Unquenched Gluon Propagator in Landau Gauge
2004-01-01
Using lattice quantum chromodynamics (QCD) we perform an unquenched calculation of the gluon propagator in Landau gauge. We use configurations generated with the AsqTad quark action by the MILC collaboration for the dynamical quarks and compare the gluon propagator of quenched QCD (i.e., the pure Yang-Mills gluon propagator) with that of 2+1 flavor QCD. The effects of the dynamical quarks are clearly visible and lead to a significant reduction of the nonperturbative infrared enhancement relat...
Landau gauge gluon vertices from Lattice QCD
Duarte, Anthony G; Silva, Paulo J
2016-01-01
In lattice QCD the computation of one-particle irreducible (1PI) Green's functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Green's functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Green's function.
Lattice Landau gauge quark propagator and the quark-gluon vertex
Oliveira, Orlando; Silva, Paulo J; Skullerud, Jon-Ivar; Sternbeck, Andre; Williams, Anthony G
2016-01-01
We report preliminary results of our ongoing lattice computation of the Landau gauge quark propagator and the soft gluon limit of the quark-gluon vertex with 2 flavors of dynamical O(a) improved Wilson fermions.
Another look at the Landau-gauge gluon and ghost propagators at low momentum
Sternbeck, Andre
2013-01-01
We study the gluon and ghost propagators of SU(2) lattice Landau gauge theory and find their low-momentum behavior being sensitive to the lowest non-trivial eigenvalue (\\lambda_1) of the Faddeev-Popov operator. If the gauge-fixing favors Gribov copies with small (large) values for \\lambda_1 both the ghost dressing function and the gluon propagator get enhanced (suppressed) at low momentum. For larger momenta no dependence on Gribov copies is seen. We compare our lattice data to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski [Annals Phys. 324 (2009) 2408] and find qualitatively good agreement.
Bogolubsky, I; Müller-Preussker, M; Sternbeck, A
2013-01-01
We continue the systematic computation of Landau gauge gluon and ghost propagators of SU(2) gluodynamics using a sequence of increasing lattice sizes L^4 up to L=112 with corresponding \\beta-values chosen to keep the linear physical size a(\\beta)L ~ 9.6 fm fixed. To extremize the Landau gauge functional we employ simulated annealing combined with subsequent overrelaxation. Renormalizing the propagators at momentum \\mu= 2.2 GeV we observe quite strong lattice artifacts for the gluon propagator as well as for the ghost dressing function within the momentum region q < 1.0 GeV. The dependence on the lattice spacing for the gluon propagator at lowest accessible physical momentum values does not yet allow a simple extrapolation to the continuum limit. On the contrary, the running coupling derived from the bare dressing functions seems less affected by lattice artifacts.
On the Landau gauge matter-gluon vertex in scalar QCD in a functional approach
Hopfer, Markus
2013-01-01
Recently the quark-gluon vertex has been investigated in Landau gauge using a combined Dyson-Schwinger and nPI effective action approach. We present here a numerical analysis of a simpler system where the quarks have been replaced by charged scalar fields. We solve the coupled system of Dyson-Schwinger equations for the scalar propagator, the scalar-gluon vertex and the Yang-Mills propagators in a truncation related to earlier studies. The calculations have been performed for scalars both in the fundamental and the adjoint representation. A clear suppression of the Abelian diagram is found in both cases. Thus, within the used truncation the suppression of the Abelian diagram predominantly happens dynamically and is to a high degree independent of the colour structure. The numerical techniques developed here can directly be applied to the fermionic case.
Landau gauge gluon and ghost propagators from two-flavor lattice QCD at T > 0
Aouane, R; Muller-Preussker, M; Ilgenfritz, E -M; Sternbeck, A
2013-01-01
In this contribution we extend our unquenched computation of the Landau gauge gluon and ghost propagators in lattice QCD at non-zero temperature. The study was aimed at providing input for investigations employing continuum functional methods. We show data which correspond to pion mass values between 300 and 500 MeV and are obtained for a lattice size 32**3 x 12. The longitudinal and transversal components of the gluon propagator turn out to change smoothly through the crossover region, while the ghost propagator exhibits only a very weak temperature dependence. For a pion mass of around 400 MeV and the intermediate temperature value of approx. 240 MeV we compare our results with additional data obtained on a lattice with smaller Euclidean time extent N_t = 8, 10 and find a reasonable scaling behavior.
On the Infrared Exponent for Gluon and Ghost Propagation in Landau Gauge QCD
Lerche, C; Lerche, Christoph; Smekal, Lorenz von
2002-01-01
In the covariant description of confinement, one expects the ghost correlations to be infrared enhanced. Assuming ghost dominance, the long-range behavior of gluon and ghost correlations in Landau gauge QCD is determined by one exponent kappa. The gluon propagator is infrared finite (vanishing) for kappa =1/2 (kappa > 1/2) which is still under debate. Here, we study critical exponent and coupling for the infrared conformal behavior from the asymptotic form of the solutions to the Dyson-Schwinger equations in an ultraviolet finite expansion scheme. The value for kappa is directly related to the ghost-gluon vertex. Assuming that it is regular in the infrared, one obtains kappa = 0.595. This value maximizes the critical coupling alpha_c(kappa), yielding alpha_c^max = (4\\pi/N_c) 0.709 approx. 2.97 for N_c=3. For larger kappa the vertex acquires an infrared singularity in the gluon momentum, smaller ones imply infrared singular ghost legs. Variations in alpha_c remain within 5% from kappa = 0.5 to 0.7. Above this ...
The quark-gluon vertex in Landau gauge bound-state studies
Williams, Richard
2015-05-01
We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations.
The quark-gluon vertex in Landau gauge bound-state studies
Energy Technology Data Exchange (ETDEWEB)
Williams, Richard [Justus-Liebig University of Giessen, Institute of Theoretical Physics, Giessen (Germany)
2015-05-15
We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations. (orig.)
The quark-gluon vertex in Landau gauge bound-state studies
Williams, Richard
2014-01-01
We present a practical method for the solution of the quark-gluon vertex for use in Bethe--Salpeter and Dyson--Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A model suitable for bound-state calculations is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within Rainbow-Ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required for practical calculations.
NSPT study of the three-loop lattice gluon propagator in Landau gauge
Torrero, C; Ilgenfritz, E -M; Perlt, H; Schiller, A
2010-01-01
By means of Numerical Stochastic Perturbation Theory (NSPT), we calculate the lattice gluon propagator up to three loops of perturbation theory in the limits of infinite volume and vanishing lattice spacing. Based on known anomalous dimensions and a parametrization of both the hypercubic symmetry group H(4) and finite-size effects, we calculate the non-leading-log and non-logarithmic contributions iteratively, starting with the first-loop expression.
Von Smekal, L; Sternbeck, A; Williams, A G
2007-01-01
We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.
Landau gauge Yang-Mills correlation functions
Cyrol, Anton K.; Fister, Leonard; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2016-09-01
We investigate Landau gauge S U (3 ) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalization group. Particular focus is put on the dynamical creation of the gluon mass gap at nonperturbative momenta and the consistent treatment of quadratic divergences. The nonperturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as the only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.
Signatures of confinement in Landau gauge QCD
Pawlowski, J M; Nedelko, S; Von Schmekal, L
2005-01-01
We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.
Linear Landau damping in strongly relativistic quark gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)
2004-07-01
On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)
On Landau gauge Yang-Mills correlation functions
Cyrol, Anton K; Mitter, Mario; Pawlowski, Jan M; Strodthoff, Nils
2016-01-01
We investigate Landau gauge $SU(3)$ Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalisation group. Particular focus is put on the dynamical creation of the gluon mass gap at non-perturbative momenta and the consistent treatment of quadratic divergences. The non-perturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.
Infrared behaviour and fixed points in Landau gauge QCD
Pawlowski, J M; Nedelko, S N; Von Smekal, L; Pawlowski, Jan M.; Litim, Daniel F.; Nedelko, Sergei; Smekal, Lorenz von
2004-01-01
We investigate the infrared behaviour of gluon and ghost propagators in Landau gauge QCD by means of an exact renormalisation group equation. We explain how, in general, the infrared momentum structure of Green functions can be extracted within this approach. An optimisation procedure is devised to remove residual regulator dependences. In Landau gauge QCD this framework is used to determine the infrared leading terms of the propagators. The results support the Kugo-Ojima confinement scenario. Possible extensions are discussed.
Infrared Behavior and Fixed Points in Landau-Gauge QCD
Pawlowski, Jan M.; Litim, Daniel F.; Nedelko, Sergei; von Smekal, Lorenz
2004-10-01
We investigate the infrared behavior of gluon and ghost propagators in Landau-gauge QCD by means of an exact renormalization group equation. We explain how, in general, the infrared momentum structure of Green functions can be extracted within this approach. An optimization procedure is devised to remove residual regulator dependences. In Landau-gauge QCD this framework is used to determine the infrared leading terms of the propagators. The results support the Kugo-Ojima confinement scenario. Possible extensions are discussed.
Cardoso, Nuno; Bicudo, Pedro; Oliveira, Orlando
2012-01-01
In this paper we present and explore the performance of Landau gauge fixing in GPUs using CUDA. We consider the steepest descent algorithm with Fourier acceleration, and compare the GPU performance with a parallel CPU implementation. Using $32^4$ lattice volumes, we find that the computational power of a single Tesla C2070 GPU is equivalent to approximately 256 CPU cores.
On Gauge Invariant Descriptions of Gluon Polarization
Guo, Zhi-Qiang
2012-01-01
We propose methods to construct gauge invariant decompositions of nucleon spin, especially gauge invariant descriptions of gluon polarization. We show that gauge invariant decompositions of nucleon spin can be derived naturally from the conserved current of a generalized Lorentzian transformation by Noether theorem. We also examine the problem of gauge dependence with a gauge invariant extension of the Chern-Simons current.
Classical Higgs fields on gauge gluon bundles
Directory of Open Access Journals (Sweden)
Palese Marcella
2016-01-01
Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.
Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge
Pereira, A D
2014-01-01
In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived.
Gluonic three-point correlations in pure Landau gauge QCD
Blum, Adrian; Mitter, Mario; von Smekal, Lorenz
2014-01-01
We report on the first self-consistent solution of the Dyson-Schwinger equation (DSE) for the three-gluon vertex. Based on earlier results for the propagators which match data from lattice Monte-Carlo simulations, we obtain results for the three gluon vertex that are in very good agreement with available lattice data likewise. Feeding these results back into the propagator DSEs leads to some changes especially in the gluon propagator. These changes allow us to assess previously used models for the three-gluon vertex and to systematically estimate the influence of neglected two-loop diagrams with four-gluon interactions. In the final step, a full iterative solution to the coupled DSEs of pure Landau gauge QCD without quarks is then obtained for the first time in an extended truncation which now dynamically includes the complete set of three-point vertex functions.
Positivity violation for the lattice Landau gluon propagator
Cucchieri, A; Taurines, A R; Cucchieri, Attilio; Mendes, Tereza; Taurines, Andre R.
2004-01-01
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t \\in [0,3] fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Gribov horizon beyond the Landau gauge
Lavrov, Peter M.; Lechtenfeld, Olaf
2013-10-01
Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general Rξ gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gribov horizon beyond the Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Lavrov, Peter M., E-mail: lavrov@tspu.edu.ru [Tomsk State Pedagogical University, Kievskaya St. 60, 634061 Tomsk (Russian Federation); Lechtenfeld, Olaf, E-mail: lechtenf@itp.uni-hannover.de [Institut für Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover (Germany)
2013-10-01
Gribov and Zwanziger proposed a modification of Yang–Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov–Zwanziger model from the Landau gauge to general R{sub ξ} gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
Gribov horizon beyond the Landau gauge
Lavrov, Peter M
2013-01-01
Gribov and Zwanziger proposed a modification of Yang-Mills theory in order to cure the Gribov copy problem. We employ field-dependent BRST transformations to generalize the Gribov-Zwanziger model from the Landau gauge to general R_xi gauges. The Gribov horizon functional is presented in explicit form, in both the non-local and local variants. Finally, we show how to reach any given gauge from the Landau one.
SU(2) Landau gluon propagator on a 140^3 lattice
Cucchieri, A; Taurines, A R; Cucchieri, Attilio; Mendes, Tereza; Taurines, Andre
2003-01-01
We present a numerical study of the gluon propagator in lattice Landau gauge for three-dimensional pure-SU(2) lattice gauge theory at couplings beta = 4.2, 5.0, 6.0 and for lattice volumes V = 40^3, 80^3, 140^3. In the limit of large V we observe a decreasing gluon propagator for momenta smaller than p_{dec} = 350^{+ 100}_{- 50} MeV. Data are well fitted by Gribov-like formulae and seem to indicate an infra-red critical exponent kappa slightly above 0.6, in agreement with recent analytic results.
Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge
Dudal, D; Lemes, V E R; Sarandy, M S; Sorella, S P; Picariello, M
2003-01-01
The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge in SU(N) Yang-Mills is analysed by combining the local composite operator technique with the algebraic renormalization. We pay attention to the gauge parameter independence of the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting special case.
Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge
Dudal, D.; Verschelde, H.; Lemes, V. E. R.; Sarandy, M. S.; Sorella, S. P.; Picariello, M.
2003-11-01
The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge in SU( N) Yang-Mills is analysed by combining the local composite operator technique with the algebraic renormalization. We pay attention to the gauge parameter independence of the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting special case.
Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory
Cucchieri, Attilio; Mendes, Tereza
2017-05-01
By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.
Coherent Landau states with gauge invariance
Institute of Scientific and Technical Information of China (English)
Tian Xu; Zhao Zhong-Yun; Li Ming-Fa
2004-01-01
Coherent states for the Landau system (planar charged particle moving in a uniform magnetic field) are developed.It is convenient to use these states to describe the circular motion of the charged particle. The results obtained do not depend on gauges.
On propagators and vertices of Landau gauge Yang-Mills theory
Huber, Markus Q; Mitter, Mario; von Smekal, Lorenz
2014-01-01
We calculate the three-point functions of pure Landau gauge QCD and investigate their influence on the propagators. As expected, the ghost-gluon vertex leads only to minor modifications, while the three-gluon vertex has a sizeable impact on the mid-momentum regime of the gluon propagator. We describe an effective model of the three-gluon vertex that includes contributions from the neglected two-loop diagrams and thus allows to obtain propagators in good agreement with lattice results. We also determine the three-gluon vertex from these propagators and find good agreement with lattice results as well. In turn, these results allow us to assess the effect of the missing two-loop diagrams in the gluon propagator equation. Finally, we present the first self-consistent calculation that includes all two-and three-point functions.
The Infrared Behaviour of the Running Coupling in Landau Gauge QCD
Alkofer, R; Von Smekal, L
2002-01-01
Approximate solutions for the gluon and ghost propagators as well as the running coupling in Landau gauge Yang-Mills theories are presented. These propagators obtained from the corresponding Dyson-Schwinger equations are in remarkable agreement with those of recent lattice calculations. The resulting running coupling possesses an infrared fixed point, $\\alpha_S(0) = 8.92/N_c$ for all gauge groups SU($N_c$). Above one GeV the running coupling rapidly approaches its perturbative form.
Lattice Landau Gauge via Stereographic Projection
von Smekal, L.; Mehta, D.; Sternbeck, A.
alexander.jorkowski@student.adelaide.edu.au, dhagash.mehta@adelaide.edu.au, andre.sternbeck@adelaide.edu.au The complete cancellation of Gribov copies and the Neuberger 0/0 problem of lattice BRST can be avoided in modified lattice Landau gauge. In compact U(1), where the problem is a lattice artifact, there remain to be Gribov copies but their number is exponentially reduced. Moreover, there is no cancellation of copies there as the sign of the Faddeev-Popov determinant is posi- tive. Applied to the maximal Abelian subgroup this avoids the perfect cancellation amongst the remaining Gribov copies for SU(N) also. In addition, based on a definition of gauge fields on the lattice as stereographically-projected link variables, it provides a framework for gauge fixed Monte-Carlo simulations. This will include all Gribov copies in the spirit of BRST. Their average is not zero, as demonstrated explicitly in simple models. This might resolve present discrepancies between gauge-fixed lattice and continuum studies of QCD Green’s functions.
Canonical derivation of the gluon propagator in the temporal gauge
Girotti, Horacio Oscar; Rothe, Heinz J.
1986-01-01
We reexamine the problem of obtaining, within the operator approach, an unambiguous expression for the longitudinal gluon propagator in the temporal gauge. A regularization procedure respecting Gauss's law and the Hermiticity of the gauge fields is proposed. We thereby obtain a definite expression for the longitudinal propagator which agrees with that proposed by Caracciolo, Curci, and Menotti.
Alkofer, R; Von Smekal, L; Alkofer, Reinhard; Fischer, Christian S.; Smekal, Lorenz von
2003-01-01
The Kugo-Ojima confinement criterion and its relation to the infrared behaviour of the gluon and ghost propagators in Landau gauge QCD are reviewed. The realization of this confinement criterion (which in Landau gauge relates to Zwanziger's horizon condition) results from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. These results are in good agreement, also quantitatively, with corresponding lattice data obtained recently. The resulting running coupling approaches a fixed point in the infrared, $\\alpha(0) = 8.9/N_c$. Solutions for the coupled system of Dyson-Schwinger equations for the quark, gluon and ghost propagators are presented. Dynamical generation of quark masses and thus spontaneous breaking of chiral symmetry is found. In the quenched approximation the quark propagator functions agree well with th...
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel [Karl-Franzens Universitaet Graz, Institut fuer Physik, Graz (Austria); Pawlowski, Jan M.; Spielmann, Daniel [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute EMMI, Darmstadt (Germany); Sternbeck, Andre [University of Adelaide, Centre for the Subatomic Structure of Matter, SA, Adelaide (Australia); Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Smekal, Lorenz von [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2010-07-15
We study the strong-coupling limit {beta}=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite {beta}. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)
Quark-gluon vertex in arbitrary gauge and dimension
Davydychev, A I; Saks, L
2001-01-01
One-loop off-shell contributions to the quark-gluon vertex are calculated, in an arbitrary covariant gauge and in arbitrary space-time dimension, including quark-mass effects. It is shown how one can get results for all on-shell limits of interest directly from the off-shell expressions. In order to demonstrate that the Ward-Slavnov-Taylor identity for the quark-gluon vertex is satisfied, we have also calculated the corresponding one-loop contribution involving the quark-quark-ghost-ghost vertex.
Infrared Exponents and the Running Coupling of Landau gauge QCD and their Relation to Confinement
Alkofer, R; Von Smekal, L; Alkofer, Reinhard; Fischer, Christian S.; Smekal, Lorenz von
2003-01-01
The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running coupling approaches a fix point in the infrared, $\\alpha(0) = 8.92/N_c$. Two different fits for the scale dependence of the running coupling are given and discussed.
Huber, Markus Q; Schwenzer, Kai
2011-01-01
Functional equations like exact renormalization group and Dyson-Schwinger equations have contributed to a better understanding of non-perturbative phenomena in quantum field theories in terms of the underlying Green functions. In Yang-Mills theory especially the Landau gauge has been used, as it is the most accessible gauge for these methods. The growing understanding obtained in this gauge allows to proceed to other gauges in order to obtain more information about the relation of different realizations of the confinement mechanism. In the maximally Abelian gauge first results are very encouraging as a variant of Abelian infrared dominance is found: The Abelian part of the gauge field propagator is enhanced at low momenta and thereby dominates the dynamics in the infrared. Its role is therefore similar to that of the ghost propagator in the Landau gauge, where one denotes the corresponding phenomenon as ghost dominance. Also the ambiguity of two different types of solutions (decoupling and scaling) exists in ...
Gluonic vertices of Landau gauge Yang-Mills theory in the Dyson-Schwinger approach
Energy Technology Data Exchange (ETDEWEB)
Cyrol, Anton Konrad [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Theoriezentrum, 64289 Darmstadt (Germany); Huber, Markus [University of Graz, Institute of Physics, 8010 Graz (Austria); Smekal, Lorenz von [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Theoriezentrum, 64289 Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, 35392 Giessen (Germany)
2015-07-01
We report on a self-consistent solution of the Landau gauge four-gluon vertex DSE. Our calculation includes all perturbatively leading one-loop diagrams, which constitutes the state-of-the-art truncation. As only input we use results for lower Green functions from previous Dyson-Schwinger studies that are in good agreement with lattice results. Within the truncation, no higher Green functions enter. Hence, the results depend only indirectly on models of Green functions. Our self-consistent solution resolves the full momentum dependence of the four-gluon vertex but is limited to the tree-level tensor structure. We calculate a few exemplary dressings of other tensor structures and find that they are suppressed compared to the tree-level structure except for the deep infrared where they diverge logarithmically. We employ the results to derive a running coupling. Furthermore, we study the coupled system of the three- and the four-gluon vertices to reduce the model dependence and to explore the convergence of the system of DSEs within the truncation scheme employed. For the scaling solution we establish a solution of the coupled system of vertices which provides promising evidence for the convergence.
On the irrelevance of the Gribov issue in N=4 Super Yang-Mills in the Landau gauge
Capri, M A L; Justo, I F; Palhares, L F; Sorella, S P
2014-01-01
The issue of the Gribov copies is discussed in Euclidean N=4 Super Yang-Mills theory quantized in the Landau gauge. As a consequence of the absence of a renormalization group invariant scale, it turns out that it is not possible to attach a dynamical meaning to the Gribov parameter. This implies that, in N=4 Super Yang-Mills, there is no need for the restriction of the domain of integration in the functional integral to the Gribov region, and no non-perturbative dynamical scale is generated. This result is in agreement with the absence of a confining phase observed from the Coulomb behaviour of the Wilson loop evaluated through the AdS/CFT correspondence. The non-renormalization theorem of the gluon-ghost-antighost vertex of the Landau gauge is also explicitly checked till three loops.
Energy Technology Data Exchange (ETDEWEB)
Sternbeck, A.
2006-07-18
Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)
Low-energy behavior of gluons and gravitons from gauge invariance
DEFF Research Database (Denmark)
di Vecchia, Paolo; Bern, Zvi; Davies, Scott
2014-01-01
We show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to L...
Propagation of Gluons From a Non-Perturbative Evolution Equation in Axial Gauges
Kinder-Geiger, Klaus
1999-01-01
We derive a non-perturbative evolution equation for the gluon propagator in axial gauges based on the framework of Wetterich's formulation of the exact renormalization group. We obtain asymptotic solutions to this equation in the ultraviolet and infrared limits.
On a bound(ary condition) in the continuum Landau gauge
Dudal, D; Justo, I F; Sorella, S P
2014-01-01
In this note, we consider the Landau gauge in the continuum formulation. Our purposes are twofold. Firstly, we try to work out the consequences of the recently derived Cucchieri-Mendes bounds on the inverse Faddeev-Popov operator at the level of the path integral quantization. Secondly, we give an explicit renormalizable prescription to implement the so-called Landau B-gauges as introduced by Maas.
More on the properties of the first Gribov region in Landau gauge
Maas, Axel
2015-01-01
Complete gauge-fixing beyond perturbation theory in non-Abelian gauge theories is a non-trivial problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between different methods, especially lattice and continuum methods, should be compared: Only when treating the Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two, three, and four dimensions for a wide range of volumes and discretizations.
More on the properties of the first Gribov region in Landau gauge
Maas, Axel
2016-03-01
Complete gauge fixing beyond perturbation theory in non-Abelian gauge theories is a nontrivial problem. This is particularly evident in covariant gauges, where the Gribov-Singer ambiguity gives an explicit formulation of the problem. In practice, this is a problem if gauge-dependent quantities between different methods, especially lattice and continuum methods, should be compared: Only when treating the Gribov-Singer ambiguity in the same way is the comparison meaningful. To provide a better basis for such a comparison the structure of the first Gribov region in Landau gauge, a subset of all possible gauge copies satisfying the perturbative Landau gauge condition, will be investigated. To this end, lattice gauge theory will be used to investigate a two-dimensional projection of the region for SU(2) Yang-Mills theory in two, three, and four dimensions for a wide range of volumes and discretizations.
Inner Structure of Statistical Gauge Potential in Chern-Simons-Ginzburg-Landau Theory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on the decomposition theory of the U(1) gauge potential, the inner structure of the statistical gauge potential in the Chern-Simons-Ginzburg-Landau (CSGL) theory is studied. We give a new creation mechanism of the statistical gauge potential. Furthermore, making use of the φ-mapping topological current theory, we obtain the precise topological expression of the statistical magnetic field, which takes the topological information of the vortices.
GPU implementation of a Landau gauge fixing algorithm
Cardoso, Nuno; Oliveira, Orlando; Bicudo, Pedro
2012-01-01
We discuss how the steepest descent method with Fourier acceleration for Laudau gauge fixing in lattice SU(3) simulations can be implemented using CUDA. The scaling of the gauge fixing code was investigated using a Tesla C2070 Fermi architecture, and compared with a parallel CPU gauge fixing code.
Machado, F A
2016-01-01
Gluon mass generation is investigated for 4-dimensional $SU(N)$ Yang-Mills in conventional covariant and in background field gauges within an effective description that, through a parameterization, can be regarded as a massive gluon model, or as a Nambu-Jona-Lasinio-like expansion around a massive leading order while preserving the Yang-Mills Lagrangian. We employ a renormalization scheme that introduces the ratio of the gluon mass parameter $m$ to the saturation value of the gluon propagator. This, along with the mass $m(\\mu)$ and the strong coupling $\\alpha_s(\\mu)$, provided the fit parameters for comparison with $SU(3)$ lattice results renormalized at the scale $\\mu$. We obtain two types of solutions with satisfactory fits. Within the proposed expansion, we show that it is possible to obtain an exactly vanishing longitudinal self-energy for any gauge parameter $\\xi$ in the background field case. However, such a result in conventional covariant gauges is unattainable by the given expansion as it is, indicat...
Lattice gauge theory and gluon color-confinement in curved spacetime
Villegas, Kristian Hauser
2014-01-01
The lattice gauge theory for curved spacetime is formulated. A discretized action is derived for both gluon and quark fields which reduces to the generally covariant form in the continuum limit. Using the Wilson action, it is shown analytically that for a general curved spacetime background, two propagating gluons are always color-confined. The fermion-doubling problem is discussed in the specific case of Friedman-Robertson-Walker metric. Lastly, we discussed possible future numerical implementation of lattice QCD in curved spacetime.
Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory
Nakagawa, Y.; Voigt, A.; Ilgenfritz, E.-M.; Müller-Preussker, M.; Nakamura, A.; Saito, T.; Sternbeck, A.; Toki, H.
2009-06-01
We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb-gauge theory carrying out a joint analysis of data collected independently at the Research Center for Nuclear Physics, Osaka and Humboldt University, Berlin. We focus on the scaling behavior of these propagators at β=5.8,…,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at a large momentum. As a byproduct we obtain the respective lattice scale dependences a(β) for the transversal gluon and the ghost propagator which indeed run faster with β than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(β) dependence as determined from the instantaneous time-time gluon propagator, D44, remains a problem, though. The role of residual gauge-fixing influencing D44 is discussed.
Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory
Nakagawa, Y; Ilgenfritz, E -M; Müller-Preussker, M; Nakamura, A; Saitô, T; Sternbeck, A; Toki, H
2009-01-01
We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb gauge theory carrying out a joint analysis of data collected independently at RCNP Osaka and Humboldt University Berlin. We focus on the scaling behavior of these propagators at beta=5.8,...,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at large momentum. As a byproduct we obtain the respective lattice scale dependences a(beta) for the transversal gluon and the ghost propagator which indeed run faster with beta than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(beta) dependence as determined from the instantaneous time-time gluon propagator, D_{44}, remains a problem, though. The role of residual gauge-fixing influencing D_{44...
Landau gauge fixing on the lattice using GPU's
Cardoso, Nuno; Oliveira, Orlando; Bicudo, Pedro
2013-01-01
In this work, we consider the GPU implementation of the steepest descent method with Fourier acceleration for Laudau gauge fixing, using CUDA. The performance of the code in a Tesla C2070 GPU is compared with a parallel CPU implementation.
An Investigation of the Infrared Behaviour of the Gluon Propagator in the Axial Gauge
DEFF Research Database (Denmark)
Sørensen, Paul Haase
1983-01-01
In the axial gauge an integral equation for the gluon propagator of a pure Yang-Mills theory is derived based on the Dyson-Schwinger equation and the Slavnov-Taylor identities. Dimensional regularization is used. The solution of this equation is investigated in the case where the variable (nk)^2/(n......^2k^2) is different from zero and it is seen that the nice properties of the confining solution D(k) = 1/k^4 are lost in this case....
Dyson-Schwinger equations and {N}=4 SYM in Landau gauge
Maas, Axel; Zitz, Stefan
2016-03-01
{N}=4 Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory and the truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore discuss which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory.
Dyson-Schwinger equations and N = 4 SYM in Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel; Zitz, Stefan [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)
2016-03-15
N = 4 Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory and the truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore discuss which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory. (orig.)
Dyson-Schwinger equations and ${\\cal N}=4$ SYM in Landau gauge
Maas, Axel
2015-01-01
${\\cal N}=4$ Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory as well as truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore identify which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory.
The perturbative ghost propagator in Landau gauge from numerical stochastic perturbation theory
Di Renzo, F; Perlt, H; Schiller, A; Torrero, C
2008-01-01
We present one- and two-loop results for the ghost propagator in Landau gauge calculated in Numerical Stochastic Perturbation Theory (NSPT). The one-loop results are compared with available standard Lattice Perturbation Theory in the infinite-volume limit. We discuss in detail how to perform the different necessary limits in the NSPT approach and discuss a recipe to treat logarithmic terms by introducing ``finite-lattice logs''. We find agreement with the one-loop result from standard Lattice Perturbation Theory and estimate, from the non-logarithmic part of the ghost propagator in two-loop order, the unknown constant contribution to the ghost self-energy in the RI'-MOM scheme in Landau gauge. That constant vanishes within our numerical accuracy.
Critical behavior of (2 +1 )-dimensional QED: 1 /Nf corrections in the Landau gauge
Kotikov, A. V.; Shilin, V. I.; Teber, S.
2016-09-01
The dynamical generation of a fermion mass is studied within (2 +1 )-dimensional QED with N four-component fermions in the leading and next-to-leading orders of the 1 /N expansion. The analysis is carried out in the Landau gauge, which is supposed to insure the gauge independence of the critical fermion flavor number, Nc. It is found that the dynamical fermion mass appears for N
Coulomb, Landau and Maximally Abelian Gauge Fixing in Lattice QCD with Multi-GPUs
Schröck, Mario
2013-01-01
A lattice gauge theory framework for simulations on graphic processing units (GPUs) using NVIDIA's CUDA is presented. The code comprises template classes that take care of an optimal data pattern to ensure coalesced reading from device memory to achieve maximum performance. In this work we concentrate on applications for lattice gauge fixing in 3+1 dimensional SU(3) lattice gauge field theories. We employ the overrelaxation, stochastic relaxation and simulated annealing algorithms which are perfectly suited to be accelerated by highly parallel architectures like GPUs. The applications support the Coulomb, Landau and maximally Abelian gauges. Moreover, we explore the evolution of the numerical accuracy of the SU(3) valued degrees of freedom over the runtime of the algorithms in single (SP) and double precision (DP). Therefrom we draw conclusions on the reliability of SP and DP simulations and suggest a mixed precision scheme that performs the critical parts of the algorithm in full DP while retaining 80-90% of...
Gluon propagator with dynamical quarks
Papavassiliou, Joannis
2014-01-01
We review recent work on the effects of quark loops on the gluon propagator in the Landau gauge, relying mainly on the Schwinger-Dyson equations that describe the two-point sector of QCD. Particularly important in this context is the detailed study of how the standard gluon mass generation mechanism, which is responsible for the infrared finiteness of the quenched gluon propagator, is affected by the inclusions of dynamical quarks. This issue is especially relevant and timely, given the qualitative picture that emerges from recent unquenched lattice simulations. Our results demonstrate clearly that the gluon mass generation persists, and that the corresponding saturation points of the unquenched gluon propagators are progressively suppressed, as the number of quark flavors increases.
Real-Time Thermal Schwinger-Dyson Equation for Quark Self-energy in Landau Gauge
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equation for quark propagator in Landau gauge. Denote the inverse quark propagator by A(p2)p - B(p2), we argue that, when temperature T is lower than the given infrared momentum cutoff pc, A(p2) = 1 is a feasible approximation and can be assumed in discussions of chiral symmetry phase transition problem in QCD.
Exciting gauge unstable modes of the quark-gluon plasma by relativistic jets
Energy Technology Data Exchange (ETDEWEB)
Mannarelli, M; Manuel, C [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C5 E-08193 Bellaterra (Barcelona) (Spain)], E-mail: massimo@ieec.uab.es
2008-05-15
We present a study of the properties of the collective modes of a system composed by a thermalized quark-gluon plasma traversed by a relativistic jet of partons. We find that when the jet traverses the system unstable gauge field modes are excited and grow on very short time scales. The aim is to provide a novel mechanism for the description of the jet quenching phenomenon, where the jet crossing the plasma loses energy exciting colored unstable modes. In order to simplify the analysis we employ a linear response approximation, valid for short time scales. We assume that the partons in the jet can be described with a tsunami-like distribution function, whereas we treat the quark-gluon plasma employing two different approaches. In the first approach we adopt a Vlasov approximation for the kinetic equations, in the second approach we solve a set of fluid equations. In both cases we derive the expressions of the dispersion law of the collective unstable modes and compare the results obtained.
A Gauge and Lorentz covariant Approximation for the Quark Propagator in an arbitrary Gluon Field
Gromes, D
2001-01-01
We decompose the quark propagator in the presence of an arbitrary gluon field with respect to a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are rewritten as line-integrals along certain field lines, together with a weighted integration over the various field lines. It is then easy to transform the propagator into a form involving path ordered exponentials. The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations, gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection and simple results can be obtained immediately.
A Gauge and Lorentz covariant approximation for the quark propagator in an arbitrary gluon field
Gromes, D.
2001-05-01
We decompose the quark propagator in the presence of an arbitrary gluon field with respect to a set of Dirac matrices. The four-dimensional integrals which arise in first order perturbation theory are rewritten as line-integrals along certain field lines, together with a weighted integration over the various field lines. It is then easy to transform the propagator into a form involving path ordered exponentials. The resulting expression is non-perturbative and has the correct behavior under Lorentz transformations, gauge transformations and charge conjugation. Furthermore it coincides with the exact propagator in first order of the coupling g. No expansion with respect to the inverse quark mass is involved, the expression can even be used for vanishing mass. For large mass the field lines concentrate near the straight line connection and simple results can be obtained immediately.
The quenched SU(2) fundamental scalar propagator in minimal Landau gauge
Maas, Axel
2016-01-01
It is a long-standing question whether the confinement of matter fields in QCD has an imprint in the (gauge-dependent) correlation functions, especially the propagators. As the analytic structure plays an important role in this question, high-precision data is necessary for lattice investigations. Also, it is interesting how this depends on the dimensionality of the theory. To make a study over a wide range of parameters possible this suggests to use scalar particles. This is done here: The propagator of a fundamental scalar is studied in two, three, and four dimensions in quenched SU(2) Yang-Mills theory in minimal Landau gauge, both in momentum space and position space. Particular emphasis is put on the effects of renormalization. The results suggest a quite intricate volume dependence and the presence of an intrinsic mass scale, but no obvious connection to confinement.
The quenched SU(2) fundamental scalar propagator in minimal Landau gauge
Maas, Axel
2016-07-01
It is a long-standing question whether the confinement of matter fields in QCD has an imprint in the (gauge-dependent) correlation functions, especially the propagators. As the analytic structure plays an important role in this question, high-precision data is necessary for lattice investigations. Also, it is interesting how this depends on the dimensionality of the theory. To make a study over a wide range of parameters possible this suggests to use scalar particles. This is done here: The propagator of a fundamental scalar is studied in two, three, and four dimensions in quenched SU(2) Yang-Mills theory in minimal Landau gauge, both in momentum space and position space. Particular emphasis is put on the effects of renormalization. The results suggest a quite intricate volume dependence and the presence of an intrinsic mass scale, but no obvious connection to confinement.
Gluon and Ghost Dynamics from Lattice QCD
Oliveira, O; Dudal, D; Silva, P J
2016-01-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
Gluon and Ghost Dynamics from Lattice QCD
Oliveira, O.; Duarte, A. G.; Dudal, D.; Silva, P. J.
2017-03-01
The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.
From Running Gluon Mass to Chiral Symmetry Breaking
Oliveira, Orlando; Dudal, D; Frederico, T; de Paula, W; Vandersickel, N
2011-01-01
The gluon propagator is one of the fundamental Green's functions of QCD. It is an essential ingredient in, for example, the modeling of the Schwinger-Dyson equation used to describe hadronic phenomenology. From the Landau gauge gluon propagator, computed with lattice QCD methods, we discuss its interpretation as a massive propagator and measure the gluon mass as a function of the momenta. Special attention is given to the mass at infrared scales. In the last part of the talk, the gluon mass and chiral symmetry breaking are related via an effective model for QCD.
Numerical Evaluation of the Bose-Ghost Propagator in Minimal Landau Gauge on the Lattice
Cucchieri, Attilio
2016-01-01
We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-Zwanziger approach and, as such, its infrared behavior could be relevant for the understanding of color confinement in Yang-Mills theories. Also, its nonzero value can be interpreted as direct evidence of BRST-symmetry breaking, which is induced when restricting the functional measure to the first Gribov region Omega. Our simulations are done for lattice volumes up to 120^4 and for physical lattice extents up to 13.5 fm. We investigate the infinite-volume and continuum limits.
Two-Loop Quantum Gravity Corrections to Cosmological Constant in Landau Gauge
Hamada, Ken-ji
2015-01-01
The anomalous dimensions of the Planck mass and the cosmological constant are calculated in a renormalizable quantum conformal gravity with a single dimensionless coupling, which is formulated using dimensional regularization on the basis of Hathrell's works for conformal anomalies. The dynamics of the traceless tensor field is handled by the Weyl action, while that of the conformal-factor field is described by the induced Wess-Zumino actions, including the Riegert action as the kinetic term. Loop calculations are carried out in Landau gauge in order to reduce the number of Feynman diagrams as well as to avoid some uncertainty. Especially, we calculate two-loop quantum gravity corrections to the cosmological constant. It suggests that there is a dynamical solution to the cosmological constant problem.
Numerical evaluation of the Bose-ghost propagator in minimal Landau gauge on the lattice
Cucchieri, Attilio; Mendes, Tereza
2016-07-01
We present numerical details of the evaluation of the so-called Bose-ghost propagator in lattice minimal Landau gauge, for the SU(2) case in four Euclidean dimensions. This quantity has been proposed as a carrier of the confining force in the Gribov-Zwanziger approach and, as such, its infrared behavior could be relevant for the understanding of color confinement in Yang-Mills theories. Also, its nonzero value can be interpreted as direct evidence of Becchi-Rouet-Stora-Tyutin-symmetry breaking, which is induced when restricting the functional measure to the first Gribov region Ω . Our simulations are done for lattice volumes up to 1204 and for physical lattice extents up to 13.5 fm. We investigate the infinite-volume and continuum limits.
Capri, M A L; Justo, I F; Palhares, L F; Sorella, S P
2014-01-01
In light of the development of the Gribov issue for pure Euclidean gauge theories and of the recent lattice measurement of soft breaking of the BRST invariance in Yang-Mills theories in the Landau gauge, we consider non-perturbative features in the gauge-interacting matter sector and their relation with general properties of the Faddeev-Popov operator. A signature for BRST breaking in the matter sector is proposed and a local and renormalizable framework is constructed, accommodating this signature and predicting non-perturbative matter propagators that are consistent with available lattice data for adjoint scalars and quarks.
Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge
Blum, Adrian L; Huber, Markus Q; Windisch, Andreas
2016-01-01
Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks (``unquenching'') change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the three-gluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.
On the influence of Gribov ambiguities in a class of nonlinear covariant gauges
Serreau, Julien; Tresmontant, Andréas
2015-01-01
We consider Yang-Mills theories in a recently proposed family of nonlinear covariant gauges that consistently deals with the issue of Gribov ambiguities. Such gauges provide a generalization of the Curci-Ferrari-Delbourgo-Jarvis gauges which can be formulated as an extremization procedure and might be implemented in numerical calculations. This would allow for nonperturbative studies of Yang-Mills correlators in a broad class of covariant gauges continuously connected to the well studied Landau gauge. We compute the ghost and gluon propagators in the continuum formulation at one-loop order in perturbation theory and we study their momentum dependence down to the deep infrared regime, with and without renormalization group improvement. In particular, we show that the theory admits infrared safe renormalization group trajectories with no Landau pole. Both the gluon and the ghost behave as massive fields at low energy, and the gluon propagator is transverse even away from the Landau gauge limit. We compare our r...
Gauge-invariant quark and gluon fields in QCD: dynamics, topology, and the Gribov ambiguity
Energy Technology Data Exchange (ETDEWEB)
Haller, Kurt E-mail: khaller@uconnvm.uconn.edu
2002-04-01
We review the implementation, in a temporal-gauge formulation of QCD, of the non-Abelian Gauss's law and the construction of gauge-invariant gauge and matter fields. We then express the QCD Hamiltonian in terms of these gauge-invariant operator-valued fields, and discuss the relation of this Hamiltonian and the gauge-invariant fields to the corresponding quantities in a Coulomb gauge formulation of QCD. We argue that a representation of QCD in terms of gauge-invariant quantities could be particularly useful for understanding low-energy phenomenology. We present the results of an investigation into the topological properties of the gauge-invariant fields, and show that there are Gribov copies of these gauge-invariant gauge fields, which are constructed in the temporal gauge, even though the conditions that give rise to Gribov copies do not obtain for the gauge-dependent temporal-gauge fields.
Farias, B.; Melo, J. Lemos de; Furtado, C.
2016-10-01
We study non-degenerate Landau levels of ultracold trapped atoms in two dimensions, subject to an U (1) × U(1) Abelian gauge field and a lateral confining potential along a specific direction. The Landau-level degeneracy is removed due to the presence of the lateral confining potential that makes the single-particle energy spectrum explicitly dependent on the transverse momentum. The effect of the finite size of the atomic cloud on the energy spectrum is to split each Landau level into a set of sub-levels, once the transverse momentum becomes quantized. We show that under appropriate conditions some energy sub-levels overlap leading to a residual degeneracy of the system. Through numerical calculations, we map the residual degeneracy as a function of the effective magnetic field strength. Finally, we briefly discuss future studies on the transport properties of this atomic system that can be considered an optically induced atomic waveguide.
Three-point vertex functions in Yang-Mills Theory and QCD in Landau gauge
Blum, Adrian L.; Alkofer, Reinhard; Huber, Markus Q.; Windisch, Andreas
2017-03-01
Solutions for the three-gluon and quark-gluon vertices from Dyson-Schwinger equations and the three-particle irreducible formalism are discussed. Dynamical quarks ("unquenching") change the three-gluon vertex via the quark-triangle diagrams which themselves include fully dressed quark-gluon vertex functions. On the other hand, the quark-swordfish diagram is, at least with the model used for the two-quark-two-gluon vertex employed here, of minor importance. For the leading tensor structure of the threegluon vertex the "unquenching" effect can be summarized for the nonperturbative part as a shift of the related dressing function towards the infrared.
Implementing the Gribov-Zwanziger framework in N=1 Super Yang-Mills in the Landau gauge
Capri, M A L; Guimaraes, M S; Justo, I F; Palhares, L F; Sorella, S P; Vercauteren, D
2014-01-01
The Gribov-Zwanziger framework accounting for the existence of Gribov copies is extended to N=1 Super Yang--Mills theories quantized in the Landau gauge. We show that the restriction of the domain of integration in the Euclidean functional integral to the first Gribov horizon can be implemented in a way to recover non-perturbative features of N=1 Super Yang--Mills theories, namely: the existence of the gluino condensate as well as the vanishing of the vacuum energy.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.
Mehta, Dhagash; Kastner, Michael
2011-06-01
We study the stationary points of what is known as the lattice Landau gauge fixing functional in one-dimensional compact U(1) lattice gauge theory, or as the Hamiltonian of the one-dimensional random phase XY model in statistical physics. An analytic solution of all stationary points is derived for lattices with an odd number of lattice sites and periodic boundary conditions. In the context of lattice gauge theory, these stationary points and their indices are used to compute the gauge fixing partition function, making reference in particular to the Neuberger problem. Interpreted as stationary points of the one-dimensional XY Hamiltonian, the solutions and their Hessian determinants allow us to evaluate a criterion which makes predictions on the existence of phase transitions and the corresponding critical energies in the thermodynamic limit.
Soft gluons are heavy and rowdy
Alkofer, R; Cotanch, S R; Fischer, C S; Llanes-Estrada, F J; Alkofer, Reinhard; Bicudo, Pedro; Cotanch, Stephen R.; Fischer, Christian S.; Llanes-Estrada, Felipe J.
2006-01-01
We study dynamical mass generation in pure Yang-Mills theory and report on a recently developed ansatz that exactly solves the tower of Dyson-Schwinger equations in Landau gauge at low Euclidean momentum, featuring enhanced gluon-gluon vertices, a finite ghost-gluon vertex in agreement with an old argument of Taylor, and an IR suppressed gluon propagator. This ansatz reinforces arguments in favor of the concept of a gluon mass gap at low momentum (although the minimum of the gluon's dispersion relation is not at zero momentum). As an application, we have computed the spectrum of oddballs, three-gluon glueballs with negative parity and C-parity. The three body problem is variationally solved employing the color density-density interaction of Coulomb gauge QCD with a static Cornell potential. Like their even glueball counterparts, oddballs fall on Regge trajectories with similar slope to the pomeron. However their intercept at t=0 is smaller than the omega Regge trajectory and therefore the odderon may only be ...
Energy Technology Data Exchange (ETDEWEB)
Buisseret, F., E-mail: fabien.buisseret@umons.ac.be [Service de Physique Nucleaire et Subnucleaire, Universite de Mons-UMONS, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium); Haute Ecole Louvain en Hainaut (HELHa), Chaussee de Binche 159, B-7000 Mons (Belgium); Lacroix, G., E-mail: gwendolyn.lacroix@umons.ac.be [Service de Physique Nucleaire et Subnucleaire, Universite de Mons-UMONS, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)
2011-11-17
We discuss the dependence of pure Yang-Mills equation of state on the choice of gauge algebra. In the confined phase, we generalize to an arbitrary simple gauge algebra Meyer's proposal of modeling the Yang-Mills matter by an ideal glueball gas in which the high-lying glueball spectrum is approximated by a Hagedorn spectrum of closed-bosonic-string type. Such a formalism is undefined above the Hagedorn temperature, corresponding to the phase transition toward a deconfined state of matter in which gluons are the relevant degrees of freedom. Under the assumption that the renormalization scale of the running coupling is gauge-algebra independent, we discuss about how the behavior of thermodynamical quantities such as the trace anomaly should depend on the gauge algebra in both the confined and deconfined phase. The obtained results compare favorably with recent and accurate lattice data in the su(3) case and support the idea that the more the gauge algebra has generators, the more the phase transition is of first-order type.
Further evidence for zero crossing on the three gluon vertex
Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.
2016-10-01
The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four-dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range 220-260 MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalization group improved perturbation theory.
Further Evidence For Zero Crossing On The Three Gluon Vertex
Duarte, Anthony G; Silva, Paulo J
2016-01-01
The three gluon one particle irreducible function is investigated using lattice QCD simulations over a large region of momentum in the Landau gauge for four dimensional pure Yang-Mills equations and the SU(3) gauge group. The results favor a zero crossing of the gluon form factor for momenta in the range $220 - 260$ MeV. This zero crossing is required to happen in order to have a properly defined set of Dyson-Schwinger equations. It is also shown that in the high momentum region the lattice results are compatible with the predictions of renormalisation group improved perturbation theory.
On two- and three-point functions of Landau gauge Yang-Mills theory
Huber, Markus Q
2013-01-01
We present results for the gluon and ghost propagators and the ghost-gluon vertex obtained from Dyson-Schwinger equations. In the zero temperature case we elaborate on the role of the three-gluon vertex and discuss a model that can capture its qualitative features like its anomalous dimensions and a zero crossing of the dressing function. Our results compare well with lattice data. At non-zero temperature we calculated the ghost propagator which agrees rather well with lattice results already within our simple truncation. These results are used to obtain the temperature dependence of the ghost-gluon vertex. We also explain why the ghost propagator does not react to the phase transition despite its direct coupling to the chromoelectric gluon.
Fermions, Mass-Gap and Landau Levels: Gauge invariant Hamiltonian for QCD in D=2+1
Agarwal, Abhishek
2015-01-01
A gauge-invariant reformulation of QCD in three spacetime dimensions is presented within a Hamiltonian formalism, extending previous work to include fermion fields in the adjoint and fundamental representations. A priori there are several ways to define the gauge-invariant versions of the fermions; a consistent prescription for choosing the fermionic variables is presented. The fermionic contribution to the volume element of the gauge orbit space and the gluonic mass-gap is computed exactly and this contribution is shown to be closely related to the mechanism for induction of Chern-Simons terms by parity-odd fermions. The consistency of the Hamiltonian scheme with known results on index theorems, Landau Levels and renormalization of Chern-Simons level numbers is shown in detail. We also comment on the fermionic contribution to the volume element in relation to issues of confinement and screening.
Energy Technology Data Exchange (ETDEWEB)
Capri, M.A.L., E-mail: caprimarcio@gmail.com; Fiorentini, D., E-mail: diegofiorentinia@gmail.com; Sorella, S.P., E-mail: silvio.sorella@gmail.com
2015-05-15
The inverse of the Faddeev–Popov operator plays a pivotal role within the Gribov–Zwanziger approach to the quantization of Euclidean Yang–Mills theories in Landau gauge. Following a recent proposal (Capri et al., 2014), we show that the inverse of the Faddeev–Popov operator can be consistently coupled to quark fields. Such a coupling gives rise to a local action while reproducing the behaviour of the quark propagator observed in lattice numerical simulations in the non-perturbative infrared region. By using the algebraic renormalization framework, we prove that the aforementioned local action is multiplicatively renormalizable to all orders.
Konstantinou, Georgios; Moulopoulos, Konstantinos
2017-05-01
By perceiving gauge invariance as an analytical tool in order to get insight into the states of the "generalized Landau problem" (a charged quantum particle moving inside a magnetic, and possibly electric field), and motivated by an early article that correctly warns against a naive use of gauge transformation procedures in the usual Landau problem (i.e. with the magnetic field being static and uniform), we first show how to bypass the complications pointed out in that article by solving the problem in full generality through gauge transformation techniques in a more appropriate manner. Our solution provides in simple and closed analytical forms all Landau Level-wavefunctions without the need to specify a particular vector potential. This we do by proper handling of the so-called pseudomomentum ěc {{K}} (or of a quantity that we term pseudo-angular momentum L z ), a method that is crucially different from the old warning argument, but also from standard treatments in textbooks and in research literature (where the usual Landau-wavefunctions are employed - labeled with canonical momenta quantum numbers). Most importantly, we go further by showing that a similar procedure can be followed in the more difficult case of spatially-nonuniform magnetic fields: in such case we define ěc {{K}} and L z as plausible generalizations of the previous ordinary case, namely as appropriate line integrals of the inhomogeneous magnetic field - our method providing closed analytical expressions for all stationary state wavefunctions in an easy manner and in a broad set of geometries and gauges. It can thus be viewed as complementary to the few existing works on inhomogeneous magnetic fields, that have so far mostly focused on determining the energy eigenvalues rather than the corresponding eigenkets (on which they have claimed that, even in the simplest cases, it is not possible to obtain in closed form the associated wavefunctions). The analytical forms derived here for these
Konstantinou, Georgios; Moulopoulos, Konstantinos
2017-02-01
By perceiving gauge invariance as an analytical tool in order to get insight into the states of the "generalized Landau problem" (a charged quantum particle moving inside a magnetic, and possibly electric field), and motivated by an early article that correctly warns against a naive use of gauge transformation procedures in the usual Landau problem (i.e. with the magnetic field being static and uniform), we first show how to bypass the complications pointed out in that article by solving the problem in full generality through gauge transformation techniques in a more appropriate manner. Our solution provides in simple and closed analytical forms all Landau Level-wavefunctions without the need to specify a particular vector potential. This we do by proper handling of the so-called pseudomomentum ěc {{K}} (or of a quantity that we term pseudo-angular momentum L z ), a method that is crucially different from the old warning argument, but also from standard treatments in textbooks and in research literature (where the usual Landau-wavefunctions are employed - labeled with canonical momenta quantum numbers). Most importantly, we go further by showing that a similar procedure can be followed in the more difficult case of spatially-nonuniform magnetic fields: in such case we define ěc {{K}} and L z as plausible generalizations of the previous ordinary case, namely as appropriate line integrals of the inhomogeneous magnetic field - our method providing closed analytical expressions for all stationary state wavefunctions in an easy manner and in a broad set of geometries and gauges. It can thus be viewed as complementary to the few existing works on inhomogeneous magnetic fields, that have so far mostly focused on determining the energy eigenvalues rather than the corresponding eigenkets (on which they have claimed that, even in the simplest cases, it is not possible to obtain in closed form the associated wavefunctions). The analytical forms derived here for these
Exploring dynamical gluon mass generation in three dimensions
Cornwall, John M
2015-01-01
In the d=3 gluon mass problem in pure-glue non-Abelian $SU(N)$ gauge theory we pay particular attention to the observed (in Landau gauge) violation of positivity for the spectral function of the gluon propagator. This causes a large bulge in the propagator at small momentum. Mass is defined through $m^{-2}=\\Delta (p=0)$, where $\\Delta(p)$ is the scalar function for the gluon propagator in some chosen gauge, it is not a pole mass and is generally gauge-dependent, except in the gauge-invariant Pinch Technique (PT). We truncate the PT equations with a new method called the vertex paradigm that automatically satisfies the QED-like Ward identity relating the 3-gluon PT vertex function with the PT propagator. The mass is determined by a homogeneous Bethe-Salpeter equation involving this vertex and propagator. This gap equation also encapsulates the Bethe-Salpeter equation for the massless scalar excitations, essentially Nambu-Goldstone fields, that necessarily accompany gauge-invariant gluon mass. The problem is to...
Carrington, M. E.; Hansson, T. H.; Yamagishi, H.; Zahed, I.
1989-03-01
We reexamine the various schemes for calculating the linear response (the retarded Green's function) of a hot gluon plasma. The problems related to gauge invariance are discussed in detail, and results in different gauges are compared. We also point out some issues related to the very definition of a thermal ensemble in the presence of unphysical degrees of freedom. By culculating the retarded Green's function directly in real time, we explicitly study the effects of unphysical degrees of freedom in different gauges. Although there appears to be no unique way to define the response function, we find that several schemes can be questioned on formal grounds and that use of the background-field gauge (BFG) is the most satisfactory in this respect. We discuss two proposals to fix the gauge parameter (α) dependence in the BFG response function, the Vilkovisky-DeWitt effective action corresponding to the choice α = 0 (background Landau gauge), and the "gauge-invariant propagator" of Cornwall et al. corresponding to α = 1 (background Feynman gauge).
Particles in non-Abelian gauge potentials: Landau problem and insertion of non-Abelian flux
Estienne, B.; Haaker, S.M.; Schoutens, K.
2011-01-01
In this paper, we study charged spin-1/2 particles in two dimensions, subjected to a perpendicular non-Abelian magnetic field. Specializing to a choice of vector potential that is spatially constant but non-Abelian, we investigate the Landau level spectrum in planar and spherical geometry, paying pa
Ghost-gluon and ghost-quark bound states and their role in BRST quartets
Alkofer, Natalia
2011-01-01
A non-perturbative version of the BRST quartet mechanism in infrared Landau gauge QCD is proposed for transverse gluons and quarks. Based on the positivity violation for transverse gluons the content of the respective non-perturbative BRST quartet is derived. To identify the gluon's BRST-daughter and second parent state, a truncated Bethe-Salpeter equation for the gluon-(anti-)ghost bound state is investigated. We comment shortly on several equivalent forms of this equation. Repeating the same construction for quarks leads to a truncated Bethe-Salpeter equation for a fundamentally charged quark-(anti-)ghost bound state. It turns out that a cardinal input to this equation is given by the fully dressed quark-gluon vertex, and that it is indispensable to dress the quark-gluon vertex in this equation in order to obtain a consistent truncation.
Energy Technology Data Exchange (ETDEWEB)
Smiseth, Jo
2005-07-01
The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)
Coulomb and Landau Gauge Fixing in GPUs using CUDA and MILC
Cardoso, Nuno
2014-01-01
In this work, we present the GPU implementation of the overrelaxation and steepest descent method with Fourier acceleration methods for Laudau and Coulomb gauge fixing using CUDA for SU(N) with N>2. A multi-GPU implementation of the overrelaxation method is also presented using MPI and CUDA. The GPU performance was measured on BlueWaters and compared against the gauge fixing of the CPU MILC code.
Konstantinou, Georgios; Moulopoulos, Konstantinos
2016-11-01
Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.
Gluon Propagator in Fractional Analytic Perturbation Theory
Allendes, Pedro; Cvetič, Gorazd
2014-01-01
We consider the gluon propagator in the Landau gauge at low spacelike momenta and with the dressing function $Z(Q^2)$ at the two-loop order. We incorporate the nonperturbative effects by making the (noninteger) powers of the QCD coupling in the dressing function $Z(Q^2)$ analytic (holomorphic) via the Fractional Analytic Perturbation Theory (FAPT) model, and simultaneously introducing the gluon dynamical mass in the propagator as motivated by the previous analyses of the Dyson-Schwinger equations. The obtained propagator has behavior compatible with the unquenched lattice data ($N_f=2+1$) at low spacelike momenta $0.4 \\ {\\rm GeV} < Q \\lesssim 10$ GeV. We conclude that the removal of the unphysical Landau singularities of the powers of the coupling via the (F)APT prescription, in conjunction with the introduction of the dynamical mass $M \\approx 0.62$ GeV of the gluon, leads to an acceptable behavior of the propagator in the infrared regime.
Schwinger mechanism in linear covariant gauges
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2017-02-01
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansätze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansätze are compatible with the existence of nontrivial solutions. When such Ansätze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic "zero crossing," while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
Nonperturbative study of the four gluon vertex
Binosi, D; Papavassiliou, J
2014-01-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale $p$ is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergen...
Energy Technology Data Exchange (ETDEWEB)
Sugano, K.
1986-09-01
The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed.
Gluon and ghost propagator studies in lattice QCD at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Aouane, Rafik
2013-04-29
Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.
Directory of Open Access Journals (Sweden)
I.V. Anikin
2015-12-01
Full Text Available In this letter, we revise the QED gauge invariance for the hadron tensor of Drell–Yan type processes with the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon poles in the correlators 〈ψ¯γ⊥A+ψ〉 related traditionally to dT(x,x/dx. As a result, these terms disappear from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing the corresponding light-cone Dirac algebra.
The gluon mass generation mechanism: a concise primer
Aguilar, A C; Papavassiliou, J
2015-01-01
We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution...
Renormalization aspects of N = 1 Super Yang-Mills theory in the Wess-Zumino gauge
Energy Technology Data Exchange (ETDEWEB)
Capri, M.A.L.; Granado, D.R.; Guimaraes, M.S.; Justo, I.F.; Sorella, S.P.; Vercauteren, D. [UERJ-Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Instituto de Fisica, Maracana, Rio de Janeiro (Brazil); Mihaila, L. [Karlsruhe Institute of Technology (KIT), Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)
2014-04-15
The renormalization of N = 1 Super Yang-Mills theory is analyzed in the Wess-Zumino gauge, employing the Landau condition. An all-orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field, and gluino renormalization. The nonrenormalization theorem of the gluon-ghost-antighost vertex in the Landau gauge is shown to remain valid in N = 1 Super Yang-Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three-loop calculation. (orig.)
Confined gluon from Minkowski space continuation of PT-BFM SDE solution
Sauli, Vladimir
2011-01-01
Recent lattice studies exhibit infrared finite effective QCD charges. Corresponding gluon propagator in Landau gauge is finite and nonzero, suggesting a mechanism of dynamical gluon mass generation is in the operation. In this paper, the analytical continuation of the Euclidean (spacelike) Pinch Technique-Background Field Method (PT-BFM) solution of Schwinger-Dyson equation for gluon propagator to the timelike region of $q^2$ is found. We found that in some cases such continuation exists and is in rather good agreement with a generalized Lehman representation, while there is large parameter space for which we observe moderate deviations from assumed analyticity. For those solutions which are in best agreement with analyticity of Stieltjes transformation, an unexpected behaviour is uncovered. Albeit infrared Euclidean space solution naively looks like single scale "massive" propagator, there are more complicated singularities in the timelike axis of momenta. The spectrum does not correspond to the delta functi...
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta
2016-01-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment of quarks (ACM) by perturbative calculations at one loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field $B_{\\mu \
Schwinger mechanism in linear covariant gauges
Aguilar, A C; Papavassiliou, J
2016-01-01
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully-dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modelled by means of certain physically motivated Ans\\"atze. The gauge-dependent terms contributing to this ke...
Ducati, M B G
1993-01-01
A QCD-Pomeron composed by two non-perturbative gluons with a dynamically generated mass, is constructed in a gauge invariant way. The gluon propagator is infrared-finite. The model properly describes data on elastic scattering, exclusive $\\rho$ production in deep inelastic scattering (DIS) and the $J/\\Psi$-nucleon total cross-section in terms of a single gluon mass $m_g\\simeq0.37$~GeV. The total cross sections of hadrons with small radii, such as $J/\\Psi$, are very sensitive on the effective gluon mass.
Non-perturbative treatment of the linear covariant gauges by taking into account the Gribov copies
Energy Technology Data Exchange (ETDEWEB)
Capri, M.A.L.; Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Pereira, A.D.; Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)
2015-10-15
In this paper, a proposal for the restriction of the Euclidean functional integral to a region free from infinitesimal Gribov copies in linear covariant gauges is discussed. An effective action, akin to the Gribov-Zwanziger action of the Landau gauge, is obtained which implements the aforementioned restriction. Although originally non-local, this action can be cast in local form by introducing auxiliary fields. As in the case of the Landau gauge, dimension two condensates are generated at the quantum level, giving rise to a refinement of the action which is employed to obtain the tree-level gluon propagator in linear covariant gauges. A comparison of our results with those available from numerical lattice simulations is also provided. (orig.)
More on the non-perturbative Gribov-Zwanziger quantization of linear covariant gauges
Capri, M A L; Fiorentini, D; Guimaraes, M S; Justo, I F; Mintz, B W; Palhares, L F; Pereira, A D; Sobreiro, R F; Sorella, S P
2015-01-01
In this paper, we discuss the gluon propagator in the linear covariant gauges in $D=2,3,4$ Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for $D=3,4$, the gluon propagator displays a massive (decoupling) behaviour, while for $D=2$, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.
Unquenched Effects and Quark Mass Dependence of Lattice Gluon Propagator in Infrared Region
Institute of Scientific and Technical Information of China (English)
ZHANG Yan-Bin; PING Jia-Lun; LU Xiao-Fu; ZONG Hong-Shi
2008-01-01
In this paper,the gluon propagator in Landau gauge has been studied on a lattice,including the quenched and the unquenehed one.The small geometry size of lattice we use is 163×32,and the big one is 203×64.For the quenched approximation,we fit the numerical results and give a little different fitting values.We also obtain unquenched effects by comparing the gluon propagator resulting from the quenched and unquenehed configurations,for both the two-flavor and three-flavor cases.For the unquenched configurations,an obvious quark mass dependence has not been found in the small quark mass case,but is found in the three-flavor case when the quark mass is big.
Gilani, A H S
2004-01-01
It is claimed that only one gluon is massless and the other seven gluons are massive. Out of eight gluons, six are colored and two are neutral. Among neutral gluons, one is massless and other one is massive. Massive neutral gluon is heavier than the colored gluons. Gluons can only be predicted by set theory but not by SU(3).
On-shell two-loop three-gluon vertex
Davydychev, A I
1999-01-01
The two-loop three-gluon vertex is calculated in an arbitrary covariant gauge, in the limit when two of the gluons are on the mass shell. The corresponding two-loop results for the ghost-gluon vertex are also obtained. It is shown that the results are consistent with the Ward-Slavnov-Taylor identities.
Kugo-Ojima confinement and QCD Green's functions in covariant gauges
Alkofer, R; Von Smekal, L; Alkofer, Reinhard; Fischer, Christian S.; Smekal, Lorenz von
2003-01-01
In Landau gauge QCD the Kugo-Ojima confinement criterion and its relation to the infrared behaviour of the gluon and ghost propagators are reviewed. It is demonstrated that the realization of this confinement criterion (which is closely related to the Gribov-Zwanziger horizon condition) results from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson--Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement, also quantitatively, with corresponding lattice data obtained recently. The resulting running coupling approaches a fixed point in the infrared, $\\alpha(0) = 8.915/N_c$. Solutions for the coupled system of Dyson--Schwinger equations for the quark, gluon and ghost propagators are presented. Dynamical generation of quark masses and thus spontaneous breaking of chiral symmetry takes place. In the quenched approximation the quark propag...
Gluon chains and the quark-antiquark potential
Greensite, J
2009-01-01
The flux tube between a quark and an antiquark in Coulomb gauge is imagined in the gluon-chain model as a sequence of constituent gluons bound together by Coulombic nearest-neighbor interactions. We diagonalize the transfer matrix in SU(2) lattice gauge theory in a finite basis of states containing a static quark-antiquark pair together with zero, one, and two gluons in Coulomb gauge. We show that while the string tension of the color-Coulomb potential (obtained from the zero-gluon to zero-gluon element of the transfer matrix) overshoots the true asymptotic string tension by a factor of about three, the inclusion of a few states with constituent gluons reduces the discrepancy considerably. The minimal energy eigenstate of the transfer matrix in the zero-, one-, and two-gluon basis exhibits a linearly rising potential with the string tension only about 1.4 times larger than the asymptotic one.
The impact of the ghost-gluon vertex on the ghost Schwinger-Dyson equations
Aguilar, A C
2014-01-01
We derive an approximate dynamical equation for the form-factor of the ghost-gluon vertex that contributes to the Schwinger-Dyson equation of the ghost dressing function in the Landau gauge. In particular, we consider the "one-loop dressed" approximation of the corresponding equation governing the evolution of the ghost-gluon vertex, using fully dressed propagators and tree-level vertices in the relevant diagrams. Within this approximation, we then compute the aforementioned form factor for two special kinematic configurations, namely the soft gluon limit, in which the momentum carried by the gluon leg is zero, and the soft ghost limit, where the momentum of the anti-ghost leg vanishes. The results obtained display a considerable departure from the tree-level value, and are in rather good agreement with available lattice data. We next solve numerically the coupled system formed by the equation of the ghost dressing function and that of the the vertex form factor, in the soft ghost limit. Our results demonstra...
Graviton and gluon scattering from first principles
Boels, Rutger H
2016-01-01
Graviton and gluon scattering are studied from minimal physical assumptions such as Poincare and gauge symmetry as well as unitarity. The assumptions lead to an interesting and surprisingly restrictive set of linear equations. This shows gluon and graviton scattering to be related in many field and string theories, explaining and extending several known results. By systematic analysis exceptional graviton scattering amplitudes are derived which in general dimensions can not be related to gluon amplitudes. The simplicity of the formalism guarantees wide further applicability to gauge and gravity theories.
Gauge Fixing on the Lattice without Ambiguity
Vink, Jeroen C; 10.1016/0370-2693(92)91372-G
2009-01-01
A new gauge fixing condition is discussed, which is (lattice) rotation invariant, has the `smoothness' properties of the Landau gauge but can be efficiently computed and is unambiguous for almost all lattice gauge field configurations.
Gluon Wavefunctions and Amplitudes on the Light-Front
Cruz-Santiago, Christian A
2013-01-01
We investigate the tree level multi-gluon components of the gluon light cone wavefunctions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wavefunctions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wavefunction as well as the fragmentation function is obtained. Furthermore we analyze the 2 to N tree-level gluon scattering in the framework of light-front perturbation theory and we demonstrate that the amplitude for this process can be obtained from the 1 to N+1 gluon wavefunction. Finally, we demonstrate that our results for selected helicity configurations are equivalent to the Parke-Taylor amplitudes.
Signals of Confinement in the Dyson-Schwinger Equation for the Gauge Boson Propagator
Mader, Valentin
2014-01-01
In the first part of this thesis a coupled truncated set of Dyson-Schwinger equations (DSEs) including the one for the gluon-propagator is solved self-consistently over the whole momentum range. In Landau gauge the truncation of the coupled set of DSEs for the ghost and gluon propagators is improved by the first full inclusion of the sunset diagram. A solution method which avoids all overlapping divergences is presented. In the Maximal Abelian gauge a truncation is developed with respectively one infrared and one ultraviolet leading diagram included. A first solution of the ghost equation is presented. In the second part generalizations of the Kugo-Ojima confinement scenario to other gauges than the linear covariant gauge are investigated. In the generalized covariant gauge no contradiction is found by using a Faddeev-Popov conjugation invariant assignment of the asymptotic fields. In the last section a gauge-independent generalized criterion is developed which allows for the identification of the Coulomb, Hi...
Just how different are SU(2) and SU(3) Landau propagators in the IR regime?
Cucchieri, A; Oliveira, O; Silva, P J
2007-01-01
The infrared behavior of gluon and ghost propagators in Yang-Mills theories is of central importance for understanding quark and gluon confinement in QCD. While simulations of pure SU(3) gauge theory correspond to the physical case in the limit of infinite quark mass, the SU(2) case (i.e. pure two-color QCD) is usually employed as a simplification, in the hope that qualitative features be the same as for the SU(3) case. Here we carry out the first comparative study of lattice (Landau) propagators for these two gauge groups. Our data were especially produced with equivalent lattice parameters in order to allow a careful comparison of the two cases. We find very good agreement between SU(2) ans SU(3) propagators, showing that in the IR limit the equivalence of the two cases is quantitative. Our results seem to confirm the prediction from Schwinger-Dyson equations that the infrared exponents are independent of the gauge group SU(N_c).
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Ward identities for amplitudes with reggeized gluons
Energy Technology Data Exchange (ETDEWEB)
Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2012-05-15
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Constituent gluons and the static quark potential
Greensite, Jeff
2015-01-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Constituent gluons and the static quark potential
Energy Technology Data Exchange (ETDEWEB)
Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.
Hydrodynamics from Landau initial conditions
Energy Technology Data Exchange (ETDEWEB)
Sen, Abhisek [University of Tennessee, Knoxville (UTK); Gerhard, Jochen [Frankfurt Institute for Advanced Studies (FIAS), Germany; Torrieri, Giorgio [Universidade Estadual de Campinas, Instituto de Física " Gleb Wataghin" (IFGW), Sao Paulo, Brazil; Read jr, Kenneth F. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Wong, Cheuk-Yin [ORNL
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Unquenching effects in the quark and gluon propagator
Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo
2007-11-01
In this work we examine the fat-link irrelevant clover (FLIC) overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole-improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalization function, and gluon dressing function in the infrared. The ultraviolet physics is unaffected.
Renormalization of dimension 6 gluon operators
Directory of Open Access Journals (Sweden)
HyungJoo Kim
2015-09-01
Full Text Available We identify the independent dimension 6 twist 4 gluon operators and calculate their renormalization in the pure gauge theory. By constructing the renormalization group invariant combinations, we find the scale invariant condensates that can be estimated in nonperturbative calculations and used in QCD sum rules for heavy quark systems in medium.
Gauge engineering and propagators
Maas, Axel
2016-01-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Gauge engineering and propagators
Maas, Axel
2017-03-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.
2016-07-01
The dependence of the Landau gauge two-point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to 1284 and for two lattice spacings 0.10 fm and 0.06 fm corresponding to volumes of ˜(13 fm )4 and ˜(8 fm )4 , respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing a in the infrared region, with the gluon propagator having a stronger dependence on a compared to the ghost propagator. In what concerns the strong coupling constant αs(p2), as defined from gluon and ghost two-point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to ˜1 GeV .
Duarte, Anthony G; Silva, Paulo J
2016-01-01
The dependence of the Landau gauge two point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to $128^4$ and for two lattice spacings $0.10$ fm and $0.06$ fm corresponding to volumes of $\\sim$ (13 fm)$^4$ and $\\sim$ (8 fm)$^4$, respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing $a$ in the infrared region, with the gluon propagator having a stronger dependence on $a$ compared to the ghost propagator. In what concerns the strong coupling constant $\\alpha_s (p^2)$, as defined from gluon and ghost two point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to $\\sim 1$ GeV.
Renormalization group analysis of the gluon mass equation
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2014-04-01
We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansätze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called "power-law" running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.
Gluon transverse momentum dependent correlators in polarized high energy processes
Boer, Daniel; van Daal, Tom; Mulders, Piet J; Signori, Andrea; Zhou, Yajin
2016-01-01
We investigate the gluon transverse momentum dependent correlators as Fourier transform of matrix elements of nonlocal operator combinations. At the operator level these correlators include both field strength operators and gauge links bridging the nonlocality. In contrast to the collinear PDFs, the gauge links are no longer unique for transverse momentum dependent PDFs (TMDs) and also Wilson loops lead to nontrivial effects. We look at gluon TMDs for unpolarized, vector and tensor polarized targets. In particular a single Wilson loop operators become important when one considers the small-x limit of gluon TMDs.
Dudal, David; Baulieu, Laurent; Sorella, Silvio P; Guimaraes, Marcelo S; Huber, Markus Q; Oliveira, Orlando; Zwanziger, Daniel
2010-01-01
During recent years, a good agreement was found between the analytical derivation and the numerical simulation of the Landau gauge gluon and ghost propagators. We mention the Schwinger-Dyson and Gribov-Zwanziger formalism for the analytical work. Although the agreement between several approaches is nice, these propagators do not correspond to the relevant physical degrees of freedom. In the case of pure gauge theories, one should start to study the glueball correlators. We shall try to explain why it looks like a hard challenge to go from the unphysical to the physical propagators in the case of the Gribov-Zwanziger theory (but similar conclusions might hold for other approaches giving similar propagators).
Hofmann, A
2006-01-01
Abstract Landau damping is the suppression of an instability by a spread of frequencies in the beam. It is treated here from an experimental point of view. To introduce the concept we consider a set of oscillators having a spread in resonant frequencies !r and calculate the response of their there center-of-mass to an external driving force. A pulse excitation gives each oscillator the same initial velocity but, due to their different frequencies, the center-of-mass motion will decay with time. A harmonic excitation with a frequency ! being inside the distribution in !r results in oscillators responding with different phases and only a few of them having !r ! will grow to large amplitudes and absorb energy. The oscillator response to a pulse excitation, called Green function, and the one to a harmonic excitation, called transfer function, serve as a basis to calculate Landau damping which suppresses an instability at infinitesimal level before any large amplitudes are reached. This is illustrated by a negativ...
Lenz, F
2009-01-01
By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.
Stumpf, H.
1987-03-01
The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Gluon scattering amplitudes at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
The LPM effect in sequential bremsstrahlung: 4-gluon vertices
Arnold, Peter; Iqbal, Shahin
2016-01-01
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper completes the calculation of the rate for real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; $\\hat q$ approximation; and large $N_c$) by now including processes involving 4-gluon vertices.
Double-soft behavior for scalars and gluons from string theory
Energy Technology Data Exchange (ETDEWEB)
Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Instituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2015-12-22
We compute the leading double-soft behavior for gluons and for the scalars obtained by dimensional reduction of a higher dimensional pure gauge theory, from the scattering amplitudes of gluons and scalars living in the world-volume of a Dp-brane of the bosonic string. In the case of gluons, we compute both the double-soft behavior when the two soft gluons are contiguous as well as when they are not contiguous. From our results, that are valid in string theory, one can easily get the double-soft limit in gauge field theory by sending the string tension to infinity.
Effective "Gluon" Dynamics in a Stochastic Vacuum
Magpantay, J A
2002-01-01
Using the new scalar and vector degrees of freedom derived from the non-linear gauge condition (grad-dot-D)(grad-dot-A)=0, we show that the effective dynamics of the vector fields (identified as ``gluons'') in the stochastic vacuum defined by the scalars result in the vector fields acquiring a mass. We also find the vector fields losing their self-interactions.
Silva, P J; Dudal, D; Bicudo, P; Cardoso, N
2016-01-01
The gluon propagator is investigated at finite temperature via lattice simulations. In particular, we discuss its interpretation as a massive-type bosonic propagator. Moreover, we compute the corresponding spectral density and study the violation of spectral positivity. Finally, we explore the dependence of the gluon propagator on the phase of the Polyakov loop.
Spectral functions in finite temperature SU(3) gauge theory and applications to transport phenomena
Energy Technology Data Exchange (ETDEWEB)
Haas, Michael
2014-12-10
In this thesis, gluon spectral functions in SU(3) gauge theory are calculated at finite temperature. The temperature range covers the confining regime below T{sub c} to the high temperature regime, where perturbation theory is applicable. The numerical tool is the Maximum Entropy Method (MEM) employing euclidean, non-perturbative, Landau gauge gluon propagators, obtained with the Functional Renormalisation Group and Lattice QCD, as input. The spectral function is related to the propagators by an integral equation. MEM is a complex multidimensional optimisation algorithm to invert such integral equations, corresponding to an analytic continuation of the numerical data. A continuation of a discreet set of data cannot be unambiguous. The occuring ambiguities are resolved by introducing a priori knowledge of the asymptotic shape of the spectral function, in the form of a model function. Thereby, MEM simultaneously optimizes the spectral function to the input propagators and the model, leading to a unique model-dependent solution. Standard-MEM assumes positive definite spectral functions, whereas gluons show a violation of positivity in the spectral function, due to confinement. Therefore, an extended-MEM algorithm is proposed. The main application of this thesis is the calculation of the shear viscosity in units of the entropy density. A Kubo relation connects shear viscosity to the low frequency limit of a certain energy-momentum tensor correlation function. For this correlation function a loop representation of finite order in terms of gluon spectral functions is derived. That allows to calculate (η)/(s) from first principles in SU(3) for the first time for arbitrary temperatures. Further, a mapping of the SU(3) results for (η)/(s) to QCD is proposed.
QCD Factorization, Wilson Loop Space and Unintegrated Gluon Distributions
Cherednikov, Igor O.
2017-03-01
Currently available operator definitions of gauge-invariant unintegrated (transverse momentum dependent) gluon density function available are briefly overviewed, with emphasis on the structure of the associated Wilson lines. A gauge-invariant generating function with maximal path-dependence is proposed, which, as distinct from the common methodology, is based on arbitrary Wilson loops with no reference to any factorization scheme. After the local area differentiation defined in the Wilson loop space, this object can be used to define fully unintegrated gluon distribution functions in a way potentially suitable for the lattice simulations.
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Non-transversality of the gluon self-energy and the DDT analysis
Konetschny, W.
1982-12-01
It is found that the one-loop corrections to the propagator induced by the non-transversality of the gluon self energy in the planar gauge are not kinematically suppressed in the leading logarithm approximation. As a consequence the multiplicative renormalization of the bare gluon propagator assumed by Dokshitzer, Dyakonov and Troyan is lost.
Unified description of seagull cancellations and infrared finiteness of gluon propagators
Aguilar, A C; Figueiredo, C T; Papavassiliou, J
2016-01-01
We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge-invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge-independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of 'seagull cancellations' among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such p...
Effects of dynamical FLIC fermions in the quark and gluon propagator
Kamleh, W.; Bowman, P. O.; Leinweber, D. B.; Williams, A. G.; Zhang, J.-B.
2006-11-01
In this work we examine the FLIC overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalisation function and gluon dressing function in the infrared. The ultraviolet physics is unaffected.
Universal Landau Pole at the Planck scale
Energy Technology Data Exchange (ETDEWEB)
Andrianov, Alexander A. [V.A.Fock Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg, Russia and Departament ECM and Insitut de Ciencies del Cosmos(ICC), University of Barcelona, Barcelona (Spain); Espriu, Domenec [Departament ECM and Insitut de Ciencies del Cosmos(ICC), University of Barcelona, Barcelona (Spain); Kurkov, Maxim A. [Dipartimento di Fisica, Universita di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Lizzi, Fedele [Dipartimento di Fisica, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli, Italia and Departament ECM and Insitut de Ciencies del Cosmos(ICC), University of Barcelona, Barcelona (Italy)
2014-07-23
The concept of quantum gravity entails that the usual geometry loses its meaning at very small distances and therefore the grand unification of all gauge interactions with the property of asymptotic freedom happens to be questionable. We propose an unification of all gauge interactions in the form of an “Universal Landau Pole” (ULP), at which all gauge couplings diverge (or, better to say, become very strong). We show that the Higgs quartic coupling also substantially increases whereas the Yukawa couplings tend to zero. Such a singular (or strong coupling) unification is obtained after adding to the Standard Model matter more fermions with vector gauge couplings and hypercharges identical to the SM fermions. The influence of new particles also may prevent the Higgs quartic coupling from crossing zero, thus avoiding the instability (or metastability) of the SM vacuum. As well this fermion pattern opens a way to partially solve the hierarchy problem between masses of quarks and leptons.
Aitchison, Ian Johnston Rhind; McNeill, D B
1997-01-01
By applying an inverse Landau-Khalatnikov transformation, connecting (resummed) Schwinger-Dyson treatments in non-local and Landau gauges of $QED_3$, we derive the infrared behaviour of the wave-function renormalization in the Landau gauge, and the associated critical exponents in the normal phase of the theory (no mass generation). The result agrees with the one conjectured in earlier treatments. The analysis involves an approximation, namely an expansion of the non-local gauge in powers of momenta in the infrared. This approximation is tested by reproducing the critical number of flavours necessary for dynamical mass generation in the chiral-symmetry-broken phase of $QED_3$.
Two-Loop Gluon to Gluon-Gluon Splitting Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Bern, Z.
2004-04-30
Splitting amplitudes are universal functions governing the collinear behavior of scattering amplitudes for massless particles. We compute the two-loop g {yields} gg splitting amplitudes in QCD, N = 1, and N = 4 super-Yang-Mills theories, which describe the limits of two-loop n-point amplitudes where two gluon momenta become parallel. They also represent an ingredient in a direct x-space computation of DGLAP evolution kernels at next-to-next-to-leading order. To obtain the splitting amplitudes, we use the unitarity sewing method. In contrast to the usual light-cone gauge treatment, our calculation does not rely on the principal-value or Mandelstam-Leibbrandt prescriptions, even though the loop integrals contain some of the denominators typically encountered in light-cone gauge. We reduce the integrals to a set of 13 master integrals using integration-by-parts and Lorentz invariance identities. The master integrals are computed with the aid of differential equations in the splitting momentum fraction z. The {epsilon}-poles of the splitting amplitudes are consistent with a formula due to Catani for the infrared singularities of two-loop scattering amplitudes. This consistency essentially provides an inductive proof of Catani's formula, as well as an ansatz for previously-unknown 1/{epsilon} pole terms having non-trivial color structure. Finite terms in the splitting amplitudes determine the collinear behavior of finite remainders in this formula.
Strongly Coupled Quark Gluon Plasma (SCQGP)
Bannur, V M
2006-01-01
We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems.
Ayala, A P; Levin, E M
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.
Directory of Open Access Journals (Sweden)
Boer Daniël
2016-01-01
Full Text Available A high-energy Electron-Ion Collider (EIC would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gluons inside transversely polarized protons, the so-called gluon Sivers effect. The inherent process dependence of these distributions can be studied by comparing to similar, but often complementary observables at LHC.
Solving the Ghost-Gluon System of Yang-Mills Theory on GPUs
Hopfer, Markus; Haase, Gundolf
2012-01-01
We solve the ghost-gluon system of Yang-Mills theory using Graphics Processing Units (GPUs). Working in Landau gauge, we use the Dyson-Schwinger formalism for the mathematical description as this approach is well-suited to directly benefit from the computing power of the GPUs. With the help of a Chebyshev expansion for the dressing functions and a subsequent appliance of a Newton-Raphson method, the non-linear system of coupled integral equations is linearized. The resulting Newton matrix is generated in parallel using OpenMPI and CUDA(TM). Our results show, that it is possible to cut down the run time by two orders of magnitude as compared to a sequential version of the code. This makes the proposed techniques well-suited for Dyson-Schwinger calculations on more complicated systems where the Yang-Mills sector of QCD serves as a starting point. In addition, the computation of Schwinger functions using GPU devices is studied.
Fermion propagator in quenched QED3 in the light of the Landau-Khalatnikov-Fradkin tranformation
Energy Technology Data Exchange (ETDEWEB)
Bashir, A. [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-82, Morelia, Michoacan 58040 (Mexico); Raya, A. [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Col. Villa San Sebastian, Colima, Colima 28045 (Mexico)
2005-04-15
We study the gauge dependence of the fermion propagator in quenched QED3, with and without dynamical symmetry breaking, in the light of its Landau-Khalatnikov-Fradkin transformation (LKFT). In the former case, starting with the massive bare propagator in the Landau gauge, we obtain non perturbative propagator in an arbitrary covariant gauge. Carrying out a perturbative expansion of this result, it yields correct wavefunction renormalization and the mass function up to the terms independent of the gauge parameter. Also, we obtain valuable information for the higher order perturbative expansion of the propagator. As for the case of dynamical chiral symmetry breaking, we start by approximating the numerical solution in Landau gauge in the rainbow approximation in terms of analytic functions. We then use LKFT to obtain the dynamically generated fermion propagator in an arbitrary covariant gauge. We find that the results obtained have all the required qualitative features. We also go beyond the rainbow and encounter similar desirable qualitative features.
Indian Academy of Sciences (India)
C P Singh
2000-04-01
Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.
Gluon TMDs in the small-$x$ limit
van Daal, Tom
2016-01-01
In high-energy scattering processes involving two or more hadrons one can measure observables that are sensitive to partonic transverse momentum, which is encoded in so-called transverse momentum dependent (TMD) parton distribution functions (PDFs), also called TMDs. These functions correspond to Fourier transforms of matrix elements that contain process-dependent gauge links. As the energy associated to the collision process increases, one becomes more sensitive to the small-$x$ region which is dominated by gluon rather than quark TMDs. In this paper we study the leading-twist gluon TMDs in the small-$x$ limit for the dipole-type gauge link structure, for both unpolarized and vector polarized hadrons. In the limit $x\\to0$, the gluon-gluon correlator reduces to a correlator that consists of a single Wilson loop. This is used to obtain a simple description of gluon TMDs in the small-$x$ region: some of the functions vanish, while others become proportional to each other.
2008-01-01
Telefilm vene füüsikust Lev Landaust "Minu mees - geenius" ("Moi muzh - genii"), Cora Landau memuaaride raamatu "Kuidas me elasime" ("Kak mõ zhili") ekraniseering, on enne esilinastust tekitanud Venemaal skandaali
2008-01-01
Telefilm vene füüsikust Lev Landaust "Minu mees - geenius" ("Moi muzh - genii"), Cora Landau memuaaride raamatu "Kuidas me elasime" ("Kak mõ zhili") ekraniseering, on enne esilinastust tekitanud Venemaal skandaali
High-Dimensional Topological Insulators with Quaternionic Analytic Landau Levels
Li, Yi; Wu, Congjun
2013-05-01
We study the three-dimensional topological insulators in the continuum by coupling spin-1/2 fermions to the Aharonov-Casher SU(2) gauge field. They exhibit flat Landau levels in which orbital angular momentum and spin are coupled with a fixed helicity. The three-dimensional lowest Landau level wave functions exhibit the quaternionic analyticity as a generalization of the complex analyticity of the two-dimensional case. Each Landau level contributes one branch of gapless helical Dirac modes to the surface spectra, whose topological properties belong to the Z2 class. The flat Landau levels can be generalized to an arbitrary dimension. Interaction effects and experimental realizations are also studied.
Nayak, Tapan; Sarkar, Sourav
2014-01-01
At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.
Energy Technology Data Exchange (ETDEWEB)
Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)
1996-10-01
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.
Gauge-fixing on the lattice via orbifolding
Mehta, Dhagash; Daleo, Noah S.; Hauenstein, Jonathan D.; Seaton, Christopher
2014-09-01
When fixing a covariant gauge, most popularly the Landau gauge, on the lattice, one encounters the Neuberger 0/0 problem, which prevents one from formulating a Becchi-Rouet-Stora-Tyutin symmetry on the lattice. Following the interpretation of this problem in terms of Witten-type topological field theory and using the recently developed Morse theory for orbifolds, we propose a modification of the lattice Landau gauge via orbifolding of the gauge-fixing group manifold and show that this modification circumvents the orbit-dependence issue and hence can be a viable candidate for evading the Neuberger problem. Using algebraic geometry, we also show that though the previously proposed modification of the lattice Landau gauge via stereographic projection relies on delicate departure from the standard Morse theory due to the noncompactness of the underlying manifold, the corresponding gauge-fixing partition function turns out to be orbit independent for all the orbits except in a region of measure zero.
Holographic Dual of the Lowest Landau Level
Blake, Mike; Tong, David; Wong, Kenny
2012-01-01
We describe the lowest Landau level of a quantum electron star in AdS4. In the presence of a suitably strong magnetic field, the dynamics of fermions in the bulk is effectively reduced from four to two dimensions. These two-dimensional fermions can subsequently be treated using the techniques of bosonization and the difficult many-body problem of building a gravitating, charged quantum star is reduced to solving the sine-Gordon model coupled to a gauge field and a metric. The kinks of the sine-Gordon model provide the holographic dual of the lowest Landau levels of the strongly-coupled d=2+1 dimensional boundary field theory. The system exhibits order one oscillations in the magnetic susceptibility, now arising as a classical effect in the bulk. Moreover, as the chemical potential is varied, we find jumps in the charge density, oscillations in the fractionalised charge density and plateaux in the cohesive charge density
Landau pole in the pyramid scheme
Banks, Tom; Fortin, Jean-François; Kathrein, Scott
2010-12-01
We revisit the problem of the hidden sector Landau pole in the pyramid scheme. There is a fixed line in the plane of hidden sector gauge coupling and Yukawa couplings between the trianon fields. We postulate that the couplings flow to this line, at a point where the hidden sector gauge coupling is close to the strong coupling edge of its perturbative regime. Below the masses of the heavier trianons, the model quickly flows to a confining NF=NC=3 supersymmetric gauge theory, as required by phenomenological considerations. We study possible discrete R symmetries, which guarantee, among other things, that the basin of attraction of the fixed line has full codimension in the space of R-allowed couplings. The Yukawa couplings required to get the fixed line violate the pyrma-baryon symmetries we invoked in previous work to find a dark matter candidate. Omitting one of them, we have a dark matter candidate, and an acceptable renormalization group flow down from the unification scale, if the confinement scale of the hidden sector group is lowered from 5 to 2 TeV. However, we cannot find anomaly-free symmetries, which guarantee a set of pyrma-baryon violating couplings that eliminate the Landau pole, but do not allow a supersymmetry preserving vacuum of the model. We can do this with only one pyrma-baryon violating coupling, but this lowers the confinement scale to 900 GeV, which may already be ruled out due to light hidden sector baryons.
Worldline calculation of the three-gluon vertex
Energy Technology Data Exchange (ETDEWEB)
Ahmadiniaz, N.; Schubert, C. [Dipartimento di Fisica, Universita di Bologna and INFN Sezione di Bologna Via Irnerio 46, I-40126 Bologna (Italy); Instituto de Fisica y Matematicas Universidad Michoacana de San Nicolas de Hidalgo Apdo. Postal 2-82 C.P. 58040, Morelia, Michoacan (Mexico)
2012-10-23
The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.
Unified description of seagull cancellations and infrared finiteness of gluon propagators
Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.
2016-08-01
We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of "seagull cancellations" among the one- and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.
Peshier, Andre
2015-01-01
We put forward the idea that the quark-gluon plasma might exist way below the usual confinement temperature $T_c$. Our argument rests on the possibility that the plasma produced in heavy-ion collisions could reach a transient quasi-equilibrium with `over-occupied' gluon density, as advocated by Blaizot et al. Taking further into account that gluons acquire an effective mass by interaction effects, they can have a positive chemical potential and therefore behave similarly to non-relativistic bosons. Relevant properties of this dense state of interacting gluons, which we dub serried glue, can then be inferred on rather general grounds from Maxwell's relation.
The dynamical gluon mass in the massless bound-state formalism
Ibanez, David
2014-01-01
We describe the phenomenon of dynamical gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which gives rise to effective vertices containing massless poles; these vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. In this particular approach, the gluon mass is directly related to quantities that are intrinsic to the bound-state formation itself, such as the "transition amplitude" and the corresponding "bound-state wave-function". Specifically, a set of powerful relations discussed in the text, allows one to determine the dynamical evolution of the gluon mass through a Bethe-Salpeter equation, which controls the dynamics of the relevant wave-function. In addition, it is possible to demonstrate ...
Weinzierl, Stefan
2016-01-01
These lectures are centred around tree-level scattering amplitudes in pure Yang-Mills theories, the most prominent example is given by the tree-level gluon amplitudes of QCD. I will discuss several ways of computing these amplitudes, illustrating in this way recent developments in perturbative quantum field theory. Topics covered in these lectures include colour decomposition, spinor and twistor methods, off- and on-shell recursion, MHV amplitudes and MHV expansion, the Grassmannian and the amplituhedron, the scattering equations and the CHY representation. At the end of these lectures there will be an outlook on the relation between pure Yang-Mills amplitudes and scattering amplitudes in perturbative quantum gravity.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
Introduction to Landau Damping
Herr, W
2014-01-01
The mechanism of Landau damping is observed in various systems from plasma oscillations to accelerators. Despite its widespread use, some confusion has been created, partly because of the different mechanisms producing the damping but also due to the mathematical subtleties treating the effects. In this article the origin of Landau damping is demonstrated for the damping of plasma oscillations. In the second part it is applied to the damping of coherent oscillations in particle accelerators. The physical origin, the mathematical treatment leading to the concept of stability diagrams and the applications are discussed.
Energy Technology Data Exchange (ETDEWEB)
Rees, John; Chao, Alexander; /SLAC
2008-12-01
Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread.
Landau Diamagnetism: A Simple Calculation.
Dupre, A.
1981-01-01
Starting from the energy and degeneracy of the Landau levels of a free-electron gas in a magnetic field, the nonoscillatory term of the Landau diamagnetism is derived for T=O, using elementary algebra only. (Author/JN)
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
Gluon condensate and the vacuum structure of QCD
Mendes, R V
1998-01-01
Phenomenological evidence and analytic approximations to the QCD ground state suggest a complex gluon condensate structure. Exclusion of elementary fermion excitations by the generation of infinite mass corrections is a consequence. In addition the existence of vacuum condensates in unbroken non-abelian gauge theories, endows SU(3) and higher order groups with a non-trivial structure in the manifold of possible vacuum solutions, which is not present in SU(2). This may be related to the existence of particle generations.
On the scattering of gluons in the GKP string
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Lorenzo [Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Bianchi, Marco S. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)
2016-02-22
We compute the one-loop S-matrix for the light bosonic excitations of the GKP string at strong coupling. These correspond, on the gauge theory side, to gluon insertions in the GKP vacuum. We perform the calculation by Feynman diagrams in the worldsheet theory and we compare the result to the integrability prediction, finding perfect agreement for the scheme independent part. For scheme dependent rational terms we test different schemes and find that a recent proposal reproduces exactly the integrability prediction.
Boer, Daniël
2016-01-01
A high-energy Electron-Ion Collider (EIC) would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gl
Parametrization of the Transverse Momentum Dependent Light-Front Correlator for Gluons
Cotogno, Sabrina
2017-03-01
We study the transverse momentum dependent light-front correlator for gluons. At the operator level this is expressed as a matrix element containing nonlocal field strength operators and gauge links bridging the nonlocality. We parametrize the leading (twist-2) gluon-gluon correlator in terms of transverse momentum dependent distribution functions for unpolarized, vector and tensor polarized targets (the latter being relevant for spin-1 targets). For a tensor polarized target there are eleven functions among which two are time reversal odd. We discuss bounds on some functions which might become useful for future applications.
Relativistic Landau levels in the rotating cosmic string spacetime
Cunha, M. S.; Muniz, C. R.; Christiansen, H. R.; Bezerra, V. B.
2016-09-01
In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin.
Relativistic Landau levels in the rotating cosmic string spacetime
Energy Technology Data Exchange (ETDEWEB)
Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)
2016-09-15
In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)
Gluon TMDs in Quarkonium Production
Boer, Daniël
2017-03-01
Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that χ _{b0/2} and η _b production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to cos 2φ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small- x limit this corresponds to the Weizsäcker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small x-values are reached. Quarkonia can also be useful in the study of single transverse spin asymmetries. For transversely polarized hadrons the gluon distribution can be asymmetric, which is referred to as the Sivers effect. It leads to single spin asymmetries in for instance J{/}ψ (pair) production at AFTER@LHC, which probe the WW or f-type gluon Sivers TMD. It allows for a test of a sign-change relation w.r.t. the gluon Sivers TMD probed at an EIC in open heavy quark pair production. Single spin asymmetries in backward inclusive C-odd quarkonium production, such as J{/}ψ production, may offer probes of the DP or d-type gluon Sivers TMD at small x-values in the polarized proton, which in that limit corresponds to a correlator of a single Wilson loop, describing the spin-dependent odderon.
Quantum Gravitational Contributions to Gauge Field Theoriest
Institute of Scientific and Technical Information of China (English)
汤勇; 吴岳良
2012-01-01
We revisit quantum gravitational contributions to quantum gauge field theories in the gauge condition independent Vilkovisky-DeWitt formalism based on the background field method. With the advantage of Landau- DeWitt gauge, we explicitly obtain the gauge condition independent result for the quadratically divergent gravitational corrections to gauge couplings. By employing, in a general way, a scheme-independent regularization method that can preserve both gauge invariance and original divergent behavior of integrals, we show that the resulting gauge coupling is power-law running and asymptotically free. The regularization scheme dependence is clarified by comparing with results obtained by other methods. The loop regularization scheme is found to be applicable for a consistent calculation.
Faedo, Anton F; Pantelidou, Christiana; Tarrio, Javier
2016-01-01
Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is $d=4$, $\\mathcal{N}=4$ super Yang-Mills coupled to $N_f$ quark flavors, which possesses a Landau pole at a UV scale $\\Lambda_{LP}$. The dual gravity solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies $E \\ll \\Lambda_{LP}$ no pathologies appear, as expected from effective field theory. In contrast, at scales $E \\lesssim \\Lambda_{LP}$ the gravitational potential becomes repulsive, and at temperatures $T \\lesssim \\Lambda_{LP}$ the specific heat becomes negative. Although we focus on $\\mathcal{N}=4$ super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singular...
Constraints on gauge-Higgs unification models at the LHC
Kitazawa, Noriaki; Sakai, Yuki
2016-02-01
We examine the possibility of observing the Kaluza-Klein (KK) gluons in gauge-Higgs unification models at the LHC with the energy s=14 TeV. We consider a benchmark model with the gauge symmetry SU(3)C×SU(3)W in five-dimensional spacetime, where SU(3)C is the gauge symmetry of the strong interaction and SU(3)W is that for the electroweak interaction and a Higgs doublet field. It is natural in general to introduce SU(3)C gauge symmetry in five-dimensional spacetime as well as SU(3)W gauge symmetry in gauge-Higgs unification (GHU) models. Since the fifth dimension is compactified to S1/Z 2 orbifold, there are KK modes of gluons in low-energy effective theory in four-dimensional spacetime. We investigate the resonance contribution of the first KK gluon to dijet invariant mass distribution at the LHC, and provide signal-to-noise ratios in various cases of KK gluon masses and kinematical cuts. Although the results are given in a specific benchmark model, we discuss their application to general GHU models with KK gluons. GHU models can be verified or constrained through the physics of the strong interaction, though they are proposed to solve the naturalness problem in electroweak symmetry breaking.
Gluon Green functions free of quantum fluctuations
Directory of Open Access Journals (Sweden)
A. Athenodorou
2016-09-01
Full Text Available This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.
Gauge-fixing and the Gribov-Singer ambiguity
Energy Technology Data Exchange (ETDEWEB)
Maas, Axel [Institute for Theoretical Physics, University of Jena (Germany)
2013-07-01
Gauge-fixing is a useful tool in intermediate steps of calculations in quantum gauge field theories. However, in non-Abelian gauge theories it is complicated non-perturbatively by the Gribov-Singer ambiguity. Several aspects of this ambiguity and proposals for its resolution in the class of Landau gauges are presented, especially in view of the necessity to perform the same type of gauge-fixing both in the continuum and on the lattice. This has implications also for global residual gauge symmetries, like the BRST symmetry or the breaking of global symmetries by the Higgs mechanism.
Thermal single-gluon exchange potential for heavy quarkonium in the static limit
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jia-Qing; Ma, Zhi-Lei; Shi, Chao-Yi; Li, Yun-De, E-mail: yndxlyd@163.com
2015-10-15
The calculations of thermal single-gluon exchange potential for heavy quarkonium in Feynman and Coulomb gauges are presented, and the comparisons between them and the hard thermal loop approximation ones which were first calculated by Laine et al. are illustrated. The numerical results show that the hard thermal loop thermal single-gluon exchange potential (especially its imaginary part) which used in many researches make some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependent cannot be avoided when the complete self energy is used in the derivation of potential.
Davenport, Ian C
2016-01-01
We study the class of indecomposable two-dimensional Landau-Ginzburg theories with (2,2) supersymmetry and central charge c < 6 with the aim of classifying all such theories up to marginal deformations. Our results include cases overlooked in previous classifications. The results are rigorous for three or fewer fields and more generally are rigorous if we assume an extra bound. Numerics suggest that we have the complete set of indecomposable Landau-Ginzburg families with c<6. This set consists of 38 infinite families and a finite list of 418 sporadic cases. The basic tools are classic results of Kreuzer and Skarke on quasi-homogeneous isolated singularities and solutions to certain feasibility integer programming problems.
Aragone, C.
1993-01-01
We introduce a new set of squeezed states through the coupled two-mode squeezed operator. It is shown that their behavior is simpler than the correlated coherent states introduced by Dodonov, Kurmyshev, and Man'ko in order to quantum mechanically describe the Landau system, i.e., a planar charged particle in a uniform magnetic field. We compare results for both sets of squeezed states.
A Mathematical Theory of the Gauged Linear Sigma Model
Fan, Huijun; Ruan, Yongbin
2015-01-01
We construct a rigorous mathematical theory of Witten's Gauged Linear Sigma Model (GLSM). Our theory applies to a wide range of examples, including many cases with non-Abelian gauge group. Both the Gromov-Witten theory of a Calabi-Yau complete intersection X and the Landau-Ginzburg dual (FJRW-theory) of X can be expressed as gauged linear sigma models. Furthermore, the Landau-Ginzburg/Calabi-Yau correspondence can be interpreted as a variation of the moment map or a deformation of GIT in the GLSM. This paper focuses primarily on the algebraic theory, while a companion article will treat the analytic theory.
Gluon TMDs in quarkonium production
Boer, Daniël
2016-01-01
Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that $\\chi_{b0/2}$ and $\\eta_b$ production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to $\\cos 2\\phi$ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small-$x$ limit this corresponds to the Weizs\\"acker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small $x$ are ...
Bootstrapping quarks and gluons
Energy Technology Data Exchange (ETDEWEB)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.
Thermal variational principle and gauge fields
Schröder, Y
1996-01-01
A Feynman--Jensen version of the thermal variational principle is applied to hot gauge fields, abelian as well as nonabelian\\,: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g^2 studied and for scalar ED) after a reformulation of the partition function such that it depends on only even powers of the gauge field. This way, however, the potential non-perturbative power of the calculus seems to be ruined.
Trigiante, Mario
2016-01-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
Trigiante, Mario
2017-03-01
We give a general review of extended supergravities and their gauging using the duality-covariant embedding tensor formalism. Although the focus is on four-dimensional theories, an overview of the gauging procedure and the related tensor hierarchy in the higher-dimensional models is given. The relation of gauged supergravities to flux compactifications is discussed and examples are worked out in detail.
The gluon propagator in non-abelian Weizsäcker-Williams fields
Ayala, A P; McLerran, L; Venugopalan, R; Ayala, Alejandro; Jalilian-Marian, Jamal; McLerran, Larry; Venugopalan, Raju
1995-01-01
We carefully compute the gluon propagator in the background of a non--Abelian Weizs\\"{a}cker--Williams field. This background field is generated by the valence quarks in very large nuclei. We find contact terms in the small fluctuation equations of motion which induce corrections to a previously incorrect result for the gluon propagator in such a background field. The well known problem of the Hermiticity of certain operators in Light Cone gauge is resolved for the Weizs\\"{a}cker--Williams background field. This is achieved by working in a gauge where singular terms in the equations of motion are absent and then gauge transforming the small fluctuation fields to Light Cone gauge.
Gluon bound state and asymptotic freedom derived from the Bethe--Salpeter equation
Fukamachi, Hitoshi; Nishino, Shogo; Shinohara, Toru
2016-01-01
In this paper we study the two-body bound states for gluons and ghosts in a massive Yang-Mills theory which is obtained by generalizing the ordinary massless Yang-Mills theory in a manifestly Lorentz covariant gauge. First, we give a systematic derivation of the coupled Bethe-Salpeter equations for gluons and ghosts by using the Cornwall-Jackiw-Tomboulis effective action of the composite operators within the framework of the path integral quantization. Then, we obtain the numerical solutions for the Bethe-Salpeter amplitude representing the simultaneous bound states of gluons and ghosts by solving the homogeneous Bethe-Salpeter equation in the ladder approximation. We study how the inclusion of ghosts affects the two-gluon bound states in the cases of the standing and running gauge coupling constant. Moreover, we show explicitly that the approximate solutions obtained for the gluon-gluon amplitude are consistent with the ultraviolet asymptotic freedom signaled by the negative $\\beta$ function.
String-inspired representations of photon/gluon amplitudes
Ahmadiniaz, Naser; Villanueva, Victor M
2012-01-01
The string-based Bern-Kosower rules provide an efficient way for obtaining parameter integral representations of the one-loop N - photon/gluon amplitudes involving a scalar, spinor or gluon loop, starting from a master formula and using a certain integration-by-parts (`IBP') procedure. Strassler observed that this algorithm also relates to gauge invariance, since it leads to the absorption of polarization vectors into field strength tensors. Here we present a systematic IBP algorithm that works for arbitrary N and leads to an integrand that is not only suitable for the application of the Bern-Kosower rules but also optimized with respect to gauge invariance. In the photon case this means manifest transversality at the integrand level, in the gluon case that a form factor decomposition of the amplitude into transversal and longitudinal parts is generated naturally by the IBP, without the necessity to consider the nonabelian Ward identities. Our algorithm is valid off-shell, and provides an extremely efficient ...
Weatherall, James Owen
2015-01-01
I consider two usages of the expression "gauge theory". On one, a gauge theory is a theory with excess structure; on the other, a gauge theory is any theory appropriately related to classical electromagnetism. I make precise one sense in which one formulation of electromagnetism, the paradigmatic gauge theory on both usages, may be understood to have excess structure, and then argue that gauge theories on the second usage, including Yang-Mills theory and general relativity, do not generally have excess structure in this sense.
Quark-gluon plasma in strong magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran
2013-04-15
One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.
Exploratory study of the 3-gluon vertex on the lattice
Parrinello, C
1994-01-01
We define and evaluate on the lattice the amputated 3-gluon vertex function in momentum space. We give numerical results for 16^3 \\times 40 and 24^3 \\times 40 quenched lattices at \\beta=6.0. A good numerical signal is obtained, at the price of enforcing the gauge-fixing condition with high accuracy. By comparing results from two different lattice volumes, we try to investigate the crucial issue of finite volume effects. We also outline a method for the lattice evaluation of the QCD running coupling constant as defined from the 3-gluon vertex, while being aware that a realistic calculation will require larger \\beta values and very high statistics.
Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD
Draggiotis, P.D.; Kleiss, R.H.P.; Lazopoulos, A.; Papadopoulos, C.G.
2006-01-01
We present a proof of the Britto Cachazo Feng Witten tree-level recursion relation for gluon amplitudes in QCD, based on a direct equivalence between BCFW decompositions and Feynman diagrams. We demonstrate that this equivalence can be made explicit when working in a convenient gauge. We exhibit
Equation of state of a quark-gluon plasma using the Cornell potential
Udayanandan, K. M.; Sethumadhavan, P.; Bannur, V. M.
2007-10-01
The equation of state (EOS) of quark-gluon plasma (QGP) using the Cornell potential based on Mayer's cluster expansion is presented. The string constant and the strong coupling constant for QGP are calculated. The EOS developed could describe the lattice EOS for pure gauge, two-flavor and three-flavor QGP qualitatively.
A physical meaning of mixed gluon-ghost condensate of mass dimension two
Kondo, Kei-Ichi
2003-10-01
We demonstrate that a clear physical content and relevance can be attributed to the on-shell BRST-invariant mixed gluon-ghost condensate of mass dimension two which was recently proposed by the author. We argue that a gauge invariant observable is associated with the mixed condensate.
A physical meaning of mixed gluon--ghost condensate of mass dimension two
Kondo, K I
2003-01-01
We demonstrate that a clear physical content and relevance can be attributed to the on-shell BRST-invariant mixed gluon--ghost condensate of mass dimension two which was recently proposed by the author. We argue that a gauge invariant observable is associated with the mixed condensate.
Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach
Laenen, E.L.M.P.; Magnea, L.; Stavenga, G.C.; White, C.D.
2011-01-01
We consider the problem of soft gluon resummation for gauge theory amplitudes and cross sections, at next-to-eikonal order, using a Feynman diagram approach. At the amplitude level, we prove exponentiation for the set of factorizable contributions, and construct effective Feynman rules which can be
Next-to-eikonal corrections to soft-gluon radiation: a diagrammatic approach
Laenen, E.; Magnea, L.; Stavenga, G.; White, C.D
2011-01-01
We consider the problem of soft gluon resummation for gauge theory amplitudes and cross sections, at next-toeikonal order, using a Feynman diagram approach. At the amplitude level, we prove exponentiation for the set of factorizable contributions, and construct effective Feynman rules which can be u
Mouhot, Clément
2011-09-01
Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.
Landau levels for electromagnetic wave
Zyuzin, Vladimir A
2016-01-01
In this paper we show that the frequencies of propagating electromagnetic wave (photon) in rotating dielectric media obey Landau quantization. We show that the degeneracy of right and left helicities of photons is broken on the lowest Landau level. In spatially homogeneous system this level is shown to be helical, i.e. left and right helical photons counter-propagate.
Constraints on gauge-Higgs unification models at the LHC
Kitazawa, Noriaki
2015-01-01
We examine the possibility of observing the Kaluza-Klein gluons in gauge-Higgs unification models at the LHC with the energy sqrt{s}=14 TeV. We consider a benchmark model with the gauge symmetry SU(3)_C x SU(3)_W in five-dimensional space-time, where SU(3)_C is the gauge symmetry of the strong interaction and SU(3)_W is that for the electroweak interaction and a Higgs doublet field. It is natural in general to introduce SU(3)_C gauge symmetry in five-dimensional space-time as well as SU(3)_W gauge symmetry in gauge-Higgs unification models. Since the fifth dimension is compactified to S1/Z2 orbifold, there are Kaluza-Klein modes of gluons in low-energy effective theory in four-dimensional space-time. We investigate the resonance contribution of the first Kaluza-Klein gluon to dijet invariant mass distribution at the LHC, and provide signal-to-noise ratios in various cases of Kaluza-Klein gluon masses and kinematical cuts. Although the results are given in a specific benchmark model, we discuss their applicati...
Scale evolution of gluon TMDPDFs
Directory of Open Access Journals (Sweden)
Echevarria Miguel G.
2015-01-01
Full Text Available By applying the effective field theory machinery we factorize the transverse momentum spectrum of Higgs boson production, where the main hadronic quantities are the gluon transverse momentum dependent parton distribution functions (TMDPDFs. We properly define those quantities, showing explicitly, in the case of an unpolarized hadron, that they are free from rapidity divergences, and extract their evolution properties. It turns out that the evolution for all eight (un-polarized leading-twist gluon TMDPDFs is driven by the same evolution kernel, for which we derive the necessary ingredients to obtain a resummation of large logarithms at next-tonext-to-leading-logarithmic accuracy. We make predictions for the contribution of linearly polarized gluons to the Higgs boson qT -spectrum.
Multiplicity description by gluon model
Kokoulina, E S
2015-01-01
Study of high multiplicity events in proton-proton interactions is carried out at the U-70 accelerator (IHEP, Protvino). These events are extremely rare. Usually, Monte Carlo codes underestimate topological cross sections in this region. The gluon dominance model (GDM) was offered to describe them. It is based on QCD and a phenomenological scheme of a hadronization stage. This model indicates a recombination mechanism of hadronization and a gluon fission. Future program of the SVD Collaboration is aimed at studying a long-standing puzzle of excess soft photon yield and its connection with high multiplicity at the U-70 and Nuclotron facility at JINR, Dubna.
Equilibration in quark gluon plasma
Das, S. K.; Alam, J.; Mohanty, P.
2011-07-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
Equilibration in Quark Gluon Plasma
Das, Santosh K.; Alam, Jan-e; Mohanty, Payal
2009-01-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more real...
Equilibration in Quark Gluon Plasma
Das, Santosh K; Mohanty, Payal
2009-01-01
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.
2016-01-01
This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.
Alvarez, Gustavo; Kniehl, Bernd A; Kondrashuk, Igor; Parra-Ferrada, Ivan
2016-01-01
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be ${\\cal N} =4$ supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken $x$. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We ...
Electrically tunable artificial gauge potential for polaritons
Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac
2017-01-01
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047
Gluon and Wilson loop TMDs for hadrons of spin $\\leq$ 1
Boer, Daniël; van Daal, Tom; Mulders, Piet J; Signori, Andrea; Zhou, Ya-Jin
2016-01-01
In this paper we consider the parametrizations of gluon transverse momentum dependent (TMD) correlators in terms of TMD parton distribution functions (PDFs). These functions, referred to as TMDs, are defined as the Fourier transforms of hadronic matrix elements of nonlocal combinations of gluon fields. The nonlocality is bridged by gauge links, which have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. For gluons, the specific correlator with one future and one past pointing gauge link is, in the limit of small $x$, related to a correlator of a single Wilson loop. We present the parametrization of Wilson loop correlators in terms of Wilson loop TMDs and discuss the relation between these functions and the small-$x$ `dipole' gluon TMDs. This analysis shows which gluon TMDs are leading or suppressed in the small-$x$ limit. We discuss hadronic targets that are unpolarized, vector polarized (relevant for spin-$1/2$ and spin-$1$ hadrons), and tensor pol...
Is gauge-invariant complete decomposition of the nucleon spin possible ?
Wakamatsu, Masashi
2014-01-01
Is gauge-invariant complete decomposition of the nucleon spin possible? Although it is a difficult theoretical question which has not reached a complete consensus yet, a general agreement now is that there are at least two physically inequivalent gauge-invariant decompositions (I) and (II) of the nucleon. %The one is a nontrivial gauge-invariant %generalization of the Jaffe-Manohar decomposition. %The other is an extension of the Ji decomposition, which allows %a gauge-invariant decomposition of the total gluon angular %momentum into the intrinsic spin and orbital parts. In these two decompositions, the intrinsic spin parts of quarks and gluons are just common. What discriminate these two decompositions are the orbital angular momentum parts. The orbital angular momenta of quarks and gluons appearing in the decomposition (I) are the so-called "mechanical" orbital angular momenta, while those appearing in the decomposition (II) are the generalized (gauge-invariant) "canonical" ones. By this reason, these decom...
The N = 1 Supersymmetric Wong Equations and the Non-Abelian Landau Problem
Fanuel, Michaël; Avossevou, Gabriel Y H; Dossa, Anselme F
2014-01-01
A Lagrangian formulation is given extending to N = 1 supersymmetry the motion of a charged point particle with spin in a non-abelian external field. The classical formulation is constructed for any external static non-abelian SU(N) gauge potential. As an illustration, a specific gauge is fixed enabling canonical quantization and the study of the supersymmetric non-abelian Landau problem. The spectrum of the quantum Hamiltonian operator follows in accordance with the supersymmetric structure.
Exceptional Confinement in G(2) Gauge Theory
Holland, K; Pepé, M; Wiese, U J
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint "gluons" of a G(2) gauge theory transform as {3}, {3bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a "quark" in the {7} representation of G(2) can be screened by "gluons". As a result, in G(2) Yang-Mills theory the string between a pair of static "quarks" can break. In G(2) QCD there is a hybrid consisting of one "quark" and three "gluons". In supersymmetric G(2) Yang-Mills theory with a {14} Majorana "gluino" the chiral symmetry is Z(4)_\\chi. Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, wher...
Mirror symmetry and the half-filled Landau level
Mulligan, Michael; Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia
We study the dynamics of the half-filled zeroth Landau level of Dirac fermions using mirror symmetry, a supersymmetric duality between certain pairs of 2 + 1-dimensional theories. We show that the half-filled zeroth Landau level of a pair of Dirac fermions is dual to a pair of Fermi surfaces of electrically-neutral composite fermions, coupled to an emergent gauge field. Thus, we use supersymmetry to provide a derivation of flux attachment and the emergent Fermi liquid-like state for the lowest Landau level of Dirac fermions. We find that in the dual theory the Coulomb interaction induces a dynamical exponent z = 2 for the emergent gauge field, making the interactions classically marginal. This enables us to map the problem of 2+1-dimensional Dirac fermions in a finite transverse magnetic field, interacting via a strong Coulomb interaction, into a perturbatively controlled model. We analyze the resulting low-energy theory using the renormalization group and determine the nature of the BCS interaction in the emergent composite Fermi liquid.
Gyrokinetic linearized Landau collision operator
DEFF Research Database (Denmark)
Madsen, Jens
2013-01-01
The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...
Noncommuting Coordinates in the Landau Problem
Magro, Gabrielle
2003-01-01
Basic ideas about noncommuting coordinates are summarized, and then coordinate noncommutativity, as it arises in the Landau problem, is investigated. I review a quantum solution to the Landau problem, and evaluate the coordinate commutator in a truncated state space of Landau levels. Restriction to the lowest Landau level reproduces the well known commutator of planar coordinates. Inclusion of a finite number of Landau levels yields a matrix generalization.
Quark-gluon vertex: A perturbation theory primer and beyond
Bermudez, R.; Albino, L.; Gutiérrez-Guerrero, L. X.; Tejeda-Yeomans, M. E.; Bashir, A.
2017-02-01
There has been growing evidence that the infrared enhancement of the form factors defining the full quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article, we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex. Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features expected of their nonperturbative counter parts. We analyze various kinematical configurations of momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin transformations, allowing us to analyze and compare various Ansätze proposed so far.
Landau's Nobel Prize in Physics
Larsson, Mats
2016-01-01
Work of Lev Landau had a profound impact on the physics in 20th century. Landau had created the paradigms that had framed the conversations on the outstanding problems in physics for decades. He has laid the foundations for our understanding of quantum matter such as superfluidity, superconductivity and the theory of Fermi Liquid. Here we present sampled Nobel Archive data on the winning nomination that led to the Nobel Prize in Physics in 1962.
Landau's Nobel Prize in Physics
Larsson, M.; Balatsky, A. V.
2016-06-01
Work of Lev Landau had a profound impact on the physics in 20th century. Landau had created the paradigms that had framed the conversations on the outstanding problems in physics for decades. He had laid foundations for our understanding of quantum matter like superfluidity, superconductivity and the theory of Fermi liquid. Here we present some Nobel Archive data on the winning nomination that led to the Nobel Prize in Physics in 1962.
Landau level quantization and superconductivity
Energy Technology Data Exchange (ETDEWEB)
Akera, H. [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; MacDonald, A.H. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Norman, M.R. [Argonne National Lab., IL (United States)
1992-07-01
A microscopic calculation of vortex-lattice states in two-dimensional electron systems at strong magnetic fields is made taking fully the Landau level quantization into account within the mean field scheme. Results of the order parameter and the local density of states are presented both in the limit of pairing in a single Landau level and in the semiclassical regime of weaker fields and differences from the Abrikosov vortex state are discussed.
Role of center vortices in chiral symmetry breaking in SU(3) gauge theory
2011-01-01
We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.
Abrikosov Gluon Vortices in Color Superconductors
Ferrer, Efrain J
2010-01-01
In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...
The Bulk RS KK-gluon at the LHC
Lillie, Benjamin Huntington; Wang, L T; Lillie, Ben; Randall, Lisa; Wang, Lian-Tao
2007-01-01
We study the possibility of discovering and measuring the properties of the lightest Kaluza-Klein excitation of the gluon in a Randall-Sundrum scenario where the Standard Model matter and gauge fields propagate in the bulk. The KK-gluon decays primarily into top quarks. We discuss how to use the $t \\bar{t}$ final states to discover and probe the properties of the KK-gluon. Identification of highly energetic tops is crucial for this analysis. We show that conventional identification methods relying on well separated decay products will not work for heavy resonances but suggest alternative methods for top identification for energetic tops. We find, conservatively, that resonances with masses less than 5 TeV can be discovered if the algorithm to identify high $p_T$ tops can reject the QCD background by a factor of 10. We also find that for similar or lighter masses the spin can be determined and for lighter masses the chirality of the coupling to $t\\bar t$ can be measured. Since the energetic top pair final stat...
Production of Spin-Two Gauge Bosons
Konitopoulos, Spyros; Savvidy, George
2008-01-01
We considered spin-two gauge boson production in the fermion pair annihilation process and calculated the polarized cross sections for each set of helicity orientations of initial and final particles. The angular dependence of these cross sections is compared with the similar annihilation cross sections in QED with two photons in the final state, with two gluons in QCD and W-pair in Electroweak theory.
Bethuel, Fabrice; Helein, Frederic
2017-01-01
This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy. The location of the singularities is completely determined by minimiz...
Recursion equations in gauge field theories
Migdal, A. A.
An approximate recursion equation is formulated, describing the scale transformation of the effective action of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the β-function. In the strong-coupling region the β-function remains negative and this results in an asymptotic prison in the infrared region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.
Gauge invariance, causality and gluonic poles
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V., E-mail: anikin@theor.jinr.r [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Teryaev, O.V., E-mail: teryaev@theor.jinr.r [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)
2010-07-05
We explore the electromagnetic gauge invariance of the hadron tensor of the Drell-Yan process with one transversely polarized hadron. The special role is played by the contour gauge for gluon fields. The prescription for the gluonic pole in the twist 3 correlator is related to causality property and compared with the prescriptions for exclusive hard processes. As a result we get the extra contributions, which naively do not have an imaginary phase. The single spin asymmetry for the Drell-Yan process is accordingly enhanced by the factor of two.
Capri, M A L; Fiorentini, D; Guimaraes, M S; Justo, I F; Pereira, A D; Mintz, B W; Palhares, L F; Sobreiro, R F; Sorella, S P
2015-01-01
We point out the existence of a non-perturbative exact nilpotent BRST symmetry for the Gribov-Zwanziger action in the Landau gauge. We then put forward a manifestly BRST invariant resolution of the Gribov gauge fixing ambiguity in the linear covariant gauge.
Hofmann, Ralf; Hofmann, Ralf; Keil, Mathias Th.
2002-01-01
Based on thermal equilibrium between the vacuum and its relevant excitations a model for cosmic inflation is presented. Due to a vacuum dominating, U(1) gauged inflaton field an inflationary regime can be reached without explicitly imposing slow-roll conditions. Thereby, nontrivial euclidean BPS saturation of the inflaton bans gravity from the field equations and masquerades the gauge symmetry as a $Z_{N+1}$ symmetry at the point where thermal equilibrium breaks down. Solving the vacuum dynamics of the gauge field in the inflaton background in the spirit of a Born-Oppenheimer approximation, a temperature dependent cosmological constant $\\La=\\La(T)$ is obtained. The $T$ dependence of $\\La$ competes with the black body radiation of the (massive) gauge field during cosmic expansion. This leads to (initial condition independent) inflation at some critical value of the inflaton amplitude. The model allows for a closed, noncollapsing universe with Planckian initial density, and hence it resolves the flatness proble...
Gluon TMDs in quarkonium production
Signori, Andrea
2016-01-01
I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. $\\eta_b$) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the $q_T$ spectrum of $\\eta_b$ produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log (NNLL) and next-to-leading order (NLO) accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.
Gluon TMDs in Quarkonium Production
Signori, Andrea
2016-08-01
I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.
On Multiple Gluon Exchange Webs
Harley, Mark
2015-01-01
I present an overview of the study of infrared singularities through the eikonal approximation and the concept of webs. Our work reveals the interesting structure of an infinite subclass of webs, Multiple Gluon Exchange Webs. We find that they can be expressed as sums of products of functions depending upon only a single cusp angle, spanned by a simple basis of functions, and conjecture that this structure will hold to all orders.
Pauli-Villars Regularization of Non-Abelian Gauge Theories
Hiller, J. R.
2016-07-01
As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev-Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.
Pauli-Villars regularization of non-Abelian gauge theories
Hiller, J R
2015-01-01
As an extension of earlier work on QED, we construct a BRST-invariant Lagrangian for SU(N) Yang-Mills theory with fundamental matter, regulated by the inclusion of massive Pauli-Villars (PV) gluons and PV quarks. The underlying gauge symmetry for massless PV gluons is generalized to accommodate the PV-index-changing currents that are required by the regularization. Auxiliary adjoint scalars are used, in a mechanism due to Stueckelberg, to attribute mass to the PV gluons and the PV quarks. The addition of Faddeev--Popov ghosts then establishes a residual BRST symmetry. Although there are drawbacks to the approach, in particular the computational load of a large number of PV fields and a nonlocal interaction of the ghost fields, this formulation could provide a foundation for renormalizable nonperturbative solutions of light-front QCD in an arbitrary covariant gauge.
Screening Masses of Hot SU(2) Gauge Theory from the 3D Adjoint Higgs Model
Karsch, Frithjof; Petreczky, P
1999-01-01
We study the Landau gauge propagators of the lattice SU(2) 3d adjoint Higgs model, considered as an effective theory of high temperature 4d SU(2) gauge theory. From the long distance behaviour of the propagators we extract the screening masses. It is shown that the pole masses extracted from the propagators agree well with the screening masses obtained recently in finite temperature SU(2) theory. The relation of the propagator masses to the masses extracted from gauge invariant correlators is also discussed. In so-called lambda gauges non-perturbative evidence is given for the gauge independence of pole masses within this class of gauges.
Two Gluon Production and Longitudinal Correlations in the Color Glass Condensate
Fukushima, Kenji
2008-01-01
We derive an analytical expression for the two-gluon multiplicity in the pA (light-heavy) collisions, and focus specifically on the rapidity dependent part. We approximate the gauge field from the heavy target as the Color Glass Condensate which interacts with the light projectile whose source density allows for a perturbative expansion. We discuss the longitudinal correlations of produced particles. Our calculation goes in part beyond the eikonal limit for the emitted gluons so that we can retain the exponential terms with respect to the rapidity difference. Our expression can thus describe the short-range correlations as well as the long-range ones for which our formula is reduced to the known expression. In a special case of two high-pt gluons in the back-to-back kinematics we find that dependence on the rapidity separation is only moderate even in the diagrammatically connected part.
Form factor decomposition of the off-shell four-gluon amplitudes
Ahmadiniaz, Naser
2013-01-01
We show how to use the Bern-Kosower master formula, originally a generating functional for on-shell gluon matrix elements, to derive well-organized form factor decompositions of the off-shell one-particle-irreducible N - gluon vertices. Two such algorithms are presented which can be used for any N, the first one optimized with respect to the nonabelian gauge invariance, the second one with respect to transversality. We give explicit results for the three- and four-gluon cases. The second algorithm in the three-point case reproduces precisely the well-known Ball-Chiu decomposition, and in the four-point case a natural generalization thereof. A particularly simple structure emerges in the N=4 SYM case.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Bruckmann, Falk; Giordano, Matteo; Katz, Sandor D; Kovacs, Tamas G; Pittler, Ferenc; Wellnhofer, Jacob
2016-01-01
The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD and check how well certain physical quantities are approximated by taking into account only the LLL.
Long Range Azimuthal Correlations of Multiple Gluons in Gluon Saturation Limit
Ozonder, Sener
2016-01-01
We calculate the inclusive gluon correlation function for arbitrary number of gluons with full rapidity and transverse momentum dependence for the initial glasma state of the p-p, p-A and A-A collisions. The formula we derive via superdiagrams generates cumulants for any number of gluons. Higher order cumulants contain information on correlations between multiple gluons, and they are necessary for calculations of higher dimensional ridges as well as flow coefficients from multi-particle correlations.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María; Głazek, Stanisław D.
2016-07-01
We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.
Energy Technology Data Exchange (ETDEWEB)
Caron-Huot, Simon [Niels Bohr International Academy and Discovery Center,Blegdamsvej 17, Copenhagen 2100 (Denmark); School of Natural Sciences, Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States)
2015-05-19
We propose the eikonal approximation as a simple and reliable tool to analyze relativistic high-energy processes, provided that the necessary subtleties are accounted for. An important subtlety is the need to include eikonal phases for a rapidity-dependent collection of particles, as embodied by the Balitsky-JIMWLK rapidity evolution equation. In the first part of this paper, we review how the phenomenon of gluon reggeization and the BFKL equations can be understood simply (but not too simply) in the eikonal approach. We also work out some previously overlooked implications of BFKL dynamics, including the observation that starting from four loops it is incompatible with a recent conjecture regarding the structure of infrared divergences. In the second part of this paper, we propose that in the strict planar limit the theory can be developed to all orders in the coupling with no reference at all to the concept of “reggeized gluon.” Rather, one can work directly with a finite, process-dependent, number of Wilson lines. We demonstrate consistency of this proposal by an exact computation in N=4 super Yang-Mills, which shows that in processes mediated with two Wilson lines the reggeized gluon appears in the weak coupling limit as a resonance whose width is proportional to the coupling. We also provide a precise operator definition of Lipatov’s integrable spin chain, which is manifestly integrable at any value of the coupling as a result of the duality between scattering amplitudes and Wilson loops in this theory.
Ordering multiple soft gluon emissions
Ángeles-Martínez, René; Seymour, Michael H
2016-01-01
We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full colour structure and both the real and imaginary contributions to the amplitude.
Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-01-01
Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the...
Proceedings, QCD-TNT-III, From Quarks and Gluons to Hadronic Matter: A Bridge too Far?
2013-01-01
In the third edition of the QCD-TNT workshop the traditional focus of the last two editions (that is gaining a firmer grasp on the infrared behavior of the QCD Green's functions) will be slightly shifted towards attempts to implement the transition from the fundamental (quarks and gluons) to the effective (mesons and hadrons) degrees of freedom. So in addition to the traditional QCD-TNT themes (e.g., confinement, gluon mass generation, lattice simulations in different gauges, QCD at finite temperature and density) we plan to have more phenomenologically oriented topics (e.g., experimental reviews, determination of form factors from first principle, construction of Bethe-Salpeter kernels). In addition, a special session will be dedicated to review talks, summarizing the state-of-the-art, as well as highlighting the future perspectives, of simulating non-Abelian gauge fields using ultracold neutral atoms trapped in optical lattices, and other systems.
Four-gluon scattering at three loops, infrared structure and Regge limit
Henn, Johannes M.
2016-01-01
We compute the three-loop four-gluon scattering amplitude in maximally supersymmetric Yang-Mills theory, including its full color dependence. Our result is the first complete computation of a non-planar four-particle scattering amplitude to three loops in four-dimensional gauge theory and consequently provides highly non-trivial data for the study of non-planar scattering amplitudes. We present the amplitude as a Laurent expansion in the dimensional regulator to finite order, with coefficients composed of harmonic poly-logarithms of uniform transcendental weight, and simple rational prefactors. Our computation provides an independent check of a recent result for three-loop corrections to the soft anomalous dimension matrix that predicts the general infrared singularity structure of massless gauge theory scattering amplitudes. Taking the Regge limit of our result, we determine the three-loop gluon Regge trajectory. We also find agreement with very recent predictions for sub-leading logarithms.
The analytic structure of non-global logarithms: convergence of the dressed gluon expansion
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-11-01
Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large- N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α s log. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. This allows us to calculate the NGL distribution for all values of α s log from the coefficients of the fixed order expansion.
Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines
Matevosyan, Hrayr H; Tandy, Peter C
2007-01-01
We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.
Landau-Zener Probability Reviewed
Valencia, C
2008-01-01
We examine the survival probability for neutrino propagation through matter with variable density. We present a new method to calculate the level-crossing probability that differs from Landau's method by constant factor, which is relevant in the interpretation of neutrino flux from supernova explosion.
The Structure of the Bern-Kosower Integrand for the N-Gluon Amplitude
Schubert, C
1998-01-01
An ambiguity inherent in the partial integration procedure leading to the Bern-Kosower rules is fixed in a way which preserves the complete permutation symmetry in the scattering states. This leads to a canonical version of the Bern-Kosower representation for the one-loop N - photon/gluon amplitudes, and to a natural decomposition of those amplitudes into permutation symmetric gauge invariant partial amplitudes. This decomposition exhibits a simple recursive structure.
Gluon polarization and higher twist effects
Leader, Elliot; Stamenov, Dimiter
2008-01-01
We examine the influence of the recent CLAS and COMPASS experiments on our understanding of higher twist (HT) effects and the gluon polarization, and show how EIC could discriminate between negative and positive gluon polarizations. We comment on the issue of HT and the recent DSSV analysis.
General split helicity gluon tree amplitudes in open twistor string theory
Dolan, Louise; Goddard, Peter
2010-05-01
We evaluate all split helicity gluon tree amplitudes in open twistor string theory. We show that these amplitudes satisfy the BCFW recurrence relations restricted to the split helicity case and, hence, that these amplitudes agree with those of gauge theory. To do this we make a particular choice of the sextic constraints in the link variables that determine the poles contributing to the contour integral expression for the amplitudes. Using the residue theorem to re-express this integral in terms of contributions from poles at rational values of the link variables, which we determine, we evaluate the amplitudes explicitly, regaining the gauge theory results of Britto et al. [25].
Conformal Symmetry and Differential Regularization of the Three-Gluon Vertex
Freedman, Daniel Z; Rius, N; Johnson, K; Freedman, Daniel Z.; Grignani, Gianluca; Rius, Nuria; Johnson, Kenneth
1992-01-01
The conformal symmetry of the QCD Lagrangian for massless quarks is broken both by renormalization effects and the gauge fixing procedure. Renormalized primitive divergent amplitudes have the property that their form away from the overall coincident point singularity is fully determined by the bare Lagrangian, and scale dependence is restricted to $\\delta$-functions at the singularity. If gauge fixing could be ignored, one would expect these amplitudes to be conformal invariant for non-coincident points. We find that the one-loop three-gluon vertex function $\\Gamma_{\\mu\
Landau damping of auroral hiss
Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.
1994-01-01
Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.
Coulomb gauge ghost propagator and the Coulomb form factor
Quandt, M; Chimchinda, S; Reinhardt, H
2008-01-01
The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0--propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0-propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.
Coulomb gauge ghost propagator and the Coulomb form factor
Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.
The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.
How to solve the Schwinger-Dyson equations once and for all gauges
Energy Technology Data Exchange (ETDEWEB)
Bashir, A [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-82, Morelia, Michoacan 58040 (Mexico); Raya, A [Facultad de Ciencias, Universidad de Colima. Bernal DIaz del Castillo hashmark 340, Col. Villa San Sebastian, Colima, Colima 28045 (Mexico)
2006-05-15
Study of the Schwinger-Dyson equation (SDE) for the fermion propagator to obtain dynamically generated chirally asymmetric solution in any covariant gauge is a complicated numerical exercise specially if one employs a sophisticated form of the fermion-boson interaction complying with the key features of a gauge field theory. However, constraints of gauge invariance can help construct such a solution without having the need to solve the SDE for every value of the gauge parameter. Starting from the Landau gauge where the computational complications are still manageable, we apply the Landau-Khalatnikov-Fradkin transformation (LKFT) on the dynamically generated solution and find approximate analytical results for arbitrary value of the covariant gauge parameter. We also compare our results with exact numerical solutions.
Landau Theory of Helical Fermi Liquids.
Lundgren, Rex; Maciejko, Joseph
2015-08-07
We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation symmetry, interactions between quasiparticles are described by ten independent Landau parameters per angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss experimental means of measuring projected Landau parameters.
HUNTING THE QUARK GLUON PLASMA.
Energy Technology Data Exchange (ETDEWEB)
LUDLAM, T.; ARONSON, S.
2005-04-11
The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear
Quarkonium states in an anisotropic quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Guo Yun
2009-09-10
In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)
Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-12-01
Lattice quantum chromodynamics results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb-Pb interactions.
Energy Technology Data Exchange (ETDEWEB)
Cipriano, P.; Dooling, S.; Grebenyuk, A.; Gunnellini, P.; Katsas, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hautmann, F. [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy; Oxford Univ. (United Kingdom). Dept. of Physics; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica
2013-08-15
In the forthcoming high-luminosity phase at the LHC many of the most interesting QCD measurements so far become prohibitively difficult due to the high pile-up. We suggest a program of QCD measurements based on the observed Higgs boson which can be started now and can be carried through also in the large pile-up environment at high luminosity. It focuses on gluonic processes at high mass scales, and their distinctive QCD features compared to classic probes such as Drell-Yan. It explores the strong-interaction sector of the Standard Model both at high transverse momenta and at low transverse momenta, by investigating issues on gluon fusion processes which have never been addressed experimentally before. We discuss a few specific examples and present results of Monte Carlo simulations.
cuLGT: Lattice Gauge Fixing on GPUs
Vogt, Hannes
2014-01-01
We adopt CUDA-capable Graphic Processing Units (GPUs) for Landau, Coulomb and maximally Abelian gauge fixing in 3+1 dimensional SU(3) and SU(2) lattice gauge field theories. A combination of simulated annealing and overrelaxation is used to aim for the global maximum of the gauge functional. We use a fine grained degree of parallelism to achieve the maximum performance: instead of the common 1 thread per site strategy we use 4 or 8 threads per lattice site. Here, we report on an improved version of our publicly available code (www.cuLGT.com and github.com/culgt) which again increases performance and is much easier to include in existing code. On the GeForce GTX 580 we achieve up to 470 GFlops (utilizing 80% of the theoretical peak bandwidth) for the Landau overrelaxation code.
Parallel implementation of a lattice-gauge-theory code: studying quark confinement on PC clusters
Cucchieri, A; Travieso, G; Taurines, A R; Cucchieri, Attilio; Mendes, Tereza; Travieso, Gonzalo; Taurines, Andre R.
2003-01-01
We consider the implementation of a parallel Monte Carlo code for high-performance simulations on PC clusters with MPI. We carry out tests of speedup and efficiency. The code is used for numerical simulations of pure SU(2) lattice gauge theory at very large lattice volumes, in order to study the infrared behavior of gluon and ghost propagators. This problem is directly related to the confinement of quarks and gluons in the physics of strong interactions.
Two kinds of magnetic gauge potentials due to coherent effect in two-gap superconductor
Shi, Xuguang
2016-10-01
Two-component Ginzburg-Landau model with one magnetic gauge potential can be used to describe the physical properties of two-gap superconductor. When the order parameters in two-gap superconductor have different phases, the gauge invariance will be destroyed. In order to preserve gauge invariance, two kinds of gauge potentials must be introduced. For seeking the origins of two kinds of gauge potentials, one suggests two kinds of order parameters are in the coherent state. Therefore, two different gauge potentials and masses of the order parameters arise through deducing the super-current of the coherent state. As a result, two different gauge potentials lead to different magnetic fields at the zero points of the order parameters. In other places, the gauge potentials have no contributions to the magnetic field. Moreover, the topological properties of two different gauge potentials are discussed in detail.
Breakdown of Effective Field Theory for a Gluon Initiated Resonance
de la Puente, Alejandro
2016-01-01
Gauge invariance dictates that a resonance produced from initial state gluons must be produced through a non-renormalizable operator or a loop process. Should such a resonance be discovered, uncovering the dynamics that give rise to its couplings to gluons will be crucial to understanding the nature of the new state. Here we study how the production of this resonance at high transverse momentum in association with one (or more) jets can be used to directly measure the scale of the operator or the mass of the particles in the loop. We use a 750 GeV diphoton resonance as an example application, and we study how the non-renormalizable operator case can be described by a slowly converging effective field theory (EFT) expansion with operators of dimension five and seven. We show that with O(100) events, one can put strong constraints on the scale of the EFT, particularly in theories with strong coupling. We also compare the EFT analysis to that of a UV completion with vector-like quarks, and outline how the mass o...
Landau levels and Riemann zeros.
Sierra, Germán; Townsend, Paul K
2008-09-12
The number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a "smooth" function N[over ](E) and a "fluctuation." Berry and Keating have shown that the asymptotic expansion of N[over ](E) counts states of positive energy less than E in a "regularized" semiclassical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states "missing" from a continuum. Here we show how the "absorption spectrum" model of Connes emerges as the lowest Landau level limit of a specific quantum-mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E).
Landau levels and Riemann zeros
Sierra, German
2008-01-01
The number $N(E)$ of complex zeros of the Riemann zeta function with positive imaginary part less than $E$ is the sum of a `smooth' function $\\bar N(E)$ and a `fluctuation'. Berry and Keating have shown that the asymptotic expansion of $\\bar N(E)$ counts states of positive energy less than $E$ in a `regularized' semi-classical model with classical Hamiltonian $H=xp$. For a different regularization, Connes has shown that it counts states `missing' from a continuum. Here we show how the `absorption spectrum' model of Connes emerges as the lowest Landau level limit of a specific quantum mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of $N(E)$.
Landau damping in space plasmas
Thorne, Richard M.; Summers, Danny
1991-01-01
The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.
Mangiarotti, L
1998-01-01
This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;
Dynamical gluon mass in QCD processes
Energy Technology Data Exchange (ETDEWEB)
Ducati, M.B. Gay; Sauter, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas de Altas Energias (GFPAE)
2007-06-15
We perform phenomenological applications of modified gluon propagators and running coupling constants in scattering processes in Quantum Chromodynamics (QCD). The modified forms of propagators and running coupling constant are obtained by non-perturbative methods. The processes investigated includes the diffractive ones - proton-proton elastic scattering, light vector meson photo-production and double vector meson production in gamma-gamma scattering - as well as the pion and kaon meson form factors. The results are compared with experimental data (if available), showing a good agreement with a gluon with dynamical mass but do not indicate the correct gluon propagator functional form. (author)
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael
2013-03-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field arXiv
Figueroa, Daniel G.
Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present a lattice formulation of the interaction between a $shift$-symmetric field and some $U(1)$ gauge sector, $a(x)\\tilde{F}_{\\mu\
SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.
Energy Technology Data Exchange (ETDEWEB)
KARSCH,F.; KITAZAWA, M.
2007-07-30
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Spectral Properties of Quarks in the Quark-Gluon Plasma
Karsch, F
2007-01-01
We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.
Soft gluon resummation for gluon-induced Higgs Strahlung
Harlander, Robert V; Theeuwes, Vincent; Zirke, Tom
2014-01-01
We study the effect of soft gluon emission on the total cross section predictions for the $gg\\to HZ$ associated Higgs production process at the LHC. To this end, we perform resummation of threshold corrections at the NLL accuracy in the absolute threshold production limit and in the threshold limit for production of a $ZH$ system with a given invariant mass. Analytical results and numerical predictions for various possible LHC collision energies are presented. The perturbative stability of the results is verified by including universal NNLL effects. We find that resummation significantly reduces the scale uncertainty of the $gg\\to HZ$ contribution, which is the dominant source of perturbative uncertainty to $ZH$ production. We use our results to evaluate updated numbers for the total inclusive cross section of associated $pp \\to ZH$ production at the LHC. The reduced scale uncertainty of the $gg\\to HZ$ component translates into a decrease of the overall scale error by about a factor of two.
The Perfect Quark-Gluon Vertex Function
Orginos, K; Brower, Richard C; Chandrasekharan, S; Wiese, U J
1998-01-01
We evaluate a perfect quark-gluon vertex function for QCD in coordinate space and truncate it to a short range. We present preliminary results for the charmonium spectrum using this quasi-perfect action.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María
2016-01-01
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.
Systematics of quark/gluon tagging
Gras, Philippe; Höche, Stefan; Kar, Deepak; Larkoski, Andrew; Lönnblad, Leif; Plätzer, Simon; Siódmok, Andrzej; Skands, Peter; Soyez, Gregory; Thaler, Jesse
2017-07-01
By measuring the substructure of a jet, one can assign it a "quark" or "gluon" tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton ( C F versus C A ). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we find a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.
Real-time Relaxation of Condensates and Kinetics in Hot Scalar QED Landau Damping
Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.
1998-01-01
The real time evolution of field condensates with soft length scales k^{-1}>(eT)^{-1} is solved in hot scalar electrodynamics. We rederive the HTL effective action using the techniques of non-equilibrium field theory for small amplitude condensates. We find that transverse gauge invariant condensates relax as 1/t^2 and longitudinal condensates associated with plasmon (charge density) excitations relax with 1/[t log^2 t ] behavior to asymptotic amplitudes that are determined by the quasiparticle poles. The relaxational dynamics and relevant time scales are determined by the global analytic structure of the retarded propagators. To leading order, the long-time behaviour is determined by the Landau discontinuities associated with off-shell processes. Landau damping follows from the contribution of such discontinuities. We derive the influence functional for the soft (gauge invariant) degrees of freedom by integrating out the hard scales in the HTL approximation and obtain consistently the Langevin equation, the ...
Landau pole in the Standard Model with weakly interacting scalar fields
Directory of Open Access Journals (Sweden)
Yuta Hamada
2015-07-01
Full Text Available We consider the Standard Model with a new scalar field X which is an nX representation of the SU(2L with a hypercharge YX. The renormalization group running effects on the new scalar quartic coupling constants are evaluated. Even if we set the scalar quartic coupling constants to be zero at the scale of the new scalar field, the coupling constants are induced by the one-loop effect of the weak gauge bosons. Once non-vanishing couplings are generated, the couplings rapidly increase by renormalization group effect of the quartic coupling constant itself. As a result, the Landau pole appears below Planck scale if nX≥4. We find that the scale of the obtained Landau pole is much lower than that evaluated by solving the one-loop beta function of the gauge coupling constants.
Hadrons and Quark-Gluon Plasma
Letessier, Jean; Rafelski, Johann
2002-06-01
Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark gluon plasma. This hot soup of quarks and gluon is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions, quantum chromodynamics. This book covers the ongoing search to verify this prediction experimentally and discusses the physical properties of this novel form of matter.
Leading order QCD in Coulomb gauge
Watson, Peter
2011-01-01
Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.
Parallel supercomputers for lattice gauge theory.
Brown, F R; Christ, N H
1988-03-18
During the past 10 years, particle physicists have increasingly employed numerical simulation to answer fundamental theoretical questions about the properties of quarks and gluons. The enormous computer resources required by quantum chromodynamic calculations have inspired the design and construction of very powerful, highly parallel, dedicated computers optimized for this work. This article gives a brief description of the numerical structure and current status of these large-scale lattice gauge theory calculations, with emphasis on the computational demands they make. The architecture, present state, and potential of these special-purpose supercomputers is described. It is argued that a numerical solution of low energy quantum chromodynamics may well be achieved by these machines.
High Gluon Densities in Heavy Ions Collisions
Blaizot, Jean-Paul
2016-01-01
The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Energy Technology Data Exchange (ETDEWEB)
Jia, Shaoyang; Pennington, M. R.
2017-04-01
We explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang
2016-01-01
We explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau-Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D is used to test claims made for general cases. When renormalized correctly, a simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
Bosonization of the lowest Landau level in arbitrary dimensions: Edge and bulk dynamics
Energy Technology Data Exchange (ETDEWEB)
Karabali, Dimitra [Department of Physics and Astronomy, Lehman College of the CUNY, Bronx, NY 10468 (United States)]. E-mail: dimitra.karabali@lehman.cuny.edu
2006-08-28
We discuss the bosonization of nonrelativistic fermions interacting with non-Abelian gauge fields in the lowest Landau level in the framework of higher-dimensional quantum Hall effect. The bosonic action is a one-dimensional matrix action, which can also be written as a noncommutative field theory, invariant under W{sub N} transformations. The requirement that the usual gauge transformation should be realized as a W{sub N} transformation provides an analog of a Seiberg-Witten map, which allows us to express the action purely in terms of bosonic fields. The semiclassical limit of this, describing the gauge interactions of a higher-dimensional, non-Abelian quantum Hall droplet, produces a bulk Chern-Simons type term whose anomaly is exactly canceled by a boundary term given in terms of a chiral, gauged Wess-Zumino-Witten action.
Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space
Li, Yi; Wu, Congjun
2012-02-01
The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.
Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /YITP, Stony Brook /Durham U.; Shrock, Robert; /YITP, Stony Brook
2008-08-01
Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.
The Analytic Structure of Non-Global Logarithms: Convergence of the Dressed Gluon Expansion
Larkoski, Andrew J; Neill, Duff
2016-01-01
Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon expansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-$N_c$ master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of $\\alpha_s$log. We explain this finite radius of convergence using t...
Curving Yang-Mills-Higgs Gauge Theories
Kotov, Alexei
2015-01-01
Established fundamental physics can be described by fields, which are maps. The source of such a map is space-time, which can be curved due to gravity. The map itself needs to be curved in its gauge field part so as to describe interaction forces like those mediated by photons and gluons. In the present article, we permit non-zero curvature also on the internal space, the target of the field map. The action functional and the symmetries are constructed in such a way that they reduce to those of standard Yang-Mills-Higgs (YMH) gauge theories precisely when the curvature on the target of the fields is turned off. For curved targets one obtains a new theory, a curved YMH gauge theory. It realizes in a mathematically consistent manner an old wish in the community: replacing structures constants by functions depending on the scalars of the theory. In addition, we provide a simple 4d toy model, where the gauge symmetry is abelian, but turning off the gauge fields, no rigid symmetry remains---another possible manife...
Laohakunakorn, Nadanai; Moreno-Herrero, Fernando; Aarts, Dirk G A L; Dullens, Roel P A; Ghosal, Sandip; Keyser, Ulrich F
2013-01-01
Fluid jets are found in nature at all length scales, from microscopic to cosmological. Here we report on an electroosmotically driven jet from a single glass nanopore about 75 nm in radius with a maximum flow rate ~15 pL/s. A novel anemometry technique allows us to map out the vorticity and velocity fields that show excellent agreement with the classical Landau-Squire solution of the Navier Stokes equations for a point jet. We observe a phenomenon that we call flow rectification: an asymmetry in the flow rate with respect to voltage reversal. Such a nanojet could potentially find applications in micromanipulation, nanopatterning, and as a diode in microfluidic circuits.
Laohakunakorn, Nadanai; Gollnick, Benjamin; Moreno-Herrero, Fernando; Aarts, Dirk G. A. L.; Dullens, Roel P. A.; Ghosal, Sandip; Keyser, Ulrich F.
2013-11-01
Fluid jets are found in nature at all length scales, from microscopic to cosmological. Here we report on an electroosmotically driven jet from a single glass nanopore about 75 nm in radius with a maximum flow rate ~15 pL/s. A novel anemometry technique allows us to map out the vorticity and velocity fields that show excellent agreement with the classical Landau-Squire solution of the Navier Stokes equations for a point jet. We observe a phenomenon that we call flow rectification: an asymmetry in the flow rate with respect to voltage reversal. Such a nanojet could potentially find applications in micromanipulation, nanopatterning, and as a diode in microfluidic circuits.
Phase transition for gluon field: a qualitative analysis
Dzhunushaliev, Vladimir
2012-01-01
The phase transition for SU(3) gauge field (without quarks) is considered. It is shown that the phase transition is due to the fact that at high temperatures the partition function should be calculated as for a gas of gluons, whereas at low temperatures as the sum over energy levels of correlated quantum states of SU(3) gauge field. A correlated quantum state for strongly interacting fields is defined as a nonperturbative quantum state of strongly interacting fields. The energy spectrum of these quantum states are discrete one. A lower bound of the phase transition temperature by comparing of the average energy for the perturbative and nonperturbative regimes is estimated (for glueball being in thermal equilibrium with the thermostat). It is shown that this quantity is associated with a mass gap. In a scalar model of glueball its energy is calculated. It is shown that this energy is the mass gap. If we set the glueball mass $ \\approx 1.5 \\cdot 10^3$ Mev then it is found that the corresponding value of couplin...
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica
2016-11-15
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.
Landau-Zener-Stueckelberg interferometry
Energy Technology Data Exchange (ETDEWEB)
Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)
2010-07-15
A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.
Photonic Landau levels on cones
Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan
2016-05-01
We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.
Heisenberg algebra for noncommutative Landau problem
Li, Kang; Cao, Xiao-Hua; Wang, Dong-Yan
2006-10-01
The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.
Heisenberg algebra for noncommutative Landau problem
Institute of Scientific and Technical Information of China (English)
Li Kang; Cao Xiao-Hua; Wang Dong-Yan
2006-01-01
The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.
Degrees of Freedom of the Quark Gluon Plasma, tested by Heavy Mesons
Berrehrah, H; Song, T; Ozvenchuck, V; Gossiaux, P B; Werner, K; Bratkovskaya, E; Aichelin, J
2016-01-01
Heavy quarks (charm and bottoms) are one of the few probes which are sensitive to the degrees of freedom of a Quark Gluon Plasma (QGP), which cannot be revealed by lattice gauge calculations in equilibrium. Due to the rapid expansion of the QGP energetic heavy quarks do not come to an equilibrium with the QGP. Their energy loss during the propagation through the QGP medium depends strongly on the modelling of the interaction of the heavy quarks with the QGP quarks and gluons, i.e. on the assuption of the degrees of freedom of the plasma. Here we compare the results of different models, the pQCD based Monte-Carlo (MC@sHQ), the Dynamical Quasi Particle Model (DQPM) and the effective mass approach, for the drag force in a thermalized QGP and discuss the sensitivity of heavy quark energy loss on the properties of the QGP as well as on non-equilibrium dynamics
Gluon induced contributions to WZ and W gamma production at NNLO
Adamson, K L; Signer, A
2002-01-01
We calculate the contribution of the partonic processes gg->WZ q\\bar{q} and gg -> W gamma q\\bar{q} to WZ and W gamma pair production at hadron colliders, including anomalous triple gauge-boson couplings. We use the helicity method and include the decay of the W and Z-boson into leptons in the narrow-width approximation. In order to integrate over the q\\bar{q} final state phase space we use an extended version of the subtraction method to NNLO and remove collinear singularities explicitly. Due to the large gluon density at low x, the gluon induced terms of vector-boson pair production are expected to be the dominant NNLO QCD correction, relevant at LHC energies. However, we show that due to a cancellation they turn out to provide a rather small contribution, anticipating good stability for the perturbative expansion.
Glueball calculations in large-$N_{c}$ gauge theory
Dalley, S
1999-01-01
We use the light-front Hamiltonian of transverse lattice gauge theory to compute from first principles the glueball spectrum and light-front wavefunctions in the leading order of the 1/N_c colour expansion. We find 0^{++}, 2^{++}, and 1^{+-} glueballs having masses consistent with N_c=3 data available from Euclidean lattice path integral methods. The wavefunctions exhibit a light-front constituent gluon structure.
Landau-Khalatnikov-Fradkin transformations in Reduced Quantum Electrodynamics
Ahmad, A; Concha-Sánchez, Y; Raya, A
2016-01-01
We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in quantum electrodynamics (QED) described within a brane-world inspired framework where photons are allowed to move in $d_\\gamma$ space-time (bulk) dimensions while electrons remain confined to a $d_e$-dimensional brane, with $d_e < d_\\gamma$, referred to in the literature as Reduced Quantum Electrodynamics, RQED$_{d_\\gamma,d_e}$. Specializing to the case of graphene, namely RQED$_{4,3}$ with massless fermions, we derive the non-perturbative form of the fermion propagator starting from its bare counterpart and then compare its weak coupling expansion to known one- and two-loop perturbative results. The agreement of the gauge dependent terms at order $\\alpha$ and $\\alpha^{2}$ is reminiscent from the structure of LKFT in ordinary QED in arbitrary space-time dimensions and provides strong constraints for the multiplicative renormalizability of RQED$_{d_\\gamma,d_e}$.
Landau-Zener Bloch Oscillations with Perturbed Flat Bands.
Khomeriki, Ramaz; Flach, Sergej
2016-06-17
Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ) tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts-a fast scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed spectrum, made possible due to LZ tunneling.
Gauge theory renormalizations from the open bosonic string
Di Vecchia, P; Magnea, L; Marotta, R; Di Vecchia, P; Lerda, A; Magnea, L; Marotta, R
1995-01-01
We present a unified point of view on the different methods available in the literature to extract gauge theory renormalization constants from the low-energy limit of string theory. The Bern-Kosower method, based on an off-shell continuation of string theory amplitudes, and the construction of low-energy string theory effective actions for gauge particles, can both be understood in terms of strings interacting with background gauge fields, and thus reproduce, in the low-energy limit, the field theory results of the background field method. We present in particular a consistent off-shell continuation of the one-loop gluon amplitudes in the open bosonic string that reproduces exactly the results of the background field method in the Feynman gauge.
Renormalization aspects of N=1 Super Yang-Mills theory in the Wess-Zumino gauge
Capri, M A L; Guimaraes, M S; Justo, I F; Mihaila, L; Sorella, S P; Vercauteren, D
2014-01-01
The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field and gluino renormalization. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino, as explicitly shown through a three loop calculation.
Gauge dependence of the critical dynamics at the superconducting phase transition
Directory of Open Access Journals (Sweden)
M.Dudka
2007-01-01
Full Text Available The critical dynamics of superconductors in the charged regime is reconsidered within field-theory. For the dynamics, the Ginzburg-Landau model with complex order parameter coupled to the gauge field suggested earlier [Lannert et al. Phys. Rev. Lett. 92, 097004 (2004] is used. Assuming relaxational dynamics for both quantities, the renormalization group functions within one loop approximation are recalculated for different choices of the gauge. A gauge independent result for the divergence of the melectric conductivity is obtained only at the weak scaling fixed point unstable in one loop order where the timescales of the order parameter and the gauge field are different.
Quark vs Gluon Jet Tagging at ATLAS
Rubbo, Francesco; The ATLAS collaboration
2017-01-01
Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.
Shear Viscosity in a Gluon Gas
Xu, Zhe; Greiner, Carsten
2007-01-01
The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio \\eta/s for a gluon gas, which involves elastic gg-> gg perturbative QCD (PQCD) scatterings as well as inelastic ggggg PQCD bremsstrahlung. For \\alpha_s=0.3 we find \\eta/s=0.13 and for \\alpha_s=0.6, \\eta/s=0.076. The small \\eta/s values, which suggest strongly coupled systems, are due to the gluon bremsstrah...
Hydrodynamics of anisotropic quark and gluon fluids
Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael
2012-01-01
The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.
Interplay of infrared divergences and gauge dependence of the effective potential
Espinosa, J. R.; Garny, M.; Konstandin, T.
2016-09-01
The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones in their minima (like the Landau or Fermi gauges), but the problem can be fixed by a suitable resummation of the Goldstone propagators. When the potential minimum is generated radiatively, gauge independence of the potential at the minimum also requires resummation, and we demonstrate that the resummation that solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs model in the Fermi gauge. In the process, we find an IR divergence (in the first derivative of the potential) specific to the Fermi gauge and not appreciated in the recent literature. We show that physical observables can still be computed in this gauge, and we further show how to get rid of this divergence by a field redefinition. All these results generalize to the Standard Model case.
Interplay of Infrared Divergences and Gauge-Dependence of the Effective Potential
Espinosa, J R; Konstandin, T
2016-01-01
The perturbative effective potential suffers infrared (IR) divergences in gauges with massless Goldstones in their minima (like Landau or Fermi gauges) but the problem can be fixed by a suitable resummation of the Goldstone propagators. When the potential minimum is generated radiatively, gauge-independence of the potential at the minimum also requires resummation and we demonstrate that the resummation that solves the IR problem also cures the gauge-dependence issue, showing this explicitly in the Abelian Higgs model in Fermi gauge. In the process we find an IR divergence (in the location of the minimum) specific to Fermi gauge and not appreciated in recent literature. We show that physical observables can still be computed in this gauge and we further show how to get rid of this divergence by a field redefinition. All these results generalize to the Standard Model case.
Fiorentini, M A L Capri D; Mintz, B W; Palhares, L F; Sorella, S P
2016-01-01
We address the issue of the renormalizability of the gauge-invariant non-local dimension-two operator $A^2_{\\rm min}$, whose minimization is defined along the gauge orbit. Despite its non-local character, we show that the operator $A^2_{\\rm min}$ can be cast in local form through the introduction of an auxiliary Stueckelberg field. The localization procedure gives rise to an unconventional kind of Stueckelberg-type action which turns out to be renormalizable to all orders of perturbation theory. In particular, as a consequence of its gauge invariance, the anomalous dimension of the operator $A^2_{\\rm min}$ turns out to be independent from the gauge parameter $\\alpha$ entering the gauge-fixing condition, being thus given by the anomalous dimension of the operator $A^2$ in the Landau gauge.
Gauge theory and little gauge theory
Koizumi, Kozo
2016-01-01
The gauge theory is the most important type of the field theory, in which the interactions of the elementary particles are described by the exchange of the gauge bosons.In this article, the gauge theory is reexamined as geometry of the vector space, and a new concept of "little gauge theory" is introduced. A key peculiarity of the little gauge theory is that the theory is able to give a restriction for form of the connection field. Based on the little gauge theory, Cartan geometry, a charged boson and the Dirac fermion field theory are investigated. In particular, the Dirac fermion field theory leads to an extension of Sogami's covariant derivative. And it is interpreted that Higgs bosons are included in new fields introduced in this article.
Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /SLAC
2008-03-25
I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.
Cancellation of Glauber gluon exchange in the double Drell-Yan process
Energy Technology Data Exchange (ETDEWEB)
Diehl, Markus; Gaunt, Jonathan R. [DESY Hamburg (Germany); Ostermeier, Daniel; Ploessl, Peter; Schaefer, Andreas [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik
2015-10-15
An essential part of any factorisation proof is the demonstration that the exchange of Glauber gluons cancels for the considered observable. We show this cancellation at all orders for double Drell-Yan production (the double parton scattering process in which a pair of electroweak gauge bosons is produced) both for the integrated cross section and for the cross section differential in the transverse boson momenta. In the process of constructing this proof, we also revisit and clarify some issues regarding the Glauber cancellation argument and its relation to the rest of the factorisation proof for the single Drell-Yan process.
The Gluon Sivers Distribution : Status and Future Prospects
Boer, Daniel; Lorce, Cedric; Pisano, Cristian; Zhou, Jian
2015-01-01
We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p up arrow p -> pi X provide only indirect information about the gluon Sivers function through the relation with the quark-gluon
Gauge Theory On The Fuzzy Torus
Bigatti, D
2001-01-01
In this paper a formulation of U(1) gauge theory on a fuzzy torus is discussed. The theory is regulated in both the infrared and ultraviolet. It can be thought of as a non-commutative version of lattice gauge theory on a periodic lattice. The construction of Wilson loops is particularly transparent in this formulation. Following Ishibashi, Iso, Kawai and Kitazawa, we show that certain Fourier modes of open Wilson lines are gauge invariant. We also introduce charged matter fields which can be thought of as fundamentals of the gauge group. These particles behave like charges in a strong magnetic field and are frozen into the lowest Landau levels. The resulting system is a simple matrix quantum mechanics which should reflect much of the physics of charged particles in strong magnetic fields. The present results were first presented as a talk at the Institute for Mathematical Science, Chennai, India; the author wishes to thank Prof. T. R. Govindarajan and the IMS for hospitality and financial support, and the aud...
First Measurement of the Fraction of Top Quark Pair Production Through Gluon-Gluon Fusion
Aaltonen, T; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrerar, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillol, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerritop, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenarr, C; Cuevaso, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdeckerd, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopoloua, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokarisa, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraesda Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hillc, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Le Compte, T; Lee, J; Lee, J; Lee, Y J; Leeq, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakisa, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martinj, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNultyi, R; Mehta, A; Mehtälä, P; Menzemerk, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsenf, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohosh, F; Punzi, G; Pursley, J; Rademackerc, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojiman, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffarde, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thomg, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vazquezl, F; Velev, G; Vellidisa, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouevq, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whitesone, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittichg, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yangm, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhengb, Y; Zucchelli, S
2007-01-01
We present the first measurement of the fraction of top quark pair production through gluon-gluon fusion. We use 0.96/fb of s*(1/2)=1.96 TeV p-pbar collision data recorded with the CDF II detector at Fermilab. We identify theE candidate t-tbar events with a high-energy charged lepton, a neutrino candidate, and four or more jets with at least one identified as originating from a b quark. Using charged particles with low transverse momentum in t-tbar events, we find the fraction of top quark pair production through gluon-gluon fusion to be 0.07 +/- 0.14(stat) +/- 0.07(syst), in agreement with the standard model NLO prediction of 0.15 +/- 0.05.
Gluons and the spin of the proton
Energy Technology Data Exchange (ETDEWEB)
Kubelskyi, Oleksandr
2010-12-23
The structure of the proton and the origin of the proton spin has been a puzzle for many years. The EMC collaboration at CERN provided the first experimental data on the spin structure of the proton. The result was almost zero net contribution from quarks. Over the past 20 years new measurements of polarized parton distributions became available. The present value of the quark contribution to the proton spin is one third. The remaining 60 percent of the proton spin come from the gluons and orbital angular momentum of quarks and gluons. We investigate how the spin of the proton originates from the spin of its constituents. We study the proton using the phenomenologically accessible parameters such as distribution functions for quarks and gluons. The basic understanding of the proton structure (and in particular its spin structure) is important for interpreting the results of the LHC, which in turn can be used to refine the present knowledge. The proton spin structure gives a detailed information about the dynamical structure of the proton. Based on the present experimental data we suggest that the gluons and quarks play equally important role in the structure of the proton. (orig.)
Exploring Quarks, Gluons and the Higgs Boson
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Smilga, A V
1997-01-01
In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulne ss of various characteristics of QGP discussed in the literature.
Exploring Quarks, Gluons and the Higgs Boson
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Quark-gluon separation at the LHC
Rauco, Giorgia
2017-01-01
Studies focused on the discrimination between gluon- and quark-like jets at the LHC are presented. The results here discussed are obtained with proton collisions collected by the ATLAS experiment at 8 TeV and by the CMS experiment at 13 TeV.
Baryon Ratios in Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
MA Zhong-Biao; MIAO Hong; GAO Chong-Shou
2003-01-01
A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.
Recent COMPASS results on the gluon polarization
Quintans, Catarina
2009-01-01
The spin structure of the nucleon is studied in the COMPASS experiment at CERN/SPS, from the collisions of 160 GeV polarized muon beam with a $^{6}$LiD target. The data collected from 2002 to 2006 provide an accurate measurement of longitudinal double spin cross-section asymmetries. The latest results on the gluon polarization, accessed from two independent analyses of photon-gluon fusion selected events, are presented. The study of the open-charm production allows to extract the gluon polarization (in LO QCD) from the measurement of the asymmetry, the value obtained being $\\Delta g/g = -$ 0.49 $\\pm$ 0.27($stat$) $\\pm$ 0.11($syst$), at an average $x_{g} =$ 0.11$^{+0.11}_{-0.05}$ and a scale $\\langle\\mu^{2}\\rangle =$ 13 (GeV/c)$^{2}$. An alternative and independent way to study the gluon polarization, by studying the high transverse momentum hadron pairs produced, leads to a value $\\Delta g/g =$ 0.08 $\\pm$ 0.10($stat$) $\\pm$ 0.05($syst$), at $x^{av}_{g} =$ 0.082$^{+0.041}_{-0.027}$ and $\\langle\\mu^{2}\\rangle =...
Impact Factors for Reggeon-Gluon Transitions
Fadin, V S
2015-01-01
General expressions for the impact factors up to terms vanishing at the space-time dimension $D\\rightarrow 4$ are presented. Their infrared behaviour is analysed and calculation of exact in $D\\rightarrow 4$ asymptotics at small momenta of Reggeized gluons is discussed.
Simplified Model of Nonlinear Landau Damping
Energy Technology Data Exchange (ETDEWEB)
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Landau problem in noncommutative quantum mechanics
Institute of Scientific and Technical Information of China (English)
Sayipjamal Dulat; LI Kang
2008-01-01
The Landau problem in non-commutative quantum mechanics (NCQM) is studied.First by solving the Schr(o)dinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity.Then we discuss the noncommutative phase space case,namely,space-space and momentum-momentum non-commutative case,and we get the explicit expression of the Hamfltonian as well as the corresponding eigenfunctions and eigenvalues.
Analog of landau Levels to Electric Dipole
Ribeiro, L R; Nascimento, J R; Furtado, Claudio
2006-01-01
In this article we discuss the analogy between the dynamics of a neutral particle with an electric dipole, in the presence of configuration of magnetic field, with Landau level quantization for charged particle. We analyze this quantization based on the He-Mckelar-Wilkens interaction developed of similar way that Ericsson and Sj\\"oqvist[Phys Rev. A {\\bf 65} 013607 (2001)] was analyzed the Landau-Aharonov-Casher effect. The energy level and eingenfuctions and eigenvalues are obtained.
Parametric Landau damping of space charge modes
Macridin, Alexandru; Stern, Eric; Amundson, James; Spentzouris, Panagiotis
2016-01-01
Landau damping is the mechanism of plasma and beam stabilization; it is caused by energy transfer from collective modes to incoherent motion of resonant particles. Normally this resonance requires the wave frequency in the particle frame to match the resonant particles frequency. Using the Synergia modeling package to study transverse coherent modes of bunched beams with space charge, we have identified a new kind of damping mechanism, parametric Landau damping, driven by the modulation of the wave-particle interaction.
Govaerts, Jan; Mweene, Habatwa V
2009-01-01
The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.
Gluon Sivers function in a light-cone spectator model
Lu, Zhun
2016-01-01
We calculate the gluon Sivers function of the proton in the valence-$x$ region using a light-cone spectator model with the presence of the gluon degree of freedom. We obtain the values of the parameters by fitting the model resulting gluon density distribution to the known parametrization. We find that our results agree with the recent phenomenological extraction of the gluon Sivers function after considering the evolution effect. We also estimate the mean transverse momentum of the gluon in a transversely polarized proton and find that it is within the range implied by the Burkardt sum rule.
Synthetic Landau levels for photons.
Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan
2016-06-30
Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.
Conformal window and Landau singularities
Grunberg, G
2001-01-01
A physical characterization of Landau singularities is emphasized, which should trace the lower boundary N_f^* of the conformal window in QCD and supersymmetric QCD. A natural way to disentangle ``perturbative'' from ``non-perturbative'' contributions below N_f^* is suggested. Assuming an infrared fixed point is present in the perturbative part of the QCD coupling even in some range below N_f^* leads to the condition gamma(N_f^*)=1, where gamma is the critical exponent. Using the Banks-Zaks expansion, one gets 4
Synthetic Landau levels for photons
Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan
2016-06-01
Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock-Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen-Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.
Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories
Wiese, U -J
2013-01-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should al...
Quantum field kinetics of QCD quark-gluon transport theory for light-cone dominated processes
Kinder-Geiger, Klaus
1996-01-01
A quantum kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the `closed-time-path' Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the 2-point functions of the gluon and quark fields. By exploiting the `two-scale nature' of light-cone dominated QCD processes, i.e. the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary inter- actions, the quantum-field equations of ...
Equilibration Rates in a Strongly Coupled Nonconformal Quark-Gluon Plasma.
Buchel, Alex; Heller, Michal P; Myers, Robert C
2015-06-26
We initiate the study of equilibration rates of strongly coupled quark-gluon plasmas in the absence of conformal symmetry. We primarily consider a supersymmetric mass deformation within N=2^{*} gauge theory and use holography to compute quasinormal modes of a variety of scalar operators, as well as the energy-momentum tensor. In each case, the lowest quasinormal frequency, which provides an approximate upper bound on the thermalization time, is proportional to temperature, up to a prefactor with only a mild temperature dependence. We find similar behavior in other holographic plasmas, where the model contains an additional scale beyond the temperature. Hence, our study suggests that the thermalization time is generically set by the temperature, irrespective of any other scales, in strongly coupled gauge theories.
On the gluon plasmon self-energy at O(g)
Flechsig, F; Flechsig, F; Schulz, H
1995-01-01
The next-to-leading order contribution \\d\\P\\omn (\\o ,\\vc q ) to the polarization function of the hot gluon system is analysed at non-zero wave vectors \\vc q \\,. Using Braaten-Pisarski resummation and general covariant gauges, \\d\\P\\omn is found to be gauge-fixing independent and transverse on the longitudinal mass-shell. The real part of the longitudinal component \\d\\P_\\ell is UV and IR stable (for real q). At imaginary q it is IR singular, and at the point \\o=0, q^2=-3m^2 it coincides with the result of Rebhan for next-to-leading order Debye screening. When q approaches the lightcone \\d\\P_\\ell diverges like 1 / \\wu {\\o^2 - q^2} , reflecting the breakdown of the Braaten-Pisarski decomposition scheme in this limit.
Higgs-gluon coupling in warped extra dimensional models with brane kinetic terms
Dey, Ujjal Kumar; Ray, Tirtha Sankar
2016-01-01
Warped models with the Higgs confined to the weak brane and the gauge and matter fields accessing the AdS5 bulk provide a viable setting to address the gauge hierarchy problem. Brane kinetic terms for the bulk fields are known to ease some of the tensions of these models with precision electroweak observables and flavor constraints. We study the loop-driven Higgs coupling to the gluons that are relevant to the Higgs program at the LHC, in this scenario. We demonstrate a partial cancellation in the contribution of the fermionic Kaluza-Klein (KK) towers within such framework relatively independent of the 5D parameters. The entire dependence of this coupling on the new physics arises from the mixing between the Standard Model states and the KK excitations. We find that the present precision in measurement of these couplings can lead to a constraint on the KK scale up to 1.2 TeV at 95% confidence level.
Virtualities of quark and gluon in QCD vacuum
Institute of Scientific and Technical Information of China (English)
2008-01-01
The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.
Natural constraints on the gluon-quark vertex
Binosi, Daniele; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D
2016-01-01
In principle, the strong-interaction sector of the Standard Model is characterised by a unique renormalisation-group-invariant (RGI) running interaction and a unique form for the dressed--gluon-quark vertex, $\\Gamma_\\mu$; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles both top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansaetze for $\\Gamma_\\mu$. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Plainly, therefore, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansaetze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.
Natural constraints on the gluon-quark vertex
Binosi, Daniele; Chang, Lei; Papavassiliou, Joannis; Qin, Si-Xue; Roberts, Craig D.
2017-02-01
In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluon-quark vertex, Γμ; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansätze for Γμ. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansätze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.
de Wild Propitius, M.D.F.; Bais, F.A.
1999-01-01
In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$ cha
Critical behavior of (2 +1 )-dimensional QED: 1 /Nf corrections in an arbitrary nonlocal gauge
Kotikov, A. V.; Teber, S.
2016-12-01
Dynamical chiral symmetry breaking (D χ SB ) is studied within (2 +1 )-dimensional QED with N four-component fermions. The leading and next-to-leading orders of the 1 /N expansion are computed exactly. The analysis is carried out in an arbitrary nonlocal gauge. Resumming the wave-function renormalization constant at the level of the gap equation yields a strong suppression of the gauge dependence of the critical fermion flavor number, Nc(ξ ), where ξ is the gauge-fixing parameter, which is such that D χ SB takes place for N Feynman gauge, Nc(0 )=3.0844 in the Landau gauge, and Nc(2 /3 )=3.0377 in the ξ =2 /3 gauge where the leading order fermion wave function is finite. These results suggest that D χ SB should take place for integer values N ≤3 .
Heavy-quarkonium potential with input from lattice gauge theory
Serenone, Willian Matioli
2014-01-01
In this dissertation we study potential models incorporating a nonperturbative propagator obtained from lattice simulations of a pure gauge theory. Initially we review general aspects of gauge theories, the principles of the lattice formulation of quantum chromodynamics (QCD) and some properties of heavy quarkonia, i.e. bound states of a heavy quark and its antiquark. As an illustration of Monte Carlo simulations of lattice models, we present applications in the case of the harmonic oscillator and SU(2) gauge theory. We then study the effect of using a gluon propagator from lattice simulations of pure SU(2) theory as an input in a potential model for the description of quarkonium, in the case of bottomonium and charmonium. We use, in both cases, a numerical approach to evaluate masses of quarkonium states. The resulting spectra are compared to calculations using the Coulomb plus linear (or Cornell) potential.
BRS and anti-BRS symmetries in the planar gauge
Energy Technology Data Exchange (ETDEWEB)
Burnel, A.; Van der Rest-Jaspers, M.
1988-10-15
The planar gauge is reexamined from various points of view. First, we find an annoying ambiguity in the definition of the product of two propagators. Second, Becchi-Rouet-Stora (BRS) invariance can be implemented only at the price of unavoidable second-order derivatives in the Lagrangian. BRS and anti-BRS symmetries cannot be realized simultaneously. If, instead of BRS, anti-BRS symmetry is implemented, the ambiguity does not give rise to different results. There is some simplification in the calculation but the gluon self-energy is neither conserved nor orthogonal to n. Again, second-order derivatives are unavoidable in the invariant Lagrangian. For all these reasons, the planar gauge with its usual propagator either with BRS or with anti-BRS symmetry does not seem to be a true gauge for Yang-Mills theory.
Colliding solitary waves in quark gluon plasmas
Rafiei, Azam; Javidan, Kurosh
2016-09-01
We study the head-on collision of propagating waves due to perturbations in quark gluon plasmas. We use the Massachusetts Institute of Technology bag model, hydrodynamics equation, and suitable equation of state for describing the time evolution of such localized waves. A nonlinear differential equation is derived for the propagation of small amplitude localized waves using the reductive perturbation method. We show that these waves are unstable and amplitude of the left-moving (right-moving) wave increases (decreases) after the collision, and so they reach the borders of a quark gluon plasma fireball with different amplitudes. Indeed we show that such arrangements are created because of the geometrical symmetries of the medium.
Recent gluon polarization results from COMPASS
Quintans, C
2007-01-01
One of the main goals of the COMPASS experiment at CERN is the measurement of the gluon polarization in the nucleon, $\\Delta G$, by scattering of 160 GeV/c polarized muons on a polarized $^{6}$LiD target. This quantity is experimentally accessible via the photon-gluon fusion process, tagged either by charmed mesons production or by high $p_{T}$ hadron pairs production. The status of these two analyses is presented. Preliminary results obtained from the 2002/03 data samples on the $D^{0}$ and the $D^{*\\pm}$ channels are shown. The high $p_{T}$ hadron pairs, produced at $Q^{2}\\lessgtr$ 1 (GeV/c)$^{2}$, were also analysed, and the measured $\\Delta G/G$ values are presented here.
Higgs production in gluon fusion beyond NNLO
Ball, Richard D; Forte, Stefano; Marzani, Simone; Ridolfi, Giovanni
2013-01-01
We construct an approximate expression for the cross section for Higgs production in gluon fusion at next-to-next-to-next-to-leading order (N3LO) in alpha_s with finite top mass. We argue that an accurate approximationcan be constructed by exploiting the analiticity of the Mellin space cross section, and the information on its singularity structure coming from large N (soft gluon, Sudakov) and small N (high energy, BFKL) all order resummation. We support our argument with an explicit comparison of the approximate and the exact expressions up to the highest (NNLO) order at which the latter are available. We find that the approximate N3LO result amounts to a correction of 17% to the NNLO QCD cross section for production of a 125 GeV Higgs at the LHC (8 TeV), larger than previously estimated, and it significantly reduces the scale dependence of the NNLO result.
Plasmons in Anisotropic Quark-Gluon Plasma
Carrington, Margaret E; Mrowczynski, Stanislaw
2014-01-01
Plasmons of quark-gluon plasma - gluon collective modes - are systematically studied. The plasma is, in general, non-equilibrium but homogeneous. We consider anisotropic momentum distributions of plasma constituents which are obtained from the isotropic one by stretching or squeezing in one direction. This leads to prolate or oblate distributions, respectively. We study all possible degrees of one dimensional deformation from the extremely prolate case, when the momentum distribution is infinitely elongated in one direction, to the extremely oblate distribution, which is infinitely squeezed in the same direction. In between these extremes we discuss arbitrarily prolate, weakly prolate, isotropic, weakly oblate and arbitrarily oblate distributions. For each case, the number of modes is determined using a Nyquist analysis and the complete spectrum of plasmons is found analytically if possible, and numerically when not. Unstable modes are shown to exist in all cases except that of isotropic plasma. We derive con...
Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD
Kim, Youngman; Tsukioka, Takuya; Zhang, P M
2016-01-01
We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.
Local Monte Carlo Implementation of the Non-Abelian Landau-Pomeranchuk-Migdal Effect
Zapp, Korinna; Wiedemann, Urs Achim
2009-01-01
The non-abelian Landau-Pomeranschuk-Migdal (LPM) effect arises from the quantum interference between spatially separated, inelastic radiation processes in matter. A consistent probabilistic implementation of this LPM effect is a prerequisite for extending the use of Monte Carlo (MC) event generators to the simulation of jet-like multi-particle final states in nuclear collisions. Here, we propose a local MC algorithm, which is based solely on relating the LPM effect to the probabilistic concept of formation time for virtual quanta. We demonstrate that this implementation of formation time physics alone accounts probabilistically for all analytically known features of the non-abelian LPM-effect, including the characteristic L^2-dependence of average parton energy loss and the characteristic $\\sqrt{\\omega}$-modification of the gluon energy distribution. Additional kinematic constraints are found to modify these L^2- and $\\omega$-dependencies characteristically in accordance with analytical estimates.
Tracing the pressure of the gluon plasma
Jackson, G
2016-01-01
Being interested in how a strongly coupled system approaches asymptotic freedom, we re-examine existing precision lattice QCD results for thermodynamic properties of the gluon plasma in a large temperature range. We discuss and thoroughly test the applicability of perturbative results, on which grounds we then infer that the pressure and other bulk properties approach the free limit somewhat slower than previously thought. We also revise the value of the first non-perturbative coefficient in the weak-coupling expansion.
Energy Density in Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
马忠彪; 苗洪; 高崇寿
2003-01-01
We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,
From Color Fields to Quark Gluon Plasma
Fries, R J; Li, Y; Fries, Rainer J.; Kapusta, Joseph I.; Li, Yang
2006-01-01
We discuss a model for the energy distribution and the early space-time evolution of a heavy ion collision. We estimate the gluon field generated in the wake of hard processes and through primordial fluctuations of the color charges in the nuclei. Without specifying the dynamical mechanism of thermalization we calculate the energy momentum tensor of the following plasma phase. The results of this model can be used as initial conditions for a further hydrodynamic evolution.
On the quark-gluon plasma search
Hamieh, S. D.
2004-01-01
We report on the effect of the quantum statistics on the two-proton spin correlation (SC) in cold and thermal nuclear matter. We have found that two nucleons SC function can be well approximated by a guassian with correlations length $\\sigma\\sim1.2$ fm. We have proposed SC measurement on low protons energy as test of the quark-gluon plasma formation in relativistic heavy ions collisions.
Gluon saturation beyond (naive) leading logs
Energy Technology Data Exchange (ETDEWEB)
Beuf, Guillaume
2014-12-15
An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.
Effective gluon interactions from superstring disk amplitudes
Energy Technology Data Exchange (ETDEWEB)
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20
Energy Technology Data Exchange (ETDEWEB)
VAN BAAL,P.; ORLAND,P.; PISARSKI,R.
2000-06-01
This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.
The Gluon Sivers Distribution: Status and Future Prospects
Directory of Open Access Journals (Sweden)
Daniël Boer
2015-01-01
Full Text Available We review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p↑p→πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution of natural size expected from large Nc arguments, which is O(1/Nc times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been suggested, which besides RHIC investigations, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon Sivers TMD probed in the various processes are different linear combinations of two universal gluon Sivers functions that have different behavior under charge conjugation and that therefore satisfy different theoretical constraints. For this reason both hadronic and DIS type of collisions are essential in the study of the role of gluons in transversely polarized protons.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Quantum Gauge General Relativity
Institute of Scientific and Technical Information of China (English)
WU Ning
2004-01-01
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein's field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.
Center vortices and the quark propagator in SU(2) gauge theory
2008-01-01
We study the behavior of the AsqTad quark propagator in Landau gauge on quenched SU(2) gauge configurations under the removal of center vortices. In contrast to recent results in SU(3), we clearly see the infrared enhancement of the mass function disappear if center vortices are removed, a sign of the intimate relation between center vortices and chiral symmetry breaking in SU(2) gauge-field theory. These results provide a benchmark with which to interpret the SU(3) results. In addition, we c...
Non-equilibrium QCD Interplay of hard and soft dynamics in high-energy multi-gluon beams
Kinder-Geiger, Klaus
1997-01-01
A quantum-kinetic formulation of the dynamical evolution of a high-energy non-equilibrium gluon system at finite density is developed, to study the interplay between quantum fluctuations of high-momentum (hard) gluons and the low-momentum (soft) mean color-field that is induced by the collective motion of the hard particles. From the exact field-equations of motion of QCD, a self-consistent set of approximate quantum-kinetic equations are derived by separating hard and soft dynamics and choosing a convenient axial-type gauge. This set of master equations describes the momentum space evolution of the individual hard quanta, the space-time development of the ensemble of hard gluons, and the generation of the soft mean-field by the current of the hard particles. The quantum-kinetic equations are approximately solved to order g^2 (1+gA) for a specific example, namely the scenario of a high-energy gluon beam along the lightcone, demonstrating the practical applicability of the approach.
Constant External Fields in Gauge Theory and the Spin 0, 1/2, 1 Path Integrals
Reuter, M; Schubert, C; Reuter, Martin; Schmidt, Michael G.; Schubert, Christian
1996-01-01
We investigate the usefulness of the ``string-inspired technique'' for gauge theory calculations in a constant external field background. Our approach is based on Strassler's worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super--) Green's functions incorporating external fields as well as internal propagators. The worldline path integral representation of the gluon loop is reexamined in detail. We calculate the two-loop effective actions induced for a constant external field by a scalar and spinor loop, and the corresponding one-loop effective action in the gluon loop case.
In-medium effects in the holographic quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Rust, Felix Christian
2009-08-05
In this dissertation we use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as the N = 2 hypermultiplet in addition to the N=4 gauge multiplet of supersymmetric Yang-Mills theory. As a key ingredient we develop a setup in which we can describe vector meson spectra in the holographic plasma at finite temperature and either baryon or isospin density. The description of vector meson excitations allows for a demonstration of the splitting of their spectrum at finite isospin chemical potential. In the effort to better understand transport processes in the QGP, we then study various diffusion coefficients in the quark-gluon plasma, including their dependence on temperature and particle density. In particular, we perform a simple calculation to obtain the diffusion coefficient of baryon charge and we derive expressions to obtain the isospin diffusion coefficient. Furthermore, we make use of an effective model to study the diffusion behavior of mesons in the plasma by setting up a kinetic model. Finally, we observe the implications of finite temperature and finite baryon or isospin density on the phase structure of fundamental matter in the holographic plasma. As one consequence we find a phase transition in the baryon diffusion coefficient which vanishes at a critical value of the particle density. The critical density we quantify matches the values of the according critical densities previously found in the phase transitions of other quantities. More important, we observe a new phase transition occurring when the isospin chemical potential excesses a
Yang-Mills-Vlasov system in the temporal gauge. Systeme de Yang-Mills-Vlasov en jauge temporelle
Energy Technology Data Exchange (ETDEWEB)
Choquet-Bruhat, Y.; Noutchegueme, N. (Paris-6 Univ., 75 (FR))
1991-01-01
We prove a local in time existence theorem of a solution of the Cauchy problem for the Yang-Mills-Vlasov integrodifferential system. Such equations govern the evolution of plasmas, for instance of quarks and gluons (quagmas), where non abelian gauge fields and Yang-Mills charges replace the usual electromagnetic field and electric charge. We work with the temporal gauge and use functional spaces with appropriate weight on the momenta, but no fall off is required in the space direction.
Diphoton excess at 750 GeV: gluon-gluon fusion or quark-antiquark annihilation?
Energy Technology Data Exchange (ETDEWEB)
Gao, Jun [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Zhang, Hao [University of California, Santa Barbara, Department of Physics, Santa Barbara, CA (United States); Zhu, Hua Xing [Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)
2016-06-15
Recently, ATLAS and CMS collaborations reported an excess in the measurement of diphoton events, which can be explained by a new resonance with a mass around 750 GeV. In this work, we explored the possibility of identifying if the hypothetical new resonance is produced through gluon-gluon fusion or quark-antiquark annihilation, or tagging the beam. Three different observables for beam tagging, namely the rapidity and transverse-momentum distribution of the diphoton, and one tagged bottom-jet cross section, are proposed. Combining the information gained from these observables, a clear distinction of the production mechanism for the diphoton resonance is promising. (orig.)
The lowest Landau level in QCD
Bruckmann, Falk; Endrőodi, Gergely; Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc; Wellnhofer, Jacob
2017-03-01
The thermodynamics of Quantum Chromodynamics (QCD) in external (electro-)magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL). Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.
Wang-Landau integration --- The application of Wang-Landau sampling in numerical integration
Li, Ying Wai; Wuest, Thomas; Landau, David P.; Qing Lin, Hai
2007-03-01
Wang-Landau sampling was first introduced to simulate the density of states in energy space for various physical systems. This technique can be extended to numerical integrations due to certain similarities in nature of these two problems. It can be further applied to study quantum many-body systems. We report the feasibility of this application by discussing the correspondence between Wang-Landau integration and Wang-Landau sampling for Ising model. Numerical results for 1D and 2D integrations are shown. In particular, the utilization of this algorithm in the periodic lattice Anderson model is discussed as an illustrative example.
Universality of Unintegrated Gluon Distributions at small x
Energy Technology Data Exchange (ETDEWEB)
Dominguez, Fabio; Marquet, Cyrille; Xiao, Bowen; Yuan, Feng
2011-01-04
We systematically study dijet production in various processes in the small-x limit and establish an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target. In the large-Nc limit, the unintegrated gluon distributions involved in different processes are shown to be related to two widely proposed ones: the Weizsacker-Williams gluon distribution and the dipole gluon distribution.
Classical gluon production amplitude in heavy-ion collisions
Directory of Open Access Journals (Sweden)
Chirilli Giovanni Antonio
2016-01-01
Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.
The refractive index in the viscous quark-gluon plasma
Jiang, Bing-feng; Li, Jia-rong; Gao, Yan-Jun
2013-01-01
Under the framework of the viscous chromohydrodynamics, the gluon self-energy is derived for the quark-gluon plasma with shear viscosity. The viscous electric permittivity and magnetic permeability are evaluated from the gluon self-energy, through which the refraction index %in the %viscous quark-gluon plasma is investigated. The numerical analysis indicates that the refractive index becomes negative in some frequency range. The start point for that frequency range is around the electric permittivity pole, and the magnetic permeability pole determines the end point. As the increase of $\\eta/s$, the frequency range for the negative refraction becomes wider.
Dependence of Quark Effective Mass on Gluon Propagators
Institute of Scientific and Technical Information of China (English)
HE Xiao-Rong; ZHOU Li-Juan; MA Wei-Xing
2005-01-01
Based on Dyson-Schwinger Equations (DSEs) in the "rainbow" approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown,the quark effective mass cannot be exactly determined theoretically.
Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation
Directory of Open Access Journals (Sweden)
Trambak Bhattacharyya
2016-01-01
Full Text Available We calculate the soft gluon radiation spectrum off heavy quarks (HQs interacting with light quarks (LQs beyond small angle scattering (eikonality approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.
Implications of Gauge Invariance on a Heavy Diphoton Resonance
Energy Technology Data Exchange (ETDEWEB)
Low, Ian [Northwestern U.; Lykken, Joseph [Fermilab
2015-12-30
Assuming a heavy electroweak singlet scalar, which couples to the Standard Model gauge bosons only through loop-induced couplings, SU(2)_L x U(1)_Y gauge invariance imposes interesting patterns on its decays into electroweak gauge bosons, which are dictated by only two free parameters. Therefore experimental measurements on any two of the four possible electroweak channels would determine the remaining two decay channels completely. Furthermore, searches in the WW/ZZ channels probe a complimentary region of parameter space from searches in the gamma-gamma/Z-gamma channels. We derive a model-independent upper bound on the branching fraction in each decay channel, which for the diphoton channel turns out to be about 61%. Including the coupling to gluons, the upper bound on the diphoton branching fraction implies an upper bound on the mass scale of additional colored particles mediating the gluon-fusion production. Using an event rate of about 5 fb for the reported 750 GeV diphoton excess, we find the new colored particle must be lighter than O(1.7 TeV) and O(2.6 TeV) for a pure CP-even and a pure CP-odd singlet scalar, respectively.
Wilson lines and gauge invariant off-shell amplitudes
Kotko, Piotr
2014-01-01
We study matrix elements of Fourier-transformed straight infinite Wilson lines as a way to calculate gauge invariant tree-level amplitudes with off-shell gluons. The off-shell gluons are assigned "polarization vectors" which (in the Feynman gauge) are transverse to their off-shell momenta and define the direction of the corresponding Wilson line operators. The infinite Wilson lines are first regularized to prove the correctness of the method. We have implemented the method in a computer FORM program that can calculate gluonic matrix elements of Wilson line operators automatically. In addition we formulate the Feynman rules that are convenient in certain applications, e.g. proving the Ward identities. Using both the program and the Feynman rules we calculate a few examples, in particular the matrix elements corresponding to gauge invariant $g^{*}g^{*}g^{*}g$ and $g^{*}g^{*}g^{*}g^{*}g$ processes. An immediate application of the approach is in the high energy scattering, as in a special kinematic setup our resu...
Generalized Higher Gauge Theory
Ritter, Patricia; Schmidt, Lennart
2015-01-01
We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid $TM\\oplus T^*M$ over some manifold $M$ and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and their infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.
Gauge symmetry from decoupling
Energy Technology Data Exchange (ETDEWEB)
Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de
2017-02-15
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Supergravity from Gauge Theory
Berkowitz, Evan
2016-01-01
Gauge/gravity duality is the conjecture that string theories have dual descriptions as gauge theories. Weakly-coupled gravity is dual to strongly-coupled gauge theories, ideal for lattice calculations. I will show precision lattice calculations that confirm large-N continuum D0-brane quantum mechanics correctly reproduces the leading-order supergravity prediction for a black hole's internal energy---the first leading-order test of the duality---and constrains stringy corrections.
Evolution to the quark–gluon plasma
Fukushima, Kenji
2017-02-01
Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed, including pedagogical introductions on the initial condition with small-\\text{x} gluons treated as a color glass condensate, the bottom–up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.
Electromagnetic signals of quark gluon plasma
Indian Academy of Sciences (India)
Bikash Sinha
2000-04-01
Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS energies are considered. It has been shown that the present photon spectra measured by WA80 and WA98 Collaborations can not distinguish between the formation of quark matter and hadronic matter in the initial state.
Gluon Green functions free of Quantum fluctuations
Athenodorou, A; De Soto, F; Rodríguez-Quintero, J; Zafeiropoulos, S
2016-01-01
This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, removes the $\\Lambda_{\\rm QCD}$ scale and destroys the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a cheap lattice calibration.
Evolution to the Quark-Gluon Plasma
Fukushima, Kenji
2016-01-01
Theoretical studies on the early-time dynamics in the ultra-relativistic heavy-ion collisions are reviewed including pedagogical introductions on the initial condition with small-x gluons treated as a color glass condensate, the bottom-up thermalization scenario, plasma/glasma instabilities, basics of some formulations such as the kinetic equations and the classical statistical simulation. More detailed discussions follow to make an overview of recent developments on the fast isotropization, the onset of hydrodynamics, and the transient behavior of momentum spectral cascades.
The Theory of Quark and Gluon Interactions
Ynduráin, Francisco J
2006-01-01
F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.
Microscopic Derivation of Ginzburg-Landau Theory
DEFF Research Database (Denmark)
Frank, Rupert; Hainzl, Christian; Seiringer, Robert
2012-01-01
We give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical...
Critical Landau Velocity in Helium Nanodroplets
N.B. Brauer; S. Smolarek; E. Loginov; D. Mateo; A. Hernando; M. Pi; M. Barranco; W.J. Buma; M. Drabbels
2013-01-01
The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitatio
Microscopic Derivation of Ginzburg-Landau Theory
DEFF Research Database (Denmark)
Frank, Rupert; Hainzl, Christian; Seiringer, Robert
2012-01-01
We give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit is semiclassical...
Erika Landau: A Lifetime of Creativity
Vidergor, Hava
2014-01-01
This article unfolds the personal creative characteristics of an educator in the field of gifted education, and examines creativity as expressed in childhood and its transformation into adulthood. Dr. Erika Landau is a pioneer of gifted education in Israel, an internationally renowned scholar and educator, and the founder of the Young Persons'…
Conservative discretization of the Landau collision integral
Hirvijoki, Eero
2016-01-01
We describe a density, momentum, and energy conserving discretization of the nonlinear Landau collision integral. Our algorithm is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem.
An Equivalent Circuit for Landau Damping
DEFF Research Database (Denmark)
Pécseli, Hans
1976-01-01
An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....
Tadpole-improved SU(2) lattice gauge theory
Shakespeare, N H; Shakespeare, Norman H.; Trottier, Howard D.
1999-01-01
A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in Landau gauge. Simulations are done with spatial lattice spacings $a_s$ in the range of about 0.1--0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy $a_t/a_s$ (where $a_t$ is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquett...
Energy Technology Data Exchange (ETDEWEB)
Mercadante, Pedro Galli
1997-07-01
In this work we show several aspects of collider physics. In the first part we begin with an introduction for the parton model which is necessary for studying hadronic collider. Then we present our study of top quark pair production with an extra gluon at Tevatron. In the second part we present our contribution to the search for new physics using effective Lagrangian to probe gauge boson couplings. Particularly, we present our study of anomalous gauge boson couplings in the reaction {gamma} {gamma} ->V V V, which will occur at NLC operating in the {gamma} {gamma} mode. (author)
Lattice Gauge Theory and the Origin of Mass
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, Andreas S.
2013-08-01
Most of the mass of everyday objects resides in atomic nuclei/ the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.
Lattice Gauge Theory and the Origin of Mass
Kronfeld, Andreas S
2012-01-01
Most of the mass of everyday objects resides in atomic nuclei; the total of the electrons' mass adds up to less than one part in a thousand. The nuclei are composed of nucleons---protons and neutrons---whose nuclear binding energy, though tremendous on a human scale, is small compared to their rest energy. The nucleons are, in turn, composites of massless gluons and nearly massless quarks. It is the energy of these confined objects, via $M=E/c^2$, that is responsible for everyday mass. This article discusses the physics of this mechanism and the role of lattice gauge theory in establishing its connection to quantum chromodynamics.
Gluon Shadowing in DIS off Nuclei
Kopeliovich, B Z; Potashnikova, I K; Schmidt, I
2008-01-01
Within a light-cone quantum-chromodynamics dipole formalism based on the Green function technique, we study nuclear shadowing in deep-inelastic scattering at small Bjorken xB 0.0001, when a variation of the transverse size of the \\bar{q}q Fock component must be taken into account. The eikonal approximation, used so far in most other models, can be applied only at high energies, when xB < 0.0001 and the transverse size of the \\bar{q}q Fock component is "frozen" during propagation through the nuclear matter. At xB < 0.01 we find quite a large contribution of gluon suppression to nuclear shadowing, as a shadowing correction for the higher Fock states containing gluons. Numerical results for nuclear shadowing are compared with the available data from the E665 and NMC collaborations. Nuclear shadowing is also predicted at very small xB corresponding to LHC kinematical range. Finally the model predictions are compared and discussed with the results obtained from other models.
Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution
Boer, Daniel; den Dunnen, Wilco J.; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner
2012-01-01
We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine whethe
The gluon Sivers distribution: status and future prospects
Boer, Daniël; Pisano, Cristian; Zhou, Jian
2015-01-01
This is a review of what is currently known about the gluon Sivers distribution and of what are the opportunities to learn more about it. Because single transverse spin asymmetries in $p^\\uparrow \\, p \\to \\pi \\, X$ provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function. SIDIS data, including the COMPASS deuteron data, allow for a gluon Sivers contribution that is of the natural size expected from large $N_c$ arguments, which is ${\\cal O}(1/N_c)$ times the nonsinglet quark Sivers contribution. Several very promising processes to measure the gluon Sivers effect directly have been put forward, which apart from ongoing and future investigations at RHIC, would strongly favor experiments at AFTER@LHC and a possible future Electron-Ion Collider. Due to the inherent process dependence of TMDs, the gluon...
Accessing the distribution of linearly polarized gluons in unpolarized hadrons
Boer, Daniël; Brodsky, Stanley J.; Mulders, Piet J.; Pisano, Cristian
2011-01-01
Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this distribution of linearly polarized gluons is through cos(2 phi) asymmetries in heavy quark pair or dijet production in electron-hadron
Dilepton Production in a Chemically Equilibrating Quark-Gluon Matter
Institute of Scientific and Technical Information of China (English)
贺泽君; 蒋维洲; 张家驹; 张伟; 刘波
2002-01-01
We have studied dilepton production in a chemically equilibrating quark-gluon matter produced at RHIC energies.We find that the dilepton yield is no longer a monotonically decreasing function of the initial quark chemicalpotential. Therefore, the dilepton suppression may not be useful as a signature for quark-gluon matter formation.
Unquenching the three-gluon vertex: A status report
Blum, Adrian L; Huber, Markus Q; Windisch, Andreas
2015-01-01
We discuss unquenching of the three-gluon vertex via its Dyson-Schwinger equation. We review the role of Furry's theorem and present first results for the quark triangle diagrams using non-perturbatively calculated dressing functions for the quark propagator and the quark-gluon vertex.
Virtual photon impact factors with exact gluon kinematic
Bialas, A; Peschanski, R
2001-01-01
An explicit analytic formula for the transverse and longitudinal impact factors S_{T,L}(N,\\gamma) of the photon using k_T factorization with exact gluon kinematics is given. Applications to the QCD dipole model and the extraction of the unintegrated gluon structure function from data are proposed.
Soft-gluon effects in nonleptonic decays of charmed mesons
Energy Technology Data Exchange (ETDEWEB)
Shizuya, Ken-ichi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
1981-03-19
In this paper, soft-gluon effects in nonleptonic decays of D and F mesons are studied nonperturbatively by use of a QCD multipole expansion. Finally, for reasonable values of D-meson bound-state parameters, the soft-gluon effects lead to a significant difference in the lifetimes of the D^{0} and D^{+} mesons.
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
Graviton as a Grand United Gauge Boson
Sharafiddinov, Rasulkhozha S.
2015-04-01
To any type of charge corresponds a kind of inertial mass. Such a mass-charge duality explains the availability in the neutrino of the naturally united rest mass and charge equal to all its mass and charge consisting of the electric, weak, strong and a range of other the innate components. From their point of view, we discuss a new theory of a grand unification. In this theory, the gravitational field is a naturally united field of the unified system of the most diverse combinations of the electric photons, magnetic monophotons, weak bosons and the strong gluons where the four pairs of forces of a different nature are united. Some consequences and laboratory confirmations of the discussed theory have been listed, in which graviton is predicted as a grand united gauge boson. Therefore, the gravitons constitute a natural light testifying in favor of gravitational force. They show that to each type of light corresponds a kind of force. Thereby, the suggested field theory that unites all gauge bosons in gravitons gives the possibility to directly look on the nature of gravitational matter elucidating the interratio of intragraviton forces and the problem of elementary particle fundamental symmetries.
Anisotropic phenomena in gauge/gravity duality
Energy Technology Data Exchange (ETDEWEB)
Zeller, Hansjoerg
2014-05-26
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
Yang-Mills theory in Coulomb gauge; Yang-Mills-theorie in Coulombeichung
Energy Technology Data Exchange (ETDEWEB)
Feuchter, C.
2006-07-01
In this thesis we study the Yang-Mills vacuum structure by using the functional Schroedinger picture in Coulomb gauge. In particular we discuss the scenario of colour confinement, which was originally formulated by Gribov. After a short introduction, we recall some basic aspects of Yang-Mills theories, its canonical quantization in the Weyl gauge and the functional Schroedinger picture. We then consider the minimal Coulomb gauge and the Gribov problem of the gauge theory. The gauge fixing of the Coulomb gauge is done by using the Faddeev-Popov method, which enables the resolution of the Gauss law - the constraint on physical states. In the third chapter, we variationally solve the stationary Yang-Mills Schroedinger equation in Coulomb gauge for the vacuum state. Therefor we use a vacuum wave functional, which is strongly peaked at the Gribov horizon. The vacuum energy functional is calculated and minimized resulting in a set of coupled Schwinger-Dyson equations for the gluon energy, the ghost and Coulomb form factors and the curvature in gauge orbit space. Using the angular approximation these integral equations have been solved analytically in both the infrared and the ultraviolet regime. The asymptotic analytic solutions in the infrared and ultraviolet regime are reasonably well reproduced by the full numerical solutions of the coupled Schwinger-Dyson equations. In the fourth chapter, we investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-Popov determinant. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Castro, Antonio Soares de
1990-05-01
A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2016-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
Prompt photon hadroproduction at high energies in off-shell gluon-gluon fusion
Baranov, S P; Zotov, N P
2007-01-01
The amplitude for production of a single photon associated with quark pair in the fusion of two off-shell gluons is calculated. The matrix element found is applied to the inclusive prompt photon hadroproduction at high energies in the framework of kt-factorization QCD approach. The total and differential cross sections are calculated in both central and forward pseudo-rapidity regions. The conservative error analisys is performed. We used the unintegrated gluon distributions in a proton which were obtained from the full CCFM evolution equation as well as from the Kimber-Martin-Ryskin prescription. Theoretical results were compared with recent experimental data taken by the D0 and CDF collaborations at Fermilab Tevatron. Theoretical predictions for LHC energies are given.
Landau Levels in Strained Optical Lattices.
Tian, Binbin; Endres, Manuel; Pekker, David
2015-12-01
We propose a hexagonal optical lattice system with spatial variations in the hopping matrix elements. Just like in the valley Hall effect in strained graphene, for atoms near the Dirac points the variations in the hopping matrix elements can be described by a pseudomagnetic field and result in the formation of Landau levels. We show that the pseudomagnetic field leads to measurable experimental signatures in momentum resolved Bragg spectroscopy, Bloch oscillations, cyclotron motion, and quantization of in situ densities. Our proposal can be realized by a slight modification of existing experiments. In contrast to previous methods, pseudomagnetic fields are realized in a completely static system avoiding common heating effects and therefore opening the door to studying interaction effects in Landau levels with cold atoms.
N >= 4 Supergravity Amplitudes from Gauge Theory at Two Loops
Energy Technology Data Exchange (ETDEWEB)
Boucher-Veronneau, C.; Dixon, L.J.; /SLAC
2012-02-15
We present the full two-loop four-graviton amplitudes in N = 4, 5, 6 supergravity. These results were obtained using the double-copy structure of gravity, which follows from the recently conjectured color-kinematics duality in gauge theory. The two-loop four-gluon scattering amplitudes in N = 0, 1, 2 supersymmetric gauge theory are a second essential ingredient. The gravity amplitudes have the expected infrared behavior: the two-loop divergences are given in terms of the squares of the corresponding one-loop amplitudes. The finite remainders are presented in a compact form. The finite remainder for N = 8 supergravity is also presented, in a form that utilizes a pure function with a very simple symbol.
Magnitude of the Wang-Landau error
Brown, Gregory; Rikvold, PA; Odbadrakh, Kh; Nicholson, DM
2016-09-01
The Wang-Landau algorithm is an entropic sampling method that incoroporates an update factor ln fi , which introduces a self-avoidance tendency into the random walk. Continued sampling at constant ln fi leads to a steady state estimate of the density of states ln gi (E). We find numerically that the difference between ln gi (E) and the true density of states ln g (E) is proportional to the update factor.
Landau-Kleffner syndrome : a case report.
Directory of Open Access Journals (Sweden)
Raybarman C
2002-04-01
Full Text Available A healthy 5 year old boy developed aphasia, attention disorder and hyperkinesia preceded by transient formed visual hallucinations and emotional outburst, immediately after a stressful event of forced separation from his father. EEG showed generalized epileptiform activity. He was diagnosed as Landau-Kleffner syndrome (LKS. CT and MRI of the brain were normal. SPECT showed left mesial temporal hypoperfusion. He improved on antiepileptics and ACTH.
Critical endpoint behavior: A Wang Landau study
Landau, D. P.; Wang, Fugao; Tsai, Shan-Ho
2008-07-01
We study the critical endpoint behavior using an asymmetric Ising model with two- and three-body interactions on a triangular lattice, in the presence of an external field. The simulation method we use is Wang-Landau sampling in a two-dimensional parameter space. We observe a clear divergence of the curvature of the spectator phase boundary and of the magnetization coexistence diameter derivative at the critical endpoint, and the exponents for both divergences agree well with previous theoretical predictions.
Coulomb collision effects on linear Landau damping
Energy Technology Data Exchange (ETDEWEB)
Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)
2014-05-15
Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.
Fibonacci oscillators in the Landau diamagnetism problem
Marinho, André A.; Brito, Francisco A.; Chesman, Carlos
2014-10-01
We address the issue of the Landau diamagnetism problem via q-deformed algebra of Fibonacci oscillators through its generalized sequence of two real and independent deformation parameters q1 and q2. We obtain q-deformed thermodynamic quantities such as internal energy, number of particles, magnetization and magnetic susceptibility which recover their usual form in the degenerate limit q12+q22=1.
Very boosted Higgs in gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Grojean, C. [Univ. Autonoma de Barcelona, Bellaterra (Spain). ICREA at IFAE; Salvioni, E. [California Univ., Davis, CA (United States). Dept. of Physics; European Organization for Nuclear Research (CERN), Geneva (Switzerland); Padova Univ. (Italy). Dipt. di Fisica e Astronomica; INFN, Sezione di Padova (Italy); Schlaffer, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weiler, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-12-15
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the t anti th channel to pin down this crucial coupling. Presented rst in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Exploding Quark-Gluon Plasma Fireball
Hamieh, S; Rafelski, Johann; Hamieh, Salah; Letessier, Jean; Rafelski, Johann
2000-01-01
Lattice-QCD results provide an opportunity to model and extrapolate to finite baryon density the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data the properties of resulting QGP equations of state (EoS) are developed. An exploding dense matter fireball formed in heavy ion collision experiments at CERN-SPS is considered, and we show that its physical properties are well described by the QGP-EoS we presented. We quantitatively determine the conditions of sudden breakup of the fireball, and show that this instability point is consistent with with the hadronization condition derived from the hadronic particle production data. We further estimate the properties of the fireball as it is formed just after nuclear collision is completed and show that QGP formation must be expected down to 40$A$ GeV central Pb--Pb interactions.
Charmonium states in quark-gluon plasma
Indian Academy of Sciences (India)
Su Houng Lee; Kenji Morita
2009-01-01
We discuss how the spectral changes of quarkonia at c can reflect the `critical' behaviour of QCD phase transition. Starting from the temperature dependencies of the energy density and pressure from lattice QCD calculation, we extract the temperature dependencies of the scalar and spin-2 gluon condensates near c . We also parametrize these changes into the electric and magnetic condensate near c. While the magnetic condensate hardly changes across c, we find that the electric condensate increases abruptly above c. Similar abrupt change is also seen in the scalar condensate. Using the QCD second-order Stark effect and QCD sum rules, we show that these sudden changes induce equally abrupt changes in the mass and width of /, both of which are larger than 100 MeV at slightly above c.
Very boosted Higgs in gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Grojean, C. [ICREA at IFAE, Universitat Autónoma de Barcelona,E-08193 Bellaterra (Spain); Salvioni, E. [Department of Physics, University of California,Davis, CA 95616 (United States); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Schlaffer, M. [DESY,Notkestrasse 85, D-22607 Hamburg (Germany); Weiler, A. [Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); DESY,Notkestrasse 85, D-22607 Hamburg (Germany)
2014-05-06
The Higgs production and decay rates offer a new way to probe new physics beyond the Standard Model. While dynamics aiming at alleviating the hierarchy problem generically predict deviations in the Higgs rates, the current experimental analyses cannot resolve the long- and short-distance contributions to the gluon fusion process and thus cannot access directly the coupling between the Higgs and the top quark. We investigate the production of a boosted Higgs in association with a high-transverse momentum jet as an alternative to the tt-macronh channel to pin down this crucial coupling. Presented first in the context of an effective field theory, our analysis is then applied to models of partial compositeness at the TeV scale and of natural supersymmetry.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Associated production of prompt photons and heavy quarks in off-shell gluon-gluon fusion
Energy Technology Data Exchange (ETDEWEB)
Baranov, S.P. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)
2008-08-15
In the framework of the k{sub T}-factorization approach, we study the production of prompt photons associated with heavy (charm and beauty) quarks in hadron-hadron collisions at high energies. Our consideration is based on the amplitude for the production of a single photon associated with a quark pair in the fusion of two off-shell gluons. The total and differential cross sections are presented and the conservative error analysis is performed. Two sets of unintegrated gluon distributions in the proton have been used in numerical calculation: the one obtained from Ciafaloni-Catani-Fiorani-Marchesini evolution equation and the other from Kimber-Martin-Ryskin prescription. The theoretical results are compared with recent experimental data taken by the CDF collaboration at the Fermilab Tevatron. Our analysis extends to specific angular correlations between the produced prompt photons and muons originating from semileptonic decays of the final charmed or beauty quarks. We point out the importance of such observables, which can serve as a crucial test for the unintegrated gluon densities in a proton. Finally, we extrapolate the theoretical predictions to the CERN LHC energies. (orig.)
Physics of the quark - gluon plasma
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-09-01
This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.
Magnetic Phase Diagram of Dense Holographic Multiquarks in the Quark-gluon Plasma
Burikham, Piyabut
2011-01-01
We study phase diagram of the dense holographic gauge matter in the Sakai-Sugimoto model in the presence of the magnetic field above the deconfinement temperature. Even above the deconfinement, quarks could form colour bound states through the remaining strong interaction if the density is large. We demonstrate that in the presence of the magnetic field for a sufficiently large baryon density, the multiquark-pion gradient (MQ-$\\mathcal{5}\\phi$) phase is more thermodynamically preferred than the chiral-symmetric quark-gluon plasma. The phase diagrams between the holographic multiquark and the chiral-symmetric quark-gluon plasma phase are obtained at finite temperature and magnetic field. In the mixed MQ-$\\mathcal{5}\\phi$ phase, the pion gradient induced by the external magnetic field is found to be a linear response for small and moderate field strengths. Its population ratio decreases as the density is raised and thus the multiquarks dominate the phase. Temperature dependence of the baryon chemical potential,...
Mechanisms of CP violation in gauge theory and the recent developments
Energy Technology Data Exchange (ETDEWEB)
Chang, D. (Northwestern Univ., Evanston, IL (USA). Dept. of Physics and Astronomy)
1990-12-20
Various mechanisms of CP violation in gauge theory are reviewed. We discuss the impact of recent developments associated with electric dipole moment(EDM) of neutron (D{sub n}), EDM of quarks(D{sub q}), chromo-EDM of quarks(D{sub q}{sup c}), chromo-EDM of gluon(D{sub G}{sup c}), EDM of electron(D{sub e}), and EDM of W boson(D{sub W}). 89 refs., 31 figs.
Towards the quark--gluon plasma Equation of State with dynamical strange and charm quarks
Burger, F; Lombardo, M P; Muller-Preussker, M; Trunin, A
2015-01-01
We present an ongoing project aimed at determining the thermodynamic Equation of State (EoS) of quark--gluon matter from lattice QCD with two generations of dynamical quarks. We employ the Wilson twisted mass implementation for the fermionic fields and the improved Iwasaki gauge action. Relying on $T=0$ data obtained by the ETM Collaboration the strange and charm quark masses are fixed at their physical values, while the pion mass takes four values in the range from 470 MeV down to 210 MeV. The temperature is varied within a fixed--lattice scale approach. The values for the pseudocritical temperature are obtained from various observables. For the EoS we show preliminary results for the pure gluonic contribution obtained at the pion mass value 370 MeV, where we can compare with previously obtained results with $N_f=2$ degenerate light flavours.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Kim, S
2001-01-01
We calculate the Wilson coefficients of all dimension-6 gluon operators with nonzero spin in the correlation function between two heavy vector currents. For the twist-4 part, we first identify the three independent gluon operators, and then proceed with the calculation of the Wilson coefficients using the fixed-point gauge. Together with the previous calculation of the Wilson coefficients for the dimension-6 scalar gluon operators by Nikolaev and Radyushkin, our result completes the list of all the Wilson coefficients of dimension-6 gluon operators in the correlation function between heavy vector currents. We apply our results to investigate the mass of J/psi in nuclear matter using QCD sum rules. Using an upper-bound estimate on the matrix elements of the dimension-6 gluon operators to linear order in density, we find that the density-dependent contribution from dimension-6 operators is less than 40% of the dimension-4 operators with opposite sign. The final result gives about -4 MeV mass shift for the charm...
Some aspects of phenomenology of accelerators the top quark and gauge boson couplings
Mercadante, P G
1997-01-01
In this work we show several aspects of collider physics. In the first part we begin with an introduction for the parton model which is necessary for studying hadronic collider. Then we present our study of top quark pair production with an extra gluon at Tevatron. In the second part we present our contribution to the search for new physics using effective Lagrangian to probe gauge boson couplings. Particularly, we present our study of anomalous gauge boson couplings in the reaction gamma gamma ->V V V, which will occur at NLC operating in the gamma gamma mode.
Gauge coupling unification in gauge-Higgs grand unification
Yamatsu, Naoki
2016-04-01
We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.
Chung, Daniel J H
2016-01-01
We reformulate gauge theories in analogy with the vierbein formalism of general relativity. More specifically, we reformulate gauge theories such that their gauge dynamical degrees of freedom are local fields that transform linearly under the dual representation of the charged matter field. These local fields, which naively have the interpretation of non-local operators similar to Wilson lines, satisfy constraint equations. A set of basis tensor fields are used to solve these constraint equations, and their field theory is constructed. A new local symmetry in terms of the basis tensor fields is used to make this field theory local and maintain a Hamiltonian that is bounded from below. The field theory of the basis tensor fields is what we call the basis tensor gauge theory.
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Maas, Axel
2012-01-01
QCD can be formulated using any gauge group. One particular interesting choice is to replace SU(3) by the exceptional group G2. Conceptually, this group is the simplest group with a trivial center. It thus permits to study the conjectured relevance of center degrees of freedom for QCD. Practically, since all its representation are real, it is possible to perform lattice simulations for this theory also at finite baryon densities. It is thus an excellent environment to test methods and to investigate general properties of gauge theories at finite densities. We review the status of our understanding of gauge theories with the gauge group G2, including Yang-Mills theory, Yang-Mills-Higgs theory, and QCD both in the vacuum and in the phase diagram.
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
Healey, Richard
Those looking for holism in contemporary physics have focused their attention primarily on quantum entanglement. But some gauge theories arguably also manifest the related phenomenon of nonseparability. While the argument is strong for the classical gauge theory describing electromagnetic interactions with quantum "particles", it fails in the case of general relativity even though that theory may also be formulated in terms of a connection on a principal fiber bundle. Anandan has highlighted the key difference in his analysis of a supposed gravitational analog to the Aharonov-Bohm effect. By contrast with electromagnetism in the original Aharonov-Bohm effect, gravitation is separable and exhibits no novel holism in this case. Whether the nonseparability of classical gauge theories of nongravitational interactions is associated with holism depends on what counts as the relevant part-whole relation. Loop representations of quantized gauge theories of nongravitational interactions suggest that these conclusions about holism and nonseparability may extend also to quantum theories of the associated fields.
Gauge field, strings, solitons, anomalies and the speed of life
Niemi, Antti J
2014-01-01
It's been said that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better". Here we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this we merge techniques which have been introduced and developed in modern mathematical physics, largely by Ludvig Faddeev to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic string-like configuration in the far infrared. We observe that the energy supports topological solitons, that perta...
Frampton, Paul H
2008-01-01
This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Gauge engineering and propagators
Directory of Open Access Journals (Sweden)
Maas Axel
2017-01-01
The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Identified Charged Particles in Quark and Gluon Jets
Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borgland, A.W.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.A.; Demaria, N.; De Angelis, A.; de Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanskii, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Navas, Sergio; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevskii, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovskii, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Seemann, F.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, A.; Sopczak, A.; Sosnowski, R.; Spassoff, Tz.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli de Fatis, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.G.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Vanden Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.
2000-01-01
A sample of 2.2 million hadronic \\z decays, selected fythe {\\sc Delphi} detector at {\\sc Lep} during 1994-199nimprovedmeasurement of inclusive distributions of \\pie, \\kp anrantiparticles in gluon and quark jets. The production l identified particles were found to be softer in gluon kjets, with a higher multiplicity in gluon jets as obseecharged particles. A significant proton enhancement indindicating that baryon production proceeds directly fr.The maxima, $\\xi^*$, of the $\\xi$-distributions for kakjets are observed to be different. The study of isoscanshows no indication of an excess of $\\phi(1020)$ produ.
A solution of the DGLAP equation for gluon at low
Indian Academy of Sciences (India)
D K Choudhury; P K Sahariah
2002-04-01
We obtain a solution of the DGLAP equation for the gluon at low ﬁrst by expanding the gluon in a Taylor series and then using the method of characteristics. We test its validity by comparing it with that of Glück, Reya and Vogt. The convergence criteria of the approximation used are also discussed. We also calculate 2(,2)/ ln 2 using its approximate relations with the gluon distribution at low . The predictions are then compared with the HERA data.
Quark vs Gluon jets in Heavy Ion Collisions
Drauksas, Simonas
2017-01-01
The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.
BCJ relations from a new symmetry of gauge-theory amplitudes
Brown, Robert W
2016-01-01
We introduce a new set of symmetries obeyed by tree-level gauge-theory amplitudes involving at least one gluon. The symmetry acts as a momentum-dependent shift on the color factors of the amplitude. Using the radiation vertex expansion, we prove the invariance under this color-factor shift of the $n$-gluon amplitude, as well as amplitudes involving massless or massive particles in an arbitrary representation of the gauge group with spin zero, one-half, or one. The Bern-Carrasco-Johansson relations are a direct consequence of this symmetry. We also introduce the cubic vertex expansion of an amplitude, and use it to derive a gauge-invariant constraint on the kinematic numerators of the amplitude. We show that the amplitudes of the bi-adjoint scalar theory are invariant under the color-factor symmetry, and use this to derive the null eigenvectors of the propagator matrix. We generalize the color-factor shift to loop level, and prove the invariance under this shift of one-loop $n$-gluon amplitudes in any theory t...
Imaging the dynamics of free-electron Landau states.
Schattschneider, P; Schachinger, Th; Stöger-Pollach, M; Löffler, S; Steiger-Thirsfeld, A; Bliokh, K Y; Nori, Franco
2014-08-08
Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions.
Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation
Energy Technology Data Exchange (ETDEWEB)
Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel
2009-06-15
A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)
Bali, Gunnar S; Pineda, Antonio
2014-01-01
Using numerical stochastic perturbation theory, we determine the first 35 infinite volume coefficients of the perturbative expansion in powers of the strong coupling constant $\\alpha$ of the plaquette in SU(3) gluodynamics. These coefficients are obtained in lattice regularization with the standard Wilson gauge action. The on-set of the dominance of the dimension four renormalon associated to the gluon condensate is clearly observed. We determine the normalization of the corresponding singularity in the Borel plane and convert this into the $\\overline{\\mathrm{MS}}$ scheme. We also comment on the impact of the renormalon on non-perturbative determinations of the gluon condensate.
ASYMPTOTIC EXPANSION AND ESTIMATE OF THE LANDAU CONSTANT
Institute of Scientific and Technical Information of China (English)
A.Eisinberg; G.Franzè; N.Salerno
2001-01-01
Properties of Landau constant are investigated in this note.A new representation in terms of a hypergeometric function 3F2 is given and a property defining the family of asymptotic sequences of Landau constant is formalized.Moreover,we give an other asymptotic expansion of Landau constant by using asymptotic expansion of the ratio of gamma functions in the sense of Poincaré due to Tricomi and Erdélyi.
Test particle study of Landau damping of steepening magnetosonic waves
Matsumoto, H.; Barnes, A.
1982-01-01
A test particle study of Landau damping of steepening large-amplitude magnetosonic waves is made. Motions of test particles in a model of a steepening large-amplitude magnetosonic wave are traced. The kinetic energy change of the ensemble of test particles is computed to estimate the effective Landau damping rate of the magnetosonic wave. The numerical results are compared with the linear kinetic theory of Landau damping and interpreted in terms of a simple physical picture for particle trapping.
Turbulent thermalization of the Quark Gluon Plasma
Berges, J; Schlichting, S; Venugopalan, R
2013-01-01
Classical-statistical lattice gauge theory simulations are employed to demonstrate the existence of a nonthermal fixed point in the space-time evolution of heavy ion collisions at ultrarelativistic energies. After an initial transient regime dominated by plasma instabilities and free streaming, the ensuing overpopulated non-Abelian plasma exhibits the universal self-similar dynamics characteristic of wave turbulence observed in a large variety of physical systems across different energy scales.
Partial compactness for the 2-D Landau-Lifshitz flow
Directory of Open Access Journals (Sweden)
Paul Harpes
2004-07-01
Full Text Available Uniform local $C^infty$-bounds for Ginzburg-Landau type approximations for the Landau-Lifshitz flow on planar domains are proven. They hold outside an energy-concentration set of locally finite parabolic Hausdorff-dimension 2, which has finite times-slices. The approximations subconverge to a global weak solution of the Landau-Lifshitz flow, which is smooth away from the energy concentration set. The same results hold for sequences of global smooth solutions of the 2-d Landau-Lifshitz flow.
Gauge Model with Massive Gravitons
Institute of Scientific and Technical Information of China (English)
WU Ning
2003-01-01
Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.
M. Laine; Philipsen, O.(Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany); Tassler, M.
2007-01-01
Recently, a finite-temperature real-time static potential has been introduced via a Schr\\"odinger-type equation satisfied by a certain heavy quarkonium Green's function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number...
Aspects of the refined Gribov-Zwanziger action in linear covariant gauges
Capri, M A L; Pereira, A D; Sobreiro, R F; Sorella, S P; Terin, R C
2016-01-01
We prove the renormalizability to all orders of a refined Gribov-Zwanziger type action in linear covariant gauges in four-dimensional Euclidean space. In this model, the Gribov copies are taken into account by requiring that the Faddeev-Popov operator is positive definite with respect to the transverse component of the gauge field, a procedure which turns out to be analogous to the restriction to the Gribov region in the Landau gauge. The model studied here can be regarded as the first approximation of a more general nonperturbative BRST invariant formulation of the refined Gribov-Zwanziger action in linear covariant gauges obtained recently in [Phys. Rev. D 92, no. 4, 045039 (2015) and arXiv:1605.02610 [hep-th
On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories
Pereira, A D
2013-01-01
An alternative method to account for the Gribov ambiguities in gauge theories is presented. It is shown that, to eliminate Gribov ambiguities, at infinitesimal level, it is required to break the BRST symmetry in a soft manner. This can be done by introducing a suitable extra constraint that eliminates the infinitesimal Gribov copies. It is shown that the present approach is consistent with the well established known cases in the literature, i.e., the Landau and maximal Abelian gauges. The method is valid for gauges depending exclusively on the gauge field and is restricted to classical level. However, occasionally, we deal with quantum aspects of the technique, which are used to improve the results.
One-Loop Corrections to Five-Gluon Amplitudes
Bern, Z; Kosower, D A
1993-01-01
We present the one-loop helicity amplitudes with five external gluons. The computation employs string-based methods, new techniques for performing tensor integrals, and improvements in the spinor helicity method.
Effective degrees of freedom of the quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Castorina, P. [Dipartimento di Fisica, Universita di Catania, and INFN Sezione di Catania, Via Santa Sofia 64, I-95100 Catania (Italy); Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: massimo@lns.mit.edu
2007-01-25
The effective degrees of freedom of the quark-gluon plasma are studied in the temperature range {approx}(1-2)T{sub c}. We show that including light bosonic states one can reproduce the pressure and energy density of the quark-gluon plasma obtained by lattice simulations. The number of the bosonic states required is at most of the order of 20, consistent with the number of light mesonic states and in disagreement with a recently proposed picture of the quark-gluon plasma as a system populated with exotic bound states. We also constrain the quark quasiparticle chiral invariant mass to be {approx}300 MeV. Some remarks regarding the role of the gluon condensation and the baryon number-strangeness correlation are also presented.
Quark Gluon Condensate,Virtuality and Susceptibility of QCD Vacuum
Institute of Scientific and Technical Information of China (English)
ZHOU Li-Juan; WU Qing; MA Wei-Xing
2008-01-01
We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values of various local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtuality in QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson-Schwinger equations in "rainbow" approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature,and many other theoretical calculations.The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work is centrally important for studying non-perturbative QCD,and has many important applications both in particle and nuclear physics.
Gluon number fluctuations with heavy quarks at HERA
Institute of Scientific and Technical Information of China (English)
ZHU Xiang-Rong; ZHOU Dai-Cui
2011-01-01
We study the effect of gluon number fluctuations (Pomeron loops) on the proton structure function at HERA.It is shown that the description of charm and bottom quarks and longitudinal structure functions are improved,with x2/d.o.f=0.803 (fluctuations) as compared with x2/d.o.f=0.908 (without fluctuations),once the gluon number fluctuations are included.We find that in the gluon number fluctuation case the heavy quarks do not play an important role in the proton structure function as the saturation model.The successful description of the HERA data indicates that the gluon number fluctuation could be one of the key mechanisms to describe the proton structure function at HERA energies.
LHC soft physics and TMD gluon density at low x
Lipatov, A V; Zotov, N P
2014-01-01
We study the unintegrated, or transverse momentum dependent (TMD) gluon distribution obtained from the best description of the LHC data on the inclusive spectra of hadrons produced in the mid-rapidity region and low transverse momenta at starting scale Q0^2 = 1 GeV^2. To extend this gluon density at higher Q^2 we apply the Catani-Ciafoloni-Fiorani-Marchesini (CCFM) evolution equation. The influence of the initial (starting) non-perturbative gluon distribution is studied. The application of the obtained gluon density to the analysis of the ep deep inelastic scattering allows us to get the results which describe reasonably well the H1 and ZEUS data on the longitudinal proton structure function FL(x,Q^2). So, the connection between the soft processes at LHC and small x physics at HERA has been confirmed and extended to a wide kinematical region.
The gluon condensation at high energy hadron collisions
Directory of Open Access Journals (Sweden)
Wei Zhu
2017-03-01
Full Text Available We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.
Evolution of gluon TMD at low and moderate x
Balitsky, I
2014-01-01
We study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x\\ll 1$ to linear double-logarithmic evolution at moderate $x\\sim 1$.
The gluon condensation at high energy hadron collisions
Energy Technology Data Exchange (ETDEWEB)
Zhu, Wei, E-mail: weizhu@mail.ecnu.edu.cn [Department of Physics, East China Normal University, Shanghai 200241 (China); Lan, Jiangshan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2017-03-15
We report that the saturation/CGC model of gluon distribution is unstable under action of the chaotic solution in a nonlinear QCD evolution equation, and it evolves to the distribution with a sharp peak at the critical momentum. We find that this gluon condensation is caused by a new kind of shadowing–antishadowing effects, and it leads to a series of unexpected effects in high energy hadron collisions including astrophysical events. For example, the extremely intense fluctuations in the transverse-momentum and rapidity distributions of the gluon jets present the gluon-jet bursts; a sudden increase of the proton–proton cross sections may fill the GZK suppression; the blocking QCD evolution will restrict the maximum available energy of the hadron–hadron colliders.
Universal structure of subleading infrared poles in gauge theory amplitudes
Dixon, Lance J; Sterman, George
2008-01-01
We study the origin of subleading soft and collinear poles of form factors and amplitudes in dimensionally-regulated massless gauge theories. In the case of form factors of fundamental fields, these poles originate from a single function of the coupling, denoted G(alpha_s), depending on both the spin and gauge quantum numbers of the field. We relate G(alpha_s) to gauge-theory matrix elements involving the gluon field strength. We then show that G(alpha_s) is the sum of three terms: a universal eikonal anomalous dimension, a universal non-eikonal contribution, given by the coefficient B_delta (alpha_s) of delta(1 - z) in the collinear evolution kernel, and a process-dependent short-distance coefficient function, which does not contribute to infrared poles. Using general results on the factorization of soft and collinear singularities in fixed-angle massless gauge theory amplitudes, we conclude that all such singularities are captured by the eikonal approximation, supplemented only by the knowledge of B_delta (...
The QCD Abacus A New Formulation for Lattice Gauge Theories
Brower, R C
1998-01-01
A quantum Hamiltonian is constructed for SU(3) lattice QCD entirely from color triplet Fermions --- the standard quarks and a new Fermionic ``constituent'' of the gluon we call ``rishons''. The quarks are represented by Dirac spinors on each site and the gauge fields by rishon-antirishon bilinears on each link which together with the local gauge transforms are the generators of an SU(6) algebra. The effective Lagrangian for the path integral lives in $R^4 \\times S^1$ Euclidean space with a compact ``fifth time'' of circumference ($\\beta$) and non-Abelian charge ($e^2$) both of which carry dimensions of length. For large $\\beta$, it is conjectured that continuum QCD is reached and that the dimensionless ratio $g^2 = e^2/\\beta$ becomes the QCD gauge coupling. The quarks are introduced as Kaplan chiral Fermions at either end of the finite slab in fifth time. This talk will emphasize the gauge and algebraic structure of the rishon or link Fermions and the special properties that may lead to fast discrete dynamics...
Electrical Conductivity of Quark-Gluon Plasma in Strong Magnetic Fields
Hattori, Koichi
2016-01-01
We compute the electrical conductivity of quark-gluon plasma in a strong magnetic field $B$ with quantum field theory at finite temperature using the lowest Landau level approximation. We provide the one-loop result arising from 1-to-2 scattering processes whose kinematics are satisfied by the (1+1) dimensional fermion dispersion relation. Due to the chirality conservation, the conductivity diverges in the massless limit, and is sensitive to the value of the current quark mass. As a result, we find that the conductivity along the direction of the magnetic field is quite large compared with the value at $B=0$, mainly because of the small value of the current quark mass. We show that the resummation of the ladder diagrams for the current-current correlator gives rise to only sub-leading contributions beyond the leading-log order, and thus verify our one-loop result at the leading-log accuracy. We also discuss possible implications for the relativistic heavy-ion collisions.
Tetraquarks Production in Quark-Gluon Plasma with Diquarks
Institute of Scientific and Technical Information of China (English)
MA Zhong-Biao; GAO Chong-Shou
2006-01-01
@@ We present a way to calculate tetraquarks ratios for quark-gluon plasma with diquarks. The ratios of tetraquarks over baryons produced from quark matter are high than hadronic gas model limits. It is a better way to search for four-quark states in relativistic heavy ion collisions. It may become a criterion to judge whether quark-gluon plasma has formed to search for four-quark states in relativistic heavy ion collisions.
The five gluon amplitude and one-loop integrals
Bern, Zvi; Kosower, David A.
1992-01-01
We review the conventional field theory description of the string motivated technique. This technique is applied to the one-loop five-gluon amplitude. To evaluate the amplitude a general method for computing dimensionally regulated one-loop integrals is outlined including results for one-loop integrals required for the pentagon diagram and beyond. Finally, two five-gluon helicity amplitudes are given.
Transverse momentum dependence in gluon distribution and fragmentation functions
Mulders, P J
2001-01-01
We investigate the twist two gluon distribution functions for spin 1/2 hadrons, emphasizing intrinsic transverse momentum of the gluons. These functions are relevant in leading order in the inverse hard scale in scattering processes such as inclusive leptoproduction or Drell-Yan scattering, or more general in hard processes in which at least two hadrons are involved. They show up in azimuthal asymmetries. For future estimates of such observables, we discuss specific bounds on these functions.
Massive quark-gluon scattering amplitudes at tree level
Hall, Anthony
2008-01-01
Results for four-, five-, and six-parton tree amplitudes for massive quark-antiquark scattering with gluons are calculated using the recursion relations of Britto, Cachazo, Feng, and Witten. The required diagrams are generated using shifts of the momenta of a pair of massless legs to complex values. Checks verifying the calculations are described, and a simple formula for the shifted spinors of an internal gluon is presented.
Strangeness Production in a Chemically Equilibrating Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
HE Ze-Jun; LONG Jia-Li; MA Yu-Gang; MA Guo-Liang
2004-01-01
@@ We study the strangeness of a chemically equilibrating quark-gluon plasma at finite baryon density based on the and will accelerate with the change of the initial system from a chemically non-equilibrated to an equilibrated system. We also find that the calculated strangeness is very different from the one in the thermodynamic equilibrium system. This study may be helpful to understand the formation of quark-gluon plasma via a chemically non-equilibrated evolution framework.