WorldWideScience

Sample records for landfill bioreactor design

  1. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Project XL Bioreactor Landfill... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Design Criteria § 258.41 Project XL Bioreactor Landfill Projects. (a) Buncombe County, North Carolina Project XL Bioreactor Landfill Requirements...

  2. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  3. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    Science.gov (United States)

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  4. Landfill design in Serbia

    Directory of Open Access Journals (Sweden)

    Karanac Milica

    2015-01-01

    Full Text Available Waste disposal is an important element of integrated waste management. In order to dispose of waste that is free of environmental risk, the proper design of landfills during their construction and/or closure is necessary. The first section of the paper presents the current state of landfills in Serbia, the second deals with problems in project design of landfills, especially in regard to their: a program of waste disposal; b impermeable layer; c leaching collection and treatment; and d gas collection and treatment. Analysis shows that many modern landfills in Serbia do not meet environmental protection requirements, therefore, they need reconstruction. All existing landfills owned by municipalities, as well as illegal dump sites, should be adequately closed. This paper presents the guidelines for successful landfill design which are to serve to meet the requirements and recommendations of Serbian and European regulations. Sound design of landfill technological elements should insure full sustainability of landfills in Serbia.

  5. Nitrogen removal in the bioreactor landfill system with intermittent aeration at the top of landfilled waste

    International Nuclear Information System (INIS)

    He Ruo; Shen Dongsheng

    2006-01-01

    High ammonia concentration of recycled landfill leachate makes it very difficult to treat. In this work, a vertical aerobic/anoxic/anaerobic lab-scale bioreactor landfill system, which was constructed by intermittent aeration at the top of landfilled waste, as a bioreactor for in situ nitrogen removal was investigated during waste stabilization. Intermittent aeration at the top of landfilled waste might stimulate the growth of nitrifying bacteria and denitrifying bacteria in the top and middle layers of waste. The nitrifying bacteria population for the landfill bioreactor with intermittent aeration system reached between10 6 and 10 8 cells/dry g waste, although it decreased 2 orders of magnitude on day 30, due to the inhibitory effect of the acid environment and high organic matter in the landfilled waste. The denitrifying bacteria population increased by between 4 and 13 orders of magnitude compared with conventional anaerobic landfilled waste layers. Leachate NO 3 - -N concentration was very low in both two experimental landfill reactors. After 105 days operation, leachate NH 4 + -N and TN concentrations for the landfill reactor with intermittent aeration system dropped to 186 and 289 mg/l, respectively, while they were still kept above 1000 mg/l for the landfill reactor without intermittent aerobic system. In addition, there is an increase in the rate of waste stabilization as well as an increase of 12% in the total waste settlement for the landfill reactor with intermittent aeration system

  6. MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL

    Science.gov (United States)

    This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...

  7. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  8. Forecasting the settlement of a bioreactor landfill based on gas pressure changes.

    Science.gov (United States)

    Qiu, Gang; Li, Liang; Sun, Hongjun

    2013-10-01

    In order to study the influence of settlement under gas pressure in bioreactor landfill, the landfill is simplified as a one-way gas seepage field, combining Darcy's Law, the gas equation of state, and the principle of effective stress and fluid dynamics of porous media theory. First assume that the bioreactor landfill leachate is fully recharged on the basis of gas mass conservation, then according to the changes in gas pressure (inside the landfill and surrounding atmosphere) during the gas leakage time and settlement in the landfill, establish a numerical model of bioreactor landfill settlement under the action of the gas pressure, and use the finite difference method to solve it. Through a case study, the model's improved prediction of the settlement of bioreactor landfill is demonstrated.

  9. Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate.

    Science.gov (United States)

    Peng, Wei; Pivato, Alberto; Lavagnolo, Maria Cristina; Raga, Roberto

    2018-04-01

    Anaerobic digestion of organics is one of the most used solution to gain renewable energy from waste and the final product, the digestate, still rich in putrescible components and nutrients, is mainly considered for reutilization (in land use) as a bio-fertilizer or a compost after its treatment. Alternative approaches are recommended in situations where conventional digestate management practices are not suitable. Aim of this study was to develop an alternative option to use digestate to enhance nitrified leachate treatment through a digestate layer in a landfill bioreactor. Two identical landfill columns (Ra and Rb) filled with the same solid digestate were set and nitrified leachate was used as influent. Ra ceased after 75 day's operation to get solid samples and calculate the C/N mass balance while Rb was operated for 132 days. Every two or three days, effluent from the columns were discarded and the columns were refilled with nitrified leachate (average N-NO 3 - concentration = 1,438 mg-N/L). N-NO 3 - removal efficiency of 94.7% and N-NO 3 - removal capacity of 19.2 mg N-NO 3 - /gTS-digestate were achieved after 75 days operation in Ra. Prolonging the operation to 132 days in Rb, N-NO 3 - removal efficiency and N-NO 3 - removal capacity were 72.5% and 33.1 mg N-NO 3 - /gTS-digestate, respectively. The experimental analysis of the process suggested that 85.4% of nitrate removal could be attributed to denitrification while the contribution percentage of adsorption was 14.6%. These results suggest that those solid digestates not for agricultural or land use, could be used in landfill bioreactors to remove the nitrogen from old landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pilot-scale experiment on anaerobic bioreactor landfills in China

    International Nuclear Information System (INIS)

    Jiang, Jianguo; Yang, Guodong; Deng, Zhou; Huang, Yunfeng; Huang, Zhonglin; Feng, Xiangming; Zhou, Shengyong; Zhang, Chaoping

    2007-01-01

    Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2 m 3 leachate and 0.1 m 3 tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended

  11. Applicability of anaerobic membrane bioreactors for landfill leachate treatment: Review and opportunity

    Science.gov (United States)

    Abuabdou, Salahaldin M. A.; Bashir, Mohammed J. K.; Aun, Ng Choon; Sethupathi, Sumathi

    2018-04-01

    Sanitary landfilling is nowadays the most common way to eliminate municipal solid wastes (MSW). The resulted landfill leachate is a highly contaminated liquid. Even small quantities of this high-strength leachate can cause serious damage to surface and ground water receptors. Thus, these leachates must be appropriately treated before being discharged into the environment. In the last years, anaerobic membrane bioreactor (AnMBR) technology is being considered as a very attractive alternative for leachate treatment due to the significant advantages. In the last decade, many studies have been conducted in which various types of anaerobic reactors were used in combination with membranes. This paper is a review of the potential of anaerobic membrane bioreactor technology for municipal landfill leachate treatment. A critical review in AnMBR performance interesting landfill leachate in lab scale is also done. In addition, the review discusses the impact of the various factors on both biological and filtration performances of anaerobic membrane bioreactors.

  12. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    Science.gov (United States)

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-12-06

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  13. Impermeable layers in landfill design

    Directory of Open Access Journals (Sweden)

    Karanac Milica

    2013-01-01

    Full Text Available Landfills are complex systems which could potentially contaminate the environment. It should be prevented by providing impermeability during the landfill design. In that aim related regulations should be followed and adequate materials that provide impermeability should be used. The first part of the paper presents review of the current regulations, interpretations, and recommendations from U.S., EU and Republic of Serbia. Knowing that the Serbian regulation should fully follow related European Directive, in analyses some inadequate formulations and terms were observed related to the Directive Annex I, 3.2. Request of the Regulation that deals with the bottom of the landfill leakage is formulated differently than in Directive as well. Mentioned problems enable some design solutions which are not among the best available techniques. In the second part the paper presents comparative analysis of possible alternatives in impermeable layer design, both for the bottom and landfill cover. Some materials like clay, CCL, GCL might not be able to satisfy prescribed requirements. The longest lifetime and the lowest coefficient of permeability, as well as excellent mechanical, chemical and thermal stability, show the mixture of sand, bentonite and polymers (PEBSM. [Projekat Ministarstva nauke Republike Srbije, br. TR 34009

  14. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  15. Geosynthetic applications in landfill design

    International Nuclear Information System (INIS)

    Alshunnar, I.S.; Afifi, S.S.; Tiseo, B.

    1996-01-01

    Landfills are designed to contain waste and to provide protection against discharges of leachate into the environment. Main components of a landfill include a liner system, a leachate collection system, and a cover system. Traditional designs have typically incorporated clay soils for containment and sands with embedded piping for leachate collection. As a result of recent advances in design, geosynthetic materials are now widely used for components. While these materials present cost and feasibility advantages, they also pose significant challenges in stability evaluations, handing during installation, and quality assurance. This paper presents an overview of applications of geosynthetics in design and construction, including: Advantages, disadvantages, design criteria, possible economic benefits of various systems, and related construction considerations. 2 figs., 1 tab

  16. Bioreactor tests preliminary to landfill in situ aeration: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Raga, Roberto, E-mail: roberto.raga@unipd.it [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy); Cossu, Raffaello [ICEA Department, University of Padova. Via Marzolo, 9, 35131 Padova (Italy)

    2013-04-15

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH{sub 4}{sup +}; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors.

  17. Bioreactor tests preliminary to landfill in situ aeration: A case study

    International Nuclear Information System (INIS)

    Raga, Roberto; Cossu, Raffaello

    2013-01-01

    Highlights: ► Carbon and nitrogen mass balances in aerated landfill simulation reactors. ► Waste stabilization in aerated landfill simulation reactors. ► Effect of temperature on biodegradation processes in aerated landfills. - Abstract: Lab scale tests in bioreactor were carried out in the framework of the characterization studies of a landfill where in situ aeration (possibly followed by landfill mining) had been proposed as part of the novel waste management strategy in a region in northern Italy. The tests were run to monitor the effects produced by aerobic conditions at different temperatures on waste sampled at different depths in the landfill, with focus on the carbon and nitrogen conversion during aeration. Temperatures ranging from 35 to 45 °C were chosen, in order to evaluate possible inhibition of biodegradation processes (namely nitrification) at 45 °C in the landfill. The results obtained showed positive effects of the aeration on leachate quality and a significant reduction of waste biodegradability. Although a delay of biodegradation processes was observed in the reactor run at 45 °C, biodegradation rates increased after 2 months of aeration, providing very low values of the relevant parameters (as in the other aerated reactors) by the end of the study. Mass balances were carried out for TOC and N-NH 4 + ; the findings obtained were encouraging and provided evidence of the effectiveness of carbon and nitrogen conversion processes in the aerated landfill simulation reactors

  18. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  19. Impact of vent pipe diameter on characteristics of waste degradation in semi-aerobic bioreactor landfill.

    Science.gov (United States)

    Jiang, Guobin; Liu, Dan; Chen, Weiming; Ye, Zhicheng; Liu, Hong; Li, Qibin

    2017-10-01

    The evolution mechanism of a vent pipe diameter on a waste-stabilization process in semi-aerobic bioreactor landfills was analyzed from the organic-matter concentration, biodegradability, spectral characteristics of dissolved organic matter, correlations and principal-component analysis. Waste samples were collected at different distances from the vent pipe and from different landfill layers in semi-aerobic bioreactor landfills with different vent pipe diameters. An increase in vent pipe diameter favored waste degradation. Waste degradation in landfills can be promoted slightly when the vent pipe diameter increases from 25 to 50 mm. It could be promoted significantly when the vent pipe diameter was increased to 75 mm. The vent pipe diameter is important in waste degradation in the middle layer of landfills. The dissolved organic matter in the waste is composed mainly of long-wave humus (humin), short-wave humus (fulvic acid) and tryptophan. The humification levels of the waste that was located at the center of vent pipes with 25-, 50- and 75-mm diameters were 2.2682, 4.0520 and 7.6419 Raman units, respectively. The appropriate vent pipe diameter for semi-aerobic bioreactor landfills with an 800-mm diameter was 75 mm. The effect of different vent pipe diameters on the degree of waste stabilization is reflected by two main components. Component 1 is related mainly to the content of fulvic acid, biologically degradable material and organic matter. Component 2 is related mainly to the content of tryptophan and humin from the higher vascular plants.

  20. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  1. Bioreactor design and optimization – a future perspective

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2011-01-01

    Bioreactor design and optimisation are essential in translating the experience gained from lab or pilot scale experiments to efficient production processes in industrial scale bioreactors. This article gives a future perspective on bioreactor design and optimisation, where it is foreseen...

  2. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  3. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    International Nuclear Information System (INIS)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2002-01-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report

  4. Leachate pretreatment for enhancing organic matter conversion in landfill bioreactor

    International Nuclear Information System (INIS)

    He Pinjing; Qu Xian; Shao Liming; Li Guojian; Lee Duujong

    2007-01-01

    Direct recycling of leachate from refuse of high food waste content was shown to ineffectively stabilize the refuse. This work aims at evaluating the effects of three pretreatments of leachate on the refuse stabilization efficiency were investigated. Pretreatment of leachate using an anaerobic upflow filtration bioreactor (UFB) or a well-decomposed waste layer could reduce the COD and provide methanogens, both were beneficial to establish early methanogenesis status. Using an aerobic sequential batch reactor (SBR) to pretreat the leachate could reduce its COD to 1000 mg l -1 , but the fully developed methanogenesis phase would be built up in a later stage. The organic matters in the effluent leachate inhibited both the hydrolysis/acidogenesis and the methanogenesis steps in the refuse. With the dilution and acid neutralization effects by the recycled leachate, a favorable methanogenetic environment could be produced from the column's top, which moved downward along, and finally made the breakthrough of the column

  5. Bioreactor design for tendon/ligament engineering.

    Science.gov (United States)

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  6. Bioreactor Design for Tendon/Ligament Engineering

    OpenAIRE

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake; Smith, David W.; Lloyd, David G.; Zheng, Ming H.

    2012-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a s...

  7. Application of anaerobic bioreactor landfilling as an energy production alternative in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Sartaj, M.; Ahmadifar, M. [Isfahan Univ. of Technology (Iran, Islamic Republic of). Dept. of Civil Engineering

    2009-07-01

    Despite increases in recycling, composting, and incineration, landfilling remains the major method for managing municipal solid wastes (MSW) worldwide. The most common problems associated with landfill operation are the generation of leachate and gases. Methane gas is a by-product of MSW landfilling and is the third most important greenhouse gas after water vapor and carbon dioxide. This study investigated the feasibility of using anaerobic bioreactors for methane production from MSW in developing countries. Laboratory scale studies were conducted to investigate the performance of a bioreactor reactor under anaerobic conditions as an alternative waste management strategy and gas production. The reactor was made of a plastic container measuring 0.5 x 0.5 x 1.0 m. MSW was placed into the reactor in layers and compacted to achieve a density of 550 kg/m{sup 3}. Twenty eight litres of leachate was recirculated daily for 157 days. The final chemical oxygen demand (COD) of the leachate reduced from a maximum value of 64900 mg/L to a value of 5300 mg/L, showing a 92 per cent reduction. The average methane concentration in generated gas was 58 per cent and gas generation rate was 90 L/kg of waste on wet basis. It was concluded that anaerobic bioreactor technology with accompanying leachate recirculation performs very well in terms of decomposition of MSW and reduction of COD of the leachate. It also has a considerable potential for methane production which could be used as a source of energy. 10 refs., 2 tabs., 7 figs.

  8. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells.

    Science.gov (United States)

    Abichou, Tarek; Barlaz, Morton A; Green, Roger; Hater, Gary

    2013-10-01

    The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213LMg(-1) (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198LMg(-1) from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10(-8) to 10(-7)ms(-1) which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12LMg(-1), respectively, was similar to the measured settlement of 15% and 5

  9. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  10. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  11. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  13. Denitrification capacity of bioreactors filled with refuse at different landfill ages

    International Nuclear Information System (INIS)

    Chen Yingxu; Wu Songwei; Wu Weixiang; Sun Hua; Ding Ying

    2009-01-01

    The denitrification capacity of refuse at different landfill ages in bioreactor landfill system was studied. Three reactors filled with 1-year-old refuse (R1), 6-year-old refuse (R6) and 11-year-old refuse (R11), respectively, were operated in the experiment. Nitrate solution (1000 mg NO 3 - -N L -1 ) was added into each reactor. The results showed that the reactors were all able to consume nitrate. However, 1-year-old refuse in R1 had both a higher nitrate reduction rate and concentration of N 2 . In addition, vertical differences in nitrate removal along the depth of R1 were observed. The bottom-layer refuse and the middle-layer refuse both showed higher efficiency in nitrate depletion than the top layer. Furthermore, N 2 O accumulation was found in R11 with the concentration up to 19.3% of the released gas. These results suggested that 1-year-old refuse, which was partly degraded, was more suitable to use as denitrification medium.

  14. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells

    Energy Technology Data Exchange (ETDEWEB)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Department of Civil and Environmental Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32311 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Green, Roger; Hater, Gary [Waste Management Inc., Cincinnati, OH 45211 (United States)

    2013-10-15

    Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup −1} (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg{sup −1} from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10{sup −8} to 10{sup −7} m s{sup −1}. - Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg{sup −1} (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg{sup −1} from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit

  15. Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells

    International Nuclear Information System (INIS)

    Abichou, Tarek; Barlaz, Morton A.; Green, Roger; Hater, Gary

    2013-01-01

    Highlights: • The Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg −1 (liters of liquids per metric ton of waste). • The leachate collection system yielded 60, 57 and 198 L Mg −1 from the Retrofit, Control, and As-Built cells. • The head on liner in all cells was below regulatory limits. • Measured moisture content of the waste samples was consistent with that calculated from accumulated liquid by balance. • The in-place saturated hydraulic conductivity of the MSW was calculated to be in the range of 10 −8 to 10 −7 m s −1 . - Abstract: The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg −1 (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg −1 from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80

  16. Alternative treatment for septic tank sludge: co-digestion with municipal solid waste in bioreactor landfill simulators.

    Science.gov (United States)

    Valencia, R; den Hamer, D; Komboi, J; Lubberding, H J; Gijzen, H J

    2009-02-01

    Co-disposal of septic tank sludge had a positive effect on the municipal solid waste (MSW) stabilisation process in Bioreactor Landfill simulators. Co-disposal experiments were carried out using the Bioreactor Landfill approach aiming to solve the environmental problems caused by indiscriminate and inadequate disposal of MSW and especially of septic tank sludge. The simulator receiving septic tank sludge exhibited a 200 days shorter lag-phase as compared to the 350 days required by the control simulator to start the exponential biogas production. Additionally, the simulator with septic sludge apparently retained more moisture (>60% w/w), which enhanced the overall conversion of organic matter hence increasing the biogas production (0.60 m3 biogas kg(-1)VS(converted)) and removal efficiency of 60% for VS from the simulator. Alkaline pH values (pH>8.5) did not inhibit the biogas production; moreover it contributed to reduce partially the negative effects of NH(4)(+) (>2 g L(-1)) due to NH(3) volatilisation thus reducing the nitrogen content of the residues. Associated risks and hazards with septage disposal were practically eliminated as total coliform and faecal coliform contents were reduced by 99% and 100%, respectively at the end of the experiment. These results indicate that co-disposal has two direct benefits, including the safe and environmentally sound disposal of septic tank sludge and an improvement of the overall performance of the Bioreactor Landfill by increasing moisture retention and supplying a more acclimatised bacterial population.

  17. Prediction of COD and NH4+-N Concentrations in Leachate from Lab-scale Landfill Bioreactors Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Zoqi

    2010-06-01

    Full Text Available In this study, we present an Artificial Neural Network (ANN model for predicting COD and NH4+-N concentrations in landfill leachate from lab-scale landfill bioreactors. For this purpose, two different lab-scale systems were modeled. for neural network’s data obtained. In the first system, the leachate from a fresh-waste reactor was drained to a recirculation tank and recycled every two days. In the second, the leachate from a fresh waste landfill reactor was fed through a well-decomposed refuse landfill reactor, while the leachate from a well-decomposed refuse landfill reactor was simultaneously recycled to a fresh waste landfill reactor. The results indicate that leachate NH4+-N and COD concentrations accumulated to a high level in the first system, while. NH4+-N and COD removals were successfully carried out in the second. Also, average removal efficiencies in the second system reached 85% and 34% for COD and NH4+-N, respectively. Finally, the ANN’s results exhibited the success of the model as witnessed by the excellent agreement obtained between measured and predicted values.

  18. Comparative modeling of biological nutrient removal from landfill leachate using a circulating fluidized bed bioreactor (CFBBR).

    Science.gov (United States)

    Eldyasti, Ahmed; Andalib, Mehran; Hafez, Hisham; Nakhla, George; Zhu, Jesse

    2011-03-15

    Steady state operational data from a pilot scale circulating fluidized bed bioreactor (CFBBR) during biological treatment of landfill leachate, at empty bed contact times (EBCTs) of 0.49, and 0.41 d and volumetric nutrients loading rates of 2.2-2.6 kg COD/(m(3)d), 0.7-0.8 kg N/(m(3)d), and 0.014-0.016 kg P/(m(3)d), was used to calibrate and compare developed process models in BioWin(®) and AQUIFAS(®). BioWin(®) and AQUIFAS(®) were both capable of predicting most of the performance parameters such as effluent TKN, NH(4)-N, NO(3)-N, TP, PO(4)-P, TSS, and VSS with an average percentage error (APE) of 0-20%. BioWin(®) underpredicted the effluent BOD and SBOD values for various runs by 80% while AQUIFAS(®) predicted effluent BOD and SBOD with an APE of 50%. Although both calibrated models, confirmed the advantages of the CFBBR technology in treating the leachate of high volumetric loading and low biomass yields due to the long solid retention time (SRT), both BioWin(®) and AQUIFAS(®) predicted the total biomass and SRT of CFBBR based on active biomass only, whereas in the CFBBR runs both active as well as inactive biomass accumulated. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Landfills

    Science.gov (United States)

    To provide information on landfills, including laws/regulations, and technical guidance on municipal solid waste, hazardous waste, industrial, PCBs, and construction and debris landfills. To provide resources for owners and operators of landfills.

  20. Effects of intermittent and continuous aeration on accelerative stabilization and microbial population dynamics in landfill bioreactors.

    Science.gov (United States)

    Sang, Nguyen Nhu; Soda, Satoshi; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko

    2009-10-01

    Performance and microbial population dynamics in landfill bioreactors were investigated in laboratory experiments. Three reactors were operated without aeration (control reactor, CR), with cyclic 6-h aeration and 6-h non-aeration (intermittently aerated reactor, IAR), and with continuous aeration (continuously aerated reactor, CAR). Each reactor was loaded with high-organic solid waste. The performance of IAR was highest among the reactors up to day 90. The respective solid weight, organic matter content, and waste volume on day 90 in the CR, IAR, and CAR were 50.9, 39.1, and 47.5%; 46.5, 29.3 and 35.0%; and 69, 38, and 53% of the initial values. Organic carbon and nitrogen compounds in leachate in the IAR and the CAR showed significant decreases in comparison to those in the CR. The most probable number (MPN) values of fungal 18S rDNA in the CAR and the IAR were higher than those in the CR. Terminal restriction fragment length polymorphism analysis showed that unique and diverse eubacterial and archaeal communities were formed in the IAR. The intermittent aeration strategy was favorable for initiation of solubilization of organic matter by the aerobic fungal populations and the reduction of the acid formation phase. Then the anaerobic H(2)-producing bacteria Clostridium became dominant in the IAR. Sulfate-reducing bacteria, which cannot use acetate/sulfate but which instead use various organics/sulfate as the electron donor/acceptor were also dominant in the IAR. Consequently, Methanosarcinales, which are acetate-utilizing methanogens, became the dominant archaea in the IAR, where high methane production was observed.

  1. Geotechniques of landfill design in Egypt

    International Nuclear Information System (INIS)

    Elleboudy, A.M.

    2002-01-01

    The remarkable pollution and the deteriorating environmental conditions in the capital city and other major cities in Egypt have created serious health problems and had great impact on social and economical development. This situation has urged the government to establish a new ministry for environment. The ministry put a national action plan to overcome all the local environmental problems. Among them, the tremendous amounts of solid wastes that are produced daily by the overpopulated cities used to be dumped in open areas causing a terrible unbearable pollution. The ministry has recently initiated several projects for solid and hazardous waste management and disposal to be executed according to the international standards. The Ministry of Environment has appointed a team of multidisciplinary experts to carry out the environmental impact assessment of site selection and the engineering design of landfills. I was fortunate enough to join the team as a geotechnical consulting engineer to review the design of the proposed landfills from the geotechnical point of view. The criteria for landfill design included the physical size, its proximity and access, topography, geotechnical and geological aspects, surface water, ground water hydrology, and future site development and land use. Several sites have been selected to start the project; in Nasr City, 15th of May City, and Assalam City, which are districts of Cairo, Abu-Zaabal in Kalubia Governrate, Shabramont in Giza, Shawa in Dakahlia, Borg El-Arab near Alexandria, two sites in Monofia, and another one in El-Katamia. The paper presents the studies carried out for site selection, geotechnical design, and the possible impact on the environment of the surrounding areas. The studies also included the hydro-geological conditions and the assessment of the ground water conditions in each site and the potential contamination. Socioeconomic measures and public participation in decision making were also taken into consideration

  2. Landfills

    Data.gov (United States)

    Vermont Center for Geographic Information — This data set defines both current and historic landfills/waste disposal storage sites for the State of Vermont. Historic landfills were identified with the...

  3. Reductive dechlorination of chlorinated solvents in landfills

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wu, C.

    2002-01-01

    The use of landfills as an in situ biological treatment system represents an alternative for source area remediation with a significant cost saving. The specific objective of this research is to investigate the intrinsic bioattenuation capacity of the landfill ecosystem for chlorinated aliphatic hydrocarbons (CAHs). The research was conducted in two complementary systems: simulated landfill bioreactors and batch degradation experiment in serum bottles. Refuse samples excavated from a landfill were tested in laboratory bioreactors designed and operated to facilitate refuse decomposition under landfilling conditions. Each bioreactor was operated with leachate recirculation and gas collection. Target CAHs, tetrachloroethene (PCE) and trichloroethene (TCE), were added to selected reactors and maintained at 20 μM each in leachate to simulate the effect of long-term exposure of refuse microorganisms to CAHs on the degradation potential of these chemicals in landfills. At two different stages of refuse decomposition, active refuse decomposition representing young landfills and maturation phase representing aged landfills, anaerobic microbial cultures were derived from selected bioreactors and tested in serum bottles for their abilities to biodegrade target CAHs. Results of this study suggest that landfills have an intrinsic reductive dechlorination capacity for PCE and TCE. The decomposition of refuse, a source of complex organics, enhances reductive dechlorination by the refuse cultures tested in this study. In addition, the test results suggest that it may be possible to develop engineering strategies to promote both CAHs degradation and refuse decomposition in landfills. (author)

  4. Bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jamaleddine, E. [McGill Univ., Montreal, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Composting is once again gaining interest among ecological engineers in view of greener industrial and residential activities. Uniform composting is needed to ensure decomposition and to keep the whole system at the same composting stage. A homogeneous temperature must be maintained throughout the media. A bioreactor design consisting of a heater core made of copper tubing was designed and tested. Two four-inch holes were made at the top and bottom of the barrel to allow air to flow through the system and promote aerobic composting. Once composting began and temperature increased, the water began to flow through the copper piping and the core heat was distributed throughout the medium. Three thermocouples were inserted at different heights on a 200 litre plastic barrel fitted with the aforementioned apparatus. Temperature variations were found to be considerably lower when the apparatus was operated with the heat redistribution system, enabling uniform composting, accelerating the process and reducing the risks of pathogenic or other contaminants remaining active in the barrels.

  5. Combined treatment of municipal waste-water and landfill leachate by means of membrane bioreactor: an experimental study

    International Nuclear Information System (INIS)

    Iannelli, R.; Lizza, E.; Giraldi, D.

    2005-01-01

    This work presents the results of an experimental study focusing on the applicability of the membrane bioreactor technology for the combined treatment of municipal wastewater and landfill leachate. In the experiment we used both a micro-filtration unit and a traditional secondary settler in an innovative combined process that can present some economic advantages on the pure membrane separation, so as to evaluate and compare the efficiencies of the two adopted technologies. The experiment was carried out in two phases: first, we evaluated the system only with municipal wastewater; then we tested the treatment of a mixture of municipal wastewater and landfill leachate. We obtained good results in both cases for standard quality indicators (COD, TSS, NH 4 ), specific inorganic compounds such as Fe and Zn and microorganisms. The micro-filtrations unit had very good performances with respect to both treatment efficiency and hydraulic behaviour: after the first start-up period, we observed a regular running of the unit with no need for special chemical or mechanical treatment different from the ones adopted ordinarily in the MBR treatment systems [it

  6. REQUIREMENTS FOR HAZARDOUS WASTE LANDFILL DESIGN, CONSTRUCTION AND CLOSURE

    Science.gov (United States)

    This publication contains edited versions of the material presented at ten Technology Transfer seminars conducted in 1988 on this subject. Sections are included on design of clay and flexible membrane liners, leachate collector systems, and landfill covers. Construction quality a...

  7. Permitting of Landfill Bioreactor Operations: Ten Years after the RD&D Rule

    Science.gov (United States)

    Prior to promulgation of the Rule, there were approximately 20 full-scale bioreactor projects in North America, including one in Canada. Of these, six were permitted by EPA (four Project XL sites and two projects listed separately under a cooperative research agreement at the Ou...

  8. Remedial design of the Fultz Landfill Site, Byesville, Ohio

    International Nuclear Information System (INIS)

    Rajaram, V.; Riesing, R.; Bloom, T.

    1994-01-01

    The Fultz Landfill Superfund (Fultz) site is a 30-acre hazardous waste landfill located near Byesville, Ohio. The site is approximately 75 miles east of Columbus and 3 miles southwest of Cambridge, the largest city in Guernsey County, Ohio. The landfill is situated on the north slope of a ridge that overlies abandoned coal mines in the Upper Freeport Coal seam. The north half of the landfill lies in an unreclaimed strip mine in the Upper Freeport Coal seam, where saturated portions of surface mine spoils and natural soils form the ''shallow aquifer''. The south half of the landfill lies 40 to 50 feet (ft.) above an abandoned, flooded deep mine in the same coal seam. The flooded deep mine forms an aquifer referred to as the ''coal mine aquifer''. This paper presents the results of design studies completed by PRC Environmental Management, Inc. (PRC), during 1993, and the remedial design (RD) of the components specified by the US Environmental Protection Agency (EPA) Record of Decision (ROD) for the Fultz site (EPA 1991). The remedy specified in the ROD includes a multilayer landfill cap that is compliant with Resource Conservation and Recovery Act (RCRA) Subtitle C guidelines, a leachate collection and groundwater extraction and treatment system, and stabilizing mine voids underlying the southern portion of the site. Vinyl chloride is the only contaminant exceeding a maximum contaminant limit (MCL) in the coal mine aquifer

  9. Design document for landfill capping Prototype Decision Support System

    International Nuclear Information System (INIS)

    Stone, J.J.; Paige, G.; Hakonson, T.E.; Lane, L.J.

    1994-01-01

    The overall objective of the Prototype Decision Support System for shallow land burial project is to ''Develop a Decision Support System tool which incorporates simulation modeling and multi-objective decision theory for the purpose of designing and evaluating alternative trench cap designs for mixed waste landfill covers. The goal is to improve the quality of technical information used by the risk manager to select landfill cover designs while taking into account technological, economical, and regulatory factors.'' The complexity of the technical and non-technical information, and how the information varies in importance across sites, points to the need for decision analysis tools that provide a common basis for integrating, synthesizing, and valuing the decision input. Because the cost of remediating thousands of contaminated DOE sites is projected to be in the 10's--100's of billions of dollars, methods will be needed to establish cleanup priorities and to help in the selection and evaluation of cost effective remediation alternatives. Even at this early stage in DOE's cleanup program, it is certain that capping technologies will be heavily relied upon to remediate the 3000+ landfills on DOE property. Capping is favored in remediating most DOE landfills because, based on preliminary baseline risk assessments, human and ecological risks are considered to be low at most of these sites and the regulatory requirements for final closure of old landfills can be met using a well designed cap to isolate the buried waste. This report describes a program plan to design, develop, and test a decision support system (DSS) for assisting the DOE risk manager in evaluating capping alternatives for radioactive and hazardous waste landfills. The DOE DSS will incorporate methods for calculating, integrating and valuing technical, regulatory, and economic criteria

  10. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paul Imhoff; Ramin Yazdani; Don Augenstein; Harold Bentley; Pei Chiu

    2010-04-30

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by about 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).

  11. STUDI PENGARUH AERASI DAN RESIRKULASI LINDI TERHADAP LAJU PROSES DEGRADASI SAMPAH PADA BIOREACTOR LANDFILL

    Directory of Open Access Journals (Sweden)

    Syafrudin Syafrudin

    2012-02-01

    Full Text Available On the conventional landfill, the waste degradation requires a lot of time to make it through and it produces amethane gasfrom a anaerobic which could be dangerous if there is not an optimal processing. On this research,the writer uses 7 experimental reactors, 6 reactors given aeration treatments and leachate recirculation. Thevariations which have done in the research is leachate recirculation debit, namely (10 and 15 ml/minutes andcontinual lacheate’s flowing system and aeration variation, namely (3, 2, and 1ml/minutes everyday. Theparameter which is measured is the reduction of waste volume, temperature, PH, BOD and COD for weeklyanalysis. The results of the analysis are that the aeration of 1 ml/minutes with leachate resirculation of 15ml/minutes is the best of aeration condition and it can increase the settlement process and reduction of BOD andCOD concentration in a short time of leachate. This reactor can increase the volume reduction as much as 14,14% in six week and it is bigger than control reactor. The concentration reduction of BOD is from 718, 24 mg/lbecomes 88,44 mg/l and the reduction of COD is from 1285,58 mg/l becomes 893,44 mg/l

  12. Design of microfluidic bioreactors using topology optimization

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow...

  13. Design and construction of hazardous waste landfill components

    International Nuclear Information System (INIS)

    Frano, A.J.; Numes, G.S.

    1985-01-01

    This paper discusses design and construction of two sections of a hazardous waste landfill at Peoria Disposal Company's hazardous waste management facilities in central Illinois. One section, an existing disposal facility, was retrofitted with leachate control and containment features for additional security. The second section, a new facility which had been previously permitted for development with a single clay liner, was modified to include a double liner and revised leachate collection system for additional security, and an all-weather construction and operation access ramp. The two sections of the landfill were granted a development permit allowing construction. An operating permit was granted after construction and certification by the designer allowing waste disposal operations. The sections will be accepting waste material at publication. Design and construction included: planning studies, design analyses, permitting, preparation of construction contract documents, construction assistance, monitoring construction, and certification

  14. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.

    Science.gov (United States)

    Grosso, Mario; Dellavedova, Stefano; Rigamonti, Lucia; Scotti, Sergio

    2016-01-01

    The paper describes the performances of the energy recovery pathway from the residual waste based on the production of a Solid Recovered Fuel (SRF) to be exploited via co-combustion in a cement kiln. The SRF is produced in a single stream Mechanical-Biological Treatment plant, where bio-drying of the waste is followed by mechanical refining in order to fulfil the quality requirements by the cement kilns. Peculiar of this MBT is the fact that sorting residues are disposed in a nearby landfill, managed according to a bioreactor approach, where landfill gas is collected for electric energy recovery. A detailed mass and energy balance of the system is presented based on one year operational data, followed by its Life Cycle Assessment. Results show that the system is energetically and environmentally effective, with most of the impacts being more than compensated by the savings of materials and energy. Major role in determining such outcome is the displacement of petcoke in the cement kiln, both in terms of its fossil CO2 emissions and of its life cycle impacts, including the trans-oceanic transport. To check the robustness of the results, two sensitivity analyses are performed on the landfill gas collection efficiency and on the avoided electric energy mix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Designing electrical stimulated bioreactors for nerve tissue engineering

    Science.gov (United States)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  16. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  17. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    Science.gov (United States)

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification.

    Science.gov (United States)

    Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen

    2017-08-01

    High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Standard and alternative landfill capping design in Germany

    International Nuclear Information System (INIS)

    Simon, Franz-Georg; Mueller, Werner W.

    2004-01-01

    Engineered capping systems are in most cases an indispensable and often the only efficient component required by the long-term safety concept for landfills, mine tailings tips and contaminated land. In Germany the composite liner is the main component of standard landfill cappings for municipal and hazardous waste landfills and the compacted clay liner (CCL) for landfills for inert or low-contamination waste. The composite liner is a technically highly effective but very expensive system. Research and experience has given rise to concern about the proper long-term performance of a conventional single CCL as a landfill capping. Therefore, alternative capping systems are discussed and applied for landfills and for the containment of contaminated sites. This paper gives an overview on various alternative engineered cappings and suitable systems for capping reflecting the state of the art and the expert view in Germany. According to the European Council Directive on the landfill of waste an impermeable mineral layer is recommended for the surface sealing of non-hazardous landfills and a composition of artificial sealing liner and impermeable mineral layer for hazardous landfills. In both cases a drainage layer thickness of at least 0.5 m is suggested. These recommendations should be interpreted flexibly and to some extent modified in the light of the experience and results presented in this paper

  20. Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner.

    Science.gov (United States)

    Kino-Oka, Masahiro; Ogawa, Natsuki; Umegaki, Ryota; Taya, Masahito

    2005-01-01

    A novel bioreactor system was designed to perform a series of batchwise cultures of anchorage-dependent cells by means of automated operations of medium change and passage for cell transfer. The experimental data on contamination frequency ensured the biological cleanliness in the bioreactor system, which facilitated the operations in a closed environment, as compared with that in flask culture system with manual handlings. In addition, the tools for growth prediction (based on growth kinetics) and real-time growth monitoring by measurement of medium components (based on small-volume analyzing machinery) were installed into the bioreactor system to schedule the operations of medium change and passage and to confirm that culture proceeds as scheduled, respectively. The successive culture of anchorage-dependent cells was conducted with the bioreactor running in an automated way. The automated bioreactor gave a successful culture performance with fair accordance to preset scheduling based on the information in the latest subculture, realizing 79- fold cell expansion for 169 h. In addition, the correlation factor between experimental data and scheduled values through the bioreactor performance was 0.998. It was concluded that the proposed bioreactor with the integration of the prediction and monitoring tools could offer a feasible system for the manufacturing process of cultured tissue products.

  1. Membrane Bioreactors design and operation improvements: The Spanish Experience

    International Nuclear Information System (INIS)

    Iglesias Esteban, R.; Ortega de Miguel, E.; Martinez Tarifa, M. A.; Simon Andreu, P.; Moragas Bouyart, L.; Garcia Fernandez, E.; Robuste Cartro, J.; Rodriguez-Roda layret, I.

    2012-01-01

    A Membrane Bioreactor (MBR) is a modification of a conventional activated sludge (CAS) plant where the secondary settling ins replaced by a low pressure ultrafiltration (UF) or micro filtration (MF) membranes separation process in order to obtain an effluent almost free of suspended solids and microorganisms. since the first MBR installation in 2002, the number and capacity of these systems have exponentially increased in spain, driven by the high quality of the effluent which allows direct reuse and discharge into environmentally sensitive areas, the compactness and automation of these plants and the possibility of upgrading existing wastewater treatment plants (WWTP) which no longer reach the required effluent quality levels. There were 45 operating MBR systems in 2011 and the total municipal wastewater treatment capacity by this type of plants will be about 90 hm 3 in 204 when the current projects have been implemented. Today, Spain public and private wastewater management agencies consider MBR plants as an alternative of treatment but first they had to face a complex learning period to operate and design this kind of system. A significant progress has been made over the last years, but especially energy efficiency responds to the challenge of continuous improvement. Membrane fouling control consumes most of the energy involved in the process therefore, anti fouling materials and better membrane air-scour systems that allow the frequency and intensity of air flow to be controlled in realtime, are being investigated. This brings MBR closer to the CAS process in terms of energy efficiency. Breakthroughs in the design and operation of MBR plants are being collected in a guide for the implementation of MBR led by CEDEX, in which the main managers and operators are involved. This paper presents some of these improvements. (Author) 9 refs.

  2. 生物反应器填埋场中水平沟回灌渗滤液非饱和-饱和渗流分析%Unsaturated-saturated seepage analysis for leachate recirculation using horizontal trenches in bioreactor landfills

    Institute of Scientific and Technical Information of China (English)

    冯世进; 张旭

    2013-01-01

    The horizontal trench is one of the main methods which are available to recirculate leachates.To study the unsaturated-saturated seepage laws during leachate recirculation process,different flow control equations are used for the saturated/unsaturated zones in bioreactor landfills.The saturated Richards' equation is adopted as the flow governing equation in the saturated area of the waste mass.For the unsaturated area of the waste mass,based on the law of conservation of mass,the modified Darcy's law and the Elagroudy's settlement model,a new flow governing equation considering solid waste settlement is developed.Based on the two-dimensional saturated/unsaturated model which has been developed considering solid waste settlement,the migration laws of recirculated leachates are studied.The simulated results indicate that the various parameters (i.e.,settlement of MSW,pressure head,initial void ratio,etc.) have effects on the zone of impact,pressure head,water content of MSW and recirculation leachate volume per m of trench length.The design method of horizontal trenches is proposed for the bioreactor landfills.%水平沟回灌是生物反应器填埋场中渗滤液回灌的主要模式之一,为研究水平沟回灌时生物反应器填埋场中渗滤液的非饱和-饱和运移规律,垃圾体的饱和与非饱和区域采用不同水流控制方程,饱和区域的水流控制方程采用饱和Richards方程,对垃圾体非饱和区域,由质量守恒原理,以修正的Darcy定理为基础,结合Elagroudy等提出的垃圾体沉降模型,建立了考虑垃圾体沉降的非饱和渗滤液运移控制方程.基于建立的考虑沉降特性的二维非饱和-饱和水平沟回灌计算模型,研究了水平沟回灌时渗滤液在生物反应器填埋场中的运移规律,提出水平沟回灌系统的设计方法.

  3. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    Science.gov (United States)

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  5. Innovative landfill bioreactor systems for municipal solid waste treatment in East Africa aimed at optimal energy recovery and minimal greenhouse gas emissions

    NARCIS (Netherlands)

    Salukele, F.M.

    2013-01-01

    Landfilling is currently the dominant disposal method for municipal solid waste (MSW) in developing countries. Approximately 50% of the MSW generated in East Africa is disposed in landfills. Low costs and availability of land have made landfilling the most common waste management option in East

  6. LABORATORY TESTING OF BENTONITE CLAYS FOR LANDFILL DESIGN AND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Biljana Kovačević Zelić

    2007-12-01

    Full Text Available Top and bottom liners are one of the key construction elements in every landfill. They are usually made as compacted clay liners (CCLs composed of several layers of compacted clay with strictly defined properties or by the use of alternative materials such as: GCL – geosynthetic clay liner, BES – bentonite enhanced soils or bentonite/polymer mixtures. Following the state of the art experiences in the world, GCLs are used in Croatian landfills for several years, as well. Depending upon the location and the obeying function, GCLs have to fulfill certain conditions. A legislated compatibility criterion has to be proven by various laboratory tests. In the paper are presented the results of direct shear and chemical compatibility tests of GCLs as well as the results of permeability measurement of kaolin clay (the paper is published in Croatian .

  7. A water balance study of four landfill cover designs varying in slope for semiarid regions

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-01-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes

  8. Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design

    Directory of Open Access Journals (Sweden)

    Clare Selden

    2018-04-01

    Full Text Available Micro and small bioreactors are well described for use in bioprocess development in pre-production manufacture, using ultra-scale down and microfluidic methodology. However, the use of bioreactors to understand normal and pathophysiology by definition must be very different, and the constraints of the physiological environment influence such bioreactor design. This review considers the key elements necessary to enable bioreactors to address three main areas associated with biological systems. All entail recreation of the in vivo cell niche as faithfully as possible, so that they may be used to study molecular and cellular changes in normal physiology, with a view to creating tissue-engineered grafts for clinical use; understanding the pathophysiology of disease at the molecular level; defining possible therapeutic targets; and enabling appropriate pharmaceutical testing on a truly representative organoid, thus enabling better drug design, and simultaneously creating the potential to reduce the numbers of animals in research. The premise explored is that not only cellular signalling cues, but also mechano-transduction from mechanical cues, play an important role.

  9. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  10. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    International Nuclear Information System (INIS)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline

  11. Design and construction of the multilayer cover for uranium ores landfills in Andujar (Spain) mining

    International Nuclear Information System (INIS)

    Sanchez, M.; Santiago, J.L. de.

    1994-01-01

    This report shows the design and construction of multilayer cover for the landfill of sterile uranium ores in Andujar Mining (Spain). The main chapters are: 1.- Decommissioning project of Uranium Mining in Andujar (Spain) 2.- Elements and design of cover. 3.- Characteristic material

  12. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  13. Methodology for the design of Santa Rosa de Cabal sanitary landfill, Risaralda

    International Nuclear Information System (INIS)

    Tabares, J; Orozco, J

    1992-01-01

    In 1987 the Regional Autonomous Corporation of Risaralda, CARDER and the Risaralda Government, they signed a cooperation agreement, in order to endowing from sanitary landfill to the municipalities of the department. In the mark of this agreement it was carried out the design of Santa Rosa's sanitary landfill, that with near 50.000 inhabitants it is constituted in the third city of the department. This city generates some 25 tons/day of garbage that at the present time are heady directly to the waters of San Eugenio River. The present work contains the most important methodological aspects in the design of the sanitary landfill and some comments about the approaches ideal Vs real approaches of selection of places

  14. Evaluation of Landfill Cover Design Options for Waste Disposal Sites in the Coastal Regions of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2015-01-01

    Full Text Available Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these emissions. However, this technical manual does not provide explicit guidance on the material types or configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. Recommendations for further study include a longer simulation period as well the study of the combined effects of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the evapotranspirative landfill cover design options should also be considered.

  15. A framework for a decision support system for municipal solid waste landfill design.

    Science.gov (United States)

    Verge, Ashley; Rowe, R Kerry

    2013-12-01

    A decision support system (Landfill Advisor or LFAdvisor) was developed to integrate current knowledge of barrier systems into a computer application to assist in landfill design. The program was developed in Visual Basic and includes an integrated database to store information. LFAdvisor presents the choices available for each liner component (e.g. leachate collection system, geomembrane liner, clay liners) and provides advice on their suitability for different situations related to municipal solid waste landfills (e.g. final cover, base liner, lagoon liner). Unique to LFAdvisor, the service life of each engineered component is estimated based on results from the latest research. LFAdvisor considers the interactions between liner components, operating conditions, and the existing site environment. LFAdvisor can be used in the initial stage of design to give designers a good idea of what liner components will likely be required, while alerting them to issues that are likely to arise. A systems approach is taken to landfill design with the ultimate goal of maximising long-term performance and service life.

  16. Sanitary landfill liners

    DEFF Research Database (Denmark)

    Christiansen, Ole V.; Stentsøe, Steen; Petersen, Søren

    DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners.......DS/INF 466 is the revised Danish recommendation for investigations, design and construction of landfill liners....

  17. Two Scenarios for Landfills Design in Special Conditions Using the HELP Model: A Case Study in Babylon Governorate, Iraq

    Directory of Open Access Journals (Sweden)

    Ali Chabuk

    2018-01-01

    Full Text Available The sound design of landfills is essential in order to protect human health and the environment (air, water, and soil. The study area, Babylon Governorate, is situated in the middle of Iraq, and is distinguished by a hot climate and shallow groundwater. The governorate did not have landfill sites that meet international criteria; in addition, the groundwater depth in Babylon Governorate is commonly shallow. Previously, the most important criteria for the study area and GIS software were used to select the best sites for locating landfills in the major cities of the governorate. In this study, the Hydrologic Evaluation of Landfill Performance (HELP 3.95D model was applied in order to ensure that there was no leakage of the leachate that results from the waste in the selected landfill sites. It is the most commonly utilized model for landfill design, and it is used to estimate water inflow through the soil layers. For the present study, to avoid groundwater pollution by leachate from a landfill site due to the shallow groundwater depth, compacted waste was placed on the surface using two height scenarios (2 m and 4 m. This design was developed using the soil properties of the selected sites coupled with the weather parameters in Babylon Governorate (precipitation, temperature, solar, and evapotranspiration for a 12-year period covering 2005 to 2016. The results from both of the suggested landfill designs showed an absence of leachate from the bottom liner.

  18. Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs)

    KAUST Repository

    Pretel, R.

    2015-12-01

    © 2015 Elsevier Ltd. Anaerobic membrane bioreactors (AnMBRs) enable energy recovery from wastewater while simultaneously achieving high levels of treatment. The objective of this study was to elucidate how detailed design and operational decisions of submerged AnMBRs influence the technological, environmental, and economic sustainability of the system across its life cycle. Specific design and operational decisions evaluated included: solids retention time (SRT), mixed liquor suspended solids (MLSS) concentration, sludge recycling ratio (r), flux (J), and specific gas demand per membrane area (SGD). The possibility of methane recovery (both as biogas and as soluble methane in reactor effluent) and bioenergy production, nutrient recovery, and final destination of the sludge (land application, landfill, or incineration) were also evaluated. The implications of these design and operational decisions were characterized by leveraging a quantitative sustainable design (QSD) framework which integrated steady-state performance modeling across seasonal temperatures (using pilot-scale experimental data and the simulating software DESASS), life cycle cost (LCC) analysis, and life cycle assessment (LCA). Sensitivity and uncertainty analyses were used to characterize the relative importance of individual design decisions, and to navigate trade-offs across environmental, economic, and technological criteria. Based on this analysis, there are design and operational conditions under which submerged AnMBRs could be net energy positive and contribute to the pursuit of carbon negative wastewater treatment.

  19. Stability analysis criteria in landfill design based on the Spanish code

    International Nuclear Information System (INIS)

    Estaire Gepp, J.; Pardo de Santayana, F.

    2014-01-01

    The design of a landfill requires performing stability analyses. To perform such analyses it is necessary to define different design situations and their corresponding safety factors. Geo synthetics are normally used to construct the lining system of the landfills, causing critical slip surfaces to pass along one of the different geosynthetic interfaces. Determination of the shear strength of such critical interfaces is, therefore, an extremely important issue. In this paper, these aspects are analysed based on what is set in the Spanish codes and in the technical literature. As a result of the study, some tables are presented which relate the different design situations (normal, accidental or extraordinary) to the shear strength of the lining system to be used (peak or residual) and define the minimum factor of safety to be accomplished. (Author)

  20. INPP Landfill

    International Nuclear Information System (INIS)

    Dahlberg, Jan; Bergstroem, Ulla

    2004-06-01

    The objective of this report is to propose the basic design for final disposal of Very Low Level Radioactive Waste (VLLW) produced at the Ignalina Nuclear Power Plant and at other small waste producers in Lithuania. Considering the safety for the environment, as well as the construction costs, it has been decided that the repository will be of a landfill type based on the same design principles as similar authorised facilities in other countries. It has also been decided that the location of the landfill shall be in the vicinity of the Ignalina Nuclear Power Plant (INPP)

  1. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    Science.gov (United States)

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  2. Design and efficacy of a single-use bioreactor for heart valve tissue engineering.

    Science.gov (United States)

    Converse, Gabriel L; Buse, Eric E; Neill, Kari R; McFall, Christopher R; Lewis, Holley N; VeDepo, Mitchell C; Quinn, Rachael W; Hopkins, Richard A

    2017-02-01

    Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017. © 2015 Wiley Periodicals, Inc.

  3. Design and Validation of a Cyclic Strain Bioreactor to Condition Spatially-Selective Scaffolds in Dual Strain Regimes

    Directory of Open Access Journals (Sweden)

    J. Matthew Goodhart

    2014-03-01

    Full Text Available The objective of this study was to design and validate a unique bioreactor design for applying spatially selective, linear, cyclic strain to degradable and non-degradable polymeric fabric scaffolds. This system uses a novel three-clamp design to apply cyclic strain via a computer controlled linear actuator to a specified zone of a scaffold while isolating the remainder of the scaffold from strain. Image analysis of polyethylene terephthalate (PET woven scaffolds subjected to a 3% mechanical stretch demonstrated that the stretched portion of the scaffold experienced 2.97% ± 0.13% strain (mean ± standard deviation while the unstretched portion experienced 0.02% ± 0.18% strain. NIH-3T3 fibroblast cells were cultured on the PET scaffolds and half of each scaffold was stretched 5% at 0.5 Hz for one hour per day for 14 days in the bioreactor. Cells were checked for viability and proliferation at the end of the 14 day period and levels of glycosaminoglycan (GAG and collagen (hydroxyproline were measured as indicators of extracellular matrix production. Scaffolds in the bioreactor showed a seven-fold increase in cell number over scaffolds cultured statically in tissue culture plastic petri dishes (control. Bioreactor scaffolds showed a lower concentration of GAG deposition per cell as compared to the control scaffolds largely due to the great increase in cell number. A 75% increase in hydroxyproline concentration per cell was seen in the bioreactor stretched scaffolds as compared to the control scaffolds. Surprisingly, little differences were experienced between the stretched and unstretched portions of the scaffolds for this study. This was largely attributed to the conditioned and shared media effect. Results indicate that the bioreactor system is capable of applying spatially-selective, linear, cyclic strain to cells growing on polymeric fabric scaffolds and evaluating the cellular and matrix responses to the applied strains.

  4. Towards a Tissue-Engineered Ligament: Design and Preliminary Evaluation of a Dedicated Multi-Chamber Tension-Torsion Bioreactor

    Directory of Open Access Journals (Sweden)

    Cédric P. Laurent

    2014-02-01

    Full Text Available Tissue engineering may constitute a promising alternative to current strategies in ligament repair, providing that suitable scaffolds and culture conditions are proposed. The objective of the present contribution is to present the design and instrumentation of a novel multi-chamber tension-torsion bioreactor dedicated to ligament tissue engineering. A preliminary biological evaluation of a new braided scaffold within this bioreactor under dynamic loading is reported, starting with the development of a dedicated seeding protocol validated from static cultures. The results of these preliminary biological characterizations confirm that the present combination of scaffold, seeding protocol and bioreactor may enable us to head towards a suitable ligament tissue-engineered construct.

  5. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  6. Considerations on the design and financial feasibility of full-scale membrane bioreactors for municipal applications.

    Science.gov (United States)

    Brepols, Ch; Schäfer, H; Engelhardt, N

    2010-01-01

    Based on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment. A comparison of the specific energy demand of MBRs and conventional WWTPs is given. The structure of the MBRs actual operational costs is analysed. It can be seen that energy consumption is only responsible for one quarter to one third of all operational expenses. Based on a rough design and empirical cost data, a cost comparison of a full-scale MBR and a CAS is carried out. In this example the CAS employs a sand filtration and a disinfection in order to achieve comparable effluent quality. The influence of membrane lifetime on life cycle cost is assessed.

  7. Design and testing of a unique randomized gravity, continuous flow bioreactor

    Science.gov (United States)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer

  8. Water balance relationships in four alternative cover designs for radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Warren, R.W.; Hakonson, T.E.; Trujillo, G.

    1994-01-01

    Preliminary results are presented from a field study to evaluate the relative hydrologic performance of various landfill capping technologies installed by the Los Alamos National Laboratory at Hill Air Force Base, Utah. Four cover designs (two Los Alamos capillary barrier designs, one modified EPA RCRA design, and one conventional design) were installed in large lysimeters instrumented to monitor the fate of natural precipitation between 01 January 1990 and 20 September 1993. After 45 months of study, results showed that the cover designs containing barrier layers were effective in reducing deep percolation as compared to a simple soil cap design. The RCRA cover, incorporating a clay hydraulic barrier, was the most effective of all cover designs in controlling percolation but was not 100% effective. Over 90% of all percolation and barrier lateral flow occurred during the months of February through May of each year, primarily as a result of snow melt, early spring rains and low evapotranspiration. Gravel mulch surface treatments (70--80% coverage) were effective in reducing runoff and erosion. The two plots receiving gravel mulch treatments exhibited equal but enhanced amounts of evapotranspiration despite the fact that one plot was planted with additional shrubs

  9. Numerical investigation of a bubble-column photo-bioreactor design for biodiesel production from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Seo, I.H.; Lee, I.B.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Kwon, K.S.; Choi, J.S.; Song, S.H. [Seoul National Univ., Seoul (Korea, Democratic People' s Republic of). Dept. of Rural Systems Engineering and Research Inst. for Agriculture and Life Sciences

    2010-07-01

    Biodiesel made from vegetable oil is among the most desirable of renewable energy sources because it can be a substitute for diesel oil. However, biodiesel from soybean or corn can be confronted with a food crisis. Microalgae is a new biodiesel source which contains high oil lipids with a high growth rate, and which also offers value-added products from the residue, such as cosmetics, health functional food or pharmaceuticals. Microalgae are best cultivated in photo-bioreactors (PBRs) where light, nutrients, carbon dioxide and temperature can be controlled. Despite the current availability of PBRs, only a few can be practically used for mass production. Computational fluid dynamics (CFD) was used in this study to design an optimum bubble-column PBR for mass production of microalgae. Multi-phase models including bubble movement, meshes and time step independent tests were considered to develop the 3-dimensional CFD model. Particle Image Velocimetry (PIV) tests were used to enhance and validate the model. Different types of PBRs were simulated and compared quantitatively with the microalgae's growth model.

  10. Optimization of Amylase and Protease Production from Aspergillus awamori in Single Bioreactor Through EVOP Factorial Design Technique

    Directory of Open Access Journals (Sweden)

    Sangeeta Negi

    2006-01-01

    Full Text Available Evolutionary operation (EVOP factorial design technique was explored in order to economically produce amylase and protease at their optimum level in a single bioreactor by modified solid-state fermentation. Maximum yields of amylase and protease were achieved, using wheat bran as a substrate by a highly potent, locally isolated strain of Aspergillus awamori: Nakazawa MTCC 6652. The strain had been induced previously, inferring the ability to produce both enzymes concomitantly in a single bioreactor with their maximum capacity. The highest secretion of amylase and protease were measured to be 9420.6 and 1930 U/g, respectively, at 37 °C. pH and relative humidity were found to be optimum at 4 and 85 %, evaluated through EVOP method.

  11. Landfilling: Environmental Issues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    , the extent and quality of the technical environmental protection measures introduced, the daily operation and the timescale. This chapter describes the main potential environmental impacts from landfills. The modern landfill is able to avoid most of these impacts. However, in the planning and design...

  12. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

  13. Mixed waste landfill monitoring prototype test design for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Keller, C.

    1994-09-01

    The purpose of this contract is to design the prototype tests necessary for the verification of the measurement methods proposed for the Mixed Waste Disposal Facility. The design is limited to the hydrological performance of the measurement methods. It does not include the mechanical testing of the methods proposed. The test site is to be selected and when approved, construction drawings provided. The contract also includes testing of vitrified clay pipe as the liner of choice for the passages under the landfill. The tests are to be done of both he hydrologic and the mechanical capability of the pipe. The test bed construction is to be supervised as it is being done by the construction contractor monitored by LANL. This contract does not include the logical subsequent work of performance of the measurements in the test bed. Since this contract was received by September 15, with the work to be completed by September 30, only that work possible in the short time was performed. That included the design of the test bed, the purchase of the vitrified clay pipe and the mechanical tests of the pipe, and the purchase of the SEAMIST systems for testing in the clay pipe. None of those could be delivered in time for flow tests to be done on the clay pipe. The mechanical tests were done as part of the pipe purchase and are reported here. The contract was not extended beyond September 30 for lack of funds. This report is therefore limited to the preliminary design of the test bed and to the specification of the orders for the materials. The hope is that funding will be restored to the program for the completion of the design and measurement effort

  14. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling

    DEFF Research Database (Denmark)

    Manfredi, Simone; Christensen, Thomas Højlund

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi......-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is “landfilling of 1 ton of wet household waste in a 10 m deep landfill...... that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater...

  15. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  16. Characteristics and biological treatment of leachates from a domestic landfill

    Science.gov (United States)

    Waste material from urban areas is a major environmental concern and landfill application is a frequent method for waste disposal. The leachate from landfills can, however, negatively affect the surrounding environment. A bioreactor cascade containing submerged biofilms was used to treat newly forme...

  17. Engineering Parameters in Bioreactor's Design: A Critical Aspect in Tissue Engineering

    Science.gov (United States)

    Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors. PMID:24000327

  18. Engineering parameters in bioreactor's design: a critical aspect in tissue engineering.

    Science.gov (United States)

    Salehi-Nik, Nasim; Amoabediny, Ghassem; Pouran, Behdad; Tabesh, Hadi; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Khatibi, Nahid; Anisi, Fatemeh; Mottaghy, Khosrow; Zandieh-Doulabi, Behrouz

    2013-01-01

    Bioreactors are important inevitable part of any tissue engineering (TE) strategy as they aid the construction of three-dimensional functional tissues. Since the ultimate aim of a bioreactor is to create a biological product, the engineering parameters, for example, internal and external mass transfer, fluid velocity, shear stress, electrical current distribution, and so forth, are worth to be thoroughly investigated. The effects of such engineering parameters on biological cultures have been addressed in only a few preceding studies. Furthermore, it would be highly inefficient to determine the optimal engineering parameters by trial and error method. A solution is provided by emerging modeling and computational tools and by analyzing oxygen, carbon dioxide, and nutrient and metabolism waste material transports, which can simulate and predict the experimental results. Discovering the optimal engineering parameters is crucial not only to reduce the cost and time of experiments, but also to enhance efficacy and functionality of the tissue construct. This review intends to provide an inclusive package of the engineering parameters together with their calculation procedure in addition to the modeling techniques in TE bioreactors.

  19. Design modification and optimisation of the perfusion system of a tri-axial bioreactor for tissue engineering.

    Science.gov (United States)

    Hussein, Husnah; Williams, David J; Liu, Yang

    2015-07-01

    A systematic design of experiments (DOE) approach was used to optimize the perfusion process of a tri-axial bioreactor designed for translational tissue engineering exploiting mechanical stimuli and mechanotransduction. Four controllable design parameters affecting the perfusion process were identified in a cause-effect diagram as potential improvement opportunities. A screening process was used to separate out the factors that have the largest impact from the insignificant ones. DOE was employed to find the settings of the platen design, return tubing configuration and the elevation difference that minimise the load on the pump and variation in the perfusion process and improve the controllability of the perfusion pressures within the prescribed limits. DOE was very effective for gaining increased knowledge of the perfusion process and optimizing the process for improved functionality. It is hypothesized that the optimized perfusion system will result in improved biological performance and consistency.

  20. Quality-by-Design approach to monitor the operation of a batch bioreactor in an industrial avian vaccine manufacturing process.

    Science.gov (United States)

    Largoni, Martina; Facco, Pierantonio; Bernini, Donatella; Bezzo, Fabrizio; Barolo, Massimiliano

    2015-10-10

    Monitoring batch bioreactors is a complex task, due to the fact that several sources of variability can affect a running batch and impact on the final product quality. Additionally, the product quality itself may not be measurable on line, but requires sampling and lab analysis taking several days to be completed. In this study we show that, by using appropriate process analytical technology tools, the operation of an industrial batch bioreactor used in avian vaccine manufacturing can be effectively monitored as the batch progresses. Multivariate statistical models are built from historical databases of batches already completed, and they are used to enable the real time identification of the variability sources, to reliably predict the final product quality, and to improve process understanding, paving the way to a reduction of final product rejections, as well as to a reduction of the product cycle time. It is also shown that the product quality "builds up" mainly during the first half of a batch, suggesting on the one side that reducing the variability during this period is crucial, and on the other side that the batch length can possibly be shortened. Overall, the study demonstrates that, by using a Quality-by-Design approach centered on the appropriate use of mathematical modeling, quality can indeed be built "by design" into the final product, whereas the role of end-point product testing can progressively reduce its importance in product manufacturing. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Designing a fully automated multi-bioreactor plant for fast DoE optimization of pharmaceutical protein production.

    Science.gov (United States)

    Fricke, Jens; Pohlmann, Kristof; Jonescheit, Nils A; Ellert, Andree; Joksch, Burkhard; Luttmann, Reiner

    2013-06-01

    The identification of optimal expression conditions for state-of-the-art production of pharmaceutical proteins is a very time-consuming and expensive process. In this report a method for rapid and reproducible optimization of protein expression in an in-house designed small-scale BIOSTAT® multi-bioreactor plant is described. A newly developed BioPAT® MFCS/win Design of Experiments (DoE) module (Sartorius Stedim Systems, Germany) connects the process control system MFCS/win and the DoE software MODDE® (Umetrics AB, Sweden) and enables therefore the implementation of fully automated optimization procedures. As a proof of concept, a commercial Pichia pastoris strain KM71H has been transformed for the expression of potential malaria vaccines. This approach has allowed a doubling of intact protein secretion productivity due to the DoE optimization procedure compared to initial cultivation results. In a next step, robustness regarding the sensitivity to process parameter variability has been proven around the determined optimum. Thereby, a pharmaceutical production process that is significantly improved within seven 24-hour cultivation cycles was established. Specifically, regarding the regulatory demands pointed out in the process analytical technology (PAT) initiative of the United States Food and Drug Administration (FDA), the combination of a highly instrumented, fully automated multi-bioreactor platform with proper cultivation strategies and extended DoE software solutions opens up promising benefits and opportunities for pharmaceutical protein production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A multiobjective decision support/numerical modeling approach for design and evaluation of shallow landfill burial systems

    Energy Technology Data Exchange (ETDEWEB)

    Ascough, II, James Clifford [Purdue Univ., Lafayette, IN (United States)

    1992-05-01

    The capability to objectively evaluate design performance of shallow landfill burial (SLB) systems is of great interest to diverse scientific disciplines, including hydrologists, engineers, environmental scientists, and SLB regulators. The goal of this work was to develop and validate a procedure for the nonsubjective evaluation of SLB designs under actual or simulated environmental conditions. A multiobjective decision module (MDM) based on scoring functions (Wymore, 1988) was implemented to evaluate SLB design performance. Input values to the MDM are provided by hydrologic models. The MDM assigns a total score to each SLB design alternative, thereby allowing for rapid and repeatable design performance evaluation. The MDM was validated for a wide range of SLB designs under different climatic conditions. Rigorous assessment of SLB performance also requires incorporation of hydrologic probabilistic analysis and hydrologic risk into the overall design. This was accomplished through the development of a frequency analysis module. The frequency analysis module allows SLB design event magnitudes to be calculated based on the hydrologic return period. The multiobjective decision and freqeuncy anslysis modules were integrated in a decision support system (DSS) framework, SLEUTH (Shallow Landfill Evaluation Using Transport and Hydrology). SLEUTH is a Microsoft Windows {trademark} application, and is written in the Knowledge Pro Windows (Knowledge Garden, Inc., 1991) development language.

  3. A multiobjective decision support/numerical modeling approach for design and evaluation of shallow landfill burial systems

    International Nuclear Information System (INIS)

    Ascough, J.C. II

    1992-05-01

    The capability to objectively evaluate design performance of shallow landfill burial (SLB) systems is of great interest to diverse scientific disciplines, including hydrologists, engineers, environmental scientists, and SLB regulators. The goal of this work was to develop and validate a procedure for the nonsubjective evaluation of SLB designs under actual or simulated environmental conditions. A multiobjective decision module (MDM) based on scoring functions (Wymore, 1988) was implemented to evaluate SLB design performance. Input values to the MDM are provided by hydrologic models. The MDM assigns a total score to each SLB design alternative, thereby allowing for rapid and repeatable design performance evaluation. The MDM was validated for a wide range of SLB designs under different climatic conditions. Rigorous assessment of SLB performance also requires incorporation of hydrologic probabilistic analysis and hydrologic risk into the overall design. This was accomplished through the development of a frequency analysis module. The frequency analysis module allows SLB design event magnitudes to be calculated based on the hydrologic return period. The multiobjective decision and freqeuncy anslysis modules were integrated in a decision support system (DSS) framework, SLEUTH (Shallow Landfill Evaluation Using Transport and Hydrology). SLEUTH is a Microsoft Windows trademark application, and is written in the Knowledge Pro Windows (Knowledge Garden, Inc., 1991) development language

  4. Landfill gas

    International Nuclear Information System (INIS)

    Hartnell, Gaynor

    2000-01-01

    Following the UK Government's initiative for stimulating renewable energy through the Non-Fossil Fuel Obligation (NFFO), the UK landfill gas industry has more than trebled in size in just 4 years. As a result, UK companies are now in a strong position to offer their skills and services overseas. Ireland, Greece and Spain also resort heavily to disposal to landfill. Particularly rapid growth of the landfill gas market is expected in the OECD-Pacific and NAFTA areas. The article explains that landfill gas is a methane-rich mixture produced by anaerobic decomposition of organic wastes in landfills: under optimum conditions, up to 500 cubic meters of gas can be obtained from 1 tonne of biodegradable waste. Data on the number and capacity of sites in the UK are given. The Landfill Gas Association runs courses to counteract the skills shortage in the UK, and tailored courses for overseas visitors are planned

  5. Trickle-bed root culture bioreactor design and scale-up: growth, fluid-dynamics, and oxygen mass transfer.

    Science.gov (United States)

    Ramakrishnan, Divakar; Curtis, Wayne R

    2004-10-20

    Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.

  6. Design of a GIS-based rating protocol to assess the potential for landfill closure using dredge material in post Hurricane Sandy New Jersey.

    Science.gov (United States)

    Miskewitz, Robert J; Barone, Daniel; Guterl, Sar J; Uchrin, Christopher G

    2017-05-12

    New Jersey is rapidly running out of capacity for storage of dredged material. A potential solution to this lack of storage space is to remove and reuse the dredged material for some beneficial use. Results from a Rutgers University project performed for the New Jersey Department of Transportation, Office of Maritime Resources, designed to assess the potential for closure of New Jersey landfills using dredge material from existing Confined Disposal Facilities (CDFs) are presented and discussed. The project included an update of the existing NJDEP landfill database, the development of a rating system to identify landfills with the highest potential to utilize dredged material for their closure, and the identification and preliminary investigation of the top candidate landfills based on this rating system.

  7. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  8. Design of top covers supporting aerobic in situ stabilization of old landfills - An experimental simulation in lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hrad, Marlies [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Institute of Waste Management, Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna (Austria); Wimmer, Bernhard; Reichenauer, Thomas G. [Health and Environment Department, Environmental Resources and Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Tested engineered covers as surrogate to gas extraction during and after in situ aeration. Black-Right-Pointing-Pointer Examined how covers influence gas emissions, water balance and leachate generation. Black-Right-Pointing-Pointer Investigated effect of top covers on air-distribution in waste mass during aeration. Black-Right-Pointing-Pointer We suggest criteria and cover design to meet the demands during and after aeration. Black-Right-Pointing-Pointer Such cover systems may offer greenhouse gas emission reduction also after active aeration. - Abstract: Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 Multiplication-Sign 2 Multiplication-Sign 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH{sub 4} loadings up to 300 l CH{sub 4}/m{sup 2} d. In addition, the compost material provided high air permeability

  9. WASTE STABILIZATION FUNDAMENTALS FOR BIOREACTOR LANDFILLS

    Science.gov (United States)

    Waste stabilization is the process where putrescible waste is biodegraded by microorganisms resulting in an end-product being a relatively inert substrate (e.g., like compost). When exposed to moisture, biologically stabilized waste should not produce substantial quantitie...

  10. Following an Optimal Batch Bioreactor Operations Model

    DEFF Research Database (Denmark)

    Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.

    2012-01-01

    The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...

  11. Aortic valve biomechanics during LVAD support: Implementation in a bioreactor design and preliminary testing

    Science.gov (United States)

    Jamal, Madiha

    Although Left Ventricle Assist Device (LVAD) support has enhanced the quality of life for many heart failure patients, its prolonged in-vivo implantation causes change in hemodynamics and biomechanics of the aortic heart valve eventually leading to development of aortic insufficiency (AI). The LVAD decreases pressure in the left ventricle, leading to high transvalvular pressure and reduced aortic valve opening. Our hypothesis is that the increased pressure leads to increased mechanical stretch in the aortic valve leaflets, inducing a cascade of responses that ultimately result in local tissue fibrosis and AI. The goal of this study is to investigate the mechanism behind this hypothesis using the methods of tissue engineering. A bioreactor has been built that imparts cyclic stretch and flow to small 3-D constructs of living cells cultured in a silicone membrane. The approach is to use this device for in vitro tissue culture of vascular interstitial cells (VICs) embedded in a collagen gel, which will be subjected to normal and altered stretch and shear representative of the in vivo valve biomechanics. The bioreactor was validated to measure the amount of stretch and shear it can impart to closely replicate in-vivo conditions using PIV technique and ImageJ software. Mean longitudinal strain of 0.037cm (SD= +/-0.013cm) was recorded with mean perpendicular strain being 0.0046cm (SD= +/-0.0169cm). Measured average shear stress imparted at 100ml/min was 2.735 dynes/cm2 (SD= +/-2.25 dynes/cm2) with 6.21 dynes/cm2 (SD= +/-3.35 dynes/cm2) at 200ml/min. The cells that underwent cycles of stretch and shear in the bioreactor were screened for formation of myofibroblast using techniques of immunohistochemistry. The marker used was ? smooth muscle actin (SMA) which identifies pathological differentiation of the CPCs to myofibroblast. Yhe expression of the myofibroblast phenotype is a feature of valvupathy. In case of Shear Vs Static control, the mean value for SMA expression for

  12. A method for designing configurations of nested monitoring wells near landfills

    Science.gov (United States)

    Hudak, Paul F.

    A method was devised for designing configurations of monitoring wells, consisting of vertically nested intakes in boreholes. The network-design method involves analyzing a subset of potential contaminant plumes emerging from the downgradient margin of a landfill. Plume widths are evaluated along selected equipotential lines and compared to the lengths of those lines. The method was applied to a 32-ha solid-waste landfill in Tarrant County, Texas, USA. Sixtynine potential source nodes were considered. A 15-borehole network devised by the method registered 93 detections in total, detecting all 69 model-generated plumes by at least one borehole. Based on an enumeration procedure, a minimum of 10 boreholes was needed to detect all of the model-generated plumes. However, the less conservative 10-borehole network had little capability for backup detection. An existing monitoring network of seven downgradient wells detected only 38 model-generated plumes. Results of this study illustrate a practical need for structured approaches to designing detection-based groundwater-monitoring configurations. Résumé Une méthode a été développée pour fournir les caractéristiques de puits de surveillance, avec des points de prélèvements superposés en forage. La méthode de réalisation du réseau s'appuie sur l'analyse d'un ensemble de panaches de pollution potentiels provenant du bord en aval d'une décharge. Les largeurs de panache sont estimées le long d'isopièzes sélectionnées et sont comparées à leur longueur. Cette méthode a été appliquée à une décharge de déchets solides couvrant 32ha, dans le canton de Tarrant (Texas, Etats-Unis). 69 noeuds de source potentielle de pollution ont été pris en compte. Un réseau de 15 forages, défini par la méthode, a enregistré au total 93 alarmes, détectant les 69 panaches simulés dans au moins un forage. Une procédure de dénombrement précise qu'un minimum de 10 forages est nécessaire pour détecter tous les

  13. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.

    Science.gov (United States)

    Charest, Jonathan M; Okamoto, Tatsuya; Kitano, Kentaro; Yasuda, Atsushi; Gilpin, Sarah E; Mathisen, Douglas J; Ott, Harald C

    2015-06-01

    The primary treatment for end-stage lung disease is lung transplantation. However, donor organ shortage remains a major barrier for many patients. In recent years, techniques for maintaining lungs ex vivo for evaluation and short-term (advance to more complex interventions for lung repair and regeneration, the need for a long-term organ culture system becomes apparent. Herein we describe a novel clinical scale bioreactor capable of maintaining functional porcine and human lungs for at least 72 h in isolated lung culture (ILC). The fully automated, computer controlled, sterile, closed circuit system enables physiologic pulsatile perfusion and negative pressure ventilation, while gas exchange function, and metabolism can be evaluated. Creation of this stable, biomimetic long-term culture environment will enable advanced interventions in both donor lungs and engineered grafts of human scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A fluid dynamics approach to bioreactor design for cell and tissue culture.

    Science.gov (United States)

    Dusting, Jonathan; Sheridan, John; Hourigan, Kerry

    2006-08-20

    The problem of controlling cylindrical tank bioreactor conditions for cell and tissue culture purposes has been considered from a flow dynamics perspective. Simple laminar flows in the vortex breakdown region are proposed as being a suitable alternative to turbulent spinner flask flows and horizontally oriented rotational flows. Vortex breakdown flows have been measured using three-dimensional Stereoscopic particle image velocimetry, and non-dimensionalized velocity and stress distributions are presented. Regions of locally high principal stress occur in the vicinity of the impeller and the lower sidewall. Topological changes in the vortex breakdown region caused by an increase in Reynolds number are reflected in a redistribution of the peak stress regions. The inclusion of submerged scaffold models adds complexity to the flow, although vortex breakdown may still occur. Relatively large stresses occur along the edge of disks jutting into the boundary of the vortex breakdown region. Copyright 2006 Wiley Periodicals, Inc.

  15. Estimated release from the saltstone landfill effect of landfill caps and landfill-cap/monolith-liner combinations

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1985-01-01

    The effect of capping the entire saltstone landfill is dependent on the effectiveness of the clay cap in preventing infiltration. A cap that is 99% effective will reduce releases from the saltstone landfill by a factor of 7.7. Several combinations of landfill design alterations will result in meeting ground water standards

  16. Methodology for the design of Santa Rosa de Cabal sanitary landfill, Risaralda; Metodologia para el diseno del relleno sanitario de Santa Rosa de Cabal, Risaralda

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, J; Orozco, J

    1992-07-01

    In 1987 the Regional Autonomous Corporation of Risaralda, CARDER and the Risaralda Government, they signed a cooperation agreement, in order to endowing from sanitary landfill to the municipalities of the department. In the mark of this agreement it was carried out the design of Santa Rosa's sanitary landfill, that with near 50.000 inhabitants it is constituted in the third city of the department. This city generates some 25 tons/day of garbage that at the present time are heady directly to the waters of San Eugenio River. The present work contains the most important methodological aspects in the design of the sanitary landfill and some comments about the approaches ideal Vs real approaches of selection of places.

  17. Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills.

    Science.gov (United States)

    Akinade, Olugbenga O; Oyedele, Lukumon O; Ajayi, Saheed O; Bilal, Muhammad; Alaka, Hafiz A; Owolabi, Hakeem A; Bello, Sururah A; Jaiyeoba, Babatunde E; Kadiri, Kabir O

    2017-02-01

    The aim of this paper is to identify Critical Success Factors (CSF) needed for effective material recovery through Design for Deconstruction (DfD). The research approach employed in this paper is based on a sequential exploratory mixed method strategy. After a thorough review of literature and conducting four Focus Group Discussion (FGDs), 43 DfD factors were identified and put together in a questionnaire survey. Data analyses include Cronbach's alpha reliability analysis, mean testing using significance index, and exploratory factor analysis. The result of the factor analysis reveals that an underlying factor structure of five DfD factors groups that include 'stringent legislation and policy', 'deconstruction design process and competencies', 'design for material recovery', 'design for material reuse', and 'design for building flexibility'. These groups of DfD factor groups show that the requirements for DfD goes beyond technical competencies and that non-technical factors such as stringent legislation and policy and design process and competency for deconstruction are key in designing deconstructable buildings. Paying attention to the factors identified in all of these categories will help to tackle impediments that could hinder the effectiveness of DfD. The results of this study would help design and project managers to understand areas of possible improvement in employing DfD as a strategy for diverting waste from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems

    Directory of Open Access Journals (Sweden)

    Musoni, M.

    2015-01-01

    Full Text Available The production of fungal metabolites and conidia at an industrial scale requires an adequate yield at relatively low cost. To this end, many factors are examined and the design of the bioreactor to be used for the selected product takes a predominant place in the analysis. One approach to addressing the issue is to integrate the scaling-up procedure according to the biological characteristics of the microorganism considered, i.e. in our case filamentous fungi. Indeed, the scaling-up procedure is considered as one of the major bottlenecks in fermentation technology, mainly due to the near impossibility of reproducing the ideal conditions obtained in small reactors designed for research purposes when transposing them to a much larger production scale. The present review seeks to make the point regarding the bioreactor design and its implementation for cultivation of filamentous fungi and the production of fungal metabolites according to different developmental stages of fungi of industrial interest. Solid-state (semi-solid, submerged, fermentation and biofilm reactors are analyzed. The different bioreactor designs used for these three processes are also described at the technological level.

  19. Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber.

    Science.gov (United States)

    Gallego, E; Perales, J F; Roca, F J; Guardino, X

    2014-02-01

    Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones

  20. Financing landfill gas projects

    International Nuclear Information System (INIS)

    Bull, R.

    1992-01-01

    The problems of financing landfill gas projects in the UK in the last few years are discussed. The approach of the author in setting up a company to finance such projects in the power generation field and a separate company to design and supply turnkey packages is reported. (UK)

  1. Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes.

    Science.gov (United States)

    Elwell, Anthony C; Elsayed, Nada H; Kuhn, John N; Joseph, Babu

    2018-03-01

    Separation of volatile methyl siloxanes from landfill gas using fixed adsorption beds was modeled with the objective of identifying appropriate technology and the economics associated with this purification step. A general adsorption model assuming plug flow and radial symmetry was developed and used to conduct a parametric sweep of 162 unique cases. The varied parameters were adsorbent type (activated carbon and silica gel), bed height (3.05-9.15 m/10-30 ft), inlet siloxane concentration (5-15 mg/m 3 ), moisture content (0-100% relative humidity at STP or RH), and siloxane tolerance limit (0.094-9.4 mg/m 3 ) that correlated to three distinct energy conversion technologies (electricity production using engines or fuels cells or catalytic conversion to liquid hydrocarbon fuels). Due to the detrimental effect of RH on siloxane absorption, the maximum allowable moisture content of LFG before purification is 50% RH and moisture removal processes are also required. The design calculations using a selected case study show that the adsorption bed height required needed for 6 months minimum breakthrough time for catalytic fuel production is twice that for engine applications. Fuel cell applications require 3 times the bed height compared to engine applications. However, the purification costs amounted to 94%, 16% and 52% of recovered product value for engine, liquefaction, and fuel cell applications, respectively indicating the need for a high value product to justify purification costs. The approaches and conclusions can be extended to specific process conditions for landfill gas purification and to other processes that use biogas produced from waste as a feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An improvement of surfactin production by B. subtilis BBG131 using design of experiments in microbioreactors and continuous process in bubbleless membrane bioreactor.

    Science.gov (United States)

    Motta Dos Santos, Luiz Fernando; Coutte, François; Ravallec, Rozenn; Dhulster, Pascal; Tournier-Couturier, Lucie; Jacques, Philippe

    2016-10-01

    Culture medium elements were analysed by a screening DoE to identify their influence in surfactin specific production by a surfactin constitutive overproducing Bacillus subtilis strain. Statistics pointed the major enhancement caused by high glutamic acid concentrations, as well as a minor positive influence of tryptophan and glucose. Successively, a central composite design was performed in microplate bioreactors using a BioLector®, in which variations of these impressive parameters, glucose, glutamic acid and tryptophan concentrations were selected for optimization of product-biomass yield (YP/X). Results were exploited in combination with a RSM. In absolute terms, experiments attained an YP/X 3.28-fold higher than those obtained in Landy medium, a usual culture medium used for lipopeptide production by B. subtilis. Therefore, two medium compositions for enhancing biomass and surfactin specific production were proposed and tested in continuous regime in a bubbleless membrane bioreactor. An YP/X increase of 2.26-fold was observed in bioreactor scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Stability analysis criteria in landfill design based on the Spanish code; Criterios de estabilidad en el diseno de un vertedero, basado en la normativa espanola

    Energy Technology Data Exchange (ETDEWEB)

    Estaire Gepp, J.; Pardo de Santayana, F.

    2014-02-01

    The design of a landfill requires performing stability analyses. To perform such analyses it is necessary to define different design situations and their corresponding safety factors. Geo synthetics are normally used to construct the lining system of the landfills, causing critical slip surfaces to pass along one of the different geo synthetic interfaces. Determination of the shear strength of such critical interfaces is, therefore, an extremely important issue. In this paper, these aspects are analysed based on what is set in the Spanish codes and in the technical literature. As a result of the study, some tables are presented which relate the different design situations (normal, accidental or extraordinary) to the shear strength of the lining system to be used (peak or residual) and define the minimum factor of safety to be accomplished. (Author)

  4. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  5. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  6. Preliminary design of a landfill and revetment on Bikini Island, Republic of the Marshall Islands. February 1987. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Orson P; Yenhsi, Chu [Coastal Engineering Research Center, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS (United States)

    1987-07-01

    Topsoil on Bikini Island, which is located 2500 miles southwest of Hawaii at 110351 N, 1650251 E, was contaminated by radioactive fallout from nuclear weapons tests in the late 1940's and early 1950's. The uptake of this radioactive fallout, primarily cesium-137 in plants, has prevented resettlement of the island by the native population. One alternative solution proposed by the congressionally appointed Bikini Atoll Rehabilitation Committee involves removal of the contaminated topsoil and placement of the excavated material as a landfill on the 2,500-ft-wide reef flat adjacent to the eastern (windward) shore of the island. This paper explores that alternative by first developing an extremal wave climatology offshore of Bikini Island from 21 years 1959-1979) of typhoon data published by the Joint Typhoon Warning Center on Guam. Deepwater wave conditions just offshore of the reef are estimated and transformed to the point of breaking at the edge of the reef. Storm surge Is estimated based on these same parameters. Wave setup on the reef flat is estimated based on the simulated breaking conditions. Given an estimate of the elevated water level across the reef caused by storm surge and wave setup, depth limitations and fractional decay are estimated to define wave conditions at the toe of the proposed revetment. A rubble-mound revetment design stable in these conditions, armored by coral limestone quarried from the reef flat, is then formulated and corresponding material quantities estimated. (author)

  7. Preliminary design of a landfill and revetment on Bikini Island, Republic of the Marshall Islands. February 1987. Final report

    International Nuclear Information System (INIS)

    Smith, Orson P.; Chu Yenhsi

    1987-01-01

    Topsoil on Bikini Island, which is located 2500 miles southwest of Hawaii at 110351 N, 1650251 E, was contaminated by radioactive fallout from nuclear weapons tests in the late 1940's and early 1950's. The uptake of this radioactive fallout, primarily cesium-137 in plants, has prevented resettlement of the island by the native population. One alternative solution proposed by the congressionally appointed Bikini Atoll Rehabilitation Committee involves removal of the contaminated topsoil and placement of the excavated material as a landfill on the 2,500-ft-wide reef flat adjacent to the eastern (windward) shore of the island. This paper explores that alternative by first developing an extremal wave climatology offshore of Bikini Island from 21 years 1959-1979) of typhoon data published by the Joint Typhoon Warning Center on Guam. Deepwater wave conditions just offshore of the reef are estimated and transformed to the point of breaking at the edge of the reef. Storm surge Is estimated based on these same parameters. Wave setup on the reef flat is estimated based on the simulated breaking conditions. Given an estimate of the elevated water level across the reef caused by storm surge and wave setup, depth limitations and fractional decay are estimated to define wave conditions at the toe of the proposed revetment. A rubble-mound revetment design stable in these conditions, armored by coral limestone quarried from the reef flat, is then formulated and corresponding material quantities estimated. (author)

  8. The Novel Design and Manufacturing Technology of Densified RDF from Reclaimed Landfill without a Mixing Binding Agent Using a Hydraulic Hot Pressing Machine

    Directory of Open Access Journals (Sweden)

    Kerdsuwan Somrat

    2016-01-01

    Full Text Available The manufacturing of RDF (Refuse Derived Fuel from a conventional cold press extrusion machine is not suitable for producing RDF from reclaimed landfill since it is not identical in shape and form after production due to the swelling of the plastic fraction contained inside the reclaimed landfill and hence needs a very high compression force. Moreover, a binder agent is needed in order to keep the RDF in a similar shape and form. A novel design and manufacturing technology for a hydraulic hot pressing machine has been established and can produce high-quality RDF without any binder. The two electrical heaters are installed at the inner core and on the surface of the mold. The compression force on the mold is performed by a hydraulic jack. In addition, a newly-designed locking plate system which is designed by a slider to open and close along the paired horizontal slots, can reduce the cycle time of the manufacturing process and yield higher productivity. The testing properties of the RDF produced by the novel hydraulic hot pressing machine include the examination of size, shape, weight, unit density, bulk density, compression strength, moisture content, and heating value. The results showed that the RDF is suitable to be used as feedstock in an incinerator or gasifier to produce green and clean energy from reclaimed landfill.

  9. Migration behavior of Cu and Zn in landfill with different operation modes

    International Nuclear Information System (INIS)

    Long Yuyang; Shen Dongsheng; Wang Hongtao; Lu Wenjing

    2010-01-01

    Cu and Zn were chosen to study the heavy metal migration behavior and mechanism in three simulated landfills with different operation modes, namely conventional landfill (CL), leachate directly recirculated landfill (RL) and leachate pre-treated bioreactor landfill (BL). It showed that Cu and Zn in refuse experienced periodic migration and retention gradually during decomposition, and the variation of Cu(II) and Zn(II) in leachate correspondingly reflected the releasing behavior of Cu and Zn in landfill refuse at different stabilization stages. Except for their accumulated leaching amounts, Cu(II) and Zn(II) concentrations in leachate from landfills with different operation modes had no significant difference. The accumulated leaching amounts of Cu and Zn from CL showed exponential increase, while those of RL and BL showed exponential decay. The operation of bioreactor landfill with leachate recirculation can obviously attenuate the heavy metal leaching than conventional operation. The introduction of methanogenic reactor (MR) in bioreactor landfill can further promote the immobilization of heavy metal in refuse than leachate recirculation directly.

  10. Long-Term Design of Mangrove Landfills as an Effective Tide Attenuator under Relative Sea-Level Rise

    Directory of Open Access Journals (Sweden)

    Hiroshi Takagi

    2018-04-01

    Full Text Available A mangrove ecosystem is an important option in Ecosystem based Disaster Risk Reduction (Eco-DRR. The effectiveness of an artificial mangrove landfill in reducing tidal amplitudes was studied by performing a coupled numerical model that simulated wave propagation and soil consolidation. The constructed model simulated the propagation of tide over an artificial landfill that was subjected to land subsidence, sea-level rise, vegetation growth, and sediment deposition. A case study analysis confirmed that the tidal amplitudes are reduced if the initial elevation of the landfill is appropriately considered to achieve an equilibrium state of the landfill over its lifetime. Sediment deposition may be the only dependable source to sustain the surface elevation of a mangrove with relative sea-level rise. Sediment deposition is important to promote vegetation growth, which in turn contributes to sedimentation by enhancing a tranquil hydrodynamic environment. An insufficient initial elevation of the landfill will result in less effective protection against tidal propagation after it substantially subsides.

  11. Passive drainage and biofiltration of landfill gas: Australian field trial

    International Nuclear Information System (INIS)

    Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.

    2007-01-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions

  12. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    Science.gov (United States)

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi

    2009-01-01

    Abstract The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008). PMID:19292670

  13. Review of existing landfill leachate production models

    International Nuclear Information System (INIS)

    Khan, T.A.

    2000-01-01

    The protection of water resources is a fundamental consideration in managing landfill operations. Landfill sites should be designed and operated so as to control leachate production and hence minimize the risk of surface and ground water pollution. A further important development is the use of computer models to estimate the production of leachate from landfill sites. It is revealed from the literature that a number of landfill leachate management model lave been development in recent years. These models allow different engineering schemes to be evaluated and are essential tools for design and operation managements of modern landfills. This paper describes a review of such models mainly focused on their theory, practicability, data requirements, suitability to real situation and usefulness. An evaluation of these models identifies. (author)

  14. Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation.

    Science.gov (United States)

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; Lima, Deise Juliana da Silva; Pradella, José Geraldo da Cruz

    2013-03-01

    This work investigates the glycosyl hydrolase (GH) profile of a new Trichoderma harzianum strain cultivated under controlled bioreactor submerged fermentation. The influence of different medium components (delignified steam-exploded sugarcane bagasse, sucrose, and soybean flour) on GH biosynthesis was assessed using experimental mixture design (EMD). Additionally, the effect of increased component concentrations in culture media selected from the EMD was studied. It was found that that a mixed culture medium could significantly maximize GH biosynthesis rate, especially for xylanase enzymes which achieved a 2-fold increment. Overall, it was demonstrated that T. harzianumP49P11 enzymes have a great potential to be used in the deconstruction of biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  16. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    Science.gov (United States)

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  17. 40 CFR 60.752 - Standards for air emissions from municipal solid waste landfills.

    Science.gov (United States)

    2010-07-01

    ... municipal solid waste landfills. 60.752 Section 60.752 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Municipal Solid Waste Landfills § 60.752 Standards for air emissions from municipal solid waste landfills. (a) Each owner or operator of an MSW landfill having a design capacity less...

  18. 75 FR 6597 - Determination to Approve Alternative Final Cover Request for the Lake County, MT Landfill...

    Science.gov (United States)

    2010-02-10

    ... to Approve Alternative Final Cover Request for the Lake County, MT Landfill; Opportunity for Public... for the Lake County landfill, a municipal solid waste landfill (MSWLF) owned and operated by Lake... operating criteria for MSWLFs, including landfill location restrictions, operating standards, design...

  19. Review of nonconventional bioreactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  20. Landfill gas: development guidelines

    International Nuclear Information System (INIS)

    1996-11-01

    A Guide produced as part of the UK DTI's New and Renewable Energy Programme provides information which forms a framework enabling landfill gas to be exploited fully as a renewable energy resource. The eight chapters cover the resource base of landfill gas in the UK in the wider context, the technology for energy recovery from landfill gas, the utilisation options for landfill gas, the various project development arrangements and their implementation, the assessment of a site's landfill gas resource, the factors which influence the project economies, financing aspects and the management of project liabilities and finally the national waste disposal policy and required consents followed by the overall process for project mobilisation. (UK)

  1. Nitrous oxides reduction pathways induced during nitrified leachate recirculation in bioreactor landfill; Voies de reduction des oxydes d'azote lors de leur injection dans un massif de dechets menagers et assimiles: contribution a l'etude de la recirculation de lixiviat nitrifie dans une installation de stockage de dechets menagers et assimiles bioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V

    2005-12-15

    Nitrified leachate recirculation in bioreactor landfill has been proposed to avoid ammonium accumulation. We worked on the identification of nitrous oxides reduction pathways induced when nitrified leachate is recirculated during waste degradation. Batch reactors (1.1 liter, 40 g of reconstituted Municipal Solid Waste, MSW) were operated at 35 deg C and saturated with leachate. Injections of 250 mg N-NO{sub x}.10{sup -1} were performed during different phases of waste biodegradation. Nitrate reduction during acido-genic and active methanogenic phases, with an easily available carbon source in leachate, was mainly attributed to heterotrophic denitrification. However, H{sub 2}S concentration up to 0.7 % in the biogas (corresponding to 0.5 mmol of free H{sub 2}S per liter of leachate) led to prevalent DNRA (Dissimilatory Nitrate Reduction to Ammonium) over denitrification. This reaction hindered the release of nitrogen outside of the system. This observation was confirmed with experiments performed with {sup 15}N enriched nitrate. During late methanogenic phase, without any available carbon source in leachate, nitrate was reduced by autotrophic denitrification with sulfide as an electron donor. No free metal was detected in the leachate. N{sub 2}O transient accumulation was detected during both DNRA and autotrophic denitrification. A second set of experiments was conducted in a MSW pilot scale column (0.2 m{sup 3}, 80 kg of reconstituted waste) in methanogenic phase. 113 % and 203 % of nitrate were converted into N{sub 2} when a synthetic KNO{sub 3} solution (280 mg N.day{sup -1} during 77 days) or nitrified leachate (61 mg N.day{sup -1} during 54 days) were respectively injected into the system. The downward movement of a denitrification front passing through the waste mass was followed using 3 redox probes inserted at different levels of the pilot. Even if N{sub 2}O was never detected, a small production of this gas could not be totally excluded. It was established

  2. Nitrous oxides reduction pathways induced during nitrified leachate recirculation in bioreactor landfill; Voies de reduction des oxydes d'azote lors de leur injection dans un massif de dechets menagers et assimiles: contribution a l'etude de la recirculation de lixiviat nitrifie dans une installation de stockage de dechets menagers et assimiles bioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, V.

    2005-12-15

    Nitrified leachate recirculation in bioreactor landfill has been proposed to avoid ammonium accumulation. We worked on the identification of nitrous oxides reduction pathways induced when nitrified leachate is recirculated during waste degradation. Batch reactors (1.1 liter, 40 g of reconstituted Municipal Solid Waste, MSW) were operated at 35 deg C and saturated with leachate. Injections of 250 mg N-NO{sub x}.10{sup -1} were performed during different phases of waste biodegradation. Nitrate reduction during acido-genic and active methanogenic phases, with an easily available carbon source in leachate, was mainly attributed to heterotrophic denitrification. However, H{sub 2}S concentration up to 0.7 % in the biogas (corresponding to 0.5 mmol of free H{sub 2}S per liter of leachate) led to prevalent DNRA (Dissimilatory Nitrate Reduction to Ammonium) over denitrification. This reaction hindered the release of nitrogen outside of the system. This observation was confirmed with experiments performed with {sup 15}N enriched nitrate. During late methanogenic phase, without any available carbon source in leachate, nitrate was reduced by autotrophic denitrification with sulfide as an electron donor. No free metal was detected in the leachate. N{sub 2}O transient accumulation was detected during both DNRA and autotrophic denitrification. A second set of experiments was conducted in a MSW pilot scale column (0.2 m{sup 3}, 80 kg of reconstituted waste) in methanogenic phase. 113 % and 203 % of nitrate were converted into N{sub 2} when a synthetic KNO{sub 3} solution (280 mg N.day{sup -1} during 77 days) or nitrified leachate (61 mg N.day{sup -1} during 54 days) were respectively injected into the system. The downward movement of a denitrification front passing through the waste mass was followed using 3 redox probes inserted at different levels of the pilot. Even if N{sub 2}O was never detected, a small production of this gas could not be totally excluded. It was established

  3. Innovative dual-step management of semi-aerobic landfill in a tropical climate.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto

    2018-04-01

    Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the

  4. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  5. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  6. Enhanced stabilisation of municipal solid waste in bioreactor landfills

    NARCIS (Netherlands)

    Valencia Vázquez, R.

    2008-01-01

    The increasing development and urbanization of the society has led to an increase per-capita production of municipal solid waste (MSW) materials. These MSW materials are of organic and inorganic nature that can be of rapidly, moderately and slowly biodegradable or inert characteristics. With regard

  7. Landfilling: Concepts and Challenges

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Scharff, H.; Hjelmar, O.

    2011-01-01

    Landfilling of waste historically has been the main management route for waste, and in many parts of the world it still is. Landfills have developed from open polluting dumps to modern highly engineered facilities with sophisticated control measures and monitoring routines. However, in spite of all...

  8. Biostabilization of landfill waste

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L. [Landfill Service Corp., Apalachin, NY (United States)

    1995-06-01

    In November 1991, the city of Albany, N.Y., together with the principals of Landfill Service Corp. (Apalachin, N.Y.), proposed to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double-composite-lined Interim Landfill located in the city of Albany. The small landfill covers just 12 acres and is immediately adjacent to residential neighbors. The benefits of this biostabilization practice include a dramatic improvement in the orderliness of waste placement, with significant reduction of windblown dust and litter. The process also reduces the presence of typical landfill vectors such as flies, crows, seagulls, and rodents. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of post-closure conditions and reduction or elimination of remedial costs attendant to post-closure gross differential settlement.

  9. Design of concrete waste basin in Integrated Temporarily Sanitary Landfill (ITSL) in Siosar, Karo Regency, Indonesia on supporting clean environment and sustainable fertilizers for farmers

    Science.gov (United States)

    Ginting, N.; Siahaan, J.; Tarigan, A. P.

    2018-03-01

    A new settlement in Siosar village of Karo Regency has been developed for people whose villages have been completely destroyed by the prolong eruptions of Sinabung. An integrated temporarily sanitary landfill (ITSL) was built there to support the new living environment. The objective of this study is to investigate the organic waste decomposing in order to improve the design of the conventional concrete waste basin installed in the ITSL. The study was last from May until August 2016. The used design was Completely Randomized Design (CRD) in which organic waste was treated using decomposer with five replications in three composter bins. Decomposting process lasted for three weeks. Research parameters were pH, temperature, waste reduction in weight, C/N, and organic fertilizer production(%). The results of waste compost as follows : pH was 9.45, ultimate temperature was 31.6°C, C/N was in the range of 10.5-12.4, waste reduction was 53% and organic fertilizer production was 47%. Based on the decomposting process and the analysis, it is recommended that the conventional concrete waste basin should be divided into three colums and each column would be filled with waste when previous column is fulled. It is predicted that when the third column is fully occupied then the waste in the first column already become a sustainable fertilizer.

  10. Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics

    National Research Council Canada - National Science Library

    2003-01-01

    ... alternative landfill cover projects. The purpose of the case studies is to present examples of the flexibility used in the regulatory framework for approving alternative landfill cover designs, current research information about the use...

  11. Membrane Bioreactors design and operation improvements: The Spanish Experience; Avances en el diseno y la operacion de los biorreactores de membrana: La experiencia espanola

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias Esteban, R.; Ortega de Miguel, E.; Martinez Tarifa, M. A.; Simon Andreu, P.; Moragas Bouyart, L.; Garcia Fernandez, E.; Robuste Cartro, J.; Rodriguez-Roda layret, I.

    2012-07-01

    A Membrane Bioreactor (MBR) is a modification of a conventional activated sludge (CAS) plant where the secondary settling ins replaced by a low pressure ultrafiltration (UF) or micro filtration (MF) membranes separation process in order to obtain an effluent almost free of suspended solids and microorganisms. since the first MBR installation in 2002, the number and capacity of these systems have exponentially increased in spain, driven by the high quality of the effluent which allows direct reuse and discharge into environmentally sensitive areas, the compactness and automation of these plants and the possibility of upgrading existing wastewater treatment plants (WWTP) which no longer reach the required effluent quality levels. There were 45 operating MBR systems in 2011 and the total municipal wastewater treatment capacity by this type of plants will be about 90 hm{sup 3} in 204 when the current projects have been implemented. Today, Spain public and private wastewater management agencies consider MBR plants as an alternative of treatment but first they had to face a complex learning period to operate and design this kind of system. A significant progress has been made over the last years, but especially energy efficiency responds to the challenge of continuous improvement. Membrane fouling control consumes most of the energy involved in the process therefore, anti fouling materials and better membrane air-scour systems that allow the frequency and intensity of air flow to be controlled in realtime, are being investigated. This brings MBR closer to the CAS process in terms of energy efficiency. Breakthroughs in the design and operation of MBR plants are being collected in a guide for the implementation of MBR led by CEDEX, in which the main managers and operators are involved. This paper presents some of these improvements. (Author) 9 refs.

  12. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Science.gov (United States)

    2010-07-01

    ... landfill emissions. 62.14353 Section 62.14353 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  13. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    Science.gov (United States)

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  14. Landfill covers for dry environments

    International Nuclear Information System (INIS)

    Dwyer, S.F.

    1996-01-01

    A large-scale landfill cover field test is currently underway at Sandia National Laboratories in Albuquerque, New Mexico. It is intended to compare and document the performance of alternative landfill cover technologies of various costs and complexities for interim stabilization and/or final closure of landfills in arid and semi-arid environments. Test plots of traditional designs recommended by the US Environmental Protection Agency for both RCRA Subtitle open-quote C close-quote and open-quote D close-quote regulated facilities have been constructed side-by-side with the alternative covers and will serve as baselines for comparison to these alternative covers. The alternative covers were designed specifically for dry environments. The covers will be tested under both ambient and stressed conditions. All covers have been instrumented to measure water balance variables and soil temperature. An on-site weather station records all pertinent climatological data. A key to acceptance of an alternative environmental technology is seeking regulatory acceptance and eventual permitting. The lack of acceptance by regulatory agencies is a significant barrier to development and implementation of innovative cover technologies. Much of the effort on this demonstration has been toward gaining regulatory and public acceptance

  15. Cascades of bioreactors

    NARCIS (Netherlands)

    Gooijer, de C.D.

    1995-01-01

    In this thesis a common phenomenon in bioprocess engineering is described : the execution of a certain bioprocess in more than one bioreactor. Chapter 1, a review, classifies bioprocesses by means of a number of characteristics :
    i) processes with a variable

  16. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    Science.gov (United States)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  17. Landfill to Learning Facility

    Science.gov (United States)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  18. Microbes in biological processes for municipal landfill leachate treatment: Community, function and interaction

    DEFF Research Database (Denmark)

    Zhang, Duoying; Vahala, Riku; Wang, Yu

    2016-01-01

    Landfill leachate (LFL) contains high strength of ammonium and complex organic substances including biodegradable volatile fatty acids (VFAs), refractory aquatic humic substances (AHS) and micro-scale xenobiotic organic chemicals (XOCs), which promotes the diverse microbial community in LFL...... treatment bioreactors. These microbes cooperate to remove nitrogen, biodegrade organic matters, eliminate the toxicity of XOCs and produce energy. In these diverse microbes, some show dominant in the bioreactor and are prevalent in many kinds of LFL treatment bio-processes, such as Brocadia from the phylum...

  19. Optimal sequence of landfills in solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Andre, F.J. [Universidad Pablo de Olavide (Spain); Cerda, E. [Universidad Complutense de Madrid (Spain)

    2001-07-01

    Given that landfills are depletable and replaceable resources, the right approach, when dealing with landfill management, is that of designing an optimal sequence of landfills rather than designing every single landfill separately. In this paper, we use Optimal Control models, with mixed elements of both continuous-and discrete-time problems, to determine an optimal sequence of landfills, as regarding their capacity and lifetime. The resulting optimization problems involve splitting a time horizon of planning into several subintervals, the length of which has to be decided. In each of the subintervals some costs, the amount of which depends on the value of the decision variables, have to be borne. The obtained results may be applied to other economic problems such as private and public investments, consumption decisions on durable goods, etc. (Author)

  20. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  1. Mitigation of methane emissions in a pilot-scale biocover system at the av miljø landfill, denmark: system design and gas distribution

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Skov, B.; Cassini, Filippo

    2013-01-01

    -passive biocover system was constructed at the AV Miljø landfill. The biocover is fed by landfill gas pumped out of three leachate wells. An innovative gas distribution system was used to overcome the often observed overloaded hot spot areas resulting from uneven gas distribution to the active methane oxidation......Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi...... layer. Performed screening of methane and carbon dioxide concentration at the surface of the biocover showed homogenous distributions indicating an even gas distribution. This was supported by result from a performed tracer test where the compound HFC-134a was added to the gas inlet over a 12 day period...

  2. THE EMISSION POTENTIAL FROM MUNICIPAL SOLID WASTE LANDFILL IN JORDAN

    Directory of Open Access Journals (Sweden)

    Mohammad Aljaradin

    2016-01-01

    Full Text Available A comprehensive study was conducted to monitor the emission potential from solid waste landfilled in Jordan over a period of 292 days using an anaerobic lysimeter. A 30 kg waste sample reflecting the typical municipal solid waste (MSW streams generated in Jordan was used to simulate the influence of climate on the emission potential of landfills located in semi-arid areas. The experimental results demonstrated that a significant amount of leachate and landfill gas was produced. The methane content was found to be more than 45% and the leachate produced reached 15.7 l after 200 days. However, after 260 days the gas and leachate production rate became negligible. A significant amount of heavy metal traces was found in the leachate due to mixed waste disposal. Changes in biogas and leachate quality parameters in the lysimeter revealed typical landfill behaviour trends, the only difference being that they developed much more quickly. In view of current landfill practices in Jordan and the effect of climate change, the results suggest that landfill design and operational modes need to be adjusted in order to achieve sustainability. For this reason, optimized design parameters and operational scenarios for sustainable landfill based on the country’s climatic conditions and financial as well as technical potential are recommended as a primary reference for future landfills in Jordan as well as in similar regions and climates.

  3. ENHANCED LANDFILL MINING: KONSEP BARU PENGELOLAAN LANDFILL BERKELANJUTAN

    OpenAIRE

    Wahyono, Sri

    2016-01-01

    Enhanced landfill mining (ELFM) adalah konsep baru yang terintegrasi tentang recovery material dan energi pada sebuah landfill yang bermanfaat bagi keberlanjutan pengelolaan material dan pengelolaan landfill. Konsep tersebut mengintegrasikan berbagai teknologi seperti teknologi ekskavasi, teknologi pemilahan, teknologi termal, teknologi transformasi dan daur ulang. Hal tersebut juga terintegrasi dengan aspek non teknis seperti aspek regulasi, market, ekonomi, sosial, dan lingkungan. Konsep EL...

  4. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  5. Field Monitoring of Landfill Gas

    International Nuclear Information System (INIS)

    Silvola, M.; Priha, E.

    2003-01-01

    The Finnish waste legislation requires monitoring of landfill gases. The main goal of this study is to develop instructions for field monitoring of landfill gases to be utilized by consultants and authorities. In the project it was got acquainted with the field analytical methods of landfill gases and instruments of field measurement. It was done various practical field measurements in several landfills. In the studied landfills were observed methane, carbon dioxide and oxygen concentrations and gas forming inside waste embankment in different seasons. It was measured methane emissions that discharged through a landfill surface by a chamber technique. In addition to this it was studied volatile organic compounds (VOC:s), which were liberated in a landfill. It was also studied methane oxidization in cover layers of a landfill. (orig.)

  6. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process.

    Science.gov (United States)

    Gao, Wu; Xu, Wenjie; Bian, Xuecheng; Chen, Yunmin

    2017-11-01

    calculated value and measured value is less than 5%. These results show that this approach is practical for satisfactorily and reliably calculating the settlement and storage capacity. In addition, the development of the elevation lines in the landfill sections created with the software demonstrates that the optimization of the design of the structures should be based on the settlement of the landfill. Since this practical approach can reasonably calculate the storage capacity of landfills and efficiently provide the development of the settlement of each landfilling stage, it can be used for the optimizations of landfilling schemes and structural designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution

    DEFF Research Database (Denmark)

    Cassini, Filippo; Scheutz, Charlotte; Skov, Bent Henning

    2017-01-01

    Greenhouse gas mitigation at landfills by methane oxidation in engineered biocover systems is believed to be a cost effective technology, but so far a full quantitative evaluation of the efficiency of the technology in full scale has only been carried out in a few cases. A third generation semi-p...

  8. Planning document for the Advanced Landfill Cover Demonstration

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Bostick, K.V.

    1994-01-01

    The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ''low-permeability'' cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration

  9. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  10. Restoration of landfill sites

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A K; Chamley, M E

    1986-10-01

    Many excavated quarries are subsequently used for waste disposal operations and frequently imported landfill provides the only means of restoring a former quarry to some beneficial afteruse. Concentrating solely on the final surface cover, this paper sets out some of the principles, which should be considered by those involved in landfill operations to ensure the long term success of restoration schemes. With the emphasis on restoration to agriculture, factors such as availability of cover materials and depths necessary are discussed in terms of requirements to support plant growth, protect clay capping layers and prevent damage to agricultural implements. Soil handling and appropriate after care management are considered. 4 refs.

  11. Industrial Waste Landfill IV upgrade package

    International Nuclear Information System (INIS)

    1994-01-01

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included

  12. Environmental assessment of solid waste landfilling technologies by means of LCA-modeling.

    Science.gov (United States)

    Manfredi, Simone; Christensen, Thomas H

    2009-01-01

    By using life cycle assessment (LCA) modeling, this paper compares the environmental performance of six landfilling technologies (open dump, conventional landfill with flares, conventional landfill with energy recovery, standard bioreactor landfill, flushing bioreactor landfill and semi-aerobic landfill) and assesses the influence of the active operations practiced on these performances. The environmental assessments have been performed by means of the LCA-based tool EASEWASTE, whereby the functional unit utilized for the LCA is "landfilling of 1ton of wet household waste in a 10m deep landfill for 100 years". The assessment criteria include standard categories (global warming, nutrient enrichment, ozone depletion, photo-chemical ozone formation and acidification), toxicity-related categories (human toxicity and ecotoxicity) and impact on spoiled groundwater resources. Results demonstrate that it is crucially important to ensure the highest collection efficiency of landfill gas and leachate since a poor capture compromises the overall environmental performance. Once gas and leachate are collected and treated, the potential impacts in the standard environmental categories and on spoiled groundwater resources significantly decrease, although at the same time specific emissions from gas treatment lead to increased impact potentials in the toxicity-related categories. Gas utilization for energy recovery leads to saved emissions and avoided impact potentials in several environmental categories. Measures should be taken to prevent leachate infiltration to groundwater and it is essential to collect and treat the generated leachate. The bioreactor technologies recirculate the collected leachate to enhance the waste degradation process. This allows the gas collection period to be reduced from 40 to 15 years, although it does not lead to noticeable environmental benefits when considering a 100 years LCA-perspective. In order to more comprehensively understand the influence

  13. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  14. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  15. Paper for Publication in IOP: Conference Series Leachate Treatment using three Years Aged Lysimetric Bioreactor Models

    Science.gov (United States)

    Hartono, Djoko M.; Andari Kristanto, Gabriel; Gusniani Sofian, Irma; Fauzan, Ahmad; Mahdiana, Ghanis

    2018-03-01

    This study was conducted as a response to address the problem of land availability for Cipayung landfill that no longer able to accommodate waste generation Depok City and to protect water pollution in receiving water body. Law No. 8/2008 explained that local governments and cities are required to create a sanitary landfill as a final waste processing system to replace open dumping that had been done by almost all the final processing of waste in cities in Indonesia. Sanitary landfill is the final waste processing system that works best and is environmentally friendly. The sanitary landfill will generate leachate. Leachate is the result of precipitation, evaporation, surface runoff, water infiltration into the waste, and also including the water contained in the waste. The purpose of this study was to determine the utilization of leachate generated by three years aged reactor.This study use a modeling tools as bioreactor landfill tank or so called lysimetric, that made of the polymer material that susceptible to high heat and pressure. This bioreactor landfill tank has a diameter of 0.83 m, with a surface area of 0.54 m2 and a height of 2.02 m, with the examination duration of 115 days. This tank consists of several layer, such as sand layer, solid waste layer, water layer and piping system. These layer has 3 year aged. The In this research, leachate recirculation in bioreactor landfills was conducted with waste layered loading systems with percolation system. This research has been conducted since the beginning of 2016, sampling, field measurement and analysis of leachate and waste quality carried out for approximately 115 days of field measurements.Several parameter were measured such as pH, BOD, COD, nitrate, nitrite and TSS. From the analysis of the leachate quality parameters of pH, BOD, COD, nitrite, TSS, showed a reduction in the concentration of the three reactors. The concentration of parameters measured at the initial stage until the final stage, showed a

  16. Landfill lights Liverpool festival

    Energy Technology Data Exchange (ETDEWEB)

    Matan, E

    1986-12-01

    Plants which generate power from garbage landfill gas with outputs up to 10 MWe now run into hundreds around the world. Projects to produce combined-heat-and-power from such resources are relatively few. At Liverpool, UK, a 1 MWe CHP plant has been operating successfully at the site of a major international garden festival.

  17. Sensing in tissue bioreactors

    Science.gov (United States)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  18. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    Science.gov (United States)

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Landfill Gas | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Landfill Gas Landfill Gas For campuses located near an active or recently retired landfill , landfill gas offers an opportunity to derive significant energy from a renewable energy resource. The following links go to sections that describe when and where landfill gas systems may fit into your climate

  20. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  1. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  2. Landfill Mining of Shredder Residues

    DEFF Research Database (Denmark)

    Hansen, Jette Bjerre; Hyks, Jiri; Shabeer Ahmed, Nassera

    In Denmark, shredder residues (SR) are classified as hazardous waste and until January 2012 the all SR were landfilled. It is estimated that more than 1.8 million tons of SR have been landfilled in mono cells. This paper describes investigations conducted at two Danish landfills. SR were excavated...... from the landfills and size fractionated in order to recover potential resources such as metal and energy and to reduce the amounts of SR left for re-landfilling. Based on the results it is estimated that 60-70% of the SR excavated could be recovered in terms of materials or energy. Only a fraction...... with particle size less than 5 mm needs to be re-landfilled at least until suitable techniques are available for recovery of materials with small particle sizes....

  3. Phytoremediation of landfill leachate

    International Nuclear Information System (INIS)

    Jones, D.L.; Williamson, K.L.; Owen, A.G.

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m 3 ha -1 yr -1 . However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios

  4. Phytoremediation of landfill leachate.

    Science.gov (United States)

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  5. Filtration characteristics in membrane bioreactors

    NARCIS (Netherlands)

    Evenblij, H.

    2006-01-01

    Causes of and remedies for membrane fouling in Membrane Bioreactors for wastewater treatment are only poorly understood and described in scientific literature. A Filtration Characterisation Installation and a measurement protocol were developed with the aim of a) unequivocally determination and

  6. Use of Doehlert and constrained mixture designs in the development of a photo-oxidation procedure using UV radiation/H2O2 for decomposition of landfill leachate samples and determination of metals by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Marcos A. Bezerra

    2015-03-01

    Full Text Available This work proposes the use of photo-oxidation degradation with UV radiation/H2O2 as sample treatment for the determination of Fe, Zn, Mn, Ni and Co in municipal solid waste landfill leachate by flame atomic absorption spectrometry (FAAS. Three variables (pH, irradiation time and buffer concentration were optimized using Doehlert design and the proportions of mixture components submitted to UV radiation (leachate sample, buffer solution and H2O2 30%, v/v were optimized using a constrained mixture design. Using the experimental conditions established, this procedure allows limits of detection of 0.075, 0.025, 0.010, 0.075 and 0.041 µg mL-1, and the precision levels expressed as relative standard (%RSD, 0.5 µg mL-1 were 3.6, 1.8, 1.3, 3.3 and 1.7%, for Fe, Mn, Zn, Ni and Co respectively. Recovery tests were carried out for evaluation of the procedure accuracy and recoveries were between 92 and 106% for the studied metals. This procedure has been applied for the analysis of the landfill leachate collected in Jequié, a city of the southwestern region of the State of Bahia, Brazil. The results were compared with those obtained by acid digestion. There was no significant difference between the results obtained by the two methods based on paired t-test at 95% confidence level.

  7. Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater

  8. Migration behavior of landfill leachate contaminants through alternative composite liners

    Energy Technology Data Exchange (ETDEWEB)

    Varank, Gamze, E-mail: gvarank@yildiz.edu.tr; Demir, Ahmet, E-mail: ahmetd@yildiz.edu.tr; Top, Selin, E-mail: stop@yildiz.edu.tr; Sekman, Elif, E-mail: esekman@yildiz.edu.tr; Akkaya, Ebru, E-mail: ekoca@yildiz.edu.tr; Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr; Bilgili, M. Sinan, E-mail: mbilgili@yildiz.edu.tr

    2011-08-01

    Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm + 10 cm, k = 10{sup -8} m/sn), R2: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm + 10 cm, k = 10{sup -8} m/sn), R3: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10{sup -8} m/sn) + bentonite liner (2 cm) + compacted clay liner (10 cm, k = 10{sup -8} m/sn), and R4: Geomembrane (2 mm HDPE) + compacted clay liner (10 cm, k = 10{sup -8} m/sn) + zeolite liner (2 cm) + compacted clay liner (10 cm, k = 10{sup -8} m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. - Research highlights: {yields} Migration of

  9. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2012-01-31

    OBJECTIVE: To design and construct a urinary bladder bioreactor for urologic tissue-engineering purposes and to compare the viability and proliferative activity of cell-seeded extracellular matrix scaffolds cultured in the bioreactor with conventional static growth conditions. MATERIALS AND METHODS: A urinary bladder bioreactor was designed and constructed to replicate physiologic bladder dynamics. The bioreactor mimicked the filling pressures of the human bladder by way of a cyclical low-delivery pressure regulator. In addition, cell growth was evaluated by culturing human urothelial cells (UCs) on porcine extracellular matrix scaffolds in the bioreactor and in static growth conditions for 5 consecutive days. The attachment, viability, and proliferative potential were assessed and compared with quantitative viability indicators and by fluorescent markers for intracellular esterase activity and plasma membrane integrity. Scaffold integrity was characterized with scanning electron microscopy and 4\\

  10. A comparative examination of MBR and SBR performance for the treatment of high-strength landfill leachate.

    Science.gov (United States)

    El-Fadel, M; Hashisho, J

    2014-09-01

    The management of landfill leachate is challenging, with relatively limited work targeting high-strength leachate. In this study, the performance of the membrane bioreactor (MBR) and sequencing batch reactor (SBR) technologies are compared in treating high-strength landfill leachate. The MBR exhibited a superior performance with removal efficiencies exceeding 95% for BOD5, TN, and NH3 and an improvement on SBR efficiencies ranging between 21 and 34%. The coupled experimental results contribute in filling a gap toward improving the management of high-strength landfill leachate and providing comparative guidelines or selection criteria and limitations for MBR and SBR applications. Implications: While the sequencing batch reactor (SBR) technology offers some flexibility in terms of cycle time and sequence, its performance is constrained when considering landfill leachate associated with significant variations in quality and quantity. Combining membrane separation and biodegradation processes or the membrane bioreactor (MBR) technology improved removal efficiencies significantly. In the context of leachate management using the MBR technology, more efforts have targeted low-strength leachate with limited attempts at moderate to high strength leachate. In this study, the SBR and MBR technologies were tested under different operating conditions to compare and evaluate their feasibility for the management of high-strength leachate from a full-scale operating landfill. Such a comparison has not been reported for high-strength leachate.

  11. Landfill Gas Energy Project Data and Landfill Technical Data

    Science.gov (United States)

    This page provides data from the LMOP Database for U.S. landfills and LFG energy projects in Excel files, a map of project and candidate landfill counts by state, project profiles for a select group of projects, and information about Project Expo sites.

  12. Landfill gas management in Canada

    International Nuclear Information System (INIS)

    David, A.

    1997-01-01

    Landfill gas produced from solid waste landfills is one of the most significant sources of anthropogenic methane in Canada. Methane, a potent greenhouse gas, is 24.5 times more powerful than carbon dioxide by weight in terms of global climate change. Landfill gas recovery plays an important role in Canada's commitment to stabilize greenhouse gas emissions at 1990 levels by the year 2000 under the United Nations Framework Convention on Climate Change. Landfill gas is a potentially harmful emission that can be converted into a reliable environmentally-sustainable energy source used to generate electricity, fuel industries and heat buildings. The recovery and utilization of landfill gas is a win-win situation which makes good sense from local, regional and global perspectives. It provides the benefits of (1) reducing the release of greenhouse gases that contribute to global warming; (2) limiting odors; (3) controlling damage to vegetation; (4) reducing risks from explosions, fires and asphyxiation; (5) converting a harmful emission into a reliable energy source; and (6) creating a potential source of revenue and profit. Canadian landfills generate about 1 million tons of methane every year; the equivalent energy of 9 million barrels of oil (eight oil super tankers), or enough energy to meet the annual heating needs of more than half a million Canadian homes. Currently, twenty-seven facilities recover and combust roughly 25% of the methane generated by Canadian landfills producing about 3.2 PJ (10 15 Joules) of energy including 80 MW of electricity and direct fuel for nearby facilities (e.g., cement plants, gypsum board manufacturers, recycling facilities, greenhouses). This paper reviews landfill gas characteristics; environmental, health and safety impacts; landfill gas management in Canada; the costs of landfill gas recovery and utilization systems; and on-going projects on landfill gas utilization and flaring

  13. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  14. Control and monitoring of landfill gas underground migration at the City of Montreal sanitary landfill site

    International Nuclear Information System (INIS)

    Heroux, M.; Turcotte, L.

    1997-01-01

    The proposed paper covers the various aspects of control and monitoring of potential landfill gas (LFG) migration through soil voids or rock fractures at the City of Montreal sanitary landfill site. It depicts the social, geographical and geological context and presents a brief history of the landfill site. It describes the LFG collecting system and LFG migration monitoring equipment and programs. Finally it presents monitoring data taken over last few years. The landfill site is located in a well populated urban area. Since 1968, about 33 million metric tons of domestic and commercial waste have been buried in a former limestone quarry. Because of houses and buildings in the vicinity, 100 m in some locations, LFG underground migration is a major risk. LFG could indeed infiltrate buildings and reach explosive concentrations. So it must be controlled. The City of Montreal acquired the site in 1988 and has progressively built a LFG collecting system, composed of more than 288 vertical wells, to pump out of the landfill 280 million m 3 of gas annually. To verify the efficiency of this system to minimize LFG underground migration, monitoring equipment and programs have also been designed and put into operation. The monitoring network, located all around the landfill area, is composed of 21 well nests automated to monitor presence of gas in the ground in real time. In addition, 55 individual wells, where manual measurements are made, are also available. To complete the monitoring program, some measurements are also taken in buildings, houses and underground utilities in the neighborhood of the site. Monitoring data show that LFG underground migration is well controlled. They also indicate significant decrease of migration over the years corresponding to improvements to the LFG collecting system

  15. Use of landfill gas will save money and reduce emissions

    International Nuclear Information System (INIS)

    Espinosa, G.G.

    1991-01-01

    The City of Glendale, California has commenced on a project to transport landfill gas (LFG) from the Scholl Canyon Landfill to the Grayson Power Plant. At the plant the LFG will be used to produce electricity in existing steam electric generating units and combustion turbines. The LFG will reduce the natural gas consumed at the plant resulting in a substantial cost savings for the City. This project also offers significant environmental improvements. First, the elimination of flaring at the landfill will reduce emissions. Second, the LFG will reduce NO x emissions from the power plant. This paper will describe the existing collection system at the landfill as well as the design of the compression and piping system to transport the LFG to the power plant. It will also outline the in-plant modifications to the fuel delivery system and examine some of the emission implications of how the fuel is utilized

  16. Landfill gas from environment to energy

    International Nuclear Information System (INIS)

    Gendebien, A.; Pauwels, M.; Constant, M.; Ledrut-Damanet, M.J.; Nyns, E.J.; Fabry, R.; Ferrero, G.L.; Willumsen, H.C.; Butson, J.

    1992-01-01

    Landfill gas is an alternative source of energy which can be commercially exploited wherever municipal solid wastes are disposed of in sanitary landfills. In this context, it was decided to launch a comprehensive study on the subject of energy valorization of landfill gas. The main topics dealt with in the study, which is supported by a comprehensive literature survey and six detailed case-studies, include; (i) the environmental impact of landfill gas, (ii) the process of landfill gas genesis and the technology of landfill gas control by its exploitation, (iii) the monitoring of landfill gas emissions, (iv) the policies and legal aspects of landfill gas in the European Community and in the world, (v) the estimation of landfill gas potentials and economics of landfill gas control and exploitation, (vi) the status of landfill gas exploitation in the European Community and in the world. (authors). refs., figs., tabs

  17. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are

  18. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Hancher, C.W.; Taylor, P.A.; Napier, J.M.

    1978-01-01

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m 3 ; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO 3 - )/day-m 3 using feed with a nitrate concentration of 1800 g/m 3 . Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 30 0 C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  19. Anaerobic membrane bioreactor under extreme conditions (poster)

    NARCIS (Netherlands)

    Munoz Sierra, J.D.; De Kreuk, M.K.; Spanjers, H.; Van Lier, J.B.

    2013-01-01

    Membrane bioreactors ensure biomass retention by the application of micro or ultrafiltration processes. This allows operation at high sludge concentrations. Previous studies have shown that anaerobic membrane bioreactors is an efficient way to retain specialist microorganisms for treating

  20. Membrane bioreactors for enzymatic hydrolysis of lactose; Idrolisi enzimatica del lattosio con bioreattori a membrana

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M; Pilloton, R [ENEA, Casaccia (Italy). Area Energia e Innovazione; Pontecorvo, M; Mignogna, G; Fortunato, A; Beone, F

    1993-03-01

    Bioreactor systems obtained by cell or enzyme immobilization offer many advantages compared with native enzyme, intact cell systems or other biocatalysts. Thus, many attempts have been made to design and use new types of bioreactor systems in order to improve performance, enhance productivity and reduce environmental impacts. Membrane bioreactors, obtained by physical immobilization of biocatalysts, in polymeric membrane support, offer such practical advantages as: a continuous separation and transformation process with low product inhibition and suitable hydraulic configuration (backflushing recycling, ultrafiltrating). Specific membrane modules (Amicon VitaFiber), for bioreactor applications are being commercialized. Beta-galctosidase enzyme has successfully been immobilized in a hollow fiber and in ceramic modules to hydrolyze lactose in waste whey. This technical report presents the general properties and performances (permeability, washing procedures, hydraulic configurations, physical and chemical properties) of both, polymeric and ceramic supports, enzyme kinetics, physical and covalent immobilization, mathematical model of the bioreactor and on-line process monitoring.

  1. Landfill gas as vehicle fuel; Deponigas som fordonsbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Johansson, Nina; Karlsvaerd, Johan (Grontmij AB, Stockholm (Sweden))

    2010-03-15

    The landfill gas extraction in Sweden 2008 was 370 GWh. Mainly because of lack of available technologies for landfill gas upgrading and high assessed upgrading costs, landfill gas has so far only been used for heating and cogenerations plants (CHP). In recent years, interest has been brought to upgrade landfill gas and this study highlights the possibility of using landfill gas as fuel for vehicles. A decision in investment in an upgrading installation requires a forecast of future gas production and landfill gas extraction. From 2005, dispose of organic waste is prohibited, reducing the number of active landfills and the landfill gas production will go down. Factors such as moisture content, design of the final coverage and landfill gas collection system have a major impact on the extraction. It is therefore difficult to make appropriate predictions of the future gas production. Today's landfill gas extraction is approximately 35% of the landfill gas production and in the light of this, extraction can be in a level comparable to today's at least ten years ahead, provided that the extraction system is being expanded and that measurements are taken to so that landfills should not dry out. In comparison with biogas from anaerobic digestion in a dedicated digester, landfill gas has a high percentage of nitrogen and a content of many contaminants such as organic silicon compounds (siloxanes) and halogenated hydrocarbons (hydrocarbons containing the halogens chlorine, fluorine and bromine). This often requires more treatment and a further separation step. A common method for purification of landfill gas is regenerative adsorption on a dedicated adsorption material. Carbon dioxide is separated by conventional techniques like PSA, water scrubber and membranes. The main barrier to use landfill gas as vehicle fuel is a cost-effective separation of nitrogen that does not generate high methane losses. Nitrogen is separated by PSA or distillation technique (cryogenic

  2. Critical Review of Membrane Bioreactor Models

    DEFF Research Database (Denmark)

    Naessens, W.; Maere, T.; Ratkovich, Nicolas Rios

    2012-01-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical...... modelling. In this paper, the vast literature on hydrodynamic and integrated modelling in MBR is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones...

  3. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  4. Mesoscale Laboratory Models of the Biodegradation of Municipal Landfill Materials

    Science.gov (United States)

    Borglin, S. E.; Hazen, T. C.; Oldenburg, C. M.; Zawislanski, P. T.

    2001-12-01

    Stabilization of municipal landfills is a critical issue involving land reuse, leachate treatment, and odor control. In an effort to increase landfill stabilization rates and decrease leachate treatment costs, municipal landfills can be operated as active aerobic or anaerobic bioreactors. Rates of settling and biodegradation were compared in three different treatments of municipal landfill materials in laboratory-scale bioreactors. Each of the three fifty-five-gallon clear acrylic tanks was fitted with pressure transducers, thermistors, neutron probe access tubes, a leachate recirculation system, gas vents, and air injection ports. The treatments applied to the tanks were (a) aerobic (air injection with leachate recirculation and venting from the top), (b) anaerobic (leachate recirculation with passive venting from the top), and (c) a control tank (passive venting from the top and no leachate recirculation). All tanks contained a 10-cm-thick layer of pea gravel at the bottom, overlain by a mixture of fresh waste materials on the order of 5-10 cm in size to an initial height of 0.55 m. Concentrations of O2, CO2 and CH4 were measured at the gas vent, and leachate was collected at the bottom drain. The water saturation in the aerobic and anaerobic tanks averaged 17 % and the control tank averaged 1 %. Relative degradation rates between the tanks were monitored by CO2 and CH4 production rates and O2 respiration rates. Respiration tests on the aerobic tank show a decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 300 days, indicating usable organics are being depleted. The anaerobic tank produced measurable methane after 300 days that increased to 41% by volume after 370 days. Over the test period, the aerobic tank settled 30 %, the anaerobic tank 18.5 %, and the control tank 11.1 %. The concentrations of metals, nitrate, phosphate, and total organic carbon in the aerobic tank leachate are an order of magnitude lower than in the anaerobic

  5. Microfluidic bioreactors for culture of non-adherent cells

    DEFF Research Database (Denmark)

    Shah, Pranjul Jaykumar; Vedarethinam, Indumathi; Kwasny, Dorota

    2011-01-01

    Microfluidic bioreactors (μBR) are becoming increasingly popular for cell culture, sample preparation and analysis in case of routine genetic and clinical diagnostics. We present a novel μBR for non-adherent cells designed to mimic in vivo perfusion of cells based on diffusion of media through...

  6. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    Science.gov (United States)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  7. Bioreactor technology for herbal plants

    International Nuclear Information System (INIS)

    Sobri Hussein; Rusli Ibrahim; Abdul Rahim Harun; Azhar Mohamad; Hawa Abdul Aziz; Wan Nazirah Wan Ali

    2010-01-01

    Plants have been an important source of medicine for thousands of years and herbs are hot currency in the world today. During the last decade, popularity of alternative medicine increased significantly worldwide with noticeable trend. This in turn accelerated the global trade of herbal raw materials and herbal products and created greater scope for Asian countries that possess the major supply of herbal raw materials within their highly diversified tropical rain forest. As such, advanced bioreactor culture system possesses a great potential for large scale production than the traditional tissue culture system. Bioreactor cultures have many advantages over conventional cultures. Plant cells in bioreactors can grow fast and vigorously in shorter period as the culture conditions in bioreactor such as temperature, pH, concentrations of dissolved oxygen, carbon dioxide and nutrients can be optimised by on-line manipulation. Nutrient uptake can also be enhanced by continuous medium circulation, which ultimately increased cell proliferation rate. Consequently, production period and cost are substantially reduced, product quality is controlled and standardized as well as free of pesticide contamination and production of raw material can be conducted all year round. Taking all these into consideration, current research efforts were focused on varying several parameters such as inoculation density, air flow, medium formulation, PGRs etc. for increased production of cell and organ cultures of high market demand herbal and medicinal plants, particularly Eurycoma longifolia, Panax ginseng and Labisia pumila. At present, the production of cell and organ culture of these medicinal plants have also been applied in airlift bioreactor with different working volumes. It is hope that the investment of research efforts into this advanced bioreactor technology will open up a bright future for the modernization of agriculture and commercialisation of natural product. (author)

  8. Metal loss from treated wood products in contact with municipal solid waste landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Brajesh [Department of Environmental Health, PO Box 70682, East Tennessee State University, Johnson City, TN 37614 (United States); Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Townsend, Timothy, E-mail: ttown@ufl.edu [Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450 (United States); Solo-Gabriele, Helena [Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, FL 33124-0630 (United States)

    2010-03-15

    The research presented in this paper evaluates the potential impact of municipal solid waste (MSW) landfill leachate quality on the loss of metals from discarded treated wood during disposal. The loss of arsenic (As), chromium (Cr), copper (Cu), and boron (B) from several types of pressure-treated wood (CCA: chromated copper arsenate, ACQ: alkaline copper quaternary, CBA: copper boron azole, and DOT: disodium octaborate tetrahydrate) using leachate collected from 26 MSW landfills in Florida was examined. The toxicity characteristic leaching procedure (TCLP), the synthetic precipitation leaching procedure (SPLP), and California's waste extraction test (WET) were also performed. The results suggested that loss of preservative components was influenced by leachate chemistry. Copper loss from CCA-, ACQ- and CBA-treated wood was similar in magnitude when in contact with landfill leachates compared to synthetic TCLP and SPLP solutions. Ammonia was found as one of the major parameters influencing the leaching of Cu from treated wood when leached with MSW landfill leachates. The results suggest that disposal of ACQ- and CBA-treated wood in substantial quantity in MSW landfills may elevate the Cu concentration in the leachate; this could be of potential concern, especially for a bioreactor MSW landfill in which relatively higher ammonia concentrations in leachate have been reported in recent literature. For the As, Cr and B the concentrations observed with the landfill leachate as the leaching solutions were over a range from some sample showing the concentrations below and some showing above the observed value from corresponding SPLP and TCLP tests. In general the WET test showed the highest concentrations.

  9. Application of semifluidized bed bioreactor as novel bioreactor ...

    African Journals Online (AJOL)

    The conventional bioreactors such as pond digester, anaerobic filtration, up-flow anaerobic sludge blanket (UASB), up-flow anaerobic sludge fixed-film (UASFF), continuous stirred tank reactor (CSTR), anaerobic contact digestion and fluidized bed, used over the past decades are largely operated anaerobically. They have ...

  10. Tissue grown in space in NASA Bioreactor

    Science.gov (United States)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  11. Hazardous waste landfill research

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1983-05-01

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface impoundments, and underground mines encompasses state-of-the-art documents, laboratory analysis, economic assessment, bench and pilot studies, and full scale field verification studies. Over the next five years the research will be reported as Technical Resource Documents in support of the Permit Writers Guidance Manuals. These manuals will be used to provide guidance for conducting the review and evaluation of land disposal permit applications. This paper will present an overview of this program and will report the current status of work in the various categorical areas.

  12. Landfill gas: planning and regulation

    International Nuclear Information System (INIS)

    Nealon, T.

    1991-01-01

    There is no legislation in the UK that relates directly to landfill gas. However, various pieces of legislation do exist which control all aspects of landfill and therefore, indirectly, landfill gas. This legislation includes Planning Acts, The Control of Pollution Act, Health and Safety at Work Acts, and Public Health Acts, and affects landfill gas throughout the life of the site - from planning stage to long after the last load has been deposited and restoration has been carried out. Responsibility for ensuring compliance with these various Acts lies with a variety of Authorities, including Plannning Authorities, Waste Disposal Authorities, and Environmental Health Authorities. Responsibility for actual compliance with the Acts lies with the operator, for active sites, and the landowner in the case of closed sites. (author)

  13. Biogeochemistry of landfill leachate plumes

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2001-01-01

    are relatively narrow and do not in terms of width exceed the width of the landfill. The concept of redox zones being present in the plume has been confirmed by the reported composition of the leachate contaminated groundwater at several landfills and constitutes an important framework for understanding...... the behavior of the contaminants in the plume as the leachate migrates away from the landfill. Diverse microbial communities have been identified in leachate plumes and are believed to be responsible for the redox processes. Dissolved organic C in the leachate, although it appears to be only slowly degradable...... to be subject to anaerobic oxidation, but the mechanisms are not yet understood. Heavy metals do not seem to constitute a significant pollution problem at landfills, partly because the heavy metal concentrations in the leachate often are low, and partly because of strong attenuation by sorption...

  14. Landfill Gas Energy Benefits Calculator

    Science.gov (United States)

    This page contains the LFG Energy Benefits Calculator to estimate direct, avoided, and total greenhouse gas reductions, as well as environmental and energy benefits, for a landfill gas energy project.

  15. Superfund Record of Decision (EPA Region 9): Nineteenth Avenue Landfill, Phoenix, AZ. (First remedial action), September 1989. Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The 213-acre Nineteenth Avenue Landfill is in an industrial area of Maricopa County, Phoenix, Arizona. State permitted landfill operations were conducted from 1957 to 1979 during which time approximately nine million cubic yards of municipal refuse, solid and liquid industrial wastes, and some medical wastes and materials containing low levels of radioactivity were deposited in the landfill. The State ordered the landfill closed in 1979 due to the periodic inundation of the landfill by flood waters from the Salt River Channel. Subsequently, the city covered the site with fill, stockpiled soil for final capping, installed ground water monitoring wells, built berms around the landfill, and installed a methane gas collection system. The remedial action is designed to mitigate threats resulting from flooding of the landfill, which has occurred intermittently since 1965. The primary contaminants of concern in the soil/refuse include VOCs such as toluene and xylenes

  16. Hydraulic Behavior in The Downflow Hanging Sponge Bioreactor

    Directory of Open Access Journals (Sweden)

    Izarul Machdar

    2016-12-01

    Full Text Available Performance efficiency in a Downflow Hanging Sponge (DHS bioreactor is associated with the amount of time that a wastewater remains in the bioreactor. The bioreactor is considered as a plug flow reactor and its hydraulic residence time (HRT depends on the void volume of packing material and the flow rate. In this study, hydraulic behavior of DHS bioreactor was investigated by using tracer method. Two types of sponge module covers, cylindrical plastic frame (module-1 and plastic hair roller (module-2, were investigated and compared. A concentrated NaCl solution used as an inert tracer and input as a pulse at the inlet of DHS bioreactor. Analysis of the residence time distribution (RTD curves provided interpretation of the index distribution or holdup water (active volume, the degree of short-circuiting, number of tanks in series (the plug flow characteristic, and the dispersion number. It was found that the actual HRT was primarily shorter than theoretical HRT of each test. Holdup water of the DHS bioreactor ranged from 60% to 97% and 36% to 60% of module-1 and module-2, respectively. Eventhough module-1 has higher effective volume than module-2, result showed that the dispersion numbers of the two modules were not significant difference. Furthermore, N-values were found larger at a higher flow rate. It was concluded that a DHS bioreactor design should incorporated a combination of water distributor system, higher loading rate at startup process to generate a hydraulic behavior closer to an ideal plug flow.ABSTRAKEfisiensi unjuk kerja bioreactor Downflow Hanging Sponge (DHS berkaitan dengan lamanya waktu tinggal limbah berada di dalam bioreaktor tersebut. Bioreaktor DHS dianggap sebagai seuatu reaktor aliran sumbat (plug flow dimana waktu tinggal hidraulik (HRT tergantung pada volume pori material isian dan laju alir. Dua jenis modul digunakan dalam penelitian ini, yang diberi nama dengan module-1 dan module-2 untuk melihat pengaruh jenis modul

  17. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3.0)

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfil...

  18. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  19. Spaceflight bioreactor studies of cells and tissues.

    Science.gov (United States)

    Freed, Lisa E; Vunjak-Novakovic, Gordana

    2002-01-01

    Studies of the fundamental role of gravity in the development and function of biological organisms are a central component of the human exploration of space. Microgravity affects numerous physical phenomena relevant to biological research, including the hydrostatic pressure in fluid filled vesicles, sedimentation of organelles, and buoyancy-driven convection of flow and heat. These physical phenomena can in turn directly and indirectly affect cellular morphology, metabolism, locomotion, secretion of extracellular matrix and soluble signals, and assembly into functional tissues. Studies aimed at distinguishing specific effects of gravity on biological systems require the ability to: (i) control and systematically vary gravity, e.g. by utilizing the microgravity environment of space in conjunction with an in-flight centrifuge; and (ii) maintain constant all other factors in the immediate environment, including in particular concentrations and exchange rates of biochemical species and hydrodynamic shear. The latter criteria imply the need for gravity-independent mechanisms to provide for mass transport between the cells and their environment. Available flight hardware has largely determined the experimental design and scientific objectives of spaceflight cell and tissue culture studies carried out to date. Simple culture vessels have yielded important quantitative data, and helped establish in vitro models of cell locomotion, growth and differentiation in various mammalian cell types including embryonic lung cells [6], lymphocytes [2,8], and renal cells [7,31]. Studies done using bacterial cells established the first correlations between gravity-dependent factors such as cell settling velocity and diffusional distance and the respective cell responses [12]. The development of advanced bioreactors for microgravity cell and tissue culture and for tissue engineering has benefited both research areas and provided relevant in vitro model systems for studies of astronaut

  20. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  1. The concept of “Loop Cycle” in landfill management (Case study at Piyungan landfill, Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Purnama Putra Hijrah

    2018-01-01

    Full Text Available The amount of waste continues to increase from year to year, one of which is due to the population increase. With the target of 100% service level by 2020, Indonesia must prepare the land that will be used as a landfill location in order to accommodate the waste that continues to be produced. Apparently, the problem is not only limited to the provision of land, but operational challenges become more severe. One of its is experienced by Piyungan Landfill, Bantul, Yogyakarta which has been designed to expire by 2015. The government of Yogyakarta is optimizing for landfill can still operate until 2018. One solution that can be given in operation for the loop cycle or closed cycle concepts is landfill mining method, which is utilizing degraded waste into other designations so that the land can still be used to accommodate other waste. Sampling and analysis results show that the waste contained in 1st zone Piyungan landfill aged 15-20 years, with the highest composition is soil (59% dominate other types of waste. The soil obtained has the potential to be utilized as cover soil and compost, but for compost is necessary to further study the modification of the design of the zoning zone, so that the waste not too long is in the soil so that the nutrient content is still high.

  2. Scale-up of bioreactors: The concept of bioreactor number and its relation to the physiology of industrial microorganisms at different scales

    Energy Technology Data Exchange (ETDEWEB)

    De Ford, D

    1988-01-01

    The objective of this research is to provide a novel approach to the problem of scale-up of fermentations. The work subscribes the idea that two regions appear in bioreactors as the volume increases. The first is where high oxygen transfer occurs and the second is where low oxygen transfer occurs. It is assumed that organisms grown in a stirred tank fermenter travel in a cyclical manner through these two regions. A dimensionless factor is developed, the bioreactor number. Using this number the performance of any stirred tank fermenter can be described as a function of its geometry, operating conditions and physical properties of media. A mathematical model for the prediction of the physiological response of aerobic micro-organisms (specific growth rate, final cell concentration and product synthesis) as a function of the bioreactor number is also developed. It was adjusted by using the results of fermentations performed in a specially designed experimental rig allowing the simulation of fermenters with various bioreactor numbers. If the bioreactor and physiological models are linked it is possible to predict how micro-organisms respond when geometry, operating conditions or media properties are changed in a bioreactor. This approach is a tool for decision making in the design and operation of fermenters.

  3. Groundwater impact studies at three Ontario Hydro coal ash landfills

    International Nuclear Information System (INIS)

    Johnston, H.M.; Vorauer, A.G.; Chan, H.T.

    1992-01-01

    Ontario Hydro has produced on the order of 21 million Mg of coal fly ash over the past 40 years, of which, 80% has gone to various landfill sites in the province of Ontario. Hydrogeologic investigations have been performed in the vicinity of three Ontario Hydro coal ash landfill sites to assess the environmental impact of fly ash landfilling on the local groundwater regime. Two of the waste management facilities are associated with thermal generating stations (Lambton TGS and Nanticoke TGS) and are founded on relatively impermeable clay deposits. The third site, Birchwood Park, is a former sand and gravel pit for which the landfill design did not incorporate the use of a liner material. The rates of groundwater flow through the overburden materials a the three sites vary from less than 1 cm/a at the Lambton TGS site, to between 3.45 cm/a and 115 cm/a at contaminant transport at these sites also varies from being controlled by molecular diffusion to advection. This paper discusses the migration rates of contaminants from fly ash leachate at each of the three sites with implications to landfill containment and design

  4. A cost-benefit analysis of landfill mining and material recycling in China

    International Nuclear Information System (INIS)

    Zhou, Chuanbin; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-01

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton −1 . The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care

  5. A cost-benefit analysis of landfill mining and material recycling in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chuanbin, E-mail: cbzhou@rcees.ac.cn; Gong, Zhe; Hu, Junsong; Cao, Aixin; Liang, Hanwen

    2015-01-15

    Highlights: • Assessing the economic feasibility of landfill mining. • We applied a cost-benefit analysis model for landfill mining. • Four material cycling and energy recovery scenarios were designed. • We used net present value to evaluate the cost-benefit efficiency. - Abstract: Landfill mining is an environmentally-friendly technology that combines the concepts of material recycling and sustainable waste management, and it has received a great deal of worldwide attention because of its significant environmental and economic potential in material recycling, energy recovery, land reclamation and pollution prevention. This work applied a cost-benefit analysis model for assessing the economic feasibility, which is important for promoting landfill mining. The model includes eight indicators of costs and nine indicators of benefits. Four landfill mining scenarios were designed and analyzed based on field data. The economic feasibility of landfill mining was then evaluated by the indicator of net present value (NPV). According to our case study of a typical old landfill mining project in China (Yingchun landfill), rental of excavation and hauling equipment, waste processing and material transportation were the top three costs of landfill mining, accounting for 88.2% of the total cost, and the average cost per unit of stored waste was 12.7 USD ton{sup −1}. The top three benefits of landfill mining were electricity generation by incineration, land reclamation and recycling soil-like materials. The NPV analysis of the four different scenarios indicated that the Yingchun landfill mining project could obtain a net positive benefit varying from 1.92 million USD to 16.63 million USD. However, the NPV was sensitive to the mode of land reuse, the availability of energy recovery facilities and the possibility of obtaining financial support by avoiding post-closure care.

  6. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    International Nuclear Information System (INIS)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-01-01

    Highlights: • CH 4 /CO 2 and CH 4 + CO 2 % are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH 4 /CO 2 > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH 4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH 4 /CO 2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH 4 + CO 2 % in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills

  7. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sangjae [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Nam, Anwoo [Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 404-170 (Korea, Republic of); Yi, Seung-Muk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Jae Young, E-mail: jaeykim@snu.ac.kr [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  8. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sanitary Landfill Supplemental Test Final Report

    International Nuclear Information System (INIS)

    Altman, D.J.

    1999-01-01

    This report summarizes the performance of the Sanitary Landfill Supplemental Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill

  10. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate.

    Science.gov (United States)

    Zhang, Guoliang; Qin, Lei; Meng, Qin; Fan, Zheng; Wu, Dexin

    2013-08-01

    A novel combined process of Fenton oxidation, submerged membrane bioreactor (SMBR) and reverse osmosis (RO) was applied as an appropriate option for old municipal landfill leachate treatment. Fenton process was designed to intensively solve the problem of non-biodegradable organic pollutant removal and low biodegradability of leachate, although the removal of ammonia-nitrogen was similar to 10%. After SMBR treatment, it not only presented a higher removal efficiency of organics, but also exhibited high ammonia-nitrogen removal of 80% on average. The variation of extracellular polymeric substance (EPS) content, zeta potential, and particle size of flocs after Fenton effluent continually fed in SMBR was found to be benefit for alleviating membrane fouling. Finally, three kinds of RO membranes (RE, CPA, and BW) were applied to treat SMBR effluents and successfully met wastewater re-utilization requirement. Compared with simple RO process, the troublesome membrane fouling can be effectively reduced in the combined process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    International Nuclear Information System (INIS)

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Åkerman, Anna; Yuan, Lei

    2012-01-01

    Highlights: ► Performance-based evaluation of landfill gas control system. ► Analytical framework to evaluate transition from active to passive gas control. ► Focus on cover oxidation as an alternative means of passive gas control. ► Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society’s interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  12. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l' Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation

  13. Mechanobiologic Research in a Microgravity Environment Bioreactor

    Science.gov (United States)

    Guidi, A.; Dubini, G.; Tominetti, F.; Raimondi, M.

    mechanical forces. For example, cartilage constructs have been cultured in spinner flasks under mixed or unmixed conditions, in simulated and in real microgravity. In these mixing studies, however, it is difficult to definitively quantify the effects of mixing-induced mechanical forces from those of convection-enhanced transport of nutrients to and of catabolites away from the cells. At the state of the art, the presence of a more controlled mechanical environment may be the condition required in order to study the biochemical and mechanical response of these biological systems. Such a controlled environment could lead to an advanced fluid dynamic design of the culture chamber that could both enhance the local mass transfer phenomena and match the needs of specific macroscopic mechanical effects in tissue development. The bioreactor is an excellent example of how the skills and resources of two distinctly different fields can complement each other. Microgravity can be used to enhance the formation of tissue like aggregates in specially designed bioreactors. Theoretical and experimental projects are under way to improve cell culture techniques using microgravity conditions experienced during space flights. Bioreactors usable under space flight conditions impose constructional principles which are different from those intended solely for ground applications. The Columbus Laboratory as part of the International Space Station (ISS) will be an evolving facility in low Earth orbit. Its mission is to support scientific, technological, and commercial activities in space. A goal of this research is to design a unique bioreactor for use sequentially from ground research to space research. One of the particularities of the simulated microgravity obtained through time averaging of the weight vector is that by varying the rotational velocity the same results can be obtained with a different value of g. One of the first applications of this technique in space biology was in fact the

  14. An overview of the mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1994-01-01

    Prior to May 1992, field demonstrations of characterization technologies were performed at an uncontaminated site near the Chemical Waste Landfill. In mid-1992 through summer 1993, both non-intrusive and intrusive characterization techniques were demonstrated at the Chemical Waste Landfill. Subsurface and dry barrier demonstrations were started in summer 1993 and will continue into 1995. Future plans include demonstrations of innovative drilling, characterization and long-term monitoring, and remediation techniques. Demonstrations were also scheduled in summer 1993 at the Kirtland Air Force HSWA site and will continue in 1994. The first phase of the Thermal Enhanced Vapor Extraction System (TEVES) project occurred in April 1992 when two holes were drilled and vapor extraction wells were installed at the Chemical Waste Landfill. Obtaining the engineering design and environmental permits necessary to implement this field demonstration will take until early 1994. Field demonstration of the vapor extraction system will occur in 1994

  15. Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs)

    KAUST Repository

    Pretel, R.; Shoener, B.D.; Ferrer, J.; Guest, J.S.

    2015-01-01

    of submerged AnMBRs influence the technological, environmental, and economic sustainability of the system across its life cycle. Specific design and operational decisions evaluated included: solids retention time (SRT), mixed liquor suspended solids (MLSS

  16. Lactic acid Production with in situ Extraction in Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Hamidreza Ghafouri Taleghani

    2017-01-01

    Full Text Available Background and Objective: Lactic acid is widely used in the food, chemical and pharmaceutical industries. The major problems associated with lactic acid production are substrate and end-product inhibition, and by-product formation. Membrane technologyrepresents one of the most effective processes for lactic acid production. The aim of this work is to increase cell density and lactic acid productivity due to reduced inhibition effect of substrate and product in membrane bioreactor.Material and Methods: In this work, lactic acid was produced from lactose in membrane bioreactor. A laboratory scale membrane bioreactor was designed and fabricated. Five types of commercial membranes were tested at the same operating conditions (transmembrane pressure: 500 KPa and temperature: 25°C. The effects of initial lactose concentration and dilution rate on biomass growth, lactic acid production and substrate utilization were evaluated.Results and Conclusion: The high lactose retention of 79% v v-1 and low lactic acid retention of 22% v v-1 were obtained with NF1 membrane; therefore, this membrane was selected for membrane bioreactor. The maximal productivity of 17.1 g l-1 h-1 was obtainedwith the lactic acid concentration of 71.5 g l-1 at the dilution rate of 0.24 h−1. The maximum concentration of lactic acid was obtained at the dilution rate of 0.04 h−1. The inhibiting effect of lactic acid was not observed at high initial lactose concentration. The critical lactose concentration at which the cell growth severely hampered was 150 g l-1. This study proved that membrane bioreactor had great advantages such as elimination of substrate and product inhibition, high concentration of process substrate, high cell density,and high lactic acid productivity.Conflict of interest: There is no conflict of interest.

  17. Environmental upgrading of a landfill

    International Nuclear Information System (INIS)

    Agostinetto, V.; Vendrame, G.

    1999-01-01

    This article refers to an experimental study concerning the vegetative upgrading of a closed-down landfill (once used for industrial waste disposal). The aim was to check the possibility of reconstructing or aiding the natural growth of a vegetation in keeping with the surrounding area, in a tried environment such as that of landfills. The original idea contained in the approved project - which meant to generically upgrade the territory by planting species belonging to the grassy layer, shrubs and trees - has, with time, undergone some changes. On the basis of both the knowledge acquired during management and of a more accurate analysis of the territory, the experiment was preferred to aim at finding out which were the species, both continental and Mediterranean, able to gradually adjust to the surrounding landscape, leaving to natural selection the task to decide which species were more suitable to the upgrading of closed-down landfills, and which planting technique was more effective [it

  18. Experimental and modelling studies on a laboratory scale anaerobic bioreactor treating mechanically biologically treated municipal solid waste.

    Science.gov (United States)

    Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L

    2017-07-01

    The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.

  19. LCA and economic evaluation of landfill leachate and gas technologies.

    Science.gov (United States)

    Damgaard, Anders; Manfredi, Simone; Merrild, Hanna; Stensøe, Steen; Christensen, Thomas H

    2011-07-01

    Landfills receiving a mix of waste, including organics, have developed dramatically over the last 3-4 decades; from open dumps to engineered facilities with extensive controls on leachate and gas. The conventional municipal landfill will in most climates produce a highly contaminated leachate and a significant amount of landfill gas. Leachate controls may include bottom liners and leachate collection systems as well as leachate treatment prior to discharge to surface water. Gas controls may include oxidizing top covers, gas collection systems with flares or gas utilization systems for production of electricity and heat. The importance of leachate and gas control measures in reducing the overall environmental impact from a conventional landfill was assessed by life-cycle-assessment (LCA). The direct cost for the measures were also estimated providing a basis for assessing which measures are the most cost-effective in reducing the impact from a conventional landfill. This was done by modeling landfills ranging from a simple open dump to highly engineered conventional landfills with energy recovery in form of heat or electricity. The modeling was done in the waste LCA model EASEWASTE. The results showed drastic improvements for most impact categories. Global warming went from an impact of 0.1 person equivalent (PE) for the dump to -0.05 PE for the best design. Similar improvements were found for photochemical ozone formation (0.02 PE to 0.002 PE) and stratospheric ozone formation (0.04 PE to 0.001 PE). For the toxic and spoiled groundwater impact categories the trend is not as clear. The reason for this was that the load to the environment shifted as more technologies were used. For the dump landfill the main impacts were impacts for spoiled groundwater due to lack of leachate collection, 2.3 PE down to 0.4 PE when leachate is collected. However, at the same time, leachate collection causes a slight increase in eco-toxicity and human toxicity via water (0.007 E to 0

  20. Survey of landfill gas generation potential

    International Nuclear Information System (INIS)

    Gauntlett, W.D.

    1992-09-01

    This project identifies all the landfill sites in each of the 50 states capable of producing 750,000 SCFD of mixed landfill gas for a period of at least 10 years. The study identified 749 landfill sites nationally, with an aggregate gas production rate sufficient to fuel approximately 6000 MW of fuel cell power plants

  1. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    Science.gov (United States)

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  2. The status of membrane bioreactor technology.

    Science.gov (United States)

    Judd, Simon

    2008-02-01

    In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.

  3. SEISMIC DISTRESS AND PROTECTION OF FLEXIBLE MEMBRANE LINERS OF SOLID WASTE LANDFILLS

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2011-01-01

    Seismic distress of solid waste landfills may result from any of the two consequences of a seismic event: (a) the transient ground deformation related to seismic wave propagation, (b) the permanent ground deformation caused by abrupt fault dislocation. Design provisions for solid waste landfills...... prohibit the construction of landfills in the vicinity of an active fault aiming to prevent the latter. Nonetheless, the impact of applied permanent deformation on the system components of landfills and on the waste mass has not been fully demonstrated yet. For this purpose, efficient finite......-element analyses were performed, taking also into account the potential slip displacement development along the interfaces formulated on each side of the flexible membrane liner (FML). It is shown that base fault dislocation causes significant plastic strains at each one of the components of the waste landfill...

  4. Managing landfill gas. Techniques and recommendations. To know in order to act - Guides and Technical Guidebook

    International Nuclear Information System (INIS)

    Couturier, Christian; Meiffren, Isabelle; Dumas, Bruno; Galtier, Laurent; Prud'homme, Eric; Hebe, Isabelle; Riquier, Laurent; Miralves, James; Riviere, Georges; Herault, Irene

    2001-12-01

    This guide first recalls some basic notions about landfill gas: presence of three gases in varying proportions (biogas, air, and volatile compounds), biogas composition, toxicity and explosiveness of the various landfill gas components, production mechanism and evolution in time of landfill gas composition. The next part proposes a large and discussed overview of the different objectives of landfill gas management: reduction of environmental impacts, safety and security of people and assets, compliance with regulatory requirements, to provide better conditions for biogas valorisation, long term performance of gas management. Different types of tools and methods are discussed for the study of landfill biogas management and production: calculations, measurements, controls and audits. The design and implementation of gas management systems is then addressed: equipment securing, general procedures, gas capturing, gas collection, gas processing and conditioning, analysis, measurement and control. The next part addresses issues related to exploitation: safety, maintenance organisation, control and command

  5. Sandia National Laboratories Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    Tyler, L.D.; Phelan, J.M.; Prindle, N.K.; Purvis, S.T.; Stormont, J.C.

    1992-01-01

    The Mixed-Waste Landfill Integrated Demonstration (MWLID) has been assigned to Sandia National Laboratories (SNL) by the US Department of Energy (DOE) Office of Technology Development. The mission of the MWLID is to assess, implement and transfer technologies and systems that lead to quicker, safer, and more efficient remediation of buried chemical and mixed-waste sites. The MWLID focus is on two landfills at SNL in Albuquerque, New Mexico: The Chemical Waste Landfill (CWL) and the Mixed-Waste Landfill (MWL). These landfills received chemical, radioactive and mixed wastes from various SNL nuclear research programs. A characterization system has been designed for the definition of the extent and concentration of contamination. This system includes historical records, directional drilling, and emplacement membrane, sensors, geophysics, sampling strategy, and on site sample analysis. In the remediation task, in-situ remediation systems are being designed to remove volatile organic compounds (VOC's) and heavy metals from soils. The VOC remediation includes vacuum extraction with electrical and radio-frequency heating. For heavy metal contamination, electrokinetic processes are being considered. The MWLID utilizes a phased, parallel approach. Initial testing is performed at an uncontaminated site adjacent to the CWL. Once characterization is underway at the CWL, lessons learned can be directly transferred to the more challenging problem of radioactive waste in the MWL. The MWL characterization can proceed in parallel with the remediation work at CWL. The technologies and systems demonstrated in the MWLID are to be evaluated based on their performance and cost in the real remediation environment of the landfills

  6. Membrane bioreactors for waste gas treatment.

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  7. Membrane bioreactors for waste gas treatment

    NARCIS (Netherlands)

    Reij, M.W.; Keurentjes, J.T.F.; Hartmans, S.

    1998-01-01

    This review describes the recent development of membrane reactors for biological treatment of waste gases. In this type of bioreactor gaseous pollutants are transferred through a membrane to the liquid phase, where micro-organisms degrade the pollutants. The membrane bioreactor combines the

  8. Comparison of membrane bioreactor technology and conventional ...

    African Journals Online (AJOL)

    The purpose of this paper was to review the use of membrane bioreactor technology as an alternative for treating the discharged effluent from a bleached kraft mill by comparing and contrasting membrane bioreactors with conventional activated sludge systems for wastewater treatment. There are many water shortage ...

  9. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  10. Landfill gas powers brick production

    International Nuclear Information System (INIS)

    CADDET UK National Team.

    1997-01-01

    Marshalls plc produce high-quality facing bricks using tunnel kilns at the company's Stairfoot Brickworks site, in the UK. The company extracts clay from the adjacent quarries, which are subsequently filled with domestic waste. In 1981 Marshalls decided to exploit the landfill gas (LFG) resource 'on its doorstep'. (author)

  11. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun, E-mail: xjwang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Jia, Mingsheng, E-mail: msjia@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Xiaohai, E-mail: cxiaoh_xm@126.com [Xiamen City Environmental Sanitation Management Department, Xiamen 361000 (China); Xu, Ying, E-mail: yxu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Lin, Xiangyu, E-mail: xylin@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Kao, Chih Ming, E-mail: jkao@mail.nsysu.edu.tw [Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Chen, Shaohua, E-mail: shchen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  12. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites.

    Science.gov (United States)

    Talalaj, Izabela A; Biedka, Pawel

    2016-12-01

    The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.

  13. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    Science.gov (United States)

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  14. Emissions from the Bena Landfill

    Science.gov (United States)

    Schafer, C.; Blake, D. R.; Hughes, S.

    2016-12-01

    In 2013, Americans generated 254 million tons of municipal solid waste (MSW). The gas generated from the decomposition of MSW is composed of approximately 50% methane, 50% carbon dioxide, and a small proportion of non-methane organic compounds (NMOCs). NMOCs constitute less than 1% of landfill emissions, but they can have a disproportionate environmental impact as they are highly reactive ozone precursors. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected at the Bena landfill outside of Bakersfield, CA and throughout Bakersfield and analyzed using gas chromatography in order to quantify NMOC emissions. This area was determined to have elevated concentrations of benzene, trichloroethylene, and tetrachloroethylene, all of which are categorized by the EPA as hazardous to human health. Benzene was found to have a concentration of 145 ± 4 pptv, four times higher than the background levels in Bakersfield (36 ± 1 pptv). Trichloroethylene and tetrachloroethylene had concentrations of 18 ± 1 pptv and 31 ± 1 pptv which were 18 and 10 times greater than background concentrations, respectively. In addition, hydroxyl radical reactivity (ROH) was calculated to determine the potential for tropospheric ozone formation. The total ROH of the landfill was 7.5 ± 0.2 s-1 compared to total background ROH of 1.0 ± 0.1 s-1 . NMOCs only made up 0.6% of total emissions, but accounted for 67% of total ROH.These results can help to shape future landfill emission policies by highlighting the importance of NMOCs in addition to methane. More research is needed to investigate the ozone forming potential of these compounds at landfills across the country.

  15. Evaluation of Productivity of Zymotis Solid-State Bioreactor Based on Total Reactor Volume

    Directory of Open Access Journals (Sweden)

    Oscar F. von Meien

    2002-01-01

    Full Text Available In this work a method of analyzing the performance of solid-state fermentation bioreactors is described. The method is used to investigate the optimal value for the spacing between the cooling plates of the Zymotis bioreactor, using simulated fermentation data supplied by a mathematical model. The Zymotis bioreactor has good potential for those solid-state fermentation processes in which the substrate bed must remain static. The current work addresses two design parameters introduced by the presence of the internal heat transfer plates: the width of the heat transfer plate, which is governed by the amount of heat to be removed and the pressure drop of the cooling water, and the spacing between these heat transfer plates. In order to analyze the performance of the bioreactor a productivity term is introduced that takes into account the volume occupied within the bioreactor by the heat transfer plates. As part of this analysis, it is shown that, for logistic growth kinetics, the time at which the biomass reaches 90 % of its maximum possible value is a good estimate of the optimum harvesting time for maximizing productivity. Application of the productivity analysis to the simulated fermentation results suggests that, with typical fast growing fungi ( = 0.324 h–1, the optimal spacing between heat transfer plates is of the order of 6 cm. The general applicability of this approach to evaluate the productivity of solid-state bioreactors is demonstrated.

  16. Landfills as sinks for (hazardous) substances.

    Science.gov (United States)

    Scharff, Heijo

    2012-12-01

    The primary goal of waste regulations is to protect human health and the environment. This requires the removal from the material cycle of those materials that cannot be processed without harm. Policies to promote recycling hold a risk that pollutants are dispersed. Materials have an environmental impact during their entire life cycle from extraction through production, consumption and recycling to disposal. Essentially there are only two routes for pollutants that cannot be rendered harmless: storage in sinks or dispersion into the environment. Many sinks do not contain substances absolutely, but result in slow dispersion. Dispersion leads to exposure and impact to human health and the environment. It is therefore important to assess the impact of the release to the environment. Based on various sources this paper discusses important material flows and their potential impact. This is compared with the intentions and achievements of European environmental and resource policy. The polluter pays principle is being implemented in Europe, but lags behind implementation of waste management regulations. As long as producers are allowed to add hazardous substances to their products and don't take their products back, it is in society's best interest to carefully consider whether recycling or storage in a sink is the better solution. This requires further development of life-cycle assessment tools and harmonization of regulations. In many cases the sink is unavoidable. Landfills as sinks will be needed in the future. Fail-safe design and construction as well as sustainable management of landfills must be further developed.

  17. Methane production from food waste leachate in laboratory-scale simulated landfill.

    Science.gov (United States)

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. 2010 Elsevier Ltd. All rights reserved.

  18. A review of some parameters involved in fluidized bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.C. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia); Raper, J.A. [School of Chemical Engineering and Industrial Chemistry, The Univ. of New South Wales, Sydney (Australia)

    1996-02-01

    Three-phase fluidized bed bioreactors have advantages over conventional chemical reaction systems. There is a lack of agreement over most major operational conditions, and a wide range of design variables are open to question. A large body of recent work in the field has been reviewed, with a degree of historical comparison and discussion. It has been found that aspects of fluidized bed biofilm reactors of vital importance include: choice of solid media, gas and liquid loadings, bacterial type and reactor mechanical design. A large proportion of the work in the field of three-phase fluidization is non-biologically specific, or not tested on a bacterially inoculated system. The majority of three-phase fluidized bed bioreactor work is in the field of water treatment. Although this work has highlighted the potential for use of bio-fluidized beds for this application, there are still specific problems hinderin the large scale industrial acceptance of three-phase fluidized bed bioreactors. (orig.)

  19. One-dimensional Seismic Analysis of a Solid-Waste Landfill

    International Nuclear Information System (INIS)

    Castelli, Francesco; Lentini, Valentina; Maugeri, Michele

    2008-01-01

    Analysis of the seismic performance of solid waste landfill follows generally the same procedures for the design of embankment dams, even if the methods and safety requirements should be different. The characterization of waste properties for seismic design is difficult due the heterogeneity of the material, requiring the procurement of large samples. The dynamic characteristics of solid waste materials play an important role on the seismic response of landfill, and it also is important to assess the dynamic shear strengths of liner materials due the effect of inertial forces in the refuse mass. In the paper the numerical results of a dynamic analysis are reported and analysed to determine the reliability of the common practice of using 1D analysis to evaluate the seismic response of a municipal solid-waste landfill. Numerical results indicate that the seismic response of a landfill can vary significantly due to reasonable variations of waste properties, fill heights, site conditions, and design rock motions

  20. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Aronsson, P.

    1996-01-01

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  1. Imaging and characterization of heterogeneous landfills using geophysical methods

    NARCIS (Netherlands)

    Konstantaki, L.A.

    2016-01-01

    Nowadays many countries use landfilling for the management of their waste or for treating old landfills. Emissions from landfills can be harmful to the environment and to human health, making the stabilization of landfills a priority for the landfill communities. Estimation of the emission potential

  2. Landfill reduction experience in The Netherlands.

    Science.gov (United States)

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis.

    Science.gov (United States)

    Chong, Theng Lee; Matsufuji, Yasushi; Hassan, Mohd Nasir

    2005-01-01

    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management.

  4. Landfill reduction experience in The Netherlands

    International Nuclear Information System (INIS)

    Scharff, Heijo

    2014-01-01

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  5. Landfill reduction experience in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Scharff, Heijo, E-mail: h.scharff@afvalzorg.nl

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the

  6. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  7. LANDFILL LEACHATES PRETREATMENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    Jacek Leszczyński

    2016-06-01

    Full Text Available In this paper, the application of ozonation processes for stabilized landfill leachate treatment was investigated. The leachate came from a municipal sanitary landfill located nearby Bielsk Podlaski. The average values of its main parameters were: pH 8.23; COD 870 mgO2/dm3; BOD 90 mgO2/dm3; NH4+ 136.2 mgN/dm3; UV254 absorbance 0.312 and turbidity 14 NTU. The ozone dosages used were in the range of 115.5 to 808.5 mgO3/dm3 of the leachate. The maximum COD, color and UV254 absorbance removal wa.5 mgO3/dm3. After oxidation, the ratio of BOD/COD was increased from 0.1 up to 0.23.

  8. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  9. Landfilling: Bottom Lining and Leachate Collection

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Manfredi, Simone; Kjeldsen, Peter

    2011-01-01

    from entering the groundwater or surface water. The bottom lining system should cover the full footprint area of the landfill, including both the relatively flat bottom and the sideslopes in the case of an excavated configuration. This prevents the lateral migration of leachate from within the landfill...... triple) liners, are extremely effective in preventing leachate from entering into the environment. In addition, the risk of polluting the groundwater at a landfill by any leakage of leachate depends on several factors related to siting of the landfill: distance to the water table, distance to surface...... water bodies, and the properties of the soil beneath the landfill. In addition to the lining and drainage systems described in this chapter, the siting and hydrogeology of the landfill site (Chapter 10.12) and the top cover (Chapter 10.9) are also part of the barrier system, contributing to reducing...

  10. Landfill gas in the Dutch perspective

    International Nuclear Information System (INIS)

    Scheepers, M.J.J.

    1991-01-01

    Until 1986 landfill gas had a considerable value because of the relative high energy prices. It appeared also that landfill gas was formed in large quantities. However after the collapse of the energy prices in 1986 many new landfill gas projects were delayed or stopped. Recently, the gas emissions on landfills have attracted attention again, but now because of various environmental aspects. With respect to landfill management a well controlled gas extraction seems to be necessary. Utilisation of the gas is still favourable for economic reasons and because of energy savings. The Dutch policy for the next ten years will be reduction of the amount of waste by prevention and recycling. The organic fraction of the municipal solid waste (refuse from vegetables, fruit and garden), obtained by separation in households, will be composted. The other part will be burnt in incinerators. Only the remaining inert refuse will be deposited on landfills. (author)

  11. Evaluation and selection of decision-making methods to assess landfill mining projects.

    Science.gov (United States)

    Hermann, Robert; Baumgartner, Rupert J; Vorbach, Stefan; Ragossnig, Arne; Pomberger, Roland

    2015-09-01

    For the first time in Austria, fundamental technological and economic studies on recovering secondary raw materials from large landfills have been carried out, based on the 'LAMIS - Landfill Mining Austria' pilot project. A main focus of the research - and the subject of this article - was to develop an assessment or decision-making procedure that allows landfill owners to thoroughly examine the feasibility of a landfill mining project in advance. Currently there are no standard procedures that would sufficiently cover all the multiple-criteria requirements. The basic structure of the multiple attribute decision making process was used to narrow down on selection, conceptual design and assessment of suitable procedures. Along with a breakdown into preliminary and main assessment, the entire foundation required was created, such as definitions of requirements to an assessment method, selection and accurate description of the various assessment criteria and classification of the target system for the present 'landfill mining' vs. 'retaining the landfill in after-care' decision-making problem. Based on these studies, cost-utility analysis and the analytical-hierarchy process were selected from the range of multiple attribute decision-making procedures and examined in detail. Overall, both methods have their pros and cons with regard to their use for assessing landfill mining projects. Merging these methods or connecting them with single-criteria decision-making methods (like the net present value method) may turn out to be reasonable and constitute an appropriate assessment method. © The Author(s) 2015.

  12. Polyfluoroalkyl compounds in landfill leachates

    International Nuclear Information System (INIS)

    Busch, Jan; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf

    2010-01-01

    Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. ΣPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of ΣPFCs into the aqueous environment ranged between 0.08 and 956 mg/day. - The first comprehensive survey of polyfluoroalkyl compounds (PFCs) in landfill leachates.

  13. Y-12 Industrial Landfill V. Permit application modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included.

  14. Y-12 Industrial Landfill V. Permit application modifications

    International Nuclear Information System (INIS)

    1995-09-01

    This report contains the modifications in operations and design to meet the Tennessee Department of Environment and Conversation (TDEC) July 10, 1993, amendments to the regulations for Class 2 landfills. These modifications, though extensive in design and construction cost, are considered minor revisions and should not require a processing fee. Area 1 of ILF V, comprising approximately 20% of the ILF V footprint, was designed and submitted to TDEC prior to the implementation of current regulations. This initial area was constructed with a compacted clay liner and leachate collection system, and became operational in April 1994. The current regulations require landfills to have a composite liner with leachate collection system and closure cap. Modifications to upgrade Areas 2 and 3 of ILF V to meet the current TDEC requirements are included

  15. Comparison Of Four Landfill Gas Models Using Data From Four Danish Landfills

    DEFF Research Database (Denmark)

    Mønster, Jacob G.; Mou, Zishen; Kjeldsen, Peter

    2011-01-01

    Data about type and quantity of waste disposed in four Danish landfills was collected and used on four different landfill gas generation models. This was done to compare the output data in order to evaluate the performance of the four landfill gas models when used on Danish waste types...

  16. Biological denitrification from mature landfill leachate using a food-waste-derived carbon source.

    Science.gov (United States)

    Yan, Feng; Jiang, Jianguo; Zhang, Haowei; Liu, Nuo; Zou, Quan

    2018-05-15

    The mature landfill leachate containing high ammonia concentration (>1000 mg/L) is a serious threat to environment; however, the low COD to TN ratio (C/N, waste and oil-added food waste, were first applied as external carbon sources for the biological nitrogen removal from mature landfill leachate in an aerobic/anoxic membrane bioreactor. "Acidogenic liquid b" served quite better than commercial sodium acetate, considering the higher denitrification efficiency and the slightly rapider denitrification rate. The effect of C/N and temperature were investigated under hydraulic retention time (HRT) of 7 d, which showed that C/N ≥ 7 (25 °C) was enough to meet the general discharge standards of NH 4 + -N, TN and COD in China. Even for some special areas of China, the more stringent discharge standards (NH 4 + -N ≤ 8 mg/L, TN ≤ 20 mg/L) could also be achieved under longer HRT of 14 d and C/N ≥ 6. Notably, the COD concentration in effluent could also be well reduced to 50-55 mg/L, without further physical-chemical treatment. This proposed strategy, involving the high-value utilization of food waste, is thus promising for efficient nitrogen removal from mature landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Congenital anomalies and proximity to landfill sites.

    LENUS (Irish Health Repository)

    Boyle, E

    2004-01-01

    The occurrence of congenital anomalies in proximity to municipal landfill sites in the Eastern Region (counties Dublin, Kildare, Wicklow) was examined by small area (district electoral division), distance and clustering tendancies in relation to 83 landfills, five of which were major sites. The study included 2136 cases of congenital anomaly, 37,487 births and 1423 controls between 1986 and 1990. For the more populous areas of the region 50% of the population lived within 2-3 km of a landfill and within 4-5 km for more rural areas. In the area-level analysis, the standardised prevalence ratios, empirical and full Bayesian modelling, and Kulldorff\\'s spatial scan statistic found no association between the residential area of cases and location of landfills. In the case control analysis, the mean distance of cases and controls from the nearest landfill was similar. The odds ratios of cases compared to controls for increasing distances from all landfills and major landfills showed no significant difference from the baseline value of 1. The kernel and K methods showed no tendency of cases to cluster in relationship to landfills. In conclusion, congenital anomalies were not found to occur more commonly in proximity to municipal landfills.

  18. Evaluating operational vacuum for landfill biogas extraction.

    Science.gov (United States)

    Fabbricino, Massimiliano

    2007-01-01

    This manuscript proposes a practical methodology for estimating the operational vacuum for landfill biogas extraction from municipal landfills. The procedure is based on two sub-models which simulate landfill gas production from organic waste decomposition and distribution of gas pressure and gas movement induced by suction at a blower station. The two models are coupled in a single mass balance equation, obtaining a relationship between the operational vacuum and the amount of landfill gas that can be extracted from an assigned system of vertical wells. To better illustrate the procedure, it is applied to a case study, where a good agreement between simulated and measured data, within +/- 30%, is obtained.

  19. Movement of unlined landfill under preloading surcharge.

    Science.gov (United States)

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2007-01-01

    As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period.

  20. IJER@2014 Page 57 Disposal Criteria of Bhanpur Solid Waste Landfill Site: Investigation and Suggestions

    OpenAIRE

    Tapas Dasgpta

    2014-01-01

    The solid waste management and design assist waste management officials in developing and encouraging environmentally sound methods for the disposal of "nonhazardous" solid waste. Promulgated under the authority of municipal act, the Municipal Solid Waste Landfill (MSWLF) regulation act establish a framework for planning and implementing municipal solid waste landfill programs at the state and local levels. This framework sets minimum standards for protecting h...

  1. Aujeszky's disease virus production in disposable bioreactor

    Indian Academy of Sciences (India)

    Madhu

    1Laboratory for Cell Culture Technology and Biotransformations, 2Laboratory for ... A novel, disposable-bag bioreactor system that uses wave action for mixing and transferring ... consisted of 95% of air + 5% of CO2 using gas mixing module.

  2. Oxygen transfer in slurry bioreactors.

    Science.gov (United States)

    Kawase, Y; Moo-Young, M

    1991-04-25

    The oxygen transfer in bioreactors with slurries having a yield stress was investigated. The volumetric mass transfer coefficients in a 40-L bubble column with simulated fermentation broths, the Theological properties of which were represented by the Casson model, were measured. Experimental data were compared with a theoretical correlation developed on the basis of a combination of Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence. Comparisons between the proposed correlation and data for the simulated broths show good agreement. The mass transfer data for actual mycelial fermentation broths reported previously by the authors were re-examined. Their Theological data was correlated by the Bingham plastic model. The oxygen transfer rate data in the mycelial fermentation broths fit the predictions of the proposed theoretical correlation.

  3. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Landfills - LANDFILL_BOUNDARIES_IDEM_IN: Waste Site Boundaries in Indiana (Indiana Department of Environmental Management, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LANDFILL_BOUNDARIES_IDEM_IN.SHP is a polygon shapefile that contains boundaries for open dump sites, approved landfills, and permitted landfills in Indiana, provided...

  5. Immobilized yeast in bioreactor for alcohol fermentation

    International Nuclear Information System (INIS)

    Handy, M.K.; Kim, K.

    1986-01-01

    Mutant of Saccharomyces cerevisiae was developed using a Co-60 source. Cells were immobilized onto sterile, channeled alumina beads and packed into bioreactor column under controlled temperature. Feedstocks containing substrate and nutrients were fed into the bioreactor at specific rates. Beads with greatest porosity and surface area produced the most ethanol. Factors affecting ethanol productivity included: temperature, pH, flow rate, nutrients and substrate in the feedstock

  6. Effects of Moisture Content in Solid Waste Landfills

    National Research Council Canada - National Science Library

    Eck, Craig

    2000-01-01

    Solid waste landfills are an extremely complex and heterogeneous environment. Modeling the biodegradation processes within a landfill must involve an understanding of how environmental factors affect these processes...

  7. Industrialization of a perfusion bioreactor: Prime example of a non-straightforward process.

    Science.gov (United States)

    Talò, G; Turrisi, C; Arrigoni, C; Recordati, C; Gerges, I; Tamplenizza, M; Cappelluti, A; Riboldi, S A; Moretti, M

    2018-02-01

    Bioreactors are essential enabling technologies for the translation of advanced therapies medicinal products from the research field towards a successful clinical application. In order to speed up the translation and the spread of novel tissue engineering products into the clinical routine, tissue engineering bioreactors should evolve from laboratory prototypes towards industrialized products. In this work, we thus challenged the industrialization process of a novel technological platform, based on an established research prototype of perfusion bioreactor, following a GMP-driven approach. We describe how the combination of scientific background, intellectual property, start-up factory environment, wise industrial advice in the biomedical field, design, and regulatory consultancy allowed us to turn a previously validated prototype technology into an industrial product suitable for serial production with improved replicability and user-friendliness. The solutions implemented enhanced aesthetics, ergonomics, handling, and safety of the bioreactor, and they allowed compliance with the fundamental requirements in terms of traceability, reproducibility, efficiency, and safety of the manufacturing process of advanced therapies medicinal products. The result is an automated incubator-compatible device, housing 12 disposable independent perfusion chambers for seeding and culture of any perfusable tissue. We validated the cell seeding process of the industrialized bioreactor by means of the Design of Experiment approach, whilst the effectiveness of perfusion culture was evaluated in the context of bone tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  8. The Future Through the Past: The Use of Analog Sites for Design Criteria and Long Term Performance Assessment of Evapotranspiration Landfill Covers

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D. S.; Miller, J. J.; Young, M. H.; Edwards, S. C.; Rawlinson, S. E.

    2002-02-26

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. At the Nevada Test Site (NTS), monolayer ET covers are the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. The project is funded through the Subsurface Contaminants Focus Area of the U.S. Department of Energy. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two sites are relatively recently disturbed (within the last 50 years) and have been selected to evaluate processes and changes on ET covers for the early period after active cover maintenance is discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end of the compliance period (1,000 years or more); both surfaces are abandoned alluvial/colluvial deposits. The history of the early post-institutional control analog sites are being evaluated by an archaeologist to help determine when the sites were last disturbed or modified, and the mode of disturbance to help set baseline conditions. Similar to other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water balance performance will be evaluated to help understand ET cover performance over time.

  9. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  10. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow

    International Nuclear Information System (INIS)

    Costa, Pedro F; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-01-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications. (paper)

  11. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Baldwin, Jeremy; Chhaya, Mohit; Gomes, Manuela E; Reis, Rui L; Theodoropoulos, Christina; Hutmacher, Dietmar W

    2014-09-01

    This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.

  12. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    Energy Technology Data Exchange (ETDEWEB)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report

  13. Evaluation of respiration in compost landfill biocovers intended for methane oxidation

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Pedicone, Alessio; Pedersen, Gitte Bukh

    2011-01-01

    A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration...... in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas...... concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107±14gm−2d−1 and 63±12gm−2d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout...

  14. Unsaturated consolidation theory for the prediction of long-term municipal solid waste landfill settlement.

    Science.gov (United States)

    Liu, Chia-Nan; Chen, Rong-Her; Chen, Kuo-Sheng

    2006-02-01

    The understanding of long-term landfill settlement is important for landfill design and rehabilitation. However, suitable models that can consider both the mechanical and biodecomposition mechanisms in predicting the long-term landfill settlement are generally not available. In this paper, a model based on unsaturated consolidation theory and considering the biodegradation process is introduced to simulate the landfill settlement behaviour. The details of problem formulations and the derivation of the solution for the formulated differential equation of gas pressure are presented. A step-by-step analytical procedure employing this approach for estimating settlement is proposed. The proposed model can generally model the typical features of short-term and long-term behaviour. The proposed model also yields results that are comparable with the field measurements.

  15. Composition and Value of waste in landfills in SA

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-09-01

    Full Text Available in landfills in SA German Chamber of Business From Mining to Urban Mining 16 September 2015 IFAT Environmental Technology Forum Africa 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green... in collection infrastructure is required • Creation of entrepreneurial opportunities • Design for recycling • Creation of markets for recycled materials – Replacing virgin materials with recyclate – Develop new innovative high quality recycled products...

  16. Quantifying capital goods for waste landfilling

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Stentsøe, Steen; Willumsen, Hans Christian

    2013-01-01

    Materials and energy used for construction of a hill-type landfill of 4 million m3 were quantified in detail. The landfill is engineered with a liner and leachate collections system, as well as a gas collection and control system. Gravel and clay were the most common materials used, amounting...

  17. Analysis of biogas in sanitary landfill Caieiras

    Directory of Open Access Journals (Sweden)

    Giovano Candiani

    2011-06-01

    Full Text Available In this work, the biogas in the Sanitary Landfill Caieiras is qualitatively evaluated, emphasizing the influence of the geomembrana and cover system of vertical drains in the vicinity to capture the landfill. It was possible to detect an increase in the percentage of methane and oxygen reduction, aiming at the commercialization of carbon credits and electricity production.

  18. Imaging scatterers in landfills using seismic interferometry

    NARCIS (Netherlands)

    Konstantaki, L.A.; Dragnov, D.S.; Heimovaara, T.J.; Ghose, R.

    2013-01-01

    A significant problem with landfills is their aftercare period. A landfill is considered to be safe for the environment only after a relatively long period of time. Until it reaches such a condition, it has to be periodically treated. Not only are treatments very expensive, but they could be

  19. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    Science.gov (United States)

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Akkaya, Ebru; Ozkaya, Bestamin

    2008-01-01

    One of the most important problems with designing and maintaining a landfill is managing leachate that generated when water passes through the waste. In this study, leachate samples taken from aerobic and anaerobic landfill reactors operated with and without leachate recirculation are investigated in terms of biodegradable and non-biodegradable fractions of COD. The operation time is 600 days for anaerobic reactors and 250 days for aerobic reactors. Results of this study show that while the values of soluble inert COD to total COD in the leachate of aerobic landfill with leachate recirculation and aerobic dry reactors are determined around 40%, this rate was found around 30% in the leachate of anaerobic landfill with leachate recirculation and traditional landfill reactors. The reason for this difference is that the aerobic reactors generated much more microbial products. Because of this condition, it can be concluded that total inert COD/total COD ratios of the aerobic reactors were 60%, whereas those of anaerobic reactors were 50%. This study is important for modeling, design, and operation of landfill leachate treatment systems and determination of discharge limits

  1. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  2. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan; El-Fadel, Mutasem E.; Saikaly, Pascal; Ayoub, George M.; Darwiche, Nadine D.; Hashisho, Jihan

    2013-01-01

    -fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300

  3. Landfill Site Selection by AHP Based Multi-criteria Decision Making Tool: A Case Study in Kolkata, India

    Science.gov (United States)

    Majumdar, Ankush; Hazra, Tumpa; Dutta, Amit

    2017-09-01

    This work presents a Multi-criteria Decision Making (MCDM) tool to select a landfill site from three candidate sites proposed for Kolkata Municipal Corporation (KMC) area that complies with accessibility, receptor, environment, public acceptability, geological and economic criteria. Analytical Hierarchy Process has been used to solve the MCDM problem. Suitability of the three sites (viz. Natagachi, Gangajoara and Kharamba) as landfills as proposed by KMC has been checked by Landfill Site Sensitivity Index (LSSI) as well as Economic Viability Index (EVI). Land area availability for disposing huge quantity of Municipal Solid Waste for the design period has been checked. Analysis of the studied sites show that they are moderately suitable for landfill facility construction as both LSSI and EVI scores lay between 300 and 750. The proposed approach represents an effective MCDM tool for siting sanitary landfill in growing metropolitan cities of developing countries like India.

  4. Methodology of environmental diagnosis for construction and demolition waste landfills: a tool for planning and making decisions.

    Science.gov (United States)

    Garrido, E; Calvo, F; Ramos, A F; Zamorano, M

    2005-11-01

    Current legislation in the European Union regarding landfills provides measures, procedures and guidance to prevent or reduce, insofar as possible, negative effects on the environment. This means that Member States must take measures so that landfills cannot operate unless the operator first presents a plan for the site, which includes the implementation of improvements considered necessary by the engineer for compliance with regulations. Researchers at the University of Granada have developed a method to ascertain the degree of environmental impact that a construction and demolition waste landfill may produce on its immediate surroundings. This methodology is based on environmental indexes; its objective is to give crucial information concerning possible environmental problems produced by a landfill. The data thus obtained will permit the elaboration of guidelines for improvements in the location, design, and operation of landfills, or in extreme cases, their dosing, sealing, and rehabilitation.

  5. Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part II: Application of numerical model BIOKEMOD-3P.

    Science.gov (United States)

    Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh

    2010-02-01

    Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.

  6. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  7. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  8. Construction of a Simple Multipurpose Airlift Bioreactor and its ...

    African Journals Online (AJOL)

    BSN

    The aim of the present research is to develop a simple airlift bioreactor which can be operated even ... compression metal. The bioreactor is mixed ... the method developed by (Bailey and Olis, .... (Ed) Concise Encyclopedia of Bio-resources.

  9. Landfills: Engineering Design for Waste Control

    Science.gov (United States)

    Deck, Anita; Grubbs, Michael E.

    2016-01-01

    It is becoming increasingly important to consider the waste humans produce and options for reducing the impact it has on the environment. Allowing students the opportunities to research potential solutions and present their ideas results in an educated citizenry that considers consequences of technological advances. Throughout the course of a…

  10. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.

    Science.gov (United States)

    Nolasco, Dácil; Lima, R Noemí; Hernández, Pedro A; Pérez, Nemesio M

    2008-01-01

    [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30

  11. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates

    DEFF Research Database (Denmark)

    Chen, Z-W; Liu, Y-Y; Wu, J-F

    2007-01-01

    The microbial community and sulfur oxygenase reductases of metagenomic DNA from bioreactors treating gold-bearing concentrates were studied by 16S rRNA library, real-time polymerase chain reaction (RT-PCR), conventional cultivation, and molecular cloning. Results indicated that major bacterial......) of bacteria and archaea were 4.59 x 10(9) and 6.68 x 10(5), respectively. Bacterial strains representing Acidithiobacillus, Leptospirillum, and Sulfobacillus were isolated from the bioreactors. To study sulfur oxidation in the reactors, pairs of new PCR primers were designed for the detection of sulfur...... oxygenase reductase (SOR) genes. Three sor-like genes, namely, sor (Fx), sor (SA), and sor (SB) were identified from metagenomic DNAs of the bioreactors. The sor (Fx) is an inactivated SOR gene and is identical to the pseudo-SOR gene of Ferroplasma acidarmanus. The sor (SA) and sor (SB) showed...

  12. Nitrate removal from aquaculture effluents using woodchip bioreactors improved by adding sulfur granules and crushed seashells

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Dalsgaard, Johanne

    2018-01-01

    This study examined the effects on nitrate removal when adding sulfur granules and crushed seashells to a woodchip bioreactor treating aquaculture effluents. Using a central composite design, the two components were added at three levels (0.000, 0.125 and 0.250 m3/m3 bioreactor volume) to 13......, the inclusion of crushed seashells together with sulfur granules helped to maintain the pH above 7.4 and prevent a production (i.e., release) of nitrite. According to the modeled response surfaces, a sulfur granule:crushed seashell:woodchip mixture ratio containing about 0.2 m3 sulfur granules and 0.1 m3...... crushed seashells per m3 reactor volume would give the best results with respect to high N removal and minimal nitrite release. In conclusion, the study showed that N removal in woodchip bioreactors may be improved by adding sulfur granules and seashells, contributing to the optimization of woodchip...

  13. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production

    International Nuclear Information System (INIS)

    Seyed Hosseini, Nekoo; Shang, Helen; Ross, Gregory M.; Scott, John Ashley

    2016-01-01

    Highlights: • Top-lit gas-lift and bubble columns were studied as deep algal cultivation tank. • A theoretical energy requirement analysis and a hydrodynamic model were developed. • Areal productivities of both bioreactors were notably higher than traditional raceways. • A gas-lift reactor sparged with 6% carbon dioxide achieved the highest lipid production. • Hydrodynamic and light stresses increased the lipid content suitable for biodiesel. - Abstract: The development of top-lit one-meter deep bioreactors operated as either a gas-lift or bubble column system using air and carbon dioxide enriched air was studied. The goal was high productivity cultivation of algae with elevated lipid levels suitable for conversion into biodiesel. A theoretical energy requirement analysis and a hydrodynamic model were developed to predict liquid circulation velocities in the gas-lift bioreactor, which agreed well with experimental measurements. The influence of operational parameters such as design of bioreactor, gas flow rates and carbon dioxide concentration on the growth and lipid volumetric production of Scenedesmus dimorphus was evaluated using factorial design. While biomass productivity was 12% higher in the bubble column bioreactor (68.2 g_d_w m"−"2 day"−"1), maximum lipid volumetric production (0.19 g_L_i_p_i_d L"−"1) was found in a gas-lift bioreactor sparged with 6% carbon dioxide due to hydrodynamic and light stresses.

  14. EXPERIMENTAL STUDY ON THE GAS-LIQUID FLOW IN THE MEMBRANE MICROPORE AERATION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    DONG LIU

    2008-12-01

    Full Text Available Particle Image Velocimetry (PIV has been developed to measure the typical two-phase flow of various work conditions in Membrane Micropore Aeration Bioreactor (MMAB. The fluid phase is separated out using image processing techniques, which provides accurate measurements for the Bioreactor’s flow field, and makes it possible for quantitative analysis of the momentum exchange, heat exchange and the process of micro-admixture. The experimental method PIV used in this paper can preferably measure the complex flow in the reactor and initiates a new approach for the bioreactor design which mainly depends on experience at present.

  15. Evaluation of the Oedometer Tests of Municipal Landfill Waste Material

    Directory of Open Access Journals (Sweden)

    Imre Emőke

    2014-07-01

    Full Text Available The aim of the ongoing research is (i to develop a new biodegradation landfill technique so that the landfill gas production could be controlled and the utilisation of the landfill gas could economically be optimized, (ii to plan the energy utilisation of the landfill including individual and combined solutions (solar, wind, geothermal energy, energy storage using methanol etc.. [1, 2, 3

  16. Availability and properties of materials for the Fakse Landfill biocover

    DEFF Research Database (Denmark)

    Pedersen, Gitte Bukh; Scheutz, Charlotte; Kjeldsen, Peter

    2010-01-01

    Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill......-cost and effective method for comparing compost sources for suitability of use in landfill biocovers....

  17. Monitoring of Leachate Recirculation in a Bioreactor Using Electrical Resistivity

    Science.gov (United States)

    Grellier, S.; Bureau, N.; Robain, H.; Tabbagh, A.; Camerlynck, C.; Guerin, R.

    2004-05-01

    The bioreactor is a concept of waste landfill management consisting in speeding up the biodegradation by optimizing the moisture content through leachate recirculation. Electrical resistivity tomography (ERT) is carried out with fast resistivity-meter (Syscal Pro, IRIS Instruments, developed in the framework of the research project CERBERE 01V0665-69, funded by the French Research Ministry) to monitor leachate recirculation. During a recirculation period waste moisture increases, so that electrical resistivity may decrease, but at the same time temperature and mineralization of both waste and leachate become intermixed. If waste temperature is much higher than leachate temperature electrical resistivity will not decrease as much as if the temperature difference was smaller. If leachate mineralization (i.e. leachate conductivity) is higher than that of wet waste in the landfill, electrical resistivity will tend to decrease. Otherwise for example after an addition of rain water into the leachate storage or in case of very wet waste, the resistivities of each medium (leachate and wet waste) can be almost the same, so that leachate mineralization will not have a great influence on waste resistivity. Resistivity measurements were performed during 85 minutes injection trials (with a discharge of 20 m3 h-1) where leachate was injected through a vertical borehole perforated between 1.85 and 4.15 m. Three first measurements are made during the injection (3, 30 and 60 minutes from the beginning of the injection) and the two other after the injection period (8 and 72 minutes after the end of the injection). Apparent and interpreted resistivity variations that occurred during injection trials, expressed as the relative differences (in %) between apparent, respectively interpreted, resistivity during injection and apparent, respectively interpreted, resistivity before injection (reference measurement) show the formation of a plume (a negative anomaly: resistivity decreases with

  18. The Health Risk Assessment of Pb and Cr leachated from fly ash monolith landfill

    International Nuclear Information System (INIS)

    Hung, Ming-Lung; Wu, Sheng-Yao; Chen, Yen-Chuan; Shih, Hsiu-Ching; Yu, Yue-Hwa; Ma, Hwong-wen

    2009-01-01

    As of 2004, nearly two hundred thousand tons of fly ash monoliths are created each year in Taiwan to confine heavy metals for reducing the leaching quantity by precipitation. However, due to abnormal monolith fracture, poorly liner quality or exceeding usage over designed landfill capacity, serious groundwater pollution of the landfills has been reported. This research focuses on Pb and Cr leaching from monolithic landfill to assess the risk of groundwater pollution in the vicinity. The methodology combines water budget simulations using HELP model with fate and risk simulations using MMSOILS model for 5 kinds of landfill structures and 2 types of leaching models, and calculates the risk distribution over 400 grids in the down gradient direction of groundwater. The results demonstrated that the worst liner quality will cause the largest risk and the most significant exposure pathway is groundwater intake, which accounted for 98% of the total risk. Comparing Pb and Cr concentrations in the groundwater with the drinking water standards, only 14.25% of the total grids are found to be under 0.05 mg/L of Pb, and over 96.5% of the total grids are in the safety range of Cr. It indicates that Pb leaching from fly ash monolithic landfills may cause serious health risks. Without consideration of the parameters uncertainty, the cancer and noncancer risk of Pb with the sanitary landfill method was 4.23E-07 and 0.63, respectively, both under acceptable levels. However, by considering the parameters uncertainty, the non-carcinogenic risk of Pb became 1.43, exceeding the acceptable level. Only under the sealed landfill method was the hazard quotient below 1. It is important to use at least the sealed landfill for fly ash monoliths containing lead to effectively reduce health risks.

  19. Leachate impacts on groundwater: modeling generation and transport at the naameh landfill

    International Nuclear Information System (INIS)

    Bou-Zeid, E.; El FAdel, M.; Basha, H.

    2000-01-01

    Full text.Although municipal solid waste is now managed through integrated schemes that rank land filling as one of the least favorable options for disposal, this management alternative continues to be the most economic and attractive in the vast majority of cases. An inevitable consequence of the practice of solid waste disposal in landfills is the generation, refuse characteristics and land filling operations. Leachate migration away from the landfill boundaries and its subsequent release into the surrounding environment, present serious environmental concerns at both existing and new facilities particularly in relation to surface and ground water pollution. While numerous mathematical models have been developed to simulate processes governing leachate occurrence and behavior in landfills and their potential migration away from landfill boundaries, none have been applied at former quarries converted to waste disposal facilities. The objective of this research work is to calibrate and apply mathematical models to predict the generation, fate and transport of leachate at a former quarry landfill facility (the Naameh landfill site). The site offers unique characteristics in that it is the first quarry converted to a landfill in Lebanon and is planned to have refuse depth in excess of one hundred meters, making it one of the deepest in the world. The modeling estimates leachate quantity in order to control its associated environmental impacts, particularly on ground water wells down gradient of the site. The sensitivity of leachate generation to meteorological, operation and design parameters was assessed. Guidance for leachate control, recirculation and collection to minimize these impacts is also provided. The fate and transport of contaminants released from the landfill to the subsurface was modeled. A sensitivity analysis with respect to geological properties of the site was conducted. Worst case scenarios were investigated as well

  20. Assessing the environmental impact of ashes used in a landfill cover construction.

    Science.gov (United States)

    Travar, I; Lidelöw, S; Andreas, L; Tham, G; Lagerkvist, A

    2009-04-01

    Large amounts of construction materials will be needed in Europe in anticipation for capping landfills that will be closed due to the tightening up of landfill legislation. This study was conducted to assess the potential environmental impacts of using refuse derived fuel (RDF) and municipal solid waste incineration (MSWI) ashes as substitutes for natural materials in landfill cover designs. The leaching of substances from a full-scale landfill cover test area built with different fly and bottom ashes was evaluated based on laboratory tests and field monitoring. The water that drained off above the liner (drainage) and the water that percolated through the liner into the landfill (leachate) were contaminated with Cl(-), nitrogen and several trace elements (e.g., As, Cu, Mo, Ni and Se). The drainage from layers containing ash will probably require pre-treatment before discharge. The leachate quality from the ash cover is expected to have a minor influence on overall landfill leachate quality because the amounts generated from the ash covers were low, environmental view point, the placement of ashes in layers above the liner is more critical than within the liner.

  1. Plastic carrier polishing chamber reduces pollution swapping from denitrifying woodchip bioreactors

    Science.gov (United States)

    Denitrifying bioreactors with solid organic carbon sources (i.e., “woodchip bioreactors”) have proven to be relatively simple and cost effective treatment systems for nitrate-laden agricultural and aquacultural waters and wastewaters. However, because this technology is still relatively new, design ...

  2. The aspects of fire safety at landfills

    Directory of Open Access Journals (Sweden)

    Aleshina Tat'yana Anatol'evna

    2014-01-01

    Full Text Available Starting with 2008 and till 2013 there have been alarm messages about fires occurring at landfill places in Russia. Landfill fires are especially dangerous as they emit dangerous fumes from the combustion of the wide range of materials within the landfill. Subsurface landfill fires, unlike typical fires, cannot be put out with water. The article includes the analysis of the sources and causes of conflagrations at landfills. There maintains the necessity to eliminate the reasons, which cause the fires. There are quantification indices of environmental, social and economic effects of fires at landfills all over Russia. Surface fires generally burn at relatively low temperatures and are characterized by the emission of dense white smoke and the products of incomplete combustion. The smoke includes irritating agents, such as organic acids and other compounds. Higher temperature fires can cause the breakdown of volatile compounds, which emit dense black smoke. Surface fires are classified as either accidental or deliberate. For the ecologic security there is a need in the execution of proper hygienic requirements to the content of the places as well as international recommendations. In addition to the burning and explosion hazards posed by landfill fires, smoke and other by-products of landfill fires also present a health risk to firefighters and others exposed to them. Smoke from landfill fires generally contains particulate matter (the products of incomplete combustion of the fuel source, which can aggravate pre-existing pulmonary conditions or cause respiratory distress and damage ecosystem. The monitoring of conducting preventive inflamings and transition to alternative, environment friendly methods of waste disposal is needed.

  3. Emissions and leachate recycling at Seutula landfill

    International Nuclear Information System (INIS)

    Nykaenen, V.

    1999-01-01

    The aim of this study was to examine the degradation process and the leachate and gas emissions at Seutula landfill Vantaa The influences on leachate recycling to gas production and on the power production and also the influences on landfill water and the quality of leachate was found out. The situation at the landfill before leachate recirculation was studied. In the literature part of this study the landfill gas generation, different phases of the landfill and factors effecting them were examined. The quality of leachate, leachate recirculation and advantages of recirculation were studied. Different kind of gas collection methods, gas utilization, advantages and disadvantages of gas collection and the future of utilization were studied. Methods for measuring methane emissions through the landfill surface was a central part of the literature section. Also the future of measuring techniques were studied. In the experimental part of this study the quantity and quality of collected gas were measured. Also emitted methane was measured. Water samples were taken from landfill water and leachate during 1998. Samples were analysed in situ and in laboratory. The changes of landfill water height were measured. The degradation phase of the landfill varied, a part of waste filling was in an acidogenic phase and most part of it was in a stable methanogenic phase because the landfill is not homogenous. The concentration of landfill water and leachate are about the same than in Finland average. The most remarkable correlation from analysed results was between BOD/COD-ratio and temperature. When the temperature increased, the BOD/COD-ratio decreased. Emitted gas in the gas collection area was rather low, about 10 kW. The power production of the collected gas was in average 2 800 kW. In areas 1 and 3 where leachate was recirculated, the recovered gas efficiencies increased 55% and 70%, respectively, but in a reference area without recirculation the increase was 12%. Recommendation

  4. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water

    Directory of Open Access Journals (Sweden)

    Malin Bomberg

    2017-09-01

    Full Text Available Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.

  5. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor.

    Science.gov (United States)

    Savelyeva, Anna V; Nemudraya, Anna A; Podgornyi, Vladimir F; Laburkina, Nadezhda V; Ramazanov, Yuriy A; Repkov, Andrey P; Kuligina, Elena V; Richter, Vladimir A

    2017-09-01

    The levels of aeration and mass transfer are critical parameters required for an efficient aerobic bioprocess, and directly depend on the design features of exploited bioreactors. A novel apparatus, using gas vortex for aeration and mass transfer processes, was constructed in the Center of Vortex Technologies (Novosibirsk, Russia). In this paper, we compared the efficiency of recombinant Escherichia coli strain cultivation using novel gas-vortex technology with conventional bioprocess technologies such as shake flasks and bioreactors with mechanical stirrers. We demonstrated that the system of aeration and agitation used in gas-vortex bioreactors provides 3.6 times higher volumetric oxygen transfer coefficient in comparison with mechanical bioreactor. The use of gas-vortex bioreactor for recombinant E. coli strain cultivation allows to increase the efficiency of target protein expression at 2.2 times for BL21(DE3)/pFK2 strain and at 3.5 times for auxotrophic C600/pRT strain (in comparison with stirred bioreactor). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  6. Disaster Debris Recovery Database - Landfills

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  7. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    Science.gov (United States)

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.

  8. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    Science.gov (United States)

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  9. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors.

    Science.gov (United States)

    Hallberg, Kevin B; Johnson, D Barrie

    2005-02-01

    Mine drainage waters vary considerably in the range and concentration of heavy metals they contain. Besides iron, manganese is frequently present at elevated concentrations in waters draining both coal and metal mines. Passive treatment systems (aerobic wetlands and compost bioreactors) are designed to remove iron by biologically induced oxidation/precipitation. Manganese, however, is problematic as it does not readily form sulfidic minerals and requires elevated pH (>8) for abiotic oxidation of Mn (II) to insoluble Mn (IV). As a result, manganese removal in passive remediation systems is often less effective than removal of iron. This was found to be the case at the pilot passive treatment plant (PPTP) constructed to treat water draining the former Wheal Jane tin mine in Cornwall, UK, where effective removal of manganese occurred only in one of the three rock filter components of the composite systems over a 1-year period of monitoring. Water in the two rock filter systems where manganese removal was relatively poor was generally system. These differences in water chemistry and manganese removal were due to variable performances in the compost bioreactors that feed the rock filter units in the composite passive systems at Wheal Jane. An alternative approach for removing soluble manganese from mine waters, using fixed bed bioreactors, was developed. Ferromanganese nodules (about 2 cm diameter), collected from an abandoned mine adit in north Wales, were used to inoculate the bioreactors (working volume ca. 700 ml). Following colonization by manganese-oxidizing microbes, the aerated bioreactor catalysed the removal of soluble manganese, via oxidation of Mn (II) and precipitation of the resultant Mn (IV) in the bioreactor, in synthetic media and mine water from the Wheal Jane PPTP. Such an approach has potential application for removing soluble Mn from mine streams and other Mn-contaminated water courses.

  10. International landfill gas conference: best practice and future opportunities

    International Nuclear Information System (INIS)

    1996-01-01

    This International Landfill Gas Conference, the third to be organised by ETSU on behalf of the Department of Trade and Industry (DTI) and the former Department of Energy has been jointly sponsored by the DTI, the International Energy Agency, the Altener Programme of the European Union (EU), the Environment Agency and the Institution of Diesel and Gas Turbine Engineers. The Conference coincides with the publication of the new Government guidance document, Landfill Gas Development Guidelines, prepared by ETSU for the DTI with co-sponsorship from the EU ALTENER Programme. The aim of the new Guidelines is to promote more widespread use of landfill gas (LFG) as an energy source by helping to reduce remaining perceived barriers to project development. The document is intended for a broad readership and is designed to allow easy access to a wide range of information. Essentially it is a ''hub'' document providing links to a variety of more specialised or detailed materials. For this reason, the emphasis is placed on breadth rather than on detail. The new Guidelines are certain to become the standard reference for all those with an interest in LFG technology. (Author)

  11. Migration barrier covers for radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G.; Kent, J.S.

    1993-01-01

    Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate

  12. Alternative landfill cover technology demonstration at Kaneohe Marine Corps Base Hawaii

    International Nuclear Information System (INIS)

    Karr, L.A.; Harre, B.; Hakonson, T.E.

    1997-01-01

    Surface covers to control water infiltration to waste buried in landfills will be the remediation alternative of choice for most hazardous and sanitary landfills operated by the Department of Defense. Although surface covers are the least expensive method of remediation for landfills, they can still be expensive solutions. Conventional wisdom suggests that landfill capping technology is well developed as evidenced by the availability of EPA guidance for designing and constructing what has become known as the open-quotes RCRA Capclose quotes. In practice, however, very little testing of the RCRA cap, or any other design, has been done to evaluate how effective these designs are in limiting infiltration of water into waste. This paper describes a low cost alternative to the open-quotes RCRA Capclose quotes that is being evaluated at Marine Corps Base Hawaii (MCBH) Kaneohe Bay. This study uses an innovative, simple and inexpensive concept to manipulate the fate of water falling on a landfill. The infiltration of water through the cap will be controlled by combining the evaporative forces of vegetation to remove soil water, with engineered structures that limit infiltration of precipitation into the soil. This approach relies on diverting enough of the annual precipitation to runoff, so that the water that does infiltrate into the soil can easily be removed by evapotranspiration

  13. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study

    DEFF Research Database (Denmark)

    Yang, Na; Damgaard, Anders; Lü, Fan

    2014-01-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through...... life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between...

  14. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    Science.gov (United States)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  15. The mixed waste landfill integrated demonstration

    International Nuclear Information System (INIS)

    Burford, T.D.; Williams, C.V.

    1994-01-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ''in-situ'' characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites

  16. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    Cossu, R.; Privato, A.; Raga, R.

    2005-01-01

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed [it

  17. Trees - a tool for landfill managers

    International Nuclear Information System (INIS)

    Josseaume, Marine

    2009-01-01

    When landfills are closed, they must be rehabilitated in accordance with the site redevelopment plan. Studies have been conducted for the purpose of planting various tree and shrub species on closed compartments. The purpose of growing this biomass is to produce energy. At Machecoul (Loire-Atlantique), a project was implemented in cooperation with many players, including the Horticultural Training College, Veolia Proprete and the intercommunal supervisory board of the Six-Pieces landfill. (authors)

  18. Performance assessment for proposed disposal of NORM at an existing landfill in New South Wales, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, S., E-mail: sfountain@geosyntec.com [Geosyntec Consultants, Inc., Kennesaw, Georgia (United States); Jones, J., E-mail: john.jones@sita.com.au [SITA Australia, Chullora, New South Wales (Australia); Christopherson, J.; Drummond, C., E-mail: jchristopherson@geosyntec.com, E-mail: cdrummond@geosyntec.com [Geosyntec Consultants, Inc., Orlando, FL (United States); Bruce, R.; Duffy, D., E-mail: rbruce@geosyntec.com, E-mail: dduffy@geosyntec.com [Geosyntec Consultants, Sdn. Bhd., Kuala Lumpur (Malaysia); Beech, J., E-mail: jbeech@geosyntec.com [Geosyntec Consultants, Inc., Kennesaw, Georgia (United States)

    2014-07-01

    Approximately 5,000 tonnes of soil containing naturally occurring radioactive materials (NORM), primarily consisting of the uranium and thorium series, were proposed to be removed from properties undergoing remedial action in New South Wales (NSW), Australia. These 'NORM soils' were proposed to be excavated and transported for disposal at an existing landfill facility in NSW. Once at the landfill facility and confirmed to meet appropriate acceptance criteria, the NORM soils were proposed to be disposed of in an encapsulated waste cell (EWC) within a previously permitted and constructed restricted solid waste (RSW) cell at the landfill. The characteristics of the NORM soils require that they be disposed of and managed in an appropriate manner, both near-term as well as beyond the time when the EWC liner system can be assumed to have degraded. A Performance Assessment (PA) was conducted to help assess the potential long-term incremental dose received by a target receptor group related to the disposal of the NORM soils at the landfill facility. The PA consisted of computing the doses to a designated receptor group associated with the planned disposal of the soils within the licensed RSW cell at the landfill facility. Primary tasks performed for this PA included conceptual site model (CSM) development, infiltration (Hydrologic Evaluation of Landfill Performance [HELP]) modeling, and radionuclide fate and transport and dose (RESidual RADioactivity-OFFSITE [RESRAD-OFFSITE]) modeling. The results of the PA indicated that the computed doses to the receptors associated with the disposal of NORM soils in the EWC within the RSW at the landfill facility was in compliance with both the current NSW Radiation Control Regulation 2013 and International Commission on Radiological Protection (ICRP) dose limits for the designated potential receptor group. (author)

  19. Modern technology for landfill waste placement

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L. [Landfill Service Corp., Apalachin, NY (United States)

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits of this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.

  20. ELECTRICITY GENERATION FROM LANDFILL GAS IN TURKEY.

    Science.gov (United States)

    Salihoglu, Nezih Kamil

    2018-05-08

    Landfill gas (LFG)-to-energy plants in Turkey were investigated, and the LFG-to-energy plant of a metropolitan municipal landfill was monitored for 3 years. Installed capacities and actual gas engine working hours were determined. An equation was developed to estimate the power capacity for LFG-to-energy plants for a given amount of landfilled waste. Monitoring the actual gas generation rates enabled determination of LFG generation factors for Turkish municipal waste. A significant relationship (R = 0.524, p kitchen waste generation behaviors influenced by the ambient temperature. However, no significant correlation was found between the ambient temperature and the generated LFG. A temperature buffering capacity was inferred to exist within the landfill, which enables the anaerobic reactions to continue functioning even during cold seasons. The average LFG and energy generation rates were 45 m 3 LFG/ton waste landfilled and 0.08 MWh/ton waste landfilled, respectively. The mean specific LFG consumption for electricity generation was 529 ± 28 m 3 /MWh.

  1. Woodchip bioreactors effectively treat aquaculture effluent

    Science.gov (United States)

    Nutrients, in particular nitrogen and phosphorus, can create eutrophication problems in any watershed. Preventing water quality impairment requires controlling nutrients from both point-source and non-point source discharges. Woodchip bioreactors are one relatively new approach that can be utilized ...

  2. Sulfate-reducing bacteria in anaerobic bioreactors

    NARCIS (Netherlands)

    Oude Elferink, S.J.W.H.

    1998-01-01

    The treatment of industrial wastewaters containing high amounts of easily degradable organic compounds in anaerobic bioreactors is a well-established process. Similarly, wastewaters which in addition to organic compounds also contain sulfate can be treated in this way. For a long time, the

  3. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. INPP Landfill[Disposal of very low level radioactive waste at Ignalina NPP

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jan; Bergstroem, Ulla

    2004-06-15

    The objective of this report is to propose the basic design for final disposal of Very Low Level Radioactive Waste (VLLW) produced at the Ignalina Nuclear Power Plant and at other small waste producers in Lithuania. Considering the safety for the environment, as well as the construction costs, it has been decided that the repository will be of a landfill type based on the same design principles as similar authorised facilities in other countries. It has also been decided that the location of the landfill shall be in the vicinity of the Ignalina Nuclear Power Plant (INPP)

  5. Nanofiltration of a Landfill Leachate Containing Pharmaceutical Intermediates from Vitamin C Production

    Directory of Open Access Journals (Sweden)

    Tvrtko Ahel

    2004-01-01

    Full Text Available The main landfill of the city of Zagreb generates several hundreds of cubic meters of heavily contaminated leachate per day. The organic composition of the leachate is particularly peculiar because, besides common macromolecular humus-like dissolved organic carbon,it encompasses a number of specific compounds of pharmaceutical origin, including a suite of by-products deriving from the production of vitamin C. Since both macromolecular humic organic matter and vitamin C intermediates are rather resistant to microbial degradation, leachate treatment procedures using simple retention lagoons or conventional bioreactors are not very effective in reducing their levels before the discharge into the receiving waters. An attractive alternative is the application of membrane technology. The efficiencies of three different types of nanofilters for the purification of leachates from the Jakuševec landfill were examined. It was shown that both complex humic-like dissolved organic matter and anthropogenic compounds of pharmaceutical origin can be eliminated at high efficiencies, mostly above 90 %.

  6. Monitoring greenhouse gas emissions from landfill sites

    International Nuclear Information System (INIS)

    Eade, G.

    2001-01-01

    Methane is the chief component of natural gas, but also occurs naturally by the anaerobic decomposition of organic matter in swamp areas, at landfill sites, in fact at any location where organic deposits are present. Carbon dioxide is also produced by the decomposition of organic material as well as being the primary by-product of combustion. This article focuses on techniques to test a wide variety of combustible and toxic gases, including surface emission testing of landfill sites. Specifically, it describes the Methane Emission Monitoring System (MEMS) developed by Hetek Solutions Inc., whose primary objective is to to effectively locate surface emissions of methane gas from active landfill sites using flame ionization (FI) technology, and to plot the 'hot spots' using a Differential Global Positioning System (DGPS), which provides sub-metre accuracy for plotting emissions locations at landfill sites. The FI equipment is installed on all-terrain vehicles (ATVs). Several thousand kilometers of pipeline inspections have been performed in Alberta and Saskatchewan using this system in the mid-1990s. The mobile FI/ATV units have been redesigned for landfill gas emission testing, equipped with new DGPS equipment and interface software. They meet the New Source Performance Standards (NSPS) drafted in the United States in 1996, which requires all landfill sites to be inspected for methane gas emissions. Using the FI/ATV combination, productivity over conventional walking inspection procedures increased some 400 per cent, while monitoring accuracy is equivalent to or better than those provided by previous conventional methods. The company can also provide the Optical Methane Detector (OMD) system using infrared technology. They are capable of performing 14,000 measurements per second, thus providing immediate response. To date, ATV emissions testing has been proven to be very effective in various types of gas detection. When interfaced with DGPS technology, computer

  7. Seismic analysis of Industrial Waste Landfill 4 at Y-12 Plant

    International Nuclear Information System (INIS)

    1995-01-01

    This calculation was to seismically evaluate Landfill IV at Y-12 as required by Tennessee Rule 1200-1-7-04(2) for seismic impact zones. The calculation verifies that the landfill meets the seismic requirements of the Tennessee Division of Solid Waste, ''Earthquake Evaluation Guidance Document.'' The theoretical displacements of 0.17 in. and 0.13 in. for the design basis earthquake are well below the limiting seimsic slope stability design criteria. There is no potential for liquefaction due to absence of chohesionless soils, or for loss or reduction of shear strength for the clays at this site as result of earthquake vibration. The vegetative cover on slopes will most likely be displaced and move during a large seismic event, but this is not considered a serious deficiency because the cover is not involved in the structural stability of the landfill and there would be no release of waste to the environment

  8. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  9. Farm Deployable Microbial Bioreactor for Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict [Auburn Univ., Montgomery AL (United States)

    2016-03-30

    Research was conducted to develop a farm and field deployable microbial bioreactor for bioethanol production from biomass. Experiments were conducted to select the most efficient microorganisms for conversion of plant fiber to sugars for fermentation to ethanol. Mixtures of biomass and surface soil samples were collected from selected sites in Alabama black belt counties (Macon, Sumter, Choctaw, Dallas, Montgomery, Lowndes) and other areas within the state of Alabama. Experiments were conducted to determine the effects of culture parameters on key biomass saccharifying enzymes (cellulase, beta-glucosidase, xylanase and beta-xylosidase). A wide-scale sampling of locally-grown fruits in Central Alabama was embarked to isolate potential xylose fermenting microorganisms. Yeast isolates were evaluated for xylose fermentation. Selected microorganisms were characterized by DNA based methods. Factors affecting enzyme production and biomass saccharification were examined and optimized in the laboratory. Methods of biomass pretreatment were compared. Co-production of amylolytic enzymes with celluloytic-xylanolytic enzymes was evaluated; and co-saccharification of a combination of biomass, and starch-rich materials was examined. Simultaneous saccharification and fermentation with and without pre-saccharifcation was studied. Whole culture broth and filtered culture broth simultaneous saccahrifcation and fermentation were compared. A bioreactor system was designed and constructed to employ laboratory results for scale up of biomass saccharification.

  10. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    Science.gov (United States)

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Municipal solid waste landfills harbor distinct microbiomes

    Science.gov (United States)

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  12. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  13. Structural analysis of a fibrocement anaerobic bioreactor for finite elements method

    International Nuclear Information System (INIS)

    Guardia-Puebla, Yans; Pacheco-GamboaI, Raúl; Ramos-Botello, Yoan; Palma-Ramírez, Leonardo; Rodríguez-Pérez, Suyén

    2015-01-01

    The paper consist on asses the mechanical resistant of the fibrocement tanks as a proposal of an anaerobic system of low cost for biogas production. For the design was used the finite elements method (FEM), which it is fundamental tool to carried out the structural analysis of the resistant to the traction of the anaerobic bioreactor. With this new system, a suitable option to spread, of sustainable and economic means, the biogas production on rural zones. For the design was used fibrocement tanks of 1900 L, and pipes and accessories plastics, achieving a maximum volume of cumulative biogas of 1,12 m"3.The fibrocement tank was not accomplished with the necessary specifications to achieve the design aim; for that reason, a new dimensional design was developed to guarantee the traction resistant as anaerobic bioreactors. (author)

  14. Hazardous landfill management, control options

    International Nuclear Information System (INIS)

    Corbin, M.H.; Lederman, P.B.

    1982-01-01

    The land disposal of hazardous wastes has been a common practice over the last half century. The industrial and environmental communities, as well as the public, have an immediate challenge to control the contaminants that may be released from waste land disposal facilities. At the same time, land disposal continues to be, in many cases, the only available disposal technique that can be utilized in the next five years. Thus, it is extremely important that environmentally sound landfill management and control techniques be utilized, both for inactive and active sites. There are a number of key steps in developing a sound management and control plan. These include problem definition, personnel safety, characterization, evaluation of control options, cost-effectiveness analysis and development of an integrated control plan. A number of control options, including diversion, regrading, sealing, and leachate treatment are available and more cost effective in most cases than waste removal. These and other options, as well as the methodology to develop an integrated control plan, are discussed, together with examples. (Auth.)

  15. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  16. Model system studies with a phase separated membrane bioreactor

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, Eric H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  17. Phase separated membrane bioreactor - Results from model system studies

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    1989-01-01

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestrial simulation.

  18. Phase separated membrane bioreactor: Results from model system studies

    Science.gov (United States)

    Petersen, G. R.; Seshan, P. K.; Dunlop, E. H.

    The operation and evaluation of a bioreactor designed for high intensity oxygen transfer in a microgravity environment is described. The reactor itself consists of a zero headspace liquid phase separated from the air supply by a long length of silicone rubber tubing through which the oxygen diffuses in and the carbon dioxide diffuses out. Mass transfer studies show that the oxygen is film diffusion controlled both externally and internally to the tubing and not by diffusion across the tube walls. Methods of upgrading the design to eliminate these resistances are proposed. Cell growth was obtained in the fermenter using Saccharomyces cerevisiae showing that this concept is capable of sustaining cell growth in the terrestial simulation.

  19. Membrane bioreactors in waste water treatment - status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Universitaet Berlin, Chair of Chemical and Process Engineering, Berlin (Germany); Drews, A. [HTW Berlin, FB II, Life Science Engineering, Berlin (Germany)

    2010-08-15

    Due to their unique advantages like controlled biomass retention, improved effluent quality, and decreased footprint, membrane bioreactors (MBRs) are being increasingly used in waste water treatment up to a capacity of several 100,000 p.e. This article reviews the current status of MBRs and reports trends in MBR design and operation. Typical operational and design parameters are given as well as guidelines for waste water treatment plant revamping. To further improve the biological performance, specific or hybrid process configurations are shown to lead to, e.g., enhanced nutrient removal. With regards to reducing membrane fouling, optimized modules, advanced control, and strategies like the addition of flux enhancers are currently emerging. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater

    OpenAIRE

    B. A. Q. Santos; S. K. O. Ntwampe; G. Muchatibaya

    2013-01-01

    In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) p...

  1. Removal of Cr, Mn, and Co from textile wastewater by horizontal rotating tubular bioreactor.

    Science.gov (United States)

    Zeiner, Michaela; Rezić, Tonci; Santek, Bozidar; Rezić, Iva; Hann, Stephan; Stingeder, Gerhard

    2012-10-02

    Environmental pollution by industrial wastewaters polluted with toxic heavy metals is of great concern. Various guidelines regulate the quality of water released from industrial plants and of surface waters. In wastewater treatment, bioreactors with microbial biofilms are widely used. A horizontal rotating tubular bioreactor (HRTB) is a combination of a thin layer and a biodisc reactor with an interior divided by O-ring shaped partition walls as carriers for microbial biomass. Using a biofilm of heavy metal resistant bacteria in combination with this special design provides various advantages for wastewater treatment proven in a pilot study. In the presented study, the applicability of HRTB for removing metals commonly present in textile wastewaters (chromium, manganese, cobalt) was investigated. Artificial wastewaters with a load of 125 mg/L of each metal underwent the bioreactor treatment. Different process parameters (inflow rate, rotation speed) were applied for optimizing the removal efficiency. Samples were drawn along the bioreactor length for monitoring the metal contents on site by UV-vis spectrometry. The metal uptake of the biomass was determined by ICP-MS after acidic microwave assisted digestion. The maximum removal rates obtained for chromium, manganese, and cobalt were: 100%, 94%, and 69%, respectively.

  2. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    International Nuclear Information System (INIS)

    Khondee, Nichakorn; Tathong, Sitti; Pinyakong, Onruthai; Powtongsook, Sorawit; Chatchupong, Thawach; Ruangchainikom, Chalermchai; Luepromchai, Ekawan

    2012-01-01

    Highlights: ► Sphingobium sp. P2 effectively degraded various lubricant samples. ► Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. ► High removal efficiency was due to both sorption and degradation processes. ► The immobilized bacteria (4 g L −1 ) were applied in internal loop airlift bioreactor. ► The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80–90% of the 200 mg L −1 total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L −1 immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 ± 5% TPH and 73 ± 11% chemical oxygen demand (COD) from the carwash wastewater with 25–200 mg L −1 amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  3. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.

    Science.gov (United States)

    De Jesus, Maria; Wurm, Florian M

    2011-06-01

    Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Determination of the kinetic and stoichiometric constant in a conventional bioreactor of activated sludge, to scale

    International Nuclear Information System (INIS)

    Rodriguez Chaparro, Tatiana; Perez Navarrete, Eddie Albert; Vivas Mora, Eneydi

    2003-01-01

    The activated sludge process is the one of the most efficient process, when it comes to removal of organic matter. Implementing in the lab is quite easy, economic technically feasible, and simultaneously offers the possibility of using the results obtained in the lab to be applied in field by determining the kinetic and stoichiometric constants. The activated sludge system was designed, built and operated in the water quality lab, at the Military University in Bogota, Colombia. The bioreactor has an aeration chamber, a sedimentation tank and a feeding source with wastewater taken from a meat packing plant in Bogota. The research was carried out for 3 months, in two stages as follows: in the first stage and in order to obtain a high concentration of biomass the acclimatizing process was carried out. This step allows the bioreactor to run in a continuous flow. In the second stage, the bioreactor was taken in to operation and fed with the acclimated sludge at different sludge ages. This would allow us to determine the kinetics, and the stoichiometric constants. The bioreactor was run with a hydraulic retention time of 8 hours and for different sludge ages (5, 10, and 15 days). The system was monitored with a daily grab samples, and pH, temperature as well as the DBO 5 and suspended volatile solids were terminated

  5. Nitrogen Removal from Landfill Leachate by Microalgae

    Science.gov (United States)

    Pereira, Sérgio F. L.; Gonçalves, Ana L.; Moreira, Francisca C.; Silva, Tânia F. C. V.; Vilar, Vítor J. P.; Pires, José C. M.

    2016-01-01

    Landfill leachates result from the degradation of solid residues in sanitary landfills, thus presenting a high variability in terms of composition. Normally, these effluents are characterized by high ammoniacal-nitrogen (N–NH4+) concentrations, high chemical oxygen demands and low phosphorus concentrations. The development of effective treatment strategies becomes difficult, posing a serious problem to the environment. Phycoremediation appears to be a suitable alternative for the treatment of landfill leachates. In this study, the potential of Chlorella vulgaris for biomass production and nutrients (mainly nitrogen and phosphorus) removal from different compositions of a landfill leachate was evaluated. Since microalgae also require phosphorus for their growth, different loads of this nutrient were evaluated, giving the following N:P ratios: 12:1, 23:1 and 35:1. The results have shown that C. vulgaris was able to grow in the different leachate compositions assessed. However, microalgal growth was higher in the cultures presenting the lowest N–NH4+ concentration. In terms of nutrients uptake, an effective removal of N–NH4+ and phosphorus was observed in all the experiments, especially in those supplied with phosphorus. Nevertheless, N–NO3− removal was considered almost negligible. These promising results constitute important findings in the development of a bioremediation technology for the treatment of landfill leachates. PMID:27869676

  6. Washing of waste prior to landfilling.

    Science.gov (United States)

    Cossu, Raffaello; Lai, Tiziana

    2012-05-01

    The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Landfill gas management: View from Italy

    Energy Technology Data Exchange (ETDEWEB)

    De Poli, F.; Pasqualini, S. [ENEA, Casaccia (Italy). Area Energia Ambiente e Salute

    1993-03-01

    Landfilling is the most widely used waste disposal system in Italy. More than 85% of the total refuse produced is landfilled, as the other ways still have many problems. People do not easily accept landfilling, and many regions of the country have very difficult problems in identifying new sites. At any rate, landfills are more accepted than other systems, such as incinerators. In accordance with present legislation, all landfill sites must have a biogas extraction system; only the smaller plants are allowed to avoid gas removal. For this reason, many extraction plants were built in the last few years about 10 in 1987, 25 in 1988, more 40 in 1989. A partial census the existing extraction plants showed the existence, in January, 1990, of 45 systems producing over 750,000 cubic meters of biogas (over 400 tep) per day. The plants were mainly built by two firms that have made 91% of the existing systems (93% of the daily gas yield). Anaerobic digestion of garbage in reactors was tried in the Bellaria plant, in which the organic fraction is mixed with sewage sludges in a CSTR reactor; the results were interesting from the technical point of view, but very poor as regards economics. A dry digestion plant is planned for the future.

  8. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  9. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  10. Methane production, recovery and emission from two Danish landfills

    DEFF Research Database (Denmark)

    Fathi Aghdam, Ehsan

    ) an in-depth investigation of CH4 production from shredder waste (SW) at landfills, 2) the determination of gas recovery efficiency at two adjacent Danish landfills by field measurement, and 3) the influence of meteorological parameters on gas recovery from landfills. This PhD project focused on two......Landfill gas (LFG), mainly consisting of methane (CH4) and carbon dioxide (CO2), is produced by the anaerobic digestion of biodegradable waste deposited in landfills. CH4 is a greenhouse gas with global warming potential 28 times that of CO2 over a period of 100 years. The produced CH4 in landfills...... is the driving force for advective gas transport, between inside the landfill and the atmosphere, and thus potentially can impact CH4 recovery. The overall goal of this PhD project was to address specific challenges regarding CH4 production and recovery at landfills. The PhD project focused on three topics: 1...

  11. Multi-objective optimization of an industrial penicillin V bioreactor train using non-dominated sorting genetic algorithm.

    Science.gov (United States)

    Lee, Fook Choon; Rangaiah, Gade Pandu; Ray, Ajay Kumar

    2007-10-15

    Bulk of the penicillin produced is used as raw material for semi-synthetic penicillin (such as amoxicillin and ampicillin) and semi-synthetic cephalosporins (such as cephalexin and cefadroxil). In the present paper, an industrial penicillin V bioreactor train is optimized for multiple objectives simultaneously. An industrial train, comprising a bank of identical bioreactors, is run semi-continuously in a synchronous fashion. The fermentation taking place in a bioreactor is modeled using a morphologically structured mechanism. For multi-objective optimization for two and three objectives, the elitist non-dominated sorting genetic algorithm (NSGA-II) is chosen. Instead of a single optimum as in the traditional optimization, a wide range of optimal design and operating conditions depicting trade-offs of key performance indicators such as batch cycle time, yield, profit and penicillin concentration, is successfully obtained. The effects of design and operating variables on the optimal solutions are discussed in detail. Copyright 2007 Wiley Periodicals, Inc.

  12. Characterization and tropical seasonal variation of leachate: results from landfill lysimeter studied.

    Science.gov (United States)

    Rafizul, Islam M; Alamgir, Muhammed

    2012-11-01

    This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Modeling of a membrane bioreactor for production of biodiesel

    International Nuclear Information System (INIS)

    Solano, Paola Andrea; Moncada, Jorge Andres; Cardona, Carlos Ariel; Ruiz, Orlando Simon

    2008-01-01

    Through the use of an enzymatic catalyst lipase, produced by Candida Antarctica a membrane bioreactor was modeled and simulated to obtain biodiesel from palm oil and ethanol. A conversion of 0.97 was reached for a residence time of 10.64 min. The membrane bioreactor was compared to a CSTR reactor, where a conversion of 0.76 was obtained. It was concluded that the membrane bioreactor is a better way of producing biodiesel than the CSTR

  14. Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

    1993-01-01

    The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system

  15. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  16. Capping as an alternative for remediating radioactive and mixed waste landfills

    International Nuclear Information System (INIS)

    Hakonson, T.E.

    1994-01-01

    This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years

  17. Engineering stem cell niches in bioreactors

    OpenAIRE

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “ni...

  18. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  19. Landfills in Latin America: Colombian case

    International Nuclear Information System (INIS)

    Noguera, Katia M; Olivero, Jesus T.

    2010-01-01

    The management and disposal of domestic solid waste are critical issues in urban areas of Latin America. In Colombia, in general, the final destination of this waste is its deposition in landfills. This review aims to provide basic information on general conditions of these sites in major cities of the country. Although existing landfills have diversity of operational problems, those most frequently include an inadequate treatment of the leachates, the emission of unpleasant odors and poor management of solid waste coverage. Although it is necessary to improve the operation and maintenance of landfills, it is also urgent to increase the commitment of Health and Environmental Agencies on programs that reduce waste production and promote the sustainable use of those wastes with economic value.

  20. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Science.gov (United States)

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark

  1. Redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Lyngkilde, John; Christensen, Thomas Højlund

    1992-01-01

    Downgradient from an old municipal landfill allowing leachate, rich in dissolved organic carbon, to enter a shallow sandy aerobic aquifer, a sequence of redoxe zones is identified from groundwater chemical analysis. Below the landfill, methanogenic conditions prevail, followed by sulfidogenic...... the fate of reactive pollutants leached from the landfill....

  2. Quantifying landfill biogas production potential in the U.S.

    Science.gov (United States)

    This study presents an overview of the biogas (biomethane) availability in U.S. landfills, calculated from EPA estimates of landfill capacities. This survey concludes that the volume of landfill-derived methane in the U.S. is 466 billion cubic feet per year, of which 66 percent is collected and onl...

  3. Landfill gas: energy and environmental issues in the USA

    International Nuclear Information System (INIS)

    Mandeville, R.T.

    1991-01-01

    Lessons learned about landfill gas generation, recovery, and control over the last 10 to 15 years are reviewed. Some major issues that are worthy of discussion include the difficulty of assessing generation rates; the limitations of field testing; the use of modeling; landfill characterization and the expense of landfill gas processing and condensate disposal. (author)

  4. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  5. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  6. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  7. Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing.

    Science.gov (United States)

    Brecht, René

    2009-01-01

    Modern biopharmaceutical development is characterised by deep understanding of the structure activity relationship of biological drugs. Therefore, the production process has to be tailored more to the product requirements than to the existing equipment in a certain facility. In addition, the major challenges for the industry are to lower the high production costs of biologics and to shorten the overall development time. The flexibility for providing different modes of operation using disposable bioreactors in the same facility can fulfil these demands and support tailor-made processes.Over the last 10 years, a huge and still increasing number of disposable bioreactors have entered the market. Bioreactor volumes of up to 2,000 L can be handled by using disposable bag systems. Each individual technology has been made available for different purposes up to the GMP compliant production of therapeutic drugs, even for market supply. This chapter summarises disposable technology development over the last decade by comparing the different technologies and showing trends and concepts for the future.

  8. Landfill stabilization focus area: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  9. Landfill stabilization focus area: Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed

  10. Electrocoagulation and decolorization of landfill leachate

    Science.gov (United States)

    Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi

    2013-11-01

    In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.

  11. Washington Closure Hanford Report of Settlement Monitoring of the ERDF Landfill

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Cameron

    2008-07-30

    This report summarizes the results of the ERDF Settlement Monitoring Program conducted between August 9, 2007, and April 29, 2008, on the 35-foot and 70-foot levels of the ERDF landfill. The purpose of this monitoring program was to verify that the materials already placed under the 35-foot and 70-foot levels satisfy the settlement criteria of the conceptual cap design.

  12. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil-a case study in north of Iran.

    Science.gov (United States)

    Yousefi Kebria, D; Ghavami, M; Javadi, S; Goharimanesh, M

    2017-12-16

    In the contemporary world, urbanization and progressive industrial activities increase the rate of waste material generated in many developed countries. Municipal solid waste landfills (MSWs) are designed to dispose the waste from urban areas. However, discharged landfill leachate, the soluble water mixture that filters through solid waste landfills, can potentially migrate into the soil and affect living organisms by making harmful biological changes in the ecosystem. Due to well-documented landfill problems involving contamination, it is necessary to investigate the long-term influence of discharged leachate on the consistency of the soil beds beneath MSW landfills. To do so, the current study collected vertical deep core samples from different locations in the same unlined landfill. The impacts of effluent leachate on physical and chemical properties of the soil and its propagation depth were studied, and the leachate-transport pattern between successive boreholes was predicted by a developed mathematical model using an adaptive neuro-fuzzy inference system (ANFIS). The decomposition of organic leachate admixtures in the landfill yield is to produce organic acids as well as carbon dioxide, which diminishes the pH level of the landfill soil. The chemical analysis of discharged leachate in the soil samples showed that the concentrations of heavy metals are much lower than those of chloride, COD, BOD 5 , and bicarbonate. Using linear regression and mean square errors between the measured and predicted data, the accuracy of the proposed ANFIS model has been validated. Results show a high correlation between observed and predicated data.

  13. Application of gain scheduling to the control of batch bioreactors

    Science.gov (United States)

    Cardello, Ralph; San, Ka-Yiu

    1987-01-01

    The implementation of control algorithms to batch bioreactors is often complicated by the inherent variations in process dynamics during the course of fermentation. Such a wide operating range may render the performance of fixed gain PID controllers unsatisfactory. In this work, a detailed study on the control of batch fermentation is performed. Furthermore, a simple batch controller design is proposed which incorporates the concept of gain-scheduling, a subclass of adaptive control, with oxygen uptake rate as an auxiliary variable. The control of oxygen tension in the biorector is used as a vehicle to convey the proposed idea, analysis and results. Simulation experiments indicate significant improvement in controller performance can be achieved by the proposed approach even in the presence of measurement noise.

  14. Membrane bioreactors and their uses in wastewater treatments

    Energy Technology Data Exchange (ETDEWEB)

    Le-Clech, Pierre [New South Wales Univ., Sydney (Australia). UNESCO Centre for Membrane Science and Technology

    2010-12-15

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field. (orig.)

  15. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  16. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Science.gov (United States)

    Peng, Ren; Hou, Yujing; Zhan, Liangtong; Yao, Yangping

    2016-01-01

    In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability. PMID:26771627

  17. Methane Gas Utilization Project from Landfill at Ellery (NY)

    Energy Technology Data Exchange (ETDEWEB)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  18. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Palazzi, E.; Perego, P.; Fabiano, B. [University of Genoa, Genova (Italy). Chemical and Process Engineering Department ' G.B. Bonino'

    2002-09-01

    The purpose of this paper is to investigate, both theoretically and experimentally, hydrogen production from agro-industrial by-products using a continuous bioreactor packed with a mixture of spongy and glass beads and inoculated with Enterobacter aerogenes. Replicated series of experimental runs were performed to study the effects of residence time on hydrogen evolution rate and to characterize the critical conditions for the wash out, as a function of the inlet glucose concentration and of the fluid superficial velocity. A further series of experimental runs was focused on the effects of both residence time and inlet glucose concentration over hydrogen productivity. A kinetic model of the process was developed and showed good agreement with experimental data, thus representing a potential tool to design a large-scale fermenter. In fact, the model was applied to the optimal design of a bioreactor suitable of feeding a phosphoric acid fuel cell of a target power. (author)

  19. Artificial sweeteners as potential tracers of municipal landfill leachate

    International Nuclear Information System (INIS)

    Roy, James W.; Van Stempvoort, Dale R.; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. -- Highlights: • Artificial sweeteners detected at 14 of 15 municipal landfill sites. • Concentrations comparable to wastewater even at sites closed for >50 yr. • Saccharin elevated at all sites; potentially diagnostic of landfill impacts. • Potential for age-dating recent (past 2 decades) waste with acesulfame. -- Artificial sweeteners may be useful for tracing landfill leachate contamination and distinguishing it from wastewater impacts

  20. Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study.

    Science.gov (United States)

    Yang, Na; Damgaard, Anders; Lü, Fan; Shao, Li-Ming; Brogaard, Line Kai-Sørensen; He, Pin-Jing

    2014-05-01

    An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60-80%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Soil contaminations in landfill: a case study of the landfill in Czech Republic

    Science.gov (United States)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2015-10-01

    Phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as heavy metals bioindicator. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity; in particular samples 3 to 8, yet the seed germination capacity in all 8 samples of tested soils range between 86 and 137 %.

  2. Soil contamination in landfills: a case study of a landfill in Czech Republic

    Science.gov (United States)

    Adamcová, D.; Vaverková, M. D.; Bartoň, S.; Havlíček, Z.; Břoušková, E.

    2016-02-01

    A phytotoxicity test was determined to assess ecotoxicity of landfill soil. Sinapis alba L. was used as a bioindicator of heavy metals. Soil samples 1-8, which were taken from the landfill body, edge of the landfill body, and its vicinity meet the limits for heavy metals Co, Cd, Pb, and Zn specified in the applicable legislation. Hg and Mn threshold values are not established in legislation, but values have been determined for the needs of the landfill operator. For heavy metals Cr, Cu, and Ni sample 2 exceeded the threshold values, which attained the highest values of all the samples tested for Cr, Cu, and Ni. For Cr and Ni the values were several times higher than values of the other samples. The second highest values for Cr, Cu, and Ni showed sample 6 and 7. Both samples exceeded the set limits. An increase in plant biomass was observed in plants growing on plates with soil samples, but no changes in appearance, slow growth, or necrotic lesions appeared. Ecotoxicity tests show that tested soils (concentration of 50 %) collected from the landfill body, edge of the landfill body, and its vicinity reach high percentage values of germination capacity of seeds of Sinapis alba L. (101-137 %). At a concentration of 25 %, tested soil samples exhibit lower values of germination capacity - in particular samples 3 to 8 - yet the seed germination capacity in all eight samples of tested soils ranges between 86 and 137 %.

  3. Power generation potential using landfill gas from Ontario municipal solid waste landfills. Appendix B2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Twenty-six landfill sites have been identified in Ontario with potential gas production rates suitable for recovery and use in power plant applications. If 70% of the gas naturally generated from these sites was collected and utilized, ca 88 MW could be produced in 1991 (declining to 74 MW by 2001) from the gas generated. Assuming the current average generation rate of one tonne per capita, an estimated nine million tonnes of municipal refuse is produced annually in Ontario, and landfilling is expected to continue to play a major role. It is suggested that the level of gas generation identified for the year 1991 will be sustainable given that as old landfills are spent, new ones are built. The accuracy of the prediction depends largely on future government policies regarding incineration, the effects of present waste reduction programs, and approval of new landfill sites. Due to the combined costs of the gas collection system, auxiliary equipment, and gas processing system, installed cost of a landfill-gas fired power plant is high relative to that of conventional natural gas-fired plants. For landfills presently without a gas collection system, the high initial capital investment for gas field test programs and for the installation of a collection system is a barrier that deters municipalities from tapping this energy potential. 2 figs., 3 tabs

  4. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  5. Landfill life expectancy with waste reduction/minimization

    International Nuclear Information System (INIS)

    Klan, M.S.

    1990-01-01

    Although some minimally acceptable practices are presently undertaken at most landfills to protect human health and safety and the environment, a key question remains. How much effort and resources should be expended to slow the fill-rate of a landfill? The answer depends on the performance and costs of the technical options available, the difficulty and cost of acquiring additional landfill space, and the consequences for remaining landfill lifetime of current and future actions. Toward this end, the paper (1) presents a method for projecting the remaining life of a landfill, including the alternative lifetimes associated with life extension measures; (2) presents a case study of the low-level waste landfill at Los Alamos National Lab.; and (3) illustrates a procedure for determining which measures become cost-effective to adopt as a landfill's space declines

  6. Landfill gases and some effects on vegetation

    Science.gov (United States)

    Franklin B. Flower; Ida A. Leone; Edward F. Gilman; John J. Arthur

    1977-01-01

    Gases moving from refuse landfills through soil were studied in New Jersey. The gases, products of anaerobic decomposition of organic matter in the refuse, caused injury and death of peach trees, ornamentals, and commercial farm crops, and create possible hazards to life and property because of the entrance of combustible gases into residences. Remedial measures are...

  7. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  8. Phytoremediation of landfill leachate using Populus

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall; Bart Sexton

    2006-01-01

    Proper genotype selection is required for successful phytoremediation. We selected eight Populus clones (NC13460, NC14018, DM115, NC14104, NC14106, DN5, NM2, NM6) of four genomic groups after three cycles of phyto-recurrent selection for a field trial that began June 2005 at the Oneida County Landfill in Rhinelander, WI, USA.

  9. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  10. Assessing the market opportunities of landfill mining

    NARCIS (Netherlands)

    van der Zee, D.J.; Achterkamp, M.C.; de Visser, B.J.

    2004-01-01

    Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction.

  11. Assessing the opportunities of landfill mining

    NARCIS (Netherlands)

    Zee, D.J. van der; Achterkamp, M.C.; Visser, B.J. de

    2003-01-01

    Long-term estimates make clear that the amount of solid waste to be processed at landfills in the Netherlands will sharply decline in coming years. Major reasons can be found in the availability of improved technologies for waste recycling and government regulations aiming at waste reduction.

  12. Effects of supplement with sanitary landfill leachate in gas exchange of sunflower (Helianthus annuus L.) seedlings under drought stress.

    Science.gov (United States)

    Nunes Junior, Francisco H; Freitas, Valdineia S; Mesquita, Rosilene O; Braga, Brennda B; Barbosa, Rifandreo M; Martins, Kaio; Gondim, Franklin A

    2017-10-01

    Sanitary landfill leachate is one of the major problems arising from disposal of urban waste. Sanitary landfill leachate may, however, have use in agriculture. This study, therefore, aimed to analyze initial plant growth and gas exchange in sunflower seedlings supplemented with sanitary landfill leachate and subjected to drought stress through variables of root fresh mass (RFM), shoot fresh mass (SFM), total fresh mass (TFM), relative chlorophyll content (CL), stomatal conductance (g s ), transpiration rate (E), net photosynthetic rate (A), ratio of internal to external CO 2 concentration (Ci/Ca),water use efficiency (EUA), instantaneous carboxylation efficiency (A/Ci), and electron transport rate (ETR). The experimental design was a completely randomized 2 (irrigated and non-irrigated) × 4 (sand, sand + 100 kg N ha -1 organic fertilizer, sand + 100 kg N ha -1 sanitary landfill leachate, and sand + 150 kg N ha -1 sanitary landfill leachate) factorial with five replicates. Under drought stress conditions, leachate treatment supplemented with 100 kg N ha -1 exhibited higher plant fresh weights than those of the treatment containing 150 kg N ha -1 . Increases in fresh mass in plant treatments supplemented with 100 and 150 kg N ha -1 sanitary landfill leachate were related to higher photosynthetic rates.

  13. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    International Nuclear Information System (INIS)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemical Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the ''60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP

  14. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    Science.gov (United States)

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  15. Pharmaceutical proteins produced in plant bioreactor in recent years ...

    African Journals Online (AJOL)

    Plant bioreactor, also called molecular farming, has enormous potential to produce recombinant proteins infinitely. Products expressed in plants have natural physico-chemical properties and bioactivities. Plant bioreactor could be a safe, economic and convenient production system, and can been widely applied in ...

  16. Schisandra lignans production regulated by different bioreactor type.

    Science.gov (United States)

    Szopa, Agnieszka; Kokotkiewicz, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2017-04-10

    Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA ® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA ® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Wastewater treatments by membrane bioreactors (MBR); Bioreactores de membrana (MBR) para la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Guardino Ferre, R.

    2001-07-01

    Wastewater treatments by membrane bioreactors (MBR), are a good alternative of treatment to the conventional processes when wish to obtain very high quality of the treated water or to try high load contaminants in low flow. Simultaneously, the article explains the significant reduction of the wastewater treatment plant space, eliminating the secondary septic tank. (Author) 7 refs.

  18. Regional landfills methane emission inventory in Malaysia.

    Science.gov (United States)

    Abushammala, Mohammed F M; Noor Ezlin Ahmad Basri; Basri, Hassan; Ahmed Hussein El-Shafie; Kadhum, Abdul Amir H

    2011-08-01

    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.

  19. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    Science.gov (United States)

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  20. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    Science.gov (United States)

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  1. Bioreactor engineering of stem cell environments.

    Science.gov (United States)

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-11-15

    Stem cells hold promise to revolutionize modern medicine by the development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to the translation of stem cell based therapies into the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Improvement of landfill leachate biodegradability with ultrasonic process.

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    Full Text Available Landfills leachates are known to contain recalcitrant and/or non-biodegradable organic substances and biological processes are not efficient in these cases. A promising alternative to complete oxidation of biorecalcitrant leachate is the use of ultrasonic process as pre-treatment to convert initially biorecalcitrant compounds to more readily biodegradable intermediates. The objectives of this study are to investigate the effect of ultrasonic process on biodegradability improvement. After the optimization by factorial design, the ultrasonic were applied in the treatment of raw leachates using a batch wise mode. For this, different scenarios were tested with regard to power intensities of 70 and 110 W, frequencies of 30, 45 and 60 KHz, reaction times of 30, 60, 90 and 120 minutes and pH of 3, 7 and 10. For determining the effects of catalysts on sonication efficiencies, 5 mg/l of TiO(2 and ZnO have been also used. Results showed that when applied as relatively brief pre-treatment systems, the sonocatalysis processes induce several modifications of the matrix, which results in significant enhancement of its biodegradability. For this reason, the integrated chemical-biological systems proposed here represent a suitable solution for the treatment of landfill leachate samples.

  3. Predicting the compressibility behaviour of tire shred samples for landfill applications.

    Science.gov (United States)

    Warith, M A; Rao, Sudhakar M

    2006-01-01

    Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.

  4. Material flow-based economic assessment of landfill mining processes.

    Science.gov (United States)

    Kieckhäfer, Karsten; Breitenstein, Anna; Spengler, Thomas S

    2017-02-01

    This paper provides an economic assessment of alternative processes for landfill mining compared to landfill aftercare with the goal of assisting landfill operators with the decision to choose between the two alternatives. A material flow-based assessment approach is developed and applied to a landfill in Germany. In addition to landfill aftercare, six alternative landfill mining processes are considered. These range from simple approaches where most of the material is incinerated or landfilled again to sophisticated technology combinations that allow for recovering highly differentiated products such as metals, plastics, glass, recycling sand, and gravel. For the alternatives, the net present value of all relevant cash flows associated with plant installation and operation, supply, recycling, and disposal of material flows, recovery of land and landfill airspace, as well as landfill closure and aftercare is computed with an extensive sensitivity analyses. The economic performance of landfill mining processes is found to be significantly influenced by the prices of thermal treatment (waste incineration as well as refuse-derived fuels incineration plant) and recovered land or airspace. The results indicate that the simple process alternatives have the highest economic potential, which contradicts the aim of recovering most of the resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Landfill mining: Development of a cost simulation model.

    Science.gov (United States)

    Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland

    2016-04-01

    Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. © The Author(s) 2016.

  6. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB

    Directory of Open Access Journals (Sweden)

    Sarzyński Rafał

    2017-01-01

    Full Text Available The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ∼200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution through packing (polypropylene Ralu rings covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2. The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 – 84 gm-3 h -1, styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  7. Recycle bioreactor for bioethanol production from wheat starch. 1. Cold enzyme hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.; Hill, G.A.; MacDonald, D.G. [Department of Chemical Engineering, Saskatchewan (Canada)

    2001-06-01

    A 5 L membrane bioreactor system has been designed and operated at low temperature to hydrolyze starch granules directly to sugars using barley {alpha}-amylase. The system includes a temperature and pH controlled, well-mixed bioreactor; microfilters to separate and recycle granules; and ultrafilters to separate and recycle enzyme molecules. Operation in batch mode demonstrated similar kinetics and low productivity observed earlier in shake flasks, whereas continuous flow operation was not successful due to enzyme inhibition and degradation. Sequential batch mode operation, involving filtration after each batch hydrolysis, produced optimum productivity measured at 0.16 grams of starch granules hydrolyzed per gram of enzyme per hour for more than 100 hours of operation. (author)

  8. Air purification from a mixture VOCs in the pilot-scale trickle-bed bioreactor (TBB)

    Science.gov (United States)

    Sarzyński, Rafał; Gąszczak, Agnieszka; Janecki, Daniel; Bartelmus, Grażyna

    2017-10-01

    The efficiency of the air bio-purification from the mixture of two volatile organic compounds (styrene and p-xylene) was studied. The process was carried out in a pilot-scale trickle-bed bioreactor installation designed to purify ˜200 m3h-1 of the polluted air. The bioreactor operated at concurrent flow of gas and liquid (mineral salt solution) through packing (polypropylene Ralu rings) covered with a thin layer of microorganisms (bacterial consortium of Pseudomonas sp. E-022150 and Pseudomonas putida mt-2). The experiments, carried out for various values of a reactor load with pollutant, confirmed the great efficiency of the investigated process. At the tested bed load with pollution (inlet specific pollutant load was changed within the range of 41 - 84 gm-3 h -1), styrene conversion degree changed within the range of 80-87% and p-xylene conversion degree within the range of 42-48%.

  9. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes

    Directory of Open Access Journals (Sweden)

    Princz Sascha

    2016-09-01

    Full Text Available Cultivation of human nasal septal chondrocytes in a self-established automated bioreactor system with a new designed reactor glass vessel and the results of a computational fluid dynamics model are presented. The first results show the effect of a homogeneous fluidic condition of the continuous medium flow and the resulting stresses on the scaffolds’ surface and their influence on the migration of the cells into the scaffold matrix under these conditions. For this purpose computational models, generated with the computational fluid dynamics software STAR-CCM+, and the results of alcian blue staining for newly synthesized sulphated glycosaminoglycans have been compared during cultivation in the new and a first version of the glass reactor vessel with inhomogeneous fluidic conditions, with the same automated bioreactor system and under similar cultivation conditions.

  10. Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization.

    Science.gov (United States)

    Georgiev, Milen I; Weber, Jost

    2014-07-01

    Mass production of value-added molecules (including native and heterologous therapeutic proteins and enzymes) by plant cell culture has been demonstrated as an efficient alternative to classical technologies [i.e. natural harvest and chemical (semi)synthesis]. Numerous proof-of-concept studies have demonstrated the feasibility of scaling up plant cell culture-based processes (most notably to produce paclitaxel) and several commercial processes have been established so far. The choice of a suitable bioreactor design (or modification of an existing commercially available reactor) and the optimization of its internal environment have been proven as powerful tools toward successful mass production of desired molecules. This review highlights recent progress (mostly in the last 5 years) in hardware configuration and optimization of bioreactor culture conditions for suspended plant cells.

  11. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  12. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  13. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  14. Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.

    Science.gov (United States)

    Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran

    2018-06-15

    Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Process technology of luwak coffee through bioreactor utilization

    Science.gov (United States)

    Hadipernata, M.; Nugraha, S.

    2018-01-01

    Indonesia has an advantage in producing exotic coffee that is Luwak coffee. Luwak coffee is produced from the fermentation process in digestion of civet. Luwak coffee production is still limited due to the difficulty level in the use of civet animals as the only medium of Luwak coffee making. The research was conducted by developing technology of luwak coffee production through bioreactor utilization and addition the bacteria isolate from gastric of civet. The process conditions in the bioreactor which include temperature, pH, and bacteria isolate of civet are adjusted to the process that occurs in civet digestion, including peristaltic movement on the stomach and small intestine of the civet will be replaced by the use of propellers that rotate on the bioreactor. The result of research showed that proximat analysis data of artificial/bioreactor luwak coffee did not significant different with original luwak coffee. However, the original luwak coffee has higher content of caffeine compared to bioreactor luwak coffee. Based on the cuping test the bioreactor luwak coffee has a value of 84.375, while the original luwak coffee is 84.875. As the result, bioreactor luwak coffee has excellent taste that similiar with original luwak coffee taste.

  16. Release and attenuation of fluorocarbons in landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-01-01

    Several halocarbons with very high global warming and ozone depleting potentials have been used as blowing agent for insulation foam in refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam...... blown with CFC-11, HCFC-141b, HFC- 134a, and HFC-245fa revealed that most of the blowing agent is not released to the atmosphere during a six-week period following the shredding process. The fraction which is released in the six-week period is highly dependent on how fine the foam is shredded....... The residual blowing agent remaining after the six-week period may be very slowly released if the integrity of the foam particles with respect to diffusional properties is kept after disposal of the foam waste in landfills. Laboratory experiments simulating attenuation processes in the landfilled waste...

  17. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  18. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  19. Detection and quantification of methane leakage from landfills

    Energy Technology Data Exchange (ETDEWEB)

    Ljungberg, Sven-Aake; Maartensson, Stig-Goeran (Univ. of Gaevle, Gaevle (Sweden)); Meijer, Jan-Erik; Rosqvist, Haakan (NSR AB, Helsingborg (Sweden))

    2009-03-15

    The purpose of this project was to detect gas leakage and to measure and quantify methane emission from landfills using modern remote sensing techniques. In this project, a handheld laser instrument and an IR camera were used. The overall objective was to develop cost-effective methods for detecting and quantifying methane emissions from landfills. There are many methods available for measuring the methane concentration in air, both from close-up and from long distances. Combined with the use of a tracer gas, the methane emission from entire landfills can be measured relatively accurately. A number of methods are used to detect leakage from parts of landfill surfaces, but there are few methods for quantifying leakage from sub-zones. Field measurements with the laser instrument and the IR camera were carried out at seven Swedish landfills and two landfills in France. The investigated surfaces at the Swedish landfills were divided into different zones, such as top surface, slope, crest and toe of slope. The field measurements in France were taken over entire landfills. The methane emission varied between the different landfills in the project, and also between the different landfill zones. The results from repeated field measurements indicated that a landfill with a final cap and a successful gas recovery system produces barely measurable emissions. The weak points at a landfill are generally slopes, including crests and toes of slopes. Where the covering of the waste is inadequate, leakage often occurs at lift joints and in areas where waste protrudes through the cover. Other weak points are deficiencies in the gas recovery system. Leachate systems can lead landfill gas and thereby cause methane leakage. Along with wind velocity and variations in atmospheric pressure, moisture content in the ground is an important factor that affects methane emissions from landfill surfaces. Results from field measurements of the same feature/surface at different points in time and

  20. Town of Edinburg landfill reclamation demonstration project. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County, with majority funding provided by the New York State Energy Research and Development Authority. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified

  1. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  2. Leakage Performance of the GM + CCL Liner System for the MSW Landfill

    Directory of Open Access Journals (Sweden)

    Fan Jingjing

    2014-01-01

    Full Text Available The contaminants in the landfill leachate press pose a grave threat to environment of the soil and the groundwater beneath the landfill. Despite there being strict requirements in relevant provisions of both domestic and foreign countries for the design of the bottom liner system. Pollution of the soil and the groundwater still took place in a number of landfills because of the leakage. To investigate the leakage rate of the liner systems, the minimum design requirements of the liner systems are summarized according to the provisions of four countries, including China, USA, Germany, and Japan. Comparative analyses using one-dimensional transport model are conducted to study the leakage performance of these liner systems composed of geomembrance (GM and compacted clay layer (CCL meeting the relevant minimum design requirements. Then parametric analyses are conducted to study the effects of the hydraulic head, the thickness of GM, the hydraulic conductivity of CCL, and so forth on the leakage performance of the liner system. It is concluded that the liner system designed according to the minimum design requirements of Germany provide the best antileakage performance, while that of Japan performs the lowest. The key parameters affecting the failure time of the liner system are summarized. Finally, some suggestions for the design of the liner systems are made according to the analyses.

  3. The industrial waste landfill of Bonfol (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, C.G.; Bentz, R. [Ciba Specialty Chemicals Inc., Basel (Switzerland); Fischer, M.; Huerzeler, R.A.; Matter, B.; Munz, C.D.

    2003-07-01

    The landfill for industrial waste in Bonfol (Switzerland) was installed in 1961 in an waterproof clay pit and was run until 1976 by the bci, the Basel chemical industry, to dispose off their industrial waste originating from chemical production. For the first time in Europe chemical wastes were deposited in a special area selected according to geological criteria. Groundwater and surface waters have been continuously supervised since the beginning of the activities in Bonfol in 1961. After the landfill was totally filled up, it was covered by a clay layer. In the years 1980/81 the monitoring program discovered that the cover of the landfill was leaking and that the pit was slowly filled up with water. Some exfiltrations resulted. It was important to overcome the critical situation by the implementation of immediate measures, e.g. pumping and removal of leachate. Different remediation options were studied at that time, among other the excavation and final disposal of the contents of the landfill. On October 17, 2000 a voluntary agreement between the authorities and bci ws signed. On May 15, 2001, bci presented the result of the study of remedial options. Excavation / incineration in European incinerators or in-situ vitrification, with a suboption excavation/on-site vitrification, were seen as the most promising ones. At the end of 2001 the option of the in-situ vitrification was dropped because of the resulting public and political resistance towards this technology. The remaining options are being evaluated thoroughly at the moment to prepare the basis for a decision on the clean-up project. (orig.)

  4. The sea - landfill or sphere of life

    International Nuclear Information System (INIS)

    Haury, H.J.; Koller, U.; Assmann, G.

    1990-01-01

    The Environmental Information Agency held its third seminar for journalists, entitled 'The sea - landfill or sphere of life' in Hamburg on July 18, 1989. Some 40 journalists - radio journalists and journalists from the staff of dailies and the technical press - took the opportunity to listen for a day to short lectures on selected subjects and submit their questions concerning sea pollution to scientists of diverse disciplines. (orig.) [de

  5. Decomposition of forest products buried in landfills

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-01-01

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g −1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  6. Decomposition of forest products buried in landfills

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Padgett, Jennifer M. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Powell, John S. [Department of Chemical and Biomolecular Engineering, Campus Box 7905, North Carolina State University, Raleigh, NC 27695-7905 (United States); Barlaz, Morton A. [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  7. TECHNICAL SUMMARY OF ORD/NRMRL BIOREACTOR RESEARCH CRADA

    Science.gov (United States)

    Conventional landfills have the primary goal of containing waste. While containment has proved effective, the need exists to devise a method of rapidly degrading the waste inside the landfill. One approach is the controlled introduction of liquids, usually the leachate collected ...

  8. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    International Nuclear Information System (INIS)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-01-01

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm -3 , reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH 4 m -2 d -1 , covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH 4 m -2 d -1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of

  9. Production of Newcastle Disease Virus by Vero Cells Grown on Cytodex 1 Microcarriers in a 2-Litre Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Mohd Azmir Arifin

    2010-01-01

    Full Text Available The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM which was 1.93×106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95×105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3∗∗(3-1 Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v, centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.

  10. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  11. Modelling across bioreactor scales: methods, challenges and limitations

    DEFF Research Database (Denmark)

    Gernaey, Krist

    that it is challenging and expensive to acquire experimental data of good quality that can be used for characterizing gradients occurring inside a large industrial scale bioreactor. But which model building methods are available? And how can one ensure that the parameters in such a model are properly estimated? And what......Scale-up and scale-down of bioreactors are very important in industrial biotechnology, especially with the currently available knowledge on the occurrence of gradients in industrial-scale bioreactors. Moreover, it becomes increasingly appealing to model such industrial scale systems, considering...

  12. Ecotoxicologic diagnosis of a sealed municipal district landfill

    International Nuclear Information System (INIS)

    Hernandez, A. J.; Perez-Leblic, M. I.; Bartolome, C.; Pastor, J.

    2009-01-01

    Assessing the environmental impact of a soil-topped landfill requires and ecotoxicologic diagnosis. Here we describe a set of protocols for such a diagnosis as well as their application to a real case ( the urban soil waste, USW, landfill of Getafe, Madrid). Since their initial sealing some 20 years ago with soils taken from the surroundings, waste deposition has continued in most USW landfills of the Comunidad de Madrid. (Author)

  13. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  14. Landfills and the waste act implementation - what has changed?

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2013-10-01

    Full Text Available have been exhausted, including waste minimisation, re- use, reduce, recycling or treatment to reduce the volumes and risk associated with waste going to landfill. Implementation of the waste management hierarchy should therefore translate into smaller... volumes of low hazard, non-recyclable waste being disposed of at landfills. 3. Waste Regulations Section 69 of the Waste Act (RSA, 2008) lists a number of regulations that could have an impact on landfilling in South Africa, if developed...

  15. Environmental and socio-economic impacts of landfills

    OpenAIRE

    Danthurebandara, Maheshi; Van Passel, Steven; Nelen, Dirk; Tielemans,Yves; Van Acker, Karel

    2012-01-01

    A modern landfill is an engineered method for depositing waste in specially constructed and protected cells on the land surface or in excavations into the land surface. Despite the fact that an increasing amount of waste is reused, recycled or energetically valorized, landfills still play an important role in waste management strategies. The degradation of wastes in the landfill results in the production of leachate and gases. These emissions are potentials threats to human health and to the...

  16. Location analysis of the landfill of waste in Loznica

    OpenAIRE

    Božović Dejan

    2010-01-01

    The subject of this paper regards the landfill of municipal and industrial waste in Loznica, actually its location and environmental hazards. The research was carried out in order to show the consequences of careless and incomplete evaluation of the conditions for a locating of a landfill in the example of Loznica. Besides the fact that it is located at the floodplain of the Drina River, the landfill is normally located to the direction of predominant wind, which has a significant influence o...

  17. 78 FR 14773 - U.S. Environmental Solutions Toolkit-Landfill Standards

    Science.gov (United States)

    2013-03-07

    ...--Landfill Standards AGENCY: International Trade Administration, DOC. ACTION: Notice and Request for Comment... or services relevant to landfill environmental standards. The Department of Commerce continues to..., Web site address, contact information, and landfill environmental standards category of interest from...

  18. Power generation from landfill gas, Middleton Broom, UK

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    A power station is fuelled by gas from a landfill site at Middleton Broom, West Yorkshire in the North of England. The plant was commissioned in January 1993 and has a Declared Net Capacity of about 1.2 MW (enough power for about 700 homes). The electricity produced is exported to the National Grid. After various possible uses of the landfill gas were explored, it was decided that a power station fuelled by the gas was the most commercially viable prospect. Because of the proximity of housing to the landfill site, gas is pumped to the power station, located about 1,500 m from the landfill. (UK)

  19. Suggested guidelines for gas emission monitoring at danish landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2015-01-01

    Landfill gas is produced on waste disposal sites receiving organic waste resulting in emission of methane. Regulation requires that the landfill gas is managed in order to reduce emissions, but very few suggestions exist to how the landfill gas management activities are monitored, what requirements...... to the ability of the landfill gas management to reduce the emission should be set up, and how criteria are developed for when the monitoring activities can be terminated. Monitoring procedures are suggested centred on a robust method for measuring the total methane emission from the site, and quantitative...

  20. Assesment of opportunities for landfill gas utilisation in Bulgaria

    International Nuclear Information System (INIS)

    Gramatikov, S.; Iliev, I.; Andreev, S.; Hristoskov, I.

    2011-01-01

    In Bulgaria, about 14 million tons annually of municipal solid waste (MSW) are collected and disposed of in landfills - about 618 kg/capita annually. The implementation of Landfill Gas (LFG) energy recovery/utilization projects in Bulgaria serves as an essential landfill management strategy, and can also reduce greenhouse gases and air pollutants, leading to improved local air quality and reduced health risks. Results of assesment landfill tests of several municipalities, made by the team of Encon Services for estimation of the potential of their sites are shown in this paper. (authors)

  1. Major Sources of Worries and Concerns about Landfills in Lagos

    African Journals Online (AJOL)

    Choice-Academy

    Department of Physical Development, Nigerian Institute of Social and Economic Research (NISER), Ibadan, Nigeria. ... Keywords: Landfills; Environment; Risk; Perception; Lagos. Introduction ... the popular media frequently contain accounts.

  2. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    Science.gov (United States)

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  3. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  4. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.

    Science.gov (United States)

    Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E

    1999-05-20

    The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.

  5. Airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 for treatment of lubricants in wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Khondee, Nichakorn; Tathong, Sitti [International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok (Thailand); Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Pinyakong, Onruthai [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand); Powtongsook, Sorawit [Center of Excellence for Marine Biotechnology (c/o Department of Marine Science, Chulalongkorn University), National Center for Genetic Engineering and Biotechnology, Pathum Thani (Thailand); Chatchupong, Thawach; Ruangchainikom, Chalermchai [Environmental Research and Management Department, PTT Research and Technology Institute, Ayutthaya (Thailand); Luepromchai, Ekawan, E-mail: ekawan.l@chula.ac.th [Bioremediation Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Bangkok (Thailand)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Sphingobium sp. P2 effectively degraded various lubricant samples. Black-Right-Pointing-Pointer Efficiency of Sphingobium sp. P2 increased after immobilization on chitosan. Black-Right-Pointing-Pointer High removal efficiency was due to both sorption and degradation processes. Black-Right-Pointing-Pointer The immobilized bacteria (4 g L{sup -1}) were applied in internal loop airlift bioreactor. Black-Right-Pointing-Pointer The bioreactor continuously removed lubricant from emulsified wastewater. - Abstract: An internal loop airlift bioreactor containing chitosan-immobilized Sphingobium sp. P2 was applied for the removal of automotive lubricants from emulsified wastewater. The chitosan-immobilized bacteria had higher lubricant removal efficiency than free and killed-immobilized cells because they were able to sorp and degrade the lubricants simultaneously. In a semi-continuous batch experiment, the immobilized bacteria were able to remove 80-90% of the 200 mg L{sup -1} total petroleum hydrocarbons (TPH) from both synthetic and carwash wastewater. The internal loop airlift bioreactor, containing 4 g L{sup -1} immobilized bacteria, was later designed and operated at 2.0 h HRT (hydraulic retention time) for over 70 days. At a steady state, the reactor continuously removed 85 {+-} 5% TPH and 73 {+-} 11% chemical oxygen demand (COD) from the carwash wastewater with 25-200 mg L{sup -1} amended lubricant. The internal loop airlift reactor's simple operation and high stability demonstrate its high potential for use in treating lubricants in emulsified wastewater from carwashes and other industries.

  6. Chromium in soil layers and plants on closed landfill site after landfill leachate application.

    Science.gov (United States)

    Zupancic, Marija; Justin, Maja Zupancic; Bukovec, Peter; Selih, Vid Simon

    2009-06-01

    Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r=0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10-0.15 mg/kg in leaves and 0.05-0.07 mg

  7. Estimation of emissions of nonmethane organic compounds from a closed landfill site using a landfill gas emission model

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, A.N. [Williamson Research Centre for Molecular Environmental Sciences, School of Earth, Atmospheric and Environmental Science, University of Manchester M13 9PL (United Kingdom); Diya, A.W. [Health Sciences Research Group, School of Medicine, University of Manchester M13 9PL (United Kingdom)

    2013-07-01

    Nonmethane organic compounds (NMOC) emissions from landfills often constitute significant risks both to human health and the general environment. To date very little work has been done on tracking the emissions of NMOC from landfills. To this end, a concerted effort was made to investigate the total annual mass emission rate of NMOC from a closed landfill site in South Manchester, United Kingdom. This was done by using field estimates of NMOC concentration and the landfill parameters into the Landfill Gas Emission Model embedded in ACTS and RISK software. Two results were obtained: (i) a deterministic outcome of 1.7218 x 10-7 kg/year, which was calculated from mean values of the field estimates of NMOC concentration and the landfill parameters, and (ii) a probabilistic outcome of 1.66 x 10-7 - 1.78 x 10-7 kg/year, which is a range of value obtained after Monte Carlo simulation of the uncertain parameters of the landfill including NMOC concentration. A comparison between these two results suggests that the probabilistic outcome is a more representative and reliable estimate of the total annual mass emission of NMOC especially given the variability of the parameters of the model. Moreover, a comparison of the model result and the safety standard of 5.0 x 10-5 kg/year indicate that the mass emission of NMOC from the studied landfill is significantly less than previously thought. However, given that this can accumulate to a dangerous level over a long period of time (such as the age of this landfill site); it may have started affecting the health of the people living within the vicinity of the landfill. A case is therefore made for more studies to be carried out on the emissions of other gases such as CH4 and CO2 from the studied landfill site, as this would help to understand the synergistic effect of the various gases being emitted from the landfill.

  8. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables.

  9. Geologic report, Middlesex Municipal Landfill site, Middlesex, New Jersey

    International Nuclear Information System (INIS)

    1984-03-01

    This is a report on geologic and hydrologic investigations of the former Municipal Landfill, Middlesex, New Jersey, conducted during 1982 and 1983 by Bechtel National, Inc. for the United States Department of Energy, Oak Ridge Operations Office. The investigations were designed to assess the feasibility of stabilizing the radioactive contamination present on site. The investigations were conducted in two phases: Phase 1 consisted of permeability tests; Phase 2 consisted of tests to ascertain the extent of hydraulic interconnection between various stratigraphic units. The investigations revealed that a complete separation of bedrock and overburden did not exist and that the clay present could not be relied upon to confine vertical migration of contaminants over the long term. 6 references, 27 figures, 6 tables

  10. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: determinants for restoring their impact.

    Science.gov (United States)

    Pastor, J; Hernández, A J

    2012-03-01

    This study was designed to determine the state of polluted soils in the main landfills of the Community of Madrid (central Spain), as part of a continuous assessment of the impacts of urban solid waste (USW) landfills that were capped with a layer of soil 20 years ago. Our analysis of this problem has been highly conditioned by the constant re-use of many of the USW landfills, since they have never been the target of any specific restoration plan. Our periodical analysis of cover soils and soils from discharge areas of the landfills indicates soil pollution has worsened over the years. Here, we examined heavy metal, salts, and organic compounds in soil and surface water samples taken from 15 landfills in the Madrid region. Impacts of the landfill soil covers on nematode and plant diversity were also evaluated. These analyses continue to reveal the presence of heavy metals (Zn, Cu, Cr, Ni, Pb, Cd) in soils, and salts (sulphates, chlorides and nitrates) in soils and surface waters. In addition, non-agricultural organic compounds, mainly aromatic and aliphatic hydrocarbons, often appeared in very high concentrations, and high levels of insecticides such as gamma-HCH (lindane) were also detected in soils. Around 50% of the water samples collected showed chemical demand of oxygen (CDO) values in excess of 150 mg/l. Traces of phenolic compounds were detected in some landfills, some of which exhibited high levels of 2-chlorophenol and pentachlorophenol. All these factors are conditioning both the revegetation of the landfill systems and the remediation of their slopes and terrestrial ecosystems arising in their discharge areas. This work updates the current situation and discusses risks for the health of the ecosystems, humans, domestic animals and wildlife living close to these landfills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  12. Thermophillic Sidestream Anaerobic Membrane Bioreactors: The Shear Rate Dilemma

    NARCIS (Netherlands)

    Jeison, D.A.; Telkamp, P.; Lier, van J.B.

    2009-01-01

    Anaerobic biomass retention under thermophilic conditions has proven difficult. Membrane filtration can be used as alternative way to achieve high sludge concentrations. This research studied the feasibility of anaerobic membrane bioreactors (AnMBRs) under thermophilic conditions. A sidestream MBR

  13. Water reuse by membrane bioreactors (MBR)

    International Nuclear Information System (INIS)

    Garcia, G.; Huete, E.; Martinez, L. C.; Torres, A.

    2010-01-01

    This paper shows an up-to date overview of the use of membrane bioreactor (MBR) to obtain water treated for reusing it. Considering the existing rules. it has been presented a summary of published studies in which the quality of the effluent is analyzed in terms on physico-chemical and biological parameters. Furthermore, MBR results are compared with the conventional treatment ones. Due to the suitability of MBR technology for removing pathogens, particular attention has been paid to disinfection process and the mechanism that govern it. Results from reviewed studies of MBR have showed equal or better quality of water treated than conventional treatments (activated sludge plus disinfection tertiary treatment by the addition of antibacterial agents). (Author) 32 refs.

  14. Microbial Bioreactor Development in the ALS NSCORT

    Science.gov (United States)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    The NASA Specialized Center of Research and Training in Advanced Life Support (the ALS NSCORT), a partnership of Alabama A & M, Howard, and Purdue Universities, was established by NASA in 2002 to develop technologies that will reduce the Equivalent System Mass (ESM) of regenerative processes within future space life-support systems. A key focus area of NSCORT research has been the development of efficient microbial bioreactors for treatment of human, crop, and food-process wastes while enabling resource recovery. The approach emphasizes optimizing the energy-saving advantages of hydrolytic enzymes for biomass degradation, with focus on treatment of solid wastes including crop residue, paper, food, and human metabolic wastes, treatment of greywater, cabin air, off-gases from other treatment systems, and habitat condensate. This summary includes important findings from those projects, status of technology development, and recommendations for next steps. The Plant-based Anaerobic-Aerobic Bioreactor-Linked Operation (PAABLO) system was developed to reduce crop residue while generating energy and/or food. Plant residues initially were added directly to the bioreactor, and recalcitrant residue was used as a substrate for growing plants or mushrooms. Subsequently, crop residue was first pretreated with fungi to hydrolyze polymers recalcitrant to bacteria, and leachate from the fungal beds was directed to the anaerobic digester. Exoenzymes from the fungi pre-soften fibrous plant materials, improving recovery of materials that are more easily biodegraded to methane that can be used for energy reclamation. An Autothermal Thermophilic Aerobic Digestion (ATAD) system was developed for biodegradable solid wastes. Objectives were to increase water and nutrient recovery, reduce waste volume, and inactivate pathogens. Operational parameters of the reactor were optimized for degradation and resource recovery while minimizing system requirements and footprint. The start-up behavior

  15. Start-up Strategy for Continuous Bioreactors

    Directory of Open Access Journals (Sweden)

    A.C. da Costa

    1997-06-01

    Full Text Available Abstract - The start-up of continuous bioreactors is solved as an optimal control problem. The choice of the dilution rate as the control variable reduces the dimension of the system by making the use of the global balance equation unnecessary for the solution of the optimization problem. Therefore, for systems described by four or less mass balance equations, it is always possible to obtain an analytical expression for the singular arc as a function of only the state variables. The steady state conditions are shown to satisfy the singular arc expression and, based on this knowledge, a feeding strategy is proposed which leads the reactor from an initial state to the steady state of maximum productivity

  16. Cardiac tissue engineering using perfusion bioreactor systems

    Science.gov (United States)

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  17. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    Science.gov (United States)

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. © The Author(s) 2015.

  18. Zero air emission and zero drilling waste landfill leachate collection well installation method

    International Nuclear Information System (INIS)

    Miller, M.S.; Hornsby, R.G.

    1992-01-01

    Landfilling of industrial wastes is an extensively used means of disposal throughout the US. Prior to RCRA, many landfills were little more than excavated trenches. During the construction and filling of such trenches, the long-term environmental impact was seldom considered. Water (leachate) management for these early landfills was not part of engineering or operating considerations. Today, waste management facilities succeed or fail on the quality of their leachate management efforts, as judged by groundwater quality around the landfill. The CECOS International Inc. facility near Livingston, Louisiana has three pre-RCRA disposal units (landfills) that were designed, constructed, and closed by a previous owner. These disposal units were constructed without any type of leachate removal system. During 1984-1985, samples from two nearby monitor wells revealed evidence of groundwater contamination in the area, principally in the shallow (30-foot) zone. A one-year, state-approved groundwater assessment revealed the nature and extent of groundwater contamination. Later, the Louisiana Department of Environmental Quality (LDEQ) approved a remedial action plan (RAP) for this area that included: Installation of an engineered slurry wall surrounding the disposal units to isolate the shallow groundwater regime. Placement of an engineered cap over the units to prevent rainwater infiltration. Installation of several recovery wells inside the units to facilitate removal of leachate. While efforts are now underway to provide for removal of impacted groundwater in the vicinity of these old wells, the long-term solution is to reduce or, to the greatest extent possible, eliminate the liquid volume inside the cells. This paper deals with the installation of 16 leachate recovery wells inside the pre-RCRA disposal units

  19. Modeling of Hybrid Growth Wastewater Bio-reactor

    International Nuclear Information System (INIS)

    EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.

    2004-01-01

    The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future

  20. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  1. Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications.

    Science.gov (United States)

    Song, Wenlong; Oliveira, Mariana B; Sher, Praveen; Gil, Sara; Nóbrega, J Miguel; Mano, João F

    2013-08-01

    Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies.

  2. Bioinspired methodology for preparing magnetic responsive chitosan beads to be integrated in a tubular bioreactor for biomedical applications

    International Nuclear Information System (INIS)

    Song, Wenlong; Oliveira, Mariana B; Sher, Praveen; Gil, Sara; Mano, João F; Nóbrega, J Miguel

    2013-01-01

    Magnetic responsive chitosan beads were prepared using a methodology inspired by the rolling of water droplets over lotus leaves. Liquid precursors containing chitosan and magnetic microparticles were dispensed in the form of spherical droplets and crosslinked with genipin over synthetic superhydrophobic surfaces. Scanning electronic microscopy, histology and micro-computed tomography were employed to characterize the structure of the prepared composite beads and the inner distribution of the magnetic particles. Cellular metabolic activity tests showed that fibroblasts-like (L929 cell line) can adhere and proliferate on the prepared chitosan beads. We hypothesize that such spherical biomaterials could be integrated in a new concept of tubular bioreactor. The magnetic beads can be immobilized by an external magnetic field at specific positions and may be transported along the bioreactor by the drag of the culture medium flow. The system behavior was also studied through numerical modeling, which allowed to identify the relative importance of the main parameters, and to conclude that the distance between carrier beads plays a major role on their interaction with the culture medium and, consequently, on the overall system performance. In an up-scaled version of this bioreactor, the herein presented system may comprise different chambers in serial or parallel configurations. This constitutes a simple way of preparing magnetic responsive beads combined with a new design of bioreactor, which may find application in biomedicine and biotechnology, including in cell expansion for tissue engineering or for the production of therapeutic proteins to be used in cell therapies. (paper)

  3. A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation

    International Nuclear Information System (INIS)

    Bakonyi, Péter; Buitrón, Germán; Valdez-Vazquez, Idania; Nemestóthy, Nándor; Bélafi-Bakó, Katalin

    2017-01-01

    Highlights: • A Gas Separation Membrane Bioreactor was designed to improve H_2 production. • Headspace gas after enrichment by PDMS membranes was used for reactor sparging. • Stripping the bioreactor with a CO_2-enriched gas enhanced the H_2 fermentation. - Abstract: A Gas Separation Membrane Bioreactor (GSMBR) by integrating membrane technology with a continuous biohydrogen fermenter was designed. The feasibility of this novel configuration for the improvement of hydrogen production capacity was tested by stripping the fermentation liquor with CO_2- and H_2-enriched gases, obtained directly from the bioreactor headspace. The results indicated that sparging the bioreactor with the CO_2-concentrated fraction of the membrane separation unit (consisting of two PDMS modules) enhanced the steady-state H_2 productivity (8.9–9.2 L H_2/L-d) compared to the membrane-less control CSTR to be characterized with 6.96–7.35 L H_2/L-d values. On the other hand, purging with the H_2-rich gas strongly depressed the achievable productivity (2.7–3.03 L H_2/L-d). Microbial community structure and soluble metabolic products were monitored to assess the GSMBR behavior. The study demonstrated that stripping the bioH_2 fermenter with its own, self-generated atmosphere after adjusting its composition (to higher CO_2-content) can be a promising way to intensify dark fermentative H_2 evolution.

  4. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    International Nuclear Information System (INIS)

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G.; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options

  5. Isolation of methanotrophic bacteria from a london landfill: a preliminary study using molecular and stable isotopic techniques.

    Science.gov (United States)

    Sriskantharajah, S.; Cutting, S.; Lowry, D.; Grassineau, N.; Nisbet, E.

    2003-04-01

    Methane emissions from landfills are an important source of European greenhouse emissions, and could be reduced by a biological management program that used methanotrophs in landfill cover soils. Topsoil samples taken from a London Landfill were incubated on Nitrate Mineral Salts medium in the presence of methane. The resulting colonies were probed for methanotrophic DNA using PCR amplification. DNA from methanotroph positive colonies was cloned and sequenced for identification. Isolates belonging to the genera Methylocaldum, Methylomonas and Methylosinus were detected. Phylogenetic analysis suggests the presence of possible new species. In addition dried samples of the isolates were analysed for their stable carbon isotope (δ 13C) composition. The results were δ 13C values of -27 per mil and -25 per mil for Methylomonas isolates, -35 per mil and -44 per mil for Methylosinus isolates, -58 per mil and -60 per mil for some of the Methylocaldum isolates and -35 per mil and -45 per mil for the others. This isotopic variation is reflected in a phylogenetic tree of the isolates. The differences shown in the δ 13C analysis could be due to differing biochemical properties, and if the technique is further developed, it may be used for rapid identification of bacteria useful in landfill management for reducing methane emissions. The results suggest that useful reductions in methane emissions could be achieved by a careful design of landfill cover to culture methanotrophs.

  6. Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil

    Directory of Open Access Journals (Sweden)

    Eugeniusz Koda

    2017-03-01

    Full Text Available The paper presents complex analyses of geophysical site investigation results. The electrical resistivity method was used to investigate the potential pollutant migration pathways within areas of existing and former landfill sites. For the purpose of the present study, there were four municipal waste landfills and one industrial landfill chosen for further comprehensive analyses. The landfill bottom was isolated using geomembrane liner. However, ground water monitoring results revealed that the base was not leakage-free. Another two landfills were established in the past, when no containment systems were legally required. The geoelectrical investigation was the final part of an overall analytical assessment of the contaminated sites. The study was aimed at pollution spatial migration analyses and the interpretation of results, for further design of the reclamation and restoration plans. A clear correlation between pollution indicators such as salt compounds and electrical resistivity, allow aerial analyses and the precise determination of contaminated zones. The research results presented in the paper have been recently obtained and concern a period from 2010 to 2015.

  7. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    Energy Technology Data Exchange (ETDEWEB)

    Scheutz, Charlotte; Pedersen, Rasmus Broe [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Petersen, Per Haugsted [Ramboll Denmark A/S, DK-5100 Odense C (Denmark); Jørgensen, Jørgen Henrik Bjerre [Klintholm I/S, DK-5874 Hasselager (Denmark); Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G. [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Samuelsson, Jerker [FluxSense AB/Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Kjeldsen, Peter, E-mail: pekj@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-07-15

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.

  8. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  9. Risk of adverse birth outcomes in populations living near landfill sites

    Science.gov (United States)

    Elliott, Paul; Briggs, David; Morris, Sara; de Hoogh, Cornelis; Hurt, Christopher; Jensen, Tina Kold; Maitland, Ian; Richardson, Sylvia; Wakefield, Jon; Jarup, Lars

    2001-01-01

    Objective To investigate the risk of adverse birth outcomes associated with residence near landfill sites in Great Britain. Design Geographical study of risks of adverse birth outcomes in populations living within 2 km of 9565 landfill sites operational at some time between 1982 and 1997 (from a total of 19 196 sites) compared with those living further away. Setting Great Britain. Subjects Over 8.2 million live births, 43 471 stillbirths, and 124 597 congenital anomalies (including terminations). Main outcome measures All congenital anomalies combined, some specific anomalies, and prevalence of low and very low birth weight (<2500 g and <1500 g). Results For all anomalies combined, relative risk of residence near landfill sites (all waste types) was 0.92 (99% confidence interval 0.907 to 0.923) unadjusted, and 1.01 (1.005 to 1.023) adjusted for confounders. Adjusted risks were 1.05 (1.01 to 1.10) for neural tube defects, 0.96 (0.93 to 0.99) for cardiovascular defects, 1.07 (1.04 to 1.10) for hypospadias and epispadias (with no excess of surgical correction), 1.08 (1.01 to 1.15) for abdominal wall defects, 1.19 (1.05 to 1.34) for surgical correction of gastroschisis and exomphalos, and 1.05 (1.047 to 1.055) and 1.04 (1.03 to 1.05) for low and very low birth weight respectively. There was no excess risk of stillbirth. Findings for special (hazardous) waste sites did not differ systematically from those for non-special sites. For some specific anomalies, higher risks were found in the period before opening compared with after opening of a landfill site, especially hospital admissions for abdominal wall defects. Conclusions We found small excess risks of congenital anomalies and low and very low birth weight in populations living near landfill sites. No causal mechanisms are available to explain these findings, and alternative explanations include data artefacts and residual confounding. Further studies are needed to help differentiate between the various

  10. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    Science.gov (United States)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  11. Effect of bio-cover equipped with a novel passive air diffusion system on methane emission reduciton from landfill

    DEFF Research Database (Denmark)

    Lu, W.J.; Mou, Zishen

    2011-01-01

    Based on the aerothermodynamic principles, a kind of breathing bio-cover system was designed to enhance oxygen (O2) supply efficiency and methane (CH4) oxidation capacity. The research showed that O2 concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped...... with passive air diffusion system (MPADS). When the simulated landfill gas SLFG flow was 771 and 1028 gm−3 d−1, the O2 concentration in MPADS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH4 oxidation rate was 100% when the SLFG flow rate was no more than 1285 gm−3 d......−1, which also was confirmed by the mass balance calculations. The breathing bio-cover system with in situ self-oxygen supply can address the problem of O2 insufficient in conventional landfill bio-cover. The proposed system presents high potential for improving CH4 emission reduction in landfills....

  12. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  13. Remediation System Evaluation, Douglas Road Landfill Superfund Site

    Science.gov (United States)

    The Douglas Road Landfill Superfund Site is located in St. Joseph County just north of Mishawaka,Indiana. The site consists of a 16-acre capped landfill located on an approximately 32-acre lot (includingthe land purchased in 1999 for a wetlands...

  14. Environmental Isotope Characteristics of Landfill Leachates and Gases

    Science.gov (United States)

    Hackley, Keith C.; Liu, Chao-Li; Coleman, D.D.

    1996-01-01

    The isotopic characteristics of municipal landfill leachate and gases (carbon dioxide and methane) are unique relative to the aqueous and gaseous media in most other natural geologic environments. The ??13 C of the CO2 in landfills is significantly enriched in 13C, with values as high as +20??? reported. The ?? 13C and ??D values of the methane fall within a range of values representative of microbial methane produced primarily by the acetate-fermentation process. The ??D of landfill leachate is strongly enriched in deuterium, by approximately 30??? to nearly 60??? relative to local average precipitation values. This deuterium enrichment is undoubtedly due to the extensive production of microbial methane within the limited reservoir of a landfill. The concentration of the radiogenic isotopes, 14C and 3H, are significantly elevated in both landfill leachate and methane. The 14C values range between approximately 120 and 170 pMC and can be explained by the input of organic material that was affected by the increased 14C content of atmospheric CO2 caused by atmospheric testing of nuclear devices. The tritium measured in leachate, however, is often too high to be explained by previous atmospheric levels and must come from material buried within the landfill. The unique isotopic characteristics observed in landfill leachates and gases provide a very useful technique for confirming whether contamination is from a municipal landfill or some other local source.

  15. Composition of leachate from old landfills in Denmark

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Christophersen, Mette

    2001-01-01

    smaller landfills by a comprehensive review of the investigations carried out by the counties. In total 106 landfills were selected by criteria avoiding dilution effects. A database was constructed using a standard program. Statistical evaluations showed that the leachate concentrations in general...

  16. Martial recycling from renewable landfill and associated risks: A review.

    Science.gov (United States)

    Ziyang, Lou; Luochun, Wang; Nanwen, Zhu; Youcai, Zhao

    2015-07-01

    Landfill is the dominant disposal choice for the non-classified waste, which results in the stockpile of materials after a long term stabilization process. A novel landfill, namely renewable landfill (RL), is developed and applied as a strategy to recycle the residual materials and reuse the land occupation, aim to reduce the inherent problems of large land occupied, materials wasted and long-term pollutants released in the conventional landfill. The principle means of RL is to accelerate the waste biodegradation process in the initial period, recover the various material resources disposal and extend the landfill volume for waste re-landfilling after waste stabilized. The residual material available and risk assessment, the methodology of landfill excavation, the potential utilization routes for different materials, and the reclamation options for the unsanitary landfill are proposed, and the integrated beneficial impacts are identified finally from the economic, social and environmental perspectives. RL could be draw as the future reservoirs for resource extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Resident support for a landfill-to-park transformation

    Science.gov (United States)

    Christine A. Vogt; David B. Klenosky; Stephanie A. Snyder; Lindsay K. Campbell

    2015-01-01

    Globally, landfills are being transformed into other uses because land resources scarce, property values are increasing, and governments seek to reduce urban blight and adaptively reuse space. Park planners and city managers are likely to find that gauging public perceptions of a landfill-to-park project transformation and promoting such sites to potential visitors as...

  18. Methane emission quantification from landfills using a double tracer approach

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Samuelsson, J.; Fredenslund, Anders Michael

    2007-01-01

    A tracer method was successfully used for quantification of the whole methane (CH4) emission from Fakse landfill. By using two different tracers the emission from different sections of the landfill could be quantified. Furthermore, is was possible to determine the emissions from local on site...

  19. Sanitation and recultivation of the Endlhausen landfill. Experience and hints

    Energy Technology Data Exchange (ETDEWEB)

    Hoerich, O; Rieger, W

    1986-02-01

    A landfill located in a former gravel pit was covered once 300,000 t of domestic refuse had been dumped. Drain pipes were laid for degassing the landfill. A clay layer was used to prevent surface water inroads. The article explains details and approaches. The cost are some DM 900,000 at an area of 3 ha. Grassing and planting will follow.

  20. Estimating historical landfill quantities to predict methane emissions

    NARCIS (Netherlands)

    Lyons, S.; Murphy, L.; Tol, R.S.J.

    2010-01-01

    There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste " data" and evaluate the impact on methane emissions. We