meets also the requirements of a low background and a short measuring time (1-2 h)

  13. Plutonium roundtable discussion

    International Nuclear Information System (INIS)

    Penneman, R.A.

    1982-01-01

    The roundtable discussion began with remarks by the chairman who pointed out the complicated nature of plutonium chemistry. Judging from the papers presented at this symposium, he noticed a pattern which indicated to him the result of diminished funding for investigation of basic plutonium chemistry and funding focused on certain problem areas. Dr. G.L. silver pointed to plutonium chemists' erroneous use of a simplified summary equation involving the disproportionation of Pu(EV) and their each of appreciation of alpha coefficients. To his appreciation of alpha coefficients. To his charges, Dr. J.T. Bell spoke in defense of the chemists. This discussion was followed by W.W. Schulz's comments on the need for experimental work to determine solubility data for plutonium in its various oxidation states under geologic repository conditions. Discussion then turned to plutonium pyrachemical process with Dana C. Christensen as the main speaker. This paper presents edited versions of participants' written version

  14. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 6: Lawrence Livermore National Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    1994-09-01

    President Clinton directed an Interagency Working Group to initiate a comprehensive review of long-term options for the disposition of surplus plutonium. As part of this initiative, Secretary of Energy Hazel O'Leary directed the Department of Energy to develop options and plans for the interim safe storage of these materials. One step in this direction is a plutonium vulnerability assessment of DOE facilities by a open-quotes Plutonium Vulnerability Working Group.close quotes In this effort, the working group developed a Project Plan and an Assessment Plan which basically laid out the approach and methodology for the assessments. The plans were issued on April 25, 1994. The Project Plan specifies a WGAT for each site with significant holdings of plutonium. Also, the plan requires that each site form a Site Assessment Team (SAT) to provide the self assessment for the project. Additionally, the working group was tasked with managing the assessments at each site, and providing the results in a final report for the Secretary by September 30, 1994

  15. Investigation of plutonium (4) hydroxoformates

    International Nuclear Information System (INIS)

    Andryushin, V.G.; Belov, V.A.; Galaktionov, S.V.; Kozhevnikov, P.B.; Matyukha, V.A.; Shmidt, V.S.

    1982-01-01

    Deposition processes of plutonium (4) hydroxoformates in the system Pu(NO 3 ) 4 -HNO 3 -HCoOH-N6 4 OH-H 2 O have been studied in pH range 0.2-10.7 at total plutonium concentration in the system 100 g/l. It is shown that under the conditions plutonium (4) hydrolysis takes place with the formation of hydroxoformates. A local maximum of plutonium (4) hydroxoformate solubility in the range pH=3.8-4.8, which is evidently conditioned by the formation of soluble formate complex of plutonium in the region, is pointed out. The basic plutonium (4) formates of the composition PuOsub(x)(OH)sub(y)(COOH)sub(4-2x-y)xnHsub(2)O, where 1,3 >=x >= 0.7, 1.7 >= y >= 1.0 and n=1.5-7.0, are singled out, their thermal stability being studied. Density of the crystals and plutonium dioxide, formed during their thermal decomposition, is measured. It is established that for plutonium (4) hydroxoformates common regularities of the influence of salt composition (OH - -, CHOO - - and H 2 O-group numbers in the mulecule) on position of temperature decomposition effects and on the density of compounds, which have been previously found during the study of thorium and plutonium hydroxosalts are observed. It is shown that the density of plutonium dioxide decreases with the increase of hydration and hydrolysis degree of the initial plutonium hydroxoformate

  16. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  17. Diffusion in the uranium - plutonium system and self-diffusion of plutonium in epsilon phase; Diffusion dans le systeme uranium-plutonium et autodiffusion du plutonium epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, M [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    A survey of uranium-plutonium phase diagram leads to confirm anglo-saxon results about the plutonium solubility in {alpha} uranium (15 per cent at 565 C) and the uranium one in {zeta} phase (74 per cent at 565 C). Interdiffusion coefficients, for concentration lower than 15 per cent had been determined in a temperature range from 410 C to 640 C. They vary between 0.2 and 6 10{sup 12} cm{sup 2} s{sup -1}, and the activation energy between 13 and 20 kcal/mole. Grain boundary, diffusion of plutonium in a uranium had been pointed out by micrography, X-ray microanalysis and {alpha} autoradiography. Self-diffusion of plutonium in {epsilon} phase (bcc) obeys Arrhenius law: D = 2. 10{sup -2} exp -(18500)/RT. But this activation energy does not follow empirical laws generally accepted for other metals. It has analogies with 'anomalous' bcc metals ({beta}Zr, {beta}Ti, {beta}Hf, U{sub {gamma}}). (author) [French] Une etude du diagramme d'equilibre uranium-plutonium conduit a confirmer les resultats anglo-saxons relatifs a la solubilite du plutonium dans l'uranium {alpha} (15 pour cent a 565 C) et de l'uranium dans la phase {zeta} (74 pour cent a 565 C). Les coefficients de diffusion chimique, pour des concentrations inferieures a 15 pour cent ont ete determines a des temperatures comprises entre 410 et 640 C. Ils se situent entre 0.2 et 6. 10{sup 12} cm{sup 2} s{sup -1}. L'energie d'activation varie entre 13 et 20 kcal/mole. La diffusion intergranulaire du plutonium dans l'uranium a a ete mise en evidence par micrographie, microanalyse X et autoradiographie {alpha}. L' autodiffusion du plutonium {beta} cubique centree obeit a la loi d'Arrhenius D = 2. 10{sup -2} exp - (18500)/RT. Son energie d'activation n'obeit pas aux lois empiriques generalement admises pour les autres metaux. Elle possede des analogies avec les cubiques centres ''anormaux'' (Zr{beta}, Ti{beta}, Hf{beta}, U{gamma}). (auteur)

  18. Neutron Characterization of Encapsulated ATF-1/LANL-1 Mockup Fuel Capsules

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Borges, Nicholas Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Losko, Adrian Simon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Voit, Stewart Lancaster [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Joshua Taylor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dunwoody, John Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Twenty pellets of mock-up accident tolerant fuels UN-U3Si5 were produced at LANL and loaded in two rodlet/capsule assemblies. Tomographic imaging and diffraction measurements were performed to characterize these samples at the Flight-Path 5 and HIPPO beam lines at LANSCE/LANL between November 2016 and January 2017 as well as in August 2017. The entire ~10 cm long, ~1 cm diameter fuel volume could be characterized, however due to time constraints only 2 mm slices in 4mm increments were characterized with neutron diffraction and a 28mm subset of the entire sample was characterized with energy-resolved neutron imaging. The double encapsulation of the fuel into two steel containers does not pose a problem for the neutron analysis and the methods could be applied to enriched as well irradiated fuels.

  19. Plutonium measurements on the 1 MV AMS system at the Centro Nacional de Aceleradores (CNA)

    International Nuclear Information System (INIS)

    Chamizo, Elena; Enamorado, Santiago Miguel; Garcia-Leon, Manuel; Suter, Martin; Wacker, Lukas

    2008-01-01

    Plutonium isotopes have been recently added to the list of radionuclides that can be measured with the new generation of compact AMS facilities. In this paper we present first experimental results concerning the development of the plutonium AMS technique at 680 kV on the 1 MV AMS system at the Centro Nacional de Aceleradores (CNA) in Sevilla, Spain. This is the first compact AMS machine designed and manufactured by High Voltage Engineering Europa. As we demonstrate, the obtained backgrounds for 239,240 Pu, of about 10 6 atoms, and the 239 Pu/ 238 U mass suppression factor, in the range of 10 -9 , compare to the ones achieved on other AMS facilities. With the measurement of reference materials provided by the International Atomic Energy Agency (IAEA-375, IAEA-Soil-6, IAEA-381) and samples already studied on the 600 kV compact ETH/PSI AMS system at Zuerich, we show that the CNA system can be perfectly used for the routine measurement of plutonium isotopes at environmental levels.

  20. A portable concentrator for processing plutonium

    International Nuclear Information System (INIS)

    Chamberlain, D.B.; Conner, C.; Chen, L.

    1995-01-01

    A horizontal, agitated film concentrator designed to concentrate liquid streams to a high solid content slurry is briefly described. The Rototherm unit is being studied for use at US Department of Energy facilities to handle large quantities of aqueous plutonium solutions. Capabilities for evaporating more than 98% of the water present in a single pass have been demonstrated. Decontamination factors of 10 6 to 10 7 are expected. The unit may also be useful for recycling aqueous waste treatment reagents from the decontamination of gaseous diffusion plants