WorldWideScience

Sample records for landfill cover technology

  1. Landfill covers for dry environments

    International Nuclear Information System (INIS)

    Dwyer, S.F.

    1996-01-01

    A large-scale landfill cover field test is currently underway at Sandia National Laboratories in Albuquerque, New Mexico. It is intended to compare and document the performance of alternative landfill cover technologies of various costs and complexities for interim stabilization and/or final closure of landfills in arid and semi-arid environments. Test plots of traditional designs recommended by the US Environmental Protection Agency for both RCRA Subtitle open-quote C close-quote and open-quote D close-quote regulated facilities have been constructed side-by-side with the alternative covers and will serve as baselines for comparison to these alternative covers. The alternative covers were designed specifically for dry environments. The covers will be tested under both ambient and stressed conditions. All covers have been instrumented to measure water balance variables and soil temperature. An on-site weather station records all pertinent climatological data. A key to acceptance of an alternative environmental technology is seeking regulatory acceptance and eventual permitting. The lack of acceptance by regulatory agencies is a significant barrier to development and implementation of innovative cover technologies. Much of the effort on this demonstration has been toward gaining regulatory and public acceptance

  2. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  3. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    International Nuclear Information System (INIS)

    Karr, L.A.; Harre, B.; Hakonson, T.E.

    1997-01-01

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the open-quotes RCRA Capclose quotes. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the open-quotes RCRA Capclose quotes that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration

  4. Planning document for the Advanced Landfill Cover Demonstration

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Bostick, K.V.

    1994-01-01

    The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ''low-permeability'' cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration

  5. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    Cossu, R.; Privato, A.; Raga, R.

    2005-01-01

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed [it

  6. Migration barrier covers for radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G.; Kent, J.S.

    1993-01-01

    Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate

  7. The environmental suitability of industrial secondary products used as covering materials in landfills

    International Nuclear Information System (INIS)

    Laine-Ylijoki, J.; Wahlstroem, M.; Maekelae, E.

    2001-01-01

    The industrial secondary products and landmasses polluted in a minor way can be used as coverings and sealing materials and also restricted in the ground construction of landfills. By using suitable secondary products, natural materials can be reduced. Substitutes are needed due to the fact that the availability of natural materials is poor in many areas. The presented project is a part of the Streams technology programme financed by Tekes. It includes the development of the measuring methods to study the environmental suitability of industrial secondary products, which will be used as covering materials of landfills. Based on the results, a handbook addressing the environmental suitability procedure will be compiled

  8. Limits and dynamics of methane oxidation in landfill cover soils

    Science.gov (United States)

    In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...

  9. Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter

    2000-01-01

    Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....

  10. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. [Culturable psychrotolerant methanotrophic bacteria in landfill cover soil].

    Science.gov (United States)

    Kallistova, A Iu; Montonen, L; Jurgens, G; Munster, U; Kevbrina, M V; Nozhevnikova, A N

    2014-01-01

    Methanotrophs closely related to psychrotolerant members of the genera Methylobacter and Methylocella were identified in cultures enriched at 10@C from landfill cover soil samples collected in the period from April to November. Mesophilic methanotrophs of the genera Methylobacter and Methylosinus were found in cultures enriched at 20 degrees C from the same cover soil samples. A thermotolerant methanotroph related to Methylocaldum gracile was identified in the culture enriched at 40 degrees C from a sample collected in May (the temperature of the cover soil was 11.5-12.5 degrees C). In addition to methanotrophs, methylobacteria of the genera Methylotenera and Methylovorus and members of the genera Verrucomicrobium, Pseudomonas, Pseudoxanthomonas, Dokdonella, Candidatus Protochlamydia, and Thiorhodospira were also identified in the enrichment cultures. A methanotroph closely related to the psychrotolerant species Methylobacter tundripaludum (98% sequence identity of 16S r-RNA genes with the type strain SV96(T)) was isolated in pure culture. The introduction of a mixture of the methanotrophic enrichments, grown at 15 degrees C, into the landfill cover soil resulted in a decrease in methane emission from the landfill surface in autumn (October, November). The inoculum used was demonstrated to contain methanotrophs closely related to Methylobacter tundripaludum SV96.

  12. Assessing the environmental impact of ashes used in a landfill cover construction.

    Science.gov (United States)

    Travar, I; Lidelöw, S; Andreas, L; Tham, G; Lagerkvist, A

    2009-04-01

    Large amounts of construction materials will be needed in Europe in anticipation for capping landfills that will be closed due to the tightening up of landfill legislation. This study was conducted to assess the potential environmental impacts of using refuse derived fuel (RDF) and municipal solid waste incineration (MSWI) ashes as substitutes for natural materials in landfill cover designs. The leaching of substances from a full-scale landfill cover test area built with different fly and bottom ashes was evaluated based on laboratory tests and field monitoring. The water that drained off above the liner (drainage) and the water that percolated through the liner into the landfill (leachate) were contaminated with Cl(-), nitrogen and several trace elements (e.g., As, Cu, Mo, Ni and Se). The drainage from layers containing ash will probably require pre-treatment before discharge. The leachate quality from the ash cover is expected to have a minor influence on overall landfill leachate quality because the amounts generated from the ash covers were low, environmental view point, the placement of ashes in layers above the liner is more critical than within the liner.

  13. Evaluation of the odour reduction potential of alternative cover materials at a commercial landfill.

    Science.gov (United States)

    Solan, P J; Dodd, V A; Curran, T P

    2010-02-01

    The availability of virgin soils and traditional landfill covers are not only costly and increasingly becoming scarce, but they also reduce the storage capacity of landfill. The problem can be overcome by the utilisation of certain suitable waste streams as alternative landfill covers. The objective of this study was to assess the suitability of Construction & Demolition fines (C&D), Commercial & Industrial fines (C&I) and woodchip (WC) as potential landfill cover materials in terms of odour control. Background odour analysis was conducted to determine if any residual odour was emitted from the cover types. It was deemed negligible for the three materials. The odour reduction performance of each of the materials was also examined on an area of an active landfill site. A range of intermediate cover compositions were also studied to assess their performance. Odour emissions were sampled using a Jiang hood and analysed. Results indicate that the 200 mm deep combination layer of C&D and wood chip used on-site is adequate for odour abatement. The application of daily cover was found to result in effective reduction allowing for the background odour of woodchip.

  14. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    Science.gov (United States)

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.

  15. Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics

    National Research Council Canada - National Science Library

    2003-01-01

    ... alternative landfill cover projects. The purpose of the case studies is to present examples of the flexibility used in the regulatory framework for approving alternative landfill cover designs, current research information about the use...

  16. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    Science.gov (United States)

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  17. Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill.

    Science.gov (United States)

    Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro

    2011-05-01

    According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given

  18. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills.

    Science.gov (United States)

    Plaza, Cristine; Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel; Booth, Matthew

    2007-08-01

    Hydrogen sulfide (H(2)S) generated from C&D debris landfills has emerged as a major environmental concern due to odor problems and possible health impacts to landfill employees and surrounding residents. Research was performed to evaluate the performance of various cover materials as control measures for H(2)S emissions from C&D debris landfills. Twelve laboratory-scale simulated landfill columns containing gypsum drywall were operated under anaerobic conditions to promote H(2)S production. Five different cover materials were placed on top of the waste inside duplicate columns: (1) sandy soil, (2) sandy soil amended with lime, (3) clayey soil, (4) fine concrete (particle size less than 2.5 cm), and (5) coarse concrete (particle size greater than 2.5 cm). No cover was placed on two of the columns, which were used as controls. H(2)S concentrations measured from the middle of the waste layer ranged from 50,000 to 150,000 ppm. The different cover materials demonstrated varying H(2)S removal efficiencies. The sandy soil amended with lime and the fine concrete were the most effective for the control of H(2)S emissions. Both materials exhibited reduction efficiencies greater than 99%. The clayey and sandy soils exhibited lower reduction efficiencies, with average removal efficiencies of 65% and 30%, respectively. The coarse concrete was found to be the least efficient material as a result of its large particle size.

  19. MATERIALS FOR THE FINAL COVER OF SANITARY LANDFILLS

    OpenAIRE

    Davorin Kovačić

    1994-01-01

    The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay) or geosynthetic (geomem¬brane). They are most often used in combination creating com¬posite liners. Recently alternative materials are also ...

  20. 75 FR 50930 - Final Determination To Approve Alternative Final Cover Request for the Lake County, Montana Landfill

    Science.gov (United States)

    2010-08-18

    ... Determination To Approve Alternative Final Cover Request for the Lake County, Montana Landfill AGENCY... VIII is making a final determination to approve an alternative final cover for the Lake County landfill, a municipal solid waste landfill (MSWLF) owned and operated by Lake County, Montana on the...

  1. MATERIALS FOR THE FINAL COVER OF SANITARY LANDFILLS

    Directory of Open Access Journals (Sweden)

    Davorin Kovačić

    1994-12-01

    Full Text Available The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay or geosynthetic (geomem¬brane. They are most often used in combination creating com¬posite liners. Recently alternative materials are also used like paper mill sludge or discarded swelling clay.

  2. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    Science.gov (United States)

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  3. 75 FR 6597 - Determination to Approve Alternative Final Cover Request for the Lake County, MT Landfill...

    Science.gov (United States)

    2010-02-10

    ... to Approve Alternative Final Cover Request for the Lake County, MT Landfill; Opportunity for Public... for the Lake County landfill, a municipal solid waste landfill (MSWLF) owned and operated by Lake... operating criteria for MSWLFs, including landfill location restrictions, operating standards, design...

  4. An Interactive Real-time Decision Support System for Leachate Irrigation on Evapotranspiration Landfill Covers

    Science.gov (United States)

    Wang, Y.

    2015-12-01

    Landfill disposal is still the most common and economical practice for municipal solid waste in most countries. However, heavily polluted leachate generated by excess rainwater percolating through the landfill waste is the major drawback of this practice. Evapotranspiration (ET) cover systems are increasingly being used as alternative cover systems to minimize percolation by evapotranspiration. Leachate recirculation is one of the least expensive options for leachate treatment. The combination of ET cover systems and leachate recirculation can be an economical and environment-friendly practice for landfill leachate management. An interactive real-time decision support system is being developed to better manage leachate irrigation using historical and forecasting weather data, and real time soil moisture data. The main frame of this system includes soil water modules, and plant-soil modules. An inverse simulation module is also included to calibrate certain parameters based on observed data when necessary. It would be an objectives-oriented irrigation management tool to minimize landfill operation costs and negative environmental impacts.

  5. Impact of different plants on the gas profile of a landfill cover

    International Nuclear Information System (INIS)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-01-01

    Research highlights: → Plants influence gas profile and methane oxidation in landfill covers. → Plants regulate water content and increase the availability of oxygen for methane oxidation. → Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  6. Evaluation of Landfill Cover Design Options for Waste Disposal Sites in the Coastal Regions of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2015-01-01

    Full Text Available Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these emissions. However, this technical manual does not provide explicit guidance on the material types or configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. Recommendations for further study include a longer simulation period as well the study of the combined effects of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the evapotranspirative landfill cover design options should also be considered.

  7. Landfill stabilization focus area: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed

  8. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  9. A simulation model for methane emissions from landfills with interaction of vegetation and cover soil.

    Science.gov (United States)

    Bian, Rongxing; Xin, Danhui; Chai, Xiaoli

    2018-01-01

    Global climate change and ecological problems brought about by greenhouse gas effect have become a severe threat to humanity in the 21st century. Vegetation plays an important role in methane (CH 4 ) transport, oxidation and emissions from municipal solid waste (MSW) landfills as it modifies the physical and chemical properties of the cover soil, and transports CH 4 to the atmosphere directly via their conduits, which are mainly aerenchymatous structures. In this study, a novel 2-D simulation CH 4 emission model was established, based on an interactive mechanism of cover soil and vegetation, to model CH 4 transport, oxidation and emissions in landfill cover soil. Results of the simulation model showed that the distribution of CH 4 concentration and emission fluxes displayed a significant difference between vegetated and non-vegetated areas. CH 4 emission flux was 1-2 orders of magnitude higher than bare areas in simulation conditions. Vegetation play a negative role in CH 4 emissions from landfill cover soil due to the strong CH 4 transport capacity even though vegetation also promotes CH 4 oxidation via changing properties of cover soil and emitting O 2 via root system. The model will be proposed to allow decision makers to reconsider the actual CH 4 emission from vegetated and non-vegetated covered landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    International Nuclear Information System (INIS)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L.; Chen, R.; Zhou, C.

    2015-01-01

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  11. Gas breakthrough and emission through unsaturated compacted clay in landfill final cover

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.W.W.; Chen, Z.K.; Coo, J.L. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chen, R., E-mail: chenrui1005@hotmail.com [Shenzhen Key Laboratory of Urban and Civil Engineering for Disaster Prevention and Mitigation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China); Zhou, C. [Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-10-15

    Highlights: • Explore feasibility of unsaturated clay as a gas barrier in landfill cover. • Gas breakthrough pressure increases with clay thickness and degree of saturation. • Gas emission rate decreases with clay thickness and degree of saturation. • A 0.6 m-thick clay layer may be sufficient to meet gas emission rate limit. - Abstract: Determination of gas transport parameters in compacted clay plays a vital role for evaluating the effectiveness of soil barriers. The gas breakthrough pressure has been widely studied for saturated swelling clay buffer commonly used in high-level radioactive waste disposal facility where the generated gas pressure is very high (in the order of MPa). However, compacted clay in landfill cover is usually unsaturated and the generated landfill gas pressure is normally low (typically less than 10 kPa). Furthermore, effects of clay thickness and degree of saturation on gas breakthrough and emission rate in the context of unsaturated landfill cover has not been quantitatively investigated in previous studies. The feasibility of using unsaturated compacted clay as gas barrier in landfill covers is thus worthwhile to be explored over a wide range of landfill gas pressures under various degrees of saturation and clay thicknesses. In this study, to evaluate the effectiveness of unsaturated compacted clay to minimize gas emission, one-dimensional soil column tests were carried out on unsaturated compacted clay to determine gas breakthrough pressures at ultimate limit state (high pressure range) and gas emission rates at serviceability limit state (low pressure range). Various degrees of saturation and thicknesses of unsaturated clay sample were considered. Moreover, numerical simulations were carried out using a coupled gas–water flow finite element program (CODE-BRIGHT) to better understand the experimental results by extending the clay thickness and varying the degree of saturation to a broader range that is typical at different

  12. Landfill gas: development guidelines

    International Nuclear Information System (INIS)

    1996-11-01

    A Guide produced as part of the UK DTI's New and Renewable Energy Programme provides information which forms a framework enabling landfill gas to be exploited fully as a renewable energy resource. The eight chapters cover the resource base of landfill gas in the UK in the wider context, the technology for energy recovery from landfill gas, the utilisation options for landfill gas, the various project development arrangements and their implementation, the assessment of a site's landfill gas resource, the factors which influence the project economies, financing aspects and the management of project liabilities and finally the national waste disposal policy and required consents followed by the overall process for project mobilisation. (UK)

  13. Mitigation of methane emission from Fakse landfill using a biowindow system

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Fredenslund, Anders Michael; Chanton, Jeffrey

    2011-01-01

    Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological...... of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.......Landfills are significant sources of atmospheric methane (CH4) that contributes to climate change, and therefore there is a need to reduce CH4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called “biocovers”) to enhance biological...

  14. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    International Nuclear Information System (INIS)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-01-01

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm -3 , reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH 4 m -2 d -1 , covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH 4 m -2 d -1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of

  15. A water balance study of four landfill cover designs varying in slope for semiarid regions

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-01-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes

  16. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Science.gov (United States)

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  17. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

  18. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    Science.gov (United States)

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  19. Experimental study and simulations of infiltration in evapotranspiration landfill covers

    Directory of Open Access Journals (Sweden)

    Wen-xian Zhang

    2009-09-01

    Full Text Available Various cover systems have been designed for landfill sites in order to minimize infiltration (percolation into the underlying waste. This study evaluated the soil water balance performance of evapotranspiration covers (ET covers and simulated percolation in the systems using the active region model (ARM. Experiments were conducted to measure water flow processes and water balance components in a bare soil cover and different ET covers. Results showed that vegetation played a critical role in controlling the water balance of the ET covers. In soil profiles of 60-cm depth with and without vegetation cover, the maximum soil water storage capacities were 97.2 mm and 62.8 mm, respectively. The percolation amount in the bare soil was 2.1 times that in the vegetation-covered soil. The ARM simulated percolation more accurately than the continuum model because it considered preferential flow. Numerical simulation results also indicated that using the ET cover system was an effective way of removing water through evapotranspiration, thus reducing percolation.

  20. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  1. Use of portable in motion weight control technologies at landfill sites

    CSIR Research Space (South Africa)

    Fisher, D

    2006-09-01

    Full Text Available Requirements for landfilling. In-motion weighing technology currently available in South Africa was investigated to assess its suitability as a 'portable landfill weighbridge'. The experience gained through testing the portable weighpad technology has indicated...

  2. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to

  3. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    Science.gov (United States)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  4. Design and construction of the multilayer cover for uranium ores landfills in Andujar (Spain) mining

    International Nuclear Information System (INIS)

    Sanchez, M.; Santiago, J.L. de.

    1994-01-01

    This report shows the design and construction of multilayer cover for the landfill of sterile uranium ores in Andujar Mining (Spain). The main chapters are: 1.- Decommissioning project of Uranium Mining in Andujar (Spain) 2.- Elements and design of cover. 3.- Characteristic material

  5. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  6. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  7. Water balance relationships in four alternative cover designs for radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Warren, R.W.; Hakonson, T.E.; Trujillo, G.

    1994-01-01

    Preliminary results are presented from a field study to evaluate the relative hydrologic performance of various landfill capping technologies installed by the Los Alamos National Laboratory at Hill Air Force Base, Utah. Four cover designs (two Los Alamos capillary barrier designs, one modified EPA RCRA design, and one conventional design) were installed in large lysimeters instrumented to monitor the fate of natural precipitation between 01 January 1990 and 20 September 1993. After 45 months of study, results showed that the cover designs containing barrier layers were effective in reducing deep percolation as compared to a simple soil cap design. The RCRA cover, incorporating a clay hydraulic barrier, was the most effective of all cover designs in controlling percolation but was not 100% effective. Over 90% of all percolation and barrier lateral flow occurred during the months of February through May of each year, primarily as a result of snow melt, early spring rains and low evapotranspiration. Gravel mulch surface treatments (70--80% coverage) were effective in reducing runoff and erosion. The two plots receiving gravel mulch treatments exhibited equal but enhanced amounts of evapotranspiration despite the fact that one plot was planted with additional shrubs

  8. Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hrad, Marlies [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Wimmer, Bernhard; Reichenauer, Thomas G. [Health and Environment Department, Environmental Resources and Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability

  9. LCA and economic evaluation of landfill leachate and gas technologies.

    Science.gov (United States)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  10. The Department of Energy's involvement with power generation from landfill gas

    International Nuclear Information System (INIS)

    Bevan, G.G.; Aitchison, E.M.

    1992-01-01

    A review is given of the UK Dept. of Energy's involvement with landfill gas since the early days of landfill gas exploitation to the present. Topics covered include resource assessment, abstraction and management technology, and emissions and environmental studies. The future programme is also outlined and the current status of the Non-Fossil Fuels obligation in landfill gas is described. (UK)

  11. LCA and economic evaluation of landfill leachate and gas technologies

    DEFF Research Database (Denmark)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna Kristina

    2011-01-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3–4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate...... and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production...... of electricity and heat.The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost...

  12. Effect of bio-cover equipped with a novel passive air diffusion system on methane emission reduciton from landfill

    DEFF Research Database (Denmark)

    Lu, W.J.; Mou, Zishen

    2011-01-01

    Based on the aerothermodynamic principles, a kind of breathing bio-cover system was designed to enhance oxygen (O2) supply efficiency and methane (CH4) oxidation capacity. The research showed that O2 concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped...... with passive air diffusion system (MPADS). When the simulated landfill gas SLFG flow was 771 and 1028 gm−3 d−1, the O2 concentration in MPADS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH4 oxidation rate was 100% when the SLFG flow rate was no more than 1285 gm−3 d......−1, which also was confirmed by the mass balance calculations. The breathing bio-cover system with in situ self-oxygen supply can address the problem of O2 insufficient in conventional landfill bio-cover. The proposed system presents high potential for improving CH4 emission reduction in landfills....

  13. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi......-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is “landfilling of 1 ton of wet household waste in a 10 m deep landfill...... that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater...

  14. Prediction of long-term erosion from landfill covers in the southwest

    International Nuclear Information System (INIS)

    Anderson, C.E.; Stormont, J.C.

    1997-01-01

    Erosion is a primary stressor of landfill covers, especially for climates with high intensity storms and low native plant density. Rills and gullies formed by discrete events can damage barrier layers and induce failure. Geomorphologic, empirical and physical modeling procedures are available to provide estimates of surface erosion, but numerical modeling requires accurate representation of the severe rainfall events that generate erosion. The National Weather Service precipitation frequency data and estimates of 5, 10, 15, 30 and 60-minute intensity can be statistically combined in a numerical model to obtain long-term erosion estimates. Physically based numerical models using the KINEROS and AHYMO programs have been utilized to predict the erosion from a southwestern landfill or waste containment site with 0.03, 0.05 and 0.08 meter per meter surface slopes. Results of AHYMO modeling were within 15 percent of average annual values computed with the empirical Universal Soil Loss Equation. However, the estimation of rill and gully formation that primarily degrades cover systems requires quantifying single events. For Southwestern conditions, a single 10-year storm can produce erosion quantifies equal to three times the average annual erosion and a 100-year storm can produce five times the average annual erosion

  15. Innovative technologies for the remediation of transuranic-contaminated landfills. Appendix 13: USA

    International Nuclear Information System (INIS)

    Kostelnik, K.

    2001-01-01

    The Transuranic-Contaminated Arid Landfill Stabilization Programme, formerly the Buried Waste Integrated Demonstration Programme, was organized by the Department of Energy, Office of Technology Development, to (a) manage the development of emerging technologies that could be successfully applied to remediation and (b) promote the use of these technologies to improve environmental restoration and waste management operations for transuranic-contaminated landfills in arid environments. Implementing the Transuranic-Contaminated Arid Landfill Stabilization Programme involved three key strategies: 1) A systems engineering approach was used to include an overall perspective of the entire remediation process; 2) State-of-the-art science and technology were sought for improving the remediation system; 3) Integrated product teams which were comprised of end users, regulators, stakeholders, as well as industry partners were formed

  16. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    Science.gov (United States)

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH 4 oxidation potential and biological characteristics with CH 4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH 4 oxidation reached 32.40 mol d -1 m -2 by providing sufficient O 2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH 4 and O 2 . The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kg soil-DW -1 ·s -1 ) increased with CH 4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10 -5 to 9.0 × 10 -3 nmol mL -1 h -1 ) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH 4 concentration. These findings provide information for assessing CH 4 oxidation potential and changing of biological characteristics in landfill cover soil.

  17. On the performance of capillary barriers as landfill cover

    Science.gov (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  18. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf

    1997-01-01

    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  19. Landfill cover performance monitoring using time domain reflectometry

    International Nuclear Information System (INIS)

    Neher, E.R.; Cotten, G.B.; McElroy, D.

    1998-01-01

    Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data

  20. Assessing the performance of a cold region evapotranspiration landfill cover using lysimetry and electrical resistivity tomography.

    Science.gov (United States)

    Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara

    2012-01-01

    In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.

  1. Technical and economic evaluation of selected technologies of the Landfill Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Floran, R.J.

    1993-12-31

    In 1992 and 1993, numerous innovative and emerging technologies for characterizing metal and mixed waste contaminants and their migration beneath landfills in and environments were field tested at Sandia`s Chemical Waste Landfill. Many of these technologies are being evaluated as part of the Landfill Characterization System (LCS). The LCS emphasizes minimally intrusive technologies and downhole sensors that strive to be cheaper, better, safer and faster than conventional methods. Major aims of the LCS are to demonstrate, test and evaluate these technologies, and determine whether substantial cost saving over traditional baseline methods can be realized. To achieve these goals, the LCS uses an integrated systems approach that stresses the application of complementary and compatible technologies. Successful field demonstrations combined with favorable economics, will greatly assist the commercialization of these technologies to the private sector and to Environmental Restoration groups throughout the DOE Complex. In this paper, a technical and economic evaluation of selected technologies that comprise the LCS is presented. Because sampling and analysis is the most costly part of a characterization effort, the economic evaluation presented here focuses specifically on these activities. LCS technologies discussed include the ``Smart Sampling Methodology`` and two field screening analytical methods, stripping voltammetry and x-ray fluorescence.

  2. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    International Nuclear Information System (INIS)

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Åkerman, Anna; Yuan, Lei

    2012-01-01

    Highlights: ► Performance-based evaluation of landfill gas control system. ► Analytical framework to evaluate transition from active to passive gas control. ► Focus on cover oxidation as an alternative means of passive gas control. ► Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society’s interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  3. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l' Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation

  4. Decision support system to select cover systems

    International Nuclear Information System (INIS)

    Bostick, K.V.

    1995-01-01

    The objective of this technology is to provide risk managers with a defensible, objective way to select capping alternatives for remediating radioactive and mixed waste landfills. The process of selecting containment cover technologies for mixed waste landfills requires consideration of many complex and interrelated technical, regulatory, and economic issues. A Decision Support System (DSS) is needed to integrate the knowledge of experts from scientific, engineering, and management disciplines to help in selecting the best capping practice for the site

  5. Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

    1993-01-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system

  6. REQUIREMENTS FOR HAZARDOUS WASTE LANDFILL DESIGN, CONSTRUCTION AND CLOSURE

    Science.gov (United States)

    This publication contains edited versions of the material presented at ten Technology Transfer seminars conducted in 1988 on this subject. Sections are included on design of clay and flexible membrane liners, leachate collector systems, and landfill covers. Construction quality a...

  7. Innovative technologies for the remediation of transuranic- contaminated landfills

    International Nuclear Information System (INIS)

    Kostelnik, K.M.

    1995-01-01

    The US Department of Energy (DOE) has initiated a comprehensive research,development, demonstration, testing and evaluation program to provide innovative technology systems to achieve its environmental management responsibilities. The Office of Technology Development (OTD) is responsible for this research in support of the Offices of Environmental Restoration and Waste Management efforts. In fiscal year (FY) 1992 the OTD established the Buried Waste Integrated Demonstration (BWID). The BWID mission was to support the development of emerging technologies for their application to the remediation of DOE buried waste site. During FY95, the BWID program was transitioned into a larger program which will focus its attention to DOE Landfills and Contaminated Soils. There search and activities formerly referred to as the BWID will now be associated with the Transuranic-contaminated Arid Landfill Stabilization Program.(TALS). The TALS Program supports these buried waste remediation efforts by seeking out the best talent to solve the technology challenges as identified in baseline remediation strategies. Experts from throughout the DOE complex, universities, private sector, and the international community are being included in this program to solve these challenges and ensure implementation and commercialization of innovative technologies

  8. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils

    International Nuclear Information System (INIS)

    Mahieu, Koenraad; De Visscher, Alex; Vanrolleghem, Peter A.; Van Cleemput, Oswald

    2008-01-01

    A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between 12 CH 4 , 13 CH 4 , and 12 CH 3 D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7 vol% in the concentration and a RMSD of 0.8 per mille in the δ 13 C value, with δ 13 C the relative 13 C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods

  9. Application of photochemical technologies for treatment of landfill leachate.

    Science.gov (United States)

    Meeroff, Daniel E; Bloetscher, Frederick; Reddy, D V; Gasnier, François; Jain, Swapnil; McBarnette, André; Hamaguchi, Hatsuko

    2012-03-30

    Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO(2) photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO(2) photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10-200 h for PIMA and 3-37 h for TiO(2) photocatalysis. Testing with actual leachate samples showed 85% TiO(2) photocatalyst recovery efficiency with no loss in performance after multiple (n>4 uses). Pre-filtration was not found to be necessary for effective treatment using either process. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Design document for landfill capping Prototype Decision Support System

    International Nuclear Information System (INIS)

    Stone, J.J.; Paige, G.; Hakonson, T.E.; Lane, L.J.

    1994-01-01

    The overall objective of the Prototype Decision Support System for shallow land burial project is to ''Develop a Decision Support System tool which incorporates simulation modeling and multi-objective decision theory for the purpose of designing and evaluating alternative trench cap designs for mixed waste landfill covers. The goal is to improve the quality of technical information used by the risk manager to select landfill cover designs while taking into account technological, economical, and regulatory factors.'' The complexity of the technical and non-technical information, and how the information varies in importance across sites, points to the need for decision analysis tools that provide a common basis for integrating, synthesizing, and valuing the decision input. Because the cost of remediating thousands of contaminated DOE sites is projected to be in the 10's--100's of billions of dollars, methods will be needed to establish cleanup priorities and to help in the selection and evaluation of cost effective remediation alternatives. Even at this early stage in DOE's cleanup program, it is certain that capping technologies will be heavily relied upon to remediate the 3000+ landfills on DOE property. Capping is favored in remediating most DOE landfills because, based on preliminary baseline risk assessments, human and ecological risks are considered to be low at most of these sites and the regulatory requirements for final closure of old landfills can be met using a well designed cap to isolate the buried waste. This report describes a program plan to design, develop, and test a decision support system (DSS) for assisting the DOE risk manager in evaluating capping alternatives for radioactive and hazardous waste landfills. The DOE DSS will incorporate methods for calculating, integrating and valuing technical, regulatory, and economic criteria

  11. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  12. Assessment of municipal waste compost as a daily cover material for odour control at landfill sites

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Claire [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, Philip [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom)]. E-mail: p.j.longhurst@cranfield.ac.uk; Pollard, Simon [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Smith, Richard [Integrated Waste Management Centre, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Jefferson, Bruce [School of Water Sciences, Cranfield University, MK43 0AL (United Kingdom); Gronow, Jan [Environment Agency, Science Group - Waste and Remediation, Olton Court, 10 Warwick Road, Olton, Solihull, West Midlands, B92 7HX (United Kingdom)

    2005-05-01

    The ability of municipal waste compost as a daily cover material to reduce the odorous emissions associated with landfill surfaces was investigated. Trials were carried out using landfill gas, a certified sulphurous gas mix and ambient air as a control. Odorous gas was passed through portable test column filled with compost at different densities (590 kg/m{sup 3} and 740 kg/m{sup 3}). Gas samples were taken from the inlet, outlet and at varying column depths and examined using a combination of sensory analysis (olfactometry) and a novel analytical method (Transportable Selected Ion Flow Tube - TSIFT). Results for the trials using landfill gas showed a 69% odour reduction (OU/m{sup 3}) through the column for compost with a bulk density of 590 kg/m{sup 3}, and a reduction of 97% using compost with a bulk density of 740 kg/m{sup 3}. TSIFT analysis showed an overall decrease in the concentration of terpenes, and sulphurous compounds in the outlet gas from the column for both bulk densities. No significant trend could be identified for the concentrations at different depths within the column. Results show the ability of compost to reduce landfill odours under differing conditions. The inconclusive data provided by TSIFT analysis may be due to the analysis of compounds that are not contributing to odour, and thus highlights the potential for synergetic effects and the importance of sensory measurement when examining odorous emissions. - Practical measures to improve landfill odour control are investigated.

  13. Assessment of municipal waste compost as a daily cover material for odour control at landfill sites

    International Nuclear Information System (INIS)

    Hurst, Claire; Longhurst, Philip; Pollard, Simon; Smith, Richard; Jefferson, Bruce; Gronow, Jan

    2005-01-01

    The ability of municipal waste compost as a daily cover material to reduce the odorous emissions associated with landfill surfaces was investigated. Trials were carried out using landfill gas, a certified sulphurous gas mix and ambient air as a control. Odorous gas was passed through portable test column filled with compost at different densities (590 kg/m 3 and 740 kg/m 3 ). Gas samples were taken from the inlet, outlet and at varying column depths and examined using a combination of sensory analysis (olfactometry) and a novel analytical method (Transportable Selected Ion Flow Tube - TSIFT). Results for the trials using landfill gas showed a 69% odour reduction (OU/m 3 ) through the column for compost with a bulk density of 590 kg/m 3 , and a reduction of 97% using compost with a bulk density of 740 kg/m 3 . TSIFT analysis showed an overall decrease in the concentration of terpenes, and sulphurous compounds in the outlet gas from the column for both bulk densities. No significant trend could be identified for the concentrations at different depths within the column. Results show the ability of compost to reduce landfill odours under differing conditions. The inconclusive data provided by TSIFT analysis may be due to the analysis of compounds that are not contributing to odour, and thus highlights the potential for synergetic effects and the importance of sensory measurement when examining odorous emissions. - Practical measures to improve landfill odour control are investigated

  14. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    Science.gov (United States)

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  15. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL; FINAL

    International Nuclear Information System (INIS)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-01-01

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons[tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  16. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... triple) liners, are extremely effective in preventing leachate from entering into the environment. In addition, the risk of polluting the groundwater at a landfill by any leakage of leachate depends on several factors related to siting of the landfill: distance to the water table, distance to surface...... water bodies, and the properties of the soil beneath the landfill. In addition to the lining and drainage systems described in this chapter, the siting and hydrogeology of the landfill site (Chapter 10.12) and the top cover (Chapter 10.9) are also part of the barrier system, contributing to reducing...

  17. Test plan guidance for transuranic-contaminated arid landfill remedial technology development

    International Nuclear Information System (INIS)

    Evans, J.; Shaw, P.

    1995-05-01

    This document provides guidance for preparing plans to test or demonstrate buried waste assessment or remediation technologies supported by the U.S. Department of Energy's Landfill Stabilization Focus Area, Transuranic-Contaminated Arid Landfill Product Line. This document also provides guidance for development of data quality objectives, along with the necessary data to meet the project objectives. The purpose is to ensure that useful data of known quality are collected to support conclusions associated with the designated demonstration or test. A properly prepared test plan will integrate specific and appropriate objectives with needed measurements to ensure data will reflect the Department of Energy Office of Technology Development's mission, be consistent with Landfill Stabilization Focus Area test goals, and be useful for the Department of Energy Environmental Restoration and Waste Management programs and other potential partners (e.g., commercial concerns). The test plan becomes the planning and working document for the demonstration or test to be conducted ensuring procedures are followed that will allow data of sufficient quality to be collected for comparison and evaluation

  18. Modern technology for landfill waste placement

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L. [Landfill Service Corp., Apalachin, NY (United States)

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits of this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.

  19. Field Monitoring of Landfill Gas

    International Nuclear Information System (INIS)

    Silvola, M.; Priha, E.

    2003-01-01

    The Finnish waste legislation requires monitoring of landfill gases. The main goal of this study is to develop instructions for field monitoring of landfill gases to be utilized by consultants and authorities. In the project it was got acquainted with the field analytical methods of landfill gases and instruments of field measurement. It was done various practical field measurements in several landfills. In the studied landfills were observed methane, carbon dioxide and oxygen concentrations and gas forming inside waste embankment in different seasons. It was measured methane emissions that discharged through a landfill surface by a chamber technique. In addition to this it was studied volatile organic compounds (VOC:s), which were liberated in a landfill. It was also studied methane oxidization in cover layers of a landfill. (orig.)

  20. Results from a full scale application of ashes and other residuals in the final cover construction of the Tveta landfill; Utvaerdering av fullskaleanvaendning av askor och andra restprodukter vid sluttaeckning av Tveta Aatervinningsanlaeggning

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Gustav (Telge AB, Soedertaelje (Sweden)); Andreas, Lale (Luleaa Univ. of Technology, Luleaa (Sweden))

    2008-06-15

    In 2000 Telge Aatervinning - a waste management and recycling company - started investigating ashes from incineration of industrial and biowaste waste. The company was given a permit from the Swedish Environmental Court to cover four hectares of the house hold waste landfill area. In 2006 the company received an unlimited permit to cover the remaining part of the landfill when the works end some thirty years later. Ashes were used the first time in 1966 for testing. Literature studies indicated the ashes can have a low hydraulic conductivity under certain conditions. In 1999 collaboration started with the Division of Waste Science and Technology at Luleaa University of Technology. Residuals from household and industrial waste were subject to investigation. Initially, biowaste incineration products were subject to testing and were later extended to other waste products, e.g. sludge, contaminated soils, foundry, and compost material. Several different sub-fractions of ashes were included in the investigation e.g. bottom and fly ash, various slag products after up-grading including dewatering, separation and sifting. Subsequently, a complete covering system of a landfill consists of residuals. Six test areas were outlined in order to give a good representation for cover construction in flat and steep areas with different compositions of liner material. The results show that in all areas the hydraulic conductivity construction yields less then 50 liters per square meters and years and can be less the than 5 liters in a repository for hazardous waste if required. In accordance with literature data the field observations show the liner material constructed only by ash material under certain conditions can form a monolithic structure due to very slow processes thus indicating small pore volumes that unable water air to interact with other media. The concept of using ash can be related to natural analogues of volcanic ashes and has been used in old defence walls and other

  1. Chromium in soil layers and plants on closed landfill site after landfill leachate application.

    Science.gov (United States)

    Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon

    2009-06-01

    Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg

  2. Development of drainage water quality from a landfill cover built with secondary construction materials.

    Science.gov (United States)

    Travar, Igor; Andreas, Lale; Kumpiene, Jurate; Lagerkvist, Anders

    2015-01-01

    The aim of this study was to evaluate the drainage water quality from a landfill cover built with secondary construction materials (SCM), fly ash (FA), bottom ash (BA) sewage sludge, compost and its changes over time. Column tests, physical simulation models and a full scale field test were conducted. While the laboratory tests showed a clear trend for all studied constituents towards reduced concentrations over time, the concentrations in the field fluctuated considerably. The primary contaminants in the drainage water were Cl(-), N, dissolved organic matter and Cd, Cu, Ni, Zn with initial concentrations one to three orders of magnitude above the discharge values to the local recipient. Using a sludge/FA mixture in the protection layer resulted in less contaminated drainage water compared to a sludge/BA mixture. If the leaching conditions in the landfill cover change from reduced to oxidized, the release of trace elements from ashes is expected to last about one decade longer while the release of N and organic matter from the sludge can be shortened with about two-three decades. The observed concentration levels and their expected development over time require drainage water treatment for at least three to four decades before the water can be discharged directly to the recipient. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Burlakovs, Juris; Kriipsalu, Mait; Hogland, Marika; Hogland, William

    2017-06-01

    Landfill mining is an alternative technology that merges the ideas of material recycling and sustainable waste management. This paper reports a case study to estimate the value of landfilled materials and their respective market opportunities, based on a full-scale landfill mining project in Estonia. During the project, a dump site (Kudjape, Estonia) was excavated with the main objectives of extracting soil-like final cover material with the function of methane degradation. In total, about 57,777 m 3 of waste was processed, particularly the uppermost 10-year layer of waste. Manual sorting was performed in four test pits to determine the detailed composition of wastes. 11,610 kg of waste was screened on site, resulting in fine (40 mm) fractions with the share of 54% and 46%, respectively. Some portion of the fine fraction was sieved further to obtain a very fine grained fraction of size, and the importance of developing and implementing innovative extraction methods for materials recovery from soil-like fractions.

  4. Natural attenuation of biogas in landfill covers; Attenuazione naturale del flusso di biogas nella copertura superficiale delle discariche

    Energy Technology Data Exchange (ETDEWEB)

    Cossu, R.; Privato, A.; Raga, R. [Padova Univ., Padova (Italy). IMAGE, Dipartimento di Idraulica, Marittima, Ambiente e Geotecnica; Zane, M. [SPINOFF S.R.L., Padova (Italy)

    2005-08-01

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed. [Italian] Nella valutazione del pericolo di emissioni incontrollate di biogas da una discarica, il processo dell'attenuazione naturale della copertura superficiale assume un ruolo molto importante. La capacita' di ossidazione del biogas nel terreno di copertura sembra rappresentare il controllo piu' importante nella mitigazione di fughe incontrollate di biogas, soprattutto nel lungo periodo quando la captazione del biogas perde efficienza. Nel presente lavoro si riportano alcune esperienze di laboratorio per valutare l'ossidazione di metano in diverse tipologie di copertura.

  5. Methane oxidation and attenuation of sulphur compounds in landfill top cover systems: Lab-scale tests.

    Science.gov (United States)

    Raga, Roberto; Pivato, Alberto; Lavagnolo, Maria Cristina; Megido, Laura; Cossu, Raffaello

    2018-03-01

    In this study, a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable. Different materials were studied as landfill cover system in lab-scale columns: mechanical-biological pretreated municipal solid waste (MBP); mechanical-biological pretreated biowaste (PB); fine (PBS f ) and coarse (PBS c ) mechanical-biological pretreated mixtures of biowaste and sewage sludge, and natural soil (NS). The effectiveness of these materials in removing methane and sulphur compounds from a gas stream was tested, even coupled with activated carbon membranes. Concentrations of CO 2 , CH 4 , O 2 , N 2 , H 2 S and mercaptans were analysed at different depths along the columns. Methane degradation was assessed using mass balance and the results were expressed in terms of methane oxidation rate (MOR). The highest maximum and mean MOR were observed for MBP (17.2gCH 4 /m 2 /hr and 10.3gCH 4 /m 2 /hr, respectively). Similar values were obtained with PB and PBS c . The lowest values of MOR were obtained for NS (6.7gCH 4 /m 2 /hr) and PBS f (3.6gCH 4 /m 2 /hr), which may be due to their low organic content and void index, respectively. Activated membranes with high load capacity did not seem to have an influence on the methane oxidation process: MBP coupled with 220g/m 2 and 360g/m 2 membranes gave maximum MOR of 16.5gCH 4 /m 2 /hr and 17.4gCH 4 /m 2 /hr, respectively. Activated carbon membranes proved to be very effective on H 2 S adsorption. Furthermore, carbonyl sulphide, ethyl mercaptan and isopropyl mercaptan seemed to be easily absorbed by the filling materials. Copyright © 2017. Published by Elsevier B.V.

  6. UK-China review of opportunities for landfill gas (LFG) technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the results of a project to identify opportunities to transfer UK skills with regard to landfill gas (LFG) technologies to China and other countries looking to develop LFG as a commercially viable clean energy source. The aim of the project was to develop all aspects of LFG extraction and utilisation techniques. The project involved: examining current Chinese waste disposal practices; identifying key technologies and methods for maximising LFG recovery; considering end use options and methods to optimise gas use; assessing the environmental benefits; and identifying potential opportunities for UK industry. The report consider: barriers to the development of LFG; waste disposal and landfill design in China; China's experience of LFG use; UN Development Programme (UNDP) and Global Environmental Forum (GEF) LFG demonstration projects in China; environmental regulation and controls in China; LFG technology in the UK; support for renewable energy in China and the UK; design and operational needs in China from a UK perspective; technology needs, barriers and opportunities; and recommendations for action and future work.

  7. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  8. The industrial waste landfill of Bonfol (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, C.G.; Bentz, R. [Ciba Specialty Chemicals Inc., Basel (Switzerland); Fischer, M.; Huerzeler, R.A.; Matter, B.; Munz, C.D.

    2003-07-01

    The landfill for industrial waste in Bonfol (Switzerland) was installed in 1961 in an waterproof clay pit and was run until 1976 by the bci, the Basel chemical industry, to dispose off their industrial waste originating from chemical production. For the first time in Europe chemical wastes were deposited in a special area selected according to geological criteria. Groundwater and surface waters have been continuously supervised since the beginning of the activities in Bonfol in 1961. After the landfill was totally filled up, it was covered by a clay layer. In the years 1980/81 the monitoring program discovered that the cover of the landfill was leaking and that the pit was slowly filled up with water. Some exfiltrations resulted. It was important to overcome the critical situation by the implementation of immediate measures, e.g. pumping and removal of leachate. Different remediation options were studied at that time, among other the excavation and final disposal of the contents of the landfill. On October 17, 2000 a voluntary agreement between the authorities and bci ws signed. On May 15, 2001, bci presented the result of the study of remedial options. Excavation / incineration in European incinerators or in-situ vitrification, with a suboption excavation/on-site vitrification, were seen as the most promising ones. At the end of 2001 the option of the in-situ vitrification was dropped because of the resulting public and political resistance towards this technology. The remaining options are being evaluated thoroughly at the moment to prepare the basis for a decision on the clean-up project. (orig.)

  9. Application of photochemical technologies for treatment of landfill leachate

    International Nuclear Information System (INIS)

    Meeroff, Daniel E.; Bloetscher, Frederick; Reddy, D.V.; Gasnier, François; Jain, Swapnil; McBarnette, André; Hamaguchi, Hatsuko

    2012-01-01

    Highlights: ► Photochemical iron-mediated aeration and TiO 2 photocatalysis for leachate treatment. ► Removal efficiency tested on COD, BOD 5 , color, ammonia, and lead. ► Contact times for 90% removal were 10–200 h for PIMA ► Contact times for 90% removal were 3–37 h for TiO 2 photocatalysis. ► Pre-filtration is not necessary. - Abstract: Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO 2 photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO 2 photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6 h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10–200 h for PIMA and 3–37 h for TiO 2 photocatalysis. Testing with actual leachate samples showed 85% TiO 2 photocatalyst recovery efficiency with no loss in performance after multiple (n > 4 uses). Pre-filtration was not found to be necessary for effective treatment using either process.

  10. Alternative Landfill Cover and Monitoring Systems for Landfills in Arid Environments

    International Nuclear Information System (INIS)

    Rawlinson, S. E.

    2002-01-01

    In December 2000, a performance monitoring facility was constructed adjacent to the mixed waste disposal unit U-3ax/bl at the Area 3 Radioactive Waste Management Site at the Nevada Test Site. This facility consists of eight drainage lysimeters measuring 10 feet in diameter, 8 feet deep, and backfilled with native soil. The lysimeters have three different surface treatments: two were left bare, two were revegetated with native species, and two were allowed to revegetate with invader species (two are reserved for future studies). The lysimeters are instrumented with an array of soil water content and soil water potential sensors and have sealed bottoms so that any drainage can be measured. All sensors are working properly and indicate that the bare lysimeters are the wettest, as expected. The vegetated lysimeters, both seeded and those allowed to revegetate with invader species, are significantly drier than the bare cover treatments. No drainage has occurred in any of the lysimeters. The Accelerated Site Technology Deployment program under the U.S. Department of Energy's Office of Science and Technology provided the funding for this project with the objective of reducing the uncertainty associated with the performance of monolayer-evapotranspiration waste covers in arid regions such as the one deployed at U-3ax/bl

  11. Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy; Reinhart, Debra

    2010-04-01

    The attenuation of H(2)S emissions by various landfill cover materials was evaluated using both laboratory and field experiments. The results demonstrated that cover materials consisting of selected waste products (compost and yard trash) and soils amended with quicklime and calcium carbonate effectively attenuated H(2)S emissions and detectable H(2)S emissions were only encountered in a testing plot using a sandy soil cover (average emission rate was 4.67x10(-6)mgm(-2)s(-1)). H(2)S concentration profiles in the cover materials indicated that H(2)S was removed as it migrated through the cover materials. At the same depth in the testing area, the H(2)S concentration in the sandy soil field plot was always higher than that of other testing plots because the sand (a) demonstrated less ability to remove H(2)S and (b) exhibited a higher H(2)S concentration at the base of the cover. Laboratory experiments confirmed these observations, with a combination of physical adsorption, chemical reactions, and biological oxidation, accounting for the enhanced removal. In addition to removal, the results suggest that some of the cover materials reduced H(2)S generation by creating less favorable conditions for sulfate-reducing bacteria (e.g., high pH and temperature). Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Biostabilization of landfill waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L. [Landfill Service Corp., Apalachin, NY (United States)

    1995-06-01

    In November 1991, the city of Albany, N.Y., together with the principals of Landfill Service Corp. (Apalachin, N.Y.), proposed to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double-composite-lined Interim Landfill located in the city of Albany. The small landfill covers just 12 acres and is immediately adjacent to residential neighbors. The benefits of this biostabilization practice include a dramatic improvement in the orderliness of waste placement, with significant reduction of windblown dust and litter. The process also reduces the presence of typical landfill vectors such as flies, crows, seagulls, and rodents. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of post-closure conditions and reduction or elimination of remedial costs attendant to post-closure gross differential settlement.

  13. International perspective on energy recovery from landfill gas. A joint report of the IEA Bioenergy Programme and the IEA CADDET Renewable Energy Technologies Programme

    International Nuclear Information System (INIS)

    2000-02-01

    This report presents a review of the current status of energy recovery from landfill gas. Utilisation, collection and treatment technologies are examined, and ten case studies of landfill gas utilisation are given. Non-technical issues such as barrier to energy recovery from landfill gas, landfill gas generation, and landfill gas emissions are addressed, and recommendations are outlined. The potential market for landfill gas, and market opportunities are considered. Details of the objectives of the International Energy Agency (IEA), the IEA Bioenergy Programme, and the IEA CADDET Renewable Energy Technologies Programme are included in appendices. (UK)

  14. Restoration of landfill sites

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A K; Chamley, M E

    1986-10-01

    Many excavated quarries are subsequently used for waste disposal operations and frequently imported landfill provides the only means of restoring a former quarry to some beneficial afteruse. Concentrating solely on the final surface cover, this paper sets out some of the principles, which should be considered by those involved in landfill operations to ensure the long term success of restoration schemes. With the emphasis on restoration to agriculture, factors such as availability of cover materials and depths necessary are discussed in terms of requirements to support plant growth, protect clay capping layers and prevent damage to agricultural implements. Soil handling and appropriate after care management are considered. 4 refs.

  15. Application of photochemical technologies for treatment of landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Meeroff, Daniel E., E-mail: dmeeroff@fau.edu [Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL (United States); Bloetscher, Frederick; Reddy, D.V.; Gasnier, Francois; Jain, Swapnil; McBarnette, Andre; Hamaguchi, Hatsuko [Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Photochemical iron-mediated aeration and TiO{sub 2} photocatalysis for leachate treatment. Black-Right-Pointing-Pointer Removal efficiency tested on COD, BOD{sub 5}, color, ammonia, and lead. Black-Right-Pointing-Pointer Contact times for 90% removal were 10-200 h for PIMA Black-Right-Pointing-Pointer Contact times for 90% removal were 3-37 h for TiO{sub 2} photocatalysis. Black-Right-Pointing-Pointer Pre-filtration is not necessary. - Abstract: Because of widely varying practices in solid waste management, an all-inclusive solution to long-term management of landfill leachate is currently not available. There is a major technological need for sustainable, economical options for safe discharge of leachate to the environment. Two potential on-site pretreatment technologies, photochemical iron-mediated aeration (PIMA) and TiO{sub 2} photocatalysis were compared for treatment of landfill leachate at laboratory scale. Results of bench scale testing of real landfill leachate with PIMA and TiO{sub 2} photocatalysis showed up to 86% conversion of refractory COD to complete mineralization, up to 91% removal of lead, up to 71% removal of ammonia without pH adjustment, and up to 90% effective color removal with detention times between 4 and 6 h, in field samples. The estimated contact times for 90% removal of COD, ammonia, lead, and color were found to be on the order of 10-200 h for PIMA and 3-37 h for TiO{sub 2} photocatalysis. Testing with actual leachate samples showed 85% TiO{sub 2} photocatalyst recovery efficiency with no loss in performance after multiple (n > 4 uses). Pre-filtration was not found to be necessary for effective treatment using either process.

  16. Landfill design in Serbia

    Directory of Open Access Journals (Sweden)

    Karanac Milica

    2015-01-01

    Full Text Available Waste disposal is an important element of integrated waste management. In order to dispose of waste that is free of environmental risk, the proper design of landfills during their construction and/or closure is necessary. The first section of the paper presents the current state of landfills in Serbia, the second deals with problems in project design of landfills, especially in regard to their: a program of waste disposal; b impermeable layer; c leaching collection and treatment; and d gas collection and treatment. Analysis shows that many modern landfills in Serbia do not meet environmental protection requirements, therefore, they need reconstruction. All existing landfills owned by municipalities, as well as illegal dump sites, should be adequately closed. This paper presents the guidelines for successful landfill design which are to serve to meet the requirements and recommendations of Serbian and European regulations. Sound design of landfill technological elements should insure full sustainability of landfills in Serbia.

  17. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances.

    Science.gov (United States)

    Schulte, Marcel; Jochmann, Maik A; Gehrke, Tobias; Thom, Andrea; Ricken, Tim; Denecke, Martin; Schmidt, Torsten C

    2017-11-01

    Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently. However, this work represents the first study in which three independent approaches, ((i) mass balance, (ii) stable isotope analysis, and (iii) stoichiometric balance of product (CO 2 ) and reactant (CH 4 ) by CO 2 /CH 4 -ratio) have been compared for the estimation of the biodegradation by a robust statistical validation on a rectangular, wide soil column. Additionally, an evaluation by thermal imaging as a potential technique for the localization of the active zone of bacterial methane oxidation has been addressed in connection with stable isotope analysis and CO 2 /CH 4 -ratios. Although landfills can be considered as open systems the results for stable isotope analysis based on a closed system correlated better with the mass balance than calculations based on an open system. CO 2 /CH 4 -ratios were also in good agreement with mass balance. In general, highest values for biodegradation were determined from mass balance, followed by CO 2 /CH 4 -ratio, and stable isotope analysis. The investigated topsoil proved to be very suitable as a potential cover layer by removing up to 99% of methane for CH 4 loads of 35-65gm -2 d -1 that are typical in the aftercare phase of landfills. Finally, data from stable isotope analysis and the CO 2 /CH 4 -ratios were used to trace microbial activity within the reactor system. It was shown that methane consumption and temperature increase, as a cause of high microbial activity, correlated very well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Environmental performance review and cost analysis of MSW landfilling by baling-wrapping technology versus conventional system

    International Nuclear Information System (INIS)

    Baldasano, J.M.; Gasso, S.; Perez, C.

    2003-01-01

    This paper first reviews the chemical, physical and biological processes, and the environmental performance of MSW compacted and plastic-wrapped into air-tight bales with low-density polyethylene (LDPE). The baling-wrapping process halts the short and half-term biological activity and consequently the emission of gases and leachates. It also facilitates the handling of the refuse, and considerably reduces the main environmental impacts of a landfill. The main technologies available for baling-wrapping MSW are also presented. Furthermore, a cost analysis comparing a conventional landfill (CL) without baling system versus two landfills using different baling-wrapping technologies (rectangular and cylindrical bales) is carried out. The results are presented comparatively under the conditions of construction, operation and maintenance and postclosure, as required by European Directive 1999/31. A landfill using rectangular plastic-wrapped bales (LRPB) represents an economically competitive option compared to a CL. The increased capacity of the waste disposal zone when using rectangular bales due to the high density of the bales compensates for the increased operating and maintenance (O and M) costs of the method. Landfills using cylindrical plastic-wrapped bales (LCPB's) do not fare so well, mainly because the density within the bales is lower, the cylindrical geometry of the bales does not allow such an efficient use of the space within the landfill, and the processing capacity of the machinery is lower. From the cost model, the resulting unit costs per tonne in a LRPB, a LCPB and a CL for 100,000 t/year of waste, an operation time of 15 years and a landfill depth (H) of 20 m, are 31.52, 43.36 and 31.83 Euro/t, respectively

  19. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization.

    Science.gov (United States)

    He, Ruo; Wang, Jing; Xia, Fang-Fang; Mao, Li-Juan; Shen, Dong-Sheng

    2012-10-01

    Biocover soil has been demonstrated to have high CH(4) oxidation capacity and is considered as a good alternative cover material to mitigate CH(4) emission from landfills, yet the response of CH(4) oxidation activity of biocover soils to the variation of CH(4) loading during landfill stabilization is poorly understood. Compared with a landfill cover soil (LCS) collected from Hangzhou Tianziling landfill cell, the development of CH(4) oxidation activity of waste biocover soil (WBS) was investigated using simulated landfill systems in this study. Although a fluctuation of influent CH(4) flux occurred during landfill stabilization, the WBS covers showed a high CH(4) removal efficiency of 94-96% during the entire experiment. In the LCS covers, the CH(4) removal efficiencies varied with the fluctuation of CH(4) influent flux, even negative ones occurred due to the storage of CH(4) in the soil porosities after the high CH(4) influent flux of ~137 gm(-2) d(-1). The lower concentrations of O(2) and CH(4) as well as the higher concentration of CO(2) were observed in the WBS covers than those in the LCS covers. The highest CH(4) oxidation rates of the two types of soil covers both occurred in the bottom layer (20-30 cm). Compared to the LCS, the WBS showed higher CH(4) oxidation activity and methane monooxygenase activity over the course of the experiment. Overall, this study indicated the WBS worked well for the fluctuation of CH(4) influent flux during landfill stabilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  1. 20 years of long-term water balance measurements of a landfill cover system with components constructed from pre-treated dredged material

    NARCIS (Netherlands)

    Berger, K.; Groengroeft, A.; Gebert, J.; Harms, C.; Eschenbach, A.

    2017-01-01

    The cover system of the mono-landfill Hamburg-Francop for disposal of dredged
    material comprises a mineral liner of pre-treated fine-grained dredged material (‘METHAmaterial’) and an overlying drainage layer of pre-treated sandy dredged material (‘METHAsand’). Water balance and effectiveness of

  2. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  3. Availability and properties of materials for the Fakse Landfill biocover

    DEFF Research Database (Denmark)

    Pedersen, Gitte Bukh; Scheutz, Charlotte; Kjeldsen, Peter

    2010-01-01

    Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill......-cost and effective method for comparing compost sources for suitability of use in landfill biocovers....

  4. Factors affecting water balance and percolate production for a landfill in operation.

    Science.gov (United States)

    Poulsen, Tjalfe G; Møoldrup, Per

    2005-02-01

    Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.

  5. Landfill gas from environment to energy

    International Nuclear Information System (INIS)

    Gendebien, A.; Pauwels, M.; Constant, M.; Ledrut-Damanet, M.J.; Nyns, E.J.; Fabry, R.; Ferrero, G.L.; Willumsen, H.C.; Butson, J.

    1992-01-01

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs

  6. Performance evaluation of intermediate cover soil barrier for removal of heavy metals in landfill leachate.

    Science.gov (United States)

    Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro

    2008-11-01

    This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.

  7. Field note: comparative efficacy of a woody evapotranspiration landfill cover following the removal of aboveground biomass.

    Science.gov (United States)

    Schnabel, William; Munk, Jens; Byrd, Amanda

    2015-01-01

    Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.

  8. Transport and reaction processes affecting the attenuation of landfill gas in cover soils

    DEFF Research Database (Denmark)

    Molins, S.; Mayer, K.U.; Scheutz, Charlotte

    2008-01-01

    of methane, chlorofluorocarbons, and hydrochlorofluorocarbons to the atmosphere. This study was conducted to investigate the effect of oxidation reactions on the overall gas transport regime and to evaluate, the contributions of various gas transport processes on methane attenuation in landfill cover soils....... For this purpose, a reactive transport model that includes advection and the Dusty Gas Model for simulation of multicomponent gas diffusion was used. The simulations are constrained by data from a series of counter-gradient laboratory experiments. Diffusion typically accounts for over 99% of methane emission...... to the atmosphere. Oxygen supply into the soil column is driven exclusively by diffusion, whereas advection outward offsets part of the diffusive contribution. In the reaction zone, methane consumption reduces the pressure gradient, further decreasing the significance of advection near the top of the column...

  9. Temperatures In Compost Landfill Covers As Result Of Methane Oxidation And Compost Respiration

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Merono, A. R.; Pedersen, Rasmus Broen

    2011-01-01

    This study investigated the influence of the temperature on methane (CH4) oxidation and respiration in compost sampled at a full scale biocover implemented at Klintholm landfill exhibiting high temperatures. Compost material was collected at Klintholm landfill and incubated with and without CH4...

  10. An overview of the Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.; Betsill, J.D.

    1994-01-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ''in-situ'' characterization, monitoring, remediation, and containment of landfills in and environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies. Key goals of the MWLID are routine use of these technologies by Environmental Restoration Groups throughout the DOE complex and commercialization of these technologies to the private sector. The MWLID is demonstrating technologies at hazardous waste landfills located at Sandia National Laboratories and on Kirtland Air Force Base. These landfills have been selected because they are representative of many sites throughout the Southwest and in other and climates

  11. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  12. Utilization of ashes as construction materials in landfills; Askanvaendning i deponier

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Gustav [Telge AB, Soedertaelje (Sweden); Ifwer, Karin [AaF-Process AB, Stockholm (Sweden)

    2006-03-15

    Large amounts of material will be needed to cover landfill sites in Sweden and other EU states over the next ten years. It is estimated that more than one hundred million tons of material will be required in Sweden alone in order to comply with the EU Landfill Directive (1999/31/EC). Suitable natural materials to be used in landfill cover constructions are not available on site. This report summarises the present use of secondary construction material in waste management with a focus on incineration ash. Information from eleven landfill sites has been compiled and includes the practical experience of using ash as the primary material in landfill cover. Other applications of using ash on landfill sites are also discussed. According to Swedish law, a complete cover of a landfill site consists of five different layers, each having its own specific function. The permeability of the total cover should then satisfy the permeability requirements of 50 litres per square meter and year for non-hazardous waste landfill sites and 5 litres per square meter and year for those with hazardous waste. The main purpose of this report is to describe how ash is used in the different layers and discuss the advantages or disadvantages of the techniques applied. Various landfill sites have submitted information ranging from small test areas on a pilot scale to full scale application of techniques on several hectares. Each project is part of the general Vaermeforsk research program for 2003-2005, Environmentally proper use of ash. The overall results show that incineration ash is a suitable material for use in liner constructions, either alone, or mixed with sewage sludge. Data from water percolating below the liner has indicated that the liners can meet permeability requirements. Special techniques for applying the various layers have been described. It is important to have materials readily available for an area, in order to avoid long period of exposure to dry or wet weather. Some

  13. Sanitary Landfill Supplemental Test Final Report

    International Nuclear Information System (INIS)

    Altman, D.J.

    1999-01-01

    This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill

  14. The mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Burford, T.D.; Williams, C.V.

    1994-01-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ''in-situ'' characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites

  15. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  16. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  17. Landfill methane oxidation across climate types in the U.S.

    Science.gov (United States)

    Chanton, Jeffrey; Abichou, Tarek; Langford, Claire; Hater, Gary; Green, Roger; Goldsmith, Doug; Swan, Nathan

    2011-01-01

    Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas transport, which produces a conservative or minimum estimate, and by assuming limited isotopic fractionation with gas transport producing a higher estimate. Thus bracketed, the best assessment of mean oxidation within the soil covers from chamber captured emitted CH(4) was 37.5 ± 3.5%. The fraction of CH(4) oxidized refers to the fraction of CH(4) delivered to the base of the cover that was oxidized to CO(2) and partitioned to microbial biomass instead of being emitted to the atmosphere as CH(4) expressed as a percentage. Air samples were also collected at the surface of the landfill, and represent CH(4) from soil, from leaking infrastructure, and from cover defects. A similar assessment of this data set yields 36.1 ± 7.2% oxidation. Landfills in five climate types were investigated. The fraction oxidized in arid sites was significantly greater than oxidation in mediterranean sites, or cool and warm continental sites. Sub tropical sites had significantly lower CH(4) oxidation than the other types of sites. This relationship may be explained by the observed inverse relationship between cover loading and fractional CH(4) oxidation.

  18. Evaluation and selection of decision-making methods to assess landfill mining projects.

    Science.gov (United States)

    Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Ragossnig, Arne; Pomberger, Roland

    2015-09-01

    For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method. © The Author(s) 2015.

  19. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran [Univ. of Gaevle, Gaevle (Sweden); Meijer, Jan-Erik; Rosqvist, Haakan [NSR AB, Helsingborg (Sweden)

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  20. Mitigation of methane emission from Fakse landfill using a biowindow system

    International Nuclear Information System (INIS)

    Scheutz, Charlotte; Fredenslund, Anders M.; Chanton, Jeffrey; Pedersen, Gitte Bukh; Kjeldsen, Peter

    2011-01-01

    Landfills are significant sources of atmospheric methane (CH 4 ) that contributes to climate change, and therefore there is a need to reduce CH 4 emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH 4 . A full scale biocover system to reduce CH 4 emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH 4 oxidation. Ten biowindows with a total area of 5000 m 2 were integrated into the existing cover at the 12 ha site. To increase CH 4 load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH 4 was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH 4 emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH 4 emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH 4 mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

  1. Analysis of biogas in sanitary landfill Caieiras

    Directory of Open Access Journals (Sweden)

    Giovano Candiani

    2011-06-01

    Full Text Available In this work, the biogas in the Sanitary Landfill Caieiras is qualitatively evaluated, emphasizing the influence of the geomembrana and cover system of vertical drains in the vicinity to capture the landfill. It was possible to detect an increase in the percentage of methane and oxygen reduction, aiming at the commercialization of carbon credits and electricity production.

  2. Town of Edinburg landfill reclamation demonstration project. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County, with majority funding provided by the New York State Energy Research and Development Authority. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified

  3. Landfill gas as vehicle fuel; Deponigas som fordonsbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Johansson, Nina; Karlsvaerd, Johan (Grontmij AB, Stockholm (Sweden))

    2010-03-15

    The landfill gas extraction in Sweden 2008 was 370 GWh. Mainly because of lack of available technologies for landfill gas upgrading and high assessed upgrading costs, landfill gas has so far only been used for heating and cogenerations plants (CHP). In recent years, interest has been brought to upgrade landfill gas and this study highlights the possibility of using landfill gas as fuel for vehicles. A decision in investment in an upgrading installation requires a forecast of future gas production and landfill gas extraction. From 2005, dispose of organic waste is prohibited, reducing the number of active landfills and the landfill gas production will go down. Factors such as moisture content, design of the final coverage and landfill gas collection system have a major impact on the extraction. It is therefore difficult to make appropriate predictions of the future gas production. Today's landfill gas extraction is approximately 35% of the landfill gas production and in the light of this, extraction can be in a level comparable to today's at least ten years ahead, provided that the extraction system is being expanded and that measurements are taken to so that landfills should not dry out. In comparison with biogas from anaerobic digestion in a dedicated digester, landfill gas has a high percentage of nitrogen and a content of many contaminants such as organic silicon compounds (siloxanes) and halogenated hydrocarbons (hydrocarbons containing the halogens chlorine, fluorine and bromine). This often requires more treatment and a further separation step. A common method for purification of landfill gas is regenerative adsorption on a dedicated adsorption material. Carbon dioxide is separated by conventional techniques like PSA, water scrubber and membranes. The main barrier to use landfill gas as vehicle fuel is a cost-effective separation of nitrogen that does not generate high methane losses. Nitrogen is separated by PSA or distillation technique (cryogenic

  4. Syntaxonomy of vegetation of Kalush hexachlorobenzene toxic waste landfill (Ivano-Frankivsk region

    Directory of Open Access Journals (Sweden)

    V. I. Parpan

    2016-09-01

    Full Text Available The vegetation of a landfill of hexachlorobenzene toxic waste was studied. It is situated in the neighborhood of Kalush (Ivano-Frankivsk region and has an area of 4.5 ha. As a result of damage to the containers, hazardous waste has contaminated the air, soil and aquifers at the test site and adjacent areas. During the period 2010–2012 measures were taken to recover and remove the mixture of toxic waste and contaminated soil from the landfill. In its place, unpolluted soil was brought to the landfill. Work was carried out to recultivate the territory. Nowadays natural succession of vegetation cover is observed. There is closed herbaceous cover in the western part of the landfill. The total projective herbaceous cover in the central and eastern parts varies from 10% to 60%. Vegetation composition of the landfill contains eight syntaxa of association rank that belong to seven alliances, six orders and five classes. Communities of the Phragmito-Magnocaricetea and Bolboschoenetea maritimi classes (ass. Typhetum laxmanii grow in areas with excessive humidification. The central and eastern parts of the waste landfill are primarily occupied by halophytic communities of the Puccinellio distanti-Tripolietum vulgare association of the Asteretea tripolium class. Ruderal communities belong to three associations of the Artemisietea vulgaris class. These communities mainly occur in the periphery zone of Kalush landfill. Areas with a moderate moisture regime are occupied by ruderal communities of the Calamagrostietum epigeios association of the Agropyretea repentis class. The total number of vascular herbaceous plant species at the landfill is 119. The dominating groups are meadow, synanthropic and wetland species. The differentiation of vegetation cover is caused by heterogeneity of edaphic and hydrological conditions, also by different activity of succession processes.

  5. Dioxin and furan emissions from landfill gas-fired combustion units

    International Nuclear Information System (INIS)

    Caponi, F.R.; Wheless, E.; Frediani, D.

    1998-01-01

    The 1990 Federal Clean Air Act Amendments require the development of maximum achievable control technology standards (MACT) for sources of hazardous air pollutants, including landfill gas-fired combustion sources. The Industrial Combustion Coordinated Rulemaking (ICCR) Federal Advisory Committee is a group of stakeholders from the public and private sector whose charge is to develop recommendations for a unified set of federal toxic air emissions regulations. Specifically, the group will establish MACT standards for industrial-commercial-institutional combustion sources. The ICCR proceedings have given rise to considerable interest in potential dioxin and furan emissions from landfill gas-fired combustion units. In order to establish the potential of dioxin and furan emissions from this group of combustion sources, a world-wide literature search was conducted. A total of 22 references were evaluated. The references covered a wide range of test programs, testing methodologies and combustion equipment type. The most abundant data were for landfill gas-fired flares (shrouded and afterburners) and I.C. engines. Because of limitations in obtaining actual test reports with complete lab data and QA/QC results, and a lack of knowledge as to the exact types of waste received at the European landfills, the test data from these sources, for the purposes of this paper, are considered qualitative. The conclusion reached from review of the test data is that there is a potential for dioxin and furan emissions from landfill gas-fired combustion units, but at very low levels for well operated systems

  6. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC): mapping and interpretation of digital aerophotographs, and quantitative analysis

    OpenAIRE

    Anderson Tavares de Melo; Eduardo Juan Soriano-Sierra; Luiz Antônio Paulino

    2011-01-01

    The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul), in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007), which demonstrated the spatial-tempora...

  7. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin

    2014-01-01

    The non-methane organic compound (NMOC) emission rate is used to assess compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA). A recent USEPA Report (EPA/600/R-11/033) employed a ratio method to estimate speciated NMOC emissions (i...... and speciated NMOC concentration and flux data from 2012/2013 field sampling of four landfills, an unpublished landfill study, and literature data from three landfills. The ratio method worked well for landfills with thin covers (...

  8. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  9. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO2 levels: The added value of the isotope (δ13C and δ18O CO2; δ13C and δD CH4) approach

    International Nuclear Information System (INIS)

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-01-01

    Highlights: ► Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. ► The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. ► Isotope tracking of the contribution of the methane oxidation to the CO 2 concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach (δ 13 C and δ 18 O of CO 2 ; δ 13 C and δD of CH 4 ) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO 2 levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH 4 oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH 4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH 4 oxidation by the methanotrophic bacteria. δ 13 C of CO 2 samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  11. Monitoring greenhouse gas emissions from landfill sites

    International Nuclear Information System (INIS)

    Eade, G.

    2001-01-01

    Methane is the chief component of natural gas, but also occurs naturally by the anaerobic decomposition of organic matter in swamp areas, at landfill sites, in fact at any location where organic deposits are present. Carbon dioxide is also produced by the decomposition of organic material as well as being the primary by-product of combustion. This article focuses on techniques to test a wide variety of combustible and toxic gases, including surface emission testing of landfill sites. Specifically, it describes the Methane Emission Monitoring System (MEMS) developed by Hetek Solutions Inc., whose primary objective is to to effectively locate surface emissions of methane gas from active landfill sites using flame ionization (FI) technology, and to plot the 'hot spots' using a Differential Global Positioning System (DGPS), which provides sub-metre accuracy for plotting emissions locations at landfill sites. The FI equipment is installed on all-terrain vehicles (ATVs). Several thousand kilometers of pipeline inspections have been performed in Alberta and Saskatchewan using this system in the mid-1990s. The mobile FI/ATV units have been redesigned for landfill gas emission testing, equipped with new DGPS equipment and interface software. They meet the New Source Performance Standards (NSPS) drafted in the United States in 1996, which requires all landfill sites to be inspected for methane gas emissions. Using the FI/ATV combination, productivity over conventional walking inspection procedures increased some 400 per cent, while monitoring accuracy is equivalent to or better than those provided by previous conventional methods. The company can also provide the Optical Methane Detector (OMD) system using infrared technology. They are capable of performing 14,000 measurements per second, thus providing immediate response. To date, ATV emissions testing has been proven to be very effective in various types of gas detection. When interfaced with DGPS technology, computer

  12. Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Grundtvig, Aase; Winther, Pia

    1998-01-01

    Investigations into the pollution of groundwater from old landfill have, in most cases, focused on delineating the pollution plume rather than on the landfill as a source of groundwater pollution. Landfills often cover large areas and spatial variations in leachate composition within the landfill...... may have great impact on the location of the main pollution plume in the downstream aquifer. The history of the Grindsted Landfill in Denmark was investigated using aerial photographs and interviews. On the basis of the aerial photographs, waste volume and age of the different areas of the landfill...

  13. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  14. Landfill cover revegetation using organic amendments and cobble mulch in the arid southwest

    Energy Technology Data Exchange (ETDEWEB)

    AGUILAR,RICHARD; DWYER,STEPHEN F.; REAVIS,BRUCE A.; NEWMAN,GRETCHEN CARR; LOFTIN,SAMUEL R.

    2000-02-01

    biomass production in the irrigated control plots over that produced in the non-irrigated control plots. This surprising result was probably due to the cumulative effects of other factors that influenced the initial establishment and production of plants in the plots (e.g., plant species competition, seed germination delay times, differences in nutrient release and availability). Variation within individual plots, and among the three replicate plots associated with each treatment, rendered many of the recorded differences in vegetation establishment and production statistically insignificant. However, after two complete growing seasons the highest total plant foliar cover and the greatest biomass production and plant species diversity occurred in the cobble-mulched plots. These results suggest that cobble-mulch may be the desired amendment in re-vegetated arid landfill covers if the principal objectives are to quickly establish vegetation cover, stabilize the site from erosion, and increase water usage by plants, thereby reducing the potential for leaching and contaminant movement from the landfill's waste-bearing zone.

  15. Pathway analysis for a contaminated landfill in Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Yu, C.; Merry-Libby, P.; Yang, J.Y.

    1986-01-01

    The Middlesex Municipal Landfill is located in Middlesex, New Jersey, about 29 km southwest of Newark, New Jersey. It is one of several properties in the Borrough of Middlesex and Township of Piscataway that have been identified as being radioactively contaminated as a result of work that was carried out on various uranium, thorium, and beryllium ores at the Middlesex Sampling Plant. Most of the contaminated properties have been cleaned up and the contaminated materials are being stored in a large interim storage pile at the sampling plant site. In 1948, during some renovations at the sampling plant, about 4,600 m/sup 3/ of excess soil contaminated with uranium ore was apparently transported and disposed in the landfill gully area next to Bound Brook. In 1961, the Atomic Energy Commission removed about 500 m/sup 3/ of near-surface radioactively contaminated material from the landfill and covered the area with 0.6 m of clean soil. From 1961 to 1974 (when the landfill was closed), an additional 2.4 to 3.0 m of fill material was placed in the landfill. Under the Formerly Utilized Sites Remedial Action Program, the U.S. Department of Energy began excavating contaminated materials from the landfill in 1984. A total of 16,000 m/sup 3/ of landfill materials covering a 0.2-ha area was excavated, of which 11,000 m/sup 3/ was contaminated and has been transported to the nearby sampling plant site for interim storage

  16. Landfill gas-fired power plant pays cost of operating landfill

    International Nuclear Information System (INIS)

    Wallace, I.P.

    1991-01-01

    This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative

  17. Real-time monitoring of methane oxidation in a simulated landfill cover soil and MiSeq pyrosequencing analysis of the related bacterial community structure.

    Science.gov (United States)

    Xing, Zhilin; Zhao, Tiantao; Gao, Yanhui; He, Zhi; Zhang, Lijie; Peng, Xuya; Song, Liyan

    2017-10-01

    Real-time CH 4 oxidation in a landfill cover soil was studied using automated gas sampling that determined biogas (CH 4 and CO 2 ) and O 2 concentrations at various depths in a simulated landfill cover soil (SLCS) column reactor. The real-time monitoring system obtained more than 10,000 biogas (CH 4 and CO 2 ) and O 2 data points covering 32 steady states of CH 4 oxidation with 32 different CH 4 fluxes (0.2-125mol·m -2 ·d -1 ). The kinetics of CH 4 oxidation at different depths (0-20cm, 20-40cm, and 40-60cm) of SLCS were well fit by a CH 4 -O 2 dual-substrate model based on 32 values (averaged, n=5-15) of equilibrated CH 4 concentrations. The quality of the fit (R 2 ranged from 0.90 to 0.96) was higher than those reported in previous studies, which suggests that real time monitoring is beneficial for CH 4 oxidation simulations. MiSeq pyrosequencing indicated that CH 4 flux events changed the bacterial community structure (e.g., increased the abundance of Bacteroidetes and Methanotrophs) and resulted in a relative increase in the amount of type I methanotrophs (Methylobacter and Methylococcales) and a decrease in the amount of type II methanotrophs (Methylocystis). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM); McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  19. Effects of landfill gas on subtropical woody plants

    Science.gov (United States)

    Chan, G. Y. S.; Wong, M. H.; Whitton, B. A.

    1991-05-01

    An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species ( Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, and Tristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth of Aporusa chinensis, Bombax malabaricum, Machilus breviflora, and Tristania confera was stimulated by the gas, with shallow root systems being induced. Acacia confusa, Albizzia lebbek, and Litsea glutinosa were gas-tolerant, while root growth of Castanopsis fissa, Liquidambar formosana, and Pinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions being Bombax malabaricum, Liquidambar formosana, and Tristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration. Acacia confusa, Albizzia lebbek, and Tristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.

  20. Impermeable layers in landfill design

    Directory of Open Access Journals (Sweden)

    Karanac Milica

    2013-01-01

    Full Text Available Landfills are complex systems which could potentially contaminate the environment. It should be prevented by providing impermeability during the landfill design. In that aim related regulations should be followed and adequate materials that provide impermeability should be used. The first part of the paper presents review of the current regulations, interpretations, and recommendations from U.S., EU and Republic of Serbia. Knowing that the Serbian regulation should fully follow related European Directive, in analyses some inadequate formulations and terms were observed related to the Directive Annex I, 3.2. Request of the Regulation that deals with the bottom of the landfill leakage is formulated differently than in Directive as well. Mentioned problems enable some design solutions which are not among the best available techniques. In the second part the paper presents comparative analysis of possible alternatives in impermeable layer design, both for the bottom and landfill cover. Some materials like clay, CCL, GCL might not be able to satisfy prescribed requirements. The longest lifetime and the lowest coefficient of permeability, as well as excellent mechanical, chemical and thermal stability, show the mixture of sand, bentonite and polymers (PEBSM. [Projekat Ministarstva nauke Republike Srbije, br. TR 34009

  1. Remote sensing investigations at a hazardous-waste landfill

    Science.gov (United States)

    Stohr, C.; Su, W.-J.; DuMontelle, P.B.; Griffin, R.A.

    1987-01-01

    In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches. These features can be more effectively identified by photointerpretation than by conventional field reconnaissance. A ground-based, post-sunset survey of the trench covers that showed that a distinction between depressions which hold moisture at the surface from freely-draining depressions which permit rapid recharge to the burial trenches could be made using thermal infrared imagery.In 1976 state licensed landfilling of industrial chemicals was begun above an abandoned, underground coal mine in Illinois. Five years later organic chemical pollutants were discovered in a monitoring well, suggesting migration 100 to 1000 times faster than predicted by laboratory tests. Remote sensing contributed to the determination of the causes of faster-than-predicted pollutant migration at the hazardous-waste landfill. Aerial and satellite imagery were employed to supplement field studies of local surface and groundwater hydrology, and to chronicle site history. Drainage impediments and depressions in the trench covers collected runoff, allowing rapid recharge of surface waters to some burial trenches.

  2. Assessment of the Spatial Variability in Leachate Migration from an Old Landfill Site

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Bjerg, Poul Løgstrup; Winther, Pia

    1995-01-01

    Investigations of the pollution of groundwater from old landfills have in most cases focused on delineating the pollution plume and only in very few cases on the landfill as a source to groundwater pollution. Landfills often cover large areas. Spatial variations in leachate composition may have...... great impact on the location of the main pollution plume in the downstream aquifer. Grindsted landfill in Denmark was investigated by sampling leachate beneath the landfill and in groundwater at the borders of the landfill. A pronounced variability in leachate quality and leakage patterns from...... the landfill was observed. Also variations in local groundwater flow directions were found. These observations are very important for delineation of the groundwater pollution and for proper choice of remedial action activities, related both to the plume and to the landfill....

  3. From California dreaming to California data: Challenging historic models for landfill CH4 emissions

    Directory of Open Access Journals (Sweden)

    Kurt Spokas

    2015-06-01

    Full Text Available Abstract Improved quantification of diverse CH4 sources at the urban scale is needed to guide local GHG mitigation strategies in the Anthropocene. Herein, we focus on landfill CH4 emissions in California, challenging the current IPCC methodology which focuses on a climate dependency for landfill CH4 generation (methanogenesis, but does not explicitly consider climate or soil dependencies for emissions. Relying on a comprehensive California landfill database, a field-validated process-based model for landfill CH4 emissions (CALMIM, and select field measurements at 10 California sites with a variety of methods, we support the contrary position: Limited climate dependency for methanogenesis, but strong climate dependency for landfill CH4 emissions. Contrary to the historic IPCC empirical model for methanogenesis with kinetic constants related to climate, we demonstrate a simpler and more robust linear empirical relationship (r2 = 0.85; n=128 between waste mass and landfill biogas recovery [126 × 10-6 Nm3 CH4 hr-1 Mgwaste-1]. More interestingly, there are no statistically significant relationships with climate, site age, or status (open/closed for landfill biogas recovery. The current IPCC methodology does not consider soil or climate drivers for gaseous transport or seasonal methanotrophy in different cover soils. On the other hand, we illustrate strong climate and soil dependencies for landfill emissions—e.g., average intermediate cover emissions below 20 g CH4 m-2 d-1 when the site’s mean annual precipitation is >500 mm y-1. Thereby, for the California landfill CH4 inventory, the highest-emitting sites shift from landfills containing the largest mass of waste to sites dominated by intermediate cover types having a reduced rate of soil CH4 oxidation during the annual cycle. These differences have profound implications for developing more realistic, science-based urban and regional scale GHG inventories for landfill CH4 while reducing

  4. Landfills

    Science.gov (United States)

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  5. Sandia National Laboratories Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    Tyler, L.D.; Phelan, J.M.; Prindle, N.K.; Purvis, S.T.; Stormont, J.C.

    1992-01-01

    The Mixed-Waste Landfill Integrated Demonstration (MWLID) has been assigned to Sandia National Laboratories (SNL) by the US Department of Energy (DOE) Office of Technology Development. The mission of the MWLID is to assess, implement and transfer technologies and systems that lead to quicker, safer, and more efficient remediation of buried chemical and mixed-waste sites. The MWLID focus is on two landfills at SNL in Albuquerque, New Mexico: The Chemical Waste Landfill (CWL) and the Mixed-Waste Landfill (MWL). These landfills received chemical, radioactive and mixed wastes from various SNL nuclear research programs. A characterization system has been designed for the definition of the extent and concentration of contamination. This system includes historical records, directional drilling, and emplacement membrane, sensors, geophysics, sampling strategy, and on site sample analysis. In the remediation task, in-situ remediation systems are being designed to remove volatile organic compounds (VOC's) and heavy metals from soils. The VOC remediation includes vacuum extraction with electrical and radio-frequency heating. For heavy metal contamination, electrokinetic processes are being considered. The MWLID utilizes a phased, parallel approach. Initial testing is performed at an uncontaminated site adjacent to the CWL. Once characterization is underway at the CWL, lessons learned can be directly transferred to the more challenging problem of radioactive waste in the MWL. The MWL characterization can proceed in parallel with the remediation work at CWL. The technologies and systems demonstrated in the MWLID are to be evaluated based on their performance and cost in the real remediation environment of the landfills

  6. Quantification of long term emission potential from landfills

    NARCIS (Netherlands)

    Heimovaara, T.J.

    2011-01-01

    Novel approaches for the after-care of Municipal Solid Waste (MSW) landfills are based on technological measures to reduce the long term emission potential in a short time period. Biological degradation in landfills is a means to significantly reduce the long term emission potential. Leachate

  7. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  8. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    Science.gov (United States)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste

  9. Landfilling of waste: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Manfredi, Simone; Tonini, Davide; Christensen, Thomas Højlund

    2009-01-01

    Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recove...

  10. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included

  11. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    Directory of Open Access Journals (Sweden)

    Gogina Elena

    2016-01-01

    Full Text Available The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW, on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities, using the example of an actual landfill situated in the territory of Moscow. A scheme of reconstruction is recommended for the drainage water treatment plant at this landfill, which will lead to improvement of the environmental situation and contribute to the development of territories in the adjacent districts, and to reduction of pollution load on the river and atmosphere.

  12. The concept of “Loop Cycle” in landfill management (Case study at Piyungan landfill, Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Purnama Putra Hijrah

    2018-01-01

    Full Text Available The amount of waste continues to increase from year to year, one of which is due to the population increase. With the target of 100% service level by 2020, Indonesia must prepare the land that will be used as a landfill location in order to accommodate the waste that continues to be produced. Apparently, the problem is not only limited to the provision of land, but operational challenges become more severe. One of its is experienced by Piyungan Landfill, Bantul, Yogyakarta which has been designed to expire by 2015. The government of Yogyakarta is optimizing for landfill can still operate until 2018. One solution that can be given in operation for the loop cycle or closed cycle concepts is landfill mining method, which is utilizing degraded waste into other designations so that the land can still be used to accommodate other waste. Sampling and analysis results show that the waste contained in 1st zone Piyungan landfill aged 15-20 years, with the highest composition is soil (59% dominate other types of waste. The soil obtained has the potential to be utilized as cover soil and compost, but for compost is necessary to further study the modification of the design of the zoning zone, so that the waste not too long is in the soil so that the nutrient content is still high.

  13. Environmental Planning Strategies for Optimum Solid Waste Landfill Siting

    International Nuclear Information System (INIS)

    Sumiani, Y.; Onn, C.C.; Mohd, M.A.D.; Wan, W.Z.J.

    2009-01-01

    The use of environmental planning tools for optimum solid waste landfill siting taking into account all environmental implications was carried out by applying Life Cycle Analysis (LCA) to enhance the research information obtained from initial analysis using Geographical Information Systems (GIS). The objective of this study is to identify the most eco-friendly landfill site by conducting a LCA analysis upon 5 potential GIS generated sites which incorporated eleven important criteria related to the social, environmental, and economical factors. The LCA analysis utilized the daily distance covered by collection trucks among the 5 selected landfill sites to generate inventory data on total energy usage for each landfill sites. The planning and selection of the potential sites were facilitated after conducting environmental impact analysis upon the inventory data which showed the least environmental impact. (author)

  14. Sanitation and recultivation of the Endlhausen landfill. Experience and hints

    Energy Technology Data Exchange (ETDEWEB)

    Hoerich, O; Rieger, W

    1986-02-01

    A landfill located in a former gravel pit was covered once 300,000 t of domestic refuse had been dumped. Drain pipes were laid for degassing the landfill. A clay layer was used to prevent surface water inroads. The article explains details and approaches. The cost are some DM 900,000 at an area of 3 ha. Grassing and planting will follow.

  15. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC: mapping and interpretation of digital aerophotographs, and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Anderson Tavares de Melo

    2011-12-01

    Full Text Available The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul, in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007, which demonstrated the spatial-temporal evolution of the vegetation since the year before the implementation of the landfill (1994 to its recent state (2007. The data from this study allowed changes in the surface of three bands of vegetation, a band of trees (Laguncularia racemosa and Avicennia schaueriana, a band of the seagrass praturá (Spartina alterniflora and a transition band (companions of mangrove species and restinga plants, to be quantified.

  16. Final report for the Idaho National Engineering Laboratory Central Facilities Area Landfill 2

    International Nuclear Information System (INIS)

    Doornbos, M.H.; Morgan, M.E.; Hubbell, J.M.

    1991-04-01

    This report summarize activities completed during FY-88 through FY-91 for the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP) at the Idaho National Engineering Laboratory (INEL) Central Facilities Area (CFA) Landfill 2. The objectives of this program are to demonstrate new technologies or innovative uses of existing technologies for the identification and remediation of hazardous wastes within a municipal-type landfill. The site was chosen as a candidate site because it represents a problem typical of both DOE and public landfills. The HAZWRAP Technology Demonstration Project began at the INEL CFA Landfill 2 in 1987. During characterization and identification activities, several organic ''hotspots'' or anomalies were identified. Proposals were then solicited from the private sector for innovative technologies to remediate the isolated areas. Remediation was planned to be implemented using horizontal wells installed underneath a portion of the landfill. These innovative technologies and the well installation were planned to support the current goals of the DOE and the Environmental Protection Agency to treat hazardous waste in place. 2 refs., 2 figs., 2 tabs

  17. Methane oxidation at low temperatures in soil exposed to landfill gas

    DEFF Research Database (Denmark)

    Christophersen, Mette; Linderød, L.; Jensen, Pernille Erland

    2000-01-01

    soil moisture regimes, At 2 degreesC the methane oxidation rates were 0.005 to 0.17 mu mol g(-1) h(-1), and calculations showed that it was possible to oxidize all the produced methane at older landfills, even during the winter. Therefore, methane oxidation in top covers of landfills is an alternative...

  18. Microbial community structure and diversity in a municipal solid waste landfill.

    Science.gov (United States)

    Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui

    2017-08-01

    Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Landfill methane emission mitigation – How to construct and document a full‐scale biocover system

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2014-01-01

    Landfills receiving organic wastes produce biogas (landfill gas – LFG) containing methane (CH4). Landfills are significant sources of methane, which contributes to climate change. As an alternative to gas utilization systems or as a follow‐on technology when a gas utilization system gets non...... rate can be obtained in soils, compost and other materials, high enough to significant reduce the methane emission from landfills. The process has been scaled up by DTU Environment to a full‐scale implemented technology at two Danish landfills. Now the Danish government has decided to establish bio...

  20. Landfill aeration in the framework of a reclamation project in Northern Italy.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Geosynthetic applications in landfill design

    International Nuclear Information System (INIS)

    Alshunnar, I.S.; Afifi, S.S.; Tiseo, B.

    1996-01-01

    Landfills are designed to contain waste and to provide protection against discharges of leachate into the environment. Main components of a landfill include a liner system, a leachate collection system, and a cover system. Traditional designs have typically incorporated clay soils for containment and sands with embedded piping for leachate collection. As a result of recent advances in design, geosynthetic materials are now widely used for components. While these materials present cost and feasibility advantages, they also pose significant challenges in stability evaluations, handing during installation, and quality assurance. This paper presents an overview of applications of geosynthetics in design and construction, including: Advantages, disadvantages, design criteria, possible economic benefits of various systems, and related construction considerations. 2 figs., 1 tab

  2. Observations on the methane oxidation capacity of landfill soils

    Science.gov (United States)

    Field data and two independent models indicate that landfill cover methane (CH4) oxidation should not be considered as a constant 10% or any other single value. Percent oxidation is a decreasing exponential function of the total methane flux rate into the cover and is also dependent on climate and c...

  3. Use of the time domain reflectrometry in hydraulic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; Martin, C.E.

    1994-01-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing hydraulic and capillary engineered barriers. Seepage is being evaluated as a function of slope length for each plot, as well as interflow, runoff, and precipitation, using an automated water flow datalogging system that routinely collects hourly data. Soil water content within these 16 field plots has been routinely monitored four times a day since November 1991 using time domain reflectrometry techniques with an automated and multiplexed measurement system. Volumetric water content is measured with a pair of 60-cm-long waveguides at each of 212 locations. One set of waveguides was emplaced vertically in four locations in every soil layer to determine soil water inventory in each field plot. A second set of waveguides was emplaced horizontally in several soil layers to provide a more detailed picture of soil water dynamics close to soil layer interfaces. Field data is presented showing pulses of soil water moving through the soil and engineered barriers with high temporal and spatial resolution

  4. Material flow-based economic assessment of landfill mining processes.

    Science.gov (United States)

    Kieckhäfer, Karsten; Breitenstein, Anna; Spengler, Thomas S

    2017-02-01

    This paper provides an economic assessment of alternative processes for landfill mining compared to landfill aftercare with the goal of assisting landfill operators with the decision to choose between the two alternatives. A material flow-based assessment approach is developed and applied to a landfill in Germany. In addition to landfill aftercare, six alternative landfill mining processes are considered. These range from simple approaches where most of the material is incinerated or landfilled again to sophisticated technology combinations that allow for recovering highly differentiated products such as metals, plastics, glass, recycling sand, and gravel. For the alternatives, the net present value of all relevant cash flows associated with plant installation and operation, supply, recycling, and disposal of material flows, recovery of land and landfill airspace, as well as landfill closure and aftercare is computed with an extensive sensitivity analyses. The economic performance of landfill mining processes is found to be significantly influenced by the prices of thermal treatment (waste incineration as well as refuse-derived fuels incineration plant) and recovered land or airspace. The results indicate that the simple process alternatives have the highest economic potential, which contradicts the aim of recovering most of the resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Characteristics of Leachate at Sukawinatan Landfill, Palembang, Indonesia

    International Nuclear Information System (INIS)

    Yusmartini, Eka Sri; Setiabudidaya, Dedi; Ridwan; Marsi; Faizal

    2013-01-01

    Landfill (TPA) Sukawinatan Palembang is an open dumping system which covers an area of 25 hectares. This system may bring an environmental damage to the surrounding area because it does not provide leachate treatment. Leachate is the landfill waste that dissolves many compounds that contain pollutants from both organic substances and heavy metal origin. This paper presents the results of laboratory analysis on samples of leachate as well as shallow groundwater from the surrounding area. The results were compared to established quality standards to evaluate whether the leachate has influenced the quality of the shallow groundwater in the surrounding area. The results show that there are some indications that the quality of groundwater has been polluted by the leachate of both organic substances and heavy metals produced by the Sukawinatan landfill.

  6. Control and monitoring of landfill gas underground migration at the City of Montreal sanitary landfill site

    International Nuclear Information System (INIS)

    Heroux, M.; Turcotte, L.

    1997-01-01

    The proposed paper covers the various aspects of control and monitoring of potential landfill gas (LFG) migration through soil voids or rock fractures at the City of Montreal sanitary landfill site. It depicts the social, geographical and geological context and presents a brief history of the landfill site. It describes the LFG collecting system and LFG migration monitoring equipment and programs. Finally it presents monitoring data taken over last few years. The landfill site is located in a well populated urban area. Since 1968, about 33 million metric tons of domestic and commercial waste have been buried in a former limestone quarry. Because of houses and buildings in the vicinity, 100 m in some locations, LFG underground migration is a major risk. LFG could indeed infiltrate buildings and reach explosive concentrations. So it must be controlled. The City of Montreal acquired the site in 1988 and has progressively built a LFG collecting system, composed of more than 288 vertical wells, to pump out of the landfill 280 million m 3 of gas annually. To verify the efficiency of this system to minimize LFG underground migration, monitoring equipment and programs have also been designed and put into operation. The monitoring network, located all around the landfill area, is composed of 21 well nests automated to monitor presence of gas in the ground in real time. In addition, 55 individual wells, where manual measurements are made, are also available. To complete the monitoring program, some measurements are also taken in buildings, houses and underground utilities in the neighborhood of the site. Monitoring data show that LFG underground migration is well controlled. They also indicate significant decrease of migration over the years corresponding to improvements to the LFG collecting system

  7. Waste-to-energy technologies and project implementation

    CERN Document Server

    Rogoff, Marc J

    2011-01-01

    This book covers in detail programs and technologies for converting traditionally landfilled solid wastes into energy through waste-to-energy projects. Modern Waste-to-Energy plants are being built around the world to reduce the levels of solid waste going into landfill sites and contribute to renewable energy and carbon reduction targets. The latest technologies have also reduced the pollution levels seen from early waste incineration plants by over 99 per cent. With case studies from around the world, Rogoff and Screve provide an insight into the different approaches taken to the planning and implementation of WTE. The second edition includes coverage of the latest technologies and practical engineering challenges as well as an exploration of the economic and regulatory context for the development of WTE.

  8. Landfill gas for energy utilisation. A market strategy for Europe

    International Nuclear Information System (INIS)

    1995-05-01

    The Biogas and Landfill Gas Marketing Strategy Group was set up with the objective to advise EU-DG 17 (THERMIE/OPET) on the dissemination strategies for biogas and landfill gas (LFG), a subsector of the Renewable Energy Sector (RES). The Marketing Strategy Group has identified market barriers and users' needs in the biogas and LFG subsector. Subsequently, the group evaluated successful instruments/methods to overcome these market barriers and to satisfy the users' needs. The group investigated the feasibility of transposing these instruments/success stories to other countries. The work of the Marketing Strategy Group resulted in proposals for future dissemination of biogas and LFG technology. After a short introduction into LFG technology and the LFG market, this document describes barriers to landfill gas technology dissemination and gives some examples about how to overcome them. This results in recommendations on a strategy for dissemination of LFG technology and expanding LFG markets. The document is mainly based on experience gained in the United Kingdom, Italy and the Netherlands

  9. Seismic analysis of Industrial Waste Landfill 4 at Y-12 Plant

    International Nuclear Information System (INIS)

    1995-01-01

    This calculation was to seismically evaluate Landfill IV at Y-12 as required by Tennessee Rule 1200-1-7-04(2) for seismic impact zones. The calculation verifies that the landfill meets the seismic requirements of the Tennessee Division of Solid Waste, ''Earthquake Evaluation Guidance Document.'' The theoretical displacements of 0.17 in. and 0.13 in. for the design basis earthquake are well below the limiting seimsic slope stability design criteria. There is no potential for liquefaction due to absence of chohesionless soils, or for loss or reduction of shear strength for the clays at this site as result of earthquake vibration. The vegetative cover on slopes will most likely be displaced and move during a large seismic event, but this is not considered a serious deficiency because the cover is not involved in the structural stability of the landfill and there would be no release of waste to the environment

  10. A geophysical toolbox for imaging and characterization of a landfill

    NARCIS (Netherlands)

    Konstantaki, L.A.; Ghose, R.; Draganov, D.S.; Heimovaara, T.J.

    2015-01-01

    Leachate and gas are a product of biochemical reactions occurring inside the landfill. Treatment technologies (e.g., recirculation of leachate) are developed to reduce the production of leachate. Imaging the location of the wet and gas pockets inside the landfill can help improve the treatment

  11. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.

    Science.gov (United States)

    Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

    2014-05-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Landfills

    Data.gov (United States)

    Vermont Center for Geographic Information — This data set defines both current and historic landfills/waste disposal storage sites for the State of Vermont. Historic landfills were identified with the...

  13. Landfill gas

    International Nuclear Information System (INIS)

    Hartnell, Gaynor

    2000-01-01

    Following the UK Government's initiative for stimulating renewable energy through the Non-Fossil Fuel Obligation (NFFO), the UK landfill gas industry has more than trebled in size in just 4 years. As a result, UK companies are now in a strong position to offer their skills and services overseas. Ireland, Greece and Spain also resort heavily to disposal to landfill. Particularly rapid growth of the landfill gas market is expected in the OECD-Pacific and NAFTA areas. The article explains that landfill gas is a methane-rich mixture produced by anaerobic decomposition of organic wastes in landfills: under optimum conditions, up to 500 cubic meters of gas can be obtained from 1 tonne of biodegradable waste. Data on the number and capacity of sites in the UK are given. The Landfill Gas Association runs courses to counteract the skills shortage in the UK, and tailored courses for overseas visitors are planned

  14. Environmental risks of farmed and barren alkaline coal ash landfills in Tuzla, Bosnia and Herzegovina

    International Nuclear Information System (INIS)

    Dellantonio, Alex; Fitz, Walter J.; Custovic, Hamid; Repmann, Frank; Schneider, Bernd U.; Gruenewald, Holger; Gruber, Valeria; Zgorelec, Zeljka; Zerem, Nijaz; Carter, Claudia; Markovic, Mihajlo; Puschenreiter, Markus; Wenzel, Walter W.

    2008-01-01

    The disposal of coal combustion residues (CCR) has led to a significant consumption of land in the West Balkan region. In Tuzla (Bosnia and Herzegovina) we studied previously soil-covered (farmed) and barren CCR landfills including management practises, field ageing of CCR and the transfer of trace elements into crops, wild plants and wastewaters. Soil tillage resulted in mixing of cover soil with CCR. Medicago sativa showed very low Cu:Mo ratios (1.25) which may cause hypocuprosis in ruminants. Total loads of inorganic pollutants in the CCR transport water, but not pH (∼12), were below regulatory limits of most EU countries. Arsenic concentrations in CCR transport water were -1 whereas reductive conditions in an abandoned landfill significantly enhanced concentrations in leachates (44 μg l -1 ). The opposite pattern was found for Cr likely due to large initial leaching of CrVI. Public use of landfills, including farming, should be based on a prior risk assessment due to the heterogeneity of CCR. - Uncontrolled farming and tillage of previously soil-covered coal ash landfills resulted in exposure of ash on the surface

  15. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?

    International Nuclear Information System (INIS)

    Spokas, K.; Bogner, J.; Chanton, J.P.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y. Moreau-Le; Hebe, I.

    2006-01-01

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH 4 m -2 d -1 . Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery

  16. Changes in contaminant composition at landfill sites. (9). ; Application of soil covering to treatment of alkaline seepage water. Umetate ni okeru odaku seibun no doko. (9). ; Alkali sei shinsutsueki no gaido shori

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y; Sugai, T; Masuda, T; Watanabe, Y; Kobayashi, S [Saitama Institute of Environmental Pollution, Saitama (Japan)

    1990-10-29

    Recently, alkaline seepage water has been found in many landfill sites. Strong alkaline seepage water results from the use of alkaline agents, such as quicklime and slaked lime, for water removal from waste. In the present report, the neutralizing ability of different types of soil is studied to provide a method to neutralize seepage water by using soil covering at landfill sites. Results show that clay contained in soil is playing a major role in neutralizing alkaline seepage penetrating the soil. Clay generally has negative electric charges, suggesting that positive ions in alkaline water is neutralized after being replaced by hydrogen ions. Another major factor is the carbonate ion and carbon dioxide existing in soil, which precipitate and solidify calcium hydroxide as calcium carbonate to achieve neutralization. Investigations indicate that top soil comprising volcanic ash is useful as material for soil covering. 2 figs., 5 tabs.

  17. ENHANCED LANDFILL MINING: KONSEP BARU PENGELOLAAN LANDFILL BERKELANJUTAN

    OpenAIRE

    Wahyono, Sri

    2016-01-01

    Enhanced landfill mining (ELFM) adalah konsep baru yang terintegrasi tentang recovery material dan energi pada sebuah landfill yang bermanfaat bagi keberlanjutan pengelolaan material dan pengelolaan landfill. Konsep tersebut mengintegrasikan berbagai teknologi seperti teknologi ekskavasi, teknologi pemilahan, teknologi termal, teknologi transformasi dan daur ulang. Hal tersebut juga terintegrasi dengan aspek non teknis seperti aspek regulasi, market, ekonomi, sosial, dan lingkungan. Konsep EL...

  18. Sanitary landfill in situ bioremediation optimization test. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This work was performed as part of a corrective action plan for the Savannah River Site Sanitary Landfill. This work was performed for the Westinghouse Savannah River Company Environmental Restoration Department as part of final implementation of a groundwater remediation system for the SRS Sanitary Landfill. Primary regulatory surveillance was provided by the South Carolina Department of Health and Environmental Control and the US Environmental Protection Agency (Region IV). The characterization, monitoring and remediation systems in the program generally consisted of a combination of innovative and baseline methods to allow comparison and evaluation. The results of these studies will be used to provide input for the full-scale groundwater remediation system for the SRS Sanitary Landfill. This report summarizes the performance of the Sanitary Landfill In Situ Optimization Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill

  19. State-of-the-art synthetic membrane for capping landfills

    International Nuclear Information System (INIS)

    Kriofske, K.P.; Gagle, D.W.

    1991-01-01

    Very Low Density Polyethylene (VLDPE) has emerged as a superior capping material for landfill closures. Landfills must be capped by a material which will undergo substantial deformation in areas of localized settlement prior to rupture. Methane and hydrogen sulfide gases must be contained and directed to collection points without permeating the landfill cap. Vegetative growth in the cover sods will be protected by the gas impermeability of the geosynthetic membrane. VLDPE compounded with carbon black is minimally affected by radiation and is inert to ultraviolet rays. This property sustains VLDPE's ability to retard gas permeation at levels superior to other geosynthetics. Cover soil stability on long cap slopes in all weather conditions is crucial. It has been demonstrated in the laboratory and in full-scale, on-site test conditions that VLDPE exhibits friction characteristics equaling or exceeding other synthetics used for this purpose without diminishing physical and chemical properties. Large-scale, multiaxial stress tests have demonstrated the ability of VLDPE to deflect substantially in all directions of a potential settlement area. Only PVC can equal the elastic deformation properties of VLDPE, but PVC is more gas-permeable susceptible to degradation due to natural soil radiation or ultraviolet light and heat. Test results are presented to illustrate these points. The geosynthetic cap membrane must prevent water percolation into the landfill to prevent the formation of hazardous leachates. The use of a VLDPE cap reduces the depth of cap soils, thus increasing landfill volume. The economics and reduction in long-term liabilities of closure costs are enhanced by the use of VLDPE in the cap system. Since the expected half-life of polyethylene exceeds hundreds of years, the inclusion of VLDPE in the cap system will provide pollution security for many generations

  20. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  1. Biogas recuperation in sanitary landfills; Recuperacao de biogas em aterros sanitarios

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Luiz Mario Queiroz [Companhia Paulista de Forca e Luz (CPFL), Campinas, SP (Brazil)

    1988-12-31

    This work shoes a retrospective about recovering biogas activity in sanitary landfill, where in the genesis of methane is emphasized. Also, a conceptual review was made and discussed focusing the technological aspects of the landfill methods. Further, two important aspects of the genesis of methane were discussed: the enhancement mechanisms for acceleration of the formation of methane and the production of biological input from leachate in landfill. (author) 36 refs., 3 figs.

  2. Cover and liner system designs for mixed-waste disposal

    International Nuclear Information System (INIS)

    MacGregor, A.

    1994-01-01

    Land disposal of mixed waste is subject to a variety of regulations and requirements. Landfills will continue to be a part of waste management plans at virtually all facilities. New landfills are planned to serve the ongoing needs of the national laboratories and US Department of Energy (DOE) facilities, and environmental restoration wastes will ultimately need to be disposed in these landfills. This paper reviews the basic objectives of mixed-waste disposal and summarizes key constraints facing planners and designers of these facilities. Possible objectives of cover systems include infiltration reduction; maximization of evapotranspiration; use of capillary barriers or low-permeability layers (or combinations of all these); lateral drainage transmission; plant, animal, and/or human intrusion control; vapor/gas control; and wind and water erosion control. Liner system objectives will be presented, and will be compared to the US Environmental Protection Agency-US Nuclear Regulatory Commission guidance for mixed-waste landfills. The measures to accomplish each objective will be reviewed. Then, the design of several existing or planned mixed-waste facilities (DOE and commercial) will be reviewed to illustrate the application of the various functional objectives. Key issues will include design life and performance period as compared/contrasted to postclosure care periods, the use (or avoidance) of geosynthetics or clays, intermediate or interim cover systems, and soil erosion protection in contrast to vegetative enhancement. Possible monitoring approaches to cover systems and landfill installations will be summarized as well

  3. Pathway analysis for a contaminated landfill in Middlesex, New Jersey

    International Nuclear Information System (INIS)

    Yu, C.; Merry-Libby, P.; Yang, J.Y.

    1985-01-01

    Under the Formerly Utilized Sites Remedial Action Program, the US Department of Energy began excavating contaminated materials from the Middlesex Municipal landfill in 1984. A total of 16,000 m 3 of landfill materials covering a 0.2-ha area was excavated, of which 11,000 m 3 was contaminated and has been transported to the nearby sampling plant site for interim storage. Based on the pathway analysis for the onsite and near-site resident scenarios, the radiation dose rates and radionuclide concentrations in groundwater would be below the regulatory requirements for both the short-term and long-term scenarios. Hence, the potential health risks to maximally exposed individuals due to radioactive releases from the Middlesex landfill would be insignificant

  4. The application of containment technologies on landfills and contaminated sites in Europe

    International Nuclear Information System (INIS)

    Melchior, S.

    1997-01-01

    Remedial action on contaminated sites may include ex-situ or in-situ treatment of contaminants (extraction of solids, liquids and gases or in-situ decontamination) as well as the application of containment technologies. Rumer ampersand Ryan (1995) define containment technology as open-quotes the construction of low-permeability barriers around the source zone [of contaminated sites] to contain contaminants combined with manipulation of hydraulic gradientsclose quotes. The technical focus areas of the 1997 International Containment Technology Conference and Exhibition include vertical, bottom and surface barriers as well as technologies like permeable barriers and stabilization ampersand solidification. Contaminant transport modeling, the test and choice of materials, quality assurance and control, cost and performance criteria, and long-term performance monitoring are integral and essential parts of the technologies and their application. The extent of their use depends on the technology applied as well as on the hazard of the site. This paper will focus on a description of the systems used to construct walls, floors, and caps on European landfills and contaminated sites. The application of walls, floors, and caps, however, is not only a question of the best available technology but also is strongly governed by the priority of the problem to be solved. Therefore this paper will give a short overview on some environmental, socio-economical and political factors, which influence the application of containment technologies, before short profiles of the currently applied technologies will be presented

  5. Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; Cébron, Aurélie; Murrell, J Colin

    2007-11-01

    Active methanotrophs in a landfill soil were revealed by detecting the 16S rRNA of methanotrophs and the mRNA transcripts of key genes involved in methane oxidation. New 16S rRNA primers targeting type I and type II methanotrophs were designed and optimized for analysis by denaturing gradient gel electrophoresis. Direct extraction of RNA from soil enabled the analysis of the expression of the functional genes: mmoX, pmoA and mxaF, which encode subunits of soluble methane monooxygenase, particulate methane monooxygenase and methanol dehydrogenase respectively. The 16S rRNA polymerase chain reaction (PCR) primers for type I methanotrophs detected Methylomonas, Methylosarcina and Methylobacter sequences from both soil DNA and cDNA which was generated from RNA extracted directly from the landfill cover soil. The 16S rRNA primers for type II methanotrophs detected primarily Methylocella and some Methylocystis 16S rRNA genes. Phylogenetic analysis of mRNA recovered from the soil indicated that Methylobacter, Methylosarcina, Methylomonas, Methylocystis and Methylocella were actively expressing genes involved in methane and methanol oxidation. Transcripts of pmoA but not mmoX were readily detected by reverse transcription polymerase chain reaction (RT-PCR), indicating that particulate methane monooxygenase may be largely responsible for methane oxidation in situ.

  6. Estimated release from the saltstone landfill effect of landfill caps and landfill-cap/monolith-liner combinations

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1985-01-01

    The effect of capping the entire saltstone landfill is dependent on the effectiveness of the clay cap in preventing infiltration. A cap that is 99% effective will reduce releases from the saltstone landfill by a factor of 7.7. Several combinations of landfill design alterations will result in meeting ground water standards

  7. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    Science.gov (United States)

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

  8. Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied.

    Science.gov (United States)

    Rafizul, Islam M; Alamgir, Muhammed

    2012-11-01

    This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  10. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh

    2011-01-01

    A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...... concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107±14gm−2d−1 and 63±12gm−2d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout...

  11. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  12. Effect of Technological Conditions on Removing Organic Substances from Landfill Leachates

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2018-01-01

    Full Text Available The paper presents the research on how the effectiveness ofremoving organic substances is affected bythe use of polyurethane foam fillings characterized by a varied porosity and the temperature of the process of treating landfill leachate in a biological sequencing batch reactor. The information on the conversion of organic compounds during the operation of the reactor was obtained by measuring the absorbance for selected wavelengths to describe the process of humification. It was found that the technological conditions used in the experiment affected the effectiveness of reducing the COD, but did not affect the type or amount of the humic substances in the leachate treated. In all of the variants examined, the COD decreased the as the humification level increased, and yet this relation was not linear in character.

  13. Environmental assessment of Ammassuo Landfill (Finland) by means of LCA-modelling (EASEWASTE)

    DEFF Research Database (Denmark)

    Niskanen, A.; Manfredi, Simone; Christensen, Thomas Højlund

    2009-01-01

    The Old Ammassuo Landfill (Espoo, Finland) covers an area of 52 hectares and contains about 10 million tonnes of waste that was landfilled between 1987 and 2007. The majority of this waste was mixed, of which about 57% originated from households. This paper aims at describing the management...... of the Old Ammassuo Landfill throughout its operational lifetime (1987-2007), and at developing an environmental evaluation based on life-cycle assessment (LCA) using the EASEWASTE-model. The assessment criteria evaluate specific categories of impact, including standard impact categories, toxicity......) and ecotoxicity in water chronic (ETwc). The largest impact potential was found for SGR and amounted to 57.6 person equivalent (PE) per tonne of landfilled waste. However, the SGR impact may not be viewed as a significant issue in Finland as the drinking water is mostly supplied from surface water bodies. Overall...

  14. Ecolotree{sup {trademark}} cap at the Barje Landfill, Ljubljana, Slovenia, prototype demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Licht, L.; Schnoor, J. [Univ. of Iowa, Iowa City, IA (United States)

    1995-12-01

    The Ecolotree{reg_sign} Buffer uses strategically planted Populus spp. (poplar) trees and forbs to prevent water pollution while growing fiber for biomass fuels, paper pulps, and construction materials. The concept, developed at the University of Iowa, uses root systems that act as a pump to predictable depths greater than 1.5 m (5 ft). The plant uptakes water, nutrients (nitrogen, phosphorus, etc.), and adsorbable organics (such as herbicides) from soil. When the plant survival, growth rate, rooted soil depth, and water uptake are predictable, the site`s hydrology can be managed, and regulatory agencies are more willing to issue operating permits that include this vegetated barrier. Poplars transpire 600 to 1000 kilograms of water for every kilogram of stem dry matter (DM) growth. Measured poplar growth rates for 4-year old trees was 16,600 kg DM/hectare/yr. Conservatively, the water uptake calculated using the 600:1 water/stem growth ratio is 10,000,000 liters/hectare/yr. When transpiration exceeds rainfall, plants remove stored water from rooted soils. This dehydrating action effectively gives the soil a water storage capacity during winter dormancy. This Ecolotree{reg_sign} Buffer technology develops the ability to greatly reduce water leakage without the need for membrane or clay layers in landfill cover soils. This concept is now being used to manage water at American and Slovenian landfills. In contrast with U.S. Environmental Protection Agency-approved clay or geomembrane covers designed with slight regard for plant growth, this cover focuses on reestablishing a vigorous ecosystem. While accomplishing the primary goal of protecting groundwater purity, the Ecolotree{reg_sign} Buffer grows a productive cover that stabilizes soil slopes, produces marketable crops, develops wildlife habitat, and provides a more pleasing ambiance.

  15. MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL

    Science.gov (United States)

    This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...

  16. The implementation of artificial neural networks to model methane oxidation in landfill soil covers[Includes the CSCE forum on professional practice and career development : 1. international engineering mechanics and materials specialty conference : 1. international/3. coastal, estuarine and offshore engineering specialty conference : 2. international/8. construction specialty conference

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, A.; Albanna, M.; Warith, M. [Ottawa Univ., ON (Canada). Faculty of Civil and Environmental Engineering

    2009-07-01

    The disposal of solid waste significantly contributes to the total anthropogenic emissions of methane (CH{sub 4}), a greenhouse gas that negatively affects climate change. The oxidation of methane in landfill bio-covers takes place through the use of methanotrophic bacteria which provides a sink for methane. The rate at which methane is biologically oxidized depends on several parameters. This study provided a better understanding of the oxidation of methane in landfill soil covers through modeling methane oxidation with artificial neural networks (ANNs). An ANN was trained and tested to model methane oxidation in various batch scale systems for 3 types of soils. Input data consisted of temperature, moisture content, soil composition and the nutrient content added to the system. Model results were in good agreement with experimental results reported by other researchers. It was concluded that the use of ANNs to model methane oxidation in batch scale bio-covers can address the large number of complicated physical and biochemical processes that occur within the landfill bio-cover. 10 refs., 7 tabs., 5 figs.

  17. SITE SELECTION OF MUNICIPAL SOLID WASTE LANDFILLS USING ANALYTICAL HIERARCHY PROCESS METHOD IN A GEOGRAPHICAL INFORMATION TECHNOLOGY ENVIRONMENT IN GIROFT

    Directory of Open Access Journals (Sweden)

    H. Javaheri, T. Nasrabadi, M. H. Jafarian, G. R. Rowshan, H. Khoshnam

    2006-07-01

    Full Text Available Municipal solid waste generation is among the most significant sources which threaten the global environmental health. As an ideal selection depends on considering several independent factors concerning land use, socio economy and hydrogeology, the use of a multi criteria evaluation method seems inevitable. Taking benefit of geographic information system as a tool in combination with geographical information technology, equips the spatial decision support systems in appropriate site selection of sanitary landfills. The present study involves a kind of multi criteria evaluation method under the name of weighted linear combination by using geographical information technology as a practical instrument to evaluate the suitability of the vicinity of Giroft city in Kerman province of Iran for landfill. Water permeability, slope, distance from rivers, depth of underground watertable, distance from residential areas, distance from generation centers, general environmental criterion and distance from roads are the criteria which have been taken in to consideration in the process of analyzing. Superposing all of the raster type layers including geomorphologic, hydrologic, humanistic and land use criteria in land suitability, the final zoning of appropriate, fairly appropriate and inappropriate districts have been identified. Considering relative priority of all criteria in comparison with others, a specific weight is designated to each criterion according to their total influence on the whole process of decision making. The results from the application of the presented methodology are zones for landfill with varying zonal land suitability. Finally the zones will be ranked in descending order to indicate the priority of different options in front of the eyes of decision makers. The results achieved by this study may help policy makers of Giroft city by a variety of options for being considered as sanitary landfill locations.

  18. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  19. Mine Waste Technology Program Electrochemical Tailings Cover

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 40, Electrochemical Tailings Cover, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy (DOE). MSE Technology A...

  20. VEGETATION OF TWO MUNICIPAL WASTE LANDFILLS OF MAZOVIA

    Directory of Open Access Journals (Sweden)

    Kazimierz H. Dyguś

    2014-10-01

    Full Text Available The research has been carried out on two municipal waste landfills: Lipiny Stare – for the city of Wołomin and Radiowo – for Warsaw. The results contain mainly the detailed floristic and phytosociological data as well as the succession trends of the vegetation cover of two examined landfills. The vegetative structure of both sites has been described. Ecological habitat adaptations of plants and their spatial structure have been evaluated. The inventoried flora has been subjected to taxonomic, syntaxonomic and ecological classification. On the area of both landfills 215 species of vascular plants, mainly from the following families: aster, grasses, cabbage, bean have been found. The prevailing life forms are hemicryptophytes and therophytes. The landfills have been dominated by communities of synantrophic segetal weed, by a nitrophyte community of ruderal habitats as well as by the vegetation of anthropogenic meadows. With the use of phytoindication method by Ellenberg typical features of fresh habitats, humus-mineral with moderate acid and neutral pH and the abundance of microelements in the soil have been shown. The valorization of flora along with the evaluation of succession trends and ecological state of habitats in these environments may in future help determine proper measures aimed at retarding the loss of biodiversity or seeking ecosystem services.

  1. Vegetation and moisture performance on a Resource Conservation and Recovery Act-equivalent landfill cap at the Hanford site

    International Nuclear Information System (INIS)

    Kemp, C.J.; Sackschewsky, M.R.

    1997-03-01

    Landfills, as defined under the Resource Conservation and Recovery Act of 1976 (RCRA) can receive waste materials from commercial and industrial operations, residences, and other sources. Sanitary landfills that are used to dispose of solid waste require a landfill cover that meets RCRA requirements to prevent leaching of water through buried wastes and to isolate the waste for a period of 30 years. The purpose of a RCRA landfill cover is to 'protect public health, to prevent land, air, and water pollution, and conserve the state's natural, economic, and energy resources' (Washington Administrative Code [WAC] 173-304). The hypothesis of this study were as follows: (1) amending soil nitrogen would enhance perennial grass biomass; (2) the amount of biomass produced by commercially-available wheatgrass species would be similar to bluebunch wheatgrass; and (3) the vegetative biomass, as required by WAC-173-304, would not be produced in a semiarid climate

  2. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    Science.gov (United States)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  3. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    Science.gov (United States)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  4. Did state renewable portfolio standards induce technical change in methane mitigation in the U.S. landfill sector?

    Science.gov (United States)

    Delhotal, Katherine Casey

    Landfill gas (LFG) projects use the gas created from decomposing waste, which is approximately 49% methane, and substitute it for natural gas in engines, boilers, turbines, and other technologies to produce energy or heat. The projects are beneficial in terms of increased safety at the landfill, production of a cost-effective source of energy or heat, reduced odor, reduced air pollution emissions, and reduced greenhouse gas emissions. However, landfills sometimes face conflicting policy incentives. The theory of technical change shows that the diffusion of a technology or groups of technologies increases slowly in the beginning and then picks up speed as knowledge and better understanding of using the technology diffuses among potential users. Using duration analysis, data on energy prices, State and Federal policies related to landfill gas, renewable energy, and air pollution, as well as control data on landfill characteristics, I estimate the influence and direction of influence of renewable portfolio standards (RPS). The analysis found that RPS positively influences the diffusion of landfill gas technologies, encouraging landfills to consider electricity generation projects over direct sales of LFG to another facility. Energy price increases or increased revenues for a project are also critical. Barriers to diffusion include air emission permits in non-attainment areas and policies, such as net metering, which promote other renewables over LFG projects. Using the estimates from the diffusion equations, I analyze the potential influence of a Federal RPS as well as the potential interaction with a Federal, market based climate change policy, which will increase the revenue of a project through higher energy sale prices. My analysis shows that a market based climate change policy such as a cap-and-trade or carbon tax scheme would increase the number of landfill gas projects significantly more than a Federal RPS.

  5. Estimating water content in an active landfill with the aid of GPR

    Energy Technology Data Exchange (ETDEWEB)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable

  6. Estimating water content in an active landfill with the aid of GPR

    International Nuclear Information System (INIS)

    Yochim, April; Zytner, Richard G.; McBean, Edward A.; Endres, Anthony L.

    2013-01-01

    Highlights: • Limited information in the literature on the use of GPR to measure in situ water content in a landfill. • Developed GPR method allows measurement of in situ water content in a landfill. • Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable

  7. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    Energy Technology Data Exchange (ETDEWEB)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  8. Reduced sulfur compounds in gas from construction and demolition debris landfills.

    Science.gov (United States)

    Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel

    2006-01-01

    The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.

  9. Assessing the opportunities of landfill mining

    NARCIS (Netherlands)

    Zee, D.J. van der; Achterkamp, M.C.; Visser, B.J. de

    2003-01-01

    Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction.

  10. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.

    Science.gov (United States)

    Inglezakis, Vassilis J; Rojas-Solórzano, Luis; Kim, Jong; Aitbekova, Aisulu; Ismailova, Aizada

    2015-05-01

    The city of Astana, the capital of Kazakhstan, which has a population of 804,474, and has been experiencing rapid growth over the last 15 years, generates approximately 1.39 kg capita(-1) day(-1) of municipal solid waste (MSW). Nearly 700 tonnes of MSW are collected daily, of which 97% is disposed of at landfills. The newest landfill was built using modern technologies, including a landfill gas (LFG) collection system.The rapid growth of Astana demands more energy on its path to development, and the viability analysis of MSW to generate electricity is imperative. This paper presents a technical-economic pre-feasibility study comparing landfill including LFG utilization and waste incineration (WI) to produce electricity. The performance of LFG with a reciprocating engine and WI with steam turbine power technologies were compared through corresponding greenhouse gases (GHG) reduction, cost of energy production (CEP), benefit-cost ratio (BCR), net present value (NPV) and internal rate of return (IRR) from the analyses. Results demonstrate that in the city of Astana, WI has the potential to reduce more than 200,000 tonnes of GHG per year, while LFG could reduce slightly less than 40,000 tonnes. LFG offers a CEP 5.7% larger than WI, while the latter presents a BCR two times higher than LFG. WI technology analysis depicts a NPV exceeding 280% of the equity, while for LFG, the NPV is less than the equity, which indicates an expected remarkable financial return for the WI technology and a marginal and risky scenario for the LFG technology. Only existing landfill facilities with a LFG collection system in place may turn LFG into a viable project. © The Author(s) 2015.

  11. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mønster, Jacob [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg (Sweden); Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark)

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  12. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    Science.gov (United States)

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  13. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  14. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  15. Landfill gas as an investment in climate protection; Deponiegas als Investition in den Klimaschutz

    Energy Technology Data Exchange (ETDEWEB)

    Knispel, Tina [Transferstelle Internationaler Emissionshandel (TIE) Hessen, Wiesbaden (Germany). Focal Point CDM/JI-HA Hessen Agentur GmbH

    2013-06-01

    Methane-containing gases from landfills are a burden for the environment. By means of new technologies and economic incentives due to the flexible mechanisms of the Kyoto Protocol (CDM and JI), landfill gas can be used as a valuable energy resource.

  16. Trends in sustainable landfilling in Malaysia, a developing country.

    Science.gov (United States)

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.

  17. FLORIDA HAZARDOUS WASTE AND SANITARY LANDFILL REPORT, COUNTY DATA. GENERATOR DATA AND CHARACTERISTICS OF SANITARY LANDFILLS. PART 2. COUNTIES: BROWARD, CALHOUN, CHARLOTTE, CITRUS, CLAY, COLLIER

    Science.gov (United States)

    The report provides data on the use of sanitary landfills (Subtitle D facilities) for hazardous waste disposal in Florida by small quantity generators. It consists of eleven parts including a part called Study Area Data which contains the data aggregated across the counties cover...

  18. Hydrogeology and historical assessment of a classic sequential-land use landfill site, Illinois, U.S.A.

    Science.gov (United States)

    Booth, Colin J.; Vagt, Peter J.

    1990-05-01

    The Blackwell site in northeastern Illinois was a classic sequential-use project combining land reclamation, a sanitary landfill, and a recreational park. This paper adds a recent assessment of leachate generation and groundwater contamination to the site's unfinished record. Hydrogeological studies show that (1) the landfill sits astride an outwash aquifer and a till mound, which are separated from an underlying dolomite aquifer by a thin, silty till; (2) leachate leaks from the landfill at an estimated average rate between 48 and 78 m3/d; (3) the resultant contaminant plume is virtually stagnant in the till but rapidly diluted in the outwash aquifer, so that no off-site contamination is detected; (4) trace VOC levels in the dolomite probably indicate that contaminants have migrated there from the landfill-derived plume in the outwash. Deviations from the original landfill concepts included elimination of a leachate collection system, increased landfill size, local absence of a clay liner, and partial use of nonclay cover. The hydrogeological setting was unsuitable for the landfill as constructed, indicating the importance of detailed geological consideration in landfill and land-use planning.

  19. Detection of gas in landfills using resistivity measurements; Detektering av gas i deponier med resistivitet

    Energy Technology Data Exchange (ETDEWEB)

    Rosqvist, Haakan; Leroux, Virginie; Lindsjoe, Magnus (NSR AB, Helsingborg (Sweden)); Dahlin, Torleif (Lund Univ., LTH (Sweden)); Svensson, Mats; Maansson, Carl-Henrik (Tyrens AB, Stockholm (Sweden))

    2009-05-15

    The main objective with the research project was to develop a methodology to improve the understanding of landfill gas migration in landfills, based on measurements with electrical resistivity. Consequently, the project aimed at an improvement of the utilisation of the energy potential in landfill gas, and to reduce the environmental impact to the atmosphere. Further more, the objective was to improve techniques for investigations of internal structures in landfills. The project also aimed at better understanding of gas migration in the waste body and the mitigation through a landfill cover. Measurements were performed at four landfills; the Biocell reactor (NSR, Helsingborg), the Filborna landfill (NSR, Helsingborg), the Hyllstofta landfill (Naarab, Klippan) and the Flishult landfill (Vetab, Vetlanda). Three dimensional (3D) measurements and analysis were performed. The measurements were repeated in time in order to study changes with time for the resistivity. Supplementary information was created by measurement of other parameters, such as, groundwater table and soil temperature. The results from the resistivity measurements agreed with previous measurements performed at landfills, and thus, the results are therefore regarded as reliable. The measurements showed large temporal and spatial variations, and all of the measurements showed the highest variability near the surface. The results show that the resistivity technique is a powerful tool for investigations of the internal of landfills. Water and gas migration are important features in landfill management and both processes can be detected by using resistivity. Degradation of organic waste results in process with high variability in time and space. Also the degradation rate varies in a landfill and high variability was registered during the resistivity measurements. The high variability in resistivity is likely to be explained by changes in gas pressure and thus indicating gas migration. Therefore, the project

  20. Methane from landfills in Sweden. Final report; Metan fraan avfallsupplag i Sverige. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Jerker [Chalmers Univ. of Technology, Goeteborg (Sweden); Galle, Bo; Boerjesson, Gunnar [Linkoeping Univ. (Sweden). Dept. of Water and Environmental Studies

    2006-01-15

    Three years of measurements has been conducted at seven Swedish landfills, quantifying methane emission, methane oxidation and methane production. The measurements reveal a large span between the sites in terms of gas recovery efficiency, 29-78% during normal operation. The fraction of the totally produced methane that is eventually leaking out to the atmosphere, was found to vary between 21-68%. Regarding methane oxidation, the study shows that of the methane going from the landfill interior towards the atmosphere, 6-43% is oxidised to CO{sub 2} in the different landfill cover soils. The highest methane oxidation was found in closed landfills during summertime, and the lowest at active landfills during wintertime, due to the strong temperature dependence of the oxidation. The equipment developed for methane emission measurements is based on time resolved concentration measurements with FTIR spectroscopy in combination with tracer gas releases from the surface of the landfill. The method has proven to be able to state the methane emission from the landfills with high accuracy, {+-}18% of the emission estimate (95% confidence interval). This is in line with what has been achieved in the literature for fugitive emission sources. The system has also proven to be useful for on site leak search. The precision for the methane production measurement was demonstrated to be high, down to {+-}4.2%. This enables trend studies and verification of improvement measures taken at the landfill sites. In terms of absolute accuracy for the production estimate, a 95%-confidence interval of down to (-6.0%, +6.2%) has been achieved. At times of strong methane oxidation the uncertainties increase, particularly if the emission is high. The gas production at the landfill site is therefore preferably measured during autumn-winter-spring when the temperature and the methane oxidation are low. The methane oxidation has been measured by carbon isotope technique, utilising the enrichment in

  1. Grouting of fly ash in sanitary landfills; Injektering av flygaska i hushaallsavfallsdeponi

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockhom (Sweden); Andreas, Lale; Lagerkvist, Anders [Luleaa Univ. of Technology (Sweden); Jannes, Sara; Tham, Gustav [Telge Aatervinning AB, Soedertaelje (Sweden); Sjoeblom, Rolf [Tekedo AB, Nykoeping (Sweden)

    2003-10-01

    The purpose of the study was to investigate the potential for stabilization of sanitary landfills by injecting fly ash. The method is supposed to prevent differential settlements in landfills and by that to counteract damages in the final cover. Injecting fly ash may also affect the chemical development in a positive way and prevent metal leaching. Pilot experiments at the Tveta waste recycling center (Tveta Aatervinningsanlaeggning) have been performed in order to estimate if the grouting technology is a suitable method for sanitary landfills. Fly ashes from the combustion of bio fuels were used in these tests. A literature study and laboratory experiments in order to prepare the field experiments were also part of the project. About 100 tons of ash slurry were injected during the pilot experiments. This corresponds to a filling degree of approximately 12-16 % of the available pores in the landfill body. As a result of the pilot test, the following conclusions can be drawn: Ash can be mixed with water to a pumpable slurry which can be injected without hardening inside the equipment. Neither the waste nor the grouting material caused a backpressure during the injection and nothing indicates that the injected ash deforms the landfilled waste. The ash-water-slurry flows through the voids in the waste easily. Thus, the ash may dispread quite far from the injection holes. Using a more powerful equipment backpressure and movements in the waste might occur. It was not possible to estimate the flow required for backpressure in this study. Large variations are possible but for safety reasons the maximal pressure should be limited with regard to the expected stability in the actual area. The grouted ash will harden within the landfill body within a couple of days. It accumulates in hard but brittle lumps, which may result in an increased stability of the landfill. Further studies are necessary in order to evaluate how the stability is affected and what amounts of ash are

  2. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  3. Management of environmental risks associated with landfills in seismically active regions in the New Independent States of Central Asia

    International Nuclear Information System (INIS)

    Webb, S.M.

    2009-01-01

    Sustainable waste management and disposal is a societal challenge in terms of economics, public health and environmental impact. The situation in developing countries, and in particular those subject to extreme natural hazards, results in increased overall risk as governments prioritize investments to issues of perceived higher economic importance. This dissertation investigates environmental risks associated with landfills in seismically active regions in the New Independent States of Central Asia. Environmental risk from municipal solid waste landfill sites encompasses a wide range of topics within socio-economics, physical sciences and engineering and therefore necessitates a multi-disciplinary approach. The underlying study is an accumulative result of a three-year collaborative research project (Contract No. INCO-CT-2005-516732) funded within the Eu Sixth Framework Programme (FP6). The international cooperation involved European, Russian and Central Asian research partners forming a multi-disciplinary consortium covering: GIS technologies, geology / hydrogeology geophysics and geotechnical engineering; landfill design and operation and waste management. understanding the relevant socio-economic aspects and legislative frameworks was necessary to prepare results and recommendations to address stakeholders in the Central Asian countries: Kazakhstan, Kyrgyzstan,Tajikistan,Turkmenistan and uzbekistan. (author) [de

  4. Comparison Of Four Landfill Gas Models Using Data From Four Danish Landfills

    DEFF Research Database (Denmark)

    Mønster, Jacob G.; Mou, Zishen; Kjeldsen, Peter

    2011-01-01

    Data about type and quantity of waste disposed in four Danish landfills was collected and used on four different landfill gas generation models. This was done to compare the output data in order to evaluate the performance of the four landfill gas models when used on Danish waste types...

  5. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  6. Landfill Gas Energy Project Data and Landfill Technical Data

    Science.gov (United States)

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  7. Superfund Record of Decision (EPA Region 9): Nineteenth Avenue Landfill, Phoenix, AZ. (First remedial action), September 1989. Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The 213-acre Nineteenth Avenue Landfill is in an industrial area of Maricopa County, Phoenix, Arizona. State permitted landfill operations were conducted from 1957 to 1979 during which time approximately nine million cubic yards of municipal refuse, solid and liquid industrial wastes, and some medical wastes and materials containing low levels of radioactivity were deposited in the landfill. The State ordered the landfill closed in 1979 due to the periodic inundation of the landfill by flood waters from the Salt River Channel. Subsequently, the city covered the site with fill, stockpiled soil for final capping, installed ground water monitoring wells, built berms around the landfill, and installed a methane gas collection system. The remedial action is designed to mitigate threats resulting from flooding of the landfill, which has occurred intermittently since 1965. The primary contaminants of concern in the soil/refuse include VOCs such as toluene and xylenes

  8. PERFORMA OKSIDASI METAN PADA REAKTOR KONTINYU DENGAN PENINGKATAN KETEBALAN LAPISAN BIOCOVER LANDFILL

    Directory of Open Access Journals (Sweden)

    Opy Kurniasari

    2013-11-01

    Full Text Available PERFORMANCE OF METHANE OXIDATION IN CONTINUOUS REACTOR BY BIOCOVER LANDFILL FILM THICKNESS IMPROVEMENT. Municipal solid waste (MSW handling in Indonesia is currently highly dependent on landfilling at the final disposal facility (TPA, which generally operated in layer-by-layer basis, allowing the anaerobic (absent of oxygen process. This condition will certainly generate biogas in the form of methane (CH4 and CO2. Methane is a greenhouse gas with a global warming potential greater than CO2, and can absorb infrared radiation 23 times more efficient than CO2 in the period of over 100 years. One way that can be done to reduce methane gas from landfills that escape into nature is to oxidize methane by utilizing landfill cover material (biocover as methane-oxidizing microorganism media. Application of compost as landfill cover material is a low-cost approach to reduce emissions so are suitable for developing countries. The compost used in this study was compost landfill mining, which is degraded naturally in landfill. The purpose of this study was to evaluate the ability of biocover to oxidize the methane on a certain layer thickness with a continuous flow conditions. Three column reactors were used, which were made of flexy glass measuring 70 cm in high and 15 cm in diameter. The methane flowed from the bottom of the reactor continuously at a flow rate of 5 ml/minute. The columns were filled with biocover compost landfill mining with layer thickness of 5, 25, 35 and 60 cm. The results showed that the thicker layer of biocover, the higher the efficiency of methane oxidation. The oxidation efficiency obtained in each layer thickness of 15, 25, 35 and 60 cm was 56.43%, 63.69%, 74.58% and 80, 03% respectively, with the rate of oxidation of 0.29 mol m-2 d-1 and the fraction of oxidation of 99%. The oxidation result was supported by the identification of bacteria isolated in this experiment, namely metanotrophic bacteria that have the ability to oxidize

  9. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    Science.gov (United States)

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  10. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    OpenAIRE

    Gogina Elena; Pelipenko Alexey

    2016-01-01

    The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW), on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities,...

  11. Landfill Site Selection by Weighted Overlay Technique: Case Study of Al-Kufa, Iraq

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Anbari

    2018-03-01

    Full Text Available Landfill siting is a hard and complex process. For this reason, it is considered as one of the major problems in waste management. This is due to the fact that a number of factors are involved within the process such as such as inhabitants’ growth, rapid economic growth, living standards improvements, etc. In Iraq, landfill siting does not follow environmental regulations. Al-Kufa city located is located south-western part of Iraq (area of 550 km2 and inhabitants 372,760. Existing landfills are not selected according to the environmental standards. Landfill site that is required was achieved using a multi-criteria decision analysis (MCDA and spatial overlay analysis using a geographic information system (GIS. Many factors were considered in the siting process; including geology, water supplies resources, urban centers, sensitive sites, and wells. AHP (analytic hierarchy process method was used in weighting the criteria used. The result showed that there are six sites most suitable covering an area about (113 km2.

  12. Assessing the market opportunities of landfill mining

    NARCIS (Netherlands)

    van der Zee, D.J.; Achterkamp, M.C.; de Visser, B.J.

    2004-01-01

    Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction.

  13. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  14. Feasibility of landfill gas as a liquefied natural gas fuel source for refuse trucks.

    Science.gov (United States)

    Zietsman, Josias; Bari, Muhammad Ehsanul; Rand, Aaron J; Gokhale, Bhushan; Lord, Dominique; Kumar, Sunil

    2008-05-01

    The purpose of this paper is to develop a methodology to evaluate the feasibility of using landfill gas (LFG) as a liquefied natural gas (LNG) fuel source for heavy-duty refuse trucks operating on landfills. Using LFG as a vehicle fuel can make the landfills more self-sustaining, reduce their dependence on fossil fuels, and reduce emissions and greenhouse gases. Acrion Technologies Inc. in association with Mack Trucks Inc. developed a technology to generate LNG from LFG using the CO2 WASH process. A successful application of this process was performed at the Eco Complex in Burlington County, PA. During this application two LNG refuse trucks were operated for 600 hr each using LNG produced from gases from the landfill. The methodology developed in this paper can evaluate the feasibility of three LFG options: doing nothing, electricity generation, and producing LNG to fuel refuse trucks. The methodology involved the modeling of several components: LFG generation, energy recovery processes, fleet operations, economic feasibility, and decision-making. The economic feasibility considers factors such as capital, maintenance, operational, and fuel costs, emissions and tax benefits, and the sale of products such as surplus LNG and food-grade carbon dioxide (CO2). Texas was used as a case study. The 96 landfills in Texas were prioritized and 17 landfills were identified that showed potential for converting LFG to LNG for use as a refuse truck fuel. The methodology was applied to a pilot landfill in El Paso, TX. The analysis showed that converting LFG to LNG to fuel refuse trucks proved to be the most feasible option and that the methodology can be applied for any landfill that considers this option.

  15. Sanitary landfill liners

    DEFF Research Database (Denmark)

    Christiansen, Ole V.; Stentsøe, Steen; Petersen, Søren

    DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners.......DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners....

  16. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  17. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  18. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers

    International Nuclear Information System (INIS)

    Albanna, Muna; Warith, Mostafa; Fernandes, Leta

    2010-01-01

    In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH 4 ) oxidation process were examined. The investigation was performed on compost experiments incubated with CH 4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH 4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the V max value was 35.0 μg CH 4 h -1 g wetwt -1 . This value was reduced to 19.1 μg CH 4 h -1 g wetwt -1 when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH 4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

  19. Control of PCDDs/PCDFs, PCBs and PAHs emissions in exhaust of landfill gas fed engines

    Energy Technology Data Exchange (ETDEWEB)

    Idczak, F.; Dengis, P.; Duchateau, P.; Petitjean, S. [ISSeP, Liege (Belgium)

    2004-09-15

    Wallonia in Belgium, like many countries around the world, planned to reduce amounts of waste generated by human activity and stored in landfills. Since they experienced a couple of crisis situations in the past, both with former and presently used landfill sites, authorities launched a demanding landfill monitoring program which covers now 9 out of the 10 major sites. Biogas produced in these landfills are collected and eliminated in two different ways. Either simply burned in a flare, or, when the methane grade and flow are high enough, the biogas can be burned in electricity producing engines. This later use represents an energy recovery from the waste. In the context of difficulty for landfill sites to be accepted by the public (the well-known NIMBY phenomenon), the question has been raised whether combustion of the biogas did not entail production of dioxins and other polyaromatic compounds. For the exhaust gases of engines operated with biogas, a check on the presence of dioxins and associated organic pollutants, composed of three different runs or days of sampling for each of 5 landfill sites was performed upon demand of responsible authorities.

  20. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  1. A cost-benefit analysis of landfill mining and material recycling in China

    International Nuclear Information System (INIS)

    Zhou, Chuanbin; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-01

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton −1 . The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care

  2. Integrating remediation and resource recovery: On the economic conditions of landfill mining

    International Nuclear Information System (INIS)

    Frändegård, Per; Krook, Joakim; Svensson, Niclas

    2015-01-01

    Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material

  3. A cost-benefit analysis of landfill mining and material recycling in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chuanbin, E-mail: cbzhou@rcees.ac.cn; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-15

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton{sup −1}. The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care.

  4. Integrating remediation and resource recovery: On the economic conditions of landfill mining

    Energy Technology Data Exchange (ETDEWEB)

    Frändegård, Per, E-mail: per.frandegard@liu.se; Krook, Joakim; Svensson, Niclas

    2015-08-15

    Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.

  5. Landfill reduction experience in The Netherlands

    International Nuclear Information System (INIS)

    Scharff, Heijo

    2014-01-01

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  6. Landfill reduction experience in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  7. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.

    Science.gov (United States)

    Dong, Jun; Chi, Yong; Zou, Daoan; Fu, Chao; Huang, Qunxing; Ni, Mingjiang

    2014-01-01

    China has endured the increasing generation of municipal solid waste; hence, environmental analysis of current waste management systems is of crucial importance. This article presents a comprehensive life cycle assessment of three waste treatment technologies practiced in Hangzhou, China: landfill with and without energy recovery, and incineration with waste-to-energy. Adopting region-specific data, the study covers various environmental impacts, such as global warming, acidification, nutrient enrichment, photochemical ozone formation, human toxicity and ecotoxicity. The results show that energy recovery poses a positive effect in environmental savings. Environmental impacts decrease significantly in landfill with the utilization of biogas owing to combined effects by emission reduction and electricity generation. Incineration is preferable to landfill, but toxicity-related impacts also need to be improved. Furthermore, sensitivity analysis shows that the benefit of carbon sequestration will noticeably decrease global warming potential of both landfill scenarios. Gas collection efficiency is also a key parameter influencing the performance of landfill. Based on the results, improvement methods are proposed. Energy recovery is recommended both in landfill and incineration. For landfill, gas collection systems should be upgraded effectively; for incineration, great efforts should be made to reduce heavy metals and dioxin emissions.

  8. Landfill gas management in Canada

    International Nuclear Information System (INIS)

    David, A.

    1997-01-01

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada's commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (10 15 Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring

  9. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  10. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...... from the landfills and size fractionated in order to recover potential resources such as metal and energy and to reduce the amounts of SR left for re-landfilling. Based on the results it is estimated that 60-70% of the SR excavated could be recovered in terms of materials or energy. Only a fraction...... with particle size less than 5 mm needs to be re-landfilled at least until suitable techniques are available for recovery of materials with small particle sizes....

  11. Life cycle analysis of sanitary landfill and incineration of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    倪晋仁; 韦洪莲; 刘阳生; 赵智杰

    2002-01-01

    Environmental consequences from sanitary landfill as well as incineration with power generation were compared in terms of life cycle analysis (LCA) for Laohukeng Waste-disposal Plant that is under consideration in Shenzhen. A variety of differences will be resulted from the two technologies, from which the primary issue that affects the conclusion is if the compensatory phase in power generation can be properly considered in the boundary definition of LCA. Upon the compensatory phase is taken into account in the landfill system, the negative environmental consequences from the landfill will be more significant than those from the incineration with power generation, although the reversed results can be obtained as the compensatory phase is neglected. In addition, mitigation of environmental impacts through the pollutant treatment in the incineration process will be more effective than in the landfill process.

  12. Landfill reduction experience in The Netherlands.

    Science.gov (United States)

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline

  14. A framework for a decision support system for municipal solid waste landfill design.

    Science.gov (United States)

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  15. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  16. An overview of the mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1994-01-01

    Prior to May 1992, field demonstrations of characterization technologies were performed at an uncontaminated site near the Chemical Waste Landfill. In mid-1992 through summer 1993, both non-intrusive and intrusive characterization techniques were demonstrated at the Chemical Waste Landfill. Subsurface and dry barrier demonstrations were started in summer 1993 and will continue into 1995. Future plans include demonstrations of innovative drilling, characterization and long-term monitoring, and remediation techniques. Demonstrations were also scheduled in summer 1993 at the Kirtland Air Force HSWA site and will continue in 1994. The first phase of the Thermal Enhanced Vapor Extraction System (TEVES) project occurred in April 1992 when two holes were drilled and vapor extraction wells were installed at the Chemical Waste Landfill. Obtaining the engineering design and environmental permits necessary to implement this field demonstration will take until early 1994. Field demonstration of the vapor extraction system will occur in 1994

  17. Isolation of methanotrophic bacteria from a london landfill: a preliminary study using molecular and stable isotopic techniques.

    Science.gov (United States)

    Sriskantharajah, S.; Cutting, S.; Lowry, D.; Grassineau, N.; Nisbet, E.

    2003-04-01

    Methane emissions from landfills are an important source of European greenhouse emissions, and could be reduced by a biological management program that used methanotrophs in landfill cover soils. Topsoil samples taken from a London Landfill were incubated on Nitrate Mineral Salts medium in the presence of methane. The resulting colonies were probed for methanotrophic DNA using PCR amplification. DNA from methanotroph positive colonies was cloned and sequenced for identification. Isolates belonging to the genera Methylocaldum, Methylomonas and Methylosinus were detected. Phylogenetic analysis suggests the presence of possible new species. In addition dried samples of the isolates were analysed for their stable carbon isotope (δ 13C) composition. The results were δ 13C values of -27 per mil and -25 per mil for Methylomonas isolates, -35 per mil and -44 per mil for Methylosinus isolates, -58 per mil and -60 per mil for some of the Methylocaldum isolates and -35 per mil and -45 per mil for the others. This isotopic variation is reflected in a phylogenetic tree of the isolates. The differences shown in the δ 13C analysis could be due to differing biochemical properties, and if the technique is further developed, it may be used for rapid identification of bacteria useful in landfill management for reducing methane emissions. The results suggest that useful reductions in methane emissions could be achieved by a careful design of landfill cover to culture methanotrophs.

  18. Study of aquatic macroinvertebrate communities exposed to buckeye reclamation landfill drainage wastes

    International Nuclear Information System (INIS)

    Klemm, D.J.; Thoeny, W.T.; McCarthy, H.W.

    1995-01-01

    The Buckeye Reclamation Landfill (BRL), a Superfund site, incorporates approximately 50 acres of a 658 acre tract of land. The BRL consists of past underground mining voids, including some surface-mined lands, and mine refuse piles from processed bituminous coal. The area was subsequently used as a nonhazardous public and municipal solid waste landfill, and industrial sludge and liquid wastes were also deposited in an impoundment in the northern section of the landfill. The entire landfill area was completely covered with soil and revegetated in the late 1980's and early 1990's. The BRL produces acidic and highly mineralized drainage causing a widespread problem of serious mine drainage pollution in the watershed. A study was undertaken to assess the exposure of pollutants to the macroinvertebrate assemblages and to determine the extent of pollution of the BRL watershed. Samples were collected from ten sites in 1995. Nine systematic and spatial transect samples were taken at each collection site for macroinverbrates with a 595 microm mesh, modified kick net from riffle/run and glide/pool habitats of streams above and below the BRL watershed. All macroinverbrates were identified to the lowest taxonomic level possible. The levels for total Zn ranged from 22--604 microg/L; pH ranged from 4.4 to 8.1. The data distinguished the exposed sites receiving landfill leachates and sedimentation runoff from the less impacted sites

  19. Enhancing cleanup of heavy metal-polluted landfill soils and improving soil microbial activity using green technology with ferrous sulfate

    Science.gov (United States)

    Landfills have led to some of the most intense battles over pollution that has ever been seen. With the population skyrocketing worldwide, these landfills will only become more of a public issue as time goes on. Heavy metals from several sources especially in landfills are an increasingly urgent pro...

  20. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    , the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...

  1. Landfill Gas | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Landfill Gas Landfill Gas For campuses located near an active or recently retired landfill , landfill gas offers an opportunity to derive significant energy from a renewable energy resource. The following links go to sections that describe when and where landfill gas systems may fit into your climate

  2. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    Science.gov (United States)

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.

  3. Evapotranspiration (ET) covers.

    Science.gov (United States)

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  4. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, Stewart M., E-mail: soakley@csuchico.edu [Department of Civil Engineering, Chico State University, California State University, Chico, CA 95929 (United States); Jimenez, Ramon, E-mail: rjimenez1958@yahoo.com [Public Works, Municipality of Villanueva, Cortes (Honduras)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Open dumping is the most common form of waste disposal in neglected small cities. Black-Right-Pointing-Pointer Semi-mechanized landfills can be a sustainable option for small cities. Black-Right-Pointing-Pointer We present the theory of design and operation of semi-mechanized landfills. Black-Right-Pointing-Pointer Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. Black-Right-Pointing-Pointer The cost of operation is US$4.60/ton with a land requirement of 0.2m{sup 2}/person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country's total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1-3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in

  5. Sustainable sanitary landfills for neglected small cities in developing countries: The semi-mechanized trench method from Villanueva, Honduras

    International Nuclear Information System (INIS)

    Oakley, Stewart M.; Jimenez, Ramón

    2012-01-01

    Highlights: ► Open dumping is the most common form of waste disposal in neglected small cities. ► Semi-mechanized landfills can be a sustainable option for small cities. ► We present the theory of design and operation of semi-mechanized landfills. ► Villanueva, Honduras has operated its semi-mechanized landfill for 15 years. ► The cost of operation is US$4.60/ton with a land requirement of 0.2m 2 /person-year. - Abstract: Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country’s total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1–3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48

  6. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV-283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in

  7. Enhanced Landfill Mining case study: Innovative separation techniques

    Science.gov (United States)

    Cuyvers, Lars; Moerenhout, Tim; Helsen, Stefan; Van de Wiele, Katrien; Behets, Tom; Umans, Luk; Wille, Eddy

    2014-05-01

    , resulting in a separate flowsheet for every contractor. The resulting fractions and materials were described in detail to obtain an inventory of the bulk material. Based on the characteristics from the obtained fractions, all possible valorisation pathways are listed, suggesting a Waste to Material (WtM) or a Waste to Energy (WtE) valorisation pathway. Fractions that needed further treatment were also discussed. The results of the separation tests proved to be very promising and delivered well sorted waste streams. The composition of the waste material, on the other hand, proved to be less beneficial to be economically feasible. Due to the high amount of sand and clay (up to 90wt%) in the Zuienkerke landfill the share of instant recoverable materials proved to be very limited. Due to the limited number of tests concerning the separation and valorisation of landfilled waste, the feasibility of ELFM in the short term is not fully described yet. Based on the first experiences, the main drivers to introduce the ELFM concept on these type of landfills are the necessity of urgent remediation actions and the reclamation of land. The added value of land reuse for the future might close the financial gap in a significant way, making the implementation of ELFM feasible on former landfills. 1 Jones et al.,2010: "the safe conditioning, excavation and integrated valorisation of landfilled waste streams as both materials and energy, using innovative transformation technologies and respecting the most stringent social and ecological criteria".

  8. Behaviour of a clay layer submitted to bending: application to a landfill for storing very low level radioactive waste

    International Nuclear Information System (INIS)

    Camp Devernay, S.

    2008-12-01

    The sealing cover system of landfills for storing non bio-degradable and dangerous waste is most of the time made up of a layer of clay and/or a geo-membrane. The question of the optimization of the conditions of storage of the radioactive waste envisage a surface storage for very low level radioactive waste (VLLW) and low and intermediate short-lived radioactive waste. This study is applied to a VLLW disposal facility of which the cover is made up of a clay layer over a geo-membrane but can be transposed to landfill for dangerous waste. The cover clay barrier of a landfill must preserve its properties; in particular its permeability must remain inferior to ten to the minus nine meters per second, during the life of the landfill in spite of the various solicitations which can generate cracking. Among these solicitations, the relative settlements of subjacent waste, generating bending solicitation, are one of the most critical solicitations. The current regulation concerning the implementation as a cover of a clay layer presents gaps, in particular with regard to the deformability of clay. This study presents the interest to couple laboratory tests (four points bending tests, splitting test and punching test) with field bending tests carried out at scale one and with their modeling with centrifugal tests. These tests were also numerically modeled by finite elements. A good compatibility of the results, in particular with regard to the definition of the conditions of initiation of the crack by bending, is shown. Numerical modeling and centrifugal tests made it possible to extend the study to unperformed in situ cases (settlement tests, reinforcement of the clay). (author)

  9. Landfills - LANDFILL_BOUNDARIES_IDEM_IN: Waste Site Boundaries in Indiana (Indiana Department of Environmental Management, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LANDFILL_BOUNDARIES_IDEM_IN.SHP is a polygon shapefile that contains boundaries for open dump sites, approved landfills, and permitted landfills in Indiana, provided...

  10. Problems of technology and corrosion in sodium coolant and cover gas

    International Nuclear Information System (INIS)

    Kuenstler, K.; Ullmann, H.

    1977-07-01

    The meeting encloses the following themes: (i) Reactions in the system sodium-steel-cover gas (ii) Corrosion behaviour of structural and cladding materials (iii) Determination of impurities in sodium and cover gas (iv) Technology of sodium and cover gas (v) Testing equipments (vi) Safety problems

  11. Integrating knowledge-based multi-criteria evaluation techniques with GIS for landfill site selection: A case study using AHP

    Directory of Open Access Journals (Sweden)

    Fagbohun B.J.

    2016-09-01

    Full Text Available A major challenge in most growing urban areas of developing countries, without a pre-existing land use plan is the sustainable and efficient management of solid wastes. Siting a landfill is a complicated task because of several environmental regulations. This challenge gives birth to the need to develop efficient strategies for the selection of proper waste disposal sites in accordance with all existing environmental regulations. This paper presents a knowledge-based multi-criteria decision analysis using GIS for the selection of suitable landfill site in Ado-Ekiti, Nigeria. In order to identify suitable sites for landfill, seven factors - land use/cover, geology, river, soil, slope, lineament and roads - were taken into consideration. Each factor was classified and ranked based on prior knowledge about the area and existing guidelines. Weights for each factor were determined through pair-wise comparison using Saaty’s 9 point scale and AHP. The integration of factors according to their weights using weighted index overlay analysis revealed that 39.23 km2 within the area was suitable to site a landfill. The resulting suitable area was classified as high suitability covering 6.47 km2 (16.49%, moderate suitability 25.48 km2 (64.95% and low suitability 7.28 km2 (18.56% based on their overall weights.

  12. Landfill: Comparison of pedogenesis between sites of Eucalyptus camaldulensis Dehnh plantation and naturalized herbaceus vegetation

    OpenAIRE

    Lanfranco, J. W.; Marlats, R. M.; Baridon, E.

    1999-01-01

    The purpose of this work was compared different levels of pedogenetics process between sites with Eucalyptus camaldulensis plantation and naturalized grass. The trial was installed on landfill soil cover in Villa Domínico, Buenos Aires Province, Argentine, CEAMSE, 34°40’S,50’’; 58°18’45’’W; 4m osl. At five age of trees and forteen of the Landfill was realized the following determination: 1- Physical and Chemicals caracterization of own microsite tree and analogical microsite without trees inf...

  13. Field measurements and modeling to resolve m2 to km2 CH4 emissions for a complex urban source: An Indiana landfill study

    Directory of Open Access Journals (Sweden)

    Maria Obiminda L. Cambaliza

    2017-07-01

    Full Text Available Large spatial and temporal uncertainties for landfill CH4 emissions remain unresolved by short-term field campaigns and historic greenhouse gas (GHG inventory models. Using four field methods (aircraft-based mass balance, tracer correlation, vertical radial plume mapping, static chambers and a new field-validated process-based model (California Landfill Methane Inventory Model, CALMIM 5.4, we investigated the total CH4 emissions from a central Indiana landfill as well as the partitioned emissions inclusive of methanotrophic oxidation for the various cover soils at the site. We observed close agreement between whole site emissions derived from the tracer correlation (8 to 13 mol s–1 and the aircraft mass balance approaches (7 and 17 mol s–1 that were statistically indistinguishable from the modeling result (12 ± 2 mol s–1 inclusive of oxidation. Our model calculations indicated that approximately 90% of the annual average CH4 emissions (11 ± 1 mol s–1; 2200 ± 250 g m–2 d–1 derived from the small daily operational area. Characterized by a thin overnight soil cover directly overlying a thick sequence of older methanogenic waste without biogas recovery, this area constitutes only 2% of the 0.7 km2 total waste footprint area. Because this Indiana landfill is an upwind source for Indianapolis, USA, the resolution of m2 to km2 scale emissions at various temporal scales contributes to improved regional inventories relevant for addressing GHG mitigation strategies. Finally, our comparison of measured to reported CH4 emissions under the US EPA National GHG Reporting program suggests the need to revisit the current IPCC (2006 GHG inventory methodology based on CH4 generation modeling. The reasonable prediction of emissions at individual U.S. landfills requires incorporation of both cover-specific landfill climate modeling (e.g., soil temperature/moisture variability over a typical annual cycle driving CH4 transport and oxidation rates as

  14. Geologic and hydrologic data for the municipal solid waste landfill facility, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    Science.gov (United States)

    Abeyta, Cynthia G.; Frenzel, P.F.

    1999-01-01

    Geologic and hydrologic data for the Municipal Solid Waste Landfill Facility on the U.S. Army Air Defense Artillery Center and Fort Bliss in El Paso County, Texas, were collected by the U.S. Geological Survey in cooperation with the U.S. Department of the Army. The 106.03-acre landfill has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The depth of the filled areas is about 30 feet and the cover, consisting of locally derived material, is 2 to 3 feet thick. Geologic and hydrologic data were collected at or adjacent to the landfill during (1) drilling of 10 30- to 31-foot boreholes that were completed with gas-monitoring probes, (2) drilling of a 59-foot borehole, (3) drilling of a 355-foot borehole that was completed as a ground-water monitoring well, and (4) in situ measurements made on the landfill cover. After completion, the gas- monitoring probes were monitored on a quarterly basis (1 year total) for gases generated by the landfill. Water samples were collected from the ground-water monitoring well for chemical analysis. Data collection is divided into two elements: geologic data and hydrologic data. Geologic data include lithologic descriptions of cores and cuttings, geophysical logs, soil- gas and ambient-air analyses, and chemical analyses of soil. Hydrologic data include physical properties, total organic carbon, and pH of soil and sediment samples; soil-water chloride and soil-moisture analyses; physical properties of the landfill cover; measurements of depth to ground water; and ground-water chemical analyses. Interpretation of data is not included in this report.

  15. Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Chen

    2011-10-06

    Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach

  16. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan; Fredenslund, Anders Michael; Chanton, Jeffrey

    2018-01-01

    In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used...... for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate...... determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating...

  17. Landfill life expectancy with waste reduction/minimization

    International Nuclear Information System (INIS)

    Klan, M.S.

    1990-01-01

    Although some minimally acceptable practices are presently undertaken at most landfills to protect human health and safety and the environment, a key question remains. How much effort and resources should be expended to slow the fill-rate of a landfill? The answer depends on the performance and costs of the technical options available, the difficulty and cost of acquiring additional landfill space, and the consequences for remaining landfill lifetime of current and future actions. Toward this end, the paper (1) presents a method for projecting the remaining life of a landfill, including the alternative lifetimes associated with life extension measures; (2) presents a case study of the low-level waste landfill at Los Alamos National Lab.; and (3) illustrates a procedure for determining which measures become cost-effective to adopt as a landfill's space declines

  18. Soil contaminations in landfill: a case study of the landfill in Czech Republic

    Science.gov (United States)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2015-10-01

    Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.

  19. Soil contamination in landfills: a case study of a landfill in Czech Republic

    Science.gov (United States)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2016-02-01

    A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.

  20. Congenital anomalies and proximity to landfill sites.

    LENUS (Irish Health Repository)

    Boyle, E

    2004-01-01

    The occurrence of congenital anomalies in proximity to municipal landfill sites in the Eastern Region (counties Dublin, Kildare, Wicklow) was examined by small area (district electoral division), distance and clustering tendancies in relation to 83 landfills, five of which were major sites. The study included 2136 cases of congenital anomaly, 37,487 births and 1423 controls between 1986 and 1990. For the more populous areas of the region 50% of the population lived within 2-3 km of a landfill and within 4-5 km for more rural areas. In the area-level analysis, the standardised prevalence ratios, empirical and full Bayesian modelling, and Kulldorff\\'s spatial scan statistic found no association between the residential area of cases and location of landfills. In the case control analysis, the mean distance of cases and controls from the nearest landfill was similar. The odds ratios of cases compared to controls for increasing distances from all landfills and major landfills showed no significant difference from the baseline value of 1. The kernel and K methods showed no tendency of cases to cluster in relationship to landfills. In conclusion, congenital anomalies were not found to occur more commonly in proximity to municipal landfills.

  1. 77 FR 7095 - Transitional Program for Covered Business Method Patents-Definition of Technological Invention

    Science.gov (United States)

    2012-02-10

    ... 0651-AC75 Transitional Program for Covered Business Method Patents-- Definition of Technological... definition of technological invention that the Board will use in conducting transitional covered business... definition for covered business method patent in proposed Sec. 42.301(a). Additionally, the Office in a...

  2. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    Science.gov (United States)

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  4. Methane emission to the atmosphere from landfills in the Canary Islands

    Science.gov (United States)

    Hernández, Pedro A.; Asensio-Ramos, María; Rodríguez, Fátima; Alonso, Mar; García-Merino, Marta; Amonte, Cecilia; Melián, Gladys V.; Barrancos, José; Rodríguez-Delgado, Miguel A.; Hernández-Abad, Marta; Pérez, Erica; Alonso, Monica; Tassi, Franco; Raco, Brunella; Pérez, Nemesio M.

    2017-04-01

    Methane (CH4) is one of the most powerful greenhouse gases, and is increasing in the atmosphere by 0.6% each year (Intergovernmental Panel on Climate Change, IPCC, 2013). This gas is produced in landfills in large quantities following the anaerobic degradation of organic matter. The IPCC has estimated that more than 10% of the total anthropogenic emissions of CH4 are originated in landfills. Even after years of being no operative (closed), a significant amount of landfill gas could be released to the atmosphere through its surface as diffuse or fugitive degassing. Many landfills currently report their CH4 emissions to the atmosphere using model-based methods, which are based on the rate of production of CH4, the oxidation rate of CH4 and the amount of CH4 recovered (Bingemer and Crutzen, 1987). This approach often involves large uncertainties due to inaccuracies of input data and many assumptions in the estimation. In fact, the estimated CH4 emissions from landfills in the Canary Islands published by the Spanish National Emission and Pollutant Sources Registration (PRTR-Spain) seem to be overestimated due to the use of protocols and analytical methodologies based on mathematical models. For this reason, direct measurements to estimate CH4 emissions in landfills are essential to reduce this uncertainty. In order to estimate the CH4 emissions to the atmosphere from landfills in the Canary Islands 23 surveys have been performed since 1999. Each survey implies hundreds of CO2and CH4 efflux measurements covering the landfill surface area. Surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Samples of landfill gases were taken in the gas accumulated in the chamber and CO2 and CH4 were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux measurent was computed combining CO2 efflux and CH4/CO2 ratio

  5. Sodium Dichromate Barrel Landfill expedited response action proposal

    International Nuclear Information System (INIS)

    1993-09-01

    The US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) prepare an expedited response action (ERA) for the Sodium Dichromate Barrel Landfill. The Sodium Dichromate Barrel Disposal Site was used in 1945 for disposal of crushed barrels. The site location is the sole waste site within the 100-IU-4 Operable Unit. The Waste Information Data System (WIDS 1992) assumes that the crushed barrels contained 1% residual sodium dichromate at burial time and that only buried crushed barrels are at the site. Burial depth is shallow since visual inspection finds numerous barrel debris on the surface. A non-time-critical ERA proposal includes preparation of an engineering evaluation and cost analysis (EE/CA) section. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the landfill is the only waste site within the operable unit, the ERA will present a final remediation of the 100-IU-4 operable unit

  6. Landfill gas in the Dutch perspective

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.

    1991-01-01

    Until 1986 landfill gas had a considerable value because of the relative high energy prices. It appeared also that landfill gas was formed in large quantities. However after the collapse of the energy prices in 1986 many new landfill gas projects were delayed or stopped. Recently, the gas emissions on landfills have attracted attention again, but now because of various environmental aspects. With respect to landfill management a well controlled gas extraction seems to be necessary. Utilisation of the gas is still favourable for economic reasons and because of energy savings. The Dutch policy for the next ten years will be reduction of the amount of waste by prevention and recycling. The organic fraction of the municipal solid waste (refuse from vegetables, fruit and garden), obtained by separation in households, will be composted. The other part will be burnt in incinerators. Only the remaining inert refuse will be deposited on landfills. (author)

  7. Estimation of emissions of nonmethane organic compounds from a closed landfill site using a landfill gas emission model

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, A.N. [Williamson Research Centre for Molecular Environmental Sciences, School of Earth, Atmospheric and Environmental Science, University of Manchester M13 9PL (United Kingdom); Diya, A.W. [Health Sciences Research Group, School of Medicine, University of Manchester M13 9PL (United Kingdom)

    2013-07-01

    Nonmethane organic compounds (NMOC) emissions from landfills often constitute significant risks both to human health and the general environment. To date very little work has been done on tracking the emissions of NMOC from landfills. To this end, a concerted effort was made to investigate the total annual mass emission rate of NMOC from a closed landfill site in South Manchester, United Kingdom. This was done by using field estimates of NMOC concentration and the landfill parameters into the Landfill Gas Emission Model embedded in ACTS and RISK software. Two results were obtained: (i) a deterministic outcome of 1.7218 x 10-7 kg/year, which was calculated from mean values of the field estimates of NMOC concentration and the landfill parameters, and (ii) a probabilistic outcome of 1.66 x 10-7 - 1.78 x 10-7 kg/year, which is a range of value obtained after Monte Carlo simulation of the uncertain parameters of the landfill including NMOC concentration. A comparison between these two results suggests that the probabilistic outcome is a more representative and reliable estimate of the total annual mass emission of NMOC especially given the variability of the parameters of the model. Moreover, a comparison of the model result and the safety standard of 5.0 x 10-5 kg/year indicate that the mass emission of NMOC from the studied landfill is significantly less than previously thought. However, given that this can accumulate to a dangerous level over a long period of time (such as the age of this landfill site); it may have started affecting the health of the people living within the vicinity of the landfill. A case is therefore made for more studies to be carried out on the emissions of other gases such as CH4 and CO2 from the studied landfill site, as this would help to understand the synergistic effect of the various gases being emitted from the landfill.

  8. VEGETATION OF INDUSTRIAL WASTE LANDFILLS WITHIN THE AGGLOMERATION OF THE CAPITAL CITY OF WARSAW

    Directory of Open Access Journals (Sweden)

    Kazimierz H. Dyguś

    2013-01-01

    Full Text Available This study presents the results of examination of the vegetation on the waste landfill of ArcelorMittal-Warszawa steel mill and the combustion waste landfill of Siekierki Power Station, both sites in Warsaw. The presented analyses of the field research contain detailed floristic-phytosociological data as well as botanical and ecological evaluation of the identified plants. The vegetative structures, together with the succession trends of the vegetation cover of two examined landfills, have been shown. Ecological habitat adaptations of plants and their spatial structure have been evaluated. The inventoried flora has been subjected to taxonomic, syntaxonomic and ecological classification. 154 plant species from 48 taxones in the range of families have been identified. Families characterized by the biggest abundance of species were: Compositae, grasses and Fabaceae. More than half of the live forms indentified were hemicryptophytes. The vegetation of two landfills has been dominated by synantrophic communities (Stellarietea mediae, Artemisietea vulgaris, Molinio-Arrhenatheretea, with apophytes being in the largest number. With the use of ecological indicators a broad ecological tolerance of the majority of species toward ecological factors has been observed.

  9. Capping as an alternative for remediating radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Hakonson, T.E.

    1994-01-01

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years

  10. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  11. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...

  12. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.

    Science.gov (United States)

    Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran

    2018-06-15

    Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Conceptual model elaboration for the safety assessment of phosphogypsum use in sanitary landfills

    International Nuclear Information System (INIS)

    Cota, Stela D.; Braga, Leticia T.P.; Jacomino, Vanusa F.

    2009-01-01

    Phosphogypsum is a by-product of the phosphatic fertilizer production from the beneficiation of phosphate minerals (apatites). Produced in large quantities throughout the world and stored temporally in stacks, the final destination of this product is nowadays a subject of investigation. Due to the presence of radionuclides ( 226 Ra, 232 Th and 40 K, mainly), possible applications for the phosphogypsum must be verified for radiological safety. The goal of this paper was to elaborate a representative water flow conceptual model of a sanitary landfill for the safety assessment of the impact of using phosphogypsum as a cover material. For this, the ground water flow in variably saturated conditions and solute transport model HYDRUS-2D has been used for simulating the impact in the saturated zone of potential radionuclides leaching. The conceptual model was developed by collecting and analyzing the data from environmental license documentation of municipal sanitary landfills located on the State of Minas Gerais, Brazil. In order to fulfill the requirements of HDRUS-2D model in terms of the necessary parameters, the physical characteristics and typical configuration of the landfills, as well as the hydrogeological parameters of soils and aquifers related to the local of placement of the landfills, were taken in account for the formulation of the conceptual model. (author)

  14. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    Science.gov (United States)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  15. Landfill gas: planning and regulation

    International Nuclear Information System (INIS)

    Nealon, T.

    1991-01-01

    There is no legislation in the UK that relates directly to landfill gas. However, various pieces of legislation do exist which control all aspects of landfill and therefore, indirectly, landfill gas. This legislation includes Planning Acts, The Control of Pollution Act, Health and Safety at Work Acts, and Public Health Acts, and affects landfill gas throughout the life of the site - from planning stage to long after the last load has been deposited and restoration has been carried out. Responsibility for ensuring compliance with these various Acts lies with a variety of Authorities, including Plannning Authorities, Waste Disposal Authorities, and Environmental Health Authorities. Responsibility for actual compliance with the Acts lies with the operator, for active sites, and the landowner in the case of closed sites. (author)

  16. Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis.

    Science.gov (United States)

    Chong, Theng Lee; Matsufuji, Yasushi; Hassan, Mohd Nasir

    2005-01-01

    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.

  17. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  18. INPP Landfill

    International Nuclear Information System (INIS)

    Dahlberg, Jan; Bergstroem, Ulla

    2004-06-01

    The objective of this report is to propose the basic design for final disposal of Very Low Level Radioactive Waste (VLLW) produced at the Ignalina Nuclear Power Plant and at other small waste producers in Lithuania. Considering the safety for the environment, as well as the construction costs, it has been decided that the repository will be of a landfill type based on the same design principles as similar authorised facilities in other countries. It has also been decided that the location of the landfill shall be in the vicinity of the Ignalina Nuclear Power Plant (INPP)

  19. Movement of unlined landfill under preloading surcharge.

    Science.gov (United States)

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2007-01-01

    As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.

  20. Macro and micro geo-spatial environment consideration for landfill site selection in Sharjah, United Arab Emirates.

    Science.gov (United States)

    Al-Ruzouq, Rami; Shanableh, Abdallah; Omar, Maher; Al-Khayyat, Ghadeer

    2018-02-17

    Waste management involves various procedures and resources for proper handling of waste materials in compliance with health codes and environmental regulations. Landfills are one of the oldest, most convenient, and cheapest methods to deposit waste. However, landfill utilization involves social, environmental, geotechnical, cost, and restrictive regulation considerations. For instance, landfills are considered a source of hazardous air pollutants that can cause health and environmental problems related to landfill gas and non-methanic organic compounds. The increasing number of sensors and availability of remotely sensed images along with rapid development of spatial technology are helping with effective landfill site selection. The present study used fuzzy membership and the analytical hierarchy process (AHP) in a geo-spatial environment for landfill site selection in the city of Sharjah, United Arab Emirates. Macro- and micro-level factors were considered; the macro-level contained social and economic factors, while the micro-level accounted for geo-environmental factors. The weighted spatial layers were combined to generate landfill suitability and overall suitability index maps. Sensitivity analysis was then carried out to rectify initial theoretical weights. The results showed that 30.25% of the study area had a high suitability index for landfill sites in the Sharjah, and the most suitable site was selected based on weighted factors. The developed fuzzy-AHP methodology can be applied in neighboring regions with similar geo-natural conditions.

  1. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-30

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  2. Survey of landfill gas generation potential

    International Nuclear Information System (INIS)

    Gauntlett, W.D.

    1992-09-01

    This project identifies all the landfill sites in each of the 50 states capable of producing 750,000 SCFD of mixed landfill gas for a period of at least 10 years. The study identified 749 landfill sites nationally, with an aggregate gas production rate sufficient to fuel approximately 6000 MW of fuel cell power plants

  3. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja-Kong; Do, Nam-Young [Korea Advanced Institute of Science & Technology, Taejon (Korea, Republic of)

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  4. Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil.

    Science.gov (United States)

    Maciel, Felipe Jucá; Jucá, José Fernando Thomé

    2011-05-01

    Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH(4) flux rates than the conventional layer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. EPA's landfill methane outreach program: demonstration of the new E-PLUS economic evaluation model: future trends and activities

    International Nuclear Information System (INIS)

    Kerr, T.; Paleyanda, P.; Forbes, C.D.

    1997-01-01

    Landfills contain most of the municipal solid waste (MSW) generated in the United States. As this landfilled MSW decomposes, it produces landfill gas (LFG), containing approximately 50% methane, 43-47% carbon dioxide, and 3-7% non-methane organic compounds (NMOCs). Federal regulations require affected landfills to collect and combust their LFG emissions in order to destroy NMOCs, as they are important precursors to local smog. Since 1994, the U.S. Environmental Protection Agency's Landfill Methane Outreach Program (LMOP) has been working to promote LFG-to-energy as a cost-effective way to reduce emissions of methane - a potent greenhouse gas. The LMOP's latest tool is ''E-PLUS'', Windows-compatible software that can be used to screen potential LFG-to-energy projects. E-PLUS, the Energy Project Landfill Gas Utilization Software, is capable of evaluating the economic feasibility of two energy recovery technologies based on potential LFG emissions estimates. This paper provides an overview of E-PLUS and describes its features and functions in detail. (author)

  6. Microbiology, Redox and Contaminat Fate in the Grindsted Landfill Leachate Plume - A Summary of 25 Years of work

    Science.gov (United States)

    Christensen, T. H.

    2001-05-01

    experiments. Ground Water, 37, 113-121. Bjerg, P.L., Rugge, K., Pedersen, J.K. & Christensen, T.H. (1995): Distribution of redox sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environmental Science and Technology, 29, 1387-1394. Heron, G., Bjerg, P.L., Gravesen, P., Ludvigsen, L. & Christensen, T.H. (1998): Geology and sediment geochemistry of a landfill leachate contaminated aquifer (Grindsted, Denmark). Journal of Contaminant Hydrology, 29, 301-317. Jakobsen, R., Albrechtsen, H.-J., Rasmussen, M., Bay, H., Bjerg, P.L. & Christensen, T.H. (1998): H2 concentrations in a landfill leachate plume (Grindsted, Denmark): In situ energetics of terminal electron acceptor processes. Environmental Science and Technology, 32, 2142-2148. Ludvigsen, L., Albrechtsen, H.-J., Heron, G., Bjerg, P.L. & Christensen, T.H. (1998): Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark). Journal of Contaminant Hydrology, 33, 273-291. Ludvigsen, L., Albrechtsen, H.-J., Ringelberg, D., Ekelund, F. & Christensen, T.H. (1999): Distribution and composition of microbial populations in a landfill leachate contaminated aquifer (Grindsted, Denmark). Microbial Ecology, 37, (3), 197-207. Rugge, K., Bjerg, P.L. & Christensen, T.H. (1995): Distribution of organic compounds from municipal solid waste in the groundwater downgradient of a landfill (Grindsted, Denmark). Environmental Science and Technology, 29, 1395-1400.

  7. Two Scenarios for Landfills Design in Special Conditions Using the HELP Model: A Case Study in Babylon Governorate, Iraq

    Directory of Open Access Journals (Sweden)

    Ali Chabuk

    2018-01-01

    Full Text Available The sound design of landfills is essential in order to protect human health and the environment (air, water, and soil. The study area, Babylon Governorate, is situated in the middle of Iraq, and is distinguished by a hot climate and shallow groundwater. The governorate did not have landfill sites that meet international criteria; in addition, the groundwater depth in Babylon Governorate is commonly shallow. Previously, the most important criteria for the study area and GIS software were used to select the best sites for locating landfills in the major cities of the governorate. In this study, the Hydrologic Evaluation of Landfill Performance (HELP 3.95D model was applied in order to ensure that there was no leakage of the leachate that results from the waste in the selected landfill sites. It is the most commonly utilized model for landfill design, and it is used to estimate water inflow through the soil layers. For the present study, to avoid groundwater pollution by leachate from a landfill site due to the shallow groundwater depth, compacted waste was placed on the surface using two height scenarios (2 m and 4 m. This design was developed using the soil properties of the selected sites coupled with the weather parameters in Babylon Governorate (precipitation, temperature, solar, and evapotranspiration for a 12-year period covering 2005 to 2016. The results from both of the suggested landfill designs showed an absence of leachate from the bottom liner.

  8. A comparison of the technical sustainability of in situ stabilisation/solidification with disposal to landfill.

    Science.gov (United States)

    Harbottle, M J; Al-Tabbaa, A; Evans, C W

    2007-03-15

    Sustainability is becoming a very important issue in contaminated land remediation and should form one of the factors used in future selection of treatment technologies. In situ stabilisation/solidification (S/S) is a remediation technique that is increasingly being applied to the treatment of contaminated sites because of numerous advantages over other remediation techniques. This paper assesses and compares aspects of the technical sustainability of in situ S/S with landfilling. Criteria previously established for the assessment of the technical sustainability of the remediation of contaminated land are employed. The comparison is presented in the form of a case study based on a real remediation project in the UK. The analysis indicated that landfilling had a larger impact than S/S in the majority of areas investigated, such as waste production (1000 kg waste/t soil remediated for landfilling compared to none for S/S), transportation (12.9 km/t for landfilling, 0.4 km/t for S/S) and use of raw materials (1005.5 kg/t for landfilling, 88.9 kg/t for S/S), although S/S had high greenhouse gas emissions (12.6 kg/t for landfilling, 40.9 kg/t for S/S). In addition, a multi-criteria/cost-effectiveness analysis gave cost effectiveness scores of -34.2 to S/S and -138.1 to landfill (where more positive is better).

  9. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  10. Power generation potential using landfill gas from Ontario municipal solid waste landfills. Appendix B2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Twenty-six landfill sites have been identified in Ontario with potential gas production rates suitable for recovery and use in power plant applications. If 70% of the gas naturally generated from these sites was collected and utilized, ca 88 MW could be produced in 1991 (declining to 74 MW by 2001) from the gas generated. Assuming the current average generation rate of one tonne per capita, an estimated nine million tonnes of municipal refuse is produced annually in Ontario, and landfilling is expected to continue to play a major role. It is suggested that the level of gas generation identified for the year 1991 will be sustainable given that as old landfills are spent, new ones are built. The accuracy of the prediction depends largely on future government policies regarding incineration, the effects of present waste reduction programs, and approval of new landfill sites. Due to the combined costs of the gas collection system, auxiliary equipment, and gas processing system, installed cost of a landfill-gas fired power plant is high relative to that of conventional natural gas-fired plants. For landfills presently without a gas collection system, the high initial capital investment for gas field test programs and for the installation of a collection system is a barrier that deters municipalities from tapping this energy potential. 2 figs., 3 tabs

  11. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  12. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  13. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes

    International Nuclear Information System (INIS)

    Hermosilla, Daphne; Cortijo, Manuel; Huang, Chin Pao

    2009-01-01

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe 2+ and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approx 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a 'young' leachate, while for 'old' and 'mixed' leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  14. International landfill gas conference: best practice and future opportunities

    International Nuclear Information System (INIS)

    1996-01-01

    This International Landfill Gas Conference, the third to be organised by ETSU on behalf of the Department of Trade and Industry (DTI) and the former Department of Energy has been jointly sponsored by the DTI, the International Energy Agency, the Altener Programme of the European Union (EU), the Environment Agency and the Institution of Diesel and Gas Turbine Engineers. The Conference coincides with the publication of the new Government guidance document, Landfill Gas Development Guidelines, prepared by ETSU for the DTI with co-sponsorship from the EU ALTENER Programme. The aim of the new Guidelines is to promote more widespread use of landfill gas (LFG) as an energy source by helping to reduce remaining perceived barriers to project development. The document is intended for a broad readership and is designed to allow easy access to a wide range of information. Essentially it is a ''hub'' document providing links to a variety of more specialised or detailed materials. For this reason, the emphasis is placed on breadth rather than on detail. The new Guidelines are certain to become the standard reference for all those with an interest in LFG technology. (Author)

  15. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  16. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  17. The Novel Design and Manufacturing Technology of Densified RDF from Reclaimed Landfill without a Mixing Binding Agent Using a Hydraulic Hot Pressing Machine

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The manufacturing of RDF (Refuse Derived Fuel from a conventional cold press extrusion machine is not suitable for producing RDF from reclaimed landfill since it is not identical in shape and form after production due to the swelling of the plastic fraction contained inside the reclaimed landfill and hence needs a very high compression force. Moreover, a binder agent is needed in order to keep the RDF in a similar shape and form. A novel design and manufacturing technology for a hydraulic hot pressing machine has been established and can produce high-quality RDF without any binder. The two electrical heaters are installed at the inner core and on the surface of the mold. The compression force on the mold is performed by a hydraulic jack. In addition, a newly-designed locking plate system which is designed by a slider to open and close along the paired horizontal slots, can reduce the cycle time of the manufacturing process and yield higher productivity. The testing properties of the RDF produced by the novel hydraulic hot pressing machine include the examination of size, shape, weight, unit density, bulk density, compression strength, moisture content, and heating value. The results showed that the RDF is suitable to be used as feedstock in an incinerator or gasifier to produce green and clean energy from reclaimed landfill.

  18. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    Energy Technology Data Exchange (ETDEWEB)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  19. Passive drainage and biofiltration of landfill gas: Australian field trial

    International Nuclear Information System (INIS)

    Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.

    2007-01-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions

  20. Artificial sweeteners as potential tracers of municipal landfill leachate

    International Nuclear Information System (INIS)

    Roy, James W.; Van Stempvoort, Dale R.; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. -- Highlights: • Artificial sweeteners detected at 14 of 15 municipal landfill sites. • Concentrations comparable to wastewater even at sites closed for >50 yr. • Saccharin elevated at all sites; potentially diagnostic of landfill impacts. • Potential for age-dating recent (past 2 decades) waste with acesulfame. -- Artificial sweeteners may be useful for tracing landfill leachate contamination and distinguishing it from wastewater impacts

  1. Landfill mining: Development of a cost simulation model.

    Science.gov (United States)

    Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland

    2016-04-01

    Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. © The Author(s) 2016.

  2. Review of existing landfill leachate production models

    International Nuclear Information System (INIS)

    Khan, T.A.

    2000-01-01

    The protection of water resources is a fundamental consideration in managing landfill operations. Landfill sites should be designed and operated so as to control leachate production and hence minimize the risk of surface and ground water pollution. A further important development is the use of computer models to estimate the production of leachate from landfill sites. It is revealed from the literature that a number of landfill leachate management model lave been development in recent years. These models allow different engineering schemes to be evaluated and are essential tools for design and operation managements of modern landfills. This paper describes a review of such models mainly focused on their theory, practicability, data requirements, suitability to real situation and usefulness. An evaluation of these models identifies. (author)

  3. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process.

    Science.gov (United States)

    Gao, Wu; Xu, Wenjie; Bian, Xuecheng; Chen, Yunmin

    2017-11-01

    The settlement of any position of the municipal solid waste (MSW) body during the landfilling process and after its closure has effects on the integrity of the internal structure and storage capacity of the landfill. This paper proposes a practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process. The MSW body in the landfill was divided into independent column units, and the filling process of each column unit was determined by a simplified complete landfilling process. The settlement of a position in the landfill was calculated with the compression of each MSW layer in every column unit. Then, the simultaneous settlement of all the column units was integrated to obtain the settlement of the landfill and storage capacity of all the column units; this allowed to obtain the storage capacity of the landfill based on the layer-wise summation method. When the compression of each MSW layer was calculated, the effects of the fluctuation of the main leachate level and variation in the unit weight of the MSW on the overburdened effective stress were taken into consideration by introducing the main leachate level's proportion and the unit weight and buried depth curve. This approach is especially significant for MSW with a high kitchen waste content and landfills in developing countries. The stress-biodegradation compression model was used to calculate the compression of each MSW layer. A software program, Settlement and Storage Capacity Calculation System for Landfills, was developed by integrating the space and time discretization of the landfilling process and the settlement and storage capacity algorithms. The landfilling process of the phase IV of Shanghai Laogang Landfill was simulated using this software. The maximum geometric volume of the landfill error between the calculated and measured values is only 2.02%, and the accumulated filling weight error between the

  4. The aspects of fire safety at landfills

    Directory of Open Access Journals (Sweden)

    Aleshina Tat'yana Anatol'evna

    2014-01-01

    Full Text Available Starting with 2008 and till 2013 there have been alarm messages about fires occurring at landfill places in Russia. Landfill fires are especially dangerous as they emit dangerous fumes from the combustion of the wide range of materials within the landfill. Subsurface landfill fires, unlike typical fires, cannot be put out with water. The article includes the analysis of the sources and causes of conflagrations at landfills. There maintains the necessity to eliminate the reasons, which cause the fires. There are quantification indices of environmental, social and economic effects of fires at landfills all over Russia. Surface fires generally burn at relatively low temperatures and are characterized by the emission of dense white smoke and the products of incomplete combustion. The smoke includes irritating agents, such as organic acids and other compounds. Higher temperature fires can cause the breakdown of volatile compounds, which emit dense black smoke. Surface fires are classified as either accidental or deliberate. For the ecologic security there is a need in the execution of proper hygienic requirements to the content of the places as well as international recommendations. In addition to the burning and explosion hazards posed by landfill fires, smoke and other by-products of landfill fires also present a health risk to firefighters and others exposed to them. Smoke from landfill fires generally contains particulate matter (the products of incomplete combustion of the fuel source, which can aggravate pre-existing pulmonary conditions or cause respiratory distress and damage ecosystem. The monitoring of conducting preventive inflamings and transition to alternative, environment friendly methods of waste disposal is needed.

  5. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are

  6. Emissions and leachate recycling at Seutula landfill

    International Nuclear Information System (INIS)

    Nykaenen, V.

    1999-01-01

    The aim of this study was to examine the degradation process and the leachate and gas emissions at Seutula landfill Vantaa The influences on leachate recycling to gas production and on the power production and also the influences on landfill water and the quality of leachate was found out. The situation at the landfill before leachate recirculation was studied. In the literature part of this study the landfill gas generation, different phases of the landfill and factors effecting them were examined. The quality of leachate, leachate recirculation and advantages of recirculation were studied. Different kind of gas collection methods, gas utilization, advantages and disadvantages of gas collection and the future of utilization were studied. Methods for measuring methane emissions through the landfill surface was a central part of the literature section. Also the future of measuring techniques were studied. In the experimental part of this study the quantity and quality of collected gas were measured. Also emitted methane was measured. Water samples were taken from landfill water and leachate during 1998. Samples were analysed in situ and in laboratory. The changes of landfill water height were measured. The degradation phase of the landfill varied, a part of waste filling was in an acidogenic phase and most part of it was in a stable methanogenic phase because the landfill is not homogenous. The concentration of landfill water and leachate are about the same than in Finland average. The most remarkable correlation from analysed results was between BOD/COD-ratio and temperature. When the temperature increased, the BOD/COD-ratio decreased. Emitted gas in the gas collection area was rather low, about 10 kW. The power production of the collected gas was in average 2 800 kW. In areas 1 and 3 where leachate was recirculated, the recovered gas efficiencies increased 55% and 70%, respectively, but in a reference area without recirculation the increase was 12%. Recommendation

  7. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  8. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Science.gov (United States)

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  9. Standard and alternative landfill capping design in Germany

    International Nuclear Information System (INIS)

    Simon, Franz-Georg; Mueller, Werner W.

    2004-01-01

    Engineered capping systems are in most cases an indispensable and often the only efficient component required by the long-term safety concept for landfills, mine tailings tips and contaminated land. In Germany the composite liner is the main component of standard landfill cappings for municipal and hazardous waste landfills and the compacted clay liner (CCL) for landfills for inert or low-contamination waste. The composite liner is a technically highly effective but very expensive system. Research and experience has given rise to concern about the proper long-term performance of a conventional single CCL as a landfill capping. Therefore, alternative capping systems are discussed and applied for landfills and for the containment of contaminated sites. This paper gives an overview on various alternative engineered cappings and suitable systems for capping reflecting the state of the art and the expert view in Germany. According to the European Council Directive on the landfill of waste an impermeable mineral layer is recommended for the surface sealing of non-hazardous landfills and a composition of artificial sealing liner and impermeable mineral layer for hazardous landfills. In both cases a drainage layer thickness of at least 0.5 m is suggested. These recommendations should be interpreted flexibly and to some extent modified in the light of the experience and results presented in this paper

  10. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Project XL Bioreactor Landfill... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor Landfill Projects. (a) Buncombe County, North Carolina Project XL Bioreactor Landfill Requirements...

  11. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  12. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes

    Energy Technology Data Exchange (ETDEWEB)

    Hermosilla, Daphne, E-mail: dhermosilla@quim.ucm.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Cortijo, Manuel [U.D. Operaciones Basicas, Departamento de Ingenieria Forestal, E.T.S.I. Montes, Universidad Politecnica de Madrid, Avda. Ramiro de Maeztu s/n, 28040 Madrid (Spain); Huang, Chin Pao [Department of Civil and Environmental Engineering, 352C DuPont Hall, University of Delaware, Newark, DE 19716 (United States)

    2009-05-15

    Landfill, a matured and economically appealing technology, is the ultimate approach for the management of municipal solid wastes. However, the inevitable generation of leachate from landfill requires further treatment. Among the various leachate treatment technologies available, advanced oxidation processes (AOPs) are among powerful methods to deal with the refractory organic constituents, and the Fenton reagent has evolved as one promising AOPs for the treatment of leachates. Particularly, the combination of UV-radiation with Fenton's reagent has been reported to be a method that allows both the photo-regeneration of Fe{sup 2+} and photo-decarboxylation of ferric carboxylates. In this study, Fenton and photo-Fenton processes were fine tuned for the treatment of leachates from the Colmenar Viejo (Madrid, Spain) Landfill. Results showed that it is possible to define a set of conditions under which the same COD and TOC removals (approx 70%) could be achieved with both the conventional and photo-Fenton processes. But Fenton process generated an important quantity of iron sludge, which will require further disposal, when performed under optimal COD removal conditions. Furthermore conventional Fenton process was able to achieve slightly over an 80% COD removal from a 'young' leachate, while for 'old' and 'mixed' leachates was close to a 70%. The main advantage showed by the photo-assisted Fenton treatment of landfill leachate was that it consumed 32 times less iron and produced 25 times less sludge volume yielding the same COD removal results than a conventional Fenton treatment.

  13. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    Science.gov (United States)

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  14. Landfill gas from solid urban waste - an opportunity evaluation

    International Nuclear Information System (INIS)

    Gramatikov, Plamen; Kovachev, Vassil; Gramatikova, Marija

    2004-01-01

    The problems (technical, economic, social etc.) which have to be solved by municipal waste treatment, especially in Central/East European towns, are discussed in this work. Percentages of products and calorific values of the main solid organic wastes are estimated. Different urban waste utilisation methods - Landfills Anaerobic digestion, Incineration, Refuse-derived fuels, Pyrolysis and Gasification are comment in this paper. These methods are compared using the town of Blagoevgrad (Bulgaria) as an example. It is round that a well established landfill gas production technology offers simplicity of collection (such as is practised in most of low and moderately developed countries like Bulgaria), relatively simple operation and maintenance, improvement of the environmental protection and of the energy production (based on the local disposal and renewable energy sources) and is more feasible for the East European urban concentrations. (Author)

  15. Methane production, recovery and emission from two Danish landfills

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan

    ) an in-depth investigation of CH4 production from shredder waste (SW) at landfills, 2) the determination of gas recovery efficiency at two adjacent Danish landfills by field measurement, and 3) the influence of meteorological parameters on gas recovery from landfills. This PhD project focused on two......Landfill gas (LFG), mainly consisting of methane (CH4) and carbon dioxide (CO2), is produced by the anaerobic digestion of biodegradable waste deposited in landfills. CH4 is a greenhouse gas with global warming potential 28 times that of CO2 over a period of 100 years. The produced CH4 in landfills...... is the driving force for advective gas transport, between inside the landfill and the atmosphere, and thus potentially can impact CH4 recovery. The overall goal of this PhD project was to address specific challenges regarding CH4 production and recovery at landfills. The PhD project focused on three topics: 1...

  16. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    Science.gov (United States)

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. © The Author(s) 2015.

  17. Environment impact of a very low level waste specific landfill

    International Nuclear Information System (INIS)

    Brun-Yaba, C.; Peres, J.M.; Besnus, F.

    1996-01-01

    Operating enrichment plants, nuclear power plants and reprocessing plants and the decommissioning of nuclear facilities will give rise to large volumes of waste material (concrete, steel and others metals, technological wastes heat insulators...) and most of them, in term of quantities, will be categorized as very low level wastes. This paper deals with the environmental impact of a specific landfill as a final destination for the very low level radioactive waste (VLLW) with the aim of providing technical elements for safer workers practices during the operational and the monitoring phases and for a public occupation after closure of the site. This study has been made on the basis of inventories in terms of estimated quantities and spectra of the French VLLW for a set of scenarios which are representative of practices in a landfill. (author)

  18. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Aronsson, P.

    1996-01-01

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  19. Application of raster-based GIS techniques in the siting of landfills in Trabzon Province, Turkey: a case study.

    Science.gov (United States)

    Yildirim, Volkan

    2012-09-01

    One of the most important steps in solid waste management is the selection of an appropriate landfill site. The site selection process requires the evaluation and analysis of several criteria. However, the traditional evaluation method is not sufficient for the site selection process. Geographical information system (GIS) technologies are effectively used in the process of site selection, which is a spatial problem. This article describes a raster GIS-based landfill site selection (LSS) method. This method utilizes a raster-based spatial database in which the factors affect the landfill site selection. The final product in this method is the cost surface map showing pixel-based values of the appropriate areas. Furthermore, this GIS-based LSS method was applied for the evaluation of two landfill sites in Trabzon Province in Turkey, for which the traditional evaluation method for site selection was used. The suitability values on the cost surface map of these two landfills have shown that these sites are not appropriate for a solid waste landfill. In conclusion, it was demonstrated that the method of raster GIS-based site selection gives more effective results than traditional methods.

  20. Evaluating operational vacuum for landfill biogas extraction.

    Science.gov (United States)

    Fabbricino, Massimiliano

    2007-01-01

    This manuscript proposes a practical methodology for estimating the operational vacuum for landfill biogas extraction from municipal landfills. The procedure is based on two sub-models which simulate landfill gas production from organic waste decomposition and distribution of gas pressure and gas movement induced by suction at a blower station. The two models are coupled in a single mass balance equation, obtaining a relationship between the operational vacuum and the amount of landfill gas that can be extracted from an assigned system of vertical wells. To better illustrate the procedure, it is applied to a case study, where a good agreement between simulated and measured data, within +/- 30%, is obtained.

  1. Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills.

    Science.gov (United States)

    Xu, Qiyong; Townsend, Timothy

    2014-02-01

    Odor problems associated with H2S emissions often result in odor complaints from nearby residents of C&D debris landfills, especially in the early morning. As part of a field study conducted on H2S removal ability using different cover materials, daily and seasonal H2S emissions through a soil cover layer were monitored at a C&D debris landfill to investigate factors affecting H2S emissions. H2S emission rates were not a constant, but varied seasonally, with an average emission rate of 4.67×10(-6)mgm(-2)s(-1). During a the 10-month field study, as the H2S concentration increased from 140ppm to about 3500ppm underneath the cover soil in the testing cell, H2S emissions ranged from zero to a maximum emission rate of 1.24×10(-5)mgm(-2)s(-1). Continuous emission monitoring indicated that H2S emissions even changed over time throughout the day, generally increasing from morning to afternoon, and were affected by soil moisture and temperature. Laboratory experiments were also conducted to investigate the effects of H2S concentration and cover soil moisture content on H2S emissions. The results showed that increased soil moisture reduced H2S emissions by retarding H2S migration through cover soil and dissolving H2S into soil water. The field study also indicated that due to atmospheric dispersion, high H2S emissions may not cause odor problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    Science.gov (United States)

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  3. Utilization of Waste Clay from Boron Production in Bituminous Geosynthetic Barrier (GBR-B Production as Landfill Liner

    Directory of Open Access Journals (Sweden)

    Müfide Banar

    2016-01-01

    Full Text Available Bituminous geomembranes, one type of geosynthetics, include a hot bituminous mixture with mineral filler and reinforcement. In this study, boron production waste clay (CW was used as filler to produce a geosynthetic barrier with bentonite, waste tire, and bitumen. Bentonite and waste tires were used as auxiliary fillers and bitumen as the binder. CW/bitumen, CW/bentonite/bitumen, and CW/waste tire/bitumen mixtures were prepared by using a laboratory mixer at 100°C. Hot mixtures were extruded into strips by using a lab-scale corotating twin screw extruder (L/D: 40 followed by die casting (2 mm × 100 mm. Glass fleece or nonwoven polyester was used as reinforcement material and while die casting, both sides of the reinforcement materials were covered with bituminous mixture. Thickness, mass per unit area, tensile strength, elongation at yield, and hydraulic conductivity were used to characterize the geomembranes. Among all geomembranes, nonwoven polyester covered with 30% bitumen-70% boron waste clay mixture (PK-BTM30CW70 was found to be the most promising in terms of structure and mechanical behaviour. After that, consequences of its exposure to distilled water (DW, municipal solid waste landfill leachate (L-MSW, and hazardous waste landfill leachate (L-HW were examined to use for an innovative impermeable liner on solid waste landfills.

  4. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  5. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.

    Science.gov (United States)

    Nolasco, Dácil; Lima, R Noemí; Hernández, Pedro A; Pérez, Nemesio M

    2008-01-01

    [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30

  6. Quantifying spatial and temporal variability of methane emissions from a complex area source: case study of a central Indiana landfill

    Science.gov (United States)

    strengths, limitations, and uncertainties of these two approaches. Because US landfills are highly-engineered and composed of daily, intermediate, and final cover areas with differing thicknesses, composition, and implementation of gas recovery, we also expected different emissi...

  7. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  8. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  9. Generation of leachate and the flow regime in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Bendz, D.

    1998-06-01

    In this thesis the generation of leachate and the presence and movement of water in landfilled municipal solid waste (MSW) is investigated. The precipitation-leachate discharge relationship for landfills was found to be dominated by evaporation, accumulation in the soil cover, accumulation in the solid waste and fast gravitational flow in a network of channels. The flow regime is governed by the heterogeneity of the internal geometry of the landfill, which is characterized by a discrete structure, significant horizontal stratification, structural voids, impermeable surfaces, and low capillarity. Also the boundary conditions, that is the water input pattern, has shown to be important for the flow process. Based on this, landfilled waste can be conceptualized as a dual domain medium, consisting of a channel domain and a matrix domain. The matrix flow is slow and diffusive, whereas the channel flow is assumed to be driven solely by gravity and to take place as a thin viscous film on solid surfaces. A kinematic wave model for unsaturated infiltration and internal drainage in the channel domain is presented. The model employs a two-parameter power expression as macroscopic flux law. Solutions were derived for the cases when water enters the channel domain laterally and when water enters from the upper end. The model parameters were determined and interpreted in terms of the internal geometry of the waste medium by fitting the model to one set of infiltration and drainage data derived from a large scale laboratory experiment under transient conditions. The model was validated using another set of data from a sequence of water input events and was shown to perform accurately. A solute transport model was developed by coupling a simple piston flux expression and a mobile-immobile conceptualization of the transport domains with the water flow model. Breakthrough curves derived from steady and transient tracer experiments where interpreted with the model. The transport

  10. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  11. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  12. Environmental Isotope Characteristics of Landfill Leachates and Gases

    Science.gov (United States)

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  13. Model calculations of the quantities of landfill gas, emitted from the landfill for solid domestic waste in Blagoevgrad (village of Buchino)

    International Nuclear Information System (INIS)

    Tzekova, Stefka; Ganev, Ivailo; Dimitrov, Boyan

    2009-01-01

    The biogas released from the landfills has got a noxious effect. It also creates the most serious environmental problems after the landfills closing. The gas releases actively for more than 25 years. That is why extremely high requirements for its utilization have been set today. The first step in this direction is the determination of its amounts. A prognosis for the quantities of gas released from the landfill at the village of Buchino has been made in the present report. The used mathematical model of prognosis has been adapted for the conditions in Bulgaria on the basis of the authors’ experience gained during their observations and research of a number of landfills in the country Keywords: landfill gas, biogas, RES

  14. Municipal solid waste landfills harbor distinct microbiomes

    Science.gov (United States)

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  15. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  16. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made...... and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover...

  17. Optimal sequence of landfills in solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Andre, F.J. [Universidad Pablo de Olavide (Spain); Cerda, E. [Universidad Complutense de Madrid (Spain)

    2001-07-01

    Given that landfills are depletable and replaceable resources, the right approach, when dealing with landfill management, is that of designing an optimal sequence of landfills rather than designing every single landfill separately. In this paper, we use Optimal Control models, with mixed elements of both continuous-and discrete-time problems, to determine an optimal sequence of landfills, as regarding their capacity and lifetime. The resulting optimization problems involve splitting a time horizon of planning into several subintervals, the length of which has to be decided. In each of the subintervals some costs, the amount of which depends on the value of the decision variables, have to be borne. The obtained results may be applied to other economic problems such as private and public investments, consumption decisions on durable goods, etc. (Author)

  18. Groundwater Pollution Source Characterization of an Old Landfill

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    Only a few landfill investigations have focused on both the quantity and the quality of leachate as a source of groundwater pollution. The investigation of Vejen Landfill in Denmark included an introductionary historical survey (old maps, aerial photographs, interviews, etc.), leachate quality...... analysis, potential mapping of the groundwater surface below the landfill and leachate flow to surface waters and groundwater. The historical investigation showed that the original soil surface beneath the waste was a relatively heterogeneous mixture of boggy ground and sand soil areas. This indicated...... that the leaching from the landfill could be unevenly distributed. The main specific organic compounds observed in the leachate were aromatic hydrocarbons (mainly xylenes), phenols and the pesticide MCPP. Preliminary investigations of the leach from the landfill indicated, that both a northerly leach to a drainage...

  19. Washing of waste prior to landfilling.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Landfill gas management: View from Italy

    Energy Technology Data Exchange (ETDEWEB)

    De Poli, F.; Pasqualini, S. [ENEA, Casaccia (Italy). Area Energia Ambiente e Salute

    1993-03-01

    Landfilling is the most widely used waste disposal system in Italy. More than 85% of the total refuse produced is landfilled, as the other ways still have many problems. People do not easily accept landfilling, and many regions of the country have very difficult problems in identifying new sites. At any rate, landfills are more accepted than other systems, such as incinerators. In accordance with present legislation, all landfill sites must have a biogas extraction system; only the smaller plants are allowed to avoid gas removal. For this reason, many extraction plants were built in the last few years about 10 in 1987, 25 in 1988, more 40 in 1989. A partial census the existing extraction plants showed the existence, in January, 1990, of 45 systems producing over 750,000 cubic meters of biogas (over 400 tep) per day. The plants were mainly built by two firms that have made 91% of the existing systems (93% of the daily gas yield). Anaerobic digestion of garbage in reactors was tried in the Bellaria plant, in which the organic fraction is mixed with sewage sludges in a CSTR reactor; the results were interesting from the technical point of view, but very poor as regards economics. A dry digestion plant is planned for the future.

  1. Martial recycling from renewable landfill and associated risks: A review.

    Science.gov (United States)

    Ziyang, Lou; Luochun, Wang; Nanwen, Zhu; Youcai, Zhao

    2015-07-01

    Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An assessment of the disposal of radioactive petroleum industry waste in nonhazardous landfills using risk-based modeling

    International Nuclear Information System (INIS)

    Smith, K.P.; Arnish, J.J.; Williams, G.P.; Blunt, D.L.

    2003-01-01

    Certain petroleum production activities cause naturally occurring radioactive materials (NORM) to accumulate in concentrations above natural background levels, making safe and cost-effective management of such technologically enhanced NORM (TENORM) a key issue for the petroleum industry. As a result, both industry and regulators are interested in identifying cost-effective disposal alternatives that provide adequate protection of human health and the environment. One such alternative, currently allowed in Michigan with restrictions, is the disposal of TENORM wastes in nonhazardous waste landfills. The disposal of petroleum industry wastes containing radium-226 (Ra-226) in nonhazardous landfills was modeled to evaluate the potential radiological doses and health risks to workers and the public. Multiple scenarios were considered in evaluating the potential risks associated with landfill operations and the future use of the property. The scenarios were defined, in part, to evaluate the Michigan policy; sensitivity analyses were conducted to evaluate the impact of key parameters on potential risks. The results indicate that the disposal of petroleum industry TENORM wastes in nonhazardous landfills in accordance with the Michigan policy and existing landfill regulations presents a negligible risk to most of the potential receptors considered in this study.

  3. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  4. Environmental and socio-economic impacts of landfills

    OpenAIRE

    Danthurebandara, Maheshi; Van Passel, Steven; Nelen, Dirk; Tielemans,Yves; Van Acker, Karel

    2012-01-01

    A modern landfill is an engineered method for depositing waste in specially constructed and protected cells on the land surface or in excavations into the land surface. Despite the fact that an increasing amount of waste is reused, recycled or energetically valorized, landfills still play an important role in waste management strategies. The degradation of wastes in the landfill results in the production of leachate and gases. These emissions are potentials threats to human health and to the...

  5. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  6. Short-term landfill methane emissions dependency on wind.

    Science.gov (United States)

    Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T

    2016-09-01

    Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Location analysis of the landfill of waste in Loznica

    Directory of Open Access Journals (Sweden)

    Božović Dejan

    2010-01-01

    Full Text Available The subject of this paper regards the landfill of municipal and industrial waste in Loznica, actually its location and environmental hazards. The research was carried out in order to show the consequences of careless and incomplete evaluation of the conditions for a locating of a landfill in the example of Loznica. Besides the fact that it is located at the floodplain of the Drina River, the landfill is normally located to the direction of predominant wind, which has a significant influence on environmental dispersion processes. The landscape where the landfill is located has been impacted by flooded and groundwater and predominant wind, but on the other side, the environment has also been impacted by pollutants which come from the new system landscape-landfill. The results of the laboratory analysis help to target a gradual process of the soil contamination by heavy metals from the landfill, and to detect the general direction of contaminant migration, from southwest to northeast. Therefore, it is necessary to start working on recultivation and rehabilitation of the landfill and to begin with regional waste disposal. .

  8. Innovative technologies of liquid media treatment in the system of ecological and sanitary-hygienic control of waste landfills

    Directory of Open Access Journals (Sweden)

    Shevchenko Andrey

    2017-01-01

    Full Text Available The article focuses on the scientific and practical aspects of establishing a comprehensive system of environmental compliance for industrial and household waste landfills, including the system of industrial and environmental monitoring and control, modern innovations in the field of instrumental-analytical control of the state of environmental components, new methods of neutralization of complex industrial pollution. Priority is given to wastewater treatment from toxic compounds coming from the surface and drainage water seepage of landfill sites into surface and underground water sources.

  9. Leachate pollution management to overcome global climate change impact in Piyungan Landfill, Indonesia

    Science.gov (United States)

    Harjito; Suntoro; Gunawan, T.; Maskuri, M.

    2018-03-01

    Environmental problems associated with the landfill system are generated by domestic waste landfills, especially those with open dumping systems. In these systems, waste degrades and produces some gases, namely methane gas (CH4) and carbon dioxide (CO2), which can cause global climate change. This research aimed at identifying the areas that experience groundwater pollution and the spread pattern of leachate movement to the vicinity as well as to develop a leachate management model. The Electricity Resistivity Tomography (ERT) survey is deployed to assess the distribution of electrical resistivity in the polluted areas. In this study, the groundwater contamination is at a very low in the aquifer zone, i.e., 3-9 Ωm. It is caused by the downward migration of leachate to water table that raises the ion concentration of groundwater. These ions will increase the electrical conductivity (EC), i.e., up to 1,284 μmhos/cm, and decrease the electrical resistivity. The leachate spreads westward and northward at a depth of 6-17 m (aquifer) with a thickness of pollution between 4 and11 m.The recommended landfill management model involves the installation of rainwater drainage, use of cover and baseliner made of waterproof materials, and massive waste treatment.

  10. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  11. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...

  12. Further studies on the role of protozoa in landfill

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, B.J.; Clarke, K.J.; Cranwell, P.A.; Embley, T.M.; Hindle, R.M.; Simon, B.M.

    1993-11-01

    The specific objectives of this study were: to determine the growth requirements of methanogen-bearing protozoa living in landfill; to measure the rate of methane generation by these `protozoan consortia`; to quantify the role of protozoan grazing in stimulating overall microbial activity; to determine the identity of both symbiotic methanogens and host ciliates in different landfill sites. The results showed that the landfill ciliated protozoon, Metopus palaeformis, showed net growth in the temperature range 7-35{sup o}C, if the landfill material contained at least 40% water by weight. The methanogens living inside one cell of M.palaeformis produced, on average, 0.37 x 10{sup -12}mol CH{sub 4}/hour. In laboratory studies, the initial rate of methane generation from landfill material was twice as great when ciliates were present. There was no experimental evidence that this was due to ciliate grazing activity stimulating the re-cycling of essential nutrients to free-living bacteria. It is theoretically possible that acetate excreted by ciliates was converted to methane by free-living methanogens and that this was the source of ciliate-enhanced methane production. It was shown that the methanogenic bacteria living symbiotically within the ciliates are quite distinct from free-living methanogens previously described from landfill refuse. It is unlikely that the ciliates act as vectors for the transmission of methanogens between landfill sites. In conclusion, protozoon may be an important component of the landfill microbial community because they stimulate the rate of anaerobic decomposition and hence the rate of methane production. But protozoa are important only when the landfill material is wet (> 40% water) and when the temperature of the landfill does not exceed 30{sup o}C. (author)

  13. Innovative dual-step management of semi-aerobic landfill in a tropical climate.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto

    2018-04-01

    Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the

  14. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Science.gov (United States)

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark

  15. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    Science.gov (United States)

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management.

  16. Emissions from the Bena Landfill

    Science.gov (United States)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  17. Power generation from landfill gas, Middleton Broom, UK

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A power station is fuelled by gas from a landfill site at Middleton Broom, West Yorkshire in the North of England. The plant was commissioned in January 1993 and has a Declared Net Capacity of about 1.2 MW (enough power for about 700 homes). The electricity produced is exported to the National Grid. After various possible uses of the landfill gas were explored, it was decided that a power station fuelled by the gas was the most commercially viable prospect. Because of the proximity of housing to the landfill site, gas is pumped to the power station, located about 1,500 m from the landfill. (UK)

  18. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  19. The effect of landfill age on municipal leachate composition.

    Science.gov (United States)

    Kulikowska, Dorota; Klimiuk, Ewa

    2008-09-01

    The influence of municipal landfill age on temporal changes in municipal leachate quality on the basis of elaboration of 4 years monitoring of leachate from landfill in Wysieka near Bartoszyce (Poland) is presented in this study. In leachate, concentrations of organic compounds (COD, BOD(5)), nutrients (nitrogen, phosphorus), mineral compounds, heavy metals and BTEX were investigated. It was shown that the principal pollutants in leachate were organics and ammonia - as landfill age increased, organics concentration (COD) in leachate decreased from 1,800 mg COD/l in the second year of landfill exploitation to 610 mg COD/l in the sixth year of exploitation and increase of ammonia nitrogen concentration from 98 mg N(NH)/l to 364 mg N(NH4) /l was observed. Fluctuation of other indexes (phosphorus, chlorides, calcium, magnesium, sulfate, dissolved solids, heavy metals, BTEX) depended rather on season of the year (seasonal variations) than landfill age. Moreover, the obtained data indicate that despite of short landfill's lifetime some parameters e.g. high pH (on average 7.84), low COD concentration (metal concentration, indicated that the landfill was characterized by methanogenic conditions already at the beginning of the monitoring period.

  20. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  1. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    Science.gov (United States)

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  2. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    Science.gov (United States)

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of

  3. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    Energy Technology Data Exchange (ETDEWEB)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (EUROPEAN OFFICE), Am Seestern 8, 40547 Dusseldorf (Germany); Ishida, Yoshihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2015-03-15

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the

  4. Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: A brief review.

    Science.gov (United States)

    Nagendran, R; Selvam, A; Joseph, Kurian; Chiemchaisri, Chart

    2006-01-01

    Environmental problems posed by municipal solid waste (MSW) are well documented. Scientifically designed landfills and/or open dumpsites are used to dispose MSW in many developed and developing countries. Non-availability of land and need to reuse the dumpsite space, especially in urban areas, call for rehabilitation of these facilities. A variety of options have been tried to achieve the goals of rehabilitation. In the last couple of decades, phytoremediation, collectively referring to all plant-based technologies using green plants to remediate and rehabilitate municipal solid waste landfills and dumpsites, has emerged as a potential candidate. Research and development activities relating to different aspects of phytoremediation are keeping the interest of scientists and engineers alive and enriching the literature. Being a subject of multi-disciplinary interest, findings of phytoremediation research has resulted in generation of enormous data and their publication in a variety of journals and books. Collating data from such diverse sources would help understand the dynamics and dimensions of landfill and dumpsite rehabilitation. This review is an attempt in this direction.

  5. Composition and Value of waste in landfills in SA

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-09-01

    Full Text Available in landfills in SA German Chamber of Business From Mining to Urban Mining 16 September 2015 IFAT Environmental Technology Forum Africa 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green... in collection infrastructure is required • Creation of entrepreneurial opportunities • Design for recycling • Creation of markets for recycled materials – Replacing virgin materials with recyclate – Develop new innovative high quality recycled products...

  6. Development of Automated Monitoring and Management System of Municipal Solid Waste Landfill Based on the Industrial OMRON Controller

    Science.gov (United States)

    Kostarev, S. N.; Sereda, T. G.

    2018-01-01

    The application of the programmable logic integrated circuits (PLC) for creating the software and hardware complexes of the medium complexity is an economically sound solution. The application of the OMRON controller to solve the monitoring and management tasks of safety of the municipal solid waste (MSW) landfill with the use of technology of the filtrate recirculation and the landfill maps irrigation is shown in the article. The article contains the technical solution connected with the implementation of the 2162059RU invention patent for the municipal solid waste landfill management in the Kurgan region of Russia. The calculation of maps and ponds was made with consideration of the limited sanitary and protection zone. The GRUNDFOS dosing and reactor equipment was proposed to use in the project.

  7. Ecotoxicologic diagnosis of a sealed municipal district landfill

    International Nuclear Information System (INIS)

    Hernandez, A. J.; Perez-Leblic, M. I.; Bartolome, C.; Pastor, J.

    2009-01-01

    Assessing the environmental impact of a soil-topped landfill requires and ecotoxicologic diagnosis. Here we describe a set of protocols for such a diagnosis as well as their application to a real case ( the urban soil waste, USW, landfill of Getafe, Madrid). Since their initial sealing some 20 years ago with soils taken from the surroundings, waste deposition has continued in most USW landfills of the Comunidad de Madrid. (Author)

  8. Evaluation of the Oedometer Tests of Municipal Landfill Waste Material

    Directory of Open Access Journals (Sweden)

    Imre Emőke

    2014-07-01

    Full Text Available The aim of the ongoing research is (i to develop a new biodegradation landfill technique so that the landfill gas production could be controlled and the utilisation of the landfill gas could economically be optimized, (ii to plan the energy utilisation of the landfill including individual and combined solutions (solar, wind, geothermal energy, energy storage using methanol etc.. [1, 2, 3

  9. Quantifying landfill biogas production potential in the U.S.

    Science.gov (United States)

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  10. Sustainable Impact of Landfill Siting towards Urban Planning in Malaysia

    Science.gov (United States)

    Sin Tey, Jia; Goh, Kai Chen; Ern Ang, Peniel Soon

    2017-10-01

    Landfill is one of the most common, widely used waste management technique in Malaysia. The ever increasing of solid waste has made the role of landfill become prominent despite the negative impacts that caused by the landfill is unavoidable. The public and government regulations are getting more aware with the negative impacts that could be brought by the landfill towards the community. It led to the cultural shift to integrate the concept of sustainability into the planning of siting a landfill in an urban area. However, current urban planning tends to emphasize more on the environmental aspect instead of social and economic aspects. This is due to the existing planning guidelines and stakeholder’s understandings are more on the environmental aspect. This led to the needs of incorporating the concept of sustainability into the urban planning. Thus, this paper focuses on the industry stakeholders view on the negative impacts that will cause by the landfill towards the urban planning. The industry stakeholders are those who are related to the decision-making in the selection of a landfill site in the government department. The scope of the study is within the country of Malaysia. This study was conducted through the semi-structured interviews with a total of fifteen industry stakeholders to obtain their perspective on the issues of impacts of siting a landfill in the urban area. The data obtained was analysed using the software, QSR NVivo version 10. Results indicate that landfill bought significant sustainability-related impacts towards landfill siting in urban planning. The negative impacts stated by the respondents are categorized under all three sustainable aspects such as environmental, social and economic. Among the results are such as the pollution, such as the generation of leachate, the objection in siting a landfill site against by the public, and the negotiating and getting money contribution from local authorities. The results produced can be served

  11. Use of the Geographic Information System and Analytic Hierarchy Process for Municipal Solid Waste Landfill Site Selection: A Case Study of Najafabad, Iran

    Directory of Open Access Journals (Sweden)

    A. Afzali

    2014-03-01

    Full Text Available Following technological advancements and integrated municipal solid waste management in recent decades, various methods such as recycling, biotreatment, thermal treatment, and sanitary landfills have been developed and employed. Creating sanitary landfills is a major strategy in the integrated solid waste management hierarchy. It is cheaper and thus more common than other disposal methods. Selecting a suitable solid waste landfill site can prevent adverse ecological and socioeconomic effects. Landfill site selection requires the analysis of spatial data, regulations, and accepted criteria. The present study aimed to use the geographic information system and the analytic hierarchy process to identify an appropriate landfill site for municipal solid wastes in Najafabad (Isfahan, Iran. Environmental and socioeconomic criteria were evaluated through different information layers in the Boolean and fuzzy logics. The analytical hierarchy process was applied for weighing the fuzzy information layers. Subsequently, two suitable sites were identified by superimposing the maps from the Boolean and fuzzy logics and considering the minimum required landfill area for 20 years. However, proximity of these two sites to Tiran (a nearby city made them undesirable landfill sites for Najafabad. Therefore, due to the existing restrictions in Najafabad, the possibility of creating landfill sites in common with adjacent cities should be further investigated.

  12. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requirements...... to the ability of the landfill gas management to reduce the emission should be set up, and how criteria are developed for when the monitoring activities can be terminated. Monitoring procedures are suggested centred on a robust method for measuring the total methane emission from the site, and quantitative...

  13. Assesment of opportunities for landfill gas utilisation in Bulgaria

    International Nuclear Information System (INIS)

    Gramatikov, S.; Iliev, I.; Andreev, S.; Hristoskov, I.

    2011-01-01

    In Bulgaria, about 14 million tons annually of municipal solid waste (MSW) are collected and disposed of in landfills - about 618 kg/capita annually. The implementation of Landfill Gas (LFG) energy recovery/utilization projects in Bulgaria serves as an essential landfill management strategy, and can also reduce greenhouse gases and air pollutants, leading to improved local air quality and reduced health risks. Results of assesment landfill tests of several municipalities, made by the team of Encon Services for estimation of the potential of their sites are shown in this paper. (authors)

  14. Hydro-mechanical improvement of the cap cover of a surface landfill for low and intermediate level radioactive waste short life time

    International Nuclear Information System (INIS)

    Verstaevel, Matthieu

    2015-01-01

    This study related to the Manche storage center (CSM), one of the first landfill in the world dedicated to low and intermediate radioactive waste short-live time. The researches considered in this thesis supported by industrial companies, focus on the hydraulic study of cap cover materials of the site, and their hydro-mechanical improvement. The aim is to improve their impermeability in order to be substituted to the geo-membrane as cap cover liner. A specification imposed by Andra was to consider a solution of the re-use of the in situ material by adding of additive. The initial material is a sandy silt, a material with a significant proportion of fines. In the literature there are many studies on the mechanical improvement of fine materials (applications to road infrastructure) and the treatment of sandy materials by adding a fine fraction (constitution of waterproof barriers). On the other hand there are very few studies on the impermeability improvement of fine soils. A physical tests campaign on treated materials with bentonite was carried out at various treatment rates. The results showed that the addition of additive induces a decrease in optimum dry unit weight for a normal Proctor compaction energy and increases their optimum water content. In addition, the susceptibility to erosion, internal or external, observed during oedo-permeameter test was assessed from various stability criteria available in the literature. Unlike the treatment of soil for road embankments, the increase of the material stiffness is not wanted and flexibility is preferred what is observed with the treatment tested. The comparative hydraulic conductivity of the untreated and treated materials were measured. In this study different devices (oedo-permeameter, permeameters, triaxial device) were used. The influence of the treatment rate of the material on the decrease of the hydraulic conductivity was observed. Four large scale experimentations were designed; they should be monitored

  15. Sustainable waste management: Waste to energy plant as an alternative to landfill

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2017-01-01

    Highlights: • WTE plant is a reasonable and sustainable alternative technology to landfill. • A 150 kt plant in the only electrical configuration for Abruzzo region. • The percentage of energy recovery ranges from 21% to 25% in examined scenarios. • Financial Net Present Value is equal to 25.4 € per kiloton of treated waste. • The annual reduction of emissions is equal to 370 kgCO_2eq per ton of treated waste. - Abstract: The management of municipal solid waste (MSW) has been identified as one of the global challenges that must be carefully faced in order to achieve sustainability goals. European Union (EU) has defined as Waste to Energy (WTE) technology is able to create synergies with EU energy and climate policy, without compromising the achievement of higher reuse and recycling rates. The methodology used in this paper is based on two levels. A strategy analysis defines the amount of waste to incinerate with energy recovery considering different approaches based on unsorted waste, landfilled waste and separated collection rate, respectively. Consequently, it is evaluated the sustainability of a WTE plant as an alternative to landfill for a specific area. Two indicators are used: the Reduction of the Emissions of equivalent Carbon Dioxide (ER_C_O_2_e_q) and Financial Net Present Value (FNPV). Furthermore, a social analysis is conducted through interviews to identify the most critical elements determining the aversion toward the WTE realization. The obtained results show the opportunity to realize a 150 kt plant in the only electrical configuration. In fact, the cogenerative configuration reaches better environmental performances, but it is not profitable for this size. Profits are equal to 25.4 € per kiloton of treated waste and 370 kgCO_2eq per ton of treated waste are avoided using a WTE plant as an alternative to landfill. In this way, the percentage of energy recovery ranges from 21% to 25% in examined scenarios and disposal waste is minimised

  16. Evaluating fugacity models for trace components in landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Shafi, Sophie [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Sweetman, Andrew [Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Hough, Rupert L. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Smith, Richard [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Rosevear, Alan [Science Group - Waste and Remediation, Environment Agency, Reading RG1 8DQ (United Kingdom); Pollard, Simon J.T. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)]. E-mail: s.pollard@cranfield.ac.uk

    2006-12-15

    A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95 300 {mu}g m{sup -3}; 43 {mu}g m{sup -3}) fell within measured ranges observed in gas from landfills (24 300-180 000 {mu}g m{sup -3}; 20-70 {mu}g m{sup -3}). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas. - Fugacity for trace component in landfill gas.

  17. THE IMPACT OF INDUSTRIAL WASTE LANDFILL ON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Monika Janas

    2017-06-01

    Full Text Available The aim of the study is to assess the environmental impact of a shut down industrial waste landfill. A detailed analysis of the quality of groundwater around the landfill in the years 1995-2016 was conducted. Assessment of the status of groundwater in the landfill area was made based on the results of monitoring tests. It includes the measurement of pH, specific electrical conductivity (SEC and the content of chlorides, sulfates, phosphates, heavy metals: copper (Cu, lead (Pb, chromium (Cr and a number of other pollution indicators. The analysis confirms that the landfill during the operation did not constitute a threat because of a number of employed security measures and sealing layers. Only in recent years, the industrial waste landfill which is already out of operation has become an extremely serious environmental threat. The results of water analyses from the piezometers clearly indicate that there is a problem of groundwater contamination. There was a significant increase in the value of some of the analyzed indicators (such as chlorides and sulfates, mainly in the piezometers located on the flow line of groundwater in the landfill area. The observed situation is probably a result of damage to the sealing layers and leaching of pollutants from waste deposited in the landfill by rain water.

  18. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  19. Effects of Moisture Content in Solid Waste Landfills

    National Research Council Canada - National Science Library

    Eck, Craig

    2000-01-01

    Solid waste landfills are an extremely complex and heterogeneous environment. Modeling the biodegradation processes within a landfill must involve an understanding of how environmental factors affect these processes...

  20. Review of past research and proposed action plan for landfill gas-to-energy applications in India.

    Science.gov (United States)

    Siddiqui, Faisal Zia; Zaidi, Sadaf; Pandey, Suneel; Khan, Mohd Emran

    2013-01-01

    Open dumps employed for disposal of municipal solid waste (MSW) are generally referred to as landfills and have been traditionally used as the ultimate disposal method in India. The deposition of MSW in open dumps eventually leads to uncontrolled emission of landfill gas (LFG). This article reviews the MSW disposal practices and LFG emissions from landfills in India during the period 1994 to 2011. The worldwide trend of feasibility of LFG to energy recovery projects and recent studies in India indicate a changed perception of landfills as a source of energy. However, facilitating the implementation of LFG to energy involves a number of challenges in terms of technology, developing a standardized framework and availability of financial incentives. The legislative framework for promotion of LFG to energy projects in India has been reviewed and a comprehensive strategy and action plan for gainful LFG recovery is suggested. It is concluded that the market for LFG to energy projects is not mature in India. There are no on-ground case studies to demonstrate the feasibility of LFG to energy applications. Future research therefore should aim at LFG emission modeling studies at regional level and based on the results, pilot studies may be conducted for the potential sites in the country to establish LFG to energy recovery potential from these landfills.

  1. Landfill gas: energy and environmental issues in the USA

    International Nuclear Information System (INIS)

    Mandeville, R.T.

    1991-01-01

    Lessons learned about landfill gas generation, recovery, and control over the last 10 to 15 years are reviewed. Some major issues that are worthy of discussion include the difficulty of assessing generation rates; the limitations of field testing; the use of modeling; landfill characterization and the expense of landfill gas processing and condensate disposal. (author)

  2. Reutilization of industrial sedimentation plants as a domestic landfill

    International Nuclear Information System (INIS)

    Viehweg, M.; Duetsch, M.; Wagner, J.; Edelmann, F.

    1995-01-01

    The methods and the investigation results for evaluation of the risk potential emanating from the mixed waste landfill Steinsee in Johanngeorgenstadt are described for the protected commodities of water, soil and air. The peculiarity of this mixed waste landfill is its layered structure (17th to 19th century near-surface mineworkings, granite weathering zone at the base of the landfill, washed-in tailings, and refuse dump). A network of measuring points has been installed in and around the landfill, and selective investigations have been made to ascertain the risk potential from the landfill. Based on the investigation results, it can be estimated that the continued use of the landfill is justifiable from the geological, hydrogeological and hydrological viewpoints, provided that permanent and continuous control is ensured by a monitoring system and that the overall situation can be improved in the short term by suitable technical measures. The waste being deposited now consists of domestic refuse, bulky refuse, sewage sludge, building rubble, excavated earth, broken up road surfacing, waste containing asbestos, industrial waste and power station ash

  3. Landfills in Latin America: Colombian case

    International Nuclear Information System (INIS)

    Noguera, Katia M; Olivero, Jesus T.

    2010-01-01

    The management and disposal of domestic solid waste are critical issues in urban areas of Latin America. In Colombia, in general, the final destination of this waste is its deposition in landfills. This review aims to provide basic information on general conditions of these sites in major cities of the country. Although existing landfills have diversity of operational problems, those most frequently include an inadequate treatment of the leachates, the emission of unpleasant odors and poor management of solid waste coverage. Although it is necessary to improve the operation and maintenance of landfills, it is also urgent to increase the commitment of Health and Environmental Agencies on programs that reduce waste production and promote the sustainable use of those wastes with economic value.

  4. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    Science.gov (United States)

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. 78 FR 14773 - U.S. Environmental Solutions Toolkit-Landfill Standards

    Science.gov (United States)

    2013-03-07

    ...--Landfill Standards AGENCY: International Trade Administration, DOC. ACTION: Notice and Request for Comment... or services relevant to landfill environmental standards. The Department of Commerce continues to..., Web site address, contact information, and landfill environmental standards category of interest from...

  6. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    Science.gov (United States)

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  7. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    -passive biocover system was constructed at the AV Miljø landfill. The biocover is fed by landfill gas pumped out of three leachate wells. An innovative gas distribution system was used to overcome the often observed overloaded hot spot areas resulting from uneven gas distribution to the active methane oxidation......Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi...... layer. Performed screening of methane and carbon dioxide concentration at the surface of the biocover showed homogenous distributions indicating an even gas distribution. This was supported by result from a performed tracer test where the compound HFC-134a was added to the gas inlet over a 12 day period...

  8. Attenuation of fluorocarbons released from foam insulation in landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Dote, Yukata; Fredenslund, Anders Michael

    2007-01-01

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project...... was to evaluate the potential for degradation of BAs in landfills, and to develop a landfill model, which could simulate the fate of BAs in landfills. The investigation was performed by use of anaerobic microcosm studies using different types of organic waste and anaerobic digested sludge as inoculum. The BAs...... in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate...

  9. Environmental upgrading of a landfill

    International Nuclear Information System (INIS)

    Agostinetto, V.; Vendrame, G.

    1999-01-01

    This article refers to an experimental study concerning the vegetative upgrading of a closed-down landfill (once used for industrial waste disposal). The aim was to check the possibility of reconstructing or aiding the natural growth of a vegetation in keeping with the surrounding area, in a tried environment such as that of landfills. The original idea contained in the approved project - which meant to generically upgrade the territory by planting species belonging to the grassy layer, shrubs and trees - has, with time, undergone some changes. On the basis of both the knowledge acquired during management and of a more accurate analysis of the territory, the experiment was preferred to aim at finding out which were the species, both continental and Mediterranean, able to gradually adjust to the surrounding landscape, leaving to natural selection the task to decide which species were more suitable to the upgrading of closed-down landfills, and which planting technique was more effective [it

  10. Polyfluoroalkyl compounds in landfill leachates

    International Nuclear Information System (INIS)

    Busch, Jan; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf

    2010-01-01

    Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. ΣPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of ΣPFCs into the aqueous environment ranged between 0.08 and 956 mg/day. - The first comprehensive survey of polyfluoroalkyl compounds (PFCs) in landfill leachates.

  11. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  12. Comparison of Landfill Methane Oxidation Measured Using Stable Isotope Analysis and CO2/CH4 Fluxes Measured by the Eddy Covariance Method

    Science.gov (United States)

    Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.

    2015-12-01

    Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.

  13. Analysis of an innovative process for landfill gas quality improvement

    International Nuclear Information System (INIS)

    Lombardi, L.; Carnevale, E.A.

    2016-01-01

    Low methane content landfill gas is not suitable for feeding engines and is generally flared. This type of landfill gas may be enriched by removing the inert carbon dioxide. An innovative process, based on the carbon dioxide captured by means of accelerated carbonation of bottom ash was proposed and studied for the above purpose. The process was investigated at a laboratory scale, simulating different landfill gas compositions. The enrichment process is able to decrease the carbon dioxide concentration from 70 to 80% in volume to 60% in volume, requiring about 36 kg of bottom ash per Nm"3 of landfill gas. Using this result it was estimated that an industrial scale plant, processing 100–1000 Nm"3/h of low methane content landfill gas requires about 28,760–2,87,600 t of bottom ash for a one year operation. The specific cost of the studied enrichment process was evaluated as well and ranges from 0.052 to 0.241 Euro per Nm"3 of entering landfill gas. The energy balance showed that about 4–6% of the energy entered with the landfill gas is required for carrying out the enrichment, while the use of the enriched landfill gas in the engine producing electricity allows for negative carbon dioxide emission. - Highlights: • The process uses a waste stream as material to capture CO_2. • The process uses a simple gas/solid fixed bed contact reactor at ambient conditions. • The process captures the CO_2 to enrich low-CH4 landfill gas. • The specific cost ranges from 0.052 to 0.241 Euro per Nm"3 of entering landfill gas. • The process consumes about 4–6% of the entering energy and acts as CO_2 sink.

  14. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  15. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  16. Imaging scatterers in landfills using seismic interferometry

    NARCIS (Netherlands)

    Konstantaki, L.A.; Dragnov, D.S.; Heimovaara, T.J.; Ghose, R.

    2013-01-01

    A significant problem with landfills is their aftercare period. A landfill is considered to be safe for the environment only after a relatively long period of time. Until it reaches such a condition, it has to be periodically treated. Not only are treatments very expensive, but they could be

  17. Suitability of different conceptual models for assessing the hydrology of a full scale pilot landfill

    NARCIS (Netherlands)

    Baviskar, S.M.; Heimovaara, T.J.

    2011-01-01

    Leachate emission to the groundwater is considered to be one of the largest longterm impacts related to landfilling. Recently we started a program, partly subsidized by the Dutch Technology foundation STW, aimed towards developing a frame work which allows for a quantitative assessment of the

  18. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  19. Sanitary landfill energetic potential analysis: a real case study

    International Nuclear Information System (INIS)

    Desideri, Umberto; Di Maria, Francesco; Leonardi, Daniela; Proietti, Stefania

    2003-01-01

    Waste disposal represents an important problem in developed countries. Many different techniques are available to reduce the amount of waste production and its environmental impact. In most cases, sanitary landfills have been and continue to be one of the most common ways to dispose of urban and industrial wastes. It is well known how landfilling produces an important environmental drawback due to gaseous, liquid and solid emissions that are dangerous for the environment. Landfill biogas emissions contain mainly carbon dioxide and methane. In particular, the methane concentration can be higher than 50% by volume. This means that the calorific value of sanitary landfill biogas can be higher than 18,000 kJ/N m 3 . The utilization of such gas as fuel for electrical and thermal energy production can be an important way to reduce the landfill impact on the environment and represent an easy way to use a renewable energy source. In the following, the amount and composition of the biogas produced in a sanitary landfill situated in central Italy have been analysed. Experimental results have been discussed, and an energetic potential evaluation has been performed

  20. Sanitary landfill energetic potential analysis: a real case study

    Energy Technology Data Exchange (ETDEWEB)

    Desideri, Umberto E-mail: umberto.desideri@unipg.it; Di Maria, Francesco E-mail: fdm@unipg.it; Leonardi, Daniela; Proietti, Stefania

    2003-07-01

    Waste disposal represents an important problem in developed countries. Many different techniques are available to reduce the amount of waste production and its environmental impact. In most cases, sanitary landfills have been and continue to be one of the most common ways to dispose of urban and industrial wastes. It is well known how landfilling produces an important environmental drawback due to gaseous, liquid and solid emissions that are dangerous for the environment. Landfill biogas emissions contain mainly carbon dioxide and methane. In particular, the methane concentration can be higher than 50% by volume. This means that the calorific value of sanitary landfill biogas can be higher than 18,000 kJ/N m{sup 3}. The utilization of such gas as fuel for electrical and thermal energy production can be an important way to reduce the landfill impact on the environment and represent an easy way to use a renewable energy source. In the following, the amount and composition of the biogas produced in a sanitary landfill situated in central Italy have been analysed. Experimental results have been discussed, and an energetic potential evaluation has been performed.

  1. Forecasting the settlement of a bioreactor landfill based on gas pressure changes.

    Science.gov (United States)

    Qiu, Gang; Li, Liang; Sun, Hongjun

    2013-10-01

    In order to study the influence of settlement under gas pressure in bioreactor landfill, the landfill is simplified as a one-way gas seepage field, combining Darcy's Law, the gas equation of state, and the principle of effective stress and fluid dynamics of porous media theory. First assume that the bioreactor landfill leachate is fully recharged on the basis of gas mass conservation, then according to the changes in gas pressure (inside the landfill and surrounding atmosphere) during the gas leakage time and settlement in the landfill, establish a numerical model of bioreactor landfill settlement under the action of the gas pressure, and use the finite difference method to solve it. Through a case study, the model's improved prediction of the settlement of bioreactor landfill is demonstrated.

  2. A primer for trading greenhouse gas reductions from landfills

    International Nuclear Information System (INIS)

    2000-06-01

    This introductory level primer on domestic greenhouse gas emissions trading addresses the challenge of dealing with landfill gas emissions of carbon dioxide (CO 2 ) and methane (CH 4 ). It describes the first major emissions trading projects in Canada, the Pilot Emission Reduction Trading (PERT) and the Greenhouse Gas Emission Reduction Trading (GERT) pilot projects which calculate and document the GHG emission reductions that are available from landfill sites. PERT initially focused on nitrogen oxides, volatile organic compounds, carbon monoxide, sulphur dioxide and carbon dioxide. PERT uses the Clean Air Emission Reduction Registry for its emissions trading. Canada completed negotiations of the Kyoto Protocol in December 1997 along with 160 other countries. Upon ratification, Canada will commit to reducing 6 greenhouse gases by 6 per cent below 1990 levels in the period 2008 to 2012. Canada has recognized that it must reduce domestic greenhouse gas emissions to slow global warming which leads to climate change. It has been shown that the capture and destruction of landfill gas can profoundly contribute to meeting the target. One tool that can be used to help meet the objective of reducing GHG emissions is domestic GHG emission trading, or carbon trading, as a result of landfill gas capture and flaring. Landfill gas is generally composed of equal parts of carbon dioxide and methane with some other trace emissions. Accounting for quantities of greenhouse gas emissions is done in equivalent tonnes of carbon dioxide where one tonne of methane reduction is equivalent to 21 tonnes of carbon dioxide in terms of global warming potential. Organics in landfills which lead to the generation of methane are considered to be coming from renewable biomass, therefore, the collection and combustion of landfill gas is also considered to reduce GHG emissions from landfills by 100 per cent on a global basis. Destroying landfill gases can also reduce volatile organic compounds, which

  3. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Downgradient from an old municipal landfill allowing leachate, rich in dissolved organic carbon, to enter a shallow sandy aerobic aquifer, a sequence of redoxe zones is identified from groundwater chemical analysis. Below the landfill, methanogenic conditions prevail, followed by sulfidogenic...... the fate of reactive pollutants leached from the landfill....

  4. CCA-treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal.

    Science.gov (United States)

    Jambeck, Jenna; Weitz, Keith; Solo-Gabriele, Helena; Townsend, Timothy; Thorneloe, Susan

    2007-01-01

    Chromated copper arsenate (CCA)-treated wood is a preservative treated wood construction product that grew in use in the 1970s for both residential and industrial applications. Although some countries have banned the use of the product for some applications, others have not, and the product continues to enter the waste stream from construction, demolition and remodeling projects. CCA-treated wood as a solid waste is managed in various ways throughout the world. In the US, CCA-treated wood is disposed primarily within landfills; however some of the wood is combusted in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, sometimes including CCA-treated wood, is combustion for the production of energy. This paper presents an estimate of the quantity of CCA-treated wood entering the disposal stream in the US, as well as an examination of the trade-offs between landfilling and WTE combustion of CCA-treated wood through a life-cycle assessment and decision support tool (MSW DST). Based upon production statistics, the estimated life span and the phaseout of CCA-treated wood, recent disposal projections estimate the peak US disposal rate to occur in 2008, at 9.7 million m(3). CCA-treated wood, when disposed with construction and demolition (C&D) debris and municipal solid waste (MSW), has been found to increase arsenic and chromium concentrations in leachate. For this reason, and because MSW landfills are lined, MSW landfills have been recommended as a preferred disposal option over unlined C&D debris landfills. Between landfilling and WTE for the same mass of CCA-treated wood, WTE is more expensive (nearly twice the cost), but when operated in accordance with US Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbon emissions. If the wood is managed via WTE, less landfill area is required, which could be an influential trade-off in some countries. Although metals are concentrated

  5. Metagenomics profiling for assessing microbial diversity in both active and closed landfills.

    Science.gov (United States)

    Zainun, Mohamad Yusof; Simarani, Khanom

    2018-03-01

    The municipal landfill is an example of human-made environment that harbours some complex diversity of microorganism communities. To evaluate this complexity, the structures of bacterial communities in active (operational) and closed (non-operational) landfills in Malaysia were analysed with culture independent metagenomics approaches. Several points of soil samples were collected from 0 to 20cm depth and were subjected to physicochemical test, such as temperature, pH, and moisture content. In addition, the heavy metal contamination was determined by using ICPMS. The bacterial enumeration was examined on nutrient agar (NA) plates aerobically at 30°C. The soil DNA was extracted, purified and amplified prior to sequence the 16S rRNA gene for statistical and bioinformatics analyses. As a result, the average of bacteria for the closed landfill was higher compared to that for the active landfill at 9.16×10 7 and 1.50×10 7 , respectively. The higher bacterial OTUs sequenced was also recorded in closed landfills compared to active landfill i.e. 6625 and 4552 OTUs respectively. The data from both landfills showed that the predominant phyla belonged to Proteobacteria (55.7%). On average, Bacteroidetes was the second highest phylum followed by Firmicutes for the active landfill. While the phyla for communities in closed landfill were dominated by phyla from Acidobacteria and Actinobacteria. There was also Euryarchaeota (Archaea) which became a minor phylum that was detected in active landfill, but almost completely absent in closed landfill. As such, the composition of bacterial communities suggests some variances between the bacterial communities found in active and closed landfills. Thus, this study offers new clues pertaining to bacterial diversity pattern between the varied types of landfills studied. Copyright © 2017. Published by Elsevier B.V.

  6. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater

    International Nuclear Information System (INIS)

    Dong Jun; Zhao Yongsheng; Zhang Weihong; Hong Mei

    2009-01-01

    Permeable reactive barrier (PRB) was a promising technology for groundwater remediation. Landfill leachate-polluted groundwater riches in various hazardous contaminants. Two lab-scale reactors (reactors A and B) were designed for studying the feasibility of PRB to remedy the landfill leachate-polluted groundwater. Zero valent iron (ZVI) and the mixture of ZVI and zeolites constitute the first section of the reactors A and B, respectively; the second section of two reactors consists of oxygen releasing compounds (ORCs). Experimental results indicated that BOD 5 /COD increased from initial 0.32 up to average 0.61 and 0.6 through reactors A and B, respectively. Removal efficiency of mixed media for pollutants was higher than that of single media (ZVI only). Zeolites exhibited selective removal of Zn, Mn, Mg, Cd, Sr, and NH 4 + , and removal efficiency was 97.2%, 99.6%, 95.9%, 90.5% and 97.4%, respectively. The maximum DO concentration of reactors A and B were 7.64 and 6.78 mg/L, respectively, while the water flowed through the ORC. Therefore, sequenced PRB system was effective and was proposed as an alternative method to remedy polluted groundwater by landfill leachate

  7. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  8. Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site.

    Science.gov (United States)

    Hutchings, T R; Moffat, A J; Kemp, R A

    2001-06-01

    The above and below ground growth of three tree species (Alnus glutinosa, Pinus nigra var. maritima and Acer pseudoplatanus) was studied on a containment landfill site at Waterford, Hertfordshire, UK. Tree root architecture was studied using soil inspection pits excavated next to 12 trees of each species and mapped in detail. Tree height was related to soil thickness over the compacted mineral cap. No roots entered the cap where soil thickness was 1.3 m, but a few roots, especially of alder, were observed within it when the soil cover was 1.0 m or less. Micromorphological analysis of undisturbed samples of the mineral cap suggested that roots exploited weaknesses in the cap rather than actively causing penetration into it. Alder roots were more tolerant of anaerobic conditions within the cap than the other species examined. The results confirm that mineral caps should be covered by 1.5 m of soil or soil-forming material if tree establishment is intended over a restored landfill site, unless protected by other parts of a composite capping system.

  9. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Science.gov (United States)

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  10. Treatability of stabilize landfill leachate by using pressmud ash as an adsorbent

    Science.gov (United States)

    Azme, N. N. Mohd; Murshed, M. F.

    2018-04-01

    Leachate is a liquid produced from the landfill that contains high concentration of heavy metals, chemicals and nutrient loading. The treatability of these contaminants are complicated since the current treatment technology are costly and site specific. Therefore, this study was conducted to evaluate the treatability of stabilized landfill leachate by using waste (pressmud ash) as an absorbent. Pressmud ash was prepared by burning at different temperature from 100 to 700 degree Celsius and test at 24 hours shaking time, pH 8, and 4000 rpm. Leachate samples were collected from municipal solid waste (MSW) Pulau Burung Sanitary Landfill (PBSL) and were analyzed for heavy metal, COD, ammonia and colour. This study was performed in two phases i) leachate characteristic, ii) treatability assessment by using pressmud ash. Pressmud was sampled from the sugar mill, Malaysian Sugar Manufacturing (MSM) Sdn Bhd, Seberang Perai, Pulau Pinang. The pressmud with 400°C are highly potential material with a low cost which can be a good adsorbent was capable reducing efficiencies of COD (60.76%), ammonia (64.37%) and colour (35.78%) from real wastewater leachate. Pressmud showed good sorption capability. Surface modification with burning greatly enhanced the reducing efficiency of sugar waste based adsorbent with adsorption efficiency.

  11. Management of landfill leachate: The legacy of European Union Directives.

    Science.gov (United States)

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition

  12. Remediation System Evaluation, Douglas Road Landfill Superfund Site

    Science.gov (United States)

    The Douglas Road Landfill Superfund Site is located in St. Joseph County just north of Mishawaka,Indiana. The site consists of a 16-acre capped landfill located on an approximately 32-acre lot (includingthe land purchased in 1999 for a wetlands...

  13. Trees - a tool for landfill managers

    International Nuclear Information System (INIS)

    Josseaume, Marine

    2009-01-01

    When landfills are closed, they must be rehabilitated in accordance with the site redevelopment plan. Studies have been conducted for the purpose of planting various tree and shrub species on closed compartments. The purpose of growing this biomass is to produce energy. At Machecoul (Loire-Atlantique), a project was implemented in cooperation with many players, including the Horticultural Training College, Veolia Proprete and the intercommunal supervisory board of the Six-Pieces landfill. (authors)

  14. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Civil Engineering Programme, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2013-04-15

    . Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  15. Turning a Liability into an Asset: Landfill Methane Recovery in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Solid waste disposal sites are not often seen as opportunities for energy solutions. The waste that is disposed in open dumps and landfills generates methane and other gases as it decomposes, causing concerns about explosions, odours, and, increasingly, about the contribution of methane to global climate change. However, the liability of landfill gas (LFG) can be turned into an asset. Many countries regularly capture LFG as a strategy to improve landfill safety, generate electricity, reduce greenhouse gas emissions, and to earn carbon emission reduction credits (e.g. 40% for the United States, 25% for Australia). Many projects in developing countries are taking advantage of the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM) to earn carbon credits by capturing and combusting methane (e.g., the Sudokwon Landfill in Republic of South Korea, the Bandeirantes Landfill in Brazil and the Nanjing Tianjingwa Landfill in China). These Landfill Gas to Energy (LFGE) projects provide a valuable service to the environment and a potentially profitable business venture, providing benefits to local and regional communities.

  16. A finite element simulation of biological conversion processes in landfills

    International Nuclear Information System (INIS)

    Robeck, M.; Ricken, T.; Widmann, R.

    2011-01-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

  17. Composition of leachate from old landfills in Denmark

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Christophersen, Mette

    2001-01-01

    smaller landfills by a comprehensive review of the investigations carried out by the counties. In total 106 landfills were selected by criteria avoiding dilution effects. A database was constructed using a standard program. Statistical evaluations showed that the leachate concentrations in general...

  18. Characterization of a heterogeneous landfill using seismic and electrical resistivity data

    NARCIS (Netherlands)

    Konstantaki, L.A.; Ghose, R.; Draganov, D.S.; Diaferia, G.; Heimovaara, T.J.

    2014-01-01

    Understanding the processes occurring inside a landfill is important for improving the treatment of landfills. Irrigation and recirculation of leachate are widely used in landfill treatments. Increasing the efficiency of such treatments requires a detailed understanding of the flow inside the

  19. Migration behavior of Cu and Zn in landfill with different operation modes

    International Nuclear Information System (INIS)

    Long Yuyang; Shen Dongsheng; Wang Hongtao; Lu Wenjing

    2010-01-01

    Cu and Zn were chosen to study the heavy metal migration behavior and mechanism in three simulated landfills with different operation modes, namely conventional landfill (CL), leachate directly recirculated landfill (RL) and leachate pre-treated bioreactor landfill (BL). It showed that Cu and Zn in refuse experienced periodic migration and retention gradually during decomposition, and the variation of Cu(II) and Zn(II) in leachate correspondingly reflected the releasing behavior of Cu and Zn in landfill refuse at different stabilization stages. Except for their accumulated leaching amounts, Cu(II) and Zn(II) concentrations in leachate from landfills with different operation modes had no significant difference. The accumulated leaching amounts of Cu and Zn from CL showed exponential increase, while those of RL and BL showed exponential decay. The operation of bioreactor landfill with leachate recirculation can obviously attenuate the heavy metal leaching than conventional operation. The introduction of methanogenic reactor (MR) in bioreactor landfill can further promote the immobilization of heavy metal in refuse than leachate recirculation directly.

  20. Municipal landfill leachates: A significant source for new and emerging pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, Trine, E-mail: Trine.Eggen@bioforsk.no [Bioforsk, Vest Saerheim, Norwegian Institute for Agricultural and Environmental Research, Postveien 213, N-4353 Klepp st. (Norway); Moeder, Monika [Helmholtz Centre for Environmental Research UFZ, Department of Analytical Chemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Arukwe, Augustine [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway)

    2010-10-01

    Landfills have historically remained the most common methods of organized waste disposal and still remain so in many regions of the world. Thus, they may contain wastes resulting from several decades of disposal and decomposition with subsequent release of organic compounds that may have environmental, wildlife and human health consequences. Products containing different types of additives with unique beneficial improvement properties are in daily use. However, when these products are decomposed, additives are release into the environment, some of which have been shown to have negative environmental impacts, resulting in the ban or at least restricted application of some chemicals. New and emerging compounds are continuously discovered in the environment. Herein, we report qualitative and quantitative data on the occurrence of new and emerging compounds with increasing environmental and public health concern in water- and particle phase of landfill leachates. Under normal environmental conditions, several of these chemicals are persistent high-volume products. Identified chemicals in the leachates at nanogram (ng) or microgram ({mu}g) per liter levels include - chlorinated alkylphosphates such as tris(1-chloro-2-propyl) phosphate (TCPP), N-butyl benzensulfonamide (NBBS), the insect repellent diethyl toluamide (DEET) and personal care products such as the non-steroidal anti-inflammatory drug ibuprofen and polycyclic musk compounds. Among new and emerging contaminants, perfluorinated compounds (PFCs) were measured in the water phase at concentrations up to 6231 ng/L. Compared with the other chemicals, PFCs were primarily distributed in water phase. An effective removal method for PFCs and other polar and persistent compounds from landfill leachates has been a major challenge, since commonly used treatment technologies are based on aeration and sedimentation. Thus, the present study has shown that municipal landfill leachates may represent a significant source of

  1. Municipal landfill leachates: A significant source for new and emerging pollutants

    International Nuclear Information System (INIS)

    Eggen, Trine; Moeder, Monika; Arukwe, Augustine

    2010-01-01

    Landfills have historically remained the most common methods of organized waste disposal and still remain so in many regions of the world. Thus, they may contain wastes resulting from several decades of disposal and decomposition with subsequent release of organic compounds that may have environmental, wildlife and human health consequences. Products containing different types of additives with unique beneficial improvement properties are in daily use. However, when these products are decomposed, additives are release into the environment, some of which have been shown to have negative environmental impacts, resulting in the ban or at least restricted application of some chemicals. New and emerging compounds are continuously discovered in the environment. Herein, we report qualitative and quantitative data on the occurrence of new and emerging compounds with increasing environmental and public health concern in water- and particle phase of landfill leachates. Under normal environmental conditions, several of these chemicals are persistent high-volume products. Identified chemicals in the leachates at nanogram (ng) or microgram (μg) per liter levels include - chlorinated alkylphosphates such as tris(1-chloro-2-propyl) phosphate (TCPP), N-butyl benzensulfonamide (NBBS), the insect repellent diethyl toluamide (DEET) and personal care products such as the non-steroidal anti-inflammatory drug ibuprofen and polycyclic musk compounds. Among new and emerging contaminants, perfluorinated compounds (PFCs) were measured in the water phase at concentrations up to 6231 ng/L. Compared with the other chemicals, PFCs were primarily distributed in water phase. An effective removal method for PFCs and other polar and persistent compounds from landfill leachates has been a major challenge, since commonly used treatment technologies are based on aeration and sedimentation. Thus, the present study has shown that municipal landfill leachates may represent a significant source of

  2. Field studies of engineered barriers for closure of low level radioactive waste landfills at Los Alamos, New Mexico, USA

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

    1993-01-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated water flow data logging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system. Field data is presented to show the effects of slope and slope length on the performance of each landfill cover design for the first 15 months of this field experiment

  3. Radiological consequences of proposed landfilling of low-level radioactive waste

    International Nuclear Information System (INIS)

    Drake, P.

    1991-01-01

    A proposal for landfilling of low-level radioactive waste (100 GBq in 10 000 m 3 ) at Ringhals Nuclear Power Plants was sent to the Swedish Radiation Protection Institute (SRPI) in 1989. In 1990, slight changes were made to the proposal to overcome the conventional risks of landfilling. In the proposed method, most of the low-level wastes is compacted and put into sealed plastic packages. The waste is then placed on a sand-moraine bed above a level-blasted rock surface. The area above and between the waste packages is filled with a sand-seashell mixture for pH adjustment of any waster infiltrating into the site. The whole deposit is covered with a least 50 cm of moraine in order to attenuate most of the radiation form the waste and to prevent rainwater from reaching the waste. Downstream from the deposit, there is a retention bed made of seashells and seaweed. Any small quantities of water from the deposit passing through the retention bed, as well as rainwater, will continue out to the sea. Use of this method will most probably not lead to an increase in the radiation dose to people outside the site. In the rather improbable case of intrusion into the deposit after 50 years, a maximum dose of 10 μSv per year would be received. If all the radioactivity were to be transported to the sea in one year, as a results of the breakdown of all the barrier, an individual eating fish caught in the vicinity of the site would receive less than 25 μSv during the following year. In the worst case, if the waste ignites prior to, or during landfilling, individuals living at a distance of 1 km from the fire could receive a dose of less than 20 μSv. (au)

  4. Potential tree species for use in the restoration of unsanitary landfills.

    Science.gov (United States)

    Kim, Kee Dae; Lee, Eun Ju

    2005-07-01

    Given that they represent the most economical option for disposing of refuse, waste landfills are widespread in urban areas. However, landfills generate air and water pollution and require restoration for landscape development. A number of unsanitary waste landfills have caused severe environmental problems in developing countries. This study aimed to investigate the colonization status of different tree species on waste landfills to assess their potential for restoring unsanitary landfills in South Korea. Plot surveys were conducted using 10 x 10-m quadrats at seven waste landfill sites: Bunsuri, Dugiri, Hasanundong, Gomaeri, Kyongseodong, Mojeonri, and Shindaedong. We determined the height, diameter at breast height (DBH), and number of tree species in the plots, and enumerated all saplings landfills, we measured the distance from the presumed mother plant (i.e., the tallest black locust in a patch), height, and DBH of all individuals in black locust patches to determine patch structure. Robinia pseudoacacia, Salix koreensis, and Populus sieboldii formed canopy layers in the waste landfills. The basal area of black locust was 1.51 m(2)/ha, and this species had the highest number of saplings among all tree species. The diameter of the black locust patches ranged from 3.71 to 11.29 m. As the patch diameter increased, the number of regenerated saplings also tended to increase, albeit not significantly. Black locust invaded via bud banks and spread clonally in a concentric pattern across the landfills. This species grew well in the dry habitat of the landfills, and its growth rate was very high. Furthermore, black locust has the ability to fix nitrogen symbiotically; it is therefore considered a well-adapted species for waste landfills. Eleven woody species were selected for screening: Acer palmatum, Albizzia julibrissin, Buxus microphylla var. koreana, Ginkgo biloba, Hibiscus syriacus, Koelreuteria paniculata, Ligustrum obtusifolium, Liriodendron tulipifera, Pinus

  5. Landfill operation and waste management procedures in the reduction of methane and leachate pollutant emissions from municipal solid waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, J.

    2002-07-01

    The objective of the present research was to find ways of minimising emissions from municipal solid waste (MSW) landfills by means of laboratory experiments. During anaerobic incubation for 237 days, the grey waste components produced between 120 and 320 m{sup 3}CH{sub 4} tTS{sup -1} and between 0.32 and 3.5 kg NH{sub 4}-N tTS{sup -1} and the first-order rate constant of degradation ranged from 0.021 and 0.058 d{sup -1}. High amounts of COD and NH{sub 4}-N were observed in the leachate of grey waste in all the procedures tested during lysimeter experiments lasting 573 days. In the 10- year-old landfilled MSW, a high rate of methanisation was achieved with rainwater addition and leachate recirculation over 538 days, whereas initially pre-wetted grey waste and landfilled MSW were rapidly acidified, thus releasing a high amount of COD into the leachate. In batch assays, the grey waste produced a methane potential amounting to 70-85 % of the total methane potential of the grey waste plus putrescibles. In low moisture conditions, i.e. below 55%, methane production was delayed in the old landfill waste and prevented in the grey waste. In the emission potential study with five waste types, putrescibles produced 410 m{sup 3}CH{sub 4} tTS{sup -1} and 3.6 kgNH{sub 4}-N tTS{sup -1}, whereas composted putrescibles produced 41 m{sup 3}CH{sub 4} tVS{sup -1}, and 2.0 kgNH{sub 4}-N tTS{sup -1}. The remains of putrescibles probably caused the leaching potential of 2.1 kgNH{sub 4}-N tTS{sup -1} in the grey waste. Aeration for 51 days in lysimeters reduced the CH{sub 4} potential of putrescibles by more than 68 % and of the lysimeter landfilled grey waste by 50 %, indicating the potential of aeration for CH4 emission reduction. Nitrogen removal of landfill leachate was studied in the laboratory as well as on-site. Over 90 % nitrification of leachate was obtained with loading rates between 100 and 130 mgNH{sub 4}-N l{sup -1} d-1 at 25 deg C. Nitrified leachate was denitrified with a

  6. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Kass, Michael D [ORNL; FINNEY, Charles E A [ORNL; Lewis, Samuel [Oak Ridge National Laboratory (ORNL); Kaul, Brian C [ORNL; Besmann, Theodore M [ORNL; Thomas, John F [ORNL; Rogers, Hiram [ORNL; Sepaniak, Michael [University of Tennessee, Knoxville (UTK)

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  7. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    Science.gov (United States)

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  8. Distribution of Escherichia Coli as Soil Pollutant around Antang Landfills

    Science.gov (United States)

    Artiningsih, Andi; Zubair, Hazairin; Imran, A. M.; Widodo, Sri

    2018-03-01

    Tamangapa Antang Landfill locates around the residential area and faces an air and water pollution due to an open dumping system in its operation. The system arises a potential pollution in air, water and soil. Sampling was done surround the landfill in two parts, parallel and perpendicular to the ground water flow. This study shows the abundance of E. coli bacteria in soil around the Antang Landfills at depth of 10 to 20 cm (93x105 cfu/gr of soil) in the direction of groundwater flow. While in other locations the E. coli bacteria is not detected. The abundance of E. coli bacteria is a conjunction factor from landfill and human activities surround the area. The absence of E. coli bacteria in other location highly interpreted that the landfill is the major contributor of pollutant.

  9. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution

  10. Landfills and the waste act implementation - what has changed?

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-10-01

    Full Text Available have been exhausted, including waste minimisation, re- use, reduce, recycling or treatment to reduce the volumes and risk associated with waste going to landfill. Implementation of the waste management hierarchy should therefore translate into smaller... volumes of low hazard, non-recyclable waste being disposed of at landfills. 3. Waste Regulations Section 69 of the Waste Act (RSA, 2008) lists a number of regulations that could have an impact on landfilling in South Africa, if developed...

  11. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels

    International Nuclear Information System (INIS)

    Cyrs, William D.; Avens, Heather J.; Capshaw, Zachary A.; Kingsbury, Robert A.; Sahmel, Jennifer; Tvermoes, Brooke E.

    2014-01-01

    Grid-connected solar photovoltaic (PV) power is currently one of the fastest growing power-generation technologies in the world. While PV technologies provide the environmental benefit of zero emissions during use, the use of heavy metals in thin-film PV cells raises important health and environmental concerns regarding the end-of-life disposal of PV panels. To date, there is no published quantitative assessment of the potential human health risk due to cadmium leaching from cadmium telluride (CdTe) PV panels disposed in a landfill. Thus, we used a screening-level risk assessment tool to estimate possible human health risk associated with disposal of CdTe panels into landfills. In addition, we conducted a literature review of potential cadmium release from the recycling process in order to contrast the potential health risks from PV panel disposal in landfills to those from PV panel recycling. Based on the results of our literature review, a meaningful risk comparison cannot be performed at this time. Based on the human health risk estimates generated for PV panel disposal, our assessment indicated that landfill disposal of CdTe panels does not pose a human health hazard at current production volumes, although our results pointed to the importance of CdTe PV panel end-of-life management. - Highlights: • Analysis of possible human health risk posed by disposal of CdTe panels into landfills. • Qualitative comparison of risks associated with landfill disposal and recycling of CdTe panels. • Landfill disposal of CdTe panels does not pose a human health hazard at current production volumes. • There could be potential risks associated with recycling if not properly managed. • Factors other than concerns over toxic substances will likely drive the decisions of how to manage end-of-life PV panels

  12. Consolidation of the landfill stabilization and contaminant plumes focus areas

    International Nuclear Information System (INIS)

    Brown, J.P.; Wright, J.; Chamberlain, G.S.

    1996-01-01

    The Assistant Secretary of the Office of Environmental Management (EM) on January 25, 1994, formally established five focus areas to implement A New Approach to Environmental Research and Technology Development at the U. S. Department of Energy (DOE) - Action Plan. The goal of this new approach was to conduct a research and technology development program that is focused on overcoming the major obstacles to cleaning up DOE sites and ensuring that the best talent within the Department and the national science communities is used. Two of the five focus areas established were Landfill Stabilization Focus Area (LSFA) and Contaminant Plumes Containment and Remediation Focus Area (PFA), which were located at the Savannah River Operations Office (SR)

  13. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... landfill emissions. 62.14353 Section 62.14353 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  14. Spreading of Groundwater Contamined by Leached in the Surrounding Area of Piyungan Landfill Bantul District, Yogyakarta Province

    Directory of Open Access Journals (Sweden)

    J Sartohadi

    2017-07-01

    Full Text Available The objectives of this research are: (1 to study the characteristics of aquifer, distribution and chemical types of groundwater in the research area; (2 to measure the consentration of major elements (HC03-, Cl-, S042-, Ca2+, Mg2+, Na+, K+ and minor elements (S2-, NH4+ as indicators of leached contamination in the groundwater; and (3 to establish the spreading of contamined groundwater by leached. The grid sampling method was applied in this research. The grid dimension is 1 cm x 1 cm measured in the 1:25000 scale of Indonesian Topographic Map. The groundwater samples were taken randomly within the grid. Not the whole study area covered by the map was grided but only the surrounding area of Piyungan Landfill and the area lower than Piyungan landfill were grided. The groundwater samples were taken during the rainy season because during the rainy season there were more leached produced from Piyungan Landfill. The groundwater samples were examined their physical and chemical qualities using the legal standard quality in Yogyakarta Province. Spatial analysis using maps and graphics were applied to examine the spreading of contimined groundwater by leached. The spreading of unconfined groundwater in the study area was not equal distributed but it seems to be controlled by the landforms. There were an increasing elements content of Cl-, Ca2+, Mg2+ and HCO3-, as well as dissolved oxygen, NO3- and S2- in the groundwater contamined by leached. The zonation of the spreading of groundwater contamined by leached was categorized into three class, i.e., central (location of landfill, well number 1 0, transisional (well number: 11, 12, 13, 15, and primary (well number: 8, 14, 16, 17, 25, 26 zones. The zonation of groundwater matched with the analysis of groundwater quality by the distance from the Piyungan Landfill.

  15. Offsite demonstrations for MWLID technologies

    International Nuclear Information System (INIS)

    Williams, C.; Gruebel, R.

    1995-01-01

    The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner trademark/PLUME, Hybrid Directional Drilling, Seamist trademark/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals

  16. Estimating historical landfill quantities to predict methane emissions

    NARCIS (Netherlands)

    Lyons, S.; Murphy, L.; Tol, R.S.J.

    2010-01-01

    There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste " data" and evaluate the impact on methane emissions. We

  17. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    Science.gov (United States)

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Heavy Metal Concentration in Soil at Sg. Kembong Landfill, Bangi, Selangor

    International Nuclear Information System (INIS)

    Natrah Mohamed; Umar Hamzah; Sahibin Abd Rahim

    2009-01-01

    The distribution of heavy metals in soils, physico-chemical properties of soils and 2D geo electrical resistivity survey at Sungai Kembong sanitary landfill were analyzed in order to investigate the effect of heavy metals in the leachate around the dumping site. A total of 30 soil samples were collected for physico-chemical and heavy metals analysis by hand auger from a depth of about 60 cm in the ground within the covered inactive landfill. Geo electrical resistivity survey was carried out using Wenner electrode array and 2-D imaging technique. Electrode spacing used was 5 m along 300 m line. The soil samples contained about 25 - 75 % of sand, 4 - 40 % of clay and 19 - 67 % of silt. Results of heavy metals analysis showed that the concentrations of Cu, Pb and Cr were higher than the background level while other metals such as Ni, Co, Cd, Zn and Fe were lower than the background values. The range of Cu concentrations is 2-326 μg/ g while Pb and Cr are 3-78 μg/ g and 4-76 μg/ g, respectively. The range of resistivity based on 2D inverse model along the survey line is from 5 Ωm to 105 Ωm. Resistivity values of 3 to 5 Ωm were interpreted as representing leachate plume. The width of leachate plumes was between 20 to 100 m. The average value of CEC is from 1.7 to 3.8 meq/ 100 and the pH value ranged from 4 to 7. The electrical conductivity is in between 1910 to 5525 μS/cm. The organic matter in the soil is ranged from 0.3 to 5.6 %. Muscovite, quartz, kaolinite and orthoclase minerals were found dominant in the XRD patterns of the samples. These minerals were interpreted as coming from the covering metasediments soil taken from the surrounding areas. These results showed that the soil cover used in the dumping site managed to control the heavy metals from infiltrating into the surrounding areas. (author)

  19. A seismic processing approach dedicated to quantitative characterization of landfill heterogeneities

    NARCIS (Netherlands)

    Konstantaki, L.A.; Ghose, R.; Draganov, D.S.; Diaferia, G.; Heimovaara, T.J.

    2014-01-01

    The ability to image and quantify the heterogeneity in municipal landfills is crucial for improving the landfill treatment methods, for predicting the behaviour of processes that take place inside the landfills and hence, for estimating the after-care period. Our aim is to image the flow paths

  20. Location analysis of the landfill of waste in Loznica

    OpenAIRE

    Božović Dejan

    2010-01-01

    The subject of this paper regards the landfill of municipal and industrial waste in Loznica, actually its location and environmental hazards. The research was carried out in order to show the consequences of careless and incomplete evaluation of the conditions for a locating of a landfill in the example of Loznica. Besides the fact that it is located at the floodplain of the Drina River, the landfill is normally located to the direction of predominant wind, which has a significant influence o...

  1. Phytoremediation of landfill leachate

    International Nuclear Information System (INIS)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m 3 ha -1 yr -1 . However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios

  2. Phytoremediation of landfill leachate.

    Science.gov (United States)

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  3. A finite element simulation of biological conversion processes in landfills.

    Science.gov (United States)

    Robeck, M; Ricken, T; Widmann, R

    2011-04-01

    Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Cost benefit analysis for remediation of a nuclear industry landfill

    International Nuclear Information System (INIS)

    Parker, Tom; Hardisty, Paul; Dennis, Frank; Liddiard, Mark; McClelland, Paul

    2006-01-01

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure

  5. Cost benefit analysis for remediation of a nuclear industry landfill

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Tom; Hardisty, Paul [WorleyParsons Komex, Bristol (United Kingdom); Dennis, Frank; Liddiard, Mark; McClelland, Paul [UKAEA, Dounreay (United Kingdom)

    2006-09-15

    An old landfill site, licensed to receive inert construction waste, is situated on the top of hard rock cliffs adjacent to the sea at the Dounreay nuclear facility in Scotland. During restoration and investigation work at the landfill, radioactively contaminated material and asbestos was identified. UKAEA subsequently investigated the feasibility of remediating the landfill with the aim of removing any remaining radioactive or otherwise-contaminated material. The cost of landfill remediation would be considerable, making Cost Benefit Analysis (CBA) an ideal tool for assessing remediation options. The overall conclusion of the CBA, from a remedial decision making point of view, is that the remediation objective for the landfill should be to reduce any impacts to the current receptors through a comprehensive pathway control scheme. This would be considerably less expensive than even a limited source removal approach. Aggressive source removal objectives are not likely to be economic, even under the most conservative assumptions. A natural monitored attenuation approach will not be economic. All remediation options are considered assuming compliance with the existing regulatory requirements to monitor and cap the landfill before and after closure.

  6. The leaching of lead from lead-based paint in landfill environments.

    Science.gov (United States)

    Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy

    2008-08-30

    Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.

  7. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  8. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Science.gov (United States)

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity less...

  9. Final construction quality assurance report for the Y-12 Industrial Landfill V, Area 2, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bessom, W.H.

    1996-11-01

    Lockheed Martin Energy Systems (LMES) has finished construction of Area 2 of the Y-12 Plant Industrial Landfill (ILF-V), classified as a Class 2 Landfill. This final Construction Quality Assurance (CQA) Report provides documentation that Area 2 was constructed in substantial compliance with the Tennessee Department of Environment and Conservation (TDEC) approved design, as indicated and specified in the permit drawings, approved changes, and specifications. This report applies specifically to the Area 2 excavation, compacted clay soil liner, geomembrane liner, granular leachate collection layer, protective soil cover, and the leachate collection system. An ''As-Built'' survey was performed and is included. The drawings provide horizontal and vertical information for Area 2, the anchor trench, the leachate collection pipe, the temporary access road, and cross-sections of Area 2. This report provides documentation of the following items: the excavation activities of Area 2; the maximum recompacted coefficient of hydraulic conductivity or permeability of the soil is less than 1 x 10 -7 centimeters per second (cm/sec); the total thickness of the compacted clay soil liner equals a minimum of 2 feet; a 40 mil impermeable geomembrane (polypropylene) flexible membrane liner (FML) and 16 oz. geotextile fabric was placed in direct contact with the compacted clay soil liner; a 12 inch granular leachate collection layer was installed and covered with a 8 oz. geotextile separation fabric; the installation of the leachate collection piping; and the two foot protective clay soil cover

  10. Proceedings of the environmental technology through industry partnership conference. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, V.P.

    1995-10-01

    The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of METC. The focus of this conference was also to address the accomplishments and barriers affecting private sector, and lay the groundwork for future technology development initiatives and opportunities. 26 presentations were presented in: Mixed waste characterization, treatment, and disposal; Contaminant plume containment and remediation; and Decontamination and decommissioning. In addition there were 10 Focus Area presentations, 31 Poster papers covering all Focus Areas, and two panel discussions on: Mixed waste characterization, treatment, and disposal issues; and the Application, evaluation, and acceptance of in-situ and ex-situ plume remediation technologies. Volume 2 contains 16 papers in a poster session and 8 papers in the contaminant plume containment and remediation and landfill stabilization Focus Areas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  11. Simultaneous phosphate and CODcr removals for landfill leachate using modified honeycomb cinders as an adsorbent

    International Nuclear Information System (INIS)

    Yue Xiu; Li Xiaoming; Wang Dongbo; Shen Tingting; Liu Xian; Yang Qi; Zeng Guangming; Liao Dexiang

    2011-01-01

    In this study, honeycomb cinders were employed to remove phosphate and Chemical Oxygen Demand (COD cr ) simultaneously for landfill leachate treatment. Operating conditions of honeycomb cinders pretreatment, pH, temperature, honeycomb cinders dosage, reaction time, and settling time, were evaluated and optimized. The results revealed that the removal efficiencies of both phosphate and COD cr could be increased up to 99.9% and 66.7% under the optimal conditions, respectively. Moreover, the structures of raw/modified honeycomb cinders and resulting precipitates were detected by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometers (EDS) analysis and X-ray Diffraction (XRD). The results suggested that the adsorption method using honeycomb cinders might be an effective strategy as a pretreatment technology for landfill leachate treatment.

  12. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron

    International Nuclear Information System (INIS)

    Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping

    2012-01-01

    Highlights: ► Specifically-designed SIME reactor for treatment of mature landfill leachate. ► Excellent removal efficiencies of COD (86.1%), color (95.3%), and HA (81.8%). ► Combination effect of IME without aeration and IME with aeration. ► Optimal pH of 5, Fe/C of 1:1, gas flow rate of 80 L h −1 , and H 2 O 2 of 100 mg L −1 . - Abstract: A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p 2 O 2 , were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate.

  13. Bioreactor tests preliminary to landfill in situ aeration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Raga, Roberto, E-mail: roberto.raga@unipd.it [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy); Cossu, Raffaello [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy)

    2013-04-15

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.

  14. Bioreactor tests preliminary to landfill in situ aeration: A case study

    International Nuclear Information System (INIS)

    Raga, Roberto; Cossu, Raffaello

    2013-01-01

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH 4 + ; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors

  15. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    International Nuclear Information System (INIS)

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-01-01

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m 2 (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site

  16. Radioactivity and elemental analysis in the Ruseifa municipal landfill, Jordan

    International Nuclear Information System (INIS)

    Al-Jundi, J.; Al-Tarazi, E.

    2008-01-01

    In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36 μSv a -1 in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91 μSv a -1 . The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70 μSv a -1 . Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn = 2.52 and Ba = 1.33; old landfill site: Cr = 1.88, Zn = 3.64, and Ba = 1.26; and recent landfill site: Cr = 1.57, Zn = 2.19, and Ba = 1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste

  17. Application of environmental isotopes to ch