WorldWideScience

Sample records for landfill leachate estimating

  1. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.S. Municipal Landfill Leachate.

    Science.gov (United States)

    Lang, Johnsie R; Allred, B McKay; Field, Jennifer A; Levis, James W; Barlaz, Morton A

    2017-02-21

    Landfills are the final stage in the life cycle of many products containing per- and polyfluoroalkyl substances (PFASs) and their presence has been reported in landfill leachate. The concentrations of 70 PFASs in 95 samples of leachate were measured in a survey of U.S. landfills of varying climates and waste ages. National release of PFASs was estimated by coupling measured concentrations for the 19 PFASs where more than 50% of samples had quantifiable concentrations, with climate-specific estimates of annual leachate volumes. For 2013, the total volume of leachate generated in the U.S. was estimated to be 61.1 million m 3 , with 79% of this volume coming from landfills in wet climates (>75 cm/yr precipitation) that contain 47% of U.S. solid waste. The mass of measured PFASs from U.S. landfill leachate to wastewater treatment plants was estimated to be between 563 and 638 kg for 2013. In the majority of landfill leachate samples, 5:3 fluorotelomer carboxylic acid (FTCA) was dominant and variations in concentrations with waste age affected total estimated mass. There were six PFASs that demonstrated significantly higher concentrations in leachate from younger waste compared to older waste and six PFAS demonstrated significant variation with climate.

  2. Review of existing landfill leachate production models

    International Nuclear Information System (INIS)

    Khan, T.A.

    2000-01-01

    The protection of water resources is a fundamental consideration in managing landfill operations. Landfill sites should be designed and operated so as to control leachate production and hence minimize the risk of surface and ground water pollution. A further important development is the use of computer models to estimate the production of leachate from landfill sites. It is revealed from the literature that a number of landfill leachate management model lave been development in recent years. These models allow different engineering schemes to be evaluated and are essential tools for design and operation managements of modern landfills. This paper describes a review of such models mainly focused on their theory, practicability, data requirements, suitability to real situation and usefulness. An evaluation of these models identifies. (author)

  3. Assessment of leachates from uncontrolled landfill: Tangier case study

    Science.gov (United States)

    Elmaghnougi, I.; Afilal Tribak, A.; Maatouk, M.

    2018-05-01

    Landfill site of Tangier City is non-engineered low lying open dump. It has neither bottom liner nor leachate collection and treatment system. Therefore, all the leachate generated finds its paths into the surrounding environment Leachate samples of landfill site were collected and analyzed to estimate its pollution potential. The analyzed samples contained a high concentration of organic and inorganic compounds, beyond the permissible limits.

  4. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  5. Assessment of leachates from uncontrolled landfill: Tangier case study

    Directory of Open Access Journals (Sweden)

    Elmaghnougi I.

    2018-01-01

    Full Text Available Landfill site of Tangier City is non-engineered low lying open dump. It has neither bottom liner nor leachate collection and treatment system. Therefore, all the leachate generated finds its paths into the surrounding environment Leachate samples of landfill site were collected and analyzed to estimate its pollution potential. The analyzed samples contained a high concentration of organic and inorganic compounds, beyond the permissible limits.

  6. LCA and economic evaluation of landfill leachate and gas technologies

    DEFF Research Database (Denmark)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna Kristina

    2011-01-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3–4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate...... and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production...... of electricity and heat.The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost...

  7. Polyfluoroalkyl compounds in landfill leachates

    International Nuclear Information System (INIS)

    Busch, Jan; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf

    2010-01-01

    Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. ΣPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of ΣPFCs into the aqueous environment ranged between 0.08 and 956 mg/day. - The first comprehensive survey of polyfluoroalkyl compounds (PFCs) in landfill leachates.

  8. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    Science.gov (United States)

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  9. Emissions and leachate recycling at Seutula landfill

    International Nuclear Information System (INIS)

    Nykaenen, V.

    1999-01-01

    The aim of this study was to examine the degradation process and the leachate and gas emissions at Seutula landfill Vantaa The influences on leachate recycling to gas production and on the power production and also the influences on landfill water and the quality of leachate was found out. The situation at the landfill before leachate recirculation was studied. In the literature part of this study the landfill gas generation, different phases of the landfill and factors effecting them were examined. The quality of leachate, leachate recirculation and advantages of recirculation were studied. Different kind of gas collection methods, gas utilization, advantages and disadvantages of gas collection and the future of utilization were studied. Methods for measuring methane emissions through the landfill surface was a central part of the literature section. Also the future of measuring techniques were studied. In the experimental part of this study the quantity and quality of collected gas were measured. Also emitted methane was measured. Water samples were taken from landfill water and leachate during 1998. Samples were analysed in situ and in laboratory. The changes of landfill water height were measured. The degradation phase of the landfill varied, a part of waste filling was in an acidogenic phase and most part of it was in a stable methanogenic phase because the landfill is not homogenous. The concentration of landfill water and leachate are about the same than in Finland average. The most remarkable correlation from analysed results was between BOD/COD-ratio and temperature. When the temperature increased, the BOD/COD-ratio decreased. Emitted gas in the gas collection area was rather low, about 10 kW. The power production of the collected gas was in average 2 800 kW. In areas 1 and 3 where leachate was recirculated, the recovered gas efficiencies increased 55% and 70%, respectively, but in a reference area without recirculation the increase was 12%. Recommendation

  10. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... triple) liners, are extremely effective in preventing leachate from entering into the environment. In addition, the risk of polluting the groundwater at a landfill by any leakage of leachate depends on several factors related to siting of the landfill: distance to the water table, distance to surface...... water bodies, and the properties of the soil beneath the landfill. In addition to the lining and drainage systems described in this chapter, the siting and hydrogeology of the landfill site (Chapter 10.12) and the top cover (Chapter 10.9) are also part of the barrier system, contributing to reducing...

  11. Phytoremediation of landfill leachate

    International Nuclear Information System (INIS)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m 3 ha -1 yr -1 . However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios

  12. Phytoremediation of landfill leachate.

    Science.gov (United States)

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  13. LCA and economic evaluation of landfill leachate and gas technologies.

    Science.gov (United States)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  14. Management of landfill leachate: The legacy of European Union Directives.

    Science.gov (United States)

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  15. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  16. Application of photochemical technologies for treatment of landfill leachate.

    Science.gov (United States)

    Meeroff, Daniel E; Bloetscher, Frederick; Reddy, D V; Gasnier, François; Jain, Swapnil; McBarnette, André; Hamaguchi, Hatsuko

    2012-03-30

    Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO(2) photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO(2) photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10-200 h for PIMA and 3-37 h for TiO(2) photocatalysis. Testing with actual leachate samples showed 85% TiO(2) photocatalyst recovery efficiency with no loss in performance after multiple (n>4 uses). Pre-filtration was not found to be necessary for effective treatment using either process. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Environmental Isotope Characteristics of Landfill Leachates and Gases

    Science.gov (United States)

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  18. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  19. The effect of landfill age on municipal leachate composition.

    Science.gov (United States)

    Kulikowska, Dorota; Klimiuk, Ewa

    2008-09-01

    The influence of municipal landfill age on temporal changes in municipal leachate quality on the basis of elaboration of 4 years monitoring of leachate from landfill in Wysieka near Bartoszyce (Poland) is presented in this study. In leachate, concentrations of organic compounds (COD, BOD(5)), nutrients (nitrogen, phosphorus), mineral compounds, heavy metals and BTEX were investigated. It was shown that the principal pollutants in leachate were organics and ammonia - as landfill age increased, organics concentration (COD) in leachate decreased from 1,800 mg COD/l in the second year of landfill exploitation to 610 mg COD/l in the sixth year of exploitation and increase of ammonia nitrogen concentration from 98 mg N(NH)/l to 364 mg N(NH4) /l was observed. Fluctuation of other indexes (phosphorus, chlorides, calcium, magnesium, sulfate, dissolved solids, heavy metals, BTEX) depended rather on season of the year (seasonal variations) than landfill age. Moreover, the obtained data indicate that despite of short landfill's lifetime some parameters e.g. high pH (on average 7.84), low COD concentration (metal concentration, indicated that the landfill was characterized by methanogenic conditions already at the beginning of the monitoring period.

  20. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  1. Characteristics of Leachate at Sukawinatan Landfill, Palembang, Indonesia

    International Nuclear Information System (INIS)

    Yusmartini, Eka Sri; Setiabudidaya, Dedi; Ridwan; Marsi; Faizal

    2013-01-01

    Landfill (TPA) Sukawinatan Palembang is an open dumping system which covers an area of 25 hectares. This system may bring an environmental damage to the surrounding area because it does not provide leachate treatment. Leachate is the landfill waste that dissolves many compounds that contain pollutants from both organic substances and heavy metal origin. This paper presents the results of laboratory analysis on samples of leachate as well as shallow groundwater from the surrounding area. The results were compared to established quality standards to evaluate whether the leachate has influenced the quality of the shallow groundwater in the surrounding area. The results show that there are some indications that the quality of groundwater has been polluted by the leachate of both organic substances and heavy metals produced by the Sukawinatan landfill.

  2. Application of environmental isotopes to characterize landfill gases and leachate

    International Nuclear Information System (INIS)

    Liu, C.L.; Hackley, K.C.; Baker, J.

    1992-01-01

    Environmental isotopes have been used to help characterize landfill gases and leachate for the purpose of identifying leachate and/or gas contamination in surrounding monitoring wells. Carbon isotopes (C-13/C-12 and C-14), hydrogen isotopes (H-3 and H-2/H-1) and oxygen isotopes (O-18/O-16) were used to characterize methane, carbon dioxide and leachate produced from two municipal landfills in northeastern Illinois. The isotopic results from the landfill-derived gases and leachate are compared to isotopic compositions of groundwater and gases from nearby monitoring wells. C-14 activity of landfill CH 4 is high compared to CH 4 normally found in subsurface sediments. For this study C-14 activities of the landfill methane range from 129--140 PMC. The C-14 of the dissolved inorganic carbon (DIC) of the leachate samples also have relatively high activities, ranging from 126--141 PMC. The δC-13 and δD values for CH 4 from the landfills fall within a range of values representative of microbial methane produced by acetate-fermentation. The δC-13 of the CO 2 and the DIC are very positive, ranging from 8--14 per-thousand for CO 2 and 13--22 per-thousand for DIC. The δO-18 values of the leachates are similar to current meteoric water values, however, two of the leachate samples are significantly enriched in deuterium by approximately 65 per-thousand. Tritium values of the leachate water are generally higher than expected. For one landfill the tritium activity ranges from 227--338 TU, for the second landfill the tritium activity is approximately 1,300 TU. Compared to tritium levels in normal groundwater, these higher tritium values in the leachates indicate that this isotope has the potential to be an effective tracer for detecting leachate migration

  3. Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China

    International Nuclear Information System (INIS)

    Li, Ying; Li, Jinhui; Deng, Chao

    2014-01-01

    Raw leachate samples were collected from various municipal solid waste (MSW) landfills in a densely populated city in North China to measure the levels and compositional patterns of polybrominated diphenyl ethers (PBDEs) in leachate. The total concentration of PBDEs ranged from 4.0 to 351.2 ng/L, with an average of 73.0 ng/L. BDE-209 dominated the congeners in most of the samples, followed by BDE-47 and -99. Higher PBDEs concentrations were found in leachate from younger landfill facilities in the urban area. Pearson correlation analysis implied a potential dependence of the PBDEs level on landfill age, suspended solids and dissolved organic carbon, while the results of principal component analysis (PCA) suggested potential origins and transportation of PBDEs in leachate. The Monte Carlo method was adopted to estimate the annual leakage of PBDEs into the underground environment nationwide, based on two main scenarios: simple landfills with inadequate liner systems and composite-lined landfills with defective geomembranes. -- Highlights: • Levels and congener patterns of PBDEs in landfill leachate from China are measured. • Pollution loading of PBDEs in leachate is identified through comparative analysis. • Leachate properties perform moderate impact on the occurrence of PBDEs. • Both commercial and decomposition origins contribute to lower brominated congeners. • Leakage rate of PBDEs due to inadequate liner is estimated nationwide. -- This paper determined the levels and distribution of PBDEs in MSW landfill leachate and predicted the leakage of PBDEs from sanitary landfills into the underground environment across China

  4. Distribution and composition of microbial populations in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Ludvigsen, L.; Albrechtsen, H.-J.; Ringelberg, D.

    1999-01-01

    To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the a......To investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use...... of the acridine orange direct count method (AODC). Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA......) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 × 106 cells/g dry weight (dw) to a high of 5.3 × 107 cells/g dw. Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower...

  5. Leachate impacts on groundwater: modeling generation and transport at the naameh landfill

    International Nuclear Information System (INIS)

    Bou-Zeid, E.; El FAdel, M.; Basha, H.

    2000-01-01

    Full text.Although municipal solid waste is now managed through integrated schemes that rank land filling as one of the least favorable options for disposal, this management alternative continues to be the most economic and attractive in the vast majority of cases. An inevitable consequence of the practice of solid waste disposal in landfills is the generation, refuse characteristics and land filling operations. Leachate migration away from the landfill boundaries and its subsequent release into the surrounding environment, present serious environmental concerns at both existing and new facilities particularly in relation to surface and ground water pollution. While numerous mathematical models have been developed to simulate processes governing leachate occurrence and behavior in landfills and their potential migration away from landfill boundaries, none have been applied at former quarries converted to waste disposal facilities. The objective of this research work is to calibrate and apply mathematical models to predict the generation, fate and transport of leachate at a former quarry landfill facility (the Naameh landfill site). The site offers unique characteristics in that it is the first quarry converted to a landfill in Lebanon and is planned to have refuse depth in excess of one hundred meters, making it one of the deepest in the world. The modeling estimates leachate quantity in order to control its associated environmental impacts, particularly on ground water wells down gradient of the site. The sensitivity of leachate generation to meteorological, operation and design parameters was assessed. Guidance for leachate control, recirculation and collection to minimize these impacts is also provided. The fate and transport of contaminants released from the landfill to the subsurface was modeled. A sensitivity analysis with respect to geological properties of the site was conducted. Worst case scenarios were investigated as well

  6. Tritium distribution in leachates from domestic solid waste landfills

    International Nuclear Information System (INIS)

    Park, Soon Dal; Kim, Jung Suk; Joe, Kih Soo; Kim, Jong Gu; Kim, Won Ho

    2004-01-01

    It is for the purpose of investigating the tritium distribution in the leachates, the raw and treated leachates and the condensates of the methane gas, which have occurred from domestic solid waste landfills. Also it aims to measure the tritium distribution level on the colloid size of the leachates, the raw and treated leachates. It was found that the major inorganic contaminants of the leachates were Na, K, Ca, Mg, NH 4 + -N and Cl - . The mean tritium level of the raw leachates of the investigated 13 landfill sites for 6 months was 17∼1196 TU. It corresponded to a several scores or hundreds of magnitude higher value than that of the normal environmental sample level except for two landfill sites. Also such a high concentration of the tritium was found in the treated leachates and methane gas condensates as well. Nevertheless it is important to emphasize that the tritium level which was found in this research is about 100 times lower than the tritium limit for the drinking water quality. And most of the tritium existed in the dissolved colloid of the leachate of which the colloid size is below 0.45 μm. Also, according to the tritium analysis results of the leachates after filtration with 0.45μm membrane filter for some landfills, it is likely that some tritium of the leachate would be distributed in a colloid size over 0.45μm. In general the relationship between the tritium and other contaminants in the raw leachate was low, but it was relatively high between the tritium and TOC. However, the tritium content in the leachate had no meaningful relationship with the scale, hydrological characteristics and age of the landfill

  7. Evolution of nitrogen species in landfill leachates under various stabilization states.

    Science.gov (United States)

    Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas

    2017-11-01

    In this study, nitrogen species in landfill leachates under various stabilization states were investigated with emphasis on organic nitrogen. Ammonium nitrogen was found to be approximately 1300mg/L in leachates from younger landfill units (less than 10years old), and approximately 500mg/L in leachates from older landfill units (up to 30years old). The concentration and aerobic biodegradability of organic nitrogen decreased with landfill age. A size distribution study showed that most organic nitrogen in landfill leachates is nitrogen (TON, mg/L-N, R 2 =0.88 and 0.98 for untreated and treated samples, respectively). The slopes of the regression curves of untreated (protein=0.45TON) and treated (protein=0.31TON) leachates indicated that the protein is more biodegradable than the other organic nitrogen species in landfill leachates. XAD-8 resin was employed to isolate the hydrophilic fraction of leachate samples, and it was found that the hydrophilic fraction proportion in terms of organic nitrogen decreased with landfill age. Solid-state 15 N nuclear magnetic resonance (NMR) was utilized to identify the nitrogen species. Proteinaceous materials were found to be readily biodegradable, while heterocyclic nitrogen species were found to be resistant to biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin

    2008-01-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits

  9. Electrocoagulation and decolorization of landfill leachate

    Science.gov (United States)

    Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi

    2013-11-01

    In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.

  10. Application of photochemical technologies for treatment of landfill leachate

    International Nuclear Information System (INIS)

    Meeroff, Daniel E.; Bloetscher, Frederick; Reddy, D.V.; Gasnier, François; Jain, Swapnil; McBarnette, André; Hamaguchi, Hatsuko

    2012-01-01

    Highlights: ► Photochemical iron-mediated aeration and TiO 2 photocatalysis for leachate treatment. ► Removal efficiency tested on COD, BOD 5 , color, ammonia, and lead. ► Contact times for 90% removal were 10–200 h for PIMA ► Contact times for 90% removal were 3–37 h for TiO 2 photocatalysis. ► Pre-filtration is not necessary. - Abstract: Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO 2 photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO 2 photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6 h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10–200 h for PIMA and 3–37 h for TiO 2 photocatalysis. Testing with actual leachate samples showed 85% TiO 2 photocatalyst recovery efficiency with no loss in performance after multiple (n > 4 uses). Pre-filtration was not found to be necessary for effective treatment using either process.

  11. Artificial sweeteners as potential tracers of municipal landfill leachate

    International Nuclear Information System (INIS)

    Roy, James W.; Van Stempvoort, Dale R.; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. -- Highlights: • Artificial sweeteners detected at 14 of 15 municipal landfill sites. • Concentrations comparable to wastewater even at sites closed for >50 yr. • Saccharin elevated at all sites; potentially diagnostic of landfill impacts. • Potential for age-dating recent (past 2 decades) waste with acesulfame. -- Artificial sweeteners may be useful for tracing landfill leachate contamination and distinguishing it from wastewater impacts

  12. Ultrasound assisted biogas production from landfill leachate

    International Nuclear Information System (INIS)

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-01-01

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  13. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  14. Leachate characterization and performance evaluation of leachate treatment plant in Cipayung landfill, Indonesia

    Science.gov (United States)

    Noerfitriyani, E.; Hartono, D. M.; Moersidik, S. S.; Gusniani, I.

    2018-01-01

    The operation of landfill can cause environmental problems due to waste decomposition in the form of leachate production. Cipayung Landfill has a leachate treatment plant using stabilization ponds. The objective of this research is to evaluate the performance of stabilization ponds at Cipayung Landfill. The data were analyzed based on leachate samples from treatment unit’s influent and effluent under rainy season condition from April to May 2017. The results show the average leachate quality based on parameters of temperature by 34.81°C, Total Suspended Solid (TSS) of 72.33 mg/L, pH of 7.83, Biochemical Oxygen Demand (BOD) of 3,959.63 mg/L, Chemical Oxygen Demand (COD) of 6,860 mg/L, Total Nitrogen of 373.33 mg/L, and heavy metal Mercury of 0.0016 mg/L. The treatment plant’s effluent quality exceeds the leachate standard limit based on Indonesia’s Ministry of Environment and Forestry Law No. 59 of 2016. The results of design evaluation show that the anaerobic pond, facultative pond, and maturation pond system do not meet the design criteria. Therefore, a design improvement is needed to increase the performance of the leachate treatment plant and to ensure that the leachate discharged to water bodies does not exceed the standard limit to prevent contamination of the environment.

  15. Characterization and treatment of municipal landfill leachates

    Energy Technology Data Exchange (ETDEWEB)

    Welander, Ulrika

    1998-03-01

    The efficiency of different leachate treatment methods for the removal of refractory organic compounds and ammonium-nitrogen was investigated. The methods evaluated were nitrification, denitrification, adsorption onto activated carbon, precipitation by ferric chloride or aluminum sulphate and oxidation by ozone or Fenton`s reagent. Furthermore, analyses were performed on leachates from municipal landfills of different kinds (a biocell deposit, a conventional mixed landfill containing household and industrial waste, and an ash deposit) in order to study the leachate composition in regard to various hydrophobic organic compounds as a function of the type of waste deposited. The results suggested that, in order to achieve a satisfactory removal of both ammonium-nitrogen and organic substances, the treatment of methanogenic leachates should be performed through a process combining biological and physical or chemical stages. When the biological treatment was not combined with a physical or a chemical process a COD removal of only 20-30% was achieved, whereas the toxicity of the leachate was significantly reduced. In contrast, a combination of nitrification and either adsorption onto activated carbon or oxidation using Fenton`s reagent resulted in a COD removal of about 80%, although certain specific organic compounds, such as phthalates, were unaffected by the treatment. A combination of nitrification, precipitation by ferric chloride and adsorption onto activated carbon removed 96% of the TOC. The analyses of leachates from municipal landfills of different types showed the leachate from the ash deposit to contain more C4-substituted phenols than the other leachates and to likewise contain alkanes, which the others did not 154 refs, 12 figs, 4 tabs

  16. Biodegradation of [14C]phenol in secondary sewage and landfill leachate measured by double-vial radiorespirometry

    International Nuclear Information System (INIS)

    Deeley, G.M.; Skierkowski, P.; Robertson, J.M.

    1985-01-01

    Double-vial radiorespirometry was used to estimate the biodegradation rates of 14 C-labeled phenol in a landfill leachate and a secondary treated domestic wastewater. Rates were found to be comparable for each material at each of the three concentrations tested. Sewage microorganisms immediately began biodegrading the [ 14 C]phenol; landfill leachate microorganisms required a lag period before maximum biodegradation of the [ 14 C]phenol. The apparent rate of [ 14 C]phenol biodegradation was 2.4 times faster in the sewage than in the landfill leachate. Double-vial radiorespirometry was shown to be an effective method for screening biodegradation rates in aquifers

  17. Application of photochemical technologies for treatment of landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Meeroff, Daniel E., E-mail: dmeeroff@fau.edu [Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL (United States); Bloetscher, Frederick; Reddy, D.V.; Gasnier, Francois; Jain, Swapnil; McBarnette, Andre; Hamaguchi, Hatsuko [Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Photochemical iron-mediated aeration and TiO{sub 2} photocatalysis for leachate treatment. Black-Right-Pointing-Pointer Removal efficiency tested on COD, BOD{sub 5}, color, ammonia, and lead. Black-Right-Pointing-Pointer Contact times for 90% removal were 10-200 h for PIMA Black-Right-Pointing-Pointer Contact times for 90% removal were 3-37 h for TiO{sub 2} photocatalysis. Black-Right-Pointing-Pointer Pre-filtration is not necessary. - Abstract: Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO{sub 2} photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO{sub 2} photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6 h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10-200 h for PIMA and 3-37 h for TiO{sub 2} photocatalysis. Testing with actual leachate samples showed 85% TiO{sub 2} photocatalyst recovery efficiency with no loss in performance after multiple (n > 4 uses). Pre-filtration was not found to be necessary for effective treatment using either process.

  18. Possibility of removing radionuclides in landfill leachate using advanced wastewater treatment processes

    International Nuclear Information System (INIS)

    Ishikawa, Nao K.; Umita, Teruyuki; Ito, Ayumi

    2013-01-01

    Radionuclides released by the nuclear accident at the Fukushima Daiichi Nuclear Power Plant are being partly concentrated to sewage sludge ash and waste ash. These ashes, in which radiocesium concentration is lower than 8000 Bq/kg, are being disposed of in a controlled landfill site. The leachate from the landfill site is treated in a leachate treatment system combined with some treatment steps before it is discharged into receiving water. In this study, in place of radionuclides, stable element concentrations in the leachate and treated water at each treatment step were measured to estimate the possible extent of radionuclide removal from the leachate step-by-step. It was found that Cs was not removed in any treatment steps, while more than 85% of the Sr, Co, Ni, and Mn present was removed in the alkaline earth element removal step. (author)

  19. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    Science.gov (United States)

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

    Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  20. Characterization of Leachate at Simpang Renggam Landfill Site, Johor, Malaysia

    Science.gov (United States)

    Zailani, L. W. M.; Amdan, N. S. M.; Zin, N. S. M.

    2018-04-01

    Nowadays, the world facing a major problem in managed solid waste due to the increasing of solid waste. Malaysia, one of the country also involves in this matter which is 296 landfills are open to overcome this problem. Currently, the best alternative option to manage solid waste is by using landfilling method because it has low costing advantages. The disadvantage of landfill method, it might cause a pollution by producing leachate that will give an effect to the ground and surface water resources. This study focuses on analysing the leachate composition at Simpang Renggam Landfill(SRL) site for seven parameters such as COD, BOD, SS, turbidity, pH, BOD5/COD, and ammonia (NH3-N). All the data obtained were compared with previous researcher and Malaysia Environmental Quality Act 1974. From the result, SRL site was categorized as partially stabilized leachate with the parameter of BOD5/COD > 0.1. The SRL site is recommended to use a physical-chemical method for a better treatment because the leachate composition is classified as old leachate and aerated lagoon method are not satisfied to be used in treating the aging leachate at SRL site.

  1. Quantification of regional leachate variance from municipal solid waste landfills in China

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Kjeldsen, Peter

    2015-01-01

    The quantity of leachate is crucial when assessing pollution emanating from municipal landfills. In most cases, existing leachate quantification measures only take into account one source - precipitation, which resulted in serious underestimation in China due to its waste properties: high moisture...... contents. To overcome this problem, a new estimation method was established considering two sources: (1) precipitation infiltrated throughout waste layers, which was simulated with the HELP model, (2) water squeezed out of the waste itself, which was theoretically calculated using actual data of Chinese...... waste. The two sources depended on climate conditions and waste characteristics, respectively, which both varied in different regions. In this study, 31 Chinese cities were investigated and classified into three geographic regions according to landfill leachate generation performance: northwestern China...

  2. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    Science.gov (United States)

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  3. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    Directory of Open Access Journals (Sweden)

    S. De

    2016-03-01

    Full Text Available Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯, TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (Management and Handling Rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor, LPI inorganic (LPIin and LPI heavy metals (LPIhm of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

  4. Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site

    International Nuclear Information System (INIS)

    De, S.; Maiti, S. K.; Hazra, T.; Debsarkar, A.; Dutta, A.

    2016-01-01

    Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste (MSW) landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯ , TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (management and handling) rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor), LPI inorganic (LPIin) and LPI heavy metals (LPIhm) of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.

  5. Establishment and early growth of Populus hybrids irrigated with landfill leachate

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Jill A. Zalesny

    2007-01-01

    Hybrid poplar genotypes exhibit great potential for tree establishment and growth when irrigated with municipal solid waste landfill leachate. We evaluated the potential for establishment on leachate-irrigated soils by testing: 1) aboveground growth of hybrid poplar during repeated irrigation with landfill leachate and 2) aboveground and belowground biomass after 70 d...

  6. Present and long-term composition of MSW landfill leachate: A review

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Barlaz, M.A.; Rooker, A.P.

    2002-01-01

    The major potential environmental impacts related to landfill leachate are pollution of groundwater and surface waters. Landfill leachate contains pollutants that can be categorized into four groups (dissolved organic matter, inorganic macrocomponents, heavy metals, and xenobiotic organic compounds...... are observed. In contrast, the concentration of ammonia does not decrease, and often constitutes a major long-term pollutant in leachate. A broad range of xenobiotic organic compounds is observed in landfill leachate. The long-term behavior of landfills with respect to changes in oxidation-reduction status...... is discussed based on theory and model simulations. It seems that the somewhere postulated enhanced release of accumulated heavy metals would not take place within the time frames of thousands of years. This is supported by a few laboratory investigations. The existing data and model evaluations indicate...

  7. Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied.

    Science.gov (United States)

    Rafizul, Islam M; Alamgir, Muhammed

    2012-11-01

    This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study

    Science.gov (United States)

    Nor Farhana Zakaria, Siti; Aziz, Hamidi Abdul

    2018-04-01

    Leachate is a harmful by product generated from the landfill site. Leachate contains a high concentration of pollutant which can cause serious pollution to environmental. In this study, characteristics of leachate in Alor Pongsu Landfill Site (APLS) were monitored and analyzed according to the Standard Methods for the Examination of Water and Wastewater (2005). Composition in leachate at APLS was monitored for one year starting from January 2015 until January 2016. Nine parameters were monitored including color, chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), biodegradability ratio (BOD5/COD), temperature, dissolved oxygen (DO), total dissolved solid (TDS) and pH. Based on the analysis, Alor Pongsu Landfill leachate was categorized as stabilized landfill leachate by referring to the BOD5/COD < 0.1. Comparison with allowable discharge limits for leachate shows that most of parameters exceeded the standard discharge limitation. Thus, proper treatment is needed before leachate can be discharged to the environment.

  9. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    Science.gov (United States)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  10. Spatial and temporal migration of a landfill leachate plume in alluvium

    Science.gov (United States)

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  11. Landfill leachate as a mirror of today's disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States

    Science.gov (United States)

    Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.

    2015-01-01

    Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17 200 000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1 000 000 ng/L), followed by plant/animal sterols (∼1000-100 000 ng/L), nonprescription pharmaceuticals (∼100-10 000 ng/L), prescription pharmaceuticals (∼10-10 000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.

  12. Study on detecting leachate leakage of municipal solid waste landfill site.

    Science.gov (United States)

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  13. Assessment of the Spatial Variability in Leachate Migration from an Old Landfill Site

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Bjerg, Poul Løgstrup; Winther, Pia

    1995-01-01

    Investigations of the pollution of groundwater from old landfills have in most cases focused on delineating the pollution plume and only in very few cases on the landfill as a source to groundwater pollution. Landfills often cover large areas. Spatial variations in leachate composition may have...... great impact on the location of the main pollution plume in the downstream aquifer. Grindsted landfill in Denmark was investigated by sampling leachate beneath the landfill and in groundwater at the borders of the landfill. A pronounced variability in leachate quality and leakage patterns from...... the landfill was observed. Also variations in local groundwater flow directions were found. These observations are very important for delineation of the groundwater pollution and for proper choice of remedial action activities, related both to the plume and to the landfill....

  14. Leachate Characterization from a Closed Landfill in Air Hitam, Puchong, Malaysia

    International Nuclear Information System (INIS)

    Nur Fatin Dahlia Mat Salleh; Ku Halim Ku Hamid

    2013-01-01

    Leachate, wastewater that was collected from landfill is known to have pungent smell and may impose serious harm to human health and the environment. Air Hitam, Puchong Sanitary Landfill has stopped its land filling operation since December 2006 and is under post-closure maintenance stages. After several years of stopping its operation, a landfill will still produce leachate hence it needs constant monitoring and maintenance. The main aim of this paper was to characterize leachate produced from Air Hitam, Puchong Closed Landfill, according to several important parameters: pH, temperature, chemical oxygen demand (COD), ammoniacal nitrogen (NH 4 -N), total organic carbon (TOC), total solids, volatile organic acids (VOA) and heavy metals content, to determine its suitability in producing methane by identifying its phase. Leachate samples were drawn weekly for a period of 3 months from three different ponds, untreated raw leachate pond 1 and treated leachate pond 2 and 3. Results obtained showed that the average values were around 25 degree Celsius, average pH 8, highest COD reading was 5,248 mg/L, TOC highest at 6,797 mg/L, VOA highest at 1,424 mg/L and ammoniacal content of 3.10 mg/L the highest. (author)

  15. Growth and biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  16. Composition of leachate from old landfills in Denmark

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Christophersen, Mette

    2001-01-01

    smaller landfills by a comprehensive review of the investigations carried out by the counties. In total 106 landfills were selected by criteria avoiding dilution effects. A database was constructed using a standard program. Statistical evaluations showed that the leachate concentrations in general...

  17. Physico-chemical and biological characterization of urban municipal landfill leachate.

    Science.gov (United States)

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Quantification of leachate discharged to groundwater using the water balance method and the hydrologic evaluation of landfill performance (HELP) model.

    Science.gov (United States)

    Alslaibi, Tamer M; Abustan, Ismail; Mogheir, Yunes K; Afifi, Samir

    2013-01-01

    Landfills are a source of groundwater pollution in Gaza Strip. This study focused on Deir Al Balah landfill, which is a unique sanitary landfill site in Gaza Strip (i.e., it has a lining system and a leachate recirculation system). The objective of this article is to assess the generated leachate quantity and percolation to the groundwater aquifer at a specific site, using the approaches of (i) the hydrologic evaluation of landfill performance model (HELP) and (ii) the water balance method (WBM). The results show that when using the HELP model, the average volume of leachate discharged from Deir Al Balah landfill during the period 1997 to 2007 was around, 6800 m3/year. Meanwhile, the average volume of leachate percolated through the clay layer was 550 m3/year, which represents around 8% of the generated leachate. Meanwhile, the WBM indicated that the average volume of leachate discharged from Deir Al Balah landfill during the same period was around 7660 m3/year--about half of which comes from the moisture content of the waste, while the remainder comes from the infiltration of precipitation and re-circulated leachate. Therefore, the estimated quantity of leachate to groundwater by these two methods was very close. However, compared with the measured leachate quantity, these results were overestimated and indicated a dangerous threat to the groundwater aquifer, as there was no separation between municipal, hazardous and industrial wastes, in the area.

  19. Determination of phenols in landfill leachate-contaminated groundwaters by solid-phase extraction

    DEFF Research Database (Denmark)

    Ask Reitzel, Lotte; Ledin, Anna

    2002-01-01

    A solid-phase extraction method for phenols in landfill leachates was developed and optimized in order to solve the expected and observed problems associated with an anaerobic matrix containing high concentrations of salts and organic matter. Isolute ENV1 cartridges exhibited the best retention...... be identified in leachates from three Danish landfills, ranging in concentration from 0.01 to 29 mg/ L, which is at the lower end of the concentration range usually found for phenols in landfill leachates (sub-mg/L to mg/L).  2002 Elsevier Science B.V. All rights reserved....

  20. Determination of transformation mechanisms for DMMTA and DMDTA in landfill leachate

    Science.gov (United States)

    An, J.; Yoon, H.; Bae, J.; Jung, H.; Kong, M.; Kim, M.

    2011-12-01

    Dimethylmonothiolated arsinic acid (DMMTA) and dimethyldithiolated arsinic acid (DMDTA) have receiving increasing attention because of its high toxicity to human epidermoid carcinoma A431 cells (Naranmandura et al., 2007) and bladder EJ-1 cells (Naranmandura et al., 2009). These findings require accurate assessment of arsenic species including thiolated compounds in environmental media. Recently, Li et al. (2010) found DMMTA and DMDTA was transformed from dimethylarsinic acid (DMA) in landfill leachate with low redox potential and high bacterial biomass and concentrations of BOD and sulfide. Therefore, the transformation mechanisms for DMMTA and DMDTA were investigated to quantify what arsenic species are existed and transformed in landfill leachate for determining their potential risk. For this purpose, simulated leachate mimicking mature landfill condition was prepared under the concentrations of sulfide and volatile fatty acid (VFA) and redox potential controlled. The leachate was spiked with arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MMA) and DMA respectively and the transformed arsenic species were analyzed using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Factors influencing arsenic transformations in landfill leachate were evaluated in present study and these results provide to us pathways for being generated thiolated arsenicals. Realistic risk in arsenic disposed landfill is able to calculate by using these results. Acknowledgement : This research was supported by the research grant T31603 from Korea Basic Science Institute.

  1. Natural attenuation processes in landfill leachate plumes at three Danish sites

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Tuxen, Nina; Reitzel, Lotte

    2011-01-01

    This article provides an overview of comprehensive core and fringe field studies at three Danish landfill sites. The goal of the research activities is to provide a holistic description of core and fringe attenuation processes for xenobiotic organic compounds in landfill leachate plumes. The appr......This article provides an overview of comprehensive core and fringe field studies at three Danish landfill sites. The goal of the research activities is to provide a holistic description of core and fringe attenuation processes for xenobiotic organic compounds in landfill leachate plumes....... The approach used is cross-disciplinary, encompassing integration of field-scale observations at different scales, field injection experiments, laboratory experiments, and reactive solute transport modeling. This is illustrated in examples from the most recently investigated site-the Sjoelund Landfill...... approaches and tools used in the application of MNA. In particular, the use of in situ indicators to document mass removal in landfill leachate plumes is emphasized. In this article, we advocate the application of conceptual and numerical models as tools for the integration of data and testing of hypotheses....

  2. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    Science.gov (United States)

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  3. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  4. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    Science.gov (United States)

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Household hazardous waste in municipal landfills: contaminants in leachate

    International Nuclear Information System (INIS)

    Slack, R.J.; Gronow, J.R.; Voulvoulis, N.

    2005-01-01

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge

  6. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  7. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    Science.gov (United States)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  8. Hydrochemical Characterization of a Tropical, Coastal Aquifer Affected by Landfill Leachate and Seawater Intrusion

    NARCIS (Netherlands)

    Mangimbulude, Jubhar C.; Goeltom, Mangihot T.; van Breukelen, B.M.; van Straalen, NM; Roling, WFM

    2016-01-01

    The hydrochemistry of landfill leachate and groundwater is affected by not only waste degradation processes, but also by external factors such as the geography of the landfilling site. Knowledge on the fate of landfill leachate in tropical countries will be beneficial for monitoring and regulatory

  9. An Interactive Real-time Decision Support System for Leachate Irrigation on Evapotranspiration Landfill Covers

    Science.gov (United States)

    Wang, Y.

    2015-12-01

    Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.

  10. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  11. Pharmaceuticals and other contaminants of emerging concern in landfill leachate of the United States

    Science.gov (United States)

    Kolpin, Dana W.; Masoner, Jason R.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.

    2015-01-01

    Landfills are commonly the final respository for a heterogeneous mixture of waste from residential, commercial, and industrial sources. The use of landfills as a means of waste disposal will likely increase as the global population increases and nations develop. Thus, landfills receiving such waste have the potential to produce leachate containing numerous organic chemicals including contaminants of emerging concern (CECs) such as pharmaceuticals, personal care products, and hormones. This leachate is often discharged to pathways that lead directly (e.g. groundwater, streams) or indirectly (e.g. wastewater treament plants) to the environment. Limited research, however, has been conducted regarding the characterisation of landfill leachate for CECs.To provide the first national-scale assessment of CECs in landfill leachate across the United States, fresh leachate samples (i.e. prior to onsite treatment) from 19 landfills in 16 states were collected in 2011 and analysed for 202 CECs [1]. The targeted CECs were selected for analysis because they were expected to be persistent in the environment; are used, excreted, or disposed of in substantial quantities; may have human or environmental health effects; or are potential indicators of environmentally relevant classes of chemicals or source materials.

  12. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Downgradient from an old municipal landfill allowing leachate, rich in dissolved organic carbon, to enter a shallow sandy aerobic aquifer, a sequence of redoxe zones is identified from groundwater chemical analysis. Below the landfill, methanogenic conditions prevail, followed by sulfidogenic...... the fate of reactive pollutants leached from the landfill....

  13. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jinwook [R& D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-dong, Youngtong-gu, Suwon, Gyeonggi-do 443-823 (Korea, Republic of); Kim, Seungjin; Baek, Seungcheon [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Nam-Hoon [Department of Environmental & Energy Engineering, Anyang University, 22 Samdeok-ro, 37 Beon-gil, Manan-gu, Anyang, Gyeonggi-do 430-714 (Korea, Republic of); Park, Seongjun; Lee, Junghun; Lee, Heechang [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-03-21

    Highlights: • To solve the drawbacks (NH{sub 4}{sup +} accumulation) of leachate recirculation, ex-situ SBR was applied. • Produced NO{sub 2}{sup −} was recirculated and denitrified to N{sub 2} in landfill with insufficient carbon source. • Despite the inhibition of methanogenesis by DO and nitrate, CH{sub 4} fraction eventually increased. - Abstract: Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  14. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  15. Impact of landfill leachate on the groundwater quality: A case study in Egypt

    Directory of Open Access Journals (Sweden)

    Magda M. Abd El-Salam

    2015-07-01

    Full Text Available Alexandria Governorate contracted an international company in the field of municipal solid waste management for the collection, transport and disposal of municipal solid waste. Construction and operation of the sanitary landfill sites were also included in the contract for the safe final disposal of solid waste. To evaluate the environmental impacts associated with solid waste landfilling, leachate and groundwater quality near the landfills were analyzed. The results of physico-chemical analyses of leachate confirmed that its characteristics were highly variable with severe contamination of organics, salts and heavy metals. The BOD5/COD ratio (0.69 indicated that the leachate was biodegradable and un-stabilized. It was also found that groundwater in the vicinity of the landfills did not have severe contamination, although certain parameters exceeded the WHO and EPA limits. These parameters included conductivity, total dissolved solids, chlorides, sulfates, Mn and Fe. The results suggested the need for adjusting factors enhancing anaerobic biodegradation that lead to leachate stabilization in addition to continuous monitoring of the groundwater and leachate treatment processes.

  16. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun, E-mail: xjwang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Jia, Mingsheng, E-mail: msjia@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Xiaohai, E-mail: cxiaoh_xm@126.com [Xiamen City Environmental Sanitation Management Department, Xiamen 361000 (China); Xu, Ying, E-mail: yxu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Lin, Xiangyu, E-mail: xylin@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Kao, Chih Ming, E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chen, Shaohua, E-mail: shchen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  17. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria

    International Nuclear Information System (INIS)

    Pivato, Alberto; Gaspari, Lorenzo

    2006-01-01

    Landfilling is a fundamental step in any waste management strategy, but it can constitute a hazard for the environment for a long time. The need to protect the environment from potential landfill emissions makes risk assessment a decision tool of extreme necessity. The heterogeneity of wastes and the complexity of physical, chemical and biological processes that occur in the body of a landfill need specific procedures in order to evaluate the groundwater risk for the environment. Given the complexity of the composition of landfill leachates, the exact contribution of each potential toxic substance cannot be known precisely. Some reference contaminants that constitute the hazard (toxicity) of leachate have to be found to perform the risk assessment. A preliminary ecotoxicological investigation with luminescent bacteria has been carried out on different leachates from traditional and sustainable landfills in order to rank the chemicals that better characterize the leachate (heavy metals, ammonia and dissolved organic content). The attention has been focused on ammonia because it is present in high concentration and can last for centuries and can seriously contaminate the groundwater. The results showed that the toxicity of the leachate might reliably depend on the ammonia concentration and that the leachate toxicity is considerably lower in sustainable landfills where the ammonia had been degraded. This has an important consequence because if the containment system fails (as usually occur within 30-50 yr), the risk of groundwater contamination will be calculated easier only in terms of the probability that the ammonia concentration is higher than a reference concentration

  18. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    Science.gov (United States)

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All

  19. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    International Nuclear Information System (INIS)

    Pujiindiyati, E.R.

    2011-01-01

    Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research) was used to measure absolute abundances of 2 HHO, HH 18 O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ 2 H of the H 2 O in landfill leachate was significantly enriched, with values of - 22.6 0/00 to + 4.3 0/00. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river. The electrical conductivity of the leachate was higher (3200 to 7600 μS) and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination. (author)

  20. Application of Deuterium and Oxygen-18 to Trace Leachate Movement in Bantar Gebang Sanitary Landfill

    Directory of Open Access Journals (Sweden)

    E.R. Pujiindiyati

    2011-08-01

    Full Text Available Bantar Gebang landfill was constructed in 1986 with total area of 108 ha and approximately 6000 ton/day solid waste is disposed to this landfill. Mostly, the people living surrounding landfill get afraid of impact of the hazardous chemicals produced by waste disposal to their health. The purpose of this investigation was to study the migration of leachate to Cibitung River water and shallow groundwaters near to the river. It is possible to be done because chemical contents and isotopic characteristics of municipal landfill leachate are unique, relative to aqueous media in the most natural environments. Laser absorption method developed by the LGR (Los Gatos Research was used to measure absolute abundances of 2HHO, HH18O and HHO in a number of water samples. In-situ measurements were also conducted as an additional parameter besides their isotopes. The δ2H of the H2O in landfill leachate was significantly enriched, with values of - 22.6 ‰ to + 4.3 ‰. This deuterium enrichment was undoubtedly due to the extensive production of microbial methane within the limited reservoir of the landfill. However, the enriched deuterium value in leachate was not detected in the river which still had depleted values. It was probably caused by the amount of natural water in the river was comparatively large, with respect to limited leachate discarded to the river.The electrical conductivity of the leachate was higher (3200 to 7600 S and the decreasing values were still monitored in the river to approximately 12 km after streaming the landfills. The effect of the high electrical conductivity and enriched deuterium of leachate was not clearly indicated in the groundwater samples which still represented the local precipitation recharge, except a monitoring well located in Bantar Gebang landfill area which has an indication of leachate contamination.

  1. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost

    International Nuclear Information System (INIS)

    Hui, C.H.; So, M.K.; Lee, C.M.; Chan, G.Y.S.

    2003-01-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N 2 O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH 4 + -N content (3950 mg l -1 ). Physicochemical properties, including the amount of N 2 O produced, were monitored during the composting process over 28 days. A rapid decline in NH 4 + -N in the first 4 days and increasing NO 3 - -N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N 2 O. Higher leachate applications as much as tripled N 2 O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N 2 O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N 2 O, although excessive flux of N 2 O remains about high application rates over longer time periods. (Author)

  2. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.

    Science.gov (United States)

    Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran

    2018-06-15

    Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    Science.gov (United States)

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  4. Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia.

    Science.gov (United States)

    Frikha, Youssef; Fellner, Johann; Zairi, Moncef

    2017-09-01

    Despite initiatives for enhanced recycling and waste utilization, landfill still represents the dominant disposal path for municipal solid waste (MSW). The environmental impacts of landfills depend on several factors, including waste composition, technical barriers, landfill operation and climatic conditions. A profound evaluation of all factors and their impact is necessary in order to evaluate the environmental hazards emanating from landfills. The present paper investigates a sanitary landfill located in a semi-arid climate (Tunisia) and highlights major differences in quantitative and qualitative leachate characteristics compared to landfills situated in moderate climates. Besides the qualitative analysis of leachate samples, a quantitative analysis including the simulation of leachate generation (using the HELP model) has been conducted. The results of the analysis indicate a high load of salts (Cl, Na, inorganic nitrogen) in the leachate compared to other landfills. Furthermore the simulations with HELP model highlight that a major part of the leachate generated originates form the water content of waste.

  5. Chromium in soil layers and plants on closed landfill site after landfill leachate application.

    Science.gov (United States)

    Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon

    2009-06-01

    Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg

  6. Phthalate release in leachate from municipal landfills of central Poland.

    Science.gov (United States)

    Wowkonowicz, Paweł; Kijeńska, Marta

    2017-01-01

    Phthalate diesters (PAEs) are used as plasticizer additives to polymer chains to make the material more flexible and malleable. PAEs are bonded physically, not chemically, to the polymeric matrix and can migrate to and leach from the product surface, posing a serious danger to the environment and human health. There have been a number of studies on PAE concentrations in landfill leachate conducted in the EU and around the world, though few in Poland. In the present study, the leachate of five municipal landfills was analyzed for the presence of PAEs. Raw leachate was sampled four times over the period of one year in 2015/16. It was the first large study on this subject in Poland. PAEs were detected in the leachate samples on all of the landfills, thereby indicating that PAEs are ubiquitous environmental contaminants. The following PAEs were detected in at least one sample: Di(2-ethylhexyl) phthalate (DEHP), Diethyl phthalate (DEP), Dimethyl phthalate (DMP), Di-n-butyl phthalate (DBP), Di-isobutylphthalate (DIBP). Out of all ten PAEs, DEHP was the most predominant, with concentrations up to 73.9 μg/L. DEHP was present in 65% of analyzed samples (in 100% of samples in spring, 80% in winter, and 40% in summer and autumn). In only 25% of all samples DEHP was below the acceptable UE limit for surface water (1.3 μg/L), while 75% was from 1.7 to 56 times higher than that value. On the two largest landfills DEHP concentrations were observed during samples from all four seasons, including on a landfill which has been remediated and closed for the last 5 years.

  7. A combined approach to investigate the toxicity of an industrial landfill's leachate: Chemical analyses, risk assessment and in vitro assays

    International Nuclear Information System (INIS)

    Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; Benfenati, E.

    2011-01-01

    Solid wastes constitute an important and emerging problem. Landfills are still one of the most common ways to manage waste disposal. The risk assessment of pollutants from landfills is becoming a major environmental issue in Europe, due to the large number of sites and to the importance of groundwater protection. Furthermore, there is lack of knowledge for the environmental, ecotoxicological and toxicological characteristics of most contaminants contained into landfill leacheates. Understanding leachate composition and creating an integrated strategy for risk assessment are currently needed to correctly face the landfill issues and to make projections on the long-term impacts of a landfill, with particular attention to the estimation of possible adverse effects on human health and ecosystem. In the present study, we propose an integrated strategy to evaluate the toxicity of the leachate using chemical analyses, risk assessment guidelines and in vitro assays using the hepatoma HepG2 cells as a model. The approach was applied on a real case study: an industrial waste landfill in northern Italy for which data on the presence of leachate contaminants are available from the last 11 years. Results from our ecological risk models suggest important toxic effects on freshwater fish and small rodents, mainly due to ammonia and inorganic constituents. Our results from in vitro data show an inhibition of cell proliferation by leachate at low doses and cytotoxic effect at high doses after 48 h of exposure. - Research highlights: → We study the toxicity of leachate from a non-hazardous industrial waste landfill. → We perform chemical analyses, risk assessments and in vitro assays on HepG2 cells. → Risk models suggest toxic effects due to ammonia and inorganic constituents. → In vitro assays show that leachate inhibits cell proliferation at low doses. → Leachate can induce cytotoxic effects on HepG2 cells at high doses.

  8. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method

    Directory of Open Access Journals (Sweden)

    Aifeng Qiu

    2016-12-01

    Full Text Available Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD, ammonium nitrogen (NH4+-N, and total nitrogen (TN were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate.

  9. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method.

    Science.gov (United States)

    Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian

    2016-12-21

    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri , zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH₄⁺-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri . The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH₄⁺-N, and acute bio-toxicity of landfill leachate.

  10. Microbiology, Redox and Contaminat Fate in the Grindsted Landfill Leachate Plume - A Summary of 25 Years of work

    Science.gov (United States)

    Christensen, T. H.

    2001-05-01

    The contamination by leachate of the upper aquifer at the Grindsted Landfill (Denmark) stretches about 300 m downgradient from the landfill. The plume has been described with respect to water chemistry, sediment chemistry, pollutant distribution, microbial counts, PLFA and redox rates determined by unamended bioassays. This presentation summaries the findings and discusses unanswered questions. The landfill was active from 1930 to the mid 1970 and has no engineered leachate collection system. Leachate from municipal as well as from industrial waste has entered the aquifer for more than thirty years. The redox conditions change from strongly anaerobic (methanogenic, sulfate reducing, iron reducing) close to the landfill over manganese reduction and denitrification to aerobic conditions in the outskirts of the plume The redox conditions were determined from groundwater sample composition, hydrogen concentrations and sediment chemistry. The plume showed strong attenuation of aromatic compounds within the first 100 m downgradient of the landfill. Degradation experiments (batch, in-situ testers, long term field injection experiments) could not fully document degradation of all the compounds. MPN-measurements of methanogens, sulfate-reducers, iron-reducers, manganese-reducers and denitrifiers showed abundance of all groups with a slight trend with the redox conditions. PLFA measurements did not provide much insight into the microbial populations of the plume, but confirmed some previous observations. Bioassays gave estimates of the rates of the various redox processes, but showed for some samples more simultaneous redox processes. More than 25 years of work has been put into the Grindsted Landfill leachate plume. References Bjerg, P.L., Rugge, K., Cortsen, J., Nielsen, P.H. & Christensen, T.H. (1999): Degradation of aromatic and chlorinated aliphatic hydrocarbons in the anaerobic part of the Grindsted Landfill leachate plume: In situ microcosm and laboratory batch

  11. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  12. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes

    International Nuclear Information System (INIS)

    Hermosilla, Daphne; Cortijo, Manuel; Huang, Chin Pao

    2009-01-01

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe 2+ and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approx 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a 'young' leachate, while for 'old' and 'mixed' leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  13. Migration behavior of landfill leachate contaminants through alternative composite liners

    Energy Technology Data Exchange (ETDEWEB)

    Varank, Gamze, E-mail: gvarank@yildiz.edu.tr; Demir, Ahmet, E-mail: ahmetd@yildiz.edu.tr; Top, Selin, E-mail: stop@yildiz.edu.tr; Sekman, Elif, E-mail: esekman@yildiz.edu.tr; Akkaya, Ebru, E-mail: ekoca@yildiz.edu.tr; Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr; Bilgili, M. Sinan, E-mail: mbilgili@yildiz.edu.tr

    2011-08-01

    Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm + 10 cm, k = 10{sup -8} m/sn), R2: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm + 10 cm, k = 10{sup -8} m/sn), R3: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10{sup -8} m/sn) + bentonite liner (2 cm) + compacted clay liner (10 cm, k = 10{sup -8} m/sn), and R4: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10{sup -8} m/sn) + zeolite liner (2 cm) + compacted clay liner (10 cm, k = 10{sup -8} m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. - Research highlights: {yields} Migration of

  14. Characteristics and biological treatment of leachates from a domestic landfill

    Science.gov (United States)

    Waste material from urban areas is a major environmental concern and landfill application is a frequent method for waste disposal. The leachate from landfills can, however, negatively affect the surrounding environment. A bioreactor cascade containing submerged biofilms was used to treat newly forme...

  15. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja-Kong; Do, Nam-Young [Korea Advanced Institute of Science & Technology, Taejon (Korea, Republic of)

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  16. Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment.

    Science.gov (United States)

    Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino

    2018-05-01

    Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ± 2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ± 2.7%, 60 ± 13%, 95 ± 2.6% and 82 ± 5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH 4 removal) and a partial removal of dissolved organic compounds (42 ± 7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Improvement of landfill leachate biodegradability with ultrasonic process.

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    Full Text Available Landfills leachates are known to contain recalcitrant and/or non-biodegradable organic substances and biological processes are not efficient in these cases. A promising alternative to complete oxidation of biorecalcitrant leachate is the use of ultrasonic process as pre-treatment to convert initially biorecalcitrant compounds to more readily biodegradable intermediates. The objectives of this study are to investigate the effect of ultrasonic process on biodegradability improvement. After the optimization by factorial design, the ultrasonic were applied in the treatment of raw leachates using a batch wise mode. For this, different scenarios were tested with regard to power intensities of 70 and 110 W, frequencies of 30, 45 and 60 KHz, reaction times of 30, 60, 90 and 120 minutes and pH of 3, 7 and 10. For determining the effects of catalysts on sonication efficiencies, 5 mg/l of TiO(2 and ZnO have been also used. Results showed that when applied as relatively brief pre-treatment systems, the sonocatalysis processes induce several modifications of the matrix, which results in significant enhancement of its biodegradability. For this reason, the integrated chemical-biological systems proposed here represent a suitable solution for the treatment of landfill leachate samples.

  18. Landfill operation and waste management procedures in the reduction of methane and leachate pollutant emissions from municipal solid waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, J.

    2002-07-01

    The objective of the present research was to find ways of minimising emissions from municipal solid waste (MSW) landfills by means of laboratory experiments. During anaerobic incubation for 237 days, the grey waste components produced between 120 and 320 m{sup 3}CH{sub 4} tTS{sup -1} and between 0.32 and 3.5 kg NH{sub 4}-N tTS{sup -1} and the first-order rate constant of degradation ranged from 0.021 and 0.058 d{sup -1}. High amounts of COD and NH{sub 4}-N were observed in the leachate of grey waste in all the procedures tested during lysimeter experiments lasting 573 days. In the 10- year-old landfilled MSW, a high rate of methanisation was achieved with rainwater addition and leachate recirculation over 538 days, whereas initially pre-wetted grey waste and landfilled MSW were rapidly acidified, thus releasing a high amount of COD into the leachate. In batch assays, the grey waste produced a methane potential amounting to 70-85 % of the total methane potential of the grey waste plus putrescibles. In low moisture conditions, i.e. below 55%, methane production was delayed in the old landfill waste and prevented in the grey waste. In the emission potential study with five waste types, putrescibles produced 410 m{sup 3}CH{sub 4} tTS{sup -1} and 3.6 kgNH{sub 4}-N tTS{sup -1}, whereas composted putrescibles produced 41 m{sup 3}CH{sub 4} tVS{sup -1}, and 2.0 kgNH{sub 4}-N tTS{sup -1}. The remains of putrescibles probably caused the leaching potential of 2.1 kgNH{sub 4}-N tTS{sup -1} in the grey waste. Aeration for 51 days in lysimeters reduced the CH{sub 4} potential of putrescibles by more than 68 % and of the lysimeter landfilled grey waste by 50 %, indicating the potential of aeration for CH4 emission reduction. Nitrogen removal of landfill leachate was studied in the laboratory as well as on-site. Over 90 % nitrification of leachate was obtained with loading rates between 100 and 130 mgNH{sub 4}-N l{sup -1} d-1 at 25 deg C. Nitrified leachate was denitrified with a

  19. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa.

    Science.gov (United States)

    Odusanya, David O; Okonkwo, Jonathan O; Botha, Ben

    2009-01-01

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni63 electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n=3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670pgl(-1), ND to 6638pgl(-1), ND to 7230pgl(-1), 41 to 4009pgl(-1), 90 to 9793pgl(-1) for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793+/-1.5pgl(-1), was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may

  20. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  1. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla, Daphne, E-mail: dhermosilla@quim.ucm.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Cortijo, Manuel [U.D. Operaciones Basicas, Departamento de Ingenieria Forestal, E.T.S.I. Montes, Universidad Politecnica de Madrid, Avda. Ramiro de Maeztu s/n, 28040 Madrid (Spain); Huang, Chin Pao [Department of Civil and Environmental Engineering, 352C DuPont Hall, University of Delaware, Newark, DE 19716 (United States)

    2009-05-15

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe{sup 2+} and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approx 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a 'young' leachate, while for 'old' and 'mixed' leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  2. Application of Electrochemical Process in Removal of Heavy Metals from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Mostafaii Gh.1 PhD,

    2016-08-01

    Full Text Available Aims Municipal landfill leachate contains high concentrations of heavy metals, organics, ammonia. The efficeincy of electrochemically removal of heavy metals from landfill leachate was studied. Materials & Methods The leachate was obtained from Kahrizak landfill in south of Tehran. The experiments were carried out by batch process. The 2liter batch reactor was made of glass. There were eight anodes and cathodes electrodes. The electrodes were placed vertically parallel to each other and they were connected to a digital DC power supply. The pH and conductivity were adjusted to a desirable value using NaOH or H2SO4, and NaCl. All the runs were performed at constant temperature of 25°C. In each run, 1.5liter of the leachate was placed into the electrolytic cell. Samples were extracted every 10min and then filtered through a mixed cellulose acetate membrane (0.42μm. The amount of Lead, Zinc and Nickel removal was measured at pH=7 and in current density of 0.5, 0.75, and 1A. Findings When current density and time reaction increased, removal efficiency of heavy metals such as Lead, Zinc and Nickel increased. At initial pH=7, density 1A and reaction time= 60min, Lead, Nickel and Zinc were removed up to 86, 93 and 95%, respectively. Conclusion Electrochemical process can be proposed as a suitable technique to remove heavy metal from landfill leachate.

  3. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Aronsson, P.

    1996-01-01

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  4. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2007-01-01

    Information about the response of poplar (Populus spp.) genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. Poplar clones were irrigated during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test...

  5. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, Jette B.; Jensen, Dorthe Lærke; Grøn, Christian

    1998-01-01

    Samples of dissolved organic carbon (DOG) were obtained from landfill leachate-polluted groundwater at Vejen Landfill, Denmark. The humic acids, fulvic acids and the hydrophilic fraction were isolated and purified. Based on DOC measurements, the fulvic acid fraction predominated, accounting...

  6. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    Science.gov (United States)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  7. Treatability of stabilize landfill leachate by using pressmud ash as an adsorbent

    Science.gov (United States)

    Azme, N. N. Mohd; Murshed, M. F.

    2018-04-01

    Leachate is a liquid produced from the landfill that contains high concentration of heavy metals, chemicals and nutrient loading. The treatability of these contaminants are complicated since the current treatment technology are costly and site specific. Therefore, this study was conducted to evaluate the treatability of stabilized landfill leachate by using waste (pressmud ash) as an absorbent. Pressmud ash was prepared by burning at different temperature from 100 to 700 degree Celsius and test at 24 hours shaking time, pH 8, and 4000 rpm. Leachate samples were collected from municipal solid waste (MSW) Pulau Burung Sanitary Landfill (PBSL) and were analyzed for heavy metal, COD, ammonia and colour. This study was performed in two phases i) leachate characteristic, ii) treatability assessment by using pressmud ash. Pressmud was sampled from the sugar mill, Malaysian Sugar Manufacturing (MSM) Sdn Bhd, Seberang Perai, Pulau Pinang. The pressmud with 400°C are highly potential material with a low cost which can be a good adsorbent was capable reducing efficiencies of COD (60.76%), ammonia (64.37%) and colour (35.78%) from real wastewater leachate. Pressmud showed good sorption capability. Surface modification with burning greatly enhanced the reducing efficiency of sugar waste based adsorbent with adsorption efficiency.

  8. Effect of amendments addition on adsorption of landfill leachate

    Science.gov (United States)

    Bai, X. J.; Zhang, H. Y.; Wang, G. Q.; Gu, J.; Wang, J. H.; Duan, G. P.

    2018-03-01

    The disposal of leachate has become one of the most pressing problems for landfills. This study taking three kinds of amendments, corn straw, mushroom residue and garden waste as adsorbent materials, evaluates the different amendments on the leachate adsorption effect through analyzing indicators as the saturation adsorption ratio, sulfur containing odor emission, heat value. The results showed that all three kinds of amendments can effectively adsorb leachate, with saturation adsorption ratio between 1: 2 and 1: 4. Adding amendment could significantly reduce the sulfur containing odor emission of leachate. Compared the three kinds of amendments, mushroom residue could adsorb leachate at a maximize degree with a low concentration of sulfur containing odor emission. The industrial analysis showed that the heat values of the amendments after absorbing leachate are more than 14MJ/kg, and it can be utilized as a biomass fuel.

  9. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    Science.gov (United States)

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  10. Landfill disposal of CCA-treated wood with construction and demolition (C&D) debris: arsenic, chromium, and copper concentrations in leachate.

    Science.gov (United States)

    Jambeck, Jenna R; Townsend, Timothy G; Solo-Gabriele, Helena M

    2008-08-01

    Although phased out of many residential uses in the United States, the disposal of CCA-treated wood remains a concern because significant quantities have yet to be taken out of service, and it is commonly disposed in landfills. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills. The goal of this research was to simulate the complex chemical and biological activity of a construction and demolition (C&D) debris landfill containing a realistic quantity of CCA-treated wood (10% by mass), produce leachate, and then evaluate the arsenic, copper, and chromium concentrations in the leachate as an indication of what may occur in a landfill setting. Copper concentrations were not significantly elevated in the control or experimental simulated landfill setting (alpha = 0.05). However, the concentrations of arsenic and chromium were significantly higher in the experimental simulated landfill leachate compared to the control simulated landfill leachate (alpha = 0.05, p debris can impact leachate quality which, in turn could affect leachate management practices or aquifers below unlined landfills.

  11. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa

    International Nuclear Information System (INIS)

    Odusanya, David O.; Okonkwo, Jonathan O.; Botha, Ben

    2009-01-01

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni 63 electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l -1 , ND to 6638 pg l -1 , ND to 7230 pg l -1 , 41 to 4009 pg l -1 , 90 to 9793 pg l -1 for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 ± 1.5 pg l -1 , was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these

  12. Adsorption of heavy metal from landfill leachate by wasted biosolids ...

    African Journals Online (AJOL)

    However, the concentration of Cd, Cu and Zn was not detected in the leachate but Fe was found to be in high concentration (184 mg/L) in raw leachate collected from a municipal landfill site. Therefore, the effects of biomass dosage, contact time, pH and agitation speed were observed for optimal adsorption of iron from ...

  13. Macro- and micro-nutrient concentration in leaf, woody, and root tissue of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2007-01-01

    Landfill leachate offers an opportunity to supply water and plant nutritional benefits at a lower cost than traditional sources. Information about nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps increase biomass production along with evaluating the impacts of leachate chemistry on tree health.

  14. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    International Nuclear Information System (INIS)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Röling, Wilfred F.M.

    2012-01-01

    Highlights: ► Microbial nitrogen transformations can alleviate toxic ammonium discharge. ► Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. ►Organic nitrogen ammonification was most dominant. ► Anaerobic nitrate reduction and ammonium oxidation potential were also high. ► A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L −1 . The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential ( −1 h −1 ) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a

  15. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation.

    Science.gov (United States)

    Yong, Zi Jun; Bashir, Mohammed J K; Ng, Choon Aun; Sethupathi, Sumathi; Lim, Jun-Wei

    2018-01-01

    The increase in landfill leachate generation is due to the increase of municipal solid waste (MSW) as global development continues. Landfill leachate has constantly been the most challenging issue in MSW management as it contains high amount of organic and inorganic compounds that might cause pollution to water resources. Biologically treated landfill leachate often fails to fulfill the regulatory discharge standards. Thus, to prevent environmental pollution, many landfill leachate treatment plants involve multiple stages treatment process. The Papan Landfill in Perak, Malaysia currently has no proper leachate treatment system. In the current study, sequential treatment via sequencing batch reactor (SBR) followed by coagulation was used to treat chemical oxygen demand (COD), ammoniacal nitrogen (NH 3 -N), total suspended solids (TSS), and colour from raw landfill leachate. SBR optimum aeration rate, L/min, optimal pH and dosage (g/L) of Alum for coagulation as a post-treatment were determined. The two-step sequential treatment by SBR followed by coagulation (Alum) achieved a removal efficiency of 84.89%, 94.25%, 91.82% and 85.81% for COD, NH 3 -N, TSS and colour, respectively. Moreover, the two-stage treatment process achieved 95.0% 95.0%, 95.3%, 100.0%, 87.2%, 62.9%, 50.0%, 41.3%, 41.2, 34.8, and 22.9 removals of Cadmium, Lead, Copper, Selenium, Barium, Iron, Silver, Nickel, Zinc, Arsenic, and Manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Zero air emission and zero drilling waste landfill leachate collection well installation method

    International Nuclear Information System (INIS)

    Miller, M.S.; Hornsby, R.G.

    1992-01-01

    Landfilling of industrial wastes is an extensively used means of disposal throughout the US. Prior to RCRA, many landfills were little more than excavated trenches. During the construction and filling of such trenches, the long-term environmental impact was seldom considered. Water (leachate) management for these early landfills was not part of engineering or operating considerations. Today, waste management facilities succeed or fail on the quality of their leachate management efforts, as judged by groundwater quality around the landfill. The CECOS International Inc. facility near Livingston, Louisiana has three pre-RCRA disposal units (landfills) that were designed, constructed, and closed by a previous owner. These disposal units were constructed without any type of leachate removal system. During 1984-1985, samples from two nearby monitor wells revealed evidence of groundwater contamination in the area, principally in the shallow (30-foot) zone. A one-year, state-approved groundwater assessment revealed the nature and extent of groundwater contamination. Later, the Louisiana Department of Environmental Quality (LDEQ) approved a remedial action plan (RAP) for this area that included: Installation of an engineered slurry wall surrounding the disposal units to isolate the shallow groundwater regime. Placement of an engineered cap over the units to prevent rainwater infiltration. Installation of several recovery wells inside the units to facilitate removal of leachate. While efforts are now underway to provide for removal of impacted groundwater in the vicinity of these old wells, the long-term solution is to reduce or, to the greatest extent possible, eliminate the liquid volume inside the cells. This paper deals with the installation of 16 leachate recovery wells inside the pre-RCRA disposal units

  17. Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.

    Science.gov (United States)

    Ogata, Yuka; Ishigaki, Tomonori; Ebie, Yoshitaka; Sutthasil, Noppharit; Chiemchaisri, Chart; Yamada, Masato

    2015-10-01

    One of the key challenges in landfill leachate management is the prevention of environmental pollution by the overflow of untreated leachate. To evaluate the feasibility of constructed wetlands (CWs) for the treatment of waste landfill leachate in tropical regions, water reduction and pollutant removal by a CW subjected to different flow patterns (i.e., horizontal subsurface flow (HSSF) and free water surface (FWS)) were examined in both rainy and dry seasons in Thailand. A pilot-scale CW planted with cattail was installed at a landfill site in Thailand. With HSSF, the CW substantially removed pollutants from the landfill leachate without the need to harvest plants, whereas with FWS, it only slightly removed pollutants. Under both flow patterns, the CW significantly reduced the leachate volume to a greater extent than surface evaporation, which is regarded as an effect of the storage pond. Additionally, water reduction occurred regardless of season and precipitation, within the range 0-9 mm d(-1). In the case of low feeding frequency, water reduction by the CW with HSSF was lower than that with FWS. However, high feeding frequency improved water reduction by the CW with HSSF and resulted in a similar reduction to that observed with FWS, which exhibited maximum evapotranspiration. In terms of water reduction, with both HSSF in conjunction with high frequency feeding and FWS, the CW provided a high degree of evapotranspiration. However, pollutant removal efficiencies with HSSF were higher than for FWS. The present study suggested that CWs with HSSF and high frequency feeding could be useful for the prevention of uncontrollable dispersion of polluted leachate in the tropical climate zone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. THE INFLUENCE OF INFILTRATION OF LEACHATE FROM LANDFILLS ON THE CHANGES OF CHEMICAL PARAMETERS OF THE SOIL

    Directory of Open Access Journals (Sweden)

    Grzegorz Gałko

    2015-09-01

    Full Text Available The article presented the results of geochemical research of clean soil and soil contaminated with the leachate from the landfill. Two types of soil were studied – brown with a stony foundation and loamy. The aim of the research was to compare the impact of leachate infiltration on the changes of chemical parameters of soils and to determine their buffer properties and susceptibility to contamination on this basis. The obtained results showed that the total acidity, mineral alkalinity and chloride content in the studied soils reduced after the contamination with the landfill leachate. While the chloride content, general hardness and general alkalinity increased. It has been found that the effect of infiltration of the landfill leachate was the significant reduction of mineral substances due to their washout of the soil profile. It has also been shown that the studied landfill leachate contained substantial quantities of substances favourable to the plant growth.

  19. Effects of supplement with sanitary landfill leachate in gas exchange of sunflower (Helianthus annuus L.) seedlings under drought stress.

    Science.gov (United States)

    Nunes Junior, Francisco H; Freitas, Valdineia S; Mesquita, Rosilene O; Braga, Brennda B; Barbosa, Rifandreo M; Martins, Kaio; Gondim, Franklin A

    2017-10-01

    Sanitary landfill leachate is one of the major problems arising from disposal of urban waste. Sanitary landfill leachate may, however, have use in agriculture. This study, therefore, aimed to analyze initial plant growth and gas exchange in sunflower seedlings supplemented with sanitary landfill leachate and subjected to drought stress through variables of root fresh mass (RFM), shoot fresh mass (SFM), total fresh mass (TFM), relative chlorophyll content (CL), stomatal conductance (g s ), transpiration rate (E), net photosynthetic rate (A), ratio of internal to external CO 2 concentration (Ci/Ca),water use efficiency (EUA), instantaneous carboxylation efficiency (A/Ci), and electron transport rate (ETR). The experimental design was a completely randomized 2 (irrigated and non-irrigated) × 4 (sand, sand + 100 kg N ha -1 organic fertilizer, sand + 100 kg N ha -1 sanitary landfill leachate, and sand + 150 kg N ha -1 sanitary landfill leachate) factorial with five replicates. Under drought stress conditions, leachate treatment supplemented with 100 kg N ha -1 exhibited higher plant fresh weights than those of the treatment containing 150 kg N ha -1 . Increases in fresh mass in plant treatments supplemented with 100 and 150 kg N ha -1 sanitary landfill leachate were related to higher photosynthetic rates.

  20. Transformation of metals speciation in a combined landfill leachate treatment

    International Nuclear Information System (INIS)

    Wu Yanyu; Zhou Shaoqi; Chen Dongyu; Zhao Rong; Li Huosheng; Lin Yiming

    2011-01-01

    Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter > 0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction < 0.45 μm were considered as dissolved. - Research Highlights: → Metals in various landfill leachate treatments were size charge fractionated and the speciation transformations were compared. → Species predictions of metals were simulated by Visual MINTEQ model. → Optimum agreements for the free ion/labile species were within acidic solution. → Predictions of colloidal species agree with experimental data well in alkaline solution.

  1. Growth behavior studies of bread wheat plant exposed to municipal landfill leachate.

    Science.gov (United States)

    Mor, Suman; Kaur, Kamalpreet; Khaiwal, Ravindra

    2013-11-01

    Pot experiments were carried out to study the effect of different dilutions of leachate generated from municipal solid waste (MSW) landfill on bread wheat (Triticum aestivum). Eight treatment groups with different concentrations (0-100%) of leachate were prepared and treatments were given to the plants till they reached complete vegetative phase (45 days). The growth performances of wheat plants were assessed in terms of various parameters such as shoot and root length, dry biomass and chlorophyll content. Plants treated with higher concentrations of leachate (75% and 100%) showed higher growth (2.5 and 6%) and 100% survival rate as compared to control. However, high shoot weight (0.028 and 0.030 gm) and high chlorophyll content (213 and 230%) was reported in 30 and 40% leachate treatment as compared to control. Some symptoms of stress (discoloration of leaf blade, wilting and yellowing of plants) were also observed in plants, which could be related to the presence of high concentration of salts in the leachate. The current study suggests that MSW landfill leachate is rich in nutrients and can be used as fertilizer but before its application, the salinity level and concentration of toxic metals present in leachate should be considered in accordance with the tolerance ability of any plant.

  2. Mono- and diesters from o-phthalic acid in leachates from different European landfills

    DEFF Research Database (Denmark)

    Jonsson, S.; Eilertsson, J.; Ledin, Anna

    2003-01-01

    Leachates from 17 different landfills in Europe were, analysed with respect to phthalates, i.e. phthalic acid diesters (PAEs) and their degradation products phthalic acid monoesters (PMEs) and ortho-phthalic acid (PA). Diesters are ubiquitous and the human possible exposure and potential to human...... health and environment has put them in focus. The aim of this study was to elucidate whether monoesters and phthalic acid could be traced in landfill leachates and in what concentrations they may be found. The results showed that phthalates were present in the majority of the leachates investigated....... The monoesters appeared from 1 to 20 mug/L and phthalic acid 2-880 mug/L (one divergent value of 19 mg phthalic acid/L). Their parental diesters were observed from I to 460 mug/L. These observed occurrences of degradation products, of all diesters studied, support that they are degraded under the landfill...

  3. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    Science.gov (United States)

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-12-06

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  4. Treatment of landfill leachate using Solar UV facilitated ...

    African Journals Online (AJOL)

    The use of heterogeneous photocatalytic degradation for the treatment of landfill leachate was investigated in this study. The photocatalytic degradation studies were carried out using Zinc oxide (ZnO) as photocatalyst and the process was facilitated by ultra violet radiation (UV) from sunlight. Characterisation of the raw ...

  5. Evaluation of adsorption and Fenton-adsorption processes for landfill leachate treatment

    OpenAIRE

    San Pedro-Cedillo, L.; Méndez-Novelo, R.I.; Rojas-Valencia, M.N.; Barceló-Quintal, M.; Castillo-Borges, E.R.; Sauri-Riancho, M.R.; Marrufo-Gómez, J.M.

    2015-01-01

    The objective of this research was to compare the adsorption and Fenton-adsorption treatments for the removal of contaminants in leachate from landfills and thus determine the most efficient one. The adsorption process with granular activated carbon was tested in two types of samples: raw leachate and leachate treated by Fenton. The results showed color, chemical oxygen demand (COD), total nitrogen and total organic carbon (TOC) removal rates higher than 99% through the Fenton-adsorption proc...

  6. Methane production from food waste leachate in laboratory-scale simulated landfill.

    Science.gov (United States)

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.

  7. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  8. Prediction of COD and NH4+-N Concentrations in Leachate from Lab-scale Landfill Bioreactors Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Zoqi

    2010-06-01

    Full Text Available In this study, we present an Artificial Neural Network (ANN model for predicting COD and NH4+-N concentrations in landfill leachate from lab-scale landfill bioreactors. For this purpose, two different lab-scale systems were modeled. for neural network’s data obtained. In the first system, the leachate from a fresh-waste reactor was drained to a recirculation tank and recycled every two days. In the second, the leachate from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, while the leachate from a well-decomposed refuse landfill reactor was simultaneously recycled to a fresh waste landfill reactor. The results indicate that leachate NH4+-N and COD concentrations accumulated to a high level in the first system, while. NH4+-N and COD removals were successfully carried out in the second. Also, average removal efficiencies in the second system reached 85% and 34% for COD and NH4+-N, respectively. Finally, the ANN’s results exhibited the success of the model as witnessed by the excellent agreement obtained between measured and predicted values.

  9. Ecotoxicological evaluation of leachate from the Limeira sanitary landfill with a view to identifying acute toxicity

    OpenAIRE

    José Euclides Stipp Paterniani; Ronaldo Teixeira Pelegrini; Núbia Natália de Brito Pelegrini

    2007-01-01

    Final disposal of solid waste is still a cause for serious impacts on the environment. In sanitary landfills, waste undergoes physical, chemical, and biological decomposition, generating biogas and leachate. Leachate is a highly toxic liquid with a very high pollution potential. The purpose of this work is to evaluate toxicity of in natura leachate samples collected from Limeira Sanitary Landfill, in Limeira, SP. The ecotoxicological evaluation comprised acute toxicity assays using as test or...

  10. Household hazardous waste disposal to landfill: using LandSim to model leachate migration.

    Science.gov (United States)

    Slack, Rebecca J; Gronow, Jan R; Hall, David H; Voulvoulis, Nikolaos

    2007-03-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW.

  11. High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge

    International Nuclear Information System (INIS)

    Wong, Y.M.; Juan, J.C.; Ting, Adeline; Wu, T.Y.

    2014-01-01

    Bio-hydrogen is a promising sustainable energy to replace fossil fuels. This study investigated bio-H 2 production from the inoculum of heat-pretreated landfill leachate sludge using glucose as model substrate. The seed sludge pretreated at 65 °C showed the highest amount of H 2 at the optimum condition of pH 6 and 37 °C. The maximum H 2 yield estimated by the modified Gompertz model was 6.43 mol H 2 /mol glucose. The high efficient of H 2 production is thermodynamically feasible with the Gibbs free energy of −34 kJ/mol. This study reveals that pretreated landfill leachate sludge has considerable potential for H 2 production. - Highlights: • Heat retreated landfill leachate sludge revealed high efficient H 2 production. • High efficient H 2 yield, 6.4 mol H 2 /mol glucose. • The synergisms between H 2 -producing bacteria may responsible for the high H 2 yield. • High H 2 yield is thermodynamically feasible with Gibbs free energy of −34 kJ/mol

  12. Nanofiltration of a Landfill Leachate Containing Pharmaceutical Intermediates from Vitamin C Production

    Directory of Open Access Journals (Sweden)

    Tvrtko Ahel

    2004-01-01

    Full Text Available The main landfill of the city of Zagreb generates several hundreds of cubic meters of heavily contaminated leachate per day. The organic composition of the leachate is particularly peculiar because, besides common macromolecular humus-like dissolved organic carbon,it encompasses a number of specific compounds of pharmaceutical origin, including a suite of by-products deriving from the production of vitamin C. Since both macromolecular humic organic matter and vitamin C intermediates are rather resistant to microbial degradation, leachate treatment procedures using simple retention lagoons or conventional bioreactors are not very effective in reducing their levels before the discharge into the receiving waters. An attractive alternative is the application of membrane technology. The efficiencies of three different types of nanofilters for the purification of leachates from the Jakuševec landfill were examined. It was shown that both complex humic-like dissolved organic matter and anthropogenic compounds of pharmaceutical origin can be eliminated at high efficiencies, mostly above 90 %.

  13. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis.

    Science.gov (United States)

    Zhao, Renxin; Feng, Jie; Yin, Xiaole; Liu, Jie; Fu, Wenjie; Berendonk, Thomas U; Zhang, Tong; Li, Xiaoyan; Li, Bing

    2018-05-01

    High throughput sequencing-based metagenomic analysis and network analysis were applied to investigate the broad-spectrum profiles of ARGs in landfill leachate from 12 cities in China. In total, 526 ARG subtypes belonging to 21 ARG types were detected with abundances ranging from 1.1 × 10 -6 to 2.09 × 10 -1 copy of ARG/copy of 16S rRNA gene. 68 ARG subtypes that accounted for 73.4%-93.4% of the total ARG abundances were shared by all leachate samples. The four most abundant ARGs, sul1, sul2, aadA and bacA can be served as ARG indicators to quantitatively predict the total abundances by linear functions (r 2  = 0.577-0.819, P < 0.001). No distinct regional distribution pattern of the ARGs was observed among different cities in China, while the ARG compositions of the leachate were clearly distinct from those of other environmental sample types. Nearly 90% ARG subtypes in the anaerobic digestion sludge from sewage treatment plants (STPADS) were shared by the leachate and the abundances of leachate and STPADS ARGs generalists accounted for 84.5% and 87.7% of total abundances in these two types of anaerobic samples, respectively. Furthermore, Procrustes analysis suggested that microbial community composition might be the determining factor of ARG compositions in landfill leachate. ARGs within the same type or among the different types showed higher incidences of non-random co-occurrence and 17 genera might be potential hosts of multiple ARGs. This study highlighted that landfill leachate is an important reservoir of various ARGs and provided a useful reference for the surveillance and risk management of ARGs in landfill environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate.

    Science.gov (United States)

    Speer, Sean; Champagne, Pascale; Anderson, Bruce

    2012-01-01

    Hybrid-passive landfill leachate treatment systems employ active pretreatment to remove dissolved inorganic constituents and decrease the oxygen demand of the leachate prior to treatment in a passive system. In a 1-year pilot-scale study, two passive treatment systems - a peat and wood shaving biological trickle filter and a sand and gravel constructed wetland - were installed to treat leachate from the Merrick Landfill in North Bay, Ontario, Canada. Leachate was pretreated in a fixed-film aerobic reactor, which provided reductions in COD (26%), and masses of ammonia (21%), Al (69%), Ca (57%), Fe (73%) and Sr (37%). A comparison of the performance of the hybrid-passive treatment systems indicated different extents of heterotrophic nitrification; the peat and wood shaving filter removed 49% of the ammonia and nitrified 29%, while the constructed wetland removed 99% of the ammonia and nitrified 90%. Hybrid-passive landfill leachate treatment was determined to be feasible in cold climates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    International Nuclear Information System (INIS)

    Gibbons, Robert D.; Morris, Jeremy W.F.; Prucha, Christopher P.; Caldwell, Michael D.; Staley, Bryan F.

    2014-01-01

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern

  16. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, Robert D., E-mail: rdg@uchicago.edu [Center for Health Statistics, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 (United States); Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Prucha, Christopher P., E-mail: cprucha@wm.com [Groundwater Protection Program, Waste Management, 1550 Balmer Road, Box 200, Model City, NY 14107 (United States); Caldwell, Michael D., E-mail: mcaldwell@wm.com [Groundwater Protection Program, Waste Management, 3623 Wilson Road, Humble, TX 77396 (United States); Staley, Bryan F., E-mail: BStaley@erefdn.org [Environmental Research and Education Foundation, 3301 Benson Drive, Suite 301, Raleigh, NC 27609 (United States)

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.

  17. Municipal landfill leachates: A significant source for new and emerging pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, Trine, E-mail: Trine.Eggen@bioforsk.no [Bioforsk, Vest Saerheim, Norwegian Institute for Agricultural and Environmental Research, Postveien 213, N-4353 Klepp st. (Norway); Moeder, Monika [Helmholtz Centre for Environmental Research UFZ, Department of Analytical Chemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway)

    2010-10-01

    Landfills have historically remained the most common methods of organized waste disposal and still remain so in many regions of the world. Thus, they may contain wastes resulting from several decades of disposal and decomposition with subsequent release of organic compounds that may have environmental, wildlife and human health consequences. Products containing different types of additives with unique beneficial improvement properties are in daily use. However, when these products are decomposed, additives are release into the environment, some of which have been shown to have negative environmental impacts, resulting in the ban or at least restricted application of some chemicals. New and emerging compounds are continuously discovered in the environment. Herein, we report qualitative and quantitative data on the occurrence of new and emerging compounds with increasing environmental and public health concern in water- and particle phase of landfill leachates. Under normal environmental conditions, several of these chemicals are persistent high-volume products. Identified chemicals in the leachates at nanogram (ng) or microgram ({mu}g) per liter levels include - chlorinated alkylphosphates such as tris(1-chloro-2-propyl) phosphate (TCPP), N-butyl benzensulfonamide (NBBS), the insect repellent diethyl toluamide (DEET) and personal care products such as the non-steroidal anti-inflammatory drug ibuprofen and polycyclic musk compounds. Among new and emerging contaminants, perfluorinated compounds (PFCs) were measured in the water phase at concentrations up to 6231 ng/L. Compared with the other chemicals, PFCs were primarily distributed in water phase. An effective removal method for PFCs and other polar and persistent compounds from landfill leachates has been a major challenge, since commonly used treatment technologies are based on aeration and sedimentation. Thus, the present study has shown that municipal landfill leachates may represent a significant source of

  18. Municipal landfill leachates: A significant source for new and emerging pollutants

    International Nuclear Information System (INIS)

    Eggen, Trine; Moeder, Monika; Arukwe, Augustine

    2010-01-01

    Landfills have historically remained the most common methods of organized waste disposal and still remain so in many regions of the world. Thus, they may contain wastes resulting from several decades of disposal and decomposition with subsequent release of organic compounds that may have environmental, wildlife and human health consequences. Products containing different types of additives with unique beneficial improvement properties are in daily use. However, when these products are decomposed, additives are release into the environment, some of which have been shown to have negative environmental impacts, resulting in the ban or at least restricted application of some chemicals. New and emerging compounds are continuously discovered in the environment. Herein, we report qualitative and quantitative data on the occurrence of new and emerging compounds with increasing environmental and public health concern in water- and particle phase of landfill leachates. Under normal environmental conditions, several of these chemicals are persistent high-volume products. Identified chemicals in the leachates at nanogram (ng) or microgram (μg) per liter levels include - chlorinated alkylphosphates such as tris(1-chloro-2-propyl) phosphate (TCPP), N-butyl benzensulfonamide (NBBS), the insect repellent diethyl toluamide (DEET) and personal care products such as the non-steroidal anti-inflammatory drug ibuprofen and polycyclic musk compounds. Among new and emerging contaminants, perfluorinated compounds (PFCs) were measured in the water phase at concentrations up to 6231 ng/L. Compared with the other chemicals, PFCs were primarily distributed in water phase. An effective removal method for PFCs and other polar and persistent compounds from landfill leachates has been a major challenge, since commonly used treatment technologies are based on aeration and sedimentation. Thus, the present study has shown that municipal landfill leachates may represent a significant source of

  19. Household hazardous waste disposal to landfill: Using LandSim to model leachate migration

    International Nuclear Information System (INIS)

    Slack, Rebecca J.; Gronow, Jan R.; Hall, David H.; Voulvoulis, Nikolaos

    2007-01-01

    Municipal solid waste (MSW) landfill leachate contains a number of aquatic pollutants. A specific MSW stream often referred to as household hazardous waste (HHW) can be considered to contribute a large proportion of these pollutants. This paper describes the use of the LandSim (Landfill Performance Simulation) modelling program to assess the environmental consequences of leachate release from a generic MSW landfill in receipt of co-disposed HHW. Heavy metals and organic pollutants were found to migrate into the zones beneath a model landfill site over a 20,000-year period. Arsenic and chromium were found to exceed European Union and US-EPA drinking water standards at the unsaturated zone/aquifer interface, with levels of mercury and cadmium exceeding minimum reporting values (MRVs). The findings demonstrate the pollution potential arising from HHW disposal with MSW. - Aquatic pollutants linked to the disposal of household hazardous waste in municipal landfills have the potential to exist in soil and groundwater for many years

  20. Biological treatment of closed landfill leachate treatment by using Brevibacillus panacihumi strain ZB1

    Science.gov (United States)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.; Mat Sarip, S. H.

    2018-04-01

    Landfills are widely used for solid waste disposal due to cost effectiveness and ease of operation. Poor landfill management generally accompanied with production of toxic leachate. Leachate refers to heavily polluted liquid produced due to waste decomposition and rainwater percolation. Direct discharge of untreated leachate into the environment will lead to environmental degradation and health hazards. The aim of this study was to study the efficiency of leachate biological treatment by B. panacihumi strain ZB1. In this study, leachate wastewater was treated by B. panacihumi strain ZB1 via 42-days anaerobic-aerobic treatment. Leachate characterization of both raw and treated samples was carried out based on ammonia nitrogen content, chemical oxygen demand (COD) and heavy metal content. Through leachate characterization, raw leachate carried high concentrations of ammonia nitrogen (1977 mg/L), COD (5320 mg/L) and certain heavy metals exceeding discharge standard. From this study, B. panacihumi strain ZB1 able to remove COD nearly 40%, ammonia nitrogen nearly 50% and different degrees of heavy metals from the leachate sample after combined anaerobic-aerobic treatment. As a result, B. panacihumi strain ZB1was expected to treat the leachate wastewater with certain treatment efficiency via combined anaerobic-aerobic treatment.

  1. The Physical Clogging of the Landfill Leachate Collection System in China: Based on Filtration Test and Numerical Modelling

    Directory of Open Access Journals (Sweden)

    Yili Liu

    2018-02-01

    Full Text Available Clogging of the leachate collection system (LCS has been a common operation problem in municipal solid waste (MSW landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1 and larger particle size (>30% TSS particles > 15 μm in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m. On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.

  2. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    Science.gov (United States)

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing

  3. Assessment on the leakage hazard of landfill leachate using three-dimensional excitation-emission fluorescence and parallel factor analysis method.

    Science.gov (United States)

    Pan, Hongwei; Lei, Hongjun; Liu, Xin; Wei, Huaibin; Liu, Shufang

    2017-09-01

    A large number of simple and informal landfills exist in developing countries, which pose as tremendous soil and groundwater pollution threats. Early warning and monitoring of landfill leachate pollution status is of great importance. However, there is a shortage of affordable and effective tools and methods. In this study, a soil column experiment was performed to simulate the pollution status of leachate using three-dimensional excitation-emission fluorescence (3D-EEMF) and parallel factor analysis (PARAFAC) models. Sum of squared residuals (SSR) and principal component analysis (PCA) were used to determine the optimal components for PARAFAC. A one-way analysis of variance showed that the component scores of the soil column leachate were significant influenced by landfill leachate (plandfill to that of natural soil could be used to evaluate the leakage status of landfill leachate. Furthermore, a hazard index (HI) and a hazard evaluation standard were established. A case study of Kaifeng landfill indicated a low hazard (level 5) by the use of HI. In summation, HI is presented as a tool to evaluate landfill pollution status and for the guidance of municipal solid waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Leachate flow around a well in MSW landfill: Analysis of field tests using Richards model.

    Science.gov (United States)

    Slimani, R; Oxarango, L; Sbartai, B; Tinet, A-J; Olivier, F; Dias, D

    2017-05-01

    During the lifespan of a Municipal Solid Waste landfill, its leachate drainage system may get clogged. Then, as a consequence of rainfall, leachate generation and possibly leachate injection, the moisture content in the landfill increases to the point that a leachate mound could be created. Therefore, pumping the leachate becomes a necessary solution. This paper presents an original analysis of leachate pumping and injection in an instrumented well. The water table level around the well is monitored by nine piezometers which allow the leachate flow behaviour to be captured. A numerical model based on Richards equation and an exponential relationship between saturated hydraulic conductivity and depth is used to analyze the landfill response to pumping and injection. Decreasing permeability with depth appears to have a major influence on the behaviour of the leachate flow. It could have a drastic negative impact on the pumping efficiency with a maximum quasi-stationary pumping rate limited to approximately 1m 3 /h for the tested well and the radius of influence is less than 20m. The numerical model provides a reasonable description of both pumping and injection tests. However, an anomalous behaviour observed at the transition between pumping and recovery phases is observed. This could be due to a limitation of the Richards model in that it neglects the gas phase behaviour and other double porosity heterogeneous effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Gabriel Timm [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Giacobbo, Alexandre [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Santos Chiaramonte, Edson Abel dos [Universidade Estadual do Rio Grande do Sul (UERGS), R. Gal. João Manoel, 50, CEP 90010-030 Porto Alegre, RS (Brazil); Rodrigues, Marco Antônio Siqueira [Universidade FEEVALE, ICET, RS 239, 2755, CEP 93352-000 Novo Hamburgo, RS (Brazil); Meneguzzi, Alvaro [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil); Bernardes, Andréa Moura, E-mail: amb@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Setor 4, Prédio 74, CEP 91501-970 Porto Alegre, RS (Brazil)

    2015-02-15

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm{sup −2}, 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment.

  6. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process

    International Nuclear Information System (INIS)

    Müller, Gabriel Timm; Giacobbo, Alexandre; Santos Chiaramonte, Edson Abel dos; Rodrigues, Marco Antônio Siqueira; Meneguzzi, Alvaro; Bernardes, Andréa Moura

    2015-01-01

    Highlights: • Photoelectrooxidation (PEO) emerges as a new technology for leachate treatment. • Aging of sanitary landfills acts on leachate composition and biodegradability. • PEO is applied as leachate pretreatment before the biological processes. • PEO produced significant changes in the leachate matrix, easing biological process. - Abstract: The sanitary landfill leachate is a dark liquid, of highly variable composition, with recalcitrant features that hamper conventional biological treatment. The physical–chemical characteristics of the leachate along the landfill aging, as well as their effects on the efficiency of the conventional treatment, were evaluated at this paper. The feasibility of photoelectrooxidation process as an alternative technique for treatment of landfill leachates was also determined. Photoelectrooxidation experiments were conducted in a bench-scale reactor. Analysis of the raw leachate revealed many critical parameters demonstrating that the recalcitrance of leachate tends to increase with time, directly influencing the decline in efficiency of the conventional treatment currently employed. The effects of current density and lamp power were investigated. Using a 400 W power lamp and a current density of 31.5 mA cm −2 , 53% and 61% efficiency for the removal of ammoniacal nitrogen and chemical oxygen demand were respectively achieved by applying photoelectrooxidation process. With the removal of these pollutants, downstream biological treatment should be improved. These results demonstrate that photoelectrooxidation is a feasible technique for the treatment of sanitary landfill leachate, even considering this effluent’s high resistance to treatment

  7. Optimization of Electrochemical Parameters for Landfill Leachate Treatment Using Charcoal Base Metallic Composite Electrode

    International Nuclear Information System (INIS)

    Majd Ahmed Jumaah; Mohamed Rozali Othman

    2015-01-01

    Landfill leachate normally contains organic and inorganic pollutants in high concentrations. Electrochemical oxidation technique is an effective method to treat landfill leachate, have high efficiency in organic pollutants degradation and ammonia removal. In this study, a cost effective charcoal base metallic composite electrode to treat landfill leachate by electrochemical oxidation was fabricated. The effects of operational parameters such as supporting electrolyte, applied voltage and electrolysis time on the removal percentage of Color, COD, NH 3 -N and total-P (PO 4 -3 ) were carried out. The results obtained show that the removal percentage of Color, COD, NH 3 -N and total- P (PO 4 -3 ) are 70, 89, 73 and 80 % respectively. Under the optimum operating condition, sodium chloride concentration of 1.5 % (w/v), applied voltage of 10 V, operating time 180 min and C 60 C G 15 Co 10 - PVC 15 electrode as an anode were used. (author)

  8. Feasibility of sulfate-calcined eggshells for removing pathogenic bacteria and antibiotic resistance genes from landfill leachates.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Chen, Xu; Feng, Yanfang; Wan, Jinzhong; Liu, Kuan; Tian, Da; Liu, Manqiang; Wu, Jun; Schwab, Arthur P; Jiang, Xin

    2017-05-01

    High abundance of human pathogen and antibiotic resistance genes (ARGs) in landfill leachate has become an emerging threat against human health. Therefore, sulfate- and calcination-modified eggshells as green agricultural bioresource were applied to test the feasibility of removing pathogenic bacteria and ARGs from leachate. The highest removal of Escherichia coli (E. coil) and gentamycin resistant gene (gmrA) from artificial contaminated landfill leachate was achieved by the application of eggshell with combined treatment of sulfate and calcination. The 16S and gmrA gene copies of E. coil declined significantly from 1.78E8±8.7E6 and 4.12E8±5.9E6 copies mL -1 to 1.32E7±2.6E6 and 2.69E7±7.2E6 copies mL -1 , respectively, within 24h dynamic adsorption equilibrium process (ppathogenic bacteria and ARGs (tet, sul, erm, qnr, and ampC) indicated its great efficiency to purify landfill leachates. This study demonstrated that sulfate-calcined eggshells can be an environmentally-friendly and highly efficient bioadsorbent to the management of reducing dissemination risk of pathogen and ARGs in landfill leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  10. Leachate pollution management to overcome global climate change impact in Piyungan Landfill, Indonesia

    Science.gov (United States)

    Harjito; Suntoro; Gunawan, T.; Maskuri, M.

    2018-03-01

    Environmental problems associated with the landfill system are generated by domestic waste landfills, especially those with open dumping systems. In these systems, waste degrades and produces some gases, namely methane gas (CH4) and carbon dioxide (CO2), which can cause global climate change. This research aimed at identifying the areas that experience groundwater pollution and the spread pattern of leachate movement to the vicinity as well as to develop a leachate management model. The Electricity Resistivity Tomography (ERT) survey is deployed to assess the distribution of electrical resistivity in the polluted areas. In this study, the groundwater contamination is at a very low in the aquifer zone, i.e., 3-9 Ωm. It is caused by the downward migration of leachate to water table that raises the ion concentration of groundwater. These ions will increase the electrical conductivity (EC), i.e., up to 1,284 μmhos/cm, and decrease the electrical resistivity. The leachate spreads westward and northward at a depth of 6-17 m (aquifer) with a thickness of pollution between 4 and11 m.The recommended landfill management model involves the installation of rainwater drainage, use of cover and baseliner made of waterproof materials, and massive waste treatment.

  11. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  12. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  13. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system.

    Science.gov (United States)

    Yi, Xinzhu; Tran, Ngoc Han; Yin, Tingru; He, Yiliang; Gin, Karina Yew-Hoong

    2017-09-15

    Landfill leachate could be a significant source of emerging contaminants (ECs) and antibiotic resistance genes (ARGs) into the environment. This study provides the first information on the occurrence of selected ECs and ARGs in raw leachate from 16-year old closed landfill site in Singapore. Among the investigated ECs, acetaminophen (ACT), bisphenol A (BPA), clofibric acid (CA), caffeine (CF), crotamiton (CTMT), diclofenac (DCF), N,N-diethyl-m-toluamide (DEET), gemfibrozil (GFZ), lincomycin (LIN), salicylic acid (SA), and sulfamethazine (SMZ) were the most frequently detected compounds in raw landfill leachate. The concentrations of detected ECs in raw landfill leachate varied significantly, from below quantification limit to 473,977 ng/L, depending on the compound. In this study, Class I integron (intl1) gene and ten ARGs were detected in raw landfill leachate. Sulfonamide resistance (sul1, sul2, and dfrA), aminoglycoside resistance (aac6), tetracycline resistance (tetO), quinolone resistance (qnrA), and intl1 were ubiquitously present in raw landfill leachate. Other resistance genes, such as beta-lactam resistance (blaNMD1, blaKPC, and blaCTX) and macrolide-lincosamide resistance (ermB) were also detected, detection frequency of 90%) in the investigated hybrid CW system. This hybrid CW system was also found to be effective in the reduction of several ARGs (intl1, sul1, sul2, and qnrA). Aeration lagoons and reed beds appeared to be the most important treatment units of the hybrid CW for removing the majority of ECs from the leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Bacterial diversity in sequencing batch biofilm reactor (SBBR) for landfill leachate treatment using PCR-DGGE].

    Science.gov (United States)

    Xiao, Yong; Yang, Zhao-hui; Zeng, Guang-ming; Ma, Yan-he; Liu, You-sheng; Wang, Rong-juan; Xu, Zheng-yong

    2007-05-01

    For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software. Results indicated that the bacterial diversity of the biofilm in SBBR and the landfill leachate was abundant, and no obvious change of community structure happened during running in the biofilm, in which most bacteria came from the landfill leachate. There may be three different modes of denitrification in the reactor because several different nitrifying bacteria, denitrifying bacteria and anaerobic ammonia oxidation bacteria coexisted in it. The results provided some valuable references for studying microbiological mechanism of denitrification in SBBR.

  15. Natural attenuation, biostimulation and bioaugmentation of landfill leachate management

    Science.gov (United States)

    Er, X. Y.; Seow, T. W.; Lim, C. K.; Ibrahim, Z.

    2018-04-01

    Landfills used for solid waste management will lead to leachate production. Proper leachate management is highly essential to be paid attention to protect the environment and living organisms’ health and safety. In this study, the remedial strategies used for leachate management were natural attenuation, biostimulation and bioaugmentation. All treatment samples were treated via 42-days combined anaerobic-aerobic treatment and the treatment efficiency was studied by measuring the removal rate of COD and ammonia nitrogen. In this study, all remedial strategies showed different degrees of contaminants removal. Lowest contaminants removal rate was achieved via bioaugmentation of B. panacihumi strain ZB1, which were 39.4% of COD and 37.6% of ammonia nitrogen removed from the leachate sample. Higher contaminants removal rate was achieved via natural attenuation and biostimulation. Native microbial population was able to remove 41% of COD and 59% of ammonia nitrogen from the leachate sample. The removal efficiency could be further improved via biostimulation to trigger microbial growth and decontamination rate. Through biostimulation, 58% of COD and 51.8% of ammonia nitrogen were removed from the leachate sample. In conclusion, natural attenuation and biostimulation should be the main choice for leachate management to avoid any unexpected impacts due to introduction of exogenous species.

  16. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    Science.gov (United States)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste

  17. A study for the environmental impact assessment of the leachate migration in landfills

    International Nuclear Information System (INIS)

    Hwang, Y. S.

    1999-12-01

    In Korea there are hundreds of landfill sites all over the peninsula and the leachate problem is one of the national concern. Heavy precipitation especially during hot summers creates the fast degradation of waste products in the site which accelerates the migration of the leachate. To assess the source term, in the second year study, the computational modeling to predict the potential infiltration rate of groundwater into the landfill were developed and tested for different geomembrane sets. These results shall be used to assess the total risk of the landfill site if combined with the results in the first year R and D and potential future R and D on the biosphere. In addition the generation, migration of LFG were studied and then approaches for the monitoring and controlling of LFG were discussed. (author)

  18. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  19. Treatment of landfill leachate: Removal of ammonia by struvite ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... Treatment of landfill leachate: Removal of ammonia by struvite formation. CC Camargo1, JR Guimarães1 and AL Tonetti1*. 1School of Civil Engineering, Architecture and Urbanism, FEC/UNICAMP, Avenida Albert Einstein, 951, Cidade Universitária 'Zeferino Vaz',. PO Box 6021, 13083-852, Campinas, SP, ...

  20. Analysis of Electro-Oxidation Suitability for Landfill Leachate Treatment through an Experimental Study

    Directory of Open Access Journals (Sweden)

    Marco Ragazzi

    2013-09-01

    Full Text Available This paper examines the efficiency of electro-oxidation used as the single pretreatment of landfill leachate. The experiments were performed on three different types of leachate. The results obtained using this electrochemical method results were analyzed after seven days of treatment. The main characteristics of leachate and a diagram of the experimental apparatus are presented. The overall objectives were to contribute to the knowledge of electrochemical treatments for the reduction of COD, BOD5, ammonium, and total suspended solids, and also to examine whether there was any resulting hexavalent chromium in the liquid sample. The yields obtained were considered satisfactory, particularly given the simplicity of this technology. Like all processes used to treat refluent water, the applicability of this technique to a specific industrial refluent needs to be supported by feasibility studies to estimate its effectiveness and optimize the project parameters. This could be a future development of the work.

  1. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Hearn, Laurence; Muller, Jochen F. [National Research Centre for Environmental Toxicology, The University of Queensland (Australia)

    2014-11-15

    Highlights: • E-waste comprises approximately 6% of the waste mass going to landfill in South Australia. • Significant amounts of metal(loids)s and PBDEs are released from e-waste mixed with municipal solid in landfill leachates. • Significantly elevated concentrations of lead and PBDEs are detected in groundwater wells downgradient of landfills. • Significant temporal variation exists in electrical conductivity and in the concentrations of As, Cd and Pb in leachates. - Abstract: The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute

  2. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate

    International Nuclear Information System (INIS)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.; Hearn, Laurence; Muller, Jochen F.

    2014-01-01

    Highlights: • E-waste comprises approximately 6% of the waste mass going to landfill in South Australia. • Significant amounts of metal(loids)s and PBDEs are released from e-waste mixed with municipal solid in landfill leachates. • Significantly elevated concentrations of lead and PBDEs are detected in groundwater wells downgradient of landfills. • Significant temporal variation exists in electrical conductivity and in the concentrations of As, Cd and Pb in leachates. - Abstract: The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute

  3. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems

    International Nuclear Information System (INIS)

    Tizaoui, Chedly; Bouselmi, Latifa; Mansouri, Loubna; Ghrabi, Ahmed

    2007-01-01

    In the search for an efficient and economical method to treat a leachate generated from a controlled municipal solid waste landfill site (Jebel Chakir) in the region of greater Tunis in Tunisia, ozone alone and ozone combined with hydrogen peroxide were studied. The leachate was characterised by high COD, low biodegradability and intense dark colour. A purpose-built reactor, to avoid foaming, was used for the study. It was found that ozone efficacy was almost doubled when combined with hydrogen peroxide at 2 g/L but higher H 2 O 2 concentrations gave lower performances. Enhancement in the leachate biodegradability from about 0.1 to about 0.7 was achieved by the O 3 /H 2 O 2 system. Insignificant changes in pH that may due to buffering effect of bicarbonate was found. A small decrease in sulphate concentrations were also observed. In contrast, chloride concentration declined at the beginning of the experiment then increased to reach its initial value. Estimates of the operating costs were made for comparison purposes and it was found that the O 3 /H 2 O 2 system at 2 g/L H 2 O 2 gave the lowest cost of about 3.1 TND (∼2.3 USD)/kg COD removed

  4. Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucumán, Argentina).

    Science.gov (United States)

    Fernández, Diego S; Puchulu, María E; Georgieff, Sergio M

    2014-06-01

    Landfills constitute potential sources of different pollutants that could generate human health and environmental problems. While some landfills currently work under the protection of a bottom liner with leachate collection, it was demonstrated that migration could take place even yet with these cautions. The purpose of this paper is to assess the pollution caused by a leachate plume from a municipal landfill that is affecting both groundwater and surface waters. The research was carried out at Pacará Pintado landfill in northwestern Argentina. Analysis of water samples indicates that leachate is affecting groundwater under the landfill area and an abandoned river channel hydraulically connected. In the center of the landfill area, the plume is anoxic and sulfate, nitrate, iron and manganese reduction zones were identified. Leachate plume presented high concentration of organic matter, Fe, Mn, NH(4)(+), Cl(-) and Cr reaching an extension of 900 m. The presence of a leachate plume in a landfill site with a single liner system implies that the use of this groundwater pollution control method alone is not enough especially if permeable sediments are present below.

  5. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Zhang Weihong; Hong Mei

    2009-01-01

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD 5 /COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH 4 + , and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78 mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate

  6. Adsorption of Lead Content in Leachate of Sukawinatan Landfill Using Solid Waste of Tofu

    Directory of Open Access Journals (Sweden)

    Sri Hartati

    2016-08-01

    Full Text Available A study on the adsorption of lead content in the leachate from the landfill by using solid waste of tofu. This study assed the effects of weight of the solid waste of tofu and the contact time on the efficiency of the Pb adsorption. The sample used in this study was artificial sample of a solution of Pb metal ion and the sample of the leachate of the landfill waste. The study was carried out with a batch system, with the variables of weight of waste of tofu of 0.5; 1.0; 1.5 g. While the variables of the contact time were 0, 30, 60, 90, 120 and 150 minutes. To determine the optimum conditions, the waste of tofu was dissolved in 50 mL of Pb metal ion solution with a concentration of 20.27 mg/L and stirred with a shaker for 30 minutes at a speed of 180 rpm. The same thing was done by varying the contact time. When the optimum condition was obtained, it was applied with varying concentrations of Pb metal ion solution and garbage landfill leachate. The initial and the final levels of the Pb metal ion solution were analyzed by using the Atomic Adsorption Spectroscopy (AAS. The initial and the final results of the heavy metals were analyzed for disclosing the adsorption efficiency. To reveal the effects of the weight of the waste of tofu and the contact time, the data were analyzed with graphs. The waste of tofu with a weight of 1.5 g and a contact time of 90 minutes, had an adsorption efficiency of 97.68% at a concentration of 20.27 mg / L for Pb ion solution and 28.57% for the leachate from the landfill waste in 100 mL of leachate.

  7. Treatment of landfill leachate by irrigation of willow coppice - Plant response and treatment efficiency

    International Nuclear Information System (INIS)

    Aronsson, Paer; Dahlin, Torleif; Dimitriou, Ioannis

    2010-01-01

    Landfill leachates usually need to be treated before discharged, and using soil-plant systems for this has gained substantial interest in Sweden and in the UK. A three-year field study was conducted in central Sweden to quantify plant response, treatment efficiency and impact on groundwater quality of landfill leachate irrigation of short-rotation willow coppice (Salix). Two willow varieties were tested and four irrigation regimes in sixteen 400-m 2 plots. The willow plants did not react negatively, despite very high annual loads of nitrogen (≤2160 kg N/ha), chloride (≤8600 kg Cl/ha) and other elements. Mean annual growth was 1.5, 9.8 and 12.6 tonnes DM/ha during years 1-3. For one of two willow varieties tested, relative leaf length accurately predicted growth rate. Irrigation resulted in elevated groundwater concentrations of all elements applied. Treatment efficiency varied considerably for different elements, but was adequate when moderate loads were applied. - Short-rotation willow coppice was successfully used for treating a strong landfill leachate in central Sweden over three years.

  8. Removal of trace elements from landfill leachate by calcite precipitation

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Zelená, O.; Mihaljevič, M.; Šebek, O.; Strnad, L.; Coufal, P.; Bezdička, Petr

    2006-01-01

    Roč. 88, 1-3 (2006), s. 28-31 ISSN 0375-6742 R&D Projects: GA AV ČR(CZ) KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : landfill leachate * calcite * scavenging Subject RIV: CA - Inorganic Chemistry Impact factor: 0.922, year: 2006

  9. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    Science.gov (United States)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  10. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  11. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    Science.gov (United States)

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  12. Micronuclei induced by municipal landfill leachate in mouse bone marrow cells in vivo

    International Nuclear Information System (INIS)

    Li Guangke; Sang Nan; Zhao Youcai

    2004-01-01

    The induction of micronuclei (MN) in polychromatic erythrocytes (PCE) of mouse bone marrow by municipal landfill leachate was studied in vivo. Results showed that mouse exposure via drinking water containing various concentrations of leachate caused a significant increase of MN frequencies in a concentration (Chemical oxygen demand measured with potassium dichromate oxidation, COD Cr )-dependent manner. MN induction in female and male mice was different at higher concentrations. This implies that leachate is a genotoxic agent in mammalian cells and that exposure to leachate in an aquatic environment may pose a potential genotoxic risk to human beings

  13. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  14. Investigation of Biogas Production Process by the Mixture of Landfill Leachate and Animal Waste

    Directory of Open Access Journals (Sweden)

    hossein alidadi

    2017-09-01

    Full Text Available Introduction and purpose: Energy consumption is on a rapidly growing trend in the world. Accordingly, the non-renewable energy sources are expected to be run out in the future. This issue has resulted in the establishment of efforts targeted toward the development of new energy-generating methods around the world. Biogas energy is one of the new and clean energies that is produced from the anaerobic digestion of biomass wastes. Anaerobic digestion is a cost-effective and environment-friendly method, which facilitates fertilizer and biogas production as well as landfill leachate treatment. Given the high environmental hazards of leachate and its mixture with animal wastes, the present study aimed to estimate the possibility of producing biogas in various mixture ratios. Methods: In this pilot-scale experimental study, the landfill leachate of Mashhad, Iran, were mixed with caw fresh dung in different ratios, but same conditions, under anaerobic digestion. This was conducted to consider the ability to produce methane gas in different proportions and landfill leachate. At the beginning and end of the project, the parameters of EC, pH, VS, TS, COD, TOC, P, K, N, and Na were measured. Additionally, the composition of the gases produced under different operating conditions was analyzed using gas chromatography mass spectrometry. Results: Gas production began three weeks after uploading and continued for five weeks. The analysis of gas production in three ratios was indicative of the CH4 production in all three proportions. In this regard, 1/1 ratio produced the highest percentage of CH4. No gas production was observed in the two months of study. Other physical and chemical parameters, such as COD, TS, TKN, and TOC were reduced in the given mixtures during the biogas production procedure. For instance, the case with 1/1 ratio, which showed the best results, had almost 80% decrease in the given parameters. However, no gas

  15. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil-a case study in north of Iran.

    Science.gov (United States)

    Yousefi Kebria, D; Ghavami, M; Javadi, S; Goharimanesh, M

    2017-12-16

    In the contemporary world, urbanization and progressive industrial activities increase the rate of waste material generated in many developed countries. Municipal solid waste landfills (MSWs) are designed to dispose the waste from urban areas. However, discharged landfill leachate, the soluble water mixture that filters through solid waste landfills, can potentially migrate into the soil and affect living organisms by making harmful biological changes in the ecosystem. Due to well-documented landfill problems involving contamination, it is necessary to investigate the long-term influence of discharged leachate on the consistency of the soil beds beneath MSW landfills. To do so, the current study collected vertical deep core samples from different locations in the same unlined landfill. The impacts of effluent leachate on physical and chemical properties of the soil and its propagation depth were studied, and the leachate-transport pattern between successive boreholes was predicted by a developed mathematical model using an adaptive neuro-fuzzy inference system (ANFIS). The decomposition of organic leachate admixtures in the landfill yield is to produce organic acids as well as carbon dioxide, which diminishes the pH level of the landfill soil. The chemical analysis of discharged leachate in the soil samples showed that the concentrations of heavy metals are much lower than those of chloride, COD, BOD 5 , and bicarbonate. Using linear regression and mean square errors between the measured and predicted data, the accuracy of the proposed ANFIS model has been validated. Results show a high correlation between observed and predicated data.

  16. Rice Husk Packed Bed Column Reactor To Remove Cadmium From Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Monik Kasman

    2014-06-01

    Full Text Available The landfill leachate can be a major problem due to large variability of high organic, inorganic, heavy metal content and toxicity characteristics from landfill leachate such as  cadmium. Thus, this study was aimed to observe the application of rice husk packed bed column to reduce cadmium from landfill leachate. Experiment was conducted in gravity down flow system by pumping landfill leachate into packed bed column. The effect of influent flow rate to adsorption capacity was studied by varying flow rate (5 mL/min and 10 mL/min. The effluent-influent concentration ratio Ce/C0 (% as a function of throughput volume (L was used to represent the breakthrough curve in column systems. Result shows that the flow rate of 5 mL/min was favorable to achieve higher removal rates with the percentage of cadmium was 57 %. At breakthrough time, the cadmium effluent concentration reached on 0.01 mg/l for both of flow rate.ABSTRAKLindi yang dihasilkan dari TPA (Tempat Pembuangan Akhir menimbulkan permasalahan lingkungan karena kandungan pencemarnya meliputi material organik, material anorganik, logam dan material beracun. Salah satu logam berat yang terdapat dalam lindi tersebut adalah kadmium. Penelitian ini bertujuan untuk mereduksi kadmium dalam lindi dengan menggunakan sekam padi yang diinstal dalam packed bed column. Lindi dipompakan dari tangki penampung lindi ke dalam packed bed column dan dialirkan dari atas ke bawah kolom secara gravitasi. Fokus pada penelitian ini adalah pengaruh laju alir influen terhadap kapasitas adsorpsi. Dimana lindi dialirkan dengan laju alir 5 mL/menit dan 10 mL/menit. Kurva breakthrough (titik jenuh kolom dipresentasikan oleh hubungan antara rasio konsentrasi efluen-influen Ce/C0 (% dan jumlah aliran lindi yang diolah dalam kolom. Hasil eksperimen menunjukkan bahwa persentase reduksi tertinggi dicapai pada laju alir 5 mL/menit yaitu 57%. Waktu jenuh kedua laju alir (5 mL/menit dan 10 mL/menit tercapai saat konsentrasi efluen

  17. Ammonia removal from landfill leachate by air stripping and absorption.

    Science.gov (United States)

    Ferraz, Fernanda M; Povinelli, Jurandyr; Vieira, Eny Maria

    2013-01-01

    An old landfill leachate was pre-treated in a pilot-scale aerated packed tower operated in batch mode for total ammoniacal nitrogen (TAN) removal. The stripped ammonia was recovered with a 0.4 mol L(-1) H2SO4 solution, deionized water and tap water. Ca(OH)2 (95% purity) or commercial hydrated lime was added to the raw leachate to adjust its pH to 11, causing removal of colour (82%) and heavy metals (70-90% for Zn, Fe and Mn). The 0.4 molL(-1) H2SO4 solution was able to neutralize 80% of the stripped ammonia removed from 12 L of leachate. The effectiveness of the neutralization of ammonia with deionized water was 75%. Treating 100 L of leachate, the air stripping tower removed 88% of TAN after 72 h of aeration, and 87% of the stripped ammonia was recovered in two 31 L pilot-scale absorption units filled with 20 L of tap water.

  18. Transmission electron microscopy investigation of colloids and particles from landfill leachates

    Czech Academy of Sciences Publication Activity Database

    Matura, M.; Ettler, V.; Klementová, Mariana

    2012-01-01

    Roč. 30, č. 5 (2012), s. 530-541 ISSN 0734-242X Institutional research plan: CEZ:AV0Z40320502 Keywords : colloids * landfill leachates * transmission electron microscopy * calcite * contaminant mobility Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  19. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  20. Transformation and Stability of Dimethylmonothiolated Arsinic acid (DMMTAV) and Dimethyldithiolated Arsinic Acid (DMDTAV) in a Simulated Landfill Leachate

    Science.gov (United States)

    Yoon, H. O.; Lee, H.; Jeong, S.

    2016-12-01

    In environmental pollution concern, arsenic species (As) are the major concern because of its toxicity. The occurrence of thioarsenates, thiolated analogs of inorganic As species, are recently reported in groundwater, geothermal water, and landfill leachate. Dimethylmonothiolated arsinic acid (DMMTAV) and dimethyldithiolated arsinic acid (DMDTAV) have receiving increasing attention. Since there are difficulties of preparing of standards along with confirming DMMTAV and DMDTAV for verification prior to analysis of samples due to no available commercial standard, the accurate assessment of those As species was not resolved. is present and Moreover, there are limit studies on transformation and stability of thiolated As species under high sulfur condition such as landfill leachate to accurate assess their fate and toxicity in environment. In this study, DMMTAV and DMDTAV were artificially synthesized and identified using ESI-MS. Column test was conducted using the simulated landfill leachates (SLLs) to investigate their transformation under high sulfur conditions. The transformation mechanisms for DMMTAV and DMDTAV were also investigated to quantify what As species are existed and transformed in landfill leachate for determining their potential risk. The transformed As species were analyzed using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). This study provides the transformation mechanism and stability of DMMTAV and DMDTAV in landfill leachate to determine their potential environmental risk. Acknowledgement: This research was supported by research project title "Development of response Technology for the Environment Disaster by Chemical Accident (project No. C36707) of the Korea Basic Science Institute.

  1. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    Science.gov (United States)

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  2. Field investigation of the quality of fresh and aged leachates from selected landfills receiving e-waste in an arid climate.

    Science.gov (United States)

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H; Hearn, Laurence; Muller, Jochen F

    2014-11-01

    The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13-59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41-6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute elevated contaminant levels to e-waste, we do not recommend continued disposal of e-waste in old landfills that were not originally designed to contain leachates. The survey also revealed temporal variation in the electrical conductivity and concentrations of As, Cd and Pb present in leachates of landfills in arid Mediterranean climates. These results are consistent with the marked variations in rainfall patterns observed for such climates. The solute concentration (EC and other ions including As

  3. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000-2002.

    Science.gov (United States)

    Buszka, P M; Yeskis, D J; Kolpin, D W; Furlong, E T; Zaugg, S D; Meyer, M T

    2009-06-01

    Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill.

  4. Contamination of Ground Water Due To Landfill Leachate

    OpenAIRE

    M. V. S. Raju

    2012-01-01

    The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations ...

  5. Energy consumption by forward osmosis treatment of landfill leachate for water recovery.

    Science.gov (United States)

    Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen

    2017-05-01

    Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  7. Characterization of DOM in landfill leachate polluted groundwater with electrospary LC-MS

    DEFF Research Database (Denmark)

    Persson, L.; Alsberg, T.; Odham, G.

    2001-01-01

    Dissolved organic matter in leachate polluted groundwater, downgradient a landfill, was analysed with electrospray mass spectrometry. The results indicate that the DOM change qualitatively in the gradient, becoming more uniform in functional groups and hydrofobicity. Those changes may affect...

  8. Sanitary landfill leachate as a source of nutrients on the initial growth of sunflower plants

    Directory of Open Access Journals (Sweden)

    Francisco H. Nunes Júnior

    Full Text Available ABSTRACT The aim of this study was to evaluate the initial growth of sunflower seedlings under different concentrations of sanitary landfill leachate, considering the feasibility of its use as source of nutrients for agricultural production. Biometric and vigor variables were analyzed through the measurements of collar diameter, shoot height, number of leaves and shoot and root fresh and dry matters, from January to February 2015. The experimental design was completely randomized in a 5 x 4 factorial scheme: five leachate concentrations (0, 40, 60, 80 and 100 kg N ha-1 x four harvest periods (14, 21, 25 and 29 days after sowing, with five replicates each containing two plants. The data were subjected to analysis of variance and polynomial regression, and the results of the last harvest (29 DAS were compared by Tukey test (p ≤ 0.05. The use of sanitary landfill leachate increased all analyzed variables in sunflower plants when compared to the control plants (without leachate, especially in the treatment of 100 kg N ha-1. There was no inhibitory effect of the leachate on the initial growth of sunflower seedlings under adopted experimental conditions.

  9. Biological denitrification from mature landfill leachate using a food-waste-derived carbon source.

    Science.gov (United States)

    Yan, Feng; Jiang, Jianguo; Zhang, Haowei; Liu, Nuo; Zou, Quan

    2018-05-15

    The mature landfill leachate containing high ammonia concentration (>1000 mg/L) is a serious threat to environment; however, the low COD to TN ratio (C/N, waste and oil-added food waste, were first applied as external carbon sources for the biological nitrogen removal from mature landfill leachate in an aerobic/anoxic membrane bioreactor. "Acidogenic liquid b" served quite better than commercial sodium acetate, considering the higher denitrification efficiency and the slightly rapider denitrification rate. The effect of C/N and temperature were investigated under hydraulic retention time (HRT) of 7 d, which showed that C/N ≥ 7 (25 °C) was enough to meet the general discharge standards of NH 4 + -N, TN and COD in China. Even for some special areas of China, the more stringent discharge standards (NH 4 + -N ≤ 8 mg/L, TN ≤ 20 mg/L) could also be achieved under longer HRT of 14 d and C/N ≥ 6. Notably, the COD concentration in effluent could also be well reduced to 50-55 mg/L, without further physical-chemical treatment. This proposed strategy, involving the high-value utilization of food waste, is thus promising for efficient nitrogen removal from mature landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Fresh Kills leachate treatment and minimization study: Volume 2, Modeling, monitoring and evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fillos, J.; Khanbilvardi, R.

    1993-09-01

    The New York City Department of Sanitation is developing a comprehensive landfill leachate management plan for the Fresh Kills landfill, located on the western shore of Staten Island, New York. The 3000-acre facility, owned and operated by the City of New York, has been developed into four distinct mounds that correspond to areas designated as Sections 1/9, 2/8, 3/4 and 6/7. In developing a comprehensive leachate management plan, the estimating leachate flow rates is important in designing appropriate treatment alternatives to reduce the offsite migration that pollutes both surface water and groundwater resources.Estimating the leachate flow rates from Sections 1/9 and 6/7 was given priority using an available model, hydrologic evaluation of landfill performance (HELP), and a new model, flow investigation for landfill leachate (FILL). The field-scale analysis for leachate flow included data collection of the leachate mound-level from piezometers and monitoring wells installed on-site, for six months period. From the leachate mound-head contours and flow-gradients, Leachate flow rates were computed using Darcy`s Law.

  11. Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D

    2008-05-01

    Municipal landfill leachate is being disallowed for biological treatment by some sewer authorities due to its recalcitrance and corrosiveness, and therefore physicochemical treatment may be needed. In this paper, hydrogen peroxide-enhanced iron (Fe(0))-mediated aeration (IMA) was studied as an alternative for the treatment of mature landfill leachate. Bench-scale Taguchi array screening tests and full factorial tests were conducted. Iron grade, initial pH, H(2)O(2) addition rate, and aeration rate significantly influenced both overall chemical oxygen demand (COD) removal and iron consumption. In the enhanced IMA-treated leachate at an initial pH of 8.2, COD was reduced by 50% due to oxidation and coagulation, a level almost equivalent to those obtained by Fenton treatment. Meanwhile, the 5-day biochemical oxygen demand (BOD(5))/COD ratio was increased from 0.02 to 0.17. In particular, the effect of initial pH became minor at H(2)O(2) addition rate greater than the theoretical demand for complete oxidation of organics by H(2)O(2). In addition, 83% of 300 mg/L ammonia nitrogen and 38% of 8.30 mS/cm electrical conductivity were removed when the initial pH was not adjusted. Based on these results, the process appears suitable for treatment of mature leachate.

  12. Transport behavior of surrogate biological warfare agents in a simulated landfill: Effect of leachate recirculation and water infiltration

    KAUST Repository

    Saikaly, Pascal

    2010-11-15

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD. © 2010 American Chemical Society.

  13. Transport behavior of surrogate biological warfare agents in a simulated landfill: Effect of leachate recirculation and water infiltration

    KAUST Repository

    Saikaly, Pascal; Hicks, Kristin A.; Barlaz, Morton A.; De Los Reyes, Francis Delos De Los

    2010-01-01

    An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD. © 2010 American Chemical Society.

  14. REMOVAL OF PHENOL AND SURFACTANT FROM LANDFILL LEACHATE BY COAGULATION-FLOCCULATION PROCESS

    Directory of Open Access Journals (Sweden)

    H. BAKRAOUY

    2016-02-01

    Full Text Available Following the action of rainfall and natural fermentation, the stored waste produces a liquid fraction called leachate. This leachate is rich in organic matter (biodegradable but also refractory and trace elements. There are many techniques of treating the leachate, in particular, biological, physicochemical, membrane processes. The choice of a technique instead of another depends on several parameters including: the age of the leachate, composition... In this work we applied a coagulation-flocculation process to treat intermediate landfill leachate of Rabat city with a combined ferric chloride coagulant and a polymer flocculant. We were inspired by full factorial design, including twenty five experiments, to determine optimal dosages of coagulant and flocculant. We operate at pH 8.4, the best removal efficiencies obtained were 88 % for Turbidity, 98 % for Phenol and 82 % for surfactant. The optimum dosages values determined by this study were 13.2 g∙L-1 of coagulant, 62 mL∙L-1 of flocculant.

  15. Detailed landfill leachate plume mapping using 2D and 3D Electrical Resistivity Tomography - with correlation to ionic strength measured in screens

    DEFF Research Database (Denmark)

    Maurya, P.K.; Rønde, Vinni; Fiandaca, G.

    2017-01-01

    Leaching of organic and inorganic contamination from landfills is a serious environmental problem as surface water and aquifers are affected. In order to assess these risks and investigate the migration of leachate from the landfill, 2D and large scale 3D electrical resistivity tomography were used...... at a heavily contaminated landfill in Grindsted, Denmark. The inverted 2D profiles describe both the variations along the groundwater flow as well as the plume extension across the flow directions. The 3D inversion model shows the variability in the low resistivity anomaly pattern corresponding to differences...... in the ionic strength of the landfill leachate. Chemical data from boreholes agree well with the observations indicating a leachate plume which gradually sinks and increases in size while migrating from the landfill in the groundwater flow direction. Overall results show that the resistivity method has been...

  16. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bo, E-mail: 357436235@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Long, HangYu, E-mail: 55686385@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xie, Youneng, E-mail: 1187272844@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Yijia, E-mail: 503630433@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-30

    Highlights: • High quality boron-doped diamond film electrodes were synthesized on Nb substrates. • Electrochemical oxidation on boron-doped diamond anode is an effective method for treating landfill leachate concentrates. • Optimal operating conditions for electrochemical oxidation of landfill leachate concentrates is determined. • 87.5% COD removal and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment. - Abstract: In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH{sub 3}−N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm{sup −2}, pH 5.16, flow velocity 6 L h{sup −1}. Under these conditions, 87.5% COD and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m{sup −3}. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  17. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    International Nuclear Information System (INIS)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-01-01

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD rem for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  18. Landfill leachate treatment by solar-driven AOPs

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Elisangela M.R. [Universidade Federal do Ceara, Campus do Pici, Centro de Tecnologia, Departamento de Engenharia Hidraulica e Ambiental, Laboratorio de Saneamento (LABOSAN), Avenida da Universidade, 2853 - Benfica, 60020-181 Fortaleza (Brazil); Vilar, Vitor J.P.; Boaventura, Rui A.R. [LSRE - Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Fonseca, Amelia; Saraiva, Isabel [Efacec Ambiente, SA, Rua Eng. Frederico Ulrich - Guardeiras, Apartado 3003, 4471-907 Moreira da Maia (Portugal)

    2011-01-15

    Sanitary landfill leachate resulting from the rainwater percolation through the landfill layers and waste material decomposition is a complex mixture of high-strength organic and inorganic compounds which constitutes serious environmental problems. In this study, different heterogeneous (TiO{sub 2}/UV, TiO{sub 2}/H{sub 2}O{sub 2}/UV) and homogenous (H{sub 2}O{sub 2}/UV, Fe{sup 2+}/H{sub 2}O{sub 2}/UV) photocatalytic processes were investigated as an alternative for the treatment of a mature landfill leachate. The addition of H{sub 2}O{sub 2} to TiO{sub 2}/UV system increased the reduction of the aromatic compounds from 15% to 61%, although mineralization was almost the same. The DOC and aromatic content abatement is similar for the H{sub 2}O{sub 2}/UV and TiO{sub 2}/H{sub 2}O{sub 2}/UV processes, although the H{sub 2}O{sub 2} consumption is three times higher in the H{sub 2}O{sub 2}/UV system. The low efficiency of TiO{sub 2}/H{sub 2}O{sub 2}/UV system is presumably due to the alkaline leachate solution, for which the H{sub 2}O{sub 2} becomes highly unstable and self-decomposition of H{sub 2}O{sub 2} occurs. The efficiency of the TiO{sub 2}/H{sub 2}O{sub 2}/UV system increased 10 times after a preliminary pH correction to 4. The photo-Fenton process is much more efficient than heterogeneous (TiO{sub 2}, TiO{sub 2}/H{sub 2}O{sub 2}/UV) or homogeneous (H{sub 2}O{sub 2}/UV) photocatalysis, showing an initial reaction rate more than 20 times higher, and leading to almost complete mineralization of the wastewater. However, when compared with TiO{sub 2}/H{sub 2}O{sub 2}/UV with acidification, the photo-Fenton reaction is only two times faster. The optimal initial iron dose for the photo-Fenton treatment of the leachate is 60 mg Fe{sup 2+} L{sup -1}, which is in agreement with path length of 5 cm in the photoreactor. The kinetic behaviour of the process (60 mg Fe{sup 2+} L{sup -1}) comprises a slow initial reaction, followed by a first-order kinetics (k = 0.020 LkJ{sub UV

  19. Generation of leachate and the flow regime in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, D.

    1998-06-01

    In this thesis the generation of leachate and the presence and movement of water in landfilled municipal solid waste (MSW) is investigated. The precipitation-leachate discharge relationship for landfills was found to be dominated by evaporation, accumulation in the soil cover, accumulation in the solid waste and fast gravitational flow in a network of channels. The flow regime is governed by the heterogeneity of the internal geometry of the landfill, which is characterized by a discrete structure, significant horizontal stratification, structural voids, impermeable surfaces, and low capillarity. Also the boundary conditions, that is the water input pattern, has shown to be important for the flow process. Based on this, landfilled waste can be conceptualized as a dual domain medium, consisting of a channel domain and a matrix domain. The matrix flow is slow and diffusive, whereas the channel flow is assumed to be driven solely by gravity and to take place as a thin viscous film on solid surfaces. A kinematic wave model for unsaturated infiltration and internal drainage in the channel domain is presented. The model employs a two-parameter power expression as macroscopic flux law. Solutions were derived for the cases when water enters the channel domain laterally and when water enters from the upper end. The model parameters were determined and interpreted in terms of the internal geometry of the waste medium by fitting the model to one set of infiltration and drainage data derived from a large scale laboratory experiment under transient conditions. The model was validated using another set of data from a sequence of water input events and was shown to perform accurately. A solute transport model was developed by coupling a simple piston flux expression and a mobile-immobile conceptualization of the transport domains with the water flow model. Breakthrough curves derived from steady and transient tracer experiments where interpreted with the model. The transport

  20. Supercritical water gasification of landfill leachate for hydrogen production in the presence and absence of alkali catalyst.

    Science.gov (United States)

    Weijin, Gong; Binbin, Li; Qingyu, Wang; Zuohua, Huang; Liang, Zhao

    2018-03-01

    Gasification of landfill leachate in supercritical water using batch-type reactor is investigated. Alkali such as NaOH, KOH, K 2 CO 3 , Na 2 CO 3 is used as catalyst. The effect of temperature (380-500 °C), retention time (5-25 min), landfill leachate concentration (1595 mg L -1 -15,225 mg L -1 ), catalyst adding amount (1-10 wt%) on hydrogen mole fraction, hydrogen yield, carbon gasification rate, COD, TOC, TN removal efficiency are investigated. The results showed that gaseous products mainly contained hydrogen, methane, carbon dioxide and carbon monoxide without addition of catalyst. However, the main gaseous products are hydrogen and methane with addition of NaOH, KOH, K 2 CO 3 , Na 2 CO 3 . In the absence of alkali catalyst, the effect of temperature on landfill leachate gasification is positive. Hydrogen mole fraction, hydrogen yield, carbon gasification ratio increase with temperature, which maximum value being 55.6%, 107.15 mol kg -1 , 71.96% is obtained at 500 °C, respectively. Higher raw landfill leachate concentration leads to lower hydrogen production and carbon gasification rate. The suitable retention time is suggested to be 15 min for higher hydrogen production and carbon gasification rate. COD, TOC and TN removal efficiency also increase with increase of temperature, decrease of landfill leachate concentration. In the presence of catalyst, the hydrogen production is obviously promoted by addition of alkali catalyst. the effect of catalysts on hydrogen production is in the following order: NaOH > KOH > Na 2 CO 3  > K 2 CO 3 . The maximum hydrogen mole fraction and hydrogen yield being 74.40%, 70.05 mol kg -1 is obtained with adding amount of 5 wt% NaOH at 450 °C, 28 MPa, 15 min. Copyright © 2017. Published by Elsevier Ltd.

  1. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  2. Investigation of landfill leachate toxic potency: An integrated approach with the use of stress indices in tissues of mussels

    Energy Technology Data Exchange (ETDEWEB)

    Tsarpali, Vasiliki [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500 Patras (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500 Patras (Greece)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Leachate induces mortality of mussels and their cell death at very low doses. Black-Right-Pointing-Pointer Prepathological alterations occur in tissues of leachate-exposed mussels. Black-Right-Pointing-Pointer Alterations of stress indices reveal neurotoxic and genotoxic potency of leachate. Black-Right-Pointing-Pointer Leachate could induce oxidative damage in tissues of leachate-exposed mussels. - Abstract: The present study investigates the harmful impacts of landfill leachate release and/or disposal into the marine environment, as well as its ability to induce lethal and pre-pathological alterations in marine organisms, such as the mussel Mytilus galloprovincialis. In specific, mortality test (96 h), performed first in order to estimate leachate lethal endpoints, showed increased levels of mussel mortality after exposure to leachate higher than 0.5%, v/v (96 h LC{sub 50} = 0.526%, v/v), while the exposure to 0.01 and 0.1% (v/v) of leachate showed negligible levels of mortality (96 h LC{sub 10} = 0.167%, v/v). Furthermore, the estimation of lysosomal membrane integrity in hemocytes of exposed mussels (Neutral Red Retention Time assay) showed increased levels of lysosomal destabilization in cells of mussels exposed to sub-lethal concentrations of leachate (0.01, 0.1 and 0.5%, v/v) for 4 days. In order to exclude parameters, such as mussel mortality and cell death, which could interfere with the obtained results, leachate at final concentrations of 0.01 and 0.1% (v/v) were finally used for the estimation of a battery of stress indices in target tissues of mussels, such as hemolymph, gills and digestive gland. According to the results, leachate-exposed mussels showed a significant inhibition of acetylcholinesterase activity, increased levels of nuclear abnormalities, as well as increased levels of metallothionein, superoxide anion and lipid peroxides (in terms of malondialdehyde equivalents) in each tissue tested. The

  3. Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    F Claret; C Tournassat; C Crouzet; E Gaucher; T Schäfer; G Braibant; D Guyonnet

    2011-12-31

    This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

  4. Radiation decomposition of humic substances in landfill disposal leachate

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Sawai, Teruko; Shimokawa, Toshinari

    1979-01-01

    The leachate generated from landfill contains humic substances such as humic acid and fluvic acid. It shows, in general, high chemical oxygen demand (COD) and biological oxygen demand (BOD), and colors in dark brown. When the leachate collected on the No. 15 landfill in Tokyo Bay was irradiated by γ-rays from a 60 Co source in bubbling air, the total organic carbon (TOC) decreased with increasing dose and the brown color was bleached. The effects of pH, flow rate, and dose rate on the decrease of TOC, the variations of UV spectrum, and the formation of carbon dioxide by the irradiation were examined. The decreasing rate of TOC increased with an increase of the flow rate up to -- 11/min and showed a maximum value in the region of pH 4 - 6. It was also dependent on the dose rate and increased with a decrease of the dose rate. The radiation chemical yield, G(-TOC), reached 162 at low dose rate of 1.3 x 10 4 rad/h. This result suggests that a radiation-induced chain reaction occurred. The amount of TOC decreased was almost equal to that of carbon dioxide formed. This result shows that the organic substances were decomposed by irradiation to carbon dioxide as a final product and it was ejected from the solution. (author)

  5. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    Science.gov (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; Brazil, Brian; He, Zhen

    2017-11-01

    The presence of UV quenching compounds in landfill leachate can negatively affect UV disinfection in a wastewater treatment plant when leachate is co-treated. Herein, a microbial fuel cell (MFC) was investigated to remove UV quenchers from a landfill leachate with simultaneous bioelectricity generation. The key operating parameters including hydraulic retention time (HRT), anolyte recirculation rate, and external resistance were systematically studied to maximize energy recovery and UV absorbance reduction. It was found that nearly 50% UV absorbance was reduced under a condition of HRT 40 days, continuous anolyte recirculation, and 10 Ω external resistance. Further analysis showed a total reduction of organics by 75.3%, including the reduction of humic acids, fulvic acids, and hydrophilic fraction concentration as TOC. The MFC consumed 0.056 kWh m -3 by its pump system for recirculation and oxygen supply. A reduced HRT of 20 days with periodical anode recirculation (1 hour in every 24 hours) and 39 Ω external resistance (equal to the internal resistance of the MFC) resulted in the highest net energy of 0.123 kWh m -3 . Granular activated carbon (GAC) was used as an effective post-treatment step and could achieve 89.1% UV absorbance reduction with 40 g L -1 . The combined MFC and GAC treatment could reduce 92.9% of the UV absorbance and remove 89.7% of the UV quenchers. The results of this study would encourage further exploration of using MFCs as an energy-efficient method for removing UV quenchers from landfill leachate.

  7. Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zenga, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Ou, Xiao-Ming [China National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410014 (China); Jiang, Yan; Chang, Ying-Na; Guo, Min; Zhang, Chang; Liu, Hong-Yu [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China)

    2016-05-01

    Highlights: • Magnetic graphene oxide was synthesized and used to simultaneously remove HA/FA and Pb(II) from landfill leachate. • In HA-Pb(II) system, Pb(II) removal rapidly increased to the maximum (about 87%) and considerably decreased with increasing HA concentration. However, in FA-Pb(II) system, Pb(II) removal slightly increased and remained constant as FA concentration increased. • In binary system, the removal efficiency of HA/FA by MGO was enhanced due to the increase of Pb(II) concentration. • In landfill leachate, MGO showed considerable removal efficiency for both Pb(II) and HA/FA. - Abstract: The elimination of organic matters and heavy metals in landfill leachate remains a longstanding challenge in wastewater treatment. In this study, magnetic graphene oxide (MGO) was synthesized and investigated to explore the possibility of applying in the simultaneous removal of HA/FA and Pb(II) from landfill leachate. MGO was characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscope. In single system, the sorption isotherm for FA on MGO at 25 °C were better described by Freundlich model than Langmuir and Temkin models with a maximum adsorption capacity of 72.38 mg/g. The isotherm data for HA at 25 °C was fitted well both Freundlich and Temkin models with a maximum adsorption capacity of 98.82 mg/g, while the isotherm data for Pb(II) at 25 °C was fitted well both Langmuir and Temkin models with a maximum adsorption capacity of 58.43 mg/g. In binary system, results showed that TOC removal (both in HA and FA) enhanced with increasing Pb(II). Furthermore, TOC removal enhancement caused by the increase of Pb(II) in HA-Pb(II) system was greater than that in FA-Pb(II), which was caused by HA possessing more substantial aromatic rings than FA. Noticeably, Pb(II) removal steeply increased to the maximum (about 87%) with increasing

  8. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent

    International Nuclear Information System (INIS)

    Yue Xiu; Li Xiaoming; Wang Dongbo; Shen Tingting; Liu Xian; Yang Qi; Zeng Guangming; Liao Dexiang

    2011-01-01

    In this study, honeycomb cinders were employed to remove phosphate and Chemical Oxygen Demand (COD cr ) simultaneously for landfill leachate treatment. Operating conditions of honeycomb cinders pretreatment, pH, temperature, honeycomb cinders dosage, reaction time, and settling time, were evaluated and optimized. The results revealed that the removal efficiencies of both phosphate and COD cr could be increased up to 99.9% and 66.7% under the optimal conditions, respectively. Moreover, the structures of raw/modified honeycomb cinders and resulting precipitates were detected by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometers (EDS) analysis and X-ray Diffraction (XRD). The results suggested that the adsorption method using honeycomb cinders might be an effective strategy as a pretreatment technology for landfill leachate treatment.

  9. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    Aquifer sediment samples obtained from the anaerobic part of a landfill leachate plume in Vejen, Denmark, were suspended in groundwater or in an artificial medium and incubated. The strictly anaerobic suspensions were tested for reduction of ferric iron (Fe(III)) oxides, which was measured...

  10. Ozonation of a pretreated landfill leachate: evaluation of recalcitrance removal

    OpenAIRE

    Van Aken, Pieter; Lambert, Nico; Luyten, Jan; Degrève, Jan; Liers, Sven

    2010-01-01

    The sanitary landfill method for the ultimate disposal of solid waste material continues to be widely accepted and used due to its economic advantages. However, water infiltrates through the solid waste and a variety of organic and inorganic pollutants will be dissolved and transported. These leachates may contain large amounts of organic matter, as well as ammonia-nitrogen, heavy metals, chlorinated organic and inorganic salts. The removal of organic material is usual the prerequisite before...

  11. Analysis of the role of the sanitary landfill in waste management strategies based upon a review of lab leaching tests and new tools to evaluate leachate production

    Directory of Open Access Journals (Sweden)

    Francesco Lombardi

    2017-08-01

    Full Text Available This paper reviews the role of sanitary landfills in current and future waste management strategies based upon the principles and the goals established by the European Framework Directive on Waste (2008/98/EC. Specific reference is made to studies of our research group regarding new tools developed to evaluate leachate production, taking into account the different characteristics of municipal solid waste (MSW. Laboratory leaching tests and a methodology proposed to interpret the results are described and discussed, as well as tools developed to estimate landfill leachate production. Residual flows produced by mechanical-biological treatment (MBT plants, mainly Solid Recovered Fuel (SRF and Stabilized Organic Waste (SOW, incineration and composting plants are considered in particular. Experimental results showed that the most suitable end-uses or disposal options for the outputs of waste treatment plants are site-specific and should be defined on the basis of a detailed characterization. The application of the model developed to assess landfill leachate production showed a very good agreement with field data.

  12. Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Y. [Department of Biology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Chu, L.M. [Department of Biology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)]. E-mail: leemanchu@cuhk.edu.hk

    2007-01-15

    Leachates from an operating and a closed landfill were examined for their phytotoxicity by seed germination/root elongation tests using seeds of Brassica chinensis and Lolium perenne. Their EC50s ranged from 3% to 46% v/v, which varied remarkably with the operating status of the landfills. Seedlings of twelve tree species were grown in pots, which were irrigated with landfill leachate at the EC50 levels, with tap water as control. No tree mortality or growth inhibition was observed after 90 days of leachate application. Chlorophyll fluorescence measurement also showed that plants receiving leachate did not suffer from a decline in photosynthetic efficiency. Litsea glutinosa and Hibiscus tiliaceus had remarkable growth, and other non-N-fixers were not inferior to the N-fixing Acacia auriculiformis. Leachate irrigation improved soil N content, though P deficiency is still a problem. The seed bioassay provided a conservative estimate of the phytotoxicity of landfill leachate. Plants irrigated can be protected from growth inhibition when the leachate irrigation plan is designed with reference to phytotoxicity data. - Irrigated plants could be benefited by leachate when the application rate was determined according to phytotoxicity data.

  13. Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation

    International Nuclear Information System (INIS)

    Cheng, C.Y.; Chu, L.M.

    2007-01-01

    Leachates from an operating and a closed landfill were examined for their phytotoxicity by seed germination/root elongation tests using seeds of Brassica chinensis and Lolium perenne. Their EC50s ranged from 3% to 46% v/v, which varied remarkably with the operating status of the landfills. Seedlings of twelve tree species were grown in pots, which were irrigated with landfill leachate at the EC50 levels, with tap water as control. No tree mortality or growth inhibition was observed after 90 days of leachate application. Chlorophyll fluorescence measurement also showed that plants receiving leachate did not suffer from a decline in photosynthetic efficiency. Litsea glutinosa and Hibiscus tiliaceus had remarkable growth, and other non-N-fixers were not inferior to the N-fixing Acacia auriculiformis. Leachate irrigation improved soil N content, though P deficiency is still a problem. The seed bioassay provided a conservative estimate of the phytotoxicity of landfill leachate. Plants irrigated can be protected from growth inhibition when the leachate irrigation plan is designed with reference to phytotoxicity data. - Irrigated plants could be benefited by leachate when the application rate was determined according to phytotoxicity data

  14. Impact of co-landfill proportion of bottom ash and municipal solid waste composition on the leachate characteristics during the acidogenesis phase.

    Science.gov (United States)

    He, Pin-Jing; Pu, Hong-Xia; Shao, Li-Ming; Zhang, Hua

    2017-11-01

    Incineration has become an important municipal solid waste (MSW) treatment strategy, and generates a large amount of bottom ash (BA). Although some BA is reused, much BA and pretreatment residues from BA recycling are disposed in landfill. When BA and MSW are co-landfilled together, acid neutralization capacity and alkaline earth metal dissolution of BA, as well as different components of MSW may change environmental conditions within the landfill, so the degradation of organic matter and the physical and chemical properties of leachate would be affected. In this study, the effect of co-landfilled BA and MSW on the leachate characteristics during the hydrolysis and acidogenesis phase was studied using different BA/MSW ratios and MSW compositions. The results showed that the co-landfill system increased leachate pH, electric conductivity and alkalinity. For MSW with a high content of degradable components, the release and degradation of total organic carbon (TOC) and volatile fatty acids (VFA) from MSW were promoted when the BA ratio by wet weight was less than 50%, and the biodegradability of leachate was improved. When the BA ratio exceeded 50%, the degradation of organic matters was inhibited. For MSW with low content of degradable components, when the proportion of BA was less than 20%, the release and degradation of TOC and VFA from MSW were promoted and alkalinity increased. When the BA ratio exceeded 20%, the degradation of organic matters was inhibited. The 50% BA ratio could improve the bio-treatability of leachate indicated by the leachate pH and C/N ratio. However, BA inhibited the release of nitrogen (TN and NH 4 + -N) at all BA ratios and MSW compositions. At the same time, the addition of BA increased the risk of leachate collection system clogging due to the dissolution and re-precipitation of alkaline earth metals contained in BA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Seasonal dynamics in leachate hydrochemistry and natural attentuation in surface run-off waste from a tropical landfill

    NARCIS (Netherlands)

    Mangimbulude, J.C.; van Breukelen, B.M.; Krave, A.S.; van Straalen, N.M.; Roling, W.F.M.

    2009-01-01

    Open waste dump systems are still widely used in Indonesia. The Jatibarang landfill receives 650-700 tons of municipal waste per day from the city of Semarang, Central Java. Some of the leachate from the landfill flows via several natural and collection ponds to a nearby river. The objectives of the

  16. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.

    Science.gov (United States)

    Oumar, Dia; Patrick, Drogui; Gerardo, Buelna; Rino, Dubé; Ihsen, Ben Salah

    2016-10-01

    In this research paper, a combination of biofiltration (BF) and electrocoagulation (EC) processes was used for the treatment of sanitary landfill leachate. Landfill leachate is often characterized by the presence of refractory organic compounds (BOD/COD < 0.13). BF process was used as secondary treatment to remove effectively ammonia nitrogen (N-NH4 removal of 94%), BOD (94% removed), turbidity (95% removed) and phosphorus (more than 98% removed). Subsequently, EC process using magnesium-based anode was used as tertiary treatment. The best performances of COD and color removal from landfill leachate were obtained by applying a current density of 10 mA/cm(2) through 30 min of treatment. The COD removal reached 53%, whereas 85% of color removal was recorded. It has been proved that the alkalinity had a negative effect on COD removal during EC treatment. COD removal efficiencies of 52%, 41% and 27% were recorded in the presence of 1.0, 2.0 and 3.0 g/L of sodium bicarbonate (NaHCO3), respectively. Hydroxide ions produced at the cathode electrode reacted with the bicarbonate ions to form carbonates. The presence of bicarbonates in solution hampered the increase in pH, so that the precipitation of magnesium hydroxides could not take place to effectively remove organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Variables in the process of coagulation / flocculation / settling of leachate of municipal landfills

    Directory of Open Access Journals (Sweden)

    José Fernando Thomé Jucá

    2012-08-01

    Full Text Available The careless disposal of waste may generate tremendous environmental and social impacts. For the treatment of landfill leachate, biological and physic-chemical treatments are routinely used. Chemical precipitation using calcium hydroxide has been used with great effectiveness in treating effluent with high concentrations of organic compounds and heavy metals. The leachate used in this study was collected from a flow box of the Muribeca landfill, located in the city of Jaboatão Guararapes, PE. Commercial calcium hydroxide was used as coagulant in aqueous solution. The experiment was implemented using a fractional factorial design, followed by a complete planning 24. It was observed that the lowest turbidity and color were obtained at the highest flocculation speeds. Color removal was favored by long flocculation time whereas this did not occur for turbidity removal. For the optimal point, a reduction of 52% of the color and a NTU turbidity within the standards established in Brazilian Laws (CONAMA 357/05 and CONAMA 430/11 were obtained.

  18. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    Science.gov (United States)

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  19. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Jill A.; Zalesny, Ronald S.; Wiese, Adam H.; Sexton, Bart; Hall, Richard B.

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na + ) and chloride (Cl - ) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 deg. N, 89.4 deg. W). During August 2006, we tested for differences in total Na + and Cl - concentration in preplanting and harvest soils, and in leaf, woody (stems + branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na + and Cl - levels. Genotypes exhibited elevated total tree Cl - concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl - and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl - and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na + ) and four (Cl - ) times greater than water. Sodium and Cl - levels were greatest in roots and leaves, respectively. - Sodium and chloride supplied via landfill leachate irrigation is accumulated at high concentrations in tissues of Populus

  20. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost

    International Nuclear Information System (INIS)

    Trois, Cristina; Pisano, Giulia; Oxarango, Laurent

    2010-01-01

    Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost.

  1. Analyses of Environmental Impacts of Non Hazardous Regional Landfills in Macedonia

    Directory of Open Access Journals (Sweden)

    Katerina Donevska

    2013-12-01

    Full Text Available This paper presents an assessment of potential environmental impacts for eight planned non-hazardous regional landfills in Macedonia. Waste quantities for each waste management region and landfill capacities are estimated. Expected leachate quantities are calculated using Water Balance Method. Analyses and comparison of the likely landfill leachate per capita are presented, demonstrating that higher rates of leachate are generated per capita in waste management regions with higher annual sums of rainfall. An assessment of the potential landfill impacts on the water environment taking into consideration local geology and hydrogeology conditions is presented. Some general measures for leachate treatment that are in compliance with the modern EU standards are indicated. The goal of the study is to facilitate a better understanding about the sustainable waste management practices in cases of landfilling of municipal solid waste.

  2. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    International Nuclear Information System (INIS)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-01-01

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H_2O_2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD_5/COD) as the responses. The highest COD removal (74.59%) and BOD_5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H_2O_2 concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  3. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liqun, E-mail: 691127317@qq.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Wang, Dongbo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli121x@hotmail.com [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-11-15

    Highlights: • Fe-C microelectrolysis-Fenton process is proposed to pretreat landfill leachate. • Operating variables are optimized by response surface methodology (RSM). • 3D-EEMs and MW distribution explain the mechanism of enhanced biodegradability. • Fixed-bed column experiments are performed at different flow rates. - Abstract: A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H{sub 2}O{sub 2} concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD{sub 5}/COD) as the responses. The highest COD removal (74.59%) and BOD{sub 5}/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72 g/L, H{sub 2}O{sub 2} concentration 12.32 mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate.

  4. Applying of Electrical Imaging Survey (EIS) to Evaluate Leachate Pollution in Underground Area of Informal Landfill

    DEFF Research Database (Denmark)

    Du, Song; Wang, Di; Mou, Zishen

    2014-01-01

    An informal landfill is an open dump that pollutes the underground environment because it lacks an impervious liner. The leakage of such a landfill is unidirectional and thus difficult to directly test. This study uses electrical imaging survey to evaluate the pollution of the underground...... environment of an informal landfill for municipal solid waste in Beijing. We hypothesize that every location has a specific resistivity resulting from the leachate. We use the membership function of fuzzy mathematics to quantitatively represent the pollution of the underground environment in the sanitary...... landfill. The results are consistent with borehole data....

  5. Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS.

    Science.gov (United States)

    Kapelewska, Justyna; Kotowska, Urszula; Wiśniewska, Katarzyna

    2016-01-01

    Determination of the endocrine disrupting compounds (EDCs) in leachate and groundwater samples from the landfill sites is very important because of the proven harmful effects of these compounds on human and animal organisms. A method combining ultrasound-assisted emulsification microextraction (USAEME) and gas chromatography-mass spectrometry (GC-MS) was developed for simultaneous determination of seven personal care products (PCPs): methylparaben (MP), ethylparaben (EP), propylparaben (PP), buthylparaben (BP), benzophenone (BPh), 3-(4-methylbenzylidene)camphor (4-MBC), N,N-diethyltoluamide (DEET), and two hormones: estrone (E1) and β-estradiol (E2) in landfill leachate and groundwater samples. The limit of detection (LOD)/limit of quantification (LOQ) values in landfill leachate and groundwater samples were in the range of 0.003-0.083/0.009-0.277 μg L(-1) and 0.001-0.015/0.002-0.049 μg L(-1), respectively. Quantitative recoveries and satisfactory precision were obtained. All studied compounds were found in the landfill leachates from Polish municipal solid waste (MSW) landfills; the concentrations were between 0.66 and 202.42 μg L(-1). The concentration of pollutants in groundwater samples was generally below 0.1 μg L(-1).

  6. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    Science.gov (United States)

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio ( 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation.

  7. Treatment of landfill leachate using a solar destillar

    Directory of Open Access Journals (Sweden)

    José Fernando Thomé Jucá

    2012-04-01

    Full Text Available The subject of this research was to build, develop, evaluate and optimize a system of natural evaporation of leachate, to reduce the organic loads. Physical and chemical microbiological parameters were monitored during the experiment to evaluate the system performance. The solar radiation and rainfall influence on the evaporator was investigated. The results showed 100% reduction of the turbidity, color and total solids. The values of BOD, COD, thermotolerants and total coliforms in the treated effluent had concentrations that meet the Brazilian Federal Environmental Council (CONAMA standards. Based on the results, it was concluded that the natural solar system was adequate for small landfills.

  8. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    OpenAIRE

    Zazouli, Mohammad Ali; Yousefi, Zabihollah; Eslami, Akbar; Ardebilian, Maryam Bagheri

    2012-01-01

    Abstract Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different v...

  9. Effect of advanced oxidation processes (AOP's) on the toxicity of municipal landfill leachates

    Energy Technology Data Exchange (ETDEWEB)

    Slomczynska, B.; Slomczynski, T. [Inst. of Environmental Engineering Systems, Warsaw Univ. of Technology, Warsaw (Poland); Wasowski, J. [Inst. of Water Supply and Hydraulic Construction, Warsaw Univ. of Technology, Warsaw (Poland)

    2003-07-01

    The aim of present study was to assess the effect of AOP's (oxidation ozone and peroxide/ozone) on the toxicity of leachates from municipal landfill for Warsaw, Poland, using battery of tests. Advanced oxidation processes used to pre-treat leachates were carried out in laboratory conditions after their coagulation with the use of FeCl{sub 3}. The effects of the pre-treatment of leachates using the method of coagulation with FeCl{sub 3} depended on the concentration of organic compounds and with optimal conditions of the process ranged from 40 to 70%. Further pre-treatment of the leachates after coagulation, involving the use of oxidation with O{sub 3} and H{sub 2}O{sub 2}/O{sub 3}, did not caused significant decrease of leachate toxicity. The data of this study demonstrated the usefulness of the battery of tests using Daphnia magna, Artemia franciscana, Scenedesmus quadricauda and Vibrio fischeri for the toxicity evaluation of raw and pre-treated leachates. (orig.)

  10. Nitrogen removal kinetics in the treatment of landfill leachate by SBR systems

    International Nuclear Information System (INIS)

    Andreottola, G.; Foladori, P.; Ragazzi, M.

    1998-01-01

    In this study, laboratory-scale experiments were conducted applying the SBR activated sludge process to leachate from an old MSW landfill operating for 7 years. Due to the fact that old leachate is characterized with a high concentration of ammonia (approximately 1500 mgN/1) and low availability of readily biodegradable organic matter (BOD 5 /COD,06), the aim was to examine the nitrogen removal process and to compare the efficiency of one-stage and two stage systems operating at temperature of 20 C and 12 C. The second alternative SBR configuration is based on the coupling of two SBR reactors: the first one specialized in nitrification and the second one in post-denitrification, with external carbon source addition. By the efficient removal of nitrogen, an on-site pretreatment of leachate allows to comply with the limits required for discharging into sewers or into municipal wastewater treatment plant [it

  11. Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui, E-mail: eeng@whu.edu.cn [Department of Environmental Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, P.O. Box C319, Luoyu Road 129, Wuhan 430079 (China); Ran, Xiaoni; Wu, Xiaogang [Department of Environmental Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, P.O. Box C319, Luoyu Road 129, Wuhan 430079 (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer CSTR mode was used for COD removal of landfill leachate by Fered-Fenton process. Black-Right-Pointing-Pointer The complete mixing condition in the CSTR was verified. Black-Right-Pointing-Pointer A modified pseudo-first order kinetic model was developed. Black-Right-Pointing-Pointer The effects of important parameters on COD removal were investigated. Black-Right-Pointing-Pointer The organic components before and after treatment were determined by GC-MS. - Abstract: The treatment of mature landfill leachate by EF-Fere (also called Fered-Fenton) method was carried out in a continuous stirred tank reactor (CSTR) using Ti/RuO{sub 2}-IrO{sub 2}-SnO{sub 2}-TiO{sub 2} mesh anodes and Ti mesh cathodes. The effects of important parameters, including initial pH, inter-electrode gap, H{sub 2}O{sub 2} to Fe{sup 2+} molar ratio, H{sub 2}O{sub 2} dosage and hydraulic retention time, on COD removal were investigated. The results showed that the complete mixing condition was fulfilled in the electrochemical reactor employed in this study and COD removal followed a modified pseudo-first order kinetic model. The COD removal efficiency increased with the decrease of H{sub 2}O{sub 2} to Fe{sup 2+} molar ratio and hydraulic retention time. There existed an optimal inter-electrode gap or H{sub 2}O{sub 2} dosage so that the highest COD removal was achieved. Nearly the same COD removal was obtained at initial pH 3 and 5, but the steady state was quickly achieved at initial pH 3. The organic pollutants in the leachate were analyzed through a gas chromatography coupled with mass spectrometry (GC-MS) system. About 73 organics were detected in the leachate, and 52 of which were completely removed after EF-Fere process.

  12. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  13. Seasonal variations and the influence of geomembrane liners on the levels of PBDEs in landfill leachates, sediment and groundwater in Gauteng Province, South Africa

    Directory of Open Access Journals (Sweden)

    I.V. Sibiya

    2017-06-01

    Full Text Available In the present study, the seasonal concentrations of polybrominated diphenyl ethers (PBDEs in leachate and sediment samples, and the influence of geomembrane liners on PBDE levels and the extent of their infiltration into groundwater on selected landfill sites in Gauteng Province, South Africa were determined. Leachate and sediment samples were collected from seven operational landfill sites namely: Goudkoppies, Robinson Deep, Marie Louis, Soshanguve, Onderstepoort, Hatherly and Garankuwa from Johannesburg and Pretoria, in winter and summer. Groundwater samples were collected from monitoring boreholes from two landfill sites. Liquid-liquid and Soxhlet extraction techniques were employed for the extraction of leachate and groundwater, and sediment respectively using dichloromethane. The extracted samples were subjected to column clean up and, thereafter, analysed using gas chromatography–mass spectroscopy (GC-MS. PBDEs selected for the study were: BDE-17, -28, -47, -100, -99, -153, -154, -183 and -209. The ∑9PBDE concentrations in leachate samples for winter and summer ranged from 0.316–1.36 ng L−1 and 0.560–1.08 ng L−1 respectively. The ∑9 PBDE concentrations obtained for sediment in winter and summer were 3.00–4.91 ng g−1 and 2.50–3.71 ng g−1 respectively. Winter samples exhibited higher (p < 0.05 concentrations for both leachate and sediment samples compared to summer samples. This trend was attributed to high precipitation rate in summer which may have infiltrated into the landfills, subsequently diluting the leachate and sediment samples. In contrast, the winter period is generally dry and PBDEs are, therefore, more likely to be concentrated. The concentrations of PBDEs in leachate and sediment samples were higher in landfill sites with geomembrane liners compared to those without liners. Groundwater samples taken from the vicinity of selected landfill sites without geomembrane liners exhibited high

  14. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 1. Fate of inorganic pollutants in laboratory columns

    Science.gov (United States)

    Thornton, Steven F.; Tellam, John H.; Lerner, David N.

    2000-05-01

    The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate-rock interactions are dominated by ion-exchange processes, acid-base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (˜4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which

  15. Optimization of the photoelectrocatalytic oxidation of landfill leachate using copper and nitrate co-doped TiO2 (Ti by response surface methodology.

    Directory of Open Access Journals (Sweden)

    Xiao Zhou

    Full Text Available In this paper, a statistically-based experimental design with response surface methodology (RSM was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD removal and total organic carbon (TOC removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process.

  16. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing

    International Nuclear Information System (INIS)

    Yang Kun; Zhou Xiaonong; Yan Weian; Hang Derong; Steinmann, Peter

    2008-01-01

    Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills, and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr 6+ and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria

  17. Temporal variation of trace elements in waters polluted by municipal solid waste landfill leachate

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Mihaljevič, M.; Matura, M.; Skalková, M.; Šebek, O.; Bezdička, Petr

    2008-01-01

    Roč. 80, č. 3 (2008), s. 274-279 ISSN 0007-4861 R&D Projects: GA AV ČR KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : trace elements * landfill leachate * temporal variation Subject RIV: DD - Geochemistry Impact factor: 0.609, year: 2008

  18. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost.

    Science.gov (United States)

    Trois, Cristina; Pisano, Giulia; Oxarango, Laurent

    2010-06-15

    Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.

    Science.gov (United States)

    Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G

    2007-07-15

    A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.

  20. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization.

    Science.gov (United States)

    Huda, N; Raman, A A A; Bello, M M; Ramesh, S

    2017-12-15

    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Recalcitrance removal of pretreated landfill leachate by ozone-based oxidation processes

    OpenAIRE

    Van Aken, Pieter; Van Eyck, Kwinten; Luyten, Jan; Degrève, Jan; Liers, Sven

    2010-01-01

    The sanitary landfill method for the ultimate disposal of solid waste material continues to be widely accepted and used due to its economic advantages. However, water infiltrates through the solid waste and a variety of organic and inorganic pollutants will be dissolved and transported. These leachates may contain large amounts of organic matter, as well as ammonia-nitrogen, heavy metals, chlorinated organic and inorganic salts. The removal of organic material is usual the prerequisite before...

  2. Natural attenuation: A feasible approach to remediation of landfill leachate plumes?

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2000-01-01

    Natural attenuation has been implemented for petroleum hydrocarbons plumes and recently also for chlorinated solvent plumes, primarily in the USA, but natural attenuation has not yet gained a foothold with respect to leachate plumes. Based on the experiences gained from ten years of research on two...... Danish landfills, it is suggested that natural attenuation is a feasible approach, but much more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent....

  3. Fate and distribution of nitrogen in soil and plants irrigated with landfill leachate.

    Science.gov (United States)

    Cheng, C Y; Chu, L M

    2011-06-01

    Landfill leachate contains a high concentration of ammoniacal substances which can be a potential supply of N for plants. A bioassay was conducted using seeds of Brassica chinensis and Lolium perenne to evaluate the phytotoxicity of the leachate sample. A soil column experiment was then carried out in a greenhouse to study the effect of leachate on plant growth. Two grasses (Paspalum notatum and Vetiver zizanioides) and two trees (Hibiscus tiliaceus and Litsea glutinosa) were irrigated with leachate at the EC50 levels for 12 weeks. Their growth performance and the distribution of N were examined and compared with columns applied with chemical fertilizer. With the exception of P. notatum, plants receiving leachate and fertilizer grew better than those receiving water alone. The growth of L. glutinosa and V. zizanioides with leachate irrigation did not differ significantly from plants treated with fertilizer. Leachate irrigation significantly increased the levels of NH(x)-N in soil. Although NO(x)-N was below 1 mg NL(-1) in the leachate sample, the soil NO(x)-N content increased by 9-fold after leachate irrigation, possibly as a result of nitrification. Leachate irrigation at EC50 provided an N input of 1920 kg N ha(-1) over the experimental period, during which up to 1050 kg N ha(-1) was retained in the soil and biomass, depending on the type of vegetation. The amount of nutrient added seems to exceed beyond the assimilative capability. Practitioners should be aware of the possible consequence of N saturation when deciding the application rate if leachate irrigation is aimed for water reuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effect of Technological Conditions on Removing Organic Substances from Landfill Leachates

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2018-01-01

    Full Text Available The paper presents the research on how the effectiveness ofremoving organic substances is affected bythe use of polyurethane foam fillings characterized by a varied porosity and the temperature of the process of treating landfill leachate in a biological sequencing batch reactor. The information on the conversion of organic compounds during the operation of the reactor was obtained by measuring the absorbance for selected wavelengths to describe the process of humification. It was found that the technological conditions used in the experiment affected the effectiveness of reducing the COD, but did not affect the type or amount of the humic substances in the leachate treated. In all of the variants examined, the COD decreased the as the humification level increased, and yet this relation was not linear in character.

  5. Treatment of landfill leachate by Fenton's reagent in a continuous stirred tank reactor

    International Nuclear Information System (INIS)

    Zhang Hui; Choi, H.J.; Huang, C.-P.

    2006-01-01

    The treatment of landfill leachate by Fenton process was carried out in a continuous stirred tank reactor (CSTR). The effect of operating conditions such as reaction time, hydraulic retention time, pH, H 2 O 2 to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process reached the steady state after three times of hydraulic retention. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H 2 O 2 to Fe(II) molar ratio was 3, and organic removal increased as dosage increased at the favorable H 2 O 2 to Fe(II) molar ratio. Temperature gave a positive effect on organic removal

  6. Utilisation of forage grasses for decontamination of spray-irrigated leachate from a municipal sanitary landfill

    Energy Technology Data Exchange (ETDEWEB)

    Menser, H.A.; Winant, W.M.; Bennett, O.L.; Lundberg, P.E.

    1979-01-01

    Spray irrigation was used to test the survival and efficiency of forage grasses as a concentrating mechanism for the inorganic waste elements in leachate from a municipal solid waste sanitary landfill. Lime (0.67 metric tonnes ha), rock phosphate, and superphosphate (each at 11.2 metric tonnes ha) were applied in a randomised complete block design to reed canarygrass Phalaris arundinacea L., tall fescue Festuca arundinacea Schreb., cv. Ky31, orchardgrass Dactylis glomerata L., bromegrass Bromus inermis Leyss., and bermudagrass Cynodon dactylon (L.) Pers. cvs. Midland and Tufcote. Leachate was applied by overhead rotary sprinklers in weekly 8-h applications from 22 October 1974 to 28 April 1975. The total application averages about 155 cm. Sprayed leachate contained about 500 ppM of Ca, 150 to 200 ppM of Na, Fe, and Cl, 50 to 100 ppM of Mn, K, Mg, and N, 2 to 5 ppM of Al, Sr, Zn, and P, and less than 0.5 ppM of Ni, Co, Cr, Cu, Pb, and Cd. Chemical oxygen demand (COD) decreased from approximately 7500 mg liter in water emerging from landfill drains to 5000 mg litre in sprayed leachate. Electroconductivity ranged from 3000 to 4000 ..mu..mhos cm and pH from 5.3 to about 5.5. Leachate irrigation appreciably increased Na, Fe, Mn, Cl, and S levels in all forages except orchardgrass. Lime significantly prevented Mn accumulation and benefited forage grass persistence. Reed canarygrass generally contained the highest levels of most elements and along with Tufcote bermudagrass was more leachate-tolerant than other grasses. Seasonal factors affected the uptake of several elements, e.g. Na, Fe, Mn, Zn, K and Co were significantly lower in regrowth cuttings as compared with first cuttings of Midland bermudagrass and reed canarygrass.

  7. Use of electrical tomography methods to determinate the extension and main migration routes of uncontrolled landfill leachates in fractured areas

    Energy Technology Data Exchange (ETDEWEB)

    Casado, Ismael, E-mail: iscaferr@gmail.com [Department of Petrology, Geochemistry and Geological Prospectio, Universitat de Barcelona, Martí i Franquès s/n, 08030 Barcelona (Spain); Department of Geology and Environmental Earth Science, Miami University, 501 East High Street, 45056 Oxford, OH (United States); Mahjoub, Himi [Department of Petrology, Geochemistry and Geological Prospectio, Universitat de Barcelona, Martí i Franquès s/n, 08030 Barcelona (Spain); Ecole Nationale des Sciences Appliquées d' Al Hoceima (ENSAH), University Mohammed Premier, Ajdir, Al Hoceima (Morocco); Lovera, Raul [Department of Petrology, Geochemistry and Geological Prospectio, Universitat de Barcelona, Martí i Franquès s/n, 08030 Barcelona (Spain); Fernández, Jesús, E-mail: jfernandezc@aragon.es [Department of Agriculture, Ranching and Environment, Diputación General de Aragon (DGA), Plaza de San Pedro Nolasco, 7, 50071 Zaragoza (Spain); Casas, Albert [Department of Petrology, Geochemistry and Geological Prospectio, Universitat de Barcelona, Martí i Franquès s/n, 08030 Barcelona (Spain)

    2015-02-15

    This study focuses on the uses of the electrical tomography and its relationship with hydrochemical data in order to characterize contaminated groundwater flows in fractured aquifers. The studied area is contaminated with different hazardous substances like lyndanes, organochlorinated compounds and benzenes coming from the old non-controlled Sardas landfill. The enormous volumes of wastes filling the landfill have generated a convoluted mixture of leachates. Due to the lack of a landfill liner, the leachates have migrated through the fractured Eocene marls towards the Gallego River. The striking correlation between high concentrations of polluted groundwater and low electrical resistivity of the subsurface (< 8 Ω·m) allows defining the principal contaminant migration route thanks to the distribution of these conductive anomalies. This mapping verifies that there is intense tectonical–structural control of the leachate migration, because the deep migration presents the same direction as the geological axis fold. - Highlights: • The outcrop topographic reconstruction is done using cores and aerial photographs. • Hydrochemical and geophysical data allow defining two leachate migration paths. • Conductive anomalies in ERT are linked to high contaminant concentration. • The distribution of conductive anomalies defines the fractured basement migration. • The plume direction reflects important tectonic control in the migration process.

  8. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    Science.gov (United States)

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.

  9. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume

    Science.gov (United States)

    Lorah, M.M.; Cozzarelli, I.M.; Böhlke, J.K.

    2009-01-01

    The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and dispersion as the primary attenuation mechanism. In contrast, during wet conditions (high water table), leachate-contaminated groundwater discharged upward near the upgradient slough bank, where ammonium concentrations in the aquifer where high. Relatively high concentrations of ammonium and other leachate constituents also were transported laterally through the slough porewater to the downgradient bank in wet conditions. Concentrations of the leachate-associated constituents chloride, ammonium, non-volatile dissolved organic carbon, alkalinity, and ferrous iron more than doubled in the slough porewater on the upgradient bank during wet conditions. Chloride, non-volatile dissolved organic carbon (DOC), and bicarbonate acted conservatively during lateral transport in the aquifer and slough porewater, whereas ammonium and potassium were strongly attenuated. Nitrogen isotope variations in ammonium and the distribution of ammonium compared to other cations indicated that sorption was the primary attenuation mechanism for ammonium during lateral transport in the aquifer and the slough porewater. Ammonium attenuation was less efficient, however, in the slough porewater than in the aquifer and possibly occurred by a different sorption mechanism. A

  10. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    International Nuclear Information System (INIS)

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-01-01

    Highlights: ► Specifically-designed SIME reactor for treatment of mature landfill leachate. ► Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). ► Combination effect of IME without aeration and IME with aeration. ► Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h −1 , and H 2 O 2 of 100 mg L −1 . - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p 2 O 2 , were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  11. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  12. Optimization of electrocoagulation process for the treatment of landfill leachate

    Science.gov (United States)

    Huda, N.; Raman, A. A.; Ramesh, S.

    2017-06-01

    The main problem of landfill leachate is its diverse composition comprising of persistent organic pollutants (POPs) which must be removed before being discharge into the environment. In this study, the treatment of leachate using electrocoagulation (EC) was investigated. Iron was used as both the anode and cathode. Response surface methodology was used for experimental design and to study the effects of operational parameters. Central Composite Design was used to study the effects of initial pH, inter-electrode distance, and electrolyte concentration on color, and COD removals. The process could remove up to 84 % color and 49.5 % COD. The experimental data was fitted onto second order polynomial equations. All three factors were found to be significantly affect the color removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was conducted to obtain the optimum process performance. Further work will be conducted towards integrating EC with other wastewater treatment processes such as electro-Fenton.

  13. Application of constructed wetlands to the treatment of leachates from a municipal solid waste landfill in Ibadan, Nigeria.

    Science.gov (United States)

    Aluko, Olufemi Oludare; Sridhar, M K C

    2005-06-01

    Leachates are wastewater generated principally from landfills and solid waste disposal sites. Leachates emanating from municipal wastes are a major source of surface and groundwater pollution worldwide. Globally, leachates have been implicated in low yield of farm produce, developmental anomalies, low birth weights, leukemia incidence, and other cancers in communities around the site. They have also been implicated in hazards to the environment, loss of biodiversity, and contamination of water sources. At Aba-Eku in Nigeria, leachates are being discharged into the Omi Stream without treatment. A study was conducted on a method of leachate treatment that passes the leachate through constructed wetlands using Ipomoea aquatica (Forsk), a locally available plant found close to the landfill site. The aim of the study was to evolve a sustainable and cost-effective method of treatment whose effluents can be discharged into the Omi Stream with no or minimal impact. The study was descriptive and analytical in design. Samples were collected and analyzed with standard methods for pH, suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia, nitrate, and trace metals. Raw leachates were turbid and amber in color and contained suspended solids (197.5 mg/L), ammonia (610.9 mg/L), lead (1.64 mg/L), iron (198.10 mg/L), and manganese (23.20 mg/L). When the leachates were passed through the constructed wetland with eight hours' detention time, effluents showed significant reductions in suspended solids (81.01 percent), BOD (86.03 percent), and ammonia (97.77 percent). The study shows that a constructed wetland is a feasible tool for the treatment of leachates before their disposal into the environment in Nigeria and can help safeguard environmental quality.

  14. Aerobic co-treatment of landfill leachate and domestic wastewater - are slowly biodegradable organics removed or simply diluted?

    Science.gov (United States)

    Campos, R; Ferraz, F M; Vieira, E M; Povinelli, J

    2014-01-01

    This study investigated the co-treatment of landfill leachate/domestic wastewater in bench-scale activated sludge (AS) reactors to determine whether the slowly biodegradable organic matter (SBOM) was removed rather than diluted. The AS reactors were loaded with mixtures of raw leachate and leachate that was pretreated by air stripping. The tested volumetric ratios were 0%, 0.2%, 2% and 5%. For all of the tested conditions, the reactors performed better when pretreated leachate was used rather than raw leachate, and the best volumetric ratio was 2%. The following removals were obtained: 97% for the biochemical oxygen demand (BOD5,20), 79% for total suspended solids, 77% for dissolved organic carbon and 84% for soluble chemical oxygen demand. Most of the pretreated leachate SBOM (65%) was removed rather than diluted or adsorbed into the sludge, as confirmed by Fourier transform infrared (FTIR) spectroscopy analyses.

  15. Evaluation of effluents from bench-scale treatment combinations for landfill leachate in Ibadan, Nigeria.

    Science.gov (United States)

    Aluko, Olufemi Oludare; Sridhar, Mkc

    2014-01-01

    The removal of pollutants in landfill leachate was investigated using constructed wetlands, a trickling filter, alum flocculation and coagulation, and a sequencing batch reactor in various combinations. Thirteen combined operations were investigated involving three out of the four unit treatment methods in series. The study was conducted because unit operations, though achieved reductions in pollutants concentrations had effluent values above the national regulatory guideline values. The suspended solids of effluents were permissible in most treatment processes, while reductions in 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and ammonia (NH3) of leachates ranged from 80% to 97%; 86% to 97% and 92% to 98% respectively. However, there were significant increases in nitrate (85%) and dissolved oxygen of treatment (218%). In addition, the characteristics of the recommended treatment sequence, involving constructed wetlands, alum and trickling filter produced effluents with reductions in colour (97%), alkalinity (97%), BOD (97%), COD (97%) and NH3 (98%), and in metals, except nickel (29% reduction from the influent values). The recommended treatment combination is suitable for effective leachate management at the landfill. The cost of constructing and operating the recommended treatment combination at the facility, for 5 years, would be NGN6,009,750.00 ($38,036.39). The performance should be monitored on site prior to full adoption if effluent characteristics remain consistently low over dry and wet seasons.

  16. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    Science.gov (United States)

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.

    Science.gov (United States)

    Inanc, B; Calli, B; Saatci, A

    2000-01-01

    In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.

  18. An analysis of heavy metals (Cr, Cu, Ni, Pb) in leachate and water samples taken from San Mateo landfill and Payatas dumpsite

    International Nuclear Information System (INIS)

    Almario, Christine D.; Benedicto, Ma. Victoria S.

    2003-01-01

    This study was conducted to determine the concentration of heavy metals specifically Cr, Cu, Ni, Pb in leachate and water samples taken from the open dumpsite of Payatas and San Mateo landfill. The leachate samples were collected from the maturation pond of San Mateo landfill and from Payatas open dumpsite. The water samples were obtained from Pintong Bocaue and Sapinit deep wells from San Mateo landfill while for Payatas dumpsite deep well waters from the immediate vicinities were used. The sample obtained was then subjected to atomic absorption spectrophotometry for quantitative determination of the heavy metals. The results of the analysis of concentration of trace metals were expressed in mg/L or ppm. (Authors)

  19. An analysis of heavy metals (Cr, Cu, Ni, Pb) in leachate and water samples taken from San Mateo landfill and Payatas dumpsite

    Energy Technology Data Exchange (ETDEWEB)

    Almario, Christine D; Benedicto, Ma Victoria S

    2003-02-17

    This study was conducted to determine the concentration of heavy metals specifically Cr, Cu, Ni, Pb in leachate and water samples taken from the open dumpsite of Payatas and San Mateo landfill. The leachate samples were collected from the maturation pond of San Mateo landfill and from Payatas open dumpsite. The water samples were obtained from Pintong Bocaue and Sapinit deep wells from San Mateo landfill while for Payatas dumpsite deep well waters from the immediate vicinities were used. The sample obtained was then subjected to atomic absorption spectrophotometry for quantitative determination of the heavy metals. The results of the analysis of concentration of trace metals were expressed in mg/L or ppm. (Authors)

  20. Landfill Leachate Treatment Using Coupled, Sequential Coagulation-flocculation and Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    José L. Álvarez Cruz

    2017-11-01

    Full Text Available This study evaluated the efficiency of Fenton (Fe/H2O2 and photo-assisted Fenton (Fe2+/H2O2/UV reactions combined with coagulation-flocculation (C-F processes to remove the chemical oxygen demand (COD in a landfill leachate from Mexico at a laboratory scale. The C-F experiments were carried out in jar test equipment using different FeSO4 concentrations (0.0, 0.6, 1.0, 3, and 6 mM at pH = 3.0. The effluent from the C-F processes were then treated using the Fenton reaction. The experiments were carried out in a 500 mL glass reactor fillet with 250 mL of landfill leachate. Different molar ratio concentrations (Fe/H2O2 were tested (e.g., 1.6, 3.3, 30, 40 and 75, and the reaction was followed until COD analysis showed no significant further variation in concentration or until 90 min of reaction time were completed. The photo-assisted Fenton reaction was carried out using a UV lamp (365 nm, 5 mW with the same Fe/H2O2 molar ratio values described above. The results suggested that the photo-assisted Fenton process is the most efficient oxidation method for removing organic matter and color in the leachate. The photo-assisted Fenton process removed 68% of the COD and 90% of the color at pH = 3 over 30 minutes of reaction time using a H2O2/Fe molar ratio equal to 75 only using a third of the reaction time of the previous process.

  1. Is the IP response related to geology or contaminants in a leachate plume at the Grindsted Landfill, Denmark?

    DEFF Research Database (Denmark)

    Møller, Ingelise; Maurya, Pradip Kumar; Balbarini, Nicola

    Contaminants in leachate plumes from landfills and other contaminated sites are a threat to the environment. Efficient site characterization methods are needed. The perspectives of the IP method are investigated in combination with geological sampling and chemical analyses of water samples. Along...... a leachate plume from a landfill hosting both household and chemical waste, borehole IP data, geological samples, grain size, and contaminant concentrations in water samples are examined for correlations related to geology and concentrations of contaminants. Results relating the Cole-Cole parameters...... with sediment types and pore water resistivity representing the concentrations of the contaminants show that the formation resistivity primarily is controlled by the contaminant concentrations while the IP parameters primarily are related to the clay content and grain size distribution of sandy sediments...

  2. Is the IP response related to geology or contaminants in a leachate plume at the Grindsted Landfill, Denmark?

    DEFF Research Database (Denmark)

    Møller, Ingelise; Maurya, Pradip Kumar; Balbarini, Nicola

    a leachate plume from a landfill hosting both household and chemical waste, borehole IP data, geological samples, grain size, and contaminant concentrations in water samples are examined for correlations related to geology and concentrations of contaminants. Results relating the Cole-Cole parameters...... with sediment types and pore water resistivity representing the concentrations of the contaminants show that the formation resistivity primarily is controlled by the contaminant concentrations while the IP parameters primarily are related to the clay content and grain size distribution of sandy sediments......Contaminants in leachate plumes from landfills and other contaminated sites are a threat to the environment. Efficient site characterization methods are needed. The perspectives of the IP method are investigated in combination with geological sampling and chemical analyses of water samples. Along...

  3. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  4. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    Science.gov (United States)

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Leachate from Municipal Waste Landfill and Its Natural Degradation—A Case Study of Zubří, Zlín Region

    Directory of Open Access Journals (Sweden)

    Vojtěch Václavík

    2016-09-01

    Full Text Available This work deals with the natural degradation of leachate from an old reclaimed landfill by means of a biological pond. Hamra is a municipal waste landfill with a limited formation of leachate, which has already been reclaimed. Leachate in this location is disposed of using natural biogeochemical method, and it is subsequently discharged into a surface stream. The main issue dealt with here is the long-term effectiveness of natural degradation of leachate and the limits of its use. The solutions of these fundamental questions took advantage of a database of analytical assessments collected during a long-term monitoring of the landfill site. The primary degradation trends and the long-term development have been revealed and described on the basis of these assessments. The main benefit of the biological pond is the dilution of the dominant contaminants, especially of inorganic character. In the case of ammonium ions, they show nitrification caused by their transition from the reduction into oxidizing environment. From a long term point of view, the disadvantage of natural degradation of leachate can be seen in the gradual reduction in efficiency due to the concentration of the substances or an undesired growth of water plants, which can be successfully eliminated, for example, by means of targeted aeration and by maintaining vegetation in the pond and its surroundings. The biological potential of the locality is very favorable and, despite its anthropogenic load, it creates a location with suitable living conditions for many water animals and plants. That is why it can be concluded that the efficiency of the natural biochemical cleaning elements can be considered as sufficient, taking into account the nature of the deposited waste, the quantity and quality of leachate, as well as the climate character of the locality.

  6. Association of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills

    Czech Academy of Sciences Publication Activity Database

    Matura, M.; Ettler, V.; Ježek, J.; Mihaljevič, M.; Šebek, O.; Sýkora, V.; Klementová, Mariana

    2010-01-01

    Roč. 183, 1-3 (2010), s. 541-548 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40320502 Keywords : Landfill * leachate * trace elements * colloids * cascade filtration Subject RIV: DD - Geochemistry Impact factor: 3.723, year: 2010

  7. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate.

    Science.gov (United States)

    Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu

    2017-06-29

    In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.

  8. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Application of vadose-zone monitoring system for real-time characterization of leachate percolation in and under a municipal landfill.

    Science.gov (United States)

    Aharoni, Imri; Siebner, Hagar; Dahan, Ofer

    2017-09-01

    Leachates from solid-waste landfills are considered a severe threat to groundwater quality. The fate of pollutants in the waste and underlying unsaturated zone is crucial for evaluating environmental risks and selecting a restoration strategy. In this study, a vadose-zone monitoring system (VMS) installed in a municipal landfill was used, for the first time, to continuously track leachates percolation dynamics and assess their chemical transformation across the entire thickness of the waste body (15m) and underlying unsaturated zone (16m) to the water table. Winter rains were found to quickly infiltrate through the waste and underlying vadose zone despite a clay cover that was implemented as part of a restoration and leachate-prevention strategy. Within the waste body, the flow pattern was controlled by preferential flow paths, which changed frequently. It is hypothesized that ongoing decomposition of the waste creates dynamic variations in the waste's physical structure and flow pattern. Water samples collected from the waste layer indicated the formation of highly polluted leachates. The chemical composition in the waste body showed extreme variability between sampling points with respect to DOC (407-31,464mg/L), BOD/COD ratios (0.07-0.55), Fe 2+ (6.8-1154mg/L), ammonium (68-2924mg/L) and heavy metal concentrations. Environmental hot spots creating concentrated, aggressive, "acid-phase" leachates still exist in the waste more than 13years after closing the landfill. However, continuous changes in the flow pattern and moisture distribution affected the creation and decay of such environments. In the underlying sandy vadose zone, some sections repeatedly exhibited stronger and faster flow characteristics than others. These local fluxes of concentrated leachates rapidly transported heavy contaminant loads toward the groundwater. However results showed evidence of continual attenuation processes in the deep vadose zone, with the anaerobic digestion of organic matter

  10. Statistical evaluation of mature landfill leachate treatment by homogeneous catalytic ozonation

    Directory of Open Access Journals (Sweden)

    A. L. C. Peixoto

    2010-12-01

    Full Text Available This study presents the results of a mature landfill leachate treated by a homogeneous catalytic ozonation process with ions Fe2+ and Fe3+ at acidic pH. Quality assessments were performed using Taguchi's method (L8 design. Strong synergism was observed statistically between molecular ozone and ferric ions, pointing to their catalytic effect on •OH generation. The achievement of better organic matter depollution rates requires an ozone flow of 5 L h-1 (590 mg h-1 O3 and a ferric ion concentration of 5 mg L-1.

  11. Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter.

    Science.gov (United States)

    Ferraz, F M; Povinelli, J; Pozzi, E; Vieira, E M; Trofino, J C

    2014-08-01

    This study used a pilot-scale submerged aerobic biofilter (SAB) to evaluate the co-treatment of domestic wastewater and landfill leachate that was pre-treated by air stripping. The leachate tested volumetric ratios were 0, 2, and 5%. At a hydraulic retention time of 24 h, the SAB was best operated with a volumetric ratio of 2% and removed 98% of the biochemical oxygen demand (BOD), 80% of the chemical oxygen demand (COD) and dissolved organic carbon (DOC), and 90% of the total suspended solids (TSS). A proposed method, which we called the "equivalent in humic acid" (Eq.HA) approach, indicated that the hardly biodegradable organic matter in leachate was removed by partial degradation (71% of DOC Eq.HA removal). Adding leachate at a volumetric ratio of 5%, the concentration of the hardly biodegradable organic matter was decreased primarily as a result of dilution rather than biodegradation, which was confirmed by Fourier transform infrared (FTIR) spectroscopy. The total ammoniacal nitrogen (TAN) was mostly removed (90%) by nitrification, and the SAB performances at the volumetric ratios of 0 and 2% were equal. For the three tested volumetric ratios of leachate (0, 2, and 5%), the concentrations of heavy metals in the treated samples were below the local limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments.

    Science.gov (United States)

    Wang, Liqun; Yang, Qi; Wang, Dongbo; Li, Xiaoming; Zeng, Guangming; Li, Zhijun; Deng, Yongchao; Liu, Jun; Yi, Kaixin

    2016-11-15

    A novel hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor was proposed for the pretreatment of mature landfill leachate. This reactor, combining microelectrolysis with Fenton process, revealed high treatment efficiency. The operating variables, including Fe-C dosage, H2O2 concentration and initial pH, were optimized by the response surface methodology (RSM), regarding the chemical oxygen demand (COD) removal efficiency and biochemical oxygen demand: chemical oxygen demand (BOD5/COD) as the responses. The highest COD removal (74.59%) and BOD5/COD (0.50) was obtained at optimal conditions of Fe-C dosage 55.72g/L, H2O2 concentration 12.32mL/L and initial pH 3.12. Three-dimensional excitation and emission matrix (3D-EEM) fluorescence spectroscopy and molecular weight (MW) distribution demonstrated that high molecular weight fractions such as refractory fulvic-like substances in leachate were effectively destroyed during the combined processes, which should be attributed to the combination oxidative effect of microelectrolysis and Fenton. The fixed-bed column experiments were performed and the breakthrough curves at different flow rates were evaluated to determine the practical applicability of the combined process. All these results show that the hydrogen peroxide-enhanced iron-carbon (Fe-C) microelectrolysis reactor is a promising and efficient technology for the treatment of mature landfill leachate. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Limiting Factors for Microbial Fe(III)-Reduction In a Landfill Leachate Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas Højlund

    1995-01-01

    Aquifer sediment samples from two locations within the anaerobic leachate plume of a municipal landfill were compared with respect to microbiology (especially Fe(III)-reduction) and geochemistry. The samples close to the landfill were characterized by low contents of Fe(III), whereas samples from...... the more distant cluster were rich in Fe(III)-oxides. The active microbial population seemed to be less dense in samples more distant from the landfill (measured by ATP and phospholipid fatty acids (PLFA)), but the microbial communities were very similar in the two sample clusters according...... to the composition of PLFA. Very little, if any, Fe(III)-reduction was observed close to the landfill, but all the more distant samples showed evident microbially mediated Fe(III)-reduction. After amendment with both acetate and Fe(III), all the samples showed a potential for Fe(III)-reduction, and the in situ Fe...

  14. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  15. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Tse-Tsung; Chen, Chung-Yu; Li Zuguang; Yang, Thomas Ching-Cherng; Lee, Maw-Rong

    2012-01-01

    Highlights: ► Ionic liquid (IL), ([C 4 MIM][PF 6 ]), was rapid synthesized by microwave radiation. ► Trace chlorophenols in landfill leachate were extract by SPME coated IL. ► The IL-coated SPME-GC/MS method is low-cost, solvent-free and sensitive. - Abstract: A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 MIM][PF 6 ]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L −1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L −1 . The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L −1 . The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.

  16. Determination of chlorophenols in landfill leachate using headspace sampling with ionic liquid-coated solid-phase microextraction fibers combined with gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tse-Tsung; Chen, Chung-Yu [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China); Li Zuguang [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China); College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, Zhejiang (China); Yang, Thomas Ching-Cherng [Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan (China); Lee, Maw-Rong, E-mail: mrlee@dragon.nchu.edu.tw [Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Ionic liquid (IL), ([C{sub 4}MIM][PF{sub 6}]), was rapid synthesized by microwave radiation. Black-Right-Pointing-Pointer Trace chlorophenols in landfill leachate were extract by SPME coated IL. Black-Right-Pointing-Pointer The IL-coated SPME-GC/MS method is low-cost, solvent-free and sensitive. - Abstract: A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}MIM][PF{sub 6}]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography-mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography-mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 Degree-Sign C for 4 min. Linearity was observed from 0.1 to 1000 {mu}g L{sup -1} with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 {mu}g L{sup -1}. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 {mu}g L{sup -1}. The results demonstrate that the IL-SPME-GC/MS method is highly effective in

  17. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Ozkaya, Bestamin

    2007-01-01

    In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation

  18. Biodegradation of blend films PVA/PVC, PVA/PCL in soil and soil with landfill leachate

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2011-12-01

    Full Text Available This study investigated the biodegradation of blends films of poly(vinyl alcohol/poly(vinyl chloride (PVA/PVC and poly(vinyl alcohol/poly(caprolactone (PVA/PCL blends films prepared with dimethylformamide under a variety of conditions by respirometry, spectrophotometry (FTIR, scanning electron microscopy (SEM, and contact angle. The films were buried in the garden soil and in the soil mixed with the landfill leachate for 120 days at 28ºC. Significant levels of biodegradation were achieved in fairly short incubation times in the soil. The results indicated that PVA was the most biodegradable film in the soil and in the soil with the leachate.

  19. Effects of ferric ions on the catalytic ozonation process on sanitary landfill leachates

    Directory of Open Access Journals (Sweden)

    Messias Borges Silva

    2013-04-01

    Full Text Available Leachates exhibiting an unstable ratio of biochemical oxygen demand (BOD and chemical oxygen demand (COD of approximately 0.45 are typical of new landfills in the City of Cachoeira Paulista, Brazil. Although the organic matter portion is bio-treatable, the presence of refractory leached organic material requires unconventional effluent-treatment processes. Leachate treatment with ozone oxidation, in the presence of ferric ions, acts as catalyst in the formation of hydroxyl radicals. Ozone was obtained by corona-discharge from high-purity O2 gas. The treatment was performed in natura in a jacketed borosilicate glass reactor containing 900 ml of leachate. The analyzed response variable was expressed as the concentration of dissolved organic carbon (DOC. In order to determine the optimal proportions to produce the greatest degradation rate for organic materials, variations in experimental O2 flow-fed to the generator, the Fe(iii concentration, and the output of the ozonator were conducted over two experimental runs. Experimental models showed a DOC degradation on the order of 81.25%.

  20. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  1. Comparison of PCDD/Fs levels and profiles in leachates from ''new'' and ''old'' municipal landfills

    Energy Technology Data Exchange (ETDEWEB)

    Dudzinska, M.; Czerwinski, J.; Rut, B. [Lublin Univ. of Technology (Poland)

    2004-09-15

    Although the presence of PCDD/Fs in landfill leachates has been confirmed, not many experiments have been undertaken in this area, probably because of a very low solubility of PCDD/Fs in water. Modern, properly designed landfills should secure (seal) all deposited wastes and possible leakings within the damp. Leachates are collected and treated on the site or transported to a wastewater treatment plant, so they should not cause a release of any pollutants into the soil or groundwater. But PCDD/Fs as well as a number of chlorinated compounds, which may act as precursors of dioxins under aerobic or anaerobic conditions have been identified as trace contaminants in municipal wastes. The formation of dioxins during municipal waste deposition has not been studied, contrary to the formation of OCDD from precursors under aerobic conditions during composting of waste or treatment of sewage sludge5. Some information about the possible dioxin formation during landfilling might be obtained from the comparison of PCDD/F levels in the leachates from ''old - closed'' and ''new'' sites.

  2. Performance evaluation of a hybrid-passive landfill leachate treatment system using multivariate statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr [National Institute for Applied Sciences – Lyon, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2015-01-15

    Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling

  3. Leachate migration and its impacts on the environment

    International Nuclear Information System (INIS)

    Hwang, Y. S.

    1998-12-01

    In Korea there are hundreds of landfill sites all over the peninsular and the leachate problem is one of the national concern. Heavy precipitation especially during hot summers creates the fast degradation of waste products in the site which accelerates the migration of the leachate. In this report current status of the landfill site related issues were studied along with potential solutions on them. Also the fundamental mathematical derivations to describe the movement of the leachate in geologic medium was studied. These results shall be used to assess the leachate migration in the specific landfill site in the 2nd R and D year

  4. Leachate migration and its impacts on the environment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y. S

    1998-12-01

    In Korea there are hundreds of landfill sites all over the peninsular and the leachate problem is one of the national concern. Heavy precipitation especially during hot summers creates the fast degradation of waste products in the site which accelerates the migration of the leachate. In this report current status of the landfill site related issues were studied along with potential solutions on them. Also the fundamental mathematical derivations to describe the movement of the leachate in geologic medium was studied. These results shall be used to assess the leachate migration in the specific landfill site in the 2nd R and D year.

  5. Impact of Sediment-Bound Iron on Redox Buffering in a Landfill Leachate Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Heron, Gorm; Christensen, Thomas Højlund

    1995-01-01

    Sediments sampled along a central flow line of the leachate pollution plume at the Vejen Landfill, Denmark, were characterized in detail with respect to the forms and pools of Fe(ll) and Fe(lll). After 15 yr of leaching, redox reactions had diminished the pool of iron(ll1) oxides and hydroxides...

  6. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    Science.gov (United States)

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  7. The Effects of Leachate on Groundwater in Ota Industrial Area ...

    African Journals Online (AJOL)

    Compositions of landfill leachate and groundwater pollution were studied at industrial sites landfill, which are located at Ota, Nigeria. The leachate was sampled at 5 different locations at the landfill, and at 15 and 20 m downstream of the landfill. Groundwater samples were collected from 10 different sources to study the ...

  8. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Diwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Peng, Juan [Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Xu, Xinyan; Li, Kan; Wang, Yalin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China); Jia, Jinping, E-mail: jpjia@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Specifically-designed SIME reactor for treatment of mature landfill leachate. Black-Right-Pointing-Pointer Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). Black-Right-Pointing-Pointer Combination effect of IME without aeration and IME with aeration. Black-Right-Pointing-Pointer Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h{sup -1}, and H{sub 2}O{sub 2} of 100 mg L{sup -1}. - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 {+-} 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 {+-} 3.8% to mature landfill leachate in the continuous operation, which is much higher (p < 0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H{sub 2}O{sub 2}, were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  9. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Abood, Alkhafaji R. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Thi Qar University, Nasiriyah (Iraq); Bao, Jianguo, E-mail: bjianguo888@126.com [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Du, Jiangkun; Zheng, Dan; Luo, Ye [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China)

    2014-02-15

    Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated

  10. Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater

    Directory of Open Access Journals (Sweden)

    Mohini Verma

    2018-04-01

    Full Text Available Landfill leachate and municipal wastewater at various ratios (1:20, 1:10, 1:7 and 1:5 were subjected to coagulation and electrocoagulation (EC. Alum was used in conventional coagulation at pH 6 and aluminum plate as electrode was used in EC at a current density of 386 A/m2 with 5 cm inter electrode spacing. Treatment efficiency was assessed from removal of chemical oxygen demand (COD, total suspended solids (TSS, turbidity, ammonia, nitrate and phosphate. At 1:5 ratio of landfill leachate to municipal wastewater, highest COD removal was with 3.8 g/L alum whereas highest turbidity removal was with 3.3 g/L alum during coagulation. EC exhibited almost similar removal efficiency for all the parameters at different ratios tested except for COD which was considerably higher at 1:20 ratio. Aluminum consumption from electrode was 0.7 g/L following EC as compared to 3.8 g/L alum used in coagulation. The amount of sludge produced was found to be higher with EC as compared to coagulation which could be due to the fact that the electrochemical method was performed for a longer duration than conventional coagulation. For minimal sludge generation, EC reaction time should be ∼30 min. Further studies with EC process on costing and sludge generation will help to advance the technology for wastewater treatment.

  11. CO-DIGESTION OF SEWAGE SLUDGE AND MATURE LANDFILL LEACHATE IN PRE-BIOAUGMENTED SYSTEM

    Directory of Open Access Journals (Sweden)

    Agnieszka Montusiewicz

    2014-10-01

    Full Text Available The study examined the effects of co-digestion of sewage sludge and mature landfill leachate at the volumetric ratio of 95:5% in primarily bioaugmented system. Bioaugmentation was carried out with the use of commercial product Arkea® in the volumetric dose of 5% and lasted three months prior to the co-digestion start-up. Co-digestion was undergone without bioaugmentation. The results indicated that in the first period (of three months following bioaugmentation, co-digestion led to biogas/methane yields only 5-8% lower as compared to anaerobic digestion of sewage sludge, and the differences were not statistically significant. Moreover, a comparable value of volatile solids removal was obtained. However, the effects became worse over time, i.e. a lower organics removal efficiency of 16% as well as 9.5–13% decreases of biogas/methane yields were achieved by applying co-digestion for a further period (of the same duration. Co-digestion of sewage sludge and mature landfill leachate could be recognized as quite efficient in the system that was primarily bioaugmented with the use of Arkea®. However, the beneficial impact of bioaugmentation remained for the limited period of three months after its completion. To sustain the favourable effects a periodical, repeatable bioaugmentation of the co-digestion system is required.

  12. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  13. Organic halogens in landfill leachates

    DEFF Research Database (Denmark)

    Grøn, C.; Christensen, J. B.; Jensen, Dorthe Lærke

    2000-01-01

    Using a group parameter, total organic halogens (TOX), high TOX concentrations were found in leachates and leachate contaminated groundwaters at two Danish mixed sanitary and hazardous waste sites. With commonly used screening procedures for organic contaminants, the individual halogenated organi...

  14. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology.

    Science.gov (United States)

    Silveira, Jefferson E; Zazo, Juan A; Pliego, Gema; Bidóia, Edério D; Moraes, Peterson B

    2015-04-01

    Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99% of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

  15. Removal of ammonia nitrogen from leachate of Muribeca municipal solid waste landfill, Pernambuco, Brazil, using natural zeolite as part of a biochemical system.

    Science.gov (United States)

    Lins, Cecilia Maria M S; Alves, Maria Cristina M; Campos, Juacyara C; Silva, Fabrícia Maria S; Jucá, José Fernando T; Lins, Eduardo Antonio M

    2015-01-01

    The inadequate disposal of leachate is one of the key factors in the environmental impact of urban solid waste landfills in Brazil. Among the compounds present in the leachates from Brazilian landfills, ammonia nitrogen is notable for its high concentrations. The purpose of this study was to assess the efficiency of a permeable reactive barrier filled with a natural zeolite, which is part of a biochemical system for the tertiary treatment of the leachate from Muribeca Municipal Solid Waste Landfill in Pernambuco, Brazil, to reduce its ammonia nitrogen concentration. This investigation initially consisted of kinetic studies and batch equilibrium tests on the natural zeolite to construct the sorption isotherms, which showed a high sorption capacity, with an average of 12.4 mg NH4+.L(-1), a value close to the sorption rates found for the aqueous ammonium chloride solution. A permeable reactive barrier consisting of natural zeolite, as simulated by the column test, was efficient in removing the ammonia nitrogen present in the leachate pretreated with calcium hydroxide. Nevertheless, the regenerated zeolite did not satisfactorily maintain the sorption properties of the natural zeolite, and an analysis of their cation-exchange properties showed a reduced capacity of 54 meq per 100 g for the regenerated zeolite compared to 150 meq per 100 g for the natural zeolite.

  16. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE)

    DEFF Research Database (Denmark)

    Xing, Wei; Lu, Wenjing; Zhao, Yan

    2013-01-01

    scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280t of waste was generated and then transported to a conventional landfill for disposal. A number...... to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment......, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl−, Mg2+, and Ca2+, may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia...

  17. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  18. Groundwater Pollution Source Characterization of an Old Landfill

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    Only a few landfill investigations have focused on both the quantity and the quality of leachate as a source of groundwater pollution. The investigation of Vejen Landfill in Denmark included an introductionary historical survey (old maps, aerial photographs, interviews, etc.), leachate quality...... analysis, potential mapping of the groundwater surface below the landfill and leachate flow to surface waters and groundwater. The historical investigation showed that the original soil surface beneath the waste was a relatively heterogeneous mixture of boggy ground and sand soil areas. This indicated...... that the leaching from the landfill could be unevenly distributed. The main specific organic compounds observed in the leachate were aromatic hydrocarbons (mainly xylenes), phenols and the pesticide MCPP. Preliminary investigations of the leach from the landfill indicated, that both a northerly leach to a drainage...

  19. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    Science.gov (United States)

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  20. Use of shredded tire chips and tire crumbs as packing media in trickling filter systems for landfill leachate treatment.

    Science.gov (United States)

    Mondal, B; Warith, M A

    2008-08-01

    Scrap tire stockpiles are breeding grounds for pests, mosquitoes and west Nile viruses and, thereby, become a potential health risk. This experimental study was carried out in six stages to determine the suitability of shredded tire materials in a trickling filter system to treat landfill leachate. Biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and NH3-N removals were obtained in the range of 81 to 96%, 76 to 90% and 15 to 68%, respectively. The removal of organics appears to be largely related to total dissolved solids reduction in leachate. A sudden increase, from time to time, in organic content of effluent could be attributed to biomass sloughing and clogging in the trickling filters. However, tire crumbs exhibited more consistent organics removal throughout the experimental program. Due to the high surface area of shredded tire chips and crumbs, a layer of biomass, 1-2 mm thick, was attached to them and was sloughed off at an interval of 21 days. Apart from that, as shredded tires are comparatively cheaper than any other usable packing material, tire chips and tire crumbs appeared to be quite promising as packing media in trickling filters for landfill leachate treatment.

  1. Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study

    Directory of Open Access Journals (Sweden)

    Yuka Ogata

    2016-06-01

    Full Text Available The effects of salinity on anaerobic waste degradation and microbial communities were investigated, in order to propose an appropriate leachate recirculation process in a waste landfill in a tropical region. A salt concentration of 21 mS cm−1 of electrical conductivity (EC did not affect waste degradation, but a salt concentration of 35 mS cm−1 of EC inhibited CH4 generation. A higher salt concentration of 80 mS cm−1 of EC inhibited not only CH4 and CO2 generation, but also degradation of organic compounds. The bacterial and archaeal community compositions were affected by high salinity. High salinity can exert selective pressure on bacterial communities, resulting in a change in bacterial community structure. Ammonium caused strong, dominant inhibition of biogas production in the salt concentration range of this study. Quality control, especially of ammonium levels, will be essential for the promotion of waste biodegradation in landfills with leachate recirculation.

  2. Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction

    DEFF Research Database (Denmark)

    Zhang, Duoying; Vahala, Riku; Wang, Yu

    2016-01-01

    Landfill leachate (LFL) contains high strength of ammonium and complex organic substances including biodegradable volatile fatty acids (VFAs), refractory aquatic humic substances (AHS) and micro-scale xenobiotic organic chemicals (XOCs), which promotes the diverse microbial community in LFL...... treatment bioreactors. These microbes cooperate to remove nitrogen, biodegrade organic matters, eliminate the toxicity of XOCs and produce energy. In these diverse microbes, some show dominant in the bioreactor and are prevalent in many kinds of LFL treatment bio-processes, such as Brocadia from the phylum...

  3. Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM)

    Science.gov (United States)

    Asaithambi, Perumal; Beyene, Dejene; Aziz, Abdul Raman Abdul; Alemayehu, Esayas

    2018-05-01

    Treatment of landfill leachate wastewater by electrocoagulation process using an aluminium electrode was investigated in a batch electrochemical cell reactor. Response surface methodology based on central composite design was used to optimize the operating parameters for the removal of % color and % total organic carbon (TOC) together with power consumption from landfill leachate. Effects of three important independent parameters such as current density ( X 1), inter-electrode distance ( X 2) and solution pH ( X 3) of the landfill leachate sample on the % color and % TOC removal with power consumption were investigated. A quadratic model was used to predict the % color and % TOC removal with power consumption in different experimental conditions. The significance of each independent variable was calculated by analysis of variance. In order to achieve the maximum % color and % TOC removal with minimum of power consumption, the optimum conditions were about current density ( X 1)—5.25 A/dm2, inter-electrode distance ( X 2)—1 cm and initial solution of effluent pH ( X 3)—7.83, with the yield of color removal of 74.57%, and TOC removal of 51.75% with the power consumption of 14.80 kWh/m3. Electrocoagulation process could be applied to remove pollutants from industrial effluents and wastewater.

  4. Migration behavior of Cu and Zn in landfill with different operation modes

    International Nuclear Information System (INIS)

    Long Yuyang; Shen Dongsheng; Wang Hongtao; Lu Wenjing

    2010-01-01

    Cu and Zn were chosen to study the heavy metal migration behavior and mechanism in three simulated landfills with different operation modes, namely conventional landfill (CL), leachate directly recirculated landfill (RL) and leachate pre-treated bioreactor landfill (BL). It showed that Cu and Zn in refuse experienced periodic migration and retention gradually during decomposition, and the variation of Cu(II) and Zn(II) in leachate correspondingly reflected the releasing behavior of Cu and Zn in landfill refuse at different stabilization stages. Except for their accumulated leaching amounts, Cu(II) and Zn(II) concentrations in leachate from landfills with different operation modes had no significant difference. The accumulated leaching amounts of Cu and Zn from CL showed exponential increase, while those of RL and BL showed exponential decay. The operation of bioreactor landfill with leachate recirculation can obviously attenuate the heavy metal leaching than conventional operation. The introduction of methanogenic reactor (MR) in bioreactor landfill can further promote the immobilization of heavy metal in refuse than leachate recirculation directly.

  5. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: a comparative study on a novel sequencing batch reactor based on zero valent iron.

    Science.gov (United States)

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-08-30

    A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Combined treatment of municipal waste-water and landfill leachate by means of membrane bioreactor: an experimental study

    International Nuclear Information System (INIS)

    Iannelli, R.; Lizza, E.; Giraldi, D.

    2005-01-01

    This work presents the results of an experimental study focusing on the applicability of the membrane bioreactor technology for the combined treatment of municipal wastewater and landfill leachate. In the experiment we used both a micro-filtration unit and a traditional secondary settler in an innovative combined process that can present some economic advantages on the pure membrane separation, so as to evaluate and compare the efficiencies of the two adopted technologies. The experiment was carried out in two phases: first, we evaluated the system only with municipal wastewater; then we tested the treatment of a mixture of municipal wastewater and landfill leachate. We obtained good results in both cases for standard quality indicators (COD, TSS, NH 4 ), specific inorganic compounds such as Fe and Zn and microorganisms. The micro-filtrations unit had very good performances with respect to both treatment efficiency and hydraulic behaviour: after the first start-up period, we observed a regular running of the unit with no need for special chemical or mechanical treatment different from the ones adopted ordinarily in the MBR treatment systems [it

  7. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  8. Preparation of tamarind fruit seed activated carbon by microwave heating for the adsorptive treatment of landfill leachate: A laboratory column evaluation.

    Science.gov (United States)

    Foo, K Y; Lee, L K; Hameed, B H

    2013-04-01

    The preparation of tamarind fruit seed granular activated carbon (TSAC) by microwave induced chemical activation for the adsorptive treatment of semi-aerobic landfill leachate has been attempted. The chemical and physical properties of TSAC were examined. A series of column tests were performed to determine the breakthrough characteristics, by varying the operational parameters, hydraulic loading rate (5-20 mL/min) and adsorbent bed height (15-21 cm). Ammonical nitrogen and chemical oxygen demand (COD), which provide a prerequisite insight into the prediction of leachate quality was quantified. Results illustrated an encouraging performance for the adsorptive removal of ammonical nitrogen and COD, with the highest bed capacity of 84.69 and 55.09 mg/g respectively, at the hydraulic loading rate of 5 mL/min and adsorbent bed height of 21 cm. The dynamic adsorption behavior was satisfactory described by the Thomas and Yoon-Nelson models. The findings demonstrated the applicability of TSAC for the adsorptive treatment of landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.

    Science.gov (United States)

    Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong

    2018-05-01

    Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7  cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.

  10. Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate.

    Science.gov (United States)

    Bis, M; Montusiewicz, A; Ozonek, J; Pasieczna-Patkowska, S

    2015-09-01

    In this study, the application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate was investigated. Three configurations of cavitation device were examined and operational parameters of the process were selected. The study indicated that the orifice plate with a 3/10mm diameter conical concentric hole, characterized by the cavitation number of 0.033, is a reasonable choice to ensure the enhanced biodegradability of mature leachate. Using such a configuration and maintaining 30 recirculation passes through the cavitation zone at inlet pressure of 7 bar, the highest increase of biodegradability index (BI) of approximately 22% occurred, i.e., from the value of 0.046 to 0.056. The FT-IR/PAS analysis confirmed a degradation of refractory compounds that typically prevail in mature leachate. An evaluation of energy efficiency was made in terms of the actual consumed energy measured by using the Kyoritsu KEW6310 Power Quality Tester. A cavitational yield of 9.8 mg COD kJ(-1) was obtained for the optimum configuration and 30 recirculation passes. Regarding energy efficiency, the application of 10 cavitation cycles appeared to be the most profitable. This was due to an almost threefold higher cavitational yield of 27.5 mg COD kJ(-1). However, the preferable option should be selected by considering a satisfactory effect in the biodegradability enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    Science.gov (United States)

    2012-01-01

    Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems. PMID:23369204

  12. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Ronald S.; Wiese, Adam H.; Bauer, Edmund O.; Riemenschneider, Donald E.

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently utilized Populus genotypes subjected to irrigation with municipal solid waste landfill leachate or non-fertilized well water (control), and (2) the above- and below-ground biomass of the trees after 70 days of growth. We determined height, diameter, and number of leaves at 28, 42, 56, and 70 days after planting (DAP), along with stem, leaf, and root dry mass by testing six Populus clones (DN34, DN5, I4551, NC14104, NM2, NM6) grown in a greenhouse in a split-split plot, repeated measures design with two blocks, two treatments (whole-plots), six clones (sub-plots), and four sampling dates (sub-sub-plots, repeated measure). Treatments (leachate, water) were applied every other day beginning 42 DAP. The leachate-treated trees exhibited greater height, diameter, and number of leaves at 56 and 70 DAP (P 0.05). Overall, genotypic responses to the leachate treatment were clone-specific for all traits

  13. Hydrogeology and historical assessment of a classic sequential-land use landfill site, Illinois, U.S.A.

    Science.gov (United States)

    Booth, Colin J.; Vagt, Peter J.

    1990-05-01

    The Blackwell site in northeastern Illinois was a classic sequential-use project combining land reclamation, a sanitary landfill, and a recreational park. This paper adds a recent assessment of leachate generation and groundwater contamination to the site's unfinished record. Hydrogeological studies show that (1) the landfill sits astride an outwash aquifer and a till mound, which are separated from an underlying dolomite aquifer by a thin, silty till; (2) leachate leaks from the landfill at an estimated average rate between 48 and 78 m3/d; (3) the resultant contaminant plume is virtually stagnant in the till but rapidly diluted in the outwash aquifer, so that no off-site contamination is detected; (4) trace VOC levels in the dolomite probably indicate that contaminants have migrated there from the landfill-derived plume in the outwash. Deviations from the original landfill concepts included elimination of a leachate collection system, increased landfill size, local absence of a clay liner, and partial use of nonclay cover. The hydrogeological setting was unsuitable for the landfill as constructed, indicating the importance of detailed geological consideration in landfill and land-use planning.

  14. Microbial volatilization of inorganic selenium from landfill leachate; Mikrobiologische Volatilisierung von anorganischem Selen aus Deponiesickerwaessern bei umweltrelevanten Konzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Peitzsch, Mirko; Kremer, Daniel; Kersten, Michael [Mainz Univ. (Germany). Inst. fuer Geowissenschaften

    2010-04-15

    Background, aim, and scope: Determination of the rates of microbial alkylation are of interest with respect to natural attenuation of harmful selenium concentrations or selenium charges in contaminated ecosystems. Materials and methods: Landfill gas and the headspace of microbial microcosm incubation vessels were sampled in Tedlar {sup registered} bags. On-line hyphenation of an efficient enrichment method (cryotrapping-cryofocusing), a gaschromatographic separation technique, and the sensitive ICP-MS detection system was used for speciation of volatile organoselenium compounds. A detection limit at the ultra trace level (pg Se) was achieved with this CT-CF-GC-ICP-MS technique. Results: Incubation of landfill leachate with Alternata alternata as an active methylating organism showed a production of volatile selenium compounds (DMSe, DMDSe, EMDSe, DEDSe) over the whole range of applied inorganic selenium concentrations (10 {mu}gL{sup -1} to 10 mgL{sup -1}), with volatilization rates of up to 10 mg m{sup -3}d{sup -1}. For selenium concentrations of 1 mgL{sup -1} in the nutrient broth, up to 7 % of the inorganic selenium was volatilized after one week. The same volatile selenium compounds were observed in landfill gas. Discussion: The amount of volatilized selenium was comparable to that found in other studies with microbial pure cultures as well as isolates from waters or soils, but at much lower initial concentrations used in the incubations. Conclusions: The alkylation of selenium in the enriched mixed culture from landfill leachate at environmentally relevant concentrations indicates that the organoselenium compounds of same species composition and distribution determined in landfill gas are produced by microorganisms. Recommendations and perspectives: The microbial alkylation of toxic inorganic selenium species to less toxic or non-toxic, volatile compounds is an efficient method for bioremediation of contaminated sites even at relatively low Se concentrations.

  15. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    International Nuclear Information System (INIS)

    Trois, Cristina; Coulon, Frederic; Polge de Combret, Cecile; Martins, Jean M.F.; Oxarango, Laurent

    2010-01-01

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l -1 . Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.

  16. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Trois, Cristina, E-mail: troisc@ukzn.ac.za [Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban 4041 (South Africa); Coulon, Frederic; Polge de Combret, Cecile [Centre for Resource Management and Efficiency, School of Applied Sciences, Cranfield University, MK43 0AL (United Kingdom); Martins, Jean M.F.; Oxarango, Laurent [Laboratoire d' etude de Transferts en Hydrologie et Environnement, UMR 5564 (CNRS/INPG/IRD/UJF), Universite de Grenoble, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-09-15

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l{sup -1}. Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.

  17. A geophysical toolbox for imaging and characterization of a landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Ghose, R.; Draganov, D.S.; Heimovaara, T.J.

    2015-01-01

    Leachate and gas are a product of biochemical reactions occurring inside the landfill. Treatment technologies (e.g., recirculation of leachate) are developed to reduce the production of leachate. Imaging the location of the wet and gas pockets inside the landfill can help improve the treatment

  18. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  19. Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate.

    Science.gov (United States)

    Wang, Yu; Sikora, Saraya; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2012-05-01

    Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Filter-based treatment of leachate from an industrial landfill containing shredder residues of end-of-life vehicles and white goods.

    Science.gov (United States)

    Kängsepp, P; Mathiasson, L; Mårtensson, L

    2010-02-01

    A pilot plant was set up to treat leachate from an industrial landfill containing shredder residues of end-of-life vehicles and white goods. The treatment plant consisted of aeration and sedimentation steps for pre-treatment, and a filter. The plant was designed to simultaneously remove various types of pollutants. The efficiencies of pre-treatment and of the main treatment step were investigated over a period of 3 years at the landfill site. By continuous aeration of the leachate the concentrations of Fe and Mn were reduced by 55% and 49%, respectively. By prolonged sedimentation suspended solid content was noticeably reduced (72%). In the filter, consisting of a mixture of peat and carbon-containing ash as a treatment medium, very high reduction of polar organic compounds, e.g. phenol (74%), o-and p-cresol (91%), and 2,4-dimethylphenol (73%), high average reduction of metals, e.g. Pb (78%), Fe (74%), Cu (73%), Mn (56%), Sn (55%), and Zn (47%), and good average reduction of DOC (26%), Tot-N (23%) and NH4-N (46%) were achieved. Sixty non-polar compounds in the leachate, identified by GC-MS screening, occurred at trace level. Most of them were considerably reduced in the filter.

  1. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  2. Emerging contaminants at a closed and an operating landfill in Oklahoma

    Science.gov (United States)

    Andrews, William J.; Masoner, Jason R.; Cozzarelli, Isabelle M.

    2012-01-01

    Landfills are the final depositories for a wide range of solid waste from both residential and commercial sources, and therefore have the potential to produce leachate containing many organic compounds found in consumer products such as pharmaceuticals, plasticizers, disinfectants, cleaning agents, fire retardants, flavorings, and preservatives, known as emerging contaminants (ECs). Landfill leachate was sampled from landfill cells of three different age ranges from two landfills in Central Oklahoma. Samples were collected from an old cell containing solid waste greater than 25 years old, an intermediate age cell with solid waste between 16 and 3 years old, and operating cell with solid waste less than 5 years old to investigate the chemical variability and persistence of selected ECs in landfill leachate of differing age sources. Twenty-eight of 69 analyzed ECs were detected in one or more samples from the three leachate sources. Detected ECs ranged in concentration from 0.11 to 114 μg/L and included 4 fecal and plant sterols, 13 household\\industrial, 7 hydrocarbon, and 4 pesticide compounds. Four ECs were solely detected in the oldest leachate sample, two ECs were solely detected in the intermediate leachate sample, and no ECs were solely detected in the youngest leachate sample. Eleven ECs were commonly detected in all three leachate samples and are an indication of the contents of solid waste deposited over several decades and the relative resistance of some ECs to natural attenuation processes in and near landfills.

  3. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate.

    Science.gov (United States)

    Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng

    2016-12-05

    The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    Science.gov (United States)

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  5. An anaerobic field injection experiment in a landfill leachate plume, Grindsted, Denmark: 2. Deduction of anaerobic (methanogenic, sulfate-, and Fe (III)-reducing) redox conditions

    Science.gov (United States)

    Albrechtsen, Hans-JøRgen; Bjerg, Poul L.; Ludvigsen, Liselotte; Rügge, Kirsten; Christensen, Thomas H.

    1999-04-01

    Redox conditions may be environmental factors which affect the fate of the xenobiotic organic compounds. Therefore the redox conditions were characterized in an anaerobic, leachate-contaminated aquifer 15-60 m downgradient from the Grindsted Landfill, Denmark, where an field injection experiment was carried out. Furthermore, the stability of the redox conditions spatially and over time were investigated, and different approaches to deduce the redox conditions were evaluated. The redox conditions were evaluated in a set of 20 sediment and groundwater samples taken from locations adjacent to the sediment samples. Samples were investigated with respect to groundwater chemistry, including hydrogen and volatile fatty acids (VFAs) and sediment geochemistry, and bioassays were performed. The groundwater chemistry, including redox sensitive species for a large number of samples, varied over time during the experimental period of 924 days owing to variations in the leachate from the landfill. However, no indication of change in the redox environment resulting from the field injection experiment or natural variation was observed in the individual sampling points. The methane, Fe(II), hydrogen, and VFA groundwater chemistry parameters strongly indicated a Fe(III)-reducing environment. This was further supported by the bioassays, although methane production and sulfate-reduction were also observed in a few samples close to the landfill. On the basis of the calculated carbon conversion, Fe(III) was the dominant electron acceptor in the region of the aquifer, which was investigated. Because of the complexity of a landfill leachate plume, several redox processes may occur simultaneously, and an array of methods must be applied for redox characterization in such multicomponent systems.

  6. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country.

    Science.gov (United States)

    Kamchanawong, S; Veerakajohnsak, C

    2010-04-01

    This study looks into the potential risks of arsenic, chromium, and copper leaching from disposed hardwoods treated with chromated copper arsenate (CCA) in a tropical climate. The Toxicity Characteristic Leaching Procedure (TCLP) and the Waste Extraction Test (WET) were employed to examine new CCA-treated Burseraceae and Keruing woods, weathered CCA-treated teak wood, and ash from new CCA-treated Burseraceae wood. In addition, a total of six lysimeters, measuring 2 m high and 203 mm in diameter were prepared to compare the leachate generated from the wood monofills, construction and demolition (C&D) debris landfills and municipal solid waste (MSW) landfills, containing CCA-treated Burseraceae wood. The TCLP and WET results showed that the CCA-treated Burseraceae wood leached higher metal concentrations (i.e. 9.19-17.70 mg/L, 1.14-5.89 mg/L and 4.83-23.89 mg/L for arsenic, chromium, and copper, respectively) than the CCA-treated Keruing wood (i.e. 1.74-11.34 mg/L, 0.26-3.57 mg/L and 0.82-13.64 mg/L for arsenic, chromium and copper, respectively). Ash from the CCA-treated Burseraceae wood leached significantly higher metal concentrations (i.e. 108.5-116.9 mg/L, 1522-3862 mg/L and 84.03-114.4 mg/L for arsenic, chromium and copper, respectively), making this type of ash of high concern. The lysimeter study results showed that the MSW lysimeter exhibited higher reducing conditions, more biological activities and more dissolved ions in their leachates than the wood monofill and C&D debris lysimeters. All leachates generated from the lysimeters containing the CCA-treated Burseraceae wood contained significantly higher concentrations of arsenic in comparison to those of the untreated wood: in the range of 0.53-15.7 mg/L. It can be concluded that the disposal of CCA-treated Burseraceae wood in an unlined C&D landfill or a MSW landfill has the potential to contaminate groundwater.

  7. Characterization of controlled landfill leachate from the city of Guaratinguetá - SP, Brazil

    Directory of Open Access Journals (Sweden)

    André Luis de Castro Peixoto

    2018-05-01

    Full Text Available This research evaluated the physicochemical parameters of a leachate sample from a controlled landfill in the city of Guaratinguetá-SP. The evaluation was conducted using spectrometric and spectrophotometric methods in order to assess the formation of persistent compounds. The selection of parameters was based on the CETESB Article 18 and CONAMA 357/05 Article 34, as well as organic characterization methods, such as FTIR, NMR (1H-NMR, 13C-NMR and APT, GC-MS, molar mass distribution and elemental analysis (CHN. Chemical and physical stability were also verified. The ammoniacal nitrogen concentration is 20 times greater than tolerance limit established by law (20 mg L-1. The Ba and Ni presented concentrations above those permitted by the legislation (CETESB Article 18 and CONAMA 357/05 Article 34. Those values of chemical oxygen demand (COD and total organic carbon (TOC were 1013 mg L-1 and 286 mg L-1, respectively. It was not possible to determine the biochemical oxygen demand (BOD of slurry sample. In this sense, the biodegradability parameter for the slurry studied was Non-Determinable (ND, indicating that the organic matter of the slurry studied is recalcitrant. Recalcitrant humic substances of landfill leachate the present low polydispersity. These refractory acids play a detached role in carrying pollutants in the environment with regard to carrying toxic metals and pesticides. Finally, it was possible to verify that the humic acids’ complexing capacity indicates that hydroxyl and carboxyl groups may exist in larger quantities than the nitrogen and sulfur groups. Further, the high content of metals may indicate that the waste was not properly separated.

  8. The leaching of lead from lead-based paint in landfill environments.

    Science.gov (United States)

    Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy

    2008-08-30

    Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.

  9. Optimization aspects of the biological nitrogen removal process in a full-scale twin sequencing batch reactor (SBR) system in series treating landfill leachate.

    Science.gov (United States)

    Remmas, Nikolaos; Ntougias, Spyridon; Chatzopoulou, Marianna; Melidis, Paraschos

    2018-03-29

    Despite the fact that biological nitrogen removal (BNR) process has been studied in detail in laboratory- and pilot-scale sequencing batch reactor (SBR) systems treating landfill leachate, a limited number of research works have been performed in full-scale SBR plants regarding nitrification and denitrification. In the current study, a full-scale twin SBR system in series of 700 m 3 (350 m 3 each) treating medium-age landfill leachate was evaluated in terms of its carbon and nitrogen removal efficiency in the absence and presence of external carbon source, i.e., glycerol from biodiesel production. Both biodegradable organic carbon and ammonia were highly oxidized [biochemical oxygen demand (BOD 5 ) and total Kjehldahl nitrogen (TKN) removal efficiencies above 90%], whereas chemical oxygen demand (COD) removal efficiency was slightly above 40%, which is within the range reported in the literature for pilot-scale SBRs. As the consequence of the high recalcitrant organic fraction of the landfill leachate, dissimilatory nitrate reduction was restricted in the absence of crude glycerol, although denitrification was improved by electron donor addition, resulting in TN removal efficiencies above 70%. Experimental data revealed that the second SBR negligibly contributed to BNR process, since carbon and ammonia oxidation completion was achieved in the first SBR. On the other hand, the low VSS/SS ratio, due to the lack of primary sedimentation, highly improved sludge settleability, resulting in sludge volume indices (SVI) below 30 mL g -1 .

  10. Biological Treatment of Leachate using Sequencing Batch Reactor

    Directory of Open Access Journals (Sweden)

    WDMC Perera

    2014-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE TA Abstract   In Sri Lanka municipal solid waste is generally disposed in poorly managed open dumps which lack liner systems and leachate collection systems. Rain water percolates through the waste layers to produce leachate which drains in to ground water and finally to nearby water bodies, degrading the quality of water. Leachate thus has become a major environmental concern in municipal waste management and treatment of leachate is a major challenge for the existing and proposed landfill sites.   The study was conducted to assess the feasibility of the usage of the Sequencing Batch Reactor in the treatment of the landfill leachate up to the proposed levels in the draft report of “Proposed Sri Lankan standard for landfill leachate to be disposed to the inland waters". Leachate collected from the open dumpsite at Meethotamulla, Western Province, Sri Lanka was used for leachate characterization.   SBR was constructed with a 10-liter working volume operated in an 18 hour cycle mode and each cycle consists of 15hours of aerobic, 2h settle and 0.5 h of fill/decant stages. The Dissolved Oxygen level within the SBR was maintained at 2 mg/l through the aerobic stage. Infeed was diluted with water during the acclimatization period and a leachate to water ratio of 55:45 was maintained. The removal efficiencies for different parameters were; COD (90.5%, BOD (92.6%, TS (92.1%, Conductivity (83.9%, Alkalinity (97.4%, Hardness (82.2%, Mg (80.5%, Fe (94.2%, Zn (63.4%, Cr (31.69%, Pb (99.6%, Sulphate (98.9%, and Phosphorus (71.4% respectively. In addition Ni and Cd were removed completely during a single SBR cycle. Thus the dilution of leachate in the dumpsites using municipal wastewater, groundwater or rainwater was identified as the most cost effective dilution methods. The effluent from the Sequencing batch reactor is proposed to be further treated using a constructed wetland before releasing to surface water.

  11. Leachate Treatment from Sarimukti Landfill Using Ozone with Sludge from Water Treatment Plant as a Catalyst

    Directory of Open Access Journals (Sweden)

    Yudha Ramdhani Muhammad

    2018-01-01

    Full Text Available Leachate is the liquid waste from anaerobic decomposition in a landfill. The ozonation process can be used for leachate treatment. Sludge from sedimentation in water treatment plant contains 5.96% of Al and 9.35% of Si which can affect of its cation exchange capacity and affects the active site in the catalyst. This study aims to determine the effectivity of sludge in the ozonation process to treat leachate. A 1,5 L semi-batch reactor containing 1 L sample was used in this experiment with the rate of oxygen supply was at 4 L/min taken from ambient air. Two groups of sludge weighing 1.5 grams, 3.0 grams and 4.5 grams were used and activate with physically and chemically activated. The best result was obtained by the physically activated sludge with mass of 4.5 gram O3-L-4,5 AF. The differences of removal efficiency between O3-L-4,5 AF with the control (O3 for turbidity were respectively 13.02% and 7.81%, for EC were 10.57% and 8.29%, for COD were 49.44% and 37.50%, and for residual ozone concentration at the end of contact time were 7.6 mg/L and 9.7 mg/L. It can be concluded that activaed sludge and ozonation can be used as a catalyst in leachate treatment.

  12. Municipal solid waste landfills harbor distinct microbiomes

    Science.gov (United States)

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  13. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  14. Combined heterogeneous Electro-Fenton and biological process for the treatment of stabilized landfill leachate.

    Science.gov (United States)

    Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V

    2018-03-15

    Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Simulation of construction and demolition waste leachate

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, T.G.; Jang, Y.; Thurn, L.G.

    1999-11-01

    Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed for a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.

  16. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China.

    Science.gov (United States)

    Deng, Mingjun; Kuo, Dave T F; Wu, Qihang; Zhang, Ying; Liu, Xinyu; Liu, Shengyu; Hu, Xiaodong; Mai, Bixian; Liu, Zhineng; Zhang, Haozhi

    2018-05-01

    The occurrence, distribution and removal efficiencies of organophosphorus flame retardants (OPFRs) and metals were examined in a municipal landfill leachate treatment system in Guangzhou, China. Five OPFRs and thirty-five metals were detected in wastewater samples collected at different treatment stages. ∑OPFRs was reduced from 4807.02 ng L -1 to 103.91 ng L -1 through the treatment system, with close to 98% removed from the dissolved phase. Tris(clorisopropyl) phosphates (TCPPs) dominated through the treatment process and accounted for over 80% and 50% of ∑OPFRs at the influent and the effluent, respectively. TCPPs were most efficiently removed (98.6%) followed by tris(2-chloroethyl) phosphate (TCEP) (96.6%) and triphenyl phosphate (TPP) (88.5%). For metals, Fe, Cr, and Rb were dominant in the raw leachate, detected at 7.55, 2.82, and 4.50 mg L -1 , respectively. Thirteen regulated heavy metals - including eight major pollutants (i.e., As. Cd, Cr, Cu, Hg, Ni, Pb, and Zn) - have been detected in all wastewater samples at sub-mg L -1 levels. Over 99.5% removal was achieved for Cr, Ni, and Fe, and close to 95% removal efficiency was observed for Rb. For the eight major heavy metals, over 99% removal was observed; the only exception was Cu, which was removed at 89%. It was found that microfiltration/reverse osmosis was critical for the removal of OPFRs and heavy metals while the core biological treatment played a minor role towards their removal. Remobilization of Co, Cu, Fe, Hg, Mn, Ni, Sb, and Sr from the returned sludge occurred during the second denitrification, indicating the need for additional post-biological process for effective removal of both contaminants. This study highlights the critical need to develop cheap, effective treatment technologies for contaminants-laden leachate generated from open dumps and under-designed landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Tratamento de chorume de aterro sanitário por fotocatálise heterogênea integrada a processo biológico convencional Treatment of landfill leachates by heterogeneous photocatalysis integrated to a conventional biological process

    Directory of Open Access Journals (Sweden)

    Josmaria Lopes de Morais

    2006-02-01

    Full Text Available The chemical and microbiological decomposition of the garbage deposited in landfills leads to the generation of a dark and malodorous liquid residue that shows a chemical composition of extreme variability and complexity. When matured, the leachates show low biodegradability, which makes it difficult to treat by conventional biological processes. In this work a new strategy for the treatment of landfill leachates is proposed, involving a preliminary treatment by heterogeneous photocatalysis followed by an activated sludge system. The results demonstrate that photochemical treatments of 60 and 90 min significantly enhance the leachates' biodegradability favoring subsequent biological treatment. The biodegradability rate (BOD/COD was also greatly enhanced.

  18. Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology

    International Nuclear Information System (INIS)

    Zhang Hui; Ran Xiaoni; Wu Xiaogang; Zhang Daobin

    2011-01-01

    Box-Behnken statistical experiment design and response surface methodology were used to investigate electrochemical oxidation of mature landfill leachate pretreated by sequencing batch reactor (SBR). Titanium coated with ruthenium dioxide (RuO 2 ) and iridium dioxide (IrO 2 ) was used as the anode in this study. The variables included current density, inter-electrode gap and reaction time. Response factors were ammonia nitrogen removal efficiency and COD removal efficiency. The response surface methodology models were derived based on the results. The predicted values calculated with the model equations were very close to the experimental values and the models were highly significant. The organic components before and after electrochemical oxidation were determined by GC-MS.

  19. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-01

    This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. IMPACT OF MUNICIPAL LANDFILL SITE ON WATER QUALITY IN THE WŁOSANKA STREAM

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kanownik

    2016-09-01

    Full Text Available Hydrochemical research conducted in the years 2007–2010 comprised monitoring of the Włosanka stream waters and leachate waters from the municipal landfill in Kulerzów in the Malopolskie province. 16 leachate samples were collected from the container taking into consideration the vertical stratification of the quality and samples of water from the Włosanka stream in measurement points situated before and after the landfill. Concentrations of metals: calcium, magnesium, sodium, potassium, iron, manganese and heavy metals: chromium, zinc, copper, cadmium, nickel and lead were determined in the leachates and the stream water. Analysis of the studied metals in the leachates revealed that only potassium concentration exceeded the highest admissible value which is the condition of introducing sewage to water bodies or to soil. Water along the investigated reach of the Włosanka stream, both above and below the municipal landfill was of quality class 1. The landfill had no significant effect on the studied metal concentrations in the stream water – no statistically significant differences were registered between the concentrations of the studied metals (including heavy metals either in the point above or below the landfill. However, statistical tests comparing values of metal concentrations in the landfill leachates with the stream water revealed that the concentrations of 7 out of 12 tested metals were significantly higher in the leachates. Therefore, the landfill site monitoring should be continued, leachate waters should be collected in the container and supplied to the sewage treatment plant to prevent any threat to human life and health, or to the environment.

  1. Migration of leachate solution through clay soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Warith, M M

    1987-01-01

    The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate, and the efficiency of natural clay barriers as an expedient economic lining material is assessed. Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins. Data for companion tests on laboratory columns are also presented. Chemical analysis on samples from the basins and leachates from the columns measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO/sub 3/, and CO/sub 3/) (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity. Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model). Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite). The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favorable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used.

  2. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    Science.gov (United States)

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  3. An anaerobic field injection experiment in a landfill leachate plume (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Bjerg, Poul Løgstrup; Ludvigsen, L.

    1999-01-01

    Redox conditions may be environmental factors which affect the fate of the xenobiotic organic compounds. Therefore the redox conditions were characterized in an anaerobic, leachate-contaminated aquifer 15–60 m downgradient from the Grindsted Landfill, Denmark, where an field injection experiment...... was carried out. Furthermore, the stability of the redox conditions spatially and over time were investigated, and different approaches to deduce the redox conditions were evaluated. The redox conditions were evaluated in a set of 20 sediment and groundwater samples taken from locations adjacent...... to the sediment samples. Samples were investigated with respect to groundwater chemistry, including hydrogen and volatile fatty acids (VFAs) and sediment geochemistry, and bioassays were performed. The groundwater chemistry, including redox sensitive species for a large number of samples, varied over time during...

  4. Organics removal from landfill leachate and activated sludge production in SBR reactors

    International Nuclear Information System (INIS)

    Klimiuk, Ewa; Kulikowska, Dorota

    2006-01-01

    This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2 d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4 h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y obs ) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y obs was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y obs to decrease significantly from 0.32 mg VSS/mg COD at HRT 2 d to 0.04 mg VSS/mg COD at HRT 12 d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d -1 (series 3) to 0.032 d -1 (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of cell decay. On the contrary

  5. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate

    Science.gov (United States)

    Scholl, M.A.; Cozzarelli, I.M.; Christenson, S.C.

    2006-01-01

    Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for ??18O, ??2H, non-volatile dissolved organic carbon (NVDOC), SO42-, NO3- and Cl-. Monthly recharge amounts were quantified using the offset of the ??18O or ??2H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO42- in the top 1 to 2??m of the saturated zone was associated with recharge; SO42- averaged 2.2??mM, with maximum concentrations of 15??mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6??mM. Temporal monitoring of ??2H and SO42- showed that vertical transport of recharge carried SO42- to depths up to 1.75??m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of ??34S in SO42- indicated both SO42- reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO42- reduction rates, calculated using the natural Cl- gradient as a conservative tracer, ranged from 7.5 ?? 10- 3 to 0.61??mM??d- 1 (over various depth intervals from 0.45 to 1.75??m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO42- reduction rates were higher at the contaminated site. Although estimated SO42- reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated site. Organic compounds more labile than the leachate NVDOC may be

  6. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.

    Science.gov (United States)

    Scholl, Martha A; Cozzarelli, Isabelle M; Christenson, Scott C

    2006-08-10

    Natural attenuation of contaminants in groundwater depends on an adequate supply of electron acceptors to stimulate biodegradation. In an alluvial aquifer contaminated with leachate from an unlined municipal landfill, the mechanism of recharge infiltration was investigated as a source of electron acceptors. Water samples were collected monthly at closely spaced intervals in the top 2 m of the saturated zone from a leachate-contaminated well and an uncontaminated well, and analyzed for delta(18)O, delta(2)H, non-volatile dissolved organic carbon (NVDOC), SO(4)(2-), NO(3)(-) and Cl(-). Monthly recharge amounts were quantified using the offset of the delta(18)O or delta(2)H from the local meteoric water line as a parameter to distinguish water types, as evaporation and methanogenesis caused isotopic enrichment in waters from different sources. Presence of dissolved SO(4)(2-) in the top 1 to 2 m of the saturated zone was associated with recharge; SO(4)(2-) averaged 2.2 mM, with maximum concentrations of 15 mM. Nitrate was observed near the water table at the contaminated site at concentrations up to 4.6 mM. Temporal monitoring of delta(2)H and SO(4)(2-) showed that vertical transport of recharge carried SO(4)(2-) to depths up to 1.75 m below the water table, supplying an additional electron acceptor to the predominantly methanogenic leachate plume. Measurements of delta(34)S in SO(4)(2-) indicated both SO(4)(2-) reduction and sulfide oxidation were occurring in the aquifer. Depth-integrated net SO(4)(2-) reduction rates, calculated using the natural Cl(-) gradient as a conservative tracer, ranged from 7.5x10(-3) to 0.61 mM.d(-1) (over various depth intervals from 0.45 to 1.75 m). Sulfate reduction occurred at both the contaminated and uncontaminated sites; however, median SO(4)(2-) reduction rates were higher at the contaminated site. Although estimated SO(4)(2-) reduction rates are relatively high, significant decreases in NVDOC were not observed at the contaminated

  7. The removal efficiency of constructed wetlands filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment.

    Science.gov (United States)

    He, Hailing; Duan, Zhiwei; Wang, Zhenqing; Yue, Bo

    2017-07-01

    The removal efficiencies of two horizontal subsurface flow constructed wetlands (HSSF CWs, down-flow (F1) and up-flow (F2)) filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment were investigated. The adsorption experiment was conducted to evaluate the potential of zeolite and slag as the wetland substrate. The effects of distance variations along the longitudinal profile of wetland bed on pollutant removal were assessed by sampling at four locations (inlet, outlet, 0.55 m, and 1.10 m from the inlet). During the operation time, the influent and effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total nitrogen (TN), heavy metals, and polycyclic aromatic hydrocarbon (PAH) were measured. The results showed that the constructed wetlands were capable of removing COD, 20.5-48.2% (F1) and 18.6-61.2% (F2); NH 3 -N, 84.0-99.9% (F1) and 93.5-99.2% (F2); TN, 80.3-92.1% (F1) and 80.3-91.2% (F2); and heavy metals, about 90% (F1 and F2). The zeolite-slag hybrid substrate performed excellent removal efficiency for the nitrogen and heavy metals. The inlet area was the most active region of leachate removal. The up-flow constructed wetland (F2) has a higher removal efficiency for the PAH compounds. The significant removal efficiency illustrated that the rural landfill leachate can be treated using the horizontal subsurface flow constructed wetland filled with the zeolite-slag hybrid substrate.

  8. An integrated approach combining chemical analysis and an in vivo bioassay to assess the estrogenic potency of a municipal solid waste landfill leachate in Qingdao.

    Directory of Open Access Journals (Sweden)

    Yufeng Gong

    Full Text Available Various adverse effects related to landfill leachate have made leachates an important issue in past decades, and it has been demonstrated that landfill leachate is an important source of environmental estrogens. In this study, we employed chemical analysis of some already evaluated estrogenic substances, in combination with a bioassay using several specific biomarkers (e.g., plasma vitellogenin and sex steroids, enzyme activity of gonad gamma-glutamyl transpeptidase, and gonadosomatic index to evaluate the estrogenic activities in outlets from different stages of the leachate treatment process. The results indicated that 5 environmental estrogens (4-t-octylphenol, bisphenol A, di-ethyl phthalate, di-n-butyl phthalate, and diethylhexyl phthalate were detected by a gas chromatography-mass spectrometry, and the concentrations in leachate samples were 6153 ng/L, 3642 ng/L, 2139 ng/L, 5900 ng/L, and 9422 ng/L, respectively. Leachate (1∶200 diluted induced the synthesis of plasma vitellogenin and led to decreased enzyme activity of gonad gamma-glutamyl transpeptidase and gonadosomatic index in male goldfish (Carassius auratus after a 28-day exposure, while increased circulating 17β-estradiol level was also observed in males exposed to treated effluent. Although the target EEs were partially removed with removal rates varying from 87.2% to 99.77% by the "membrane bioreactor+reverse osmosis+aeration zeolite biofilter" treatment process, the treated effluent is still estrogenic to fish. The method combined chemical techniques with the responses of test organisms allowing us to identify the group of estrogen-like chemicals so that we were able to evaluate the overall estrogenic effects of a complex mixture, avoiding false negative assessments.

  9. Cadmium complexation by solid waste leachates

    DEFF Research Database (Denmark)

    Xu Ze Lun; Christensen, Thomas H.

    1989-01-01

    A previously reported method for determination of Cd species in solid waste leachates has been applied to ten leachate samples representing five different types of solid waste: refuse compost, flyash from coal combustion, sewage sludge, refuse incineration residues and landfilled municipal waste......, slowly labile complexes and stable complexes. Leachates originating from the same type of solid waste showed different fractions of Cd, in particular with respect to free divalent Cd and stable Cd complexes. Only coal flyash showed almost identical fractions of Cd in the two leachates. The latter is due...

  10. Physiological responses of Vetiver plant (Vetiver zizanioides to municipal waste leachate

    Directory of Open Access Journals (Sweden)

    Sasan Mohsenzadeh

    2016-06-01

    Full Text Available Vetiver plant is tolerant to acidity and temperature variations. Has rapid growth for biomass production and has high tolerance to organic and non-organic compounds in municipal waste leachate for example heavy metals. So this plant is good for landfill cultivation. In this study, physiological responses to municipal waste leachate were studied. Statistical design was a randomized complete block and each block treated with different concentrations of latex at levels of zero, 15, 30, 45 and 60 percent compared to the original latex waste. The leachate collected from the Shiraz landfill and brought into the greenhouse. The physiological characterization including leaf area, dry weight, chlorophyll, anthocyanin, proline, soluble sugars and total protein were measured. The result indicated that the dry weight, chlorophyll and anthocyanin decrease with increasing of latex concentration. The leaf area, leaf relative water, soluble sugars and total protein increased with increasing latex concentration. Proline concentration at 15 percent of leachate increased significantly compared to controls, whereas at higher concentrations decreased. According to the results, it is recommended that 45 percent of leachate in a landfill can be used to irrigate Vetiver. This is the maximum concentration of leachate that Vetiver plant can survive as green space. Primary filtration of leachate before using is recommended. If the aim is more growth or perfume application from root, less concentration of leachate is better.

  11. Geosynthetic applications in landfill design

    International Nuclear Information System (INIS)

    Alshunnar, I.S.; Afifi, S.S.; Tiseo, B.

    1996-01-01

    Landfills are designed to contain waste and to provide protection against discharges of leachate into the environment. Main components of a landfill include a liner system, a leachate collection system, and a cover system. Traditional designs have typically incorporated clay soils for containment and sands with embedded piping for leachate collection. As a result of recent advances in design, geosynthetic materials are now widely used for components. While these materials present cost and feasibility advantages, they also pose significant challenges in stability evaluations, handing during installation, and quality assurance. This paper presents an overview of applications of geosynthetics in design and construction, including: Advantages, disadvantages, design criteria, possible economic benefits of various systems, and related construction considerations. 2 figs., 1 tab

  12. Washing of waste prior to landfilling.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The organic geochemistry of a sanitary landfill leachate plume

    Science.gov (United States)

    Barker, J. F.; Tessmann, J. S.; Plotz, P. E.; Reinhard, M.

    1986-02-01

    Leachate from the North Bay municipal landfill has contaminated an unconfined, sandy aquifer throughout the 700 m flow system from the site to a discharge zone at a creek. The major organic contaminants identified are aromatic hydrocarbons, especially substituted benzenes. The high groundwater velocity of about 75 m yr -1 and the low organic sorption properties of the sand have permitted non-transformed contaminants to spread throughout the total flow system. There is considerable temporal and spatial variability in groundwater chemistry. Most of the aqueous organic carbon has a nominal molecular weight of anarobic segment of the flow system 1,2,4-trimethylbenzene and 1,4-dichlorobenzene are equally persistent, but in the final, less anaerobic segment, the former appears to be degraded more rapidly than the latter. Contaminant distributions in aquifers reflect the results of a number of processes integrated in a complex manner and so are difficult to interpret in terms of specific processes. However, they do provide evidence for what processes are most significant in real groundwater systems and they will also provide critical tests of how well laboratory-derived information relates to real groundwater contamination situations.

  14. Leachate and Pollution Levels of Heavy Metals in the Groundwater near Municipal Solid Waste Landfill Site of Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Borhan Mansouri

    2014-06-01

    Full Text Available Background: The purpose of this study is to investigate the concentration of metals (lead, cadmium, chromium, copper, and nickel in the landfill leachate and heavy metals in wells downstream of municipal solid waste landfill site in the city of Mashhad. Methods: In both winter and summer seasons in 2009 samples were collected from five wells that were in landfill downstream in Mashhad. Results: Among heavy metals, nickel concentration in summer and lead concentration in winter had the highest levels. The results showed that the mean concentration of heavy metals in the studied wells was below the national standards of drinking water of Iran, WHO, and the United States. Pearson correlation coefficients also indicated that there was a significant correlation among the studied metals in the wells. Conclusion: Cd and Cu concentrations in all of the wells (except Pb in winter and Ni in summer did not pose any significant water quality problems since these concentrations were below the standards acceptable levels of drinking water.

  15. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    Science.gov (United States)

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  16. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    International Nuclear Information System (INIS)

    Zhong Qi; Li Daping; Tao Yong; Wang Xiaomei; He Xiaohong; Zhang Jie; Zhang Jinlian; Guo Weiqiang; Wang Lan

    2009-01-01

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l -1 d -1 and 3.84 g COD l -1 d -1 , respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t -1 TS d -1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t -1 TS d -1 and the inhibition was enhanced with the increase of TON loading

  17. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.

    Science.gov (United States)

    Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan

    2017-01-01

    Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1  NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1  N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1  N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1  NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.

  18. Characteristics of Leachate and Their Effect on Shallow Groundwater Quality (Case Study : TPA Cipayung, Depok)

    Science.gov (United States)

    Widiastuti, Atika; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The problems arising from landfill activity is leaked leachate that is not absorbed well into leachate stabilization pond which furthermore contaminates shallow groundwater around landfill, include Cipayung landfill. The aims of this study is to determine the characteristics of leachate and their effect on shallow groundwater quality around landfill based on temperature, pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), Mercury (Hg), and fecal coliform. Data were analyzed based on leachate samples at influent point, effluent point, and 7 sampling points of residents’s well with distance variation every 100 meters within 300 meters radius having leachate stabilization pond as benchmark. According to the standard of Indonesia’s Ministry of Environment and Forestry law No. 59 of 2016, the results showed that leachate quality was still above the standard of BOD, COD, and Total Nitrogen parameters; 4178.0 mg/L, 70556.0 mg/L and 373.3 mg/L for influent point, and 3142.0 mg/L, 9055.2 mg/L, and 350 mg/L for the effluent point. Pollution Index of shallow groundwater is between lightly and moderately contaminated. This study showed that the further the distance between sampling point and leachate stabilization pond is, the lower the Polution Index is.

  19. Pb(II) and Cd(II) removal from aqueous solution, shipyard wastewater, and landfill leachate by modified Rhizopus oryzae biomass

    Science.gov (United States)

    Naeimi, Behrouz; Foroutan, Rauf; Ahmadi, Bahram; Sadeghzadeh, Farzaneh; Ramavandi, Bahman

    2018-04-01

    This study was designed to remove Pb(II) and Cd(II) from aqueous solution, shipyard wastewater, and sanitary landfill leachate using an alkaline-modified Rhizopus oryzae biomass. According to the Fourier transform infrared test, different functional groups like O–H, N–H, C=O, and P–O were detected in the bioadsorbent. The x-ray fluorescence (XRF) analysis showed that CaO, P2O3, and SO3 oxides have the highest content in the bioadsorbent. The surface area of modified Rhizopus oryzae was obtained as 20.32 m2 g‑1. The effect of initial pH, temperature, contact time, and bioadsorbent dose on the metals removal was discussed. At optimal conditions, maximum Pb(II) and Cd(II) removal was obtained 95.66% and 94.55%, respectively. Freundlich model was well- accurately described the equilibrium data. Among four studied models, the pseudo-second-order was better able to describe the kinetic behavior of the bioadsorption process. The amount of enthalpy, free energy of Gibbs, and entropy parameters indicated that the bioadsorption process of studied heavy metals is negative, exothermic, and spontaneous. The amount of heavy metals in a shipyard wastewater and sanitary landfill leachate was significantly decreased by using the developed bioadsorbent.

  20. Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills

    Energy Technology Data Exchange (ETDEWEB)

    Kiddee, Peeranart [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, 5095 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, 5095 (Australia); Wong, Ming H. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (China)

    2013-05-15

    Highlights: • Simulated landfill columns provided realistic results than lab based column study. • Column leachates showed significant seasonal effect on toxic substances. • Toxic substances in the landfill leachates pose environmental and health hazards. • A better management of e-waste is urgently needed. -- Abstract: Landfills established prior to the recognition of potential impacts from the leaching of heavy metals and toxic organic compounds often lack appropriate barriers and pose significant risks of contamination of groundwater. In this study, bioavailable metal(oids) and polybrominated diphenyl ethers (PBDEs) in leachates from landfill columns that contained intact or broken e-waste were studied under conditions that simulate landfills in terms of waste components and methods of disposal of e-wastes, and with realistic rainfall. Fourteen elements and PBDEs were analysed in leachates over a period of 21 months. The results demonstrate that the average concentrations of Al, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Sb and V in leachates from the column that contained broken e-waste items were significantly higher than the column without e-waste. BDE-153 was the highest average PBDEs congener in all columns but the average of ∑PBDEs levels in columns that contained intact e-waste were (3.7 ng/l) and were not significantly higher than that in the leachates from the control column.

  1. Landfill leachate treatment by coagulation/flocculation combined with microelectrolysis-Fenton processes.

    Science.gov (United States)

    Luo, Kun; Pang, Ya; Li, Xue; Chen, Fei; Liao, Xingsheng; Lei, Min; Song, Yong

    2018-02-07

    Landfill leachate was pretreated by chemical flocculation with polyaluminum chloride (PAC) as a flocculant, and subsequently purified by the microelectrolysis-Fenton (MEF) process. Response surface methodology was employed to optimize the MEF process, and the optimal conditions were initial pH 3.20, H 2 O 2 concentration 3.57 g/L, and Fe-C dosage 104.52 g/L. The PAC coagulation combined with MEF processes obtained a superior decontamination performance, and the predicted chemical oxygen demand (COD) and humic acids (HA) removal were respectively 90.27% and 93.79%. The strong fluorescence peak at 425 nm and the trapping experiment showed that [Formula: see text] was generated during MEF, which had a strong oxidation ability to degrade organic recalcitrant pollutants. The ultraviolet-visible spectra and three-dimensional excitation-emission matrices spectra (3D-EEMs) indicated that PAC coagulation could preferentially remove protein-like substances, while the MEF process was effective in destructing organic recalcitrant pollutants, especially humic-like and fulvic-like substances.

  2. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Stewart M., E-mail: soakley@csuchico.edu [Department of Civil Engineering, Chico State University, California State University, Chico, CA 95929 (United States); Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com [Public Works, Municipality of Villanueva, Cortes (Honduras)

    2012-12-15

    Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48,000, with a land requirement of 0.2 m{sup 2}/person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m{sup 3} that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m{sup 3}/yr (60 m{sup 3}/ha yr) from the two open trenches required for daily operation. If the site were an open dump, however, leachate generation is estimated to be 3900 m{sup 3}/ha yr and contaminated runoff 5000 m{sup 3}/ha yr. A simple model used to estimate dilution of generated leachate based on groundwater flow data and aquifer stratigraphy suggests that the leachate will be diluted by a factor of 0.01 in the aquifer. Leachate contaminants will not accumulate because the aquifer discharges to the Ulua River 2 km south of the landfill. While not suitable for all sites, the Villanueva method nevertheless serves as an excellent example of how a small city landfill with natural compaction of waste and attenuation of leachate can be sustainably operated.

  3. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    International Nuclear Information System (INIS)

    Oakley, Stewart M.; Jimenez, Ramón

    2012-01-01

    ,000, with a land requirement of 0.2 m 2 /person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m 3 that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m 3 /yr (60 m 3 /ha yr) from the two open trenches required for daily operation. If the site were an open dump, however, leachate generation is estimated to be 3900 m 3 /ha yr and contaminated runoff 5000 m 3 /ha yr. A simple model used to estimate dilution of generated leachate based on groundwater flow data and aquifer stratigraphy suggests that the leachate will be diluted by a factor of 0.01 in the aquifer. Leachate contaminants will not accumulate because the aquifer discharges to the Ulua River 2 km south of the landfill. While not suitable for all sites, the Villanueva method nevertheless serves as an excellent example of how a small city landfill with natural compaction of waste and attenuation of leachate can be sustainably operated.

  4. Combination of sunlight irradiated oxidative processes for landfill leachate: heterogeneous catalysis (TiO2 versus homogeneous catalysis (H2O2

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Cobra Guimarães

    2013-04-01

    Full Text Available The objective of this work was to study the treatment of landfill leachate liquid in nature, after the use of a combination of advanced oxidation processes. More specifically, it compared heterogeneous catalysis with TiO2 to homogeneous catalysis with H2O2, both under photo-irradiated sunlight. The liquid used for the study was the leachate from the landfill of the city of Cachoeira Paulista, São Paulo State, Brazil. The experiments were conducted in a semi-batch reactor open to the absorption of solar UV radiation, with 120 min reaction time. The factors and their respective levels (-1, 0 and 1 were distributed in a experimental design 24-1 with duplicate and triplicate in the central point, resulting in an array with 19 treatment trials. The studied factors in comparing the two catalytic processes were: liquid leachate dilution, TiO2 concentration on the reactor plate, the H2O2 amount and pH level. The leachate had low photo-catalytic degradability, with NOPC reductions ranging from 1% to a maximum of 24.9%. When considering each factor alone, neither homogeneous catalysis with H2O2, nor heterogeneous catalysis with TiO2, could degrade the percolated liquid without significant reductions (5% level in total NOPC. On the other hand, the combined use of homogenous catalysis with H2O2 and heterogeneous catalysis H2O2 resulted in the greatest reductions in NOPC. The optimum condition for the NOPC reduction was obtained at pH 7, dilution of percolated:water at 1:1 (v v-1 rate; excess of 12.5% H2O2 and coating plate reactor with 0.025 g cm-2 TiO2.

  5. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    Science.gov (United States)

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  6. Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills

    International Nuclear Information System (INIS)

    Georgaki, I.; Soupios, P.; Sakkas, N.; Ververidis, F.; Trantas, E.; Vallianatos, F.; Manios, T.

    2008-01-01

    In order to improve the estimation of surface gas emissions in landfill, we evaluated a combination of geophysical and greenhouse gas measurement methodologies. Based on fifteen 2D electrical resistivity tomographies (ERTs), longitudinal cross section images of the buried waste layers were developed, identifying place and cross section size of organic waste (OW), organic waste saturated in leachates (SOW), low organic and non-organic waste. CH 4 and CO 2 emission measurements were then conducted using the static chamber technique at 5 surface points along two tomographies: (a) across a high-emitting area, ERT no. 2, where different amounts of relatively fresh OW and SOW were detected, and (b) across the oldest (at least eight years) cell in the landfill, ERT no. 6, with significant amounts of OW. Where the highest emission rates were recorded, they were strongly affected by the thickness of the OW and SOW fraction underneath each gas sampling point. The main reason for lower than expected values was the age of the layered buried waste. Lower than predicted emissions were also attributed to soil condition, which was the case at sampling points with surface ponding, i.e. surface accumulation of leachate (or precipitated water)

  7. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  8. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  9. PENURUNAN TOKSISITAS LEACHATE (AIR LINDI DARI TPAS PUTRI CEMPO MOJOSONGO SURAKARTA DENGAN PAC (POLY ALUMINUM CHLORIDE (Toxicity Reduction of Leachate from Putri Cempo Municipal Landfill (TPAS Mojosongo Surakarta with PAC (Poly Aluminium Chloride

    Directory of Open Access Journals (Sweden)

    Dwi Astuti

    2010-03-01

    Full Text Available ABSTRAK Tujuan penelitian ini adalah menetapkan persen penurunan toksisitas sesudah diperlakukan dengan PAC. Rancangan penelitian ini adalah eksperimen murni dengan pretest-posttest with control group design. Populasi dalam penelitian ini adalah air lindi yang berasal dari TPAS Putri Cempo Mleachate toxicity reduction after treatment with PAC. The experimental design used was true experimental study with pretest-posttest with control group design. Population in this study was leachate from Putri Cempo Landfill (TPAS Putri Cempo Mojosongo Surakarta. The sample was 250 litres leachate obtained from the landfill outlet by quota sampling method. The results revealed the leachate toxicity based on LC50 24-96 hours were: (1 without PAC treatment: 25.06% (24 hours, 21.07% (48 hours, 17.49% (72 hours, and 14.97% (96 hours; (2 with PAC treatment: 89.44% (24 hours, 63.73% (48 hours, 49.99% (72 hours, and 40.96% (96 hours. Therefore, the toxicity reductions were: 64.38% (24 hours, 42.66% (48 hours, 32.50% (72 hours, and 25.99% (96 hours.

  10. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate.

    Science.gov (United States)

    Zhang, Guoliang; Qin, Lei; Meng, Qin; Fan, Zheng; Wu, Dexin

    2013-08-01

    A novel combined process of Fenton oxidation, submerged membrane bioreactor (SMBR) and reverse osmosis (RO) was applied as an appropriate option for old municipal landfill leachate treatment. Fenton process was designed to intensively solve the problem of non-biodegradable organic pollutant removal and low biodegradability of leachate, although the removal of ammonia-nitrogen was similar to 10%. After SMBR treatment, it not only presented a higher removal efficiency of organics, but also exhibited high ammonia-nitrogen removal of 80% on average. The variation of extracellular polymeric substance (EPS) content, zeta potential, and particle size of flocs after Fenton effluent continually fed in SMBR was found to be benefit for alleviating membrane fouling. Finally, three kinds of RO membranes (RE, CPA, and BW) were applied to treat SMBR effluents and successfully met wastewater re-utilization requirement. Compared with simple RO process, the troublesome membrane fouling can be effectively reduced in the combined process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes.

    Science.gov (United States)

    Amor, Carlos; De Torres-Socías, Estefanía; Peres, José A; Maldonado, Manuel I; Oller, Isabel; Malato, Sixto; Lucas, Marco S

    2015-04-09

    This work reports the treatment of a mature landfill leachate through the application of chemical-based treatment processes in order to achieve the discharge legal limits into natural water courses. Firstly, the effect of coagulation/flocculation with different chemicals was studied, evaluating the role of different initial pH and chemicals concentration. Afterwards, the efficiency of two different advanced oxidation processes for leachate remediation was assessed. Fenton and solar photo-Fenton processes were applied alone and in combination with a coagulation/flocculation pre-treatment. This physicochemical conditioning step, with 2 g L(-1) of FeCl3 · 6H2O at pH 5, allowed removing 63% of COD, 80% of turbidity and 74% of total polyphenols. Combining the coagulation/flocculation pre-treatment with Fenton reagent, it was possible to reach 89% of COD removal in 96 h. Moreover, coagulation/flocculation combined with solar photo-Fenton revealed higher DOC (75%) reductions than single solar photo-Fenton (54%). In the combined treatment (coagulation/flocculation and solar photo-Fenton), it was reached a DOC reduction of 50% after the chemical oxidation, with 110 kJ L(-1) of accumulated UV energy and a H2O2 consumption of 116 mM. Toxicity and biodegradability assays were performed to evaluate possible variations along the oxidation processes. After the combined treatment, the leachate under study presented non-toxicity but biodegradability increased. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Pilot-scale experiment on anaerobic bioreactor landfills in China

    International Nuclear Information System (INIS)

    Jiang, Jianguo; Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-01-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m 3 leachate and 0.1 m 3 tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended

  13. Two Scenarios for Landfills Design in Special Conditions Using the HELP Model: A Case Study in Babylon Governorate, Iraq

    Directory of Open Access Journals (Sweden)

    Ali Chabuk

    2018-01-01

    Full Text Available The sound design of landfills is essential in order to protect human health and the environment (air, water, and soil. The study area, Babylon Governorate, is situated in the middle of Iraq, and is distinguished by a hot climate and shallow groundwater. The governorate did not have landfill sites that meet international criteria; in addition, the groundwater depth in Babylon Governorate is commonly shallow. Previously, the most important criteria for the study area and GIS software were used to select the best sites for locating landfills in the major cities of the governorate. In this study, the Hydrologic Evaluation of Landfill Performance (HELP 3.95D model was applied in order to ensure that there was no leakage of the leachate that results from the waste in the selected landfill sites. It is the most commonly utilized model for landfill design, and it is used to estimate water inflow through the soil layers. For the present study, to avoid groundwater pollution by leachate from a landfill site due to the shallow groundwater depth, compacted waste was placed on the surface using two height scenarios (2 m and 4 m. This design was developed using the soil properties of the selected sites coupled with the weather parameters in Babylon Governorate (precipitation, temperature, solar, and evapotranspiration for a 12-year period covering 2005 to 2016. The results from both of the suggested landfill designs showed an absence of leachate from the bottom liner.

  14. EFFECT OF SULFATE LOADING RATE AND ORGANIC LOADING RATE ON ANAEROBIC BAFFLED REACTORS USED FOR TREATMENT OF SANITARY LANDFILL LEACHATES

    Directory of Open Access Journals (Sweden)

    O. Burbano-Figueroa

    2015-06-01

    Full Text Available AbstractThis study investigated the effect of organic loading rate (OLR and sulfate loading rate (SLR on landfill leachate treatment by a lab-scale anaerobic baffled reactor (ABR. Landfill leachate contained a concentration of organic matter between 3966 and 5090 mg COD.L-1 and no detectable amounts of sulfate. Reactors were started-up by feeding them with iron-sulfate at a SLR of 0.05 g SO42-.L-1.day-1 (4 weeks. Factorial design and response surface techniques were used to evaluate and optimize the effects of these operating variables on COD removal. ABRs were operated at OLRs ranging from 0.30 up to 6.84 g COD.L-1.day-1 by changes in influent volumetric flow. SO42- was added to the influent at a SRL from 0.06 to 0.13 g SO42-.L-1.day-1. The highest value of COD removal (66% was reached at an OLR of 3.58 g COD.L-1.day-1 and SLR of 0.09 g SO4-2.L-1.day-1 with a COD/SO4-2 ratio of 40. Under these conditions sulfate is mainly used for molecular hydrogen consumption while organic matter is preferentially degraded via methanogesis.

  15. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi......-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is “landfilling of 1 ton of wet household waste in a 10 m deep landfill...... that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater...

  16. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. soils and early tree development.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    Soil contaminant levels and early tree growth data are helpful for assessing phytoremediation systems. Populus (DN17, DN182, DN34, NM2, and NM6) and Salix (94003, 94012, S287, S566, and SX61) genotypes were irrigated with landfill leachate or municipal water and tested for differences in (1) element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, and Na) of a topsoil layer and a layer of sand in tanks with a cover crop of trees or no trees and (2) height, diameter, volume, and dry mass of leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Differences in most soil element concentrations were negligible (P > 0.05) for irrigation treatments and cover main effects. Phosphorous, K, Mg, S, Zn, Mn, Fe, and Al concentrations were greater in topsoil than sand (P = 0.0011 for Mg; P tree yield. From a practical standpoint, these results may be used as a baseline for the development of future remediation systems.

  17. Methodology for assessing thioarsenic formation potential in sulfidic landfill environments.

    Science.gov (United States)

    Zhang, Jianye; Kim, Hwidong; Townsend, Timothy

    2014-07-01

    Arsenic leaching and speciation in landfills, especially those with arsenic bearing waste and drywall disposal (such as construction and demolition (C&D) debris landfills), may be affected by high levels of sulfide through the formation of thioarsenic anions. A methodology using ion chromatography (IC) with a conductivity detector was developed for the assessment of thioarsenic formation potential in sulfidic landfill environments. Monothioarsenate (H2AsSO3(-)) and dithioarsenate (H2AsS2O2(-)) were confirmed in the IC fractions of thioarsenate synthesis mixture, consistent with previous literature results. However, the observation of AsSx(-) (x=5-8) in the supposed trithioarsenate (H2AsS3O(-)) and tetrathioarsenate (H2AsS4(-)) IC fractions suggested the presence of new arsenic polysulfide complexes. All thioarsenate anions, particularly trithioarsenate and tetrathioarsenate, were unstable upon air exposure. The method developed for thioarsenate analysis was validated and successfully used to analyze several landfill leachate samples. Thioarsenate anions were detected in the leachate of all of the C&D debris landfills tested, which accounted for approximately 8.5% of the total aqueous As in the leachate. Compared to arsenite or arsenate, thioarsenates have been reported in literature to have lower adsorption on iron oxide minerals. The presence of thioarsenates in C&D debris landfill leachate poses new concerns when evaluating the impact of arsenic mobilization in such environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bench scale model studies on sanitary landfill leachate treatment with M. oleifera seed extract and hollow fibre micro-filtration membrane

    Directory of Open Access Journals (Sweden)

    S. A. Muyibi

    2002-10-01

    Full Text Available A laboratory-based study using a Bench Scale model of four unit operations made up of coagulation (using Moringa oleifera seed extract as a coagulant, flocculation, sedimentation and micro-filtration, have been adopted to treat the leachate from Air Hitman Sanitary Landfill at Puchong in Malaysia. M. oleifera dosages of 150 and 175 mg/L had achieved 43.8% Cadmium removal, 21.2% Total Chromium removal, 66.8% Lead removal and 16% Iron removal. It also removed 55.4% of Total Suspended Solids, 10% of Total Dissolved Solids and 24.2% of Volatile Suspended Solids. Micro-filtration hollow fibre membrane decreased the turbidity, total suspended solids, total dissolved solids, volatile suspended solids, and organic matter in the leachate by 98.3%, 96.7%, 20.8%, 36.6% and 21.9% respectively. Overall heavy metals removal after micro-filtration using hollow fibre membrane was 94% for Cadmium, 29.8% for Total Chromium, 73.2% for Lead, and 18.3% for Iron. The results have shown that M. oleifera is a promising natural polymer for removing heavy metals from leachates and may be used as a pre-treatment to eliminate a portion of the toxic heavy metals, which limits the activity of micro organisms in the leachates.

  19. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  20. Emissions of C&D refuse in landfills: a European case.

    Science.gov (United States)

    López, Ana; Lobo, Amaya

    2014-08-01

    A field study was developed in a new landfill for refuse from construction and demolition (C&D) material recovery plants of small size (4 Ha.) in Europe, with the aim of evaluating the liquid and gas emissions in this type of facility at a large scale. It included characterization of the materials, monitoring leachate and gas quantity and composition. Besides thermometers, piezometers and sampling ports were placed in several points within the waste. This paper presents the data obtained for five years of the landfill life. The materials disposed were mainly made up of wood and concrete, similar to other C&D debris sites, but the amount of gypsum drywall (below 3% of the waste) was significantly smaller than other available studies, where percentages above 20% had been reported. Leachate contained typical C&D pollutants, such as different inorganic ions and metals, some of which exceeded other values reported in the literature (conductivity, ammonium, lead and arsenic). The small net precipitation in the area and the leachate recirculation into the landfill surface help explain these higher concentrations, thus highlighting the impact of liquid to solid (L/S) ratio on leachate characteristics. In contrast to previous studies, neither odor nuisances nor significant landfill gas over the surface were detected. However, gas samples taken from the landfill inside revealed sulfate reducing and methanogenic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of the civil construction debris layer in heavy metals removal of the leachate submitted to recirculation in landfill

    Directory of Open Access Journals (Sweden)

    Maike Rossmann

    2010-08-01

    Full Text Available Little is known about the ability of stabilized organic matter (old MSW and construction waste (RCC to retain heavy metals from leachate generated in landfills. The objective of this study was to assess the potential of MSW to remove old heavy metals in MSW leachate produced by freshly collected, and the effect of RCC in the concentration of heavy metals in effluents from MSW old. In three columns (CR, put a layer of RCC and then MSW old and, on the other three (SR, only MSW old. Analyzed in the leachate and effluent pH, EC, BOD and metals Zn, Cd, Cu and Pb. There were similar and efficient removal of BOD and heavy metals in both treatments. The presence of the layer of RCC was considered important to the overall improvement in effluent quality, but did not influence the concentration of metals in the effluent. The order of retention of metals in the columns was: Cu ~ Pb> Cd> Zn. With the exception of Cd and Zn, all other variables assessed in the effluent were below the maximum standards set in DN 01.08 COPAM / CERH for release effluent into water bodies.

  2. Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco)

    Science.gov (United States)

    Chofqi, Amina; Younsi, Abedelkader; Lhadi, El Kbir; Mania, Jacky; Mudry, Jacques; Veron, Alain

    2004-06-01

    The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10-15 m) in the Cenomanian rock (calcareous-marl), which is characterised by an important permeability from cracks. The soil is sand-clay characterized by a weak coefficient of retention. The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer. To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l -1, chemical oxygen demand = 1000 mg l -1, iron = 23 000 μg l -1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm -1 in electric conductivity, 1620 and 1000 mg l -1 respectively in chlorides and sulfate ( SO42-), 15-25 μg l -1 in cadmium, and 60-100 μg l -1 in chromium. These concentrations widely exceed the standard values for potable water. Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a

  3. Assessment of groundwater contamination by leachate near a ...

    African Journals Online (AJOL)

    The results show that the leachate from the landfill has a minimal impact on the groundwater resource and this can be attributed to the existing soil stratigraphy at the site consisting of clay which is deduced to have a significant influence on the natural attenuation of leachate into groundwater. Keywords: Groundwater ...

  4. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  5. Paper for Publication in IOP: Conference Series Leachate Treatment using three Years Aged Lysimetric Bioreactor Models

    Science.gov (United States)

    Hartono, Djoko M.; Andari Kristanto, Gabriel; Gusniani Sofian, Irma; Fauzan, Ahmad; Mahdiana, Ghanis

    2018-03-01

    This study was conducted as a response to address the problem of land availability for Cipayung landfill that no longer able to accommodate waste generation Depok City and to protect water pollution in receiving water body. Law No. 8/2008 explained that local governments and cities are required to create a sanitary landfill as a final waste processing system to replace open dumping that had been done by almost all the final processing of waste in cities in Indonesia. Sanitary landfill is the final waste processing system that works best and is environmentally friendly. The sanitary landfill will generate leachate. Leachate is the result of precipitation, evaporation, surface runoff, water infiltration into the waste, and also including the water contained in the waste. The purpose of this study was to determine the utilization of leachate generated by three years aged reactor.This study use a modeling tools as bioreactor landfill tank or so called lysimetric, that made of the polymer material that susceptible to high heat and pressure. This bioreactor landfill tank has a diameter of 0.83 m, with a surface area of 0.54 m2 and a height of 2.02 m, with the examination duration of 115 days. This tank consists of several layer, such as sand layer, solid waste layer, water layer and piping system. These layer has 3 year aged. The In this research, leachate recirculation in bioreactor landfills was conducted with waste layered loading systems with percolation system. This research has been conducted since the beginning of 2016, sampling, field measurement and analysis of leachate and waste quality carried out for approximately 115 days of field measurements.Several parameter were measured such as pH, BOD, COD, nitrate, nitrite and TSS. From the analysis of the leachate quality parameters of pH, BOD, COD, nitrite, TSS, showed a reduction in the concentration of the three reactors. The concentration of parameters measured at the initial stage until the final stage, showed a

  6. Public health assessment for Tulalip Landfill, Marysville, Snohomish County, Washington, Region 10. CERCLIS No. WAD980639256. Preliminary report

    International Nuclear Information System (INIS)

    1993-01-01

    The Tulalip Landfill is in Snohomish County, Washington near the town of Marysville. Almost four million cubic yards of waste were deposited at the site between 1964 and 1979, when the landfill was closed. An estimated 10 to 90 million gallons of leachate are generated each year at the site. In February 1988, the U.S. Environmental Protection Agency (EPA) conducted a site inspection. Lead, copper, chromium, and cadmium were found in quantities above EPA's Maximum Contaminant Levels (MCL) in on-site ground and surface water. Samples of leachate and on-site surface water also contained numerous strains of opportunistic pathogens, or disease causing agents

  7. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    Energy Technology Data Exchange (ETDEWEB)

    Toufexi, Eirini; Tsarpali, Vasiliki [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece); Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris [Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR 30100 Agrinio (Greece); Dailianis, Stefanos, E-mail: sdailianis@upatras.gr [Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR 26500 Patras (Greece)

    2013-09-15

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O{sub 2}{sup −}) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes.

  8. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells

    International Nuclear Information System (INIS)

    Toufexi, Eirini; Tsarpali, Vasiliki; Efthimiou, Ioanna; Vidali, Maria-Sophia; Vlastos, Dimitris; Dailianis, Stefanos

    2013-01-01

    Highlights: • Landfill leachate poses a threat for aquatic biota and humans. • Leachate induces cytotoxic and oxidative effects on mussel hemocytes. • Increased levels of DNA damage were observed both in vivo and in vitro in hemocytes. • Leachate low doses enhance MN formation in human lymphocyte cultures. • Potential leachate aneugenic activity was detected in human lymphocytes. -- Abstract: The present study investigates leachate hazardous effects on marine biota and human cells, with the use of a battery of assays, both under in vivo and in vitro conditions. According to the results, mussels exposed for 4 days to 0.01 and 0.1% (v/v) of leachate showed increased levels of DNA damage and micronuclei (MN) frequencies in their hemocytes. Similarly, enhanced levels of DNA damage were also observed in hemocytes treated in vitro with relevant concentrations of leachate, followed by a significant enhancement of both superoxide anions (·O 2 − ) and lipid peroxidation products (malondialdehyde/MDA). On the other hand, human lymphocyte cultures treated with such a low concentrations of leachate (0.1, 0.2 and 1%, v/v), showed increased frequencies of MN formation and large MN size ratio, as well as decreased cell proliferation, as indicated by the use of the cytokinesis block micronucleus (CBMN) assay and Cytokinesis Block Proliferation Index (CBPI) respectively. These findings showed the clear-cut genotoxic and cytotoxic effects of leachate on both cellular types, as well as its potential aneugenic activity in human lymphocytes

  9. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  10. Remediation of an oily leachate pond in Estonia.

    Science.gov (United States)

    Kriipsalu, Mait; Marques, Marcia; Hogland, William

    2005-12-01

    Until recent years, waste oil and oil-contaminated waters commonly ended up in landfills. At some dump sites, ponds of oily liquids and leachate were formed. To remediate such ponds, an interdisciplinary approach is now required, keeping costs at an affordable level, particularly in countries with changing economies. From 1974 to 1993, liquid oily wastes taken to the Laguja landfill, in Estonia, were disposed of in a pond with a surface area of 9800 m2. It was estimated that the pond contained 4500-6000 m3 of oily water and 3500 m3 of oil-containing bottom sediments. This study aimed at developing an environmentally sound and cost-effective method for remediation of the oily liquids, leachate and contaminated underlying sediment material, to meet the existing legal demands. It was concluded that treatment of contaminated water is well established and the procedures carried out to meet the regulatory demands achieved satisfactory results. However, regarding treatment of sediments it was concluded that legal and technological aspects, as well as monitoring procedures are not fully established and are usually underestimated. Laboratory investigations can provide valuable information in decision-making, and contribute to effective full-scale remediation planning.

  11. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    He Pinjing; Qu Xian; Shao Liming; Li Guojian; Lee Duujong

    2007-01-01

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l -1 , but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  12. Post-remediation use of macrophytes as composting materials for sustainable management of a sanitary landfill.

    Science.gov (United States)

    Song, Uhram

    2017-04-03

    To increase the remediation ability and life expectancy of a leachate channel in a sanitary landfill, the plants used for remediation were composted as a post-remediation management technique. Phragmites australis or Typha angustifolia used for phytoremediation in a landfill leachate channel was harvested and used as a co-composting material with sewage sludge. The macrophyte compost was applied to the slope of a landfill on which plants were introduced for revegetation and to plants grown in pots to test for acute effects of the compost. The compost of the macrophytes successfully increased soil moisture and nutrient contents both on the landfill slope and in the soil of the pot experiment. Additionally, the rates of photosynthesis and the nutrient contents increased for plants grown in macrophyte compost. Thus, the revegetation or restoration management of the landfill would improve with the macrophyte compost used as a soil conditioner. The harvest of the macrophytes has the additional benefit of improving the remediation function of the leachate channel. Therefore, to sustainably manage both the leachate channel and the landfill, the composting of post-remediation macrophytes is an environmentally friendly and economically affordable method.

  13. The influence of incorporating leachate on anaerobic biodegradability of domestic sewage

    Directory of Open Access Journals (Sweden)

    Luz Edith Barba

    2010-01-01

    Full Text Available Treating leachate is one of the most important challenges in designing and operating a sanitary landfill. Anaerobic treatment u- sing a mixture of leachate and domestic sewage represents a suitable treatment option having good potential applicability in developing countries. The influence of adding leachate from a domestic sanitary landfill on the anaerobic biodegradability of domestic sewage has been evaluated in this paper. Five samples were evaluated for the study: 100% domestic sewage (DS, 100% leachate (L and three leachate mixtures (L with domestic sewage (DS as follows: 10%(L:90%(DS, 20%(L:80%(DS and 30%(L:70%(DS. The samples’ anaerobic biodegradability was monitored for 30 days using methane production accumulation and variation in volatile fatty acid (VFA concentration and composition. A detailed analysis of chemical oxygen demand (COD composition was performed at the end of the monitoring period. The results of the study showed that a 10%(L:90%(DS mixture provided the maximum leachate (L domestic sewage (DS combination mixture which could be anaerobically biodegradable with no significantly inhibitory effects. Mixtures using a higher percentage of leachate showed significantly potential inhibition effects on the anaerobic biodegradation of domestic sewage.

  14. Effects of electric potential, NaCl, pH and distance between electrodes on efficiency of electrolysis in landfill leachate treatment.

    Science.gov (United States)

    Erabee, Iqbal K; Ahsan, Amimul; Jose, Bipin; Arunkumar, T; Sathyamurthy, R; Idrus, Syazwani; Daud, N N Nik

    2017-07-03

    This study investigated the effects of different parameters on the removal efficiencies of organic and inorganic pollutants in landfill leachate treatment by electrolysis. Different parameters were considered such as the electric potential (e.g., 24, 40 and 60 V), hydraulic retention time (HRT) (e.g., 40, 60, 80, 100 and 120 min), sodium chloride (NaCl) concentration (e.g., 1, 3, 5 and 7%), pH (e.g., 3, 7 and 9), electrodes materials [e.g., aluminum (Al) and iron (Fe)] and distance between electrodes (e.g., 1, 2 and 3 cm). The best operational condition of electrolysis was then recommended. The electric potential of 60 V with HRT of 120 min at 5% of NaCl solution using Al as anode and Fe as cathode (kept at a distance of 3 cm) was the most efficient condition which increased the removal efficiencies of various parameters such as turbidity, salinity, total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD) and heavy metals (e.g., Zn and Mn). The higher removal percentages of many parameters, especially COD (94%) and Mn (93%) indicated that the electrolysis is an efficient technique for multi-pollutants (e.g., organic, inorganic and heavy metals) removal from the landfill leachate.

  15. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ZhiPing, E-mail: liulqs@163.com [Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045 (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Wu, WenHui; Shi, Ping [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Guo, JinSong [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400045 (China); Cheng, Jin [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China)

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  16. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...

  17. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Baun, Anders; Jensen, S. D.; Bjerg, Poul Løgstrup

    2000-01-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solidphase extraction (SPE) using XAD-2...... bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background...... characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates....

  18. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Bu Lin; Wang Kun; Zhao Qingliang; Wei Liangliang; Zhang Jing; Yang Junchen

    2010-01-01

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  19. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    Energy Technology Data Exchange (ETDEWEB)

    Bu Lin [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang Kun [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Zhao Qingliang, E-mail: zhql1962@yahoo.com.cn [State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wei Liangliang; Zhang Jing; Yang Junchen [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2010-07-15

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD{sub 5}), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  20. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    Science.gov (United States)

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  2. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    Science.gov (United States)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  3. Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process.

    Science.gov (United States)

    Córdova, Rolando Nunes; Nagel-Hassemer, Maria Eliza; Matias, William Gerson; Muller, Jose Miguel; de Castilhos Junior, Armando Borges

    2017-12-04

    This study investigates the effects of pH, H 2 O 2 concentration and reaction time of the UV/H 2 O 2 photochemical process on the removal of organic matter and ammonia from biologically pre-treated landfill leachates in anaerobic stabilization ponds. The results show that the concentration of H 2 O 2 and the initial pH are significant factors, with no significant interaction between them. A pH of 3 is the optimum value for the UV/H 2 O 2 process for the removal of organic matter, resulting in 51.63% chemical oxygen demand (COD) removal in addition to the removal of aromatic compounds. The N-NH 3 removal showed little variation between pH values of 1, 5, 7, 11 and 13; the removal was on the order of 16.43 ± 2.00%. The consumption of H 2 O 2 was elevated at pH 9, 11 and 13; at these pH values, the average removal was 94.56 ± 0.43%, compared to 43.07% at pH 3. First-order polynomial models and reaction times on the order of 15 min are sufficient for optimization studies and for evaluation of the effects of the studied parameters. The results of this study support the optimization of the UV/H 2 O 2 process for the removal of organic matter and ammonia from landfill leachates.

  4. Determination of nonylphenol isomers in landfill leachate and municipal wastewater using steam distillation extraction coupled with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

    Science.gov (United States)

    Zhang, Caixiang; Eganhouse, Robert P.; Pontolillo, James; Cozzarelli, Isabelle M.; Wang, Yanxin

    2012-01-01

    4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid–liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC × GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment.

  5. Natural attenuation: A feasible approach to remediation of ground water pollution at landfills?

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T.H.; Bjerg, P.L.; Kjeldsen, P.

    2000-12-31

    Remediation of ground water pollution at old landfills with no engineered leachate collection system is a demanding and costly operation. It requires control of the landfill body, since the majority of the pollutants are still present in the landfilled waste for decades after the site has been closed. However, natural attenuation of the plume without removing the source is an attractive approach to managing leachate plumes. Natural attenuation has been implemented for petroleum hydrocarbon plumes and for chlorinated solvent plumes, primarily in the US. Natural attenuation has not yet gained a foothold with respect to leachate plumes, however. Based on the experiences gained from 10 years of research on two Danish landfills, it is suggested that natural attenuation is a feasible approach but is more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent.

  6. Application of a contaminant mass balance method at an old landfill to assess the impact on water resources

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak; Milosevic, Nemanja; Bjerg, Poul Løgstrup

    2012-01-01

    linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level...... and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance......, the mass discharge of chloride from the landfill was 9.4ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge...

  7. Assessing the environmental impact of ashes used in a landfill cover construction.

    Science.gov (United States)

    Travar, I; Lidelöw, S; Andreas, L; Tham, G; Lagerkvist, A

    2009-04-01

    Large amounts of construction materials will be needed in Europe in anticipation for capping landfills that will be closed due to the tightening up of landfill legislation. This study was conducted to assess the potential environmental impacts of using refuse derived fuel (RDF) and municipal solid waste incineration (MSWI) ashes as substitutes for natural materials in landfill cover designs. The leaching of substances from a full-scale landfill cover test area built with different fly and bottom ashes was evaluated based on laboratory tests and field monitoring. The water that drained off above the liner (drainage) and the water that percolated through the liner into the landfill (leachate) were contaminated with Cl(-), nitrogen and several trace elements (e.g., As, Cu, Mo, Ni and Se). The drainage from layers containing ash will probably require pre-treatment before discharge. The leachate quality from the ash cover is expected to have a minor influence on overall landfill leachate quality because the amounts generated from the ash covers were low, environmental view point, the placement of ashes in layers above the liner is more critical than within the liner.

  8. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  9. Characterization of a heterogeneous landfill using seismic and electrical resistivity data

    NARCIS (Netherlands)

    Konstantaki, L.A.; Ghose, R.; Draganov, D.S.; Diaferia, G.; Heimovaara, T.J.

    2014-01-01

    Understanding the processes occurring inside a landfill is important for improving the treatment of landfills. Irrigation and recirculation of leachate are widely used in landfill treatments. Increasing the efficiency of such treatments requires a detailed understanding of the flow inside the

  10. Reuse of dredged marine soils as landfill liner: Effect of pH on Escherichia coli growth

    Science.gov (United States)

    Anuar, N. M.; Chan, C. M.

    2017-11-01

    A potential reuse area yet to be explored is the utilization of dredged marine soils (DMS) as geosorbent to retain pathogenic bacteria in landfill leachate. The use of DMS as geosorbent in landfill site could be considered as a new way of environmental friendly solid waste management. By laying DMS at the base of landfill like conventional clay liners, the geowaste could be simultaneously disposed of and act as passive geosorbent for microbes in leachate. DMS are known to serve as a hospitable environment for bacteria growth. Environmental factors such as soil’s pH, salinity and particle size could affect the bacteria growth rate. This study investigated the effect range of pH value on the growth of indicator bacteria, Escherichia coli (E. coli) isolated from landfill leachate. The results showed that the number of E. coli grew higher in alkaline compared to acidic condition. Findings from this study will serve as a base for future studies for removing bacteria in leachate using DMS as geosorbent in a landfill site.

  11. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    Science.gov (United States)

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  12. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate

    KAUST Repository

    El-Fadel, M.; Sleem, F.; Hashisho, J.; Saikaly, Pascal; Alameddine, I.; Ghanimeh, S.

    2017-01-01

    This study examines the performance and fouling potential of flat sheet (FS) and hollow fiber (HF) membrane bioreactors (MBRs) during the treatment of high strength landfill leachate under varying solid retention times (SRT = 5–20 days). Mixed-liquor bacterial communities were examined over time using 16S rRNA gene sequence analysis in an attempt to define linkages between the system performance and the microbial community composition. Similarly, biofilm samples were collected at the end of each SRT to characterize the microbial communities that evolved on the surface of the FS and HF membranes. In general, both systems exhibited comparable removal efficiencies that dropped significantly as SRT was decreased down to 5 days. Noticeably, ammonia and nitrite oxidizing bacteria were not detected at the tested SRTs. This suggests that the nitrifiers were not enriched, possibly due to the high organic and ammonium content of the leachate that led to low TN and NH3 removal efficiency. The steady-state fouling rate of both membranes increased linearly with the decrease in SRT at an estimated factor of 1.1 and 1.2 for the FS- and HF-MBR, respectively, when the SRT was reduced from 15 to 10 days and from 10 to 5 days. Similar dominant genera were detected in both MBRs, including Pseudomonas, Aequorivita, Ulvibacter, Taibaiella, and Thermus. Aequorivita, Taibaiella; Thermus were the dominant genera in the biofilms. Hierarchical clustering and non-metric multidimensional scaling revealed that while the mixed liquor communities in the FS-MBR and HF-MBRs were dynamic, they clustered separately. Similarly, biofilm communities on the FS and HF membranes differed in the dynamic bacterial community structure, especially for the FS-MBR; however this was less dynamic than the mixed liquor community.

  13. Impact of SRT on the performance of MBRs for the treatment of high strength landfill leachate

    KAUST Repository

    El-Fadel, M.

    2017-12-14

    This study examines the performance and fouling potential of flat sheet (FS) and hollow fiber (HF) membrane bioreactors (MBRs) during the treatment of high strength landfill leachate under varying solid retention times (SRT = 5–20 days). Mixed-liquor bacterial communities were examined over time using 16S rRNA gene sequence analysis in an attempt to define linkages between the system performance and the microbial community composition. Similarly, biofilm samples were collected at the end of each SRT to characterize the microbial communities that evolved on the surface of the FS and HF membranes. In general, both systems exhibited comparable removal efficiencies that dropped significantly as SRT was decreased down to 5 days. Noticeably, ammonia and nitrite oxidizing bacteria were not detected at the tested SRTs. This suggests that the nitrifiers were not enriched, possibly due to the high organic and ammonium content of the leachate that led to low TN and NH3 removal efficiency. The steady-state fouling rate of both membranes increased linearly with the decrease in SRT at an estimated factor of 1.1 and 1.2 for the FS- and HF-MBR, respectively, when the SRT was reduced from 15 to 10 days and from 10 to 5 days. Similar dominant genera were detected in both MBRs, including Pseudomonas, Aequorivita, Ulvibacter, Taibaiella, and Thermus. Aequorivita, Taibaiella; Thermus were the dominant genera in the biofilms. Hierarchical clustering and non-metric multidimensional scaling revealed that while the mixed liquor communities in the FS-MBR and HF-MBRs were dynamic, they clustered separately. Similarly, biofilm communities on the FS and HF membranes differed in the dynamic bacterial community structure, especially for the FS-MBR; however this was less dynamic than the mixed liquor community.

  14. Tertiary treatment of landfill leachate by an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction process: Performance and mechanism.

    Science.gov (United States)

    Ding, Jing; Wei, Liangliang; Huang, Huibin; Zhao, Qingliang; Hou, Weizhu; Kabutey, Felix Tetteh; Yuan, Yixing; Dionysiou, Dionysios D

    2018-06-05

    This study presents an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction (EO/EC/ER) process for tertiary landfill leachate treatment. The influence of variables including leachate characteristics and operation conditions on the performance of EO/EC/ER process was evaluated. The removal mechanisms were explored by comparing results of anode, cathode, and bipolar electrode substitution experiments. The performance of the process in a scaled-up reactor was investigated to assure the feasibility of the process. Results showed that simultaneous removal of carbonaceous and nitrogenous pollutants was achieved under optimal conditions. Ammonia removal was due to the free chlorine generation of EO while organic matter degradation was achieved by both EO and EC processes. Nitrate removal was attributed to both ER and EC processes, with the higher removal achieved by ER process. In a scaled-up reactor, the EO/EC/ER process was able to remove 50-60% organic matter and 100% ammonia at charge of 1.5 Ah/L with energy consumption of 15 kW h/m 3 . Considering energy cost, the process is more efficient to meet the requirement of organic removal efficiency less than 70%. These results show the feasibility and potential of the EO/EC/ER process as an alternative tertiary treatment to achieve the simultaneous removal of organic matter, ammonia, nitrate, and color of leachate. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effect of moisture control and air venting on H2S production and leachate quality in mature C&D debris landfills.

    Science.gov (United States)

    Zhang, Jianye; Dubey, Brajesh; Townsend, Timothy

    2014-10-21

    The effect of air venting and moisture variation on H2S production and the leaching of metals/metalloids (arsenic, copper, chromium, and boron) from treated wood in aged mature construction and demolition (C&D) debris landfills were examined. Three simulated C&D debris landfill lysimeters were constructed and monitored, each containing as a major debris component either wooden pallets, chromated copper arsenate (CCA) treated wood, or alkaline copper quaternary (ACQ) treated wood. The lysimeters were operated with alternating periods of water addition (a total of 160 L in four equal amounts) and air venting (68.4 m(3)per day for 121 days in two phases). Moisture addition did not increase H2S levels in the long term, and a significant drop in H2S concentration was observed (up to 99%) when aerobic conditions were promoted through air venting. H2S concentrations increased after venting stopped up to values approximately two orders of magnitude lower than observed prior to venting. Venting had the immediate consequence of suppressing biological H2S production, and the longer-term effect of decreasing organic matter that could otherwise be utilized in this process. Under aerobic conditions, the levels of arsenic, chromium, and boron in leachate decreased up to 96%, 49%, and 68%, respectively, while copper was found to increase up to 200% in CCA and 445% in ACQ column leachates.

  16. Contribution of individual waste fractions to the environmental impacts from landfilling of municipal solid waste

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2010-01-01

    A number of LCA-based studies have reported on the environmental performance of landfilling of mixed waste, but little is known about the relative contributions of individual waste fractions to the overall impact potentials estimated for the mixed waste. In this paper, an empirical model has been...... used to estimate the emissions to the environment from landfilling of individual waste fractions. By means of the LCA-model EASEWASTE, the emissions estimated have been used to quantify how much of the overall impact potential for each impact category is to be attributed to the individual waste...... fractions. Impact potentials are estimated for 1 tonne of mixed waste disposed off in a conventional landfill with bottom liner, leachate collection and treatment and gas collection and utilization for electricity generation. All the environmental aspects are accounted for 100 years after disposal...

  17. Quantification of long term emission potential from landfills

    NARCIS (Netherlands)

    Heimovaara, T.J.

    2011-01-01

    Novel approaches for the after-care of Municipal Solid Waste (MSW) landfills are based on technological measures to reduce the long term emission potential in a short time period. Biological degradation in landfills is a means to significantly reduce the long term emission potential. Leachate

  18. Mesoscale Laboratory Models of the Biodegradation of Municipal Landfill Materials

    Science.gov (United States)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.; Zawislanski, P. T.

    2001-12-01

    Stabilization of municipal landfills is a critical issue involving land reuse, leachate treatment, and odor control. In an effort to increase landfill stabilization rates and decrease leachate treatment costs, municipal landfills can be operated as active aerobic or anaerobic bioreactors. Rates of settling and biodegradation were compared in three different treatments of municipal landfill materials in laboratory-scale bioreactors. Each of the three fifty-five-gallon clear acrylic tanks was fitted with pressure transducers, thermistors, neutron probe access tubes, a leachate recirculation system, gas vents, and air injection ports. The treatments applied to the tanks were (a) aerobic (air injection with leachate recirculation and venting from the top), (b) anaerobic (leachate recirculation with passive venting from the top), and (c) a control tank (passive venting from the top and no leachate recirculation). All tanks contained a 10-cm-thick layer of pea gravel at the bottom, overlain by a mixture of fresh waste materials on the order of 5-10 cm in size to an initial height of 0.55 m. Concentrations of O2, CO2 and CH4 were measured at the gas vent, and leachate was collected at the bottom drain. The water saturation in the aerobic and anaerobic tanks averaged 17 % and the control tank averaged 1 %. Relative degradation rates between the tanks were monitored by CO2 and CH4 production rates and O2 respiration rates. Respiration tests on the aerobic tank show a decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 300 days, indicating usable organics are being depleted. The anaerobic tank produced measurable methane after 300 days that increased to 41% by volume after 370 days. Over the test period, the aerobic tank settled 30 %, the anaerobic tank 18.5 %, and the control tank 11.1 %. The concentrations of metals, nitrate, phosphate, and total organic carbon in the aerobic tank leachate are an order of magnitude lower than in the anaerobic

  19. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  20. Determination of leachate toxicity through acute toxicity using Daphnia pulex and anaerobic toxicity assays

    OpenAIRE

    Carabalí-Rivera, Y. S; Barba-Ho, L. E; Torres-Lozada, P

    2017-01-01

    ABSTRACT The municipal solid waste (MSW) of large cities, in particular the ones of developing countries, is mainly disposed in landfills (LFs), whose inadequate management generates the emission of greenhouse gases and the production of leachates with high concentrations of organic and inorganic matter and, occasionally heavy metals. In this study, the toxicity of the leachates from an intermediate-age municipal landfill was evaluated by ecotoxicity and anaerobic toxicity tests. The acute to...

  1. Modern technology for landfill waste placement

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L. [Landfill Service Corp., Apalachin, NY (United States)

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits of this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.

  2. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  3. Lime treatment of stabilized leachates

    International Nuclear Information System (INIS)

    Renou, S.; Poulain, S.; Givaudan, J. G.; Sahut, C.; Moulin, P.

    2009-01-01

    Reverse Osmosis is the most widely used method for treating municipal solid waste landfill leachates, since it produces a permeate in compliance with reject requirements. However, the efficiency of this process at the industrial scale is limited mainly because of membrane fouling and the high osmotic pressures involved. Although lime precipitation is traditionally used to eliminate the temporary hardness of water by de-carbonation, it has also been shown to be highly efficient in removing humic substances which are known to have strong fouling potential towards membranes. Our objective is to study the lime/leachate physico-chemistry, in order to determine the potential of the lime precipitation as pre-treatment for reverse osmosis. The results show that the lime treatment makes it possible (i) to act efficiently on the inorganic fraction of leachates through a de-carbonation mechanism which entails massive precipitation of the carbonates under the form of CaCO 3 , (ii) to eliminate by co-precipitation the high Molecular Weight (MW) organic macromolecules (≥ 50, 000 g.mol -1 ) such as humic acids, and (iii) to generate a stable residue that can be easily stored at a landfill. The reverse osmosis step will be facilitated through significant reduction of the osmotic pressures and prevention of membrane fouling. (authors)

  4. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells.

    Science.gov (United States)

    Abichou, Tarek; Barlaz, Morton A; Green, Roger; Hater, Gary

    2013-10-01

    The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213LMg(-1) (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198LMg(-1) from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10(-8) to 10(-7)ms(-1) which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12LMg(-1), respectively, was similar to the measured settlement of 15% and 5

  5. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal

    Science.gov (United States)

    Kaown, D.; Kim, H.; Lee, S.; Hyun, Y.; Moon, H.; Ko, K.; Lee, K.

    2012-12-01

    The release of leachate from animal carcass disposal can potentially contaminate soil and groundwater. During the Korea's foot-and-mouth disease (FMD) outbreak in 2010-2011, about 3.53 million of pigs and cattle were slaughtered and 4,538 burial sites were constructed. The objectives of this study are to determine the hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass disposal. Hydrogeochemical characteristics and bacterial community diversity in leachate from animal carcass burial facilities were monitored to prevent further soil and groundwater contamination and to build effective plans for stabilization of the burial site. Two burial sites were investigated in this study. An animal carcass disposal site is located in a flat area and another disposal site is found in mountain area. The hydrogeochemical and hydrogeological characteristics were analyzed to identify groundwater contamination by leachate from livestock burial sites. After 5-6 months of burial, the concentrations of NH4+, Cl-, and HCO3- in leachate were decreased since the leachate was regularly pumped and treated. However, high concentrations of major contaminants (NH4+, Cl-, and HCO3-) were still observed in landfill leachate of mountain area even though pumping and treatment of leachate were continuously conducted. Bacterial community diversity over time in leachate from animal carcass disposal was analyzed using 16S rRNA gene-based pyrosequencing. The impact of landfill leachate on change of bacterial community in soil and groundwater were monitored for a year.

  6. Characterisation of landfill leachate by EEM-PARAFAC-SOM during physical-chemical treatment by coagulation-flocculation, activated carbon adsorption and ion exchange.

    Science.gov (United States)

    Oloibiri, Violet; De Coninck, Sam; Chys, Michael; Demeestere, Kristof; Van Hulle, Stijn W H

    2017-11-01

    The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl 3 ) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while polyaluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV ≥ 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl 3 , 8% - PACl), C2 (74% - FeCl 3 , 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fresh Kills leachate treatment and minimization study. Volume 1, Characteristics and treatment alternatives: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fillos, J.; Khanbilvardi, R.

    1993-09-01

    The New York City Department of Sanitation is developing a comprehensive landfill leachate management plan for the Fresh Kills Landfill. The leachate was first analyzed for conventional and priority pollutants. The leachate was well buffered at pH 7 to 8 with an alkalinity of 5,000 to 6,000 mg/L. The BOD was low, usually less than 100 mg/L, but the COD was as high as 1,800 mg/L. Ammonia concentrations were around 700 mg/L and the color resembled strong tea at 3,000 colorimetric units. Only few of the priority pollutants were present, and at extremely low concentrations. Based on the chemical characteristics of the leachate, the primary environmental impact would be on the oxygen balance of the receiving surface waters.

  8. Multivariate analysis of historical data (2004-2013) in assessing the possible environmental impact of the Bellolampo landfill (Palermo).

    Science.gov (United States)

    Indelicato, Serena; Bongiorno, David; Tuzzolino, Nicola; Mannino, Maria Rosaria; Muscarella, Rosalia; Fradella, Pasquale; Gargano, Maria Elena; Nicosia, Salvatore; Ceraulo, Leopoldo

    2018-03-14

    Multivariate analysis was performed on a large data set of groundwater and leachate samples collected during 9 years of operation of the Bellolampo municipal solid waste landfill (located above Palermo, Italy). The aim was to obtain the most likely correlations among the data. The analysis results are presented. Groundwater samples were collected in the period 2004-2013, whereas the leachate analysis refers to the period 2006-2013. For groundwater, statistical data evaluation revealed notable differences among the samples taken from the numerous wells located around the landfill. Characteristic parameters revealed by principal component analysis (PCA) were more deeply investigated, and corresponding thematic maps were drawn. The composition of the leachate was also thoroughly investigated. Several chemical macro-descriptors were calculated, and the results are presented. A comparison of PCA results for the leachate and groundwater data clearly reveals that the groundwater's main components substantially differ from those of the leachate. This outcome strongly suggests excluding leachate permeation through the multiple landfill lining.

  9. Adsorptive performance of coal-based magnetic activated carbon for cyclic volatile methylsiloxanes from landfill leachate.

    Science.gov (United States)

    Zhang, Chunhui; Jiang, Shan; Zhang, Wenwen

    2018-02-01

    Bituminous coal-based magnetic activated carbon (MAC) was prepared, characterized, and used successfully for removal of cyclic volatile methylsiloxanes (cVMSs) from treated landfill leachate. Batch adsorption studies were performed at different adsorption dosages and contact times. With adsorptive dosage of 0.75 g/L and contact time of 60 min, the removal efficiencies achieved by MAC for octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) are 100, 82.8, and 71.4%, respectively. The specific magnetization coefficients of MAC before and after adsorption are 4.6 × 10 -7 and 5.2 × 10 -7  m 3 /kg, between 1.26 × 10 -7 and 3.8 × 10 -5  m 3 /kg, which suggests that MAC can be recycled by the high-intensity magnetic separators.

  10. Identification of Important Parameter from Leachate Solid Waste Landfill on Water Quality, Case Study of Pesanggrahan River

    Science.gov (United States)

    Yanidar, R.; Hartono, D. M.; Moersidik, S. S.

    2018-03-01

    Cipayung Landfill takes waste generation from Depok City approximately ± 750 tons/day of solid waste. The south and west boundaries of the landfill is Pesanggarahan River which 200m faraway. The objectives of this study are to indicate an important parameter which greatly affects the water quality of Pesanggrahan River and purpose the dynamic model for improving our understanding of the dynamic behavior that captures the interactions and feedbacks important parameter in river in order to identify and assess the effects of the treated leachate from final solid waste disposal activity as it responds to changes over time in the river. The high concentrations of BOD and COD are not the only cause significantly affect the quality of the pesanggrahan water, it also because the river has been contaminated in the upstream area. It need the water quality model to support the effectiveness calculation of activities for preventing a selected the pollutant sources the model should be developed for simulating and predicting the trend of water quality performance in Pesanggrahan River which can potentially be used by policy makers in strategic management to sustain river water quality as raw drinking water.

  11. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.

    Science.gov (United States)

    Turan, N Gamze; Ergun, Osman Nuri

    2009-08-15

    All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.

  12. Removal of Cu(II) from leachate using natural zeolite as a landfill liner material

    International Nuclear Information System (INIS)

    Turan, N. Gamze; Ergun, Osman Nuri

    2009-01-01

    All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.

  13. Environmental and socio-economic impacts of landfills

    OpenAIRE

    Danthurebandara, Maheshi; Van Passel, Steven; Nelen, Dirk; Tielemans,Yves; Van Acker, Karel

    2012-01-01

    A modern landfill is an engineered method for depositing waste in specially constructed and protected cells on the land surface or in excavations into the land surface. Despite the fact that an increasing amount of waste is reused, recycled or energetically valorized, landfills still play an important role in waste management strategies. The degradation of wastes in the landfill results in the production of leachate and gases. These emissions are potentials threats to human health and to the...

  14. Using of peat sorbents in bivalent metals sorption from municipal solid waste landfills leachate

    Energy Technology Data Exchange (ETDEWEB)

    Teirumnieka, E.; Teirumnieks, E. [Rezeknes Augskola, Rezekne (Latvia). Faculty of Engineering; Klavins, M. [Latvia Univ., Riga (Latvia). Faculty of Geography and Earth Sciences

    2009-07-01

    Landfill leachate in acidic regions can pollute surface and ground waters with heavy metals and other pollutants. This study investigated the use of peat as an effective media for removing dissolved metal pollutants. As an adsorbent, peat can effectively remove metals from aqueous solutions. The experiment used 10 grams of peat mixed with heat metal solutions in a reaction vessel at temperatures of 20 degrees C. The solution was analyzed using an inductively coupled plasma optical emission spectrometer. A pH meter was used to measure pH values. The study showed that the maximum adsorption capacity for cobalt (Co) was approximately 75 mg per gram. Adsorption quantity was estimated at 68 per cent, with an initial pH of 5.6. The maximum adsorption capacity for nickel (Ni) was approximately 77 mg per gram, and copper (Cu) was 58 mg per gram with initial pH values of 6.8. Results varied with variations in peat composition and structure. Adsorption affinities correlated with electronegativity and softness. Adsorption capacity of peat for each metal decreased due to the competitive effect of binary and ternary solute systems. Approximately 85 per cent of Ni ions were adsorbed in 30 minutes. It was concluded that the sorption efficiency of the peat decreased with increasing initial concentrations of the metals. The pH levels were influenced by the ion exchange effect in the sorption mechanism. 12 refs., 3 tabs., 7 figs.

  15. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing...... concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed...... by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic...

  16. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    Science.gov (United States)

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/√s, 0.00004 m/s, and 2.17 × 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated.

  17. Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark)

    Science.gov (United States)

    Ludvigsen, L.; Albrechtsen, H.-J.; Heron, G.; Bjerg, P. L.; Christensen, T. H.

    1998-10-01

    The distribution of anaerobic microbial redox processes was investigated along a 305 m long transect of a shallow landfill-leachate polluted aquifer. By unamended bioassays containing sediment and groundwater, 37 samples were investigated with respect to methane production, sulfate, iron, and manganese reduction, and denitrification. Methane production was restricted to the most reduced part of the plume with rates of 0.003-0.055 nmol CH 4/g dry weight/day. Sulfate reduction was observed at rates of maximum 1.8 nmol SO 42-/g dry weight/day along with methane production in the plume, but sulfate reduction was also observed further downgradient of the landfill. Iron reduction at rates of 5-19 nmol Fe(II)/g dry weight/day was observed in only a few samples, but this may be related to a high detection limit for the iron reducing bioassay. Manganese reduction at rates of maximum 2.4 nmol Mn(II)/g dry weight/day and denitrification at rates of 0.2-37 nmol N 2O-N/g dry weight/day were observed in the less reduced part of the plume. All the redox processes were microbial processes. In many cases, several redox processes took place simultaneously, but in all samples one process dominated accounting for more than 70% of the equivalent carbon conversion. The bioassays showed that the redox zones in the plume identified from the groundwater composition (e.g. as methanogenic and sulfate reducing) locally hosted also other redox processes (e.g. iron reduction). This may have implications for the potential of the redox zone to degrade trace amounts of organic chemicals and suggests that unamended bioassays may be an important supplement to other approaches in characterizing the redox processes in an anaerobic plume.

  18. Presence, distribution, and diversity of iron-oxidizing bacteria at a landfill leachate-impacted groundwater surface water interface

    DEFF Research Database (Denmark)

    Yu, R.; Gan, P.; Mackay, A.A.

    2010-01-01

    ) were dominated by members of the Bradyrhizobiaceae and Comamonadaceae; clones from the deeper sediments were phylogenetically more diverse, dominated by members of the Rhodocyclaceae. The iron deposition profiles indicated that active iron oxidation occurred only within the near-to-surface GSI......We examined the presence of iron-oxidizing bacteria (IOB) at a groundwater surface water interface (GSI) impacted by reduced groundwater originating as leachate from an upgradient landfill. IOB enrichments and quantifications were obtained, at high vertical resolution, by an iron/oxygen opposing...... site mirrored the IOB distribution. Clone libraries from two separate IOB enrichments indicated a stratified IOB community with clear differences at short vertical distances. Alpha- and Betaproteobacteria were the dominant phylotypes. Clones from the near-surface sediment (1-2 cm below ground surface...

  19. Polychlorinated biphenyls in polysulfide sealants-Occurrence and emission from a landfill station

    International Nuclear Information System (INIS)

    Persson, N. Johan; Pettersen, Harald; Ishaq, Rasha; Axelman, Johan; Bandh, Cecilia; Broman, Dag; Zebuehr, Yngve; Hammar, Tommy

    2005-01-01

    Approximately 80 000 kg polysulfide sealant containing 10 000-18 000 kg polychlorinated biphenyls (PCB) was deposited at a Swedish municipal landfill station during 1965-1973. Investigations during 1994 showed that soil layers underneath the landfill had concentration of PCB not alarmingly high. The concentration of PCB congeners in ground water samples was elevated 4-750 times compared to a reference sample. Based on samples of ground water, leachate water, and flux chambers measuring evaporation of PCB from the landfill surface, the emission of PCB was estimated to be 1 g ΣPCB/yr. This very low rate was attributed to the high sorptive capacity of the sealant. Compared to a reference site, the evaporation flux was elevated for the most volatile congeners, but factors 20-1400 lower than from another landfill which was contaminated with PCB in paper-pulp fibres. - From a municipal 2-ha landfill containing 10-18 tonnes of ΣPCB bound in polysulfide sealants, only 1 g per year escape to the surroundings

  20. Behavior of radionuclides in sanitary landfills.

    Science.gov (United States)

    Chang, K C; Chian, E S; Pohland, F G; Cross, W H; Roland, L; Kahn, B

    1984-01-01

    his study was undertaken to evaluate the possibility of disposing low-level radioactive waste in sanitary landfills with leachate containment to prevent environmental releases. To meet this objective, two simulated landfills, each 200 l. in volume and containing 55 kg of municipal refuse, were operated in the laboratory with simulated rainfall additions for a 9-month period to observe the extent to which radio-cobalt, -cesium, -strontium and tritium were leached into the liquid phase. One of the units was operated with leachate recycle, the other as a single pass control. Liquid samples were analyzed weekly for 3H, 58Co, 85Sr and 134Cs tracers. Weekly analyses were also performed for approximately 30 parameters to define the degree of stabilization of the waste. Major parameters included BOD, COD, pH and concentrations of specific organics, metals and gases. Concentrations of stable cobalt, strontium and cesium were also measured periodically. Soluble radioactivity levels in both systems were reduced by factors of 50 for 58Co, 5 for 85Sr and 7 for 134Cs, taking radioactive decay and dilution into account. Some radionuclide removal from the liquid phase was associated with major chemical changes in the landfills that occurred within 80 days for the control system and within 130 days for the recycle unit. Observed acid, sulfide, and CO2 concentrations suggested mechanisms for removing some of the radionuclides from leachate. Detection of 3H in the off-gas indicated that less than 1% of tritiated waste became airborne. The waste in the leachate recycle unit was more completely stabilized than in the control unit.

  1. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR).

    Science.gov (United States)

    Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse

    2011-03-15

    Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Leaching of chromated copper arsenate (CCA)-treated wood in a simulated monofill and its potential impacts to landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Jambeck, Jenna R. [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States)]. E-mail: ttown@ufl.edu; Solo-Gabriele, Helena [Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146-0630 (United States)

    2006-07-31

    The proper end-of-life management of chromated copper arsenate (CCA)-treated wood, which contains arsenic, copper, and chromium, is a concern to the solid waste management community. Landfills are often the final repository of this waste stream, and the impacts of CCA preservative metals on leachate quality are not well understood. Monofills are a type of landfill designed and operated to dispose a single waste type, such as ash, tires, mining waste, or wood. The feasibility of managing CCA-treated wood in monofills was examined using a simulated landfill (a leaching lysimeter) that contained a mix of new and weathered CCA-treated wood. The liquid to solid ratio (LS) reached in the experiment was 0.63:1. Arsenic, chromium, and copper leached from the lysimeter at average concentrations of 42 mg/L for arsenic, 9.4 mg/L for chromium, and 2.4 mg/L for copper. Complementary batch leaching studies using deionized water were performed on similar CCA-treated wood samples at LS of 5:1 and 10:1. When results from the lysimeter were compared to the batch test results, copper and chromium leachability appeared to be reduced in the lysimeter disposal environment. Of the three metals, arsenic leached to the greatest extent and was found to have the best correlation between the batch and the lysimeter experiments.

  3. Leachates analysis of glass from black and white and color televisions sets

    Directory of Open Access Journals (Sweden)

    Radovan Kukla

    2012-01-01

    Full Text Available The aim of work was to determine the content of selected elements in the glass from color and black and white television (TV sets. The amount of back taken TV sets in the Czech Republic increases annualy, which is associated with higher production of the waste glass. Currently there is 1.4 television sets for each household and the number of it should increase in future, because of higher standard of living and new technologies used. Waste glass treatment or landfilling may present, because of composition of the waste glass threat to the environment. One of the indicators of the polution from waste glass is leachate analysis, which can show us the content of hazardous substances in the waste glass, which can be released to the environment. A qualitative analysis of leachate samples was carried out by UV-VIS spectrophotometer. The results showed concentration of potencionaly hazardous substances contained in leachate samples. This was especially content of aluminum, cadmium, chromium, copper, molybdenum, nickel, lead, tin and zinc. Results of analyzes of the aqueous extract of glass were confronted with the limits specified in the currently valid legislation. Based on the results there is clear that in the case of landfilling of