WorldWideScience

Sample records for landau damping due

  1. Landau damping due to tune spreads in betatron amplitude and momentum

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tran, P.; Weng, W.T.

    1989-01-01

    Due to the large space charge transverse impedance in a low energy synchrotron, the coherent tune shift causes the Landau damping to be ineffective in damping the transverse coherent motion. We analyze the effect of Landau damping that is caused by the tune spreads of the betatron amplitude (space charge and/or octupole) and momentum. We find that the Landau damping becomes more significant in our two dimensional analysis. 5 refs

  2. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  3. Landau Damping Revisited

    International Nuclear Information System (INIS)

    Rees, John; Chao, Alexander

    2008-01-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread

  4. Landau damping of dust acoustic solitary waves in nonthermal plasmas

    Science.gov (United States)

    Ghai, Yashika; Saini, N. S.; Eliasson, B.

    2018-01-01

    Dust acoustic (DA) solitary and shock structures have been investigated under the influence of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated by the observations of Geotail spacecraft that reported two-temperature ion population in the Earth's magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA nonlinear structures. The Korteweg-de Vries (KdV) equation with an additional Landau damping term is derived and its analytical solution is presented. The solution has the form of a soliton whose amplitude decreases with time. Further, we have illustrated the influence of Landau damping and nonthermality of the ions on DA shock structures by a numerical solution of the Landau damping modified KdV equation. The study of the time evolution of shock waves suggests that an initial shock-like pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion, and dissipation due to Landau damping. The findings of the present investigation may be useful in understanding the properties of nonlinear structures in the presence of Landau damping in dusty plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth's magnetotail.

  5. Energy spread in SLC linac with Landau damping

    International Nuclear Information System (INIS)

    Seeman, J.

    1984-01-01

    The possibility of using Landau damping to reduce the growth of the beam size due to transverse wake fields has been known for some time. Recently K. Bane has calculated the effects of Landau damping for the SLC. The energy spread is then slowly removed so that at the end of the linac it has returned to the SLC specification of less than +0.5%. The purpose of the energy spread is to reduce the resonant driving of the tail of the bunch by the head. In this note the expected energy spreads within the beam are tabulated at various positions along the linac for use by those people designing momentum dependent equipment and for those interested in Landau damping

  6. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  7. On Landau damping

    KAUST Repository

    Mouhot, Clément

    2011-09-01

    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  8. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  9. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  10. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  11. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  12. Possibility of Landau damping of gravitational waves

    International Nuclear Information System (INIS)

    Gayer, S.; Kennel, C.F.

    1979-01-01

    There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible

  13. Modulated Langmuir waves and nonlinear Landau damping

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.

    1975-01-01

    The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)

  14. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    Science.gov (United States)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  15. Landau Damping of the Weak Head-Tail Instability at Tevatron

    CERN Document Server

    Ivanov, Petr M; Annala, Jerry; Lebedev, Valeri; Shiltsev, Vladimir

    2005-01-01

    Landau damping of the head-tail modes in Tevatron beam with the help of octupole-generated betatron tune spreads permits to reduce chromaticity from 15-20 units to zero thus significantly improving the beam lifetime. The octupole strengths have been experimentally optimized at different stages of the Tevatron operation, from proton injection to collision. Predictions of the analytical Landau damping model are compared with the experimental results.

  16. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  17. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  18. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  19. Transport of energy and momentum due to spatial Landau damping and growth of electrostatic waves

    International Nuclear Information System (INIS)

    Lacina, J.

    1994-01-01

    It is shown that Landau damping in space (LDS), occuring for time-periodic electrostatic waves, does not lead to any deposition of energy in plasmas. A steady-state balance and a steady-state transport of energy, momentum and particles take place both for damped and growing waves. Because of the phase interference of coherent free and forced particle oscillations, the oscillatory energy of particles increases in the direction of wave propagation; the time-averaged flow of plasma kinetic energy being constant in space for these waves, the LDS must take place for a Maxwellian plasma in order to compensate for the growth of the particle oscillatory energy in space. (Author)

  20. MD 2722: Investigation of Landau damping by means of BTF measurements

    CERN Document Server

    Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Levens, Tom; Louro Alves, Diogo Miguel; Metral, Elias; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2018-01-01

    Stability diagrams quantify the LHC stability thresholds due to the beam coupling impedance. Beam Transfer Function (BTF) measurements are a direct measurements of the stability diagram and therefore of the Landau damping of proton beams. Some coherent instabilities at the LHC are still not fully understood, especially when in the presence of beam-beam long range interactions at the end of the betatron squeeze. The beam-beam excited resonances can cause diffusive mechanisms and particle distribution changes that can lead to a different stability w.r.t. expectations for a Gaussian particle distribution. To investigate limitations of the models, a BTF system has been installed in the LHC in the 2015 in order to measure the Landau damping. During past MDs several configurations have been investigated: tune shifts and tune spread of the beams have been measured as a function of the octupole currents, tunes and beam-beam long range interactions. Some measurements artifacts were observed and mitigated, however the...

  1. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    International Nuclear Information System (INIS)

    Hwa-Min, Kim; Young-Dae, Jung

    2007-01-01

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle θ L = π/4. (authors)

  2. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hwa-Min, Kim [Daegu Univ. Catholic, Dept. of Electronics Engineering (Korea, Republic of); Young-Dae, Jung [Hanyang Univ., Dept. of Applied Physics, Seoul (Korea, Republic of)

    2007-07-15

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle {theta}{sub L} = {pi}/4. (authors)

  3. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  4. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  5. Reversible dissipative processes, conformal motions and Landau damping

    International Nuclear Information System (INIS)

    Herrera, L.; Di Prisco, A.; Ibáñez, J.

    2012-01-01

    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ α =(V α )/T (where V α and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  6. Reversible dissipative processes, conformal motions and Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L., E-mail: laherrera@cantv.net.ve [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Di Prisco, A., E-mail: adiprisc@fisica.ciens.ucv.ve [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Ibáñez, J., E-mail: j.ibanez@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain)

    2012-02-06

    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ{sup α}=(V{sup α})/T (where V{sup α} and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  7. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    International Nuclear Information System (INIS)

    Escande, D F; Elskens, Yves; Doveil, F

    2015-01-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion. (paper)

  8. Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons

    Science.gov (United States)

    El-Taibany, W. F.; Zedan, N. A.; Taha, R. M.

    2018-06-01

    Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson's equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q (α ). It is recognized that α plays a significant role in observing damping or growing DAW oscillations. For small values of α , damping modes have been observed until reaching a certain value of α at which ω i vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.

  9. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    Science.gov (United States)

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  10. Design of an rf quadrupole for Landau damping

    Science.gov (United States)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  11. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  12. Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Chu, M.S.

    1996-01-01

    The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics

  13. Design of an rf quadrupole for Landau damping

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-08-01

    Full Text Available The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  14. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  15. Collisional width of giant resonances and interplay with Landau damping

    International Nuclear Information System (INIS)

    Bonasera, A.; Burgio, G.F.; Di Toro, M.; Wolter, H.H.

    1989-01-01

    We present a semiclassical method to calculate the widths of giant resonances. We solve a mean-field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time approximation to construct a damped strength distribution for collective motions. The relaxation time is evaluated from the time evolution of distortions in the nucleon momentum distribution using a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite important interplay between self-consistent (Landau) and collisional damping is revealed

  16. Effect of Landau damping on kinetic Alfven and ion-acoustic solitary waves in a magnetized nonthermal plasma with warm ions

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anup; Das, K.P.

    2002-01-01

    The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time

  17. Electron Landau damping of lower hybrid waves from a finite length antenna

    International Nuclear Information System (INIS)

    Brambilla, M.

    1977-01-01

    Launching and propagation of Lower Hybrid Waves to heat large plasmas by Electron Landau Damping is discussed. Conditions on the appropriate frequency and on the antenna location in the plasma density profile are derived

  18. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  19. Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    International Nuclear Information System (INIS)

    Usman, I.; Buthelezi, Z.; Carter, J.; Cooper, G.R.J.; Fearick, R.W.; Foertsch, S.V.; Fujita, H.; Fujita, Y.; Kalmykov, Y.; Neumann-Cosel, P. von; Neveling, R.; Papakonstantinou, P.; Richter, A.; Roth, R.; Shevchenko, A.; Sideras-Haddad, E.; Smit, F.D.

    2011-01-01

    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40 Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E p =200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40 Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle-two-hole (2p-2h) states.

  20. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  1. A Study of the Nonlinear Landau Damping in the Fourier Transformed VelocitySpace

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Zdeněk

    2002-01-01

    Roč. 34, 1-2 (2002), s. 63-87 ISSN 0041-1450 Institutional research plan: CEZ:AV0Z2043910 Keywords : Landau damping * Van Kampen-Case eigenmodes * BGK modes * free streaming Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.453, year: 2002

  2. Induced scattering due to nonlinear Landau and cyclotron damping of electromagnetic and electrostatic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Sugaya, Reiji

    1989-01-01

    General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)

  3. Landau damping: the mechanics model and its ultimate entropy gain

    International Nuclear Information System (INIS)

    Hannay, J H; Kluge, Michel

    2011-01-01

    Classical mechanics has only been invoked to account for Landau damping in a rather half-hearted way, alongside plasma perturbation theory. In particular this invocation is essential for the study of the saturation, or post-linear (or 'nonlinear') regime of the damping initiated by Dawson and O'Neill. By embracing mechanics wholeheartedly here, with its attendant phase space, one can access results, old and new, cleanly and directly, and with one fewer numerical integration for the post-linear regime. By using a summation technique familiar in semiclassical quantum mechanics (Poisson summation), the one remaining numerical integration can be much improved in accuracy. Also accessible from mechanics is the ultimate entropy gain. Though zero for any finite time (in the absence of coarse graining), the entropy gain is ultimately non-zero (at infinite time the required coarse graining is zero). It is calculated analytically by using the appropriate asymptotics, hitherto not fully exploited.

  4. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  5. The damping of spin motions in ultrathin films: Is the Landau-Lifschitz-Gilbert phenomenology applicable?

    International Nuclear Information System (INIS)

    Mills, D.L.; Arias, Rodrigo

    2006-01-01

    The Landau-Lifschitz-Gilbert (LLG) equation is used widely in device design to describe spin motions in magnetic nanoscale structures. The damping term in this equation plays an essential role in the description of the magnetization dynamics. The form of this term is simple and appealing, but it is derived through use of elementary phenomenological considerations. An important question is whether or not it provides a proper description of the damping of the magnetization in real materials. Recently, it was predicted that a mechanism called two magnon damping should contribute importantly to linewidths and consequently spin damping in ultrathin ferromagnetic films. This process yields ferromagnetic resonance (FMR) linewidths whose frequency dependence is incompatible with the linear variation expected from the Landau-Lifschitz equation. This prediction has now been confirmed experimentally. Furthermore, subsequent experimental and theoretical studies have demonstrated that the damping rate depends strongly on wave vector as well. It is thus clear that for many samples, the LLG equation fails to account for the systematics of the damping of the magnetization in ultrathin ferromagnets, at the linear response level. The paper will review the recent literature on this topic relevant to this issue. One must then inquire into the nature of a proper phenomenology to describe these materials. At the linear response level, the theory of the two magnon mechanism is sufficiently complete that one can describe the response of these systems without resort to LLG phenomenology. However, currently there is very great interest in the large amplitude response of the magnetization in magnetic nanostructures. In the view of the authors, it is difficult to envision a generally applicable extension of linear response theory into the large amplitude regime

  6. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  7. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  8. Landau damping of transverse quadrupole oscillations of an elongated Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Guilleumas, M.; Pitaevskii, L.P.

    2003-01-01

    We have studied the interaction between the low-lying transverse collective oscillations and the thermal excitations of an elongated Bose-Einstein condensate by means of perturbation theory. We consider a cylindrical trapped condensate and calculate the transverse elementary excitations at zero temperature by solving the linearized Gross-Pitaevskii equations in two dimensions (2D). We use them to calculate the matrix elements between the thermal excited states and the quasi-2D collective modes. The Landau damping of transverse collective modes is studied as a function of temperature. At low temperatures, the corresponding damping rate is in agreement with the experimental data for the decay of the transverse quadrupole mode, but it is too small to explain the observed slow decay of the transverse breathing mode. The reason for this discrepancy is discussed

  9. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  10. Loss of Landau Damping for Inductive Impedance in a Double RF System

    CERN Document Server

    Argyropoulos, T; Burov, A

    2013-01-01

    In this paper the thresholds of the loss of Landau damping due to the presence of inductive impedance in a single and double harmonic RF systems are determined, both from calculations and particle simulations. A high harmonic RF system, operating in bunch lengthening mode is used in many accelerators with space charge or inductive impedance to reduce the peak line density or stabilize the beam. An analytical approach, based on emerging of the discrete Van Kampen modes, shows that improved stability in a double RF system can be achieved only below some critical value of longitudinal emittance. Above this threshold, a phase shift of more than 15 degrees between the two RF components is proven necessary to stabilize the bunch. These results, confirmed also by particle simulations, now are able to explain observations during the pp operation of the SPS. The thresholds in bunch shortening mode as well as in a single RF case are compared with this regime.

  11. MD 2197: Experimental studies of Landau damping by means of Beam Transfer Function measurements in the presence of beam-beam interactions and diffusive mechanisms

    CERN Document Server

    Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Louro Alves, Diogo Miguel; Metral, Elias; Persson, Tobias Hakan Bjorn; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2018-01-01

    Beam Transfer Function (BTF) measurements are direct measurement of the stability diagrams that define the stability threshold of coherent beam instabilities driven by the impedance. At the LHC, some coherent instabilities at flat top energy are still not fully understood and the BTF measurements provide a method to experimentally probe the Landau damping of the proton beams. The BTF response is sensitive to the particle distribution changes and contain information about the transverse tune spread in the beams. The BTF system has been installed in the LHC in the 2015 in order to investigate the Landau damping at different stages of the operational cycle, machine configurations (different octupole currents, crossing angles, tunes etc...) and in presence of beam-beam excited resonances that may provoke diffusion mechanisms with a consequence change of Landau damping. Past MDs showed some difficulties for the reconstruction of the stability diagram from BTF measurements and several improvements on the BTF sy...

  12. Simple model with damping of the mode-coupling instability

    Energy Technology Data Exchange (ETDEWEB)

    Pestrikov, D V [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-08-01

    In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)

  13. Single bunch beam breakup in linacs and BNS damping

    International Nuclear Information System (INIS)

    Toyomasu, Takanori

    1991-12-01

    We study a single-bunch beam breakup (BBU) problem by a macro-particle model. We consider both the BBU solution and the Landau damping solution which includes the Balakin-Novokhatsky-Smirnov (BNS) damping. In the BBU solution, we get an analytic solution which includes both the Chao-Richter-Yao solution and the two-particle model solution and which agrees well with simulation. The solution can also be used in a multi-bunch case. In the Landau damping solution, we can be see the mechanism of Landau damping formally and can get some insights into BNS damping. We confirm that a two-particle model criterion for BNS damping is a good one. We expect that the two-particle model criterion is represented by the first order interaction in Landau damping solution of a macro-particle model. (author)

  14. Tune distributions and effective tune spread from beam-beam interactions and the consequences for Landau damping in the LHC

    CERN Document Server

    Herr, Werner

    2003-01-01

    We have calculated the tune distribution functions in the presence of beam-beam effects in order to evaluate the efect of Landau damping of instabilities driven by the impedance. The corresponding stability diagrams have been computed and the limits on the transverse impedance have be derived.

  15. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  16. Landau retardation on the occurrence scattering time in quantum electron–hole plasmas

    International Nuclear Information System (INIS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2016-01-01

    The Landau damping effects on the occurrence scattering time in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Shukla–Stenflo–Bingham effective potential model is employed to obtain the occurrence scattering time in a quantum electron–hole plasma. The result shows that the influence of Landau damping produces the imaginary term in the scattering amplitude. It is then found that the Landau damping generates the retardation effect on the occurrence scattering time. It is found that the occurrence scattering time increases in forward scattering domains and decreases in backward scattering domains with an increase of the Landau parameter. It is also found that the occurrence scattering time decreases with increasing collision energy. In addition, it is found that the quantum shielding effect enhances the occurrence scattering time in the forward scattering and, however, suppresses the occurrence scattering time in the backward scattering. - Highlights: • The Landau damping effects on the occurrence scattering time are investigated in a quantum electron–hole plasma. • The Shukla–Stenflo–Bingham potential model is employed to obtain the occurrence scattering time in quantum plasmas. • The influence of quantum shielding on the occurrence scattering time is discussed.

  17. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  18. Laser light triggers increased Raman amplification in the regime of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Depierreux, S.; Goyon, C.; Masson-Laborde, P.E.; Yahia, V.; Loisel, G.; Labaune, C.

    2014-01-01

    Stimulated Raman backscattering (SRS) has many unwanted effects in megajoule-scale inertially confined fusion (ICF) plasmas. Moreover, attempts to harness SRS to amplify short laser pulses through backward Raman amplification have achieved limited success. In high temperature fusion plasmas, SRS usually occurs in a kinetic regime where the nonlinear response of the Langmuir wave to the laser drive and its host of complicating factors make it difficult to predict the degree of amplification that can be achieved under given experimental conditions. Here we present experimental evidence of reduced Landau damping with increasing Langmuir wave amplitude and determine its effects on Raman amplification. The threshold for trapping effects to influence the amplification is shown to be very low. Above threshold, the complex SRS dynamics results in increased amplification factors, which partly explains previous ICF experiments. These insights could aid the development of more efficient backward Raman amplification schemes in this regime. (authors)

  19. Collisional damping of Langmuir waves in the collisionless limit

    International Nuclear Information System (INIS)

    Auerbach, S.P.

    1977-01-01

    Linear Langmuir wave damping by collisions is studied in the limit of collision frequency ν approaching zero. In this limit, collisions are negligible, except in a region in velocity space, the boundary layer, centered about the phase velocity. If kappa, the ratio of the collisional equilibration time in the boundary layer to the Landau damping time, is small, the boundary layer width scales as ν/sup 1/3/, and the perturbed distribution function scales as ν/sup -1/3/. The damping rate is thus independent of ν, although essentially all the damping occurs in the collision-dominated boundary layer. Solution of the Fokker--Planck equation shows that the damping rate is precisely the Landau (collisionless) rate. The damping rate is independent of kappa, although the boundary layer thickness is not

  20. Lower hybrid heating data on the Wega experiment revisited using ion stochastic heating and electron Landau damping theories

    International Nuclear Information System (INIS)

    Gormezano, C.; Hess, W.; Ichtchenko, G.

    1980-07-01

    The already obtained data on the Wega Tokamak by lower hybrid heating (f=500 MHz - Psub(HF)=130 KW) are revisited in the light of recent theories on ion stochastic heating and quasi-linear electron Landau damping. It is possible to correctly estimate with these theories the fast ion mean energy, the H.F. power density coupled to the ions and that coupled to the electrons. The values of the parallel index of refraction, Nsub(//), which are necessary to obtain a good quantitative agreement between experiment and theoretical estimates, are the same for the ions and for the electrons, even though at higher values than expected

  1. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  2. Modification and damping of Alfven waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Dasgupta, B.; Watanabe, K.; Sato, T.

    1994-10-01

    The dispersion characteristics of the circularly polarized electromagnetic waves along a homogeneous magnetic field in a dusty plasma have been investigated theoretically. The Vlasov equation has been employed to find the response of the magnetized plasma particles where the dust grains form a static background of highly charged and massive centers having certain correlation. It is found that in addition to the usual Landau damping which is negligible in the low temperature approximation, a novel mechanism of damping of the Alfven waves due to the dust comes into play. The modification and damping of the Alfven waves depend on the dust perturbation parameters, unequal densities of plasma particles, the average correlation length of the dust grains, temperature of the plasma and the magnetic field. (author)

  3. Landau damping in bi-dust ion-acoustic waves

    International Nuclear Information System (INIS)

    Castro, E.; Puerta, J.; Martin, P.; Cereceda, C.

    2006-01-01

    Ion acoustic dust waves in a bi-dust plasma are analyzed in this paper. In order to model this system, we assume the existence of two different kinds of grains, each characterized by a different radius. Relative velocities between grains and charge fluctuations are neglected. In order to derive the dispersion relation of this system, we use the well known hybrid fluid-kinetic model, in which ions are treated kinetically and other species as fluids. In this plasma, waves with non-relative velocities between species leads to damped waves with frequency modes, defined by the grain radius. The induced damping ratio is studied as a function of the grain and ion densities. (Author)

  4. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  5. Interplay between one-body and collisional damping of collective motion in nuclei

    International Nuclear Information System (INIS)

    Kolomietz, V.M.; Plujko, V.A.; Shlomo, S.

    1996-01-01

    Damping of giant collective vibrations in nuclei is studied within the framework of the Landau-Vlasov kinetic equation. A phenomenological method of independent sources of dissipation is proposed for taking into account the contributions of one-body dissipation, the relaxation due to the two-body collisions and the particle emission. An expression for the intrinsic width of slow damped collective vibrations is obtained. In the general case, this expression cannot be represented as a sum of the widths associated with the different independent sources of the damping. This is a peculiarity of the collisional Landau-Vlasov equation where the Fermi-surface distortion effect influences both the self-consistent mean field and the memory effect at the relaxation processes. The interplay between the one-body, the two-body, and the particle emission channels which contribute to the formation of the total intrinsic width of the isoscalar 2 + and 3 - and isovector 1 - giant multipole resonances in cold and hot nuclei is discussed. We have shown that the criterion for the transition temperature T tr between the zero-sound and first-sound regimes in hot nuclei is different from the case of infinite nuclear matter due to the contribution from the one-body relaxation and the particle emission. In the case of the isovector GDR the corresponding transition can be reached at temperature T tr =4 endash 5 MeV. copyright 1996 The American Physical Society

  6. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  7. Revisiting the Landau fluid closure.

    Science.gov (United States)

    Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.

    2017-12-01

    Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.

  8. On the origin of nonlocal damping in plasmonic monomers and dimers

    Science.gov (United States)

    Tserkezis, Christos; Yan, Wei; Hsieh, Wenting; Sun, Greg; Khurgin, Jacob B.; Wubs, Martijn; Mortensen, N. Asger

    2017-09-01

    The origin and importance of nonlocal damping is discussed through simulations with the generalized nonlocal optical response (GNOR) theory, in conjunction with time-dependent density functional theory (TDDFT) calculations and equivalent circuit modeling, for some of the most typical plasmonic architectures: metal-dielectric interfaces, metal-dielectric-metal gaps, spherical nanoparticles and nanoparticle dimers. It is shown that diffusive damping, as introduced by the convective-diffusive GNOR theory, describes well the enhanced losses and plasmon broadening predicted by ab initio calculations in few-nm particles or few-to-sub-nm gaps. Through the evaluation of a local effective dielectric function, it is shown that absorptive losses appear dominantly close to the metal surface, in agreement with TDDFT and the mechanism of Landau damping due to generation of electron-hole pairs near the interface. Diffusive nonlocal theories provide therefore an efficient means to tackle plasmon damping when electron tunneling can be safely disregarded, without the need to resort to more accurate, but time-consuming fully quantum-mechanical studies.

  9. Characterization of hydrofoil damping due to fluid–structure interaction using piezocomposite actuators

    International Nuclear Information System (INIS)

    Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues

    2012-01-01

    Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid–structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity. (paper)

  10. Characterization of hydrofoil damping due to fluid-structure interaction using piezocomposite actuators

    Science.gov (United States)

    Seeley, Charles; Coutu, André; Monette, Christine; Nennemann, Bernd; Marmont, Hugues

    2012-03-01

    Hydroelectric power generation is an important non-fossil fuel power source to help meet the world’s energy needs. Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Although the effects of fluid mass loading are well documented, fluid damping is also a critical quantity that may limit vibration amplitudes during service, and therefore help to avoid premature failure of the turbines. However, fluid damping has received less attention in the literature. This paper presents an experimental investigation of damping due to FSI. Three hydrofoils were designed and built to investigate damping due to FSI. Piezoelectric actuation using macrofiber composites (MFCs) provided excitation to the hydrofoil test structure, independent of the flow conditions, to overcome the noisy environment. Natural frequency and damping estimates were experimentally obtained from sine sweep frequency response functions measured with a laser vibrometer through a window in the test section. The results indicate that, although the natural frequencies were not substantially affected by the flow, the damping ratios were observed to increase in a linear manner with respect to flow velocity.

  11. Induced voltage due to time-dependent magnetisation textures

    International Nuclear Information System (INIS)

    Kudtarkar, Santosh Kumar; Dhadwal, Renu

    2010-01-01

    We determine the induced voltage generated by spatial and temporal magnetisation textures (inhomogeneities) in metallic ferromagnets due to the spin diffusion of non-equilibrium electrons. Using time dependent semi-classical theory as formulated in Zhang and Li and the drift-diffusion model of transport it is shown that the voltage generated depends critically on the difference in the diffusion constants of up and down spins. Including spin relaxation results in a crucial contribution to the induced voltage. We also show that the presence of magnetisation textures results in the modification of the conductivity of the system. As an illustration, we calculate the voltage generated due to a time dependent field driven helimagnet by solving the Landau-Lifshitz equation with Gilbert damping and explicitly calculate the dependence on the relaxation and damping parameters.

  12. Gyro-Landau fluid model of tokamak core fluctuations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Dominguez, N.; Hedrick, C.L.; Sidikman, K.L.; Lynch, V.E.; Drake, J.B.; Walker, D.W.

    1992-01-01

    Dissipative trapped electron modes (DTEM) may be one of the causes of deterioration of confinement in tokamak and stellatator plasmas. We have implemented a fluid model to study DTEM turbulence in slab geometry. The electron dynamics include in addition to the adiabatic part, a non-adiabatic piece modeled with an i-delta-type response. The ion dynamics include Landau damping and FLR corrections through Landau fluid approximate techniques and Pade approximants for Γ 0 (b)=I 0 (b)e -b . The model follows from the gyrokinetic equation. Evolution equations, which closely resemble those used in standard reduced MHD, are presented since these are better suited to non-linear calculations. The numerical results of radially resolved calculations will be discussed. A recently developed hybrid model, which consists of a gyrokinetic implementation for the ions using particles and the same description for the electron dynamics as in the fluid model, will also be presented

  13. Damping of surface waves due to oil emulsions in application to ocean remote sensing

    Science.gov (United States)

    Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.

    2017-10-01

    Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.

  14. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  15. Calculation of Gilbert damping in ferromagnetic films

    Directory of Open Access Journals (Sweden)

    Edwards D. M.

    2013-01-01

    Full Text Available The Gilbert damping constant in the phenomenological Landau-Lifshitz-Gilbert equation which describes the dynamics of magnetization, is calculated for Fe, Co and Ni bulk ferromagnets, Co films and Co/Pd bilayers within a nine-band tight-binding model with spin-orbit coupling included. The calculational effciency is remarkably improved by introducing finite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. The calculated dependence of Gilbert damping constant on scattering rate for bulk Fe, Co and Ni is in good agreement with the results of previous ab initio calculations. Calculations are reported for ferromagnetic Co metallic films and Co/Pd bilayers. The dependence of the Gilbert damping constant on Co film thickness, for various scattering rates, is studied and compared with recent experiments.

  16. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    Science.gov (United States)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  17. Landau fluid models of collisionless magnetohydrodynamics

    International Nuclear Information System (INIS)

    Snyder, P.B.; Hammett, G.W.; Dorland, W.

    1997-01-01

    A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas

  18. Damping in accelerators due to classical radiation

    International Nuclear Information System (INIS)

    Mills, F.E.

    1962-01-01

    The rates of change of the magnitudes of the adiabatic invariants is calculated in the case of a Hamiltonian system subjected to generalized non conservative forces. These results are applied to the case of the classical radiation of electrons in an accelerator or storage ring. The resulting expressions for the damping rates of three independent oscillation modes suggest structures which are damping in all three modes, while at the same time allowing 'strong focussing' and the attendant strong momentum compaction. (author)

  19. Landau fluid equations for electromagnetic and electrostatic fluctuations

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.

    1992-01-01

    Closure relations are developed to allow approximate treatment of Landau damping and growth using fluid equations for both electrostatic and electromagnetic modes. The coefficients in these closure relations are related to approximations of the plasma dispersion function by ratios of polynomials. Thirteen different numerical sets of coefficients are given and explicitly related to previous fits to the plasma dispersion function. The application of the techniques presented in this paper is illustrated with the specific example of resistive g modes. Comparisons of full kinetic and approximate results are made for the solutions to the dispersion relation, radially resolved modes in sheared magnetic geometry, and the plasma dispersion function itself

  20. Superexponentially damped Vlasov plasma oscillations in the Fourier transformed velocity space

    International Nuclear Information System (INIS)

    Sedlacek, Z.; Nocera, L.

    2002-01-01

    The Landau (exponentially) damped solutions of the Vlasov-Poisson equation Fourier transformed with respect to velocity are genuine eigenmodes corresponding to complex eigenvalues. In addition there exist solutions decaying faster than exponentially which exhibit no oscillatory behaviour. A new characterization is given of the initial conditions that give rise to these solutions together with a numerical demonstration

  1. MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department

    2017-01-01

    In the 2012, 2015 and 2016 run several instabilities were developing at flat-top, during and at the end of the betatron squeeze where beam-beam interactions are present. The tune spread in the beams is therefore modified by the beam-beam long-range interactions and by other sources of spread. Studies of the stability area computed by evaluating the dispersion integral for different tune spreads couldn’t explain the observed instabilities during the squeeze and stable beams. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) are direct measurements of the Stability Diagrams (SD). They are sensitive to particle distributions and contain information about the transverse tune spread in the beams. In this note are summarized the results of the BTF...

  2. Longitudinal beam instability due to the ring impedance at KEK's accelerator test facility damping ring

    International Nuclear Information System (INIS)

    Kim, Eun-San

    2003-01-01

    This paper shows the results of a numerical study of the impedance in the Accelerator Test Facility damping ring. The longitudinal impedance in the damping ring is shown to be inductive. It is shown that the total impedance |Z || /n| is 0.23 Ω and the inductance is L = 14 nH. In the extremely low emittance beam of the damping ring, bunch lengthening is caused by both the effects of potential-well distortion and intra-beam scattering. In this paper, the bunch-lengthening due to the ring impedance is numerically investigated, and the result shows qualitative agreement with the result of an analysis performed using the bunch-length measurement. With the calculated longitudinal impedance, the instability threshold in the damping ring is estimated to be a bunch population of 3.3 x 10 10 by using both a Vlasov equation approach and a multi-particle tracking method.

  3. Propagation and damping of mode converted ion-Bernstein waves in toroidal plasmas

    International Nuclear Information System (INIS)

    Ram, A.K.; Bers, A.

    1991-01-01

    In the heating of tokamak plasmas by waves in the ion-cyclotron range of frequencies, the fast Alfven waves launched at the plasma edge can mode convert to the ion-Bernstein waves (IBW). The propagation and damping of these mode converted waves was studied using a ray tracing code that follows the fast phase and the amplitude of the electromagnetic field along the IBW ray trajectories in a toroidal plasma. A simple analytical model is developed that describes the numerically observed features of propagation and damping of the IBW's. It is found that along the ray trajectory of the IBW there is an upshift of the poloidal mode numbers, which can lead to the electron Landau damping of the wave. This damping is dependent on the strength of the toroidal plasma current. From the properties of the upshift of the poloidal mode numbers, it is concluded that the mode converted ion-Bernstein waves are not suitable candidates for electron current drive

  4. Landau and modern physics

    International Nuclear Information System (INIS)

    Pokrovsky, Valery L

    2009-01-01

    This article describes the history of the creation and further development of Landau's famous works on phase transitions, diamagnetism of electron gas (Landau levels), and quantum transitions at a level crossing (the Landau-Zener phenomenon), and its role in modern physics. (methodological notes)

  5. Asymmetric Landau bands due to spin–orbit coupling

    International Nuclear Information System (INIS)

    Erlingsson, Sigurdur I; Manolescu, Andrei; Marinescu, D C

    2015-01-01

    We show that the Landau bands obtained in a two-dimensional lateral semiconductor superlattice with spin–orbit coupling (SOC) of the Rashba/Dresselhaus type, linear in the electron momentum, placed in a tilted magnetic field, do not follow the symmetry of the spatial modulation. Moreover, this phenomenology is found to depend on the relative tilt of magnetic field and on the SOC type: (a) when only Rashba SOC exists and the magnetic field is tilted in the direction of the superlattice (b) Dresselhaus SOC exists and the magnetic field is tilted in the direction perpendicular to the superlattice. Consequently, measurable properties of the modulated system become anisotropic in a tilted magnetic field when the field is conically rotated around the z axis, at a fixed polar angle, as we demonstrate by calculating the resistivity and the magnetization. (paper)

  6. Bargmann representation for Landau levels in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rohringer, Nina [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Burgdoerfer, Joachim [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Macris, Nicolas [Institut de Physique Theorique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2003-04-11

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field.

  7. Bargmann representation for Landau levels in two dimensions

    International Nuclear Information System (INIS)

    Rohringer, Nina; Burgdoerfer, Joachim; Macris, Nicolas

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field

  8. Bargmann representation for Landau levels in two dimensions

    CERN Document Server

    Rohringer, N; Macris, N

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field...

  9. Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures

    Science.gov (United States)

    Sharma Pyakurel, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T. N.; Drake, J. F.; Cassak, P. A.; Gary, S. Peter

    2018-01-01

    The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x line is not well understood. In this study, this damping is examined using kinetic particle-in-cell simulations of antiparallel symmetric magnetic reconnection in a one-dimensional current sheet equilibrium. In the reconnection simulations, the KAW wave vector has a typical magnitude comparable to an inverse fluid Larmor radius (effectively an inverse ion Larmor radius) and a direction of 85-89° relative to the local magnetic field. We find that the damping of the reconnection KAW is consistent with linear Landau damping results from a numerical Vlasov dispersion solver. This knowledge allows us to generalize our damping predictions to regions in the magnetotail and solar corona where the magnetic geometry can be approximated as a current sheet. For the magnetotail, the KAW from reconnection will not damp away before propagating the approximately 20 Earth radii associated with global magnetotail distances. For the solar corona, on the other hand, these KAWs will completely damp before reaching the distances comparable to the flare loop length.

  10. Damping characteristics of reinforced concrete structures

    International Nuclear Information System (INIS)

    Hisano, M.; Nagashima, I.; Kawamura, S.

    1987-01-01

    Reinforced concrete structures in a nuclear power plant are not permitted to go far into the inelasticity generally, even when subjected to strong ground motion. Therefore it is important to evaluate the damping appropriately in linear and after cracking stage before yielding in the dynamic response analysis. Next three dampings are considered of reinforced concrete structures. 1) Internal damping in linear range material damping of concrete without cracks;2) Hysteretic damping in inelastic range material hysteretic damping of concrete due to cracking and yielding;3) Damping due to the energy dissipation into the ground. Among these damping material damping affects dynamic response of a nuclear power plant on hard rock site where damping due to energy dissipation into the ground is scarcely expected. However material damping in linear and slightly nonlinear range have only been assumed without enough experimental data. In this paper such damping is investigated experimentally by the shaking table tests of reinforced concrete box-walls which modeled roughly the outer wall structure of a P.W.R. type nuclear power plant

  11. Critical density for Landau damping in a two-electron-component plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, Constantin F.; López, Rodrigo A.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2015-10-15

    The asymptotic evolution of an initial perturbation in a collisionless two-electron-component plasma with different temperatures is studied numerically. The transition between linear and nonlinear damping regimes is determined by slowly varying the density of the secondary electron-component using high-resolution Vlasov-Poisson simulations. It is shown that, for fixed amplitude perturbations, this transition behaves as a critical phenomenon with time scales and field amplitudes exhibiting power-law dependencies on the threshold density, similar to the critical amplitude behavior in a single-component plasma.

  12. Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands

    Science.gov (United States)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-09-01

    This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.

  13. Bulk viscous corrections to screening and damping in QCD at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qianqian [Department of Physics, Guangxi Normal University,Guilin, 541004 (China); Dumitru, Adrian [Department of Natural Sciences, Baruch College, CUNY,17 Lexington Avenue, New York, NY 10010 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York, NY 10016 (United States); Guo, Yun [Department of Physics, Guangxi Normal University,Guilin, 541004 (China); Strickland, Michael [Department of Physics, Kent State University,206B Smith Hall, Kent, OH 44240 (United States)

    2017-01-27

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the “hard thermal loops” (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  14. Bulk viscous corrections to screening and damping in QCD at high temperatures

    International Nuclear Information System (INIS)

    Du, Qianqian; Dumitru, Adrian; Guo, Yun; Strickland, Michael

    2017-01-01

    Non-equilibrium corrections to the distribution functions of quarks and gluons in a hot and dense QCD medium modify the “hard thermal loops” (HTL). The HTLs determine the retarded, advanced, and symmetric (time-ordered) propagators for gluons with soft momenta as well as the Debye screening and Landau damping mass scales. We compute such corrections to a thermal as well as to a non-thermal fixed point. The screening and damping mass scales are sensitive to the bulk pressure and hence to (pseudo-) critical dynamical scaling of the bulk viscosity in the vicinity of a second-order critical point. This could be reflected in the properties of quarkonium bound states in the deconfined phase and in the dynamics of soft gluon fields.

  15. Landau Levels of Majorana Fermions in a Spin Liquid.

    Science.gov (United States)

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  16. Experimental observation of fluid echoes in a non-neutral plasma

    International Nuclear Information System (INIS)

    Yu, Jonathan H.; Driscoll, C. Fred

    2002-01-01

    Experimental observation of a nonlinear fluid echo is presented which demonstrates the reversible nature of spatial Landau damping, and that non-neutral plasmas behave as nearly ideal 2D fluids. These experiments are performed on UCSD's CamV Penning-Malmberg trap with magnetized electron plasmas. An initial m i =2 diocotron wave is excited, and the received wall signal damps away in about 5 wave periods. The density perturbation filaments are observed to wrap up as the wave is spatially Landau damped. An m t =4 'tickler' wave is then excited, and this wave also Landau damps. The echo consists of a spontaneous appearance of a third m e =2 wave after the responses to the first two waves have inviscidly damped away. The appearance time of the echo agrees with theory, and data suggests the echo is destroyed at least partly due to saturation

  17. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-06-15

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  18. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    International Nuclear Information System (INIS)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-01-01

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  19. Calculated dependence of FePt damping on external field magnitude and direction

    Directory of Open Access Journals (Sweden)

    N. A. Natekar

    2017-05-01

    Full Text Available Near the Curie temperature (Tc, magnetic parameters including magnetization, anisotropy, and damping depend strongly on both temperature and length scale. This manifestation of renormalization theory is most readily seen in the case of magnetization where the magnitude of the atomic spin is largely unaffected by temperature, but the bulk magnetization vanishes at Tc. It has been previously argued that the Landau-Lifshitz-Gilbert damping parameter alpha exhibits a similar effect owing to its dependence on both atomic effects and magnon-magnon scattering, the latter having a strong length dependence. Here, we calculate, using an anisotropic exchange description of L10 FePt (Tc = 705 K, the damping (and other magnetic properties dependence on temperature for FePt at length scales around 1.0 nm as appropriate for high temperature micromagnetic simulation. While the damping reduces as the applied field along the easy direction increases, it tends to increase as the field direction is changed to in-plane. The renormalized parameters are also calculated for higher and lower Tc (770K and 630K by invoking the linear relationship between the exchange stiffness parameter and Curie temperature. This corresponds to doped and/or non-stoichiometric FePt and allows better understanding of the effects of varying anisotropy to exchange ratio.

  20. Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation

    Directory of Open Access Journals (Sweden)

    Nadia Ananda Herianto

    2015-02-01

    Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.

  1. Impact of Many-Body Effects on Landau Levels in Graphene

    Science.gov (United States)

    Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.

    2018-05-01

    We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.

  2. Damping Measurements of Plasma Modes

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.

    2010-11-01

    For azimuthally symmetric plasma modes in a magnesium ion plasma, confined in a 3 Tesla Penning-Malmberg trap with a density of n ˜10^7cm-3, we measure a damping rate of 2s-1plasma column, alters the frequency of the mode from 16 KHz to 192 KHz. The oscillatory fluid displacement is small compared to the wavelength of the mode; in contrast, the fluid velocity, δvf, can be large compared to v. The real part of the frequency satisfies a linear dispersion relation. In long thin plasmas (α> 10) these modes are Trivelpiece-Gould (TG) modes, and for smaller values of α they are Dubin spheroidal modes. However the damping appears to be non-linear; initially large waves have weaker exponential damping, which is not yet understood. Recent theoryootnotetextM.W. Anderson and T.M. O'Neil, Phys. Plasmas 14, 112110 (2007). calculates the damping of TG modes expected from viscosity due to ion-ion collisions; but the measured damping, while having a similar temperature and density dependence, is about 40 times larger than calculated. This discrepancy might be due to an external damping mechanism.

  3. On Landau damping

    KAUST Repository

    Mouhot, Clé ment; Villani, Cé dric

    2011-01-01

    of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation

  4. The Landau theory of phase transitions

    Indian Academy of Sciences (India)

    2 Department of Computer Sci- ence, Indian ... in plasma physics, the Landau pole in quantum electro-. Keywords ... with Vitalyn Ginzburg, Landau made a milestone con- tribution to ..... This work was supported by the Physics Olympiad Pro-.

  5. Toroidal effects on propagation, damping, and linear mode conversion of lower hybrid waves

    International Nuclear Information System (INIS)

    Ignat, D.W.

    1980-09-01

    A common simplifying assumption made in the consideration of radio-frequency heating of tokamaks near the lower hybrid frequency is that the wave-length imposed by the coupling device parallel to the magnetic field is not modified by gradients along the field. In the present calculation, the parallel wave-length is allowed to vary, and important effects are found on wave penetration and damping if the toroidal aspect ratio (R/sub major//r/sub minor/) is less than approx. 5. The calculation shows that heating at the center of a small aspect ratio torus is inhibited by a decrease of k/sub parallel/ if waves are launched at the outside, and that it may be possible to change the plasma current via electron Landau damping with a coupler of symmetric power spectrum by placing the coupler at the top (or bottom) of the torus

  6. Spatial Landau-Zener-Stueckelberg interference in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Zhang, J.-N.; Sun, C.-P.; Yi, S.; Nori, Franco

    2011-01-01

    We investigate the Stueckelberg oscillations of a spin-1 Bose-Einstein condensate subject to a spatially inhomogeneous transverse magnetic field and a periodic longitudinal field. We show that the time-domain Stueckelberg oscillations result in modulations in the density profiles of all spin components due to the spatial inhomogeneity of the transverse field. This phenomenon represents the Landau-Zener-Stueckelberg interference in the space domain. Since the magnetic dipole-dipole interaction between spin-1 atoms induces an inhomogeneous effective magnetic field, interference fringes also appear if a dipolar spinor condensate is driven periodically. We also point out some potential applications of this spatial Landau-Zener-Stuekelberg interference.

  7. Damping measurements in flowing water

    Science.gov (United States)

    Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.

    2012-11-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  8. Damping measurements in flowing water

    International Nuclear Information System (INIS)

    Coutu, A; Monette, C; Nennemann, B; Marmont, H; Seeley, C

    2012-01-01

    Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.

  9. Damping-free collective oscillations of a driven two-component Bose gas in optical lattices

    Science.gov (United States)

    Shchedrin, Gavriil; Jaschke, Daniel; Carr, Lincoln D.

    2018-04-01

    We explore the quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest-lying modes in a driven condensate are characterized by zero group velocity and nonzero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-induced gap remain undamped, while above the gap they are characterized by a significantly suppressed Landau damping rate.

  10. Landau-Ginzburg skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Ian C.; Melnikov, Ilarion V. [Department of Physics and Astronomy, James Madison University,Harrisonburg, VA 22807 (United States)

    2017-05-10

    We study the class of indecomposable two-dimensional Landau-Ginzburg theories with (2,2) supersymmetry and central charge c < 6 with the aim of classifying all such theories up to marginal deformations. Our results include cases overlooked in previous classifications. The results are rigorous for three or fewer fields and more generally are rigorous if we assume an extra bound. Numerics suggest that we have the complete set of indecomposable Landau-Ginzburg families with c < 6. This set consists of 38 infinite families and a finite list of 418 sporadic cases. The basic tools are classic results of Kreuzer and Skarke on quasi-homogeneous isolated singularities and solutions to certain feasibility integer programming problems.

  11. Fully kinetic simulation of ion acoustic and dust-ion acoustic waves

    International Nuclear Information System (INIS)

    Hosseini Jenab, S. M.; Kourakis, I.; Abbasi, H.

    2011-01-01

    A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e ≅ T i . The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.

  12. Spin transfer in an open ferromagnetic layer: from negative damping to effective temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wegrowe, J-E; Ciornei, M C; Drouhin, H-J [Laboratoire des Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642 and CEA/DSM/DRECAM, 91128 Palaiseau Cedex (France)

    2007-04-23

    Spin transfer is a typical spintronics effect that allows a ferromagnetic layer to be switched by spin injection. All experimental results concerning spin transfer (quasi-static hysteresis loops or AC resonance measurements) are described on the basis of the Landau-Lifshitz-Gilbert equation of the magnetization, in which additional current dependent terms are added, like current dependent effective fields and current dependent damping factors, that can be positive or negative. The origin of these terms can be investigated further by performing stochastic experiments, like one-shot relaxation experiments under spin injection in the activation regime of the magnetization. In this regime, the Neel-Brown activation law is observed which leads to the introduction of a current dependent effective temperature. In order to define these counterintuitive parameters (effective temperature and negative damping), a detailed thermokinetic analysis of the different sub-systems involved is performed. This report presents a thermokinetic description of the different forms of energy exchanged between the electric and the ferromagnetic sub-systems at a normal/ferromagnetic junction. The derivation of the Fokker-Planck equation in the framework of the thermokinetic theory allows the transport parameters to be defined from the entropy variation and refined with the Onsager reciprocity relations and symmetry properties of the magnetic system. The contribution of the spin polarized current is introduced as an external source term in the conservation laws of the ferromagnetic layer. Due to the relaxation time separation, this contribution can be reduced to an effective damping. The flux of energy transferred between the ferromagnet and the spin polarized current can be positive or negative, depending on the spin accumulation configuration. The effective temperature is deduced in the activation (stationary) regime, provided that the relaxation time that couples the magnetization to the

  13. The Wang-Landau Sampling Algorithm

    Science.gov (United States)

    Landau, David P.

    2003-03-01

    Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  14. Investigation of Landau level spin reversal in (110) oriented p-type GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Nebile

    2009-09-01

    In this thesis, the Landau level crossing or anticrossing of hole levels has been investigated in p-type GaAs 400 Aa wide quantum wells. In magneto-transport measurements, this is evidenced with the presence of an anomalous peak in the longitudinal resistance measurements at {nu}=1. In the transversal resistance measurements, no signature of this anomalous peak is observed. By increasing the hole density in the quantum well by applying a top gate voltage, the position of the anomalous peak shifts to higher magnetic fields. At very high densities, anomalous peak disappears. By applying a back gate voltage, the electric field in the quantum well is tuned. A consequence is that the geometry of the quantum well is tuned from square to triangular. The anomalous peak position is shown to depend also on the back gate voltage applied. Temperature dependence of the peak height is consistent with thermal activation energy gap ({delta}/2= 135 {mu}eV). The activation energy gap as a function of the magnetic field has a parabolic like dependence, with the minimum of 135 {mu}eV at 4 T. The peak magnitude is observed to decrease with increasing temperature. An additional peak is observed at {nu}=2 minimum. This additional peak at {nu}=2 might be due to the higher Landau level crossing. The p-type quantum wells have been investigated by photoluminescence spectroscopy, as a function of the magnetic field. The polarization of the emitted light has been analyzed in order to distinguish between the transitions related to spin of electron {+-} 1/2 and spin of hole -+ 3/2. The transition energies of the lowest electron Landau levels with spin {+-} 1/2 and hole Landau levels with spin -+ 3/2 versus magnetic field show crossing at 4 T. The heavy hole Landau levels with spins {+-} 3/2 are obtained by the substraction of transition energies from the sum of lowest electron Landau level energy and the energy gap of GaAs. The heavy hole Landau levels show a crossing at 4 T. However, due to the

  15. On the effects on a Landau-type system for an atom with no permanent electric dipole moment due to a Coulomb-type potential

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Abinael B.; Bakke, Knut, E-mail: kbakke@fisica.ufpb.br

    2016-02-15

    We analyse the bound states for a Landau-type system for an atom with no permanent electric dipole moment subject to a Coulomb-type potential. By comparing the energy levels for bound states of the system with the Landau quantization for an atom with no permanent electric dipole moment (Furtado et al., 2006), we show that the energy levels of the Landau-type system are modified, where the degeneracy of the energy levels is broken. Another quantum effect investigated is a dependence of the angular frequency of the system on the quantum numbers associated with the radial modes and the angular momentum. As examples, we obtain the angular frequency and the energy levels associated with the ground state and the first excited state of the system.

  16. On the effects on a Landau-type system for an atom with no permanent electric dipole moment due to a Coulomb-type potential

    International Nuclear Information System (INIS)

    Oliveira, Abinael B.; Bakke, Knut

    2016-01-01

    We analyse the bound states for a Landau-type system for an atom with no permanent electric dipole moment subject to a Coulomb-type potential. By comparing the energy levels for bound states of the system with the Landau quantization for an atom with no permanent electric dipole moment (Furtado et al., 2006), we show that the energy levels of the Landau-type system are modified, where the degeneracy of the energy levels is broken. Another quantum effect investigated is a dependence of the angular frequency of the system on the quantum numbers associated with the radial modes and the angular momentum. As examples, we obtain the angular frequency and the energy levels associated with the ground state and the first excited state of the system.

  17. Electrically pumped graphene-based Landau-level laser

    Science.gov (United States)

    Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin

    2018-03-01

    Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.

  18. Lev Landau and the concept of neutron stars

    International Nuclear Information System (INIS)

    Yakovlev, Dmitrii G; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-01-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores. (from the history of physics)

  19. Towards a generalized Landau theory of quasi-particles for hot dense matter

    International Nuclear Information System (INIS)

    Leermakers, R.

    1985-01-01

    In this thesis it is tried to construct a Landau quasi-particle theory for relativistic systems, using field-theoretical methods. It includes a perturbative calculation of the pressure of a quark-gluon plasma. It reports the existence of a hitherto unnoticed plasmon contribution of the order g 3 due to transverse quasi-gluons. A new and Lorentz covariant formulation of the Landau theory is being developed, for a general relativistic system. A detailed calculation is presented of the observables of a quantum electrodynamical (QED) plasma, in lowest orders of perturbation theory. A transverse plasmon effect is discovered, both analytically and numerically. In addition, the analysis shows quasi-electrons and positrons to be stable excitations at any temperature. This is proven in all orders of perturbation theory. Along with a Landau theory for quark-gluon matter, a linearized kinetic equation is derived for the singlet quark distribution function, with a collision term for soft encounters between quasi-quarks. (Auth.)

  20. Stabilizing the long-time behavior of the forced Navier-Stokes and damped Euler systems by large mean flow

    Science.gov (United States)

    Cyranka, Jacek; Mucha, Piotr B.; Titi, Edriss S.; Zgliczyński, Piotr

    2018-04-01

    The paper studies the issue of stability of solutions to the forced Navier-Stokes and damped Euler systems in periodic boxes. It is shown that for large, but fixed, Grashoff (Reynolds) number the turbulent behavior of all Leray-Hopf weak solutions of the three-dimensional Navier-Stokes equations, in periodic box, is suppressed, when viewed in the right frame of reference, by large enough average flow of the initial data; a phenomenon that is similar in spirit to the Landau damping. Specifically, we consider an initial data which have large enough spatial average, then by means of the Galilean transformation, and thanks to the periodic boundary conditions, the large time independent forcing term changes into a highly oscillatory force; which then allows us to employ some averaging principles to establish our result. Moreover, we also show that under the action of fast oscillatory-in-time external forces all two-dimensional regular solutions of the Navier-Stokes and the damped Euler equations converge to a unique time-periodic solution.

  1. Control of Coherent Instabilities by Linear Coupling

    CERN Document Server

    Cappi, R; Möhl, D

    2001-01-01

    One of the main challenges in the design of high-energy colliders is the very high luminosity necessary to provide significant event rates. This imposes strong constraints to achieve and preserve beams of high brightness, i.e. intensity to emittance ratio, all along the injector chain. Amongst the phenomena that can blow up and even destroy the beam are transverse coherent instabilities. Two methods are widely used to damp these instabilities. The first one is Landau damping by non-linearities. The second consists in using an electronic feedback system. However, non-linearities are harmful to single-particle motion due to resonance phenomena, and powerful wideband feedback systems are expensive. It is shown in this paper that linear coupling is a further method that can be used to damp transverse coherent instabilities. The theory of collective motion is outlined, including the coupling of instability rise and damping rates, chromaticity and Landau damping. Experimental results obtained at the CERN PS are rep...

  2. Anti-levitation of Landau levels in vanishing magnetic fields

    Science.gov (United States)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Generalized Landau-Pollak uncertainty relation

    International Nuclear Information System (INIS)

    Miyadera, Takayuki; Imai, Hideki

    2007-01-01

    The Landau-Pollak uncertainty relation treats a pair of rank one projection valued measures and imposes a restriction on their probability distributions. It gives a nontrivial bound for summation of their maximum values. We give a generalization of this bound (weak version of the Landau-Pollak uncertainty relation). Our generalization covers a pair of positive operator valued measures. A nontrivial but slightly weak inequality that can treat an arbitrary number of positive operator valued measures is also presented. A possible application to the problem of separability criterion is also suggested

  4. Landau levels and magneto-transport property of monolayer phosphorene

    Science.gov (United States)

    Zhou, X. Y.; Zhang, R.; Sun, J. P.; Zou, Y. L.; Zhang, D.; Lou, W. K.; Cheng, F.; Zhou, G. H.; Zhai, F.; Chang, Kai

    2015-01-01

    We investigate theoretically the Landau levels (LLs) and magneto-transport properties of phosphorene under a perpendicular magnetic field within the framework of the effective k·p Hamiltonian and tight-binding (TB) model. At low field regime, we find that the LLs linearly depend both on the LL index n and magnetic field B, which is similar with that of conventional semiconductor two-dimensional electron gas. The Landau splittings of conduction and valence band are different and the wavefunctions corresponding to the LLs are strongly anisotropic due to the different anisotropic effective masses. An analytical expression for the LLs in low energy regime is obtained via solving the decoupled Hamiltonian, which agrees well with the numerical calculations. At high magnetic regime, a self-similar Hofstadter butterfly (HB) spectrum is obtained by using the TB model. The HB spectrum is consistent with the LL fan calculated from the effective k·p theory in a wide regime of magnetic fields. We find the LLs of phosphorene nanoribbon depend strongly on the ribbon orientation due to the anisotropic hopping parameters. The Hall and the longitudinal conductances (resistances) clearly reveal the structure of LLs. PMID:26159856

  5. Thermodynamic Damping in Porous Materials with Spherical Cavities

    Directory of Open Access Journals (Sweden)

    Sofia D. Panteliou

    1997-01-01

    Full Text Available When a material is subjected to an alternating stress field, there are temperature fluctuations throughout its volume due to the thermoelastic effect. The resulting irreversible heat conduction leads to entropy production that in turn is the cause of thermoelastic damping. An analytical investigation of the entropy produced during a vibration cycle due to the reciprocity of temperature rise and strain yielded the change of the material damping factor as a function of the porosity of the material. A homogeneous, isotropic, elastic bar of cylindrical shape is considered with uniformly distributed spherical cavities under alternating uniform axial stress. The analytical calculation of the dynamic characteristics of the porous structure yielded the damping factor of the bar and the material damping factor. Exsperimental results on porous metals are in good correlation with an analysis.

  6. Damping in heat exchanger tube bundles. A review

    International Nuclear Information System (INIS)

    Iqbal, Qamar; Khushnood, Shahab; Ghalban, Ali Roheim El; Sheikh, Nadeem Ahmed; Malik, Muhammad Afzaal; Arastu, Asif

    2007-01-01

    Damping is a major concern in the design and operation of tube bundles with loosely supported tubes in baffles for process shell and tube heat exchangers and steam generators which are used in nuclear, process and power generation industries. System damping has a strong influence on the amplitude of vibration. Damping depends upon the mechanical properties of the tube material, geometry of intermediate supports and the physical properties of shell-side fluid. Type of tube motion, number of supports, tube frequency, vibration amplitude, tube mass or diameter, side loads, support thickness, higher modes, shell-side temperature etc., affect damping in tube bundles. The importance of damping is further highlighted due to current trend of larger exchangers with increased shell-side velocities in modern units. Various damping mechanisms have been identified (Friction damping, Viscous damping, Squeeze film damping, Support damping. Two-Phase damping, and very recent-Thermal damping), which affect the performance of process exchangers and steam generators with respect to flow induced vibration design, including standard design guidelines. Damping in two-phase flow is very complex and highly void fraction, and flow-regime dependent. The current paper focuses on the various known damping mechanisms subjected to both single and two-phase cross-flow in process heat exchangers and steam generators and formulates the design guidelines for safer design. (author)

  7. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2017-02-01

    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  8. Dynamic nuclear polarization at high Landau levels in a quantum point contact

    Science.gov (United States)

    Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.

    2018-05-01

    We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.

  9. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1979-08-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to the finite toroidicity, is shown to be destabilized by electron Landau damping for typical Tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein-Berk type) branch is found to remain stable and experience enhanced shear damping due to finite toroidicity

  10. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T. F. [Dalian University of Technology, Dalian 116024 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ma, C. H. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Bass, E. M.; Candy, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holland, C. [University of California San Diego, La Jolla, California 92093-0429 (United States)

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  11. Ginzburg-Landau-type theory of nonpolarized spin superconductivity

    Science.gov (United States)

    Lv, Peng; Bao, Zhi-qiang; Guo, Ai-Min; Xie, X. C.; Sun, Qing-Feng

    2017-01-01

    Since the concept of spin superconductor was proposed, all the related studies concentrate on the spin-polarized case. Here, we generalize the study to the spin-non-polarized case. The free energy of nonpolarized spin superconductor is obtained, and Ginzburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by the super spin current is equal to the one induced by an equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and related topics such as the Bose-Einstein condensate of magnons and spin superfluidity.

  12. Definite evidence of the Landau-Zener transition in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von; Voit, H.

    1986-05-01

    It is shown that the Landau-Zener transition mechanism due to the formation of molecular orbitals of the active neutron exists in the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ). The evidence stems from characteristic changes of the angular distributions observed as function of the incident energy. (author)

  13. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  14. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  15. Stability of zero-mode Landau levels in bilayer graphene against disorder in the presence of the trigonal warping

    International Nuclear Information System (INIS)

    Kawarabayashi, Tohru; Hasugai, Yasuhiro; Aoki, Hideo

    2013-01-01

    The stability of the zero-energy Landau levels in bilayer graphene against the chiral symmetric disorder is examined in the presence of the trigonal warping. Based on the tight-binding lattice model with a bond disorder correlated over several lattice constants, it is shown that among the four Landau levels per spin and per valley, two Landau levels exhibit the anomalous sharpness as in the absence of the trigonal warping, while the other two are broadened, yielding split peaks in the density of states. This can be attributed to the fact that the total chirality in each valley is ±2, which is protected topologically even in the presence of an intra-valley scattering due to disorder

  16. Fluid Damping Variation of a Slender Rod in Axial Flow Field

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam-Gyu; Yoo, Jong-Sung; Jung, Yil-Sup [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-10-15

    This study proposed an analytic damping model considering the axial flow condition. In addition, the specific damping values with respect to the flow speeds are calculated. The flow induced damping is beneficial to fuel integrity in that impact energy due to severe accidents such as earthquake dissipates rapidly. A nuclear fuel bundle is composed of many slender fuel rods which contain fission material. The slender rod is typical structure in the fuel, therefore fluid damping estimation on the rod should be an important clue leading to fuel bundle damping identification. Severe accidents could cause fuel assembly vibration in the core, but large motion could be damped out rapidly when a strong damping mechanism is involved. This paper suggested a mathematical model of the slender structure. The physical meaning of the model is described, and the simulation results with the model are also provided. Actual damping due to the fluid is nonlinear, therefore further works are required to explain the detail behavior with the nonlinearity. The model validation test is on-going in KEPCO Nuclear Fuel, but it is believed that performance of the model is well correlated to the published work.

  17. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors

    International Nuclear Information System (INIS)

    Grigorishin, Konstantin V.

    2016-01-01

    Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  18. The rubber band revisited: Wang–Landau simulation

    International Nuclear Information System (INIS)

    Ferreira, Lucas S; Caparica, Álvaro A; Neto, Minos A; Galiceanu, Mircea D

    2012-01-01

    In this work we apply Wang–Landau simulations to a simple model which has exact solutions both in the microcanonical and canonical formalisms. The simulations were carried out by using an updated version of the Wang–Landau sampling. We consider a homopolymer chain consisting of N monomers units which may assume any configuration on the two-dimensional lattice. By imposing constraints to the moves of the polymers we obtain three different models. Our results show that updating the density of states only after every N monomer moves leads to a better precision. We obtain the specific heat and the end-to-end distance per monomer and test the precision of our simulations by comparing the location of the maximum of the specific heat with the exact results and conventional Wang–Landau simulations for the three types of walk. (paper)

  19. Evaluation of TLCD Damping Factor from FRF Measurement Due to Variation of the Fluid Viscosity

    OpenAIRE

    Son, Lovely

    2016-01-01

    Tuned Liquid Column Damper (TLCD) has become an alternative solution for reducing low frequency vibration response of machines and structures. This is not surprisingly that the damper has simply structure and low maintenance cost. The main disadvantage of using TLCD is the complexity in controlling TLCD damping factor experimentally. Theoretically, damping factor can be controlled by adjusting the orifice dimension. However, this method is time consuming and not appropriate conducted in the r...

  20. Pulsar kicks with modified Urca and electrons in Landau levels

    International Nuclear Information System (INIS)

    Henley, Ernest M.; Johnson, Mikkel B.; Kisslinger, Leonard S.

    2007-01-01

    We derive the energy asymmetry given the protoneutron star during the time when the neutrino sphere is near the surface of the protoneutron star, using the modified Urca process. The electrons produced with the antineutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of the electrons to be in the lowest Landau level; however, there is no direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated with the direction of the magnetic field. We predict a pulsar velocity of 1.03x10 -4 (T/10 10 K) 7 km/s, which reaches 1000 km/s if T≅10 11 K

  1. Bunched beam longitudinal stability

    International Nuclear Information System (INIS)

    Baartman, R.

    1991-05-01

    Instabilities driven by narrow-band impedances can be stabilized by Landau damping arising from the synchrotron frequency spread due to the nonlinearity of the rf wave-form. We calculate stability diagrams for various phase space distributions. We find that distributions without tails are unstable in the 'negative mass' regime (inductive impedance below transition or capacitive impedance above transition). We also find that longitudinal instability thresholds of the (usually neglected) higher order radial modes are lower than expected. For example, the next to lowest dipole mode has a lower threshold than the lowest sextupole mode even though the latter has the larger growth rate in the absence of Landau damping. (Author) 5 refs., 5 figs

  2. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT...... to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover...

  3. Active damping technique for small DC-link capacitor based drive system

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Henriksen, Bjarne

    2010-01-01

    A detailed model of Adjustable Speed Drive (ASD) is discussed, which yield a general rule for active damping in a small DC link based drive. A desired value of input LC resonance damping coefficient can be achieved by changing gain parameters. The modified state space matrix due to active damping...

  4. The Rubber Band Revisited: Wang-Landau Simulation

    OpenAIRE

    Ferreira, Lucas S.; Caparica, Alvaro A.; Neto, Minos A.; Galiceanu, Mircea D.

    2012-01-01

    In this work we apply Wang-Landau simulations to a simple model which has exact solutions both in the microcanonical and canonical formalisms. The simulations were carried out by using an updated version of the Wang-Landau sampling. We consider a homopolymer chain consisting of $N$ monomers units which may assume any configuration on the two-dimensional lattice. By imposing constraints to the moves of the polymers we obtain three different models. Our results show that updating the density of...

  5. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)

    2010-07-15

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  6. Landau-Zener-Stueckelberg interferometry

    International Nuclear Information System (INIS)

    Shevchenko, S.N.; Ashhab, S.; Nori, Franco

    2010-01-01

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  7. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2015-01-01

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies (LHRF) for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the LHRF are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. The character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. Applications of these ideas to experiments in the DIII-D tokamak are discussed

  8. Breaking the hidden symmetry in the Ginzburg-Landau equation

    NARCIS (Netherlands)

    Doelman, A.

    1997-01-01

    In this paper we study localised, traveling, solutions to a Ginzburg-Landau equation to which we have added a small, O ( " ), 0 < "? 1, quintic term. We consider this term as a model for the higher order nonlinearities which appear in the derivation of the Ginzburg-Landau equation. By a combination

  9. The lowest Landau level in QCD

    Directory of Open Access Journals (Sweden)

    Bruckmann Falk

    2017-01-01

    Full Text Available The thermodynamics of Quantum Chromodynamics (QCD in external (electro-magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL. Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.

  10. Calculations of emittance and damping time effects in the SLC damping rings

    International Nuclear Information System (INIS)

    Limberg, T.; Moshammer, H.; Raubenheimer, T.; Spencer, J.; Siemann, R.

    1992-03-01

    In a recent NDR machine experiment the transverse emittance was studied as a function of store time and tune. To explain the observed transverse emittance damping time constants, the magnetic measurement data of the longitudinal field of the bending magnets had to be taken into account. The variation of the transverse emittances with tune due to misalignments and the associated anomalous dispersion is studied as well as the effect of synchrobetatron coupling due to dispersion in the RF cavities

  11. Quadratic Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Quadratic friction involves a discontinuous damping term in equations of motion in order that the frictional force always opposes the direction of the motion. Perhaps for this reason this topic is usually omitted from beginning texts in differential equations and physics. However, quadratic damping is more realistic than viscous damping in many…

  12. Vibration of fusion reactor components with magnetic damping

    Energy Technology Data Exchange (ETDEWEB)

    D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)

    2016-11-01

    The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.

  13. Magnetization plateaus of the frustrated Ising Shastry–Sutherland system: Wang–Landau simulation

    International Nuclear Information System (INIS)

    Lin, W.S.; Yang, T.H.; Wang, Y.; Qin, M.H.; Liu, J.-M.; Ren, Zhifeng

    2014-01-01

    The Wang–Landau algorithm is used to study the magnetic properties of the Ising model on the Shastry–Sutherland lattice in order to understand the interesting magnetization plateaus observed in TmB 4 . The simulated results demonstrate that the equilibrium state of the model produces only the 1/3 and 1/2 magnetization plateaus at low temperatures even when the random-exchange term or the long-range interactions are taken into account. This confirms our earlier conclusion (Huang et al., 2013) [20] that those fractional plateaus observed in experiments may be due to the magnetization dynamics. - Highlights: • The magnetic behaviors of TmB 4 are investigated using the Wang–Landau method. • The equilibrium state only produces the 1/3 and 1/2 magnetization plateaus. • Those fractional plateaus must arise from the non-equilibrium magnetization

  14. Magnetization plateaus of the frustrated Ising Shastry–Sutherland system: Wang–Landau simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.S.; Yang, T.H.; Wang, Y. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Qin, M.H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States); Liu, J.-M. [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Ren, Zhifeng, E-mail: zren@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States)

    2014-07-04

    The Wang–Landau algorithm is used to study the magnetic properties of the Ising model on the Shastry–Sutherland lattice in order to understand the interesting magnetization plateaus observed in TmB{sub 4}. The simulated results demonstrate that the equilibrium state of the model produces only the 1/3 and 1/2 magnetization plateaus at low temperatures even when the random-exchange term or the long-range interactions are taken into account. This confirms our earlier conclusion (Huang et al., 2013) [20] that those fractional plateaus observed in experiments may be due to the magnetization dynamics. - Highlights: • The magnetic behaviors of TmB{sub 4} are investigated using the Wang–Landau method. • The equilibrium state only produces the 1/3 and 1/2 magnetization plateaus. • Those fractional plateaus must arise from the non-equilibrium magnetization.

  15. Breaking the hidden symmetry in the Ginzburg-Landau equation

    NARCIS (Netherlands)

    Doelman, A.

    1996-01-01

    In this paper we study localised, traveling, solutions to a Ginzburg-Landau equation to which we have added a small, O(e), 0 < e << 1, quintic term. We consider this term as a model for the higher order nonlinearities which appear in the derivation of the Ginzburg-Landau equation. By a combination

  16. Next generation HOM-damping

    Science.gov (United States)

    Marhauser, Frank

    2017-06-01

    Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it

  17. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  18. Evolutionary algorithms applied to Landau-gauge fixing

    International Nuclear Information System (INIS)

    Markham, J.F.

    1998-01-01

    Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)

  19. Tuning of graphene nanoribbon Landau levels by a nanotube

    International Nuclear Information System (INIS)

    Li, T S; Chang, S C; Lin, M F

    2009-01-01

    We investigate theoretically the effects of a nanotube on the graphene nanoribbon Landau level spectrum utilizing the tight-binding model. The addition of a nanotube changes the original dispersionless Landau subbands into distorted parabolic ones, creates additional band-edge states, and modifies the subband spacings. Moreover, the dispersion relations rely sensitively on the nanotube location. The nanotube-ribbon couplings disrupt the Landau wavefunctions and lift their spatial symmetry, which will change the selection rule of optical transitions. The numbers, frequencies and heights of the density of states (DOS) peaks are found to be strongly dependent on the magnetic flux density and the nanotube location. The evolution of the DOS peak with the magnetic flux density is explored. The graphene nanoribbon Landau levels are shown to be modified in an unexpected fashion by the nanotube-ribbon interactions. These predictions can be validated by measuring the spectra of scanning tunneling experiments or magneto-optical experiments, and they are most observable by placing the nanotube at the electron wavefunction localization sites.

  20. Geometric singularities and spectra of Landau-Ginzburg models

    International Nuclear Information System (INIS)

    Greene, B.R.; Roan, S.S.; Yau, S.T.

    1991-01-01

    Some mathematical and physical aspects of superconformal string compactification in weighted projective space are discussed. In particular, we recast the path integral argument establishing the connection between Landau-Ginsburg conformal theories and Calabi-Yau string compactification in a geometric framework. We then prove that the naive expression for the vanishing of the first Chern class for a complete intersection (adopted from the smooth case) is sufficient to ensure that the resulting variety, which is generically singular, can be resolved to a smooth Calabi-Yau space. This justifies much analysis which has recently been expended on the study of Landau-Ginzburg models. Furthermore, we derive some simple formulae for the determination of the Witten index in these theories which are complementary to those derived using semiclassical reasoning by Vafa. Finally, we also comment on the possible geometrical significance of unorbifolded Landau-Ginzburg theories. (orig.)

  1. Chiral correlators in Landau-Ginsburg theories and N=2 superconformal models

    International Nuclear Information System (INIS)

    Howe, P.S.; West, P.C.

    1989-01-01

    Chiral correlation functions are computed in N=2 Landau-Ginsburg models using the ε-expansion and the superconformal Ward identities for the Landau-Ginsburg effective action. They are also computed directly using superconformal model techniques. The same results are obtained yielding further confirmation of the identification of superconformal minimal models with Landau-Ginsburg models evaluated at their fixed points. The formulae for the chiral commutators that we compute are extremely simple when expressed in terms of effective actions. (orig.)

  2. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  3. Overview on methods for formulating explicit damping matrices for non-classically damped structures

    International Nuclear Information System (INIS)

    Xu, J.

    1998-04-01

    In computing the dynamic response of a connected system with multiple components having dissimilar damping characteristics, which is often referred to as nonclassically damped system such as nuclear power plant piping systems supported by stiff structures, one needs to define the system-level damping based upon the damping information of components. This is frequently done in practice using approximate methods expressed as composite modal damping with weighting functions. However, when the difference in damping among components is substantial, the composite modal damping may become inappropriate in the characterization of the damping behavior of such systems. In recent years, several new methods have emerged with the expectation that they could produce more exact system-level damping for a group of nonclassically damped structures which are comprised of components that possess classical modal damping. In this paper, an overview is presented to examine these methods in the light of their theoretical basis, the technical merits, and practical applications. To this end, a synthesis method is described, which was shown to reduce to the other methods in the literature

  4. Unified theory of damping of linear surface Alfven waves in inhomogeneous incompressible plasmas

    International Nuclear Information System (INIS)

    Ruderman, M.S.; Goossens, M.

    1996-01-01

    The viscous damping of surface Alfven waves in a non-uniform plasma is studied in the context of linear and incompressible MHD. It is shown that damping due to resonant absorption and damping on a true discontinuity are two limiting cases of the continuous variation of the damping rate with respect to the dimensionless number Rg = Δλ 2 Re, where Δ is the relative variation of the local Alfven velocity, λ is the ratio of the thickness of the inhomogeneous layer to the wavelength, and Re is the viscous Reynolds number. The analysis is restricted to waves with wavelengths that are long in comparison with the extent of the non-uniform layer (λ '' >'' 1) values of Rg. For very small values of Rg, the damping rate agrees with that found for a true discontinuity, while for very large values of Rg, it agrees with the damping rate due to resonant absorption. The dispersion relation is subsequently studied numerically over a wide range of values of Rg, revealing a continuous but non-monotonic variation of the damping rate with respect to Rg. (Author)

  5. Discretisation errors in Landau gauge on the lattice

    International Nuclear Information System (INIS)

    Bonnet DR, Frederic; Bowman O, Patrick; Leinweber B, Derek; Williams G, Anthony; Richards G, David G.

    1999-01-01

    Lattice discretization errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasize the importance of implementing an improved gauge fixing condition

  6. Landau quantization of Dirac fermions in graphene and its multilayers

    Science.gov (United States)

    Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin

    2017-08-01

    When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

  7. Spin dynamics and frequency dependence of magnetic damping study in soft ferromagnetic FeTaC film with a stripe domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Samantaray, B., E-mail: iitg.biswanath@gmail.com; Ranganathan, R.; Mandal, P. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Singh, Akhilesh K.; Perumal, A. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2015-06-15

    Perpendicular magnetic anisotropy (PMA) and low magnetic damping are the key factors for the free layer magnetization switching by spin transfer torque technique in magnetic tunnel junction devices. The magnetization precessional dynamics in soft ferromagnetic FeTaC thin film with a stripe domain structure was explored in broad band frequency range by employing micro-strip ferromagnetic resonance technique. The polar angle variation of resonance field and linewidth at different frequencies have been analyzed numerically using Landau-Lifshitz-Gilbert equation by taking into account the total free energy density of the film. The numerically estimated parameters Landé g-factor, PMA constant, and effective magnetization are found to be 2.1, 2 × 10{sup 5} erg/cm{sup 3} and 7145 Oe, respectively. The frequency dependence of Gilbert damping parameter (α) is evaluated by considering both intrinsic and extrinsic effects into the total linewidth analysis. The value of α is found to be 0.006 at 10 GHz and it increases monotonically with decreasing precessional frequency.

  8. Ginzburg-Landau equation and vortex liquid phase of Fermi liquid superconductors

    International Nuclear Information System (INIS)

    Ng, T-K; Tse, W-T

    2007-01-01

    In this paper we study the Ginzburg-Landau (GL) equation for Fermi liquid superconductors with strong Landau interactions F 0s and F 1s . We show that Landau interactions renormalize two parameters entering the GL equation, leading to the renormalization of the compressibility and superfluid density. The renormalization of the superfluid density in turn leads to an unconventional (2D) Berezinskii-Kosterlitz-Thouless (BKT) transition and vortex liquid phase. Application of the GL equation to describe underdoped high-T c cuprates is discussed

  9. Discretisation errors in Landau gauge on the lattice

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowmen, P.O.; Leinweber, D.B.

    1999-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with the continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition. Copyright (1999) CSIRO Australia

  10. Elastic moduli, damping and modulus of rupture changes in a high alumina refractory castable due to different types of thermal shock

    Directory of Open Access Journals (Sweden)

    Pereira, A. H. A.

    2012-06-01

    Full Text Available The work herein verifies the changes of the elastic moduli, damping and modulus of rupture (MOR of a high alumina refractory castable due to heating, cooling and heating-cooling thermal shock damage. Twelve prismatic specimens were prepared for the tests and divided into four groups. The thermal shocks were performed on three groups, each containing three specimens having abrupt temperature changes of 1100°C during heating in the first group, during cooling in the second and during heating followed by cooling in the third group. The fourth group, which was taken as a reference did not receive any thermal shock. The elastic moduli were measured after each thermal shock cycle. After 10 cycles, the MOR, the damping and the damping dependence on excitation amplitude were measured at room temperature for all specimens. The elastic moduli showed a similar decrease and the damping a similar increase due to the cooling and heating-cooling thermal shocks. The heating thermal shocks caused no significant changes on the elastic moduli and damping. However, the MOR appeared to be sensitive to the heating thermal shock. This work also shows that the damping for the studied refractory castable is non-linear (i.e., amplitude of excitation sensitive and that this non-linearity increases when the damage level rises.

    En este trabajo se investigaron las alteraciones de los módulos elásticos dinámicos, del amortiguamiento y del módulo de rotura (MOR de un material refractario moldeable de alta alúmina después de recibir choques térmicos de calentamiento, enfriamiento y calentamiento seguido de enfriamiento (calentamiento-enfriamiento. Para ello se prepararon doce cuerpos prismáticos dividiéndolos en cuatro grupos. Los choques térmicos se le aplicaron a sólo tres grupos, cada uno con tres muestras. Al primer grupo se le aplicó un cambio brusco de temperatura de 1100 °C en calentamiento, en enfriamiento al segundo grupo y calentamiento seguido

  11. The damped wave equation with unbounded damping

    Science.gov (United States)

    Freitas, Pedro; Siegl, Petr; Tretter, Christiane

    2018-06-01

    We analyze new phenomena arising in linear damped wave equations on unbounded domains when the damping is allowed to become unbounded at infinity. We prove the generation of a contraction semigroup, study the relation between the spectra of the semigroup generator and the associated quadratic operator function, the convergence of non-real eigenvalues in the asymptotic regime of diverging damping on a subdomain, and we investigate the appearance of essential spectrum on the negative real axis. We further show that the presence of the latter prevents exponential estimates for the semigroup and turns out to be a robust effect that cannot be easily canceled by adding a positive potential. These analytic results are illustrated by examples.

  12. Atomistic theory for the damping of vibrational modes in monoatomic gold chains

    DEFF Research Database (Denmark)

    Engelund, Mads; Brandbyge, Mads; Jauho, Antti-Pekka

    2009-01-01

    We develop a computational method for evaluating the damping of vibrational modes in monatomic metallic chains suspended between bulk crystals under external strain. The damping is due to the coupling between the chain and contact modes and the phonons in the bulk substrates. The geometry of the ...... in the harmonic damping is possible even for relatively small changes in the strain. Such detailed insight is necessary for a quantitative analysis of damping in metallic atomic chains and in explaining the rich phenomenology seen in the experiments....

  13. Integral definition of transition time in the Landau-Zener model

    International Nuclear Information System (INIS)

    Yan Yue; Wu Biao

    2010-01-01

    We give a general definition for the transition time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the sudden limit.

  14. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  15. Landau-Kleffner syndrome: study of four cases Síndrome de Landau-Kleffner: estudo de quatro casos

    Directory of Open Access Journals (Sweden)

    Lúcia H. Coutinho dos Santos

    2002-06-01

    Full Text Available We describe four patients with clinical features of Landau-Kleffner syndrome and discuss electroencephalographic features, treatment and prognosis. Anticonvulsants and prednisone were used for treatment with good control of seizures in all cases and a less effect response in acquired aphasia. Further studies are necessary to elucidate the causes and management of this syndrome.Descrevemos quatro pacientes com achados clínicos de síndrome de Landau Kleffner . São discutidos os aspectos relacionados aos achados eletrencefalográficos, tratamento e prognóstico. Anticonvulsivantes e prednisona foram os principais métodos terapêuticos utilizados com controle das crises convulsivas em todos os casos e resposta variável quanto a afasia adquirida. Mais estudos são necessários para elucidar as causas e o manejo desta síndrome

  16. Approximate solution of generalized Ginzburg-Landau-Higgs system via homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Lu Juhong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Dept. of Information Engineering, Coll. of Lishui Professional Tech., Zhejiang (China); Zheng Chunlong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Shanghai Inst. of Applied Mathematics and Mechanics, Shanghai Univ., SH (China)

    2010-04-15

    Using the homotopy perturbation method, a class of nonlinear generalized Ginzburg-Landau-Higgs systems (GGLH) is considered. Firstly, by introducing a homotopic transformation, the nonlinear problem is changed into a system of linear equations. Secondly, by selecting a suitable initial approximation, the approximate solution with arbitrary degree accuracy to the generalized Ginzburg-Landau-Higgs system is derived. Finally, another type of homotopic transformation to the generalized Ginzburg-Landau-Higgs system reported in previous literature is briefly discussed. (orig.)

  17. Solution Theory of Ginzburg-Landau Theory on BCS-BEC Crossover

    Directory of Open Access Journals (Sweden)

    Shuhong Chen

    2014-01-01

    Full Text Available We establish strong solution theory of time-dependent Ginzburg-Landau (TDGL systems on BCS-BEC crossover. By the properties of Besov, Sobolev spaces, and Fourier functions and the method of bootstrapping argument, we deduce that the global existence of strong solutions to time-dependent Ginzburg-Landau systems on BCS-BEC crossover in various spatial dimensions.

  18. Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger

    2018-01-01

    separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalized nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations...... architectures with ultrafine geometrical details....

  19. Ion-cyclotron instability in magnetic mirrors

    International Nuclear Information System (INIS)

    Pearlstein, L.D.

    1987-01-01

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits

  20. From the atomic bomb to the Landau Institute autobiography top non-secret

    CERN Document Server

    Khalatnikov, Isaak M

    2012-01-01

    The book is an expanded autobiography of the famous theoretical physicist Isaak Khalatnikov. He worked together with L.D. Landau at the Institute for Physical Problems lead by P.L. Kapitza. He is the co-author of L.D. Landau in a number of important works. They worked together in the frame of the so-called Nuclear Bomb Project. After the death of L.D. Landau, I.M. Khalatnikov initiated the establishment of the Institute for Theoretical Physics, named in honour of L.D. Landau, within the USSR Academy of Sciences. He headed this institute from the beginning as its Director. The institute inherited almost all traditions of the Landau scientific school and played a prominent role in the development of theoretical physics. So, this is a story about how the institute was created, how it worked, and about the life of the physicists in the "golden age" of the Soviet science. A separate chapter is devoted to today´s life of the institute and the young generation of physicists working now in science. It is an historic...

  1. Unstable universal drift eigenmodes in toroidal plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Chen, L.

    1980-01-01

    The eigenmode equation describing ballooning collisionless drift instabilities is analyzed both analytically and numerically. A new branch of eigenmodes, which corresponds to quasi-bound states due to toroidal coupling effects such as ion delB drifts, is shown to be destabilized by electron Landau damping for typical tokamak parameters. This branch cannot be understood by the strong coupling approximation. However, the slab-like (Pearlstein--Berk-type) branch is found to remain stable and experience enhanced shear damping

  2. On the quantum Landau collision operator and electron collisions in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  3. On the quantum Landau collision operator and electron collisions in dense plasmas

    Science.gov (United States)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  4. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  5. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2014-01-01

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient

  6. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Stabilization of external kink modes in a tokamak with rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Kuvshinov, B.N.

    1995-01-01

    An analytical theory of stabilization of external kink modes in a tokamak with rotating plasma is developed, which is of interest in connection with experiments on the DIII-D tokamak demonstrating such a stabilization. It is assumed that, in addition to the main poloidal harmonic, the mode includes one or more side-band poloidal harmonics with singular points lying inside the plasma. Near these singular points, plasma inertia and related toroidal effects, the compressible part of plasma pressure and longitudinal viscosity, are allowed for. These effects are described kinetically taking into account the toroidal trapping of the resonant ions, which is essential if the toroidal velocity is small compared to the ion thermal velocity. Thereby, the theory presented includes both ion Landau damping and its weakening due to toroidal trapping. Near the singular points high-beta effects, which result in the finiteness of the Mercier index s, are allowed for. It is shown that the influence of plasma rotation on the external kink modes is most significant in the case of s<0, i.e., when the development of the instability in a non-rotating plasma is most highly favored. In this case, the plasma rotation plays a stabilizing role, even when the ion Landau damping is neglected. The analysis presented also confirms the hypothesis of Bondeson and Ward on the stabilizing effect of ion Landau damping if this damping is not too small

  8. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.

  9. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  10. New Wang-Landau approach to obtain phase diagrams for multicomponent alloys

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2017-10-01

    We develop an approach to apply the Wang-Landau algorithm to multicomponent alloys in a semi-grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over conventional sampling methods, there are few applications to alloys. This is because calculating compositions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multidimensional density of states in terms of total energy and compositions, and constructing it is difficult from the viewpoints of both implementation and computational cost. In this study, we develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algorithm, and show that a number of one-dimensional densities of states could lead to compositions in a semi-grand-canonical ensemble as a multidimensional density of states could. Finally, we apply the present method to Cu-Au and Pd-Rh alloys and confirm that the present method successfully describes the phase diagram with high efficiency, validity, and accuracy.

  11. Non perturbative analysis of an N=2 Landau-Ginsburg model

    International Nuclear Information System (INIS)

    Leaf Herrmann, W.A.

    1993-01-01

    We analyze the topological sector of an N=2 Landau-Ginsburg model using nonperturbative methods. In particular, we study the renormalization group flow between two superconformal minimal models, numerically compute the correlation functions along this trajectory, and compare the results to semi-classical calculations. We also study some aspects of arbitrary supersymmetric perturbations of the Landau-Ginsburg model. 20 refs, 4 figs

  12. Zero-field magnetic response functions in Landau levels

    Science.gov (United States)

    Gao, Yang; Niu, Qian

    2017-07-01

    We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models.

  13. Generalized Landau-Lifshitz models on the interval

    International Nuclear Information System (INIS)

    Doikou, Anastasia; Karaiskos, Nikos

    2011-01-01

    We study the classical generalized gl n Landau-Lifshitz (L-L) model with special boundary conditions that preserve integrability. We explicitly derive the first non-trivial local integral of motion, which corresponds to the boundary Hamiltonian for the sl 2 L-L model. Novel expressions of the modified Lax pairs associated to the integrals of motion are also extracted. The relevant equations of motion with the corresponding boundary conditions are determined. Dynamical integrable boundary conditions are also examined within this spirit. Then the generalized isotropic and anisotropic gl n Landau-Lifshitz models are considered, and novel expressions of the boundary Hamiltonians and the relevant equations of motion and boundary conditions are derived.

  14. A novel method of including Landau level mixing in numerical studies of the quantum Hall effect

    International Nuclear Information System (INIS)

    Wooten, Rachel; Quinn, John; Macek, Joseph

    2013-01-01

    Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented

  15. Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit

    KAUST Repository

    Parker, Joseph T.

    2015-02-03

    Copyright © Cambridge University Press 2015. We study Landau damping in the 1+1D Vlasov-Poisson system using a Fourier-Hermite spectral representation. We describe the propagation of free energy in Fourier-Hermite phase space using forwards and backwards propagating Hermite modes recently developed for gyrokinetic theory. We derive a free energy equation that relates the change in the electric field to the net Hermite flux out of the zeroth Hermite mode. In linear Landau damping, decay in the electric field corresponds to forward propagating Hermite modes; in nonlinear damping, the initial decay is followed by a growth phase characterized by the generation of backwards propagating Hermite modes by the nonlinear term. The free energy content of the backwards propagating modes increases exponentially until balancing that of the forward propagating modes. Thereafter there is no systematic net Hermite flux, so the electric field cannot decay and the nonlinearity effectively suppresses Landau damping. These simulations are performed using the fully-spectral 5D gyrokinetics code SpectroGK, modified to solve the 1+1D Vlasov-Poisson system. This captures Landau damping via Hou-Li filtering in velocity space. Therefore the code is applicable even in regimes where phase mixing and filamentation are dominant.

  16. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  17. Thirty years of the Landau Institute selected papers

    CERN Document Server

    Khalatnikov, I M

    1996-01-01

    The Landau Institute for Theoretical Physics was created in 1965 by a group of LD Landau's pupils. Very soon, it was widely recognized as one of the world's leading centers in theoretical physics. According to Science Magazine, the Institute in the eighties had the highest citation index among all the scientific organizations in the former Soviet Union. This collection of the best papers of the Institute reflects the development of the many directions in the exact sciences during the last 30 years. The reader can find the original formulations of well-known notions in condensed matter theory,

  18. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  19. Numerical studies of shear damped composite beams using a constrained damping layer

    DEFF Research Database (Denmark)

    Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard

    2008-01-01

    Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping....... In addition, a large influence of ill positioned cuts in the damping layer is observed....

  20. Landau parameters for finite range density dependent nuclear interactions

    International Nuclear Information System (INIS)

    Farine, M.

    1997-01-01

    The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules

  1. Sphalerons, small fluctuations, and baryon-number violation in electroweak theory

    International Nuclear Information System (INIS)

    Arnold, P.; McLerran, L.

    1987-01-01

    We study the formalism of the sphaleron approximation to baryon-number violation in the standard model at temperatures near 1 TeV. We investigate small fluctuations of the sphaleron, the competition of large-scale sphalerons with thermal fluctuations, and the damping of the transition rate in the plasma. We find a suppression of the rate due to Landau damping and due to factors arising from zero modes. Our approximations are valid in the regime 2M/sub W/(T) 2 . We find that the rate of baryon-number violation is still significantly larger than the expansion rate of the Universe

  2. Damping system immersed in a fluid

    International Nuclear Information System (INIS)

    1980-01-01

    The invention relates to a damping system which is immersed in a fluid and allows slow motion, while opposing fast motion of a mobile or deformable system immersed in a fluid. Nuclear reactors utilize fabricated assemblies immmersed in the spent fuel storage pool to support the fuel elements placed in the pool, e.g., when refueling the reactor. These fabricated assemblies must be held in position, relative to the concrete walls of the pool, so as to allow slow deformation of the assemblies due to thermal expansion, while curbing fast motion, e.g., earthquake-induced motion. Such fast motion due to earthquakes might be the cause of resonance phenomena involving the fuel storage rack structure and the pool walls, should the rack structure and pool walls have the same resonant frequency. In the event of an earthquake, the damping system would provide for fast curbing of structure motion to prevent uncontrolled deformation which might result in breaks and destruction [fr

  3. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  4. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    Energy Technology Data Exchange (ETDEWEB)

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence RI 02912 (United States)

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N=4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. We observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  5. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    International Nuclear Information System (INIS)

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-01-01

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N=4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. We observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  6. Landau-Ginzburg Orbifolds, Mirror Symmetry and the Elliptic Genus

    OpenAIRE

    Berglund, P.; Henningson, M.

    1994-01-01

    We compute the elliptic genus for arbitrary two dimensional $N=2$ Landau-Ginzburg orbifolds. This is used to search for possible mirror pairs of such models. We show that if two Landau-Ginzburg models are conjugate to each other in a certain sense, then to every orbifold of the first theory corresponds an orbifold of the second theory with the same elliptic genus (up to a sign) and with the roles of the chiral and anti-chiral rings interchanged. These orbifolds thus constitute a possible mirr...

  7. Reduction of inward momentum flux by damped eigenmodes

    International Nuclear Information System (INIS)

    Terry, P. W.; Baver, D. A.; Hatch, D. R.

    2009-01-01

    The inward momentum flux driven by the off-diagonal pressure gradient in a fluid model for ion temperature gradient turbulence with large Richardson number is significantly reduced by the excitation of stable eigenmodes. This is accomplished primarily through the amplitude autocorrelation of the damped eigenmode, which, in the flux, directly counteracts the quasilinear contribution of the unstable eigenmode. Stable eigenmode cross correlations also contribute to the flux, but the symmetry of conjugate pairing of growing and damped eigenmodes leads to significant cancellations between cross correlation terms. Conjugate symmetry is a property of unstable wavenumbers but applies to the whole of the saturated state because damped eigenmodes in the unstable range prevent the spread of energy outside that range. The heat and momentum fluxes are nearly isomorphous when expressed in terms of the eigenmode correlations. Due to this similarity of form, the thermodynamic constraint, which keeps the heat flux outward even when significantly reduced by the damped eigenmode, results in a momentum flux that remains inward, even though it is also reduced by the damped eigenmode. The isomorphism is not perfect. When the contribution of stable eigenmode cross correlations to the flux do not cancel, the momentum flux can reverse sign and become outward.

  8. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    Science.gov (United States)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  9. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  10. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  11. Chaotic transport and damping from θ-ruffled separatrices.

    Science.gov (United States)

    Kabantsev, A A; Dubin, Daniel H E; Driscoll, C F; Tsidulko, Yu A

    2010-11-12

    Variations in magnetic or electrostatic confinement fields give rise to trapping separatrices, and neoclassical transport theory analyzes effects from collision-induced separatrix crossings. Experiments on pure electron plasmas now quantitatively characterize a broad range of transport and wave damping effects due to "chaotic" separatrix crossings, which occur due to equilibrium plasma rotation across θ-ruffled separatrices, and due to wave-induced separatrix fluctuations.

  12. Observation of roton density of states in two-dimensional Landau-level excitations

    International Nuclear Information System (INIS)

    Pinczuk, A.; Valladares, J.P.; Heiman, D.; Gossard, A.C.; English, J.H.; Tu, C.W.; Pfeiffer, L.; West, K.

    1988-01-01

    Inelastic light scattering by inter-Landau-level excitations of the 2D electron gas in high-mobility GaAs structures in a perpendicular magnetic field was observed at the energies of the critical points in the mode dispersions. For Landau-level filling factors /nu//ge/, structure in the spectra indicates the excitonic binding and roton behavior predicted by the Hartree-Fock approximation. The large critical-point wave vectors, qapprox. >((h/2/pi/)c/eB)/sup -1/2/approx. >10/sup 6/ cm/sup -1/, are probably accessible in resonant light scattering through the residual disorder that broadens the Landau levels

  13. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  14. Stability analysis and active damping for LLCL-filter based grid-connected inverters

    DEFF Research Database (Denmark)

    Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A higher order passive power filter (LLCL-filter) for the grid-tied inverter is becoming attractive for the industrial applications due to the possibility to reduce the cost of the copper and the magnetic material. To avoid the well-known stability problems of the LLCL-filter it is requested to use...... either passive or active damping methods. This paper analyzes the stability when damping is required and when damping is not necessary considering sampling and transport delay. Basic LLCL resonance damping properties of different feedback states are also studied. Then an active damping method which...... is using the capacitor current feedback for LLCL-filter is introduced. Based on this method, a design procedure for the control method is given. Last, both simulation and experimental results are provided to validate the theoretical analysis of this paper....

  15. Magnetic Damping For Maglev

    Directory of Open Access Journals (Sweden)

    S. Zhu

    1998-01-01

    Full Text Available Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  16. Validation of Analytical Damping Ratio by Fatigue Stress Limit

    Science.gov (United States)

    Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul

    2018-03-01

    The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.

  17. Dynamic response analysis of a 24-story damped steel structure

    Science.gov (United States)

    Feng, Demin; Miyama, Takafumi

    2017-10-01

    In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.

  18. Transversal expansion study in the Landau hydrodynamic

    International Nuclear Information System (INIS)

    Pottag, F.W.

    1984-01-01

    The system of equations in the frame of Landau's hydrodynamical model for multiparticle production at high energies is studied. Taking as a first approximation the one-dimensional exact due to Khalatnikov, and a special set of curvilinear coordinates, the radial part is separated from the longitudinal one in the equations of motion, and a system of partial differential equations (non-linear, hyperbolic) is obtained for the radial part. These equations are solved numerically by the method of caracteristics. The hydrodynamical variables are obtained over all the three-dimensional-flow region as well as its variation with the mass of the initially expanding system. Both, the transverse rapidity distribution of the fluid and the inclusive particle distribution at 90 0 in the center of mass system, are calculated. The last one is compared with recent experimental data. (author) [pt

  19. Parametric instabilities excited by localized pumps near the lower-hybrid frequency

    International Nuclear Information System (INIS)

    Kuo, Y.Y.; Chen, L.

    1976-04-01

    Parametric instabilities excited in non-uniform plasmas by spatially localized pump fields oscillating near the local lower-hybrid frequency are analytically investigated. Corresponding threshold conditions, temporal growth rates, and spatial amplification factors are obtained for the oscillating-two-stream instability and the decay instabilities due to nonlinear electron and ion Landau dampings

  20. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  1. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  2. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  3. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Science.gov (United States)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  4. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels

  5. Dromion-like structures and stability analysis in the variable coefficients complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Wong, Pring; Pang, Li-Hui; Huang, Long-Gang; Li, Yan-Qing; Lei, Ming; Liu, Wen-Jun

    2015-01-01

    The study of the complex Ginzburg–Landau equation, which can describe the fiber laser system, is of significance for ultra-fast laser. In this paper, dromion-like structures for the complex Ginzburg–Landau equation are considered due to their abundant nonlinear dynamics. Via the modified Hirota method and simplified assumption, the analytic dromion-like solution is obtained. The partial asymmetry of structure is particularly discussed, which arises from asymmetry of nonlinear and dispersion terms. Furthermore, the stability of dromion-like structures is analyzed. Oscillation structure emerges to exhibit strong interference when the dispersion loss is perturbed. Through the appropriate modulation of modified exponent parameter, the oscillation structure is transformed into two dromion-like structures. It indicates that the dromion-like structure is unstable, and the coherence intensity is affected by the modified exponent parameter. Results in this paper may be useful in accounting for some nonlinear phenomena in fiber laser systems, and understanding the essential role of modified Hirota method

  6. The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps

    International Nuclear Information System (INIS)

    Guo Boling; Hong Minchun.

    1992-05-01

    We prove a global existence of solutions for the Landau-Lifshitz equation of the ferromagnetic spin chain from an m-dimensional manifold M into the unit sphere S 2 of R 3 and establish some new links between harmonic maps and the solutions of the Landau-Lifshitz equation. (author). 25 refs

  7. Structural damage identification using damping: a compendium of uses and features

    Science.gov (United States)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions

  8. Weakly damped modes in star clusters and galaxies

    Science.gov (United States)

    Weinberg, Martin D.

    1994-01-01

    A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.

  9. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  10. Aspects of Landau condensation in atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1980-01-01

    Some aspects of Landau condensation in atomic physics are reviewed both as regards current work on Rydberg states under laboratory conditions and from the viewpoint of the prospects of spontaneous decay of neutral vacuum with superheavy elements. The characteristics of the hydrogen-atom spectrum in a strong magnetic field are presented and discussed using essentially semiclassical arguments. Some schematic attempt at a global interpretation of the Rydberg spectrum near the ionization limit is also given. Then the action of an electric field on the quasi-Landau spectrum is discussed. The conditions for spontaneous production of positrons from neutral vacuum decay with superheavy elements are reconsidered for the case when the system experiences ultrastrong magnetic fields, as in pulsars and white dwarfs. It is shown that spontaneous decay of neutral vacuum may occur at lower Z values than 169. The possible importance of such effects during heavy-ion collisions is briefly discussed. We deal with some qualitative trends of the problem of an atom in a magnetic field with particular emphasis on diamagnetic effects. In the last few years, we have had the capability of making accurate experimental investigations of Rydberg atoms, and perhaps in the future we will develop fundamentally new means of studying heavy-ion collisions. Accordingly it seems of interest to make qualitative remarks regarding the present state of the problem and the possible importance of Landau condensation in various domains of atomic physics now under active development. (author)

  11. Air Damping in a Fan-Shaped Rotational Resonator with Comb Electrodes

    Science.gov (United States)

    Uchida, Yuki; Sugano, Koji; Tsuchiya, Toshiyuki; Tabata, Osamu; Ikehara, Tsuyoshi

    We theoretically and experimentally evaluated the damping effect in a rotational resonator with a comb-drive actuator and sensor. The resonator was fabricated from an SOI wafer and has a fan-shaped mass. The underlying substrate was removed using back side deep reactive ion etching. One set of comb electrodes was attached to each side of the mass: one for electrostatic driving and the other for capacitive detection. In our theoretical analysis, the dynamics of the resonator were simplified so that they could be represented by a lumped system. In this lumped system, the damping coefficient was estimated by assuming the damping to be slide film damping and the air flow to be a Stokes flow. The phase shift due to the slide film damping of thick air layers was included in the lumped system. In the experimental evaluation, one side of the rotational combs was removed step-by-step and a half of the mass using a laser trimming tool so that the individual damping effects caused by the comb electrodes and mass could be determined quantitatively. We compared the experimental results with the results of the theoretical analysis and found that the difference in the damping coefficients between the experimental results and results of the theoretical analysis was less than 40%.

  12. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  13. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    Science.gov (United States)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  14. Relativistic Landau levels in the rotating cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2016-09-15

    In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)

  15. Reducing extrinsic damping of surface acoustic waves at gigahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Gelda, Dhruv, E-mail: gelda2@illinois.edu; Sadhu, Jyothi; Ghossoub, Marc G.; Ertekin, Elif [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Sinha, Sanjiv [Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Micro and Nanotechnology Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-04-28

    High-frequency surface acoustic waves (SAWs) in the gigahertz range can be generated using absorption from an ultrafast laser in a patterned metallic grating on a substrate. Reducing the attenuation at these frequencies can yield better sensors as well as enable them to better probe phonon and electron-phonon interactions near surfaces. It is not clear from existing experiments which mechanisms dominate damping at high frequencies. We calculate damping times of SAWs due to various mechanisms in the 1–100 GHz range to find that mechanical loading of the grating on the substrate dominates dissipation by radiating energy from the surface into the bulk. To overcome this and enable future measurements to probe intrinsic damping, we propose incorporating distributed acoustic Bragg reflectors in the experimental structure. Layers of alternating materials with contrasting acoustic impedances embedded a wavelength away from the surface serve to reflect energy back to the surface. Using numerical simulations, we show that a single Bragg reflector is sufficient to increase the energy density at the surface by more than five times. We quantify the resulting damping time to find that it is longer than the intrinsic damping time. The proposed structure can enable future measurements of intrinsic damping in SAWs at ∼100 GHz.

  16. Tunable Landau-Zener transitions using continuous- and chirped-pulse-laser couplings

    Science.gov (United States)

    Sarreshtedari, Farrokh; Hosseini, Mehdi

    2017-03-01

    The laser coupled Landau-Zener avoided crossing has been investigated with an aim towards obtaining the laser source parameters for precise controlling of the state dynamics in a two-level quantum system. The conventional Landau-Zener equation is modified for including the interaction of the system with a laser field during a bias energy sweep and the obtained Hamiltonian is numerically solved for the investigation of the two-state occupation probabilities. We have shown that in the Landau-Zener process, using an additional laser source with controlled amplitude, frequency, and phase, the system dynamics could be arbitrarily engineered. This is while, by synchronous frequency sweeping of a chirped-pulse laser, the system could be guided into a resonance condition, which again gives the remarkable possibility for precise tuning and controlling of the quantum system dynamics.

  17. Enhanced vortex damping by eddy currents in superconductor-semiconductor hybrids

    Science.gov (United States)

    Danckwerts; Goni; Thomsen; Eberl; Rojo

    2000-04-17

    An enhancement of vortex-motion damping in thin Pb/In superconducting films is obtained through coupling to an adjacent two-dimensional electron gas formed in a modulation-doped GaAs/AlGaAs heterostructure. This effect is observed by monitoring the power dissipation in the superconductor in the vortex state while increasing the density of the electron gas using a gate voltage. Quantitative agreement is found with calculations based on a viscous damping model which considers generation of eddy currents in the electron gas by moving flux lines. In the regime of filamentary vortex flow, eddy-current damping leads to a striking dissipation breakdown due to the stopping of entire vortex channels.

  18. Competing Quantum Hall Phases in the Second Landau Level in Low Density Limit

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Serafin, A. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Xia, J. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Liang, Y. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Sullivan, N. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Baldwin, K. W. [Princeton Univ., NJ (United States); West, K. W. [Princeton Univ., NJ (United States); Pfeiffer, L. N. [Princeton Univ., NJ (United States); Tsui, D. C. [Princeton Univ., NJ (United States)

    2015-01-01

    Up to date, studies of the fractional quantum Hall effect (FQHE) states in the second Landau level have mainly been carried out in the high electron density regime, where the electron mobility is the highest. Only recently, with the advance of high quality low density MBE growth, experiments have been pushed to the low density regime [1], where the electron-electron interactions are strong and the Landau level mixing parameter, defined by κ = e2/εIB/ℏωe, is large. Here, lB = (ℏe/B)1/2 is the magnetic length and ωc = eB/m the cyclotron frequency. All other parameters have their normal meanings. It has been shown that a large Landau level mixing effect strongly affects the electron physics in the second Landau level [2].

  19. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  20. Bunch length measurements in the SLC damping ring

    International Nuclear Information System (INIS)

    Decker, F.J.; Limberg, T.; Minty, M.; Ross, M.

    1993-05-01

    The synchrotron light of the SLC damping ring was used to measure the bunch length with a streak camera at different times in the damping cycle. There are bunch length oscillations after injection, different equilibrium length during the cycle due to rf manipulations to avoid microwave instability oscillations, and just before extraction there is a longitudinal phase space rotation (bunch muncher) to shorten the bunch length. Measurements under these different conditions are presented and compared with BPM pulse height signals. Calibration and adjustment issues and the connection of the streak camera to the SLC control system are also discussed

  1. Plasmonic Landau damping in active environments

    Science.gov (United States)

    Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.

    2018-03-01

    Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.

  2. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  3. Relativity damps OPEP in nuclear matter

    International Nuclear Information System (INIS)

    Banerjee, M.K.

    1998-06-01

    Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. The author finds that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. He shows that the damping of derivative-coupled OPEP is actually due to the decrease of M * /M with increasing density. He points out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M * it cannot replicate the damping. He suggests an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter

  4. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    Science.gov (United States)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  5. Nonlinear damping based semi-active building isolation system

    Science.gov (United States)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  6. Damping of electron center-of-mass oscillation in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-01-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  7. Quantitative analysis of the thermal damping of coherent axion oscillations

    International Nuclear Information System (INIS)

    Turner, M.S.

    1985-01-01

    Unruh and Wald have recently discussed a new mechanism for damping coherent axion oscillations, ''thermal damping,'' which occurs due to the temperature dependence of the axion mass and neutrino viscosity. We investigate the effect quantitatively and find that the present energy density in axions can be written as rho/sub a/ = rho/sub a0//(1+J/sub UW/), where rho/sub a/0 is what the axion energy density would be in the absence of the thermal-damping effect and J/sub UW/ is an integral whose integrand depends upon (dm/sub a//dT) 2 . As a function of f(equivalentPeccei-Quinn symmetry-breaking scale) J/sub UW/ achieves its maximum value for f/sub PQ/approx. =3 x 10 12 GeV; unless the axion mass turn-on is very sudden, Vertical Bar(T/m/sub a/)(dm/sub a//dT)Vertical Bar>>1, J/sub UW/ is <<1, implying that this damping mechanism is not significant

  8. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  9. Limitations of modal analysis of damped structures

    International Nuclear Information System (INIS)

    Krapf, K.G.; Woelfel, H.

    1983-01-01

    Quite recently discrete spring-damper elements are increasingly used for the low-tuned supports of nuclear power-plant buildings and equipment (reactor building, turbine-fundaments etc.) to reduce the vibration response due to the dynamic load cases earthquake and airplane crash. Because of this development, it is to be investigated whether the usual modal analysis method is applicable within the design process or should be changed respectively replaced in special cases. The paper contributes to this discussion by demonstrating and valuing the discrepancies in the different ways for the implementation of damping. Different methods for uncoupling (energy weighting, reduction to Rayleigh-damping) are compared with the solution of the coupled equations of motion. In particular vertical vibrations of a spring-damper-supported building on foundation (including ground springs) are examined using a two-degree-of-freedom-system. The results of coupled and (by force) uncoupled methods are interpreted concerning free vibration by comparison of the damping of natural vibrations, natural frequencies and natural mode shapes. The effect on the forced vibrations is shown by floor response spectra to an earthquake accelerogram. (orig./HP)

  10. Charged-particle incoherent-motion damping in storage rings by means of dissipative elements

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Khejfets, S.A.

    1979-01-01

    In consecutive order a possibility of damping of beam incoherent oscillations in a storage ring was studied by means of an external dissipative system in a sufficient common case. It is shown, that a useful effect, as for the case of electron cooling, is one-particle effect of particle oscillations damping due to nonconservatism of its interaction with an external system. Each other mutual influence through the external system becomes significant with increasing beam density and results in the limitation to achievable damping decrements

  11. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  12. Damping Ring R&D at CESR-TA

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  13. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Science.gov (United States)

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio

    2013-01-21

    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  14. Landau - Great scientist and teacher

    International Nuclear Information System (INIS)

    1968-01-01

    In 1962 a feeling of deep sadness was experienced by the whole scientific world when it was learned that L.D. Landau, one of the most distinguished physicists and teachers of the USSR, has been seriously injured in a road accident. All the resources of his own country and ready assistance from many others combined to save his life, but early this year the long fight to recover his faculties ended with his death. (author)

  15. Landau levels on a torus

    OpenAIRE

    Enrico OnofriDipartimento di Fisica, Universita` di Parma, and INFN, Gruppo Collegato di Parma, Parma, Italy

    2015-01-01

    Landau levels have represented a very rich field of research, which has gained widespread attention after their application to quantum Hall effect. In a particular gauge, the holomorphic gauge, they give a physical implementation of Bargmann's Hilbert space of entire functions. They have also been recognized as a natural bridge between Feynman's path integral and Geometric Quantization. We discuss here some mathematical subtleties involved in the formulation of the problem when one tries to s...

  16. The Landau-Placzek ratio for multicomponent fluids

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Laidlaw, W.G.

    1972-01-01

    Under the assumption that the coupling between the sound modes and modes associated with heat and mass diffusion can be neglected, an expression for the Landau-Placzek ratio for multicomponent fluids is derived using thermodynamic fluctuation theory. Applications of the general formula to ternary

  17. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...

  18. Damping of cylindrical structures subject to annular flow

    International Nuclear Information System (INIS)

    Hobson, D.E.; Dolding, M.

    1989-01-01

    In previous reports theoretical methods have been described for estimating the aerodynamic forces acting on cylinders vibrating laterally when surrounded by an annulus carrying high velocity gas. For a certain restricted set of geometries it is possible to predict whether a particular structure is stable or unstable and to determine the level of aerodynamic damping positive or negative due to the presence of the gas. This report describes experimental work which validates the computer program in which the theoretical methods are embodied; in particular the damping, inertial and decentralising forces acting on a cylinder in an annulus are measured and compared with theory over a range of frequencies from 0 to 25 Hz, and of Reynolds numbers from zero to 10 4 . In addition a summary of simple relationships is provided which can be used to provide credible initial estimates of both the positive and negative damping of cylinders in a range of annular geometries. (author)

  19. Task-specific recruitment of motor units for vibration damping.

    Science.gov (United States)

    Wakeling, James M; Liphardt, Anna-Maria

    2006-01-01

    Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.

  20. Optimization of SMA layers in composite structures to enhance damping

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  1. Symmetry of Uniaxial Global Landau--de Gennes Minimizers in the Theory of Nematic Liquid Crystals

    KAUST Repository

    Henao, Duvan; Majumdar, Apala

    2012-01-01

    We extend the recent radial symmetry results by Pisante [J. Funct. Anal., 260 (2011), pp. 892-905] and Millot and Pisante [J. Eur. Math. Soc. (JEMS), 12 (2010), pp. 1069- 1096] (who show that the equivariant solutions are the only entire solutions of the three-dimensional Ginzburg-Landau equations in superconductivity theory) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures. Copyright © by SIAM.

  2. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  3. Alpha particle destabilization of the TAE modes

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-01-01

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped α-particles through the wave-particle resonances. For a poloidal harmonic to satisfy the resonance condition it requires that the α-particle birth speed v α ≥ v A /(2|m-nq|), where v A is the Alfven speed, m is the poloidal mode number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the α-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the slowing-down α-particle and the core Maxwellian electron and ion distributions. Stability criteria in terms of the α-particle beta β α , α-particle pressure gradient parameter (ω * /ω A ) (ω * is the α-particle diamagnetic drift frequency), and (v α /v A ) parameters are presented for TFTR, CIT, and ITER tokamaks. The volume averaged α-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged α-particle beta threshold is in the order of 10 -4 if the continuum damping effect is absent. Typical growth rates of the n = 1 TAE mode can be in the order of 10 -2 ω A , where ω A = v A /qR. Stability of higher n TAE modes is also studied. Other types of global Alfven waves are stable due to sideband mode continuum damping resulting from toroidal coupling effects. If the Alfven continuum gap does not exist across the whole minor radius, continuum damping exists for some poloidal harmonics. The continuum damping effect is studied by employing both a resistive MHD stability code (NOVA-R) and an analytical matching method, and the results are presented. 1 ref

  4. Damping in Timber Structures

    OpenAIRE

    Labonnote, Nathalie

    2012-01-01

    Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models h...

  5. Vibration and Damping Analysis of Composite Fiber Reinforced Wind Blade with Viscoelastic Damping Control

    Directory of Open Access Journals (Sweden)

    Tai-Hong Cheng

    2015-01-01

    Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.

  6. Berry phases for Landau Hamiltonians on deformed tori

    Science.gov (United States)

    Lévay, Péter

    1995-06-01

    Parametrized families of Landau Hamiltonians are introduced, where the parameter space is the Teichmüller space (topologically the complex upper half plane) corresponding to deformations of tori. The underlying SO(2,1) symmetry of the families enables an explicit calculation of the Berry phases picked up by the eigenstates when the torus is slowly deformed. It is also shown that apart from these phases that are local in origin, there are global non-Abelian ones too, related to the hidden discrete symmetry group Γϑ (the theta group, which is a subgroup of the modular group) of the families. The induced Riemannian structure on the parameter space is the usual Poincare metric on the upper half plane of constant negative curvature. Due to the discrete symmetry Γϑ the geodesic motion restricted to the fundamental domain of this group is chaotic.

  7. Effect of milling on the damping behavior of nano-structured copper

    Energy Technology Data Exchange (ETDEWEB)

    Srikanth, Narasimalu; Thein, Maung Aye; Gupta, Manoj

    2004-02-05

    In the present study, elemental Cu powder was mechanically milled (MMed) for 10 h to reduce the grain (crystalline) size in the nano-range (<100 nm). The mechanically milled powder (10 h-MMed) and elemental powder without mechanical milling (MM) (0 h-MMed) was consolidated by die-cold compaction and were further hot extruded at different temperatures to maintain a crystallite size within the nano-range. Further, the specimen was tested by a novel free-free type suspended beam arrangement, coupled with circle-fit approach to determine damping characteristics. The characterization results help to understand the effect of the nano-size grains on the overall damping capacity of the bulk samples compared to a normal micro-crystalline sample. Results show that the damping capacity of the nano-grained material increases due to the presence of process induced microstructural changes similar to the damping behavior of a micro-grain sized specimen.

  8. Validity of Miles Equation in Predicting Propellant Slosh Damping in Baffled Tanks at Variable Slosh Amplitude

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2018-01-01

    Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  9. A fast non-Fourier method for Landau-fluid operators

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, California 94511-0808 (United States)

    2014-05-15

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.

  10. Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors

    Science.gov (United States)

    Liarte, Danilo B.; Transtrum, Mark K.; Sethna, James P.

    2016-10-01

    We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ =λ /ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap, we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field are expected for typical unconventional superconductors near the critical temperature. Using a generalized form of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected. We estimate anisotropies for a number of different materials, and discuss the importance of these results for radio-frequency cavities for particle accelerators.

  11. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  12. Anisotropic damping of Timoshenko beam elements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.

    2001-05-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)

  13. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  14. Landau-Zener transitions and Dykhne formula in a simple continuum model

    Science.gov (United States)

    Dunham, Yujin; Garmon, Savannah

    The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.

  15. Validity of the lowest-Landau-level approximation for rotating Bose gases

    International Nuclear Information System (INIS)

    Morris, Alexis G.; Feder, David L.

    2006-01-01

    The energy spectrum for an ultracold rotating Bose gas in a harmonic trap is calculated exactly for small systems, allowing the atoms to occupy several Landau levels. Two vortexlike states and two strongly correlated states (the Pfaffian and Laughlin) are considered in detail. In particular, their critical rotation frequencies and energy gaps are determined as a function of particle number, interaction strength, and the number of Landau levels occupied (up to three). For the vortexlike states, the lowest-Landau-level (LLL) approximation is justified only if the interaction strength decreases with the number of particles; nevertheless, the constant of proportionality increases rapidly with the angular momentum per particle. For the strongly correlated states, however, the interaction strength can increase with particle number without violating the LLL condition. The results suggest that, in large systems, the Pfaffian and Laughlin states might be stabilized at rotation frequencies below the centrifugal limit for sufficiently large interaction strengths, with energy gaps a significant fraction of the trap energy

  16. Dampness in buildings and health. Building characteristics as predictors for dampness in 8681 Swedish dwellings

    DEFF Research Database (Denmark)

    Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan

    2002-01-01

    Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality....

  17. Magnetic oscillations and quasiparticle band structure in the mixed state of type-II superconductors

    International Nuclear Information System (INIS)

    Norman, M.R.; MacDonald, A.H.; Akera, H.

    1995-01-01

    We consider magnetic oscillations due to Landau quantization in the mixed state of type-II superconductors. Our work is based on a previously developed formalism which allows the mean-field gap equations of the Abrikosov state to be conveniently solved in a Landau-level representation. We find that the quasiparticle band structure changes qualitatively when the pairing self-energy becomes comparable to the Landau-level separation. For small pairing self-energies, Landau-level mixing due to the superconducting order is weak and magnetic oscillations survive in the superconducting state although they are damped. We find that the width of the quasiparticle Landau levels in this regime varies approximately as Δ 0 n μ -1/4 where Δ 0 is proportional to the magnitude of the order parameter and n μ is the Landau-level index at the Fermi energy. For larger pairing self-energies, the lowest energy quasiparticle bands occur in pairs which are nearly equally spaced from each other and evolve with weakening magnetic field toward the bound states of an isolated vortex core. These bands have a weak magnetic field dependence and magnetic oscillations vanish rapidly in this regime. We discuss recent observations of the de Haas--van Alphen effect in the mixed state of several type-II superconductors in light of our results

  18. Sound Power Minimization of Circular Plates Through Damping Layer Placement

    Science.gov (United States)

    Wodtke, H.-W.; Lamancusa, J. S.

    1998-09-01

    Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.

  19. Approximation of the modal damping coefficients equivalent to material damping by harmonic excitation with ASKA

    International Nuclear Information System (INIS)

    Edme, R.

    1983-01-01

    If a dynamic response analysis (harmonic excitation) is carried out with the modal method, the modal damping coefficients must be approximated to match the structural damping. The program ASKA-Damping, which also supplies an error assessment of the approximation, was developed for this purpose. The modal method and the direct method are applied to a test example and their results compared. It is suggested that the ASKA manufacturers extend the spectral earthquake response analysis to take these modal damping coefficients into account so that the results become less conservative. (orig.) [de

  20. Landau-Lifshitz sigma-models, fermions and the AdS/CFT correspondence

    OpenAIRE

    Stefanski Jr, B.

    2007-01-01

    We define Landau-Lifshitz sigma models on general coset space $G/H$, with $H$ a maximal stability sub-group of $G$. These are non-relativistic models that have $G$-valued N\\"other charges, local $H$ invariance and are classically integrable. Using this definition, we construct the $PSU(2,2|4)/PS(U(2|2)^2)$ Landau-Lifshitz sigma-model. This sigma model describes the thermodynamic limit of the spin-chain Hamiltonian obtained from the complete one-loop dilatation operator of the N=4 super Yang-M...

  1. Viscosity effect in Landau's hydrodynamical model

    International Nuclear Information System (INIS)

    Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore

    1979-01-01

    The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)

  2. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    International Nuclear Information System (INIS)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo; Martinet, Philippe

    2008-01-01

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  3. Damped least square based genetic algorithm with Gaussian distribution of damping factor for singularity-robust inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Le Minh; Lee, Suk Han; Kim, Hun Mo [Sungkyunkwan University, Suwon (Korea, Republic of); Martinet, Philippe [Blaise Pascal University, Clermont-Ferrand Cedex (France)

    2008-07-15

    Robot inverse kinematics based on Jacobian inversion encounters critical issues of kinematic singularities. In this paper, several techniques based on damped least squares are proposed to lead robot pass through kinematic singularities without excessive joint velocities. Unlike other work in which the same damping factor is used for all singular vectors, this paper proposes a different damping coefficient for each singular vector based on corresponding singular value of the Jacobian. Moreover, a continuous distribution of damping factor following Gaussian function guarantees the continuous in joint velocities. A genetic algorithm is utilized to search for the best maximum damping factor and singular region, which used to require ad hoc searching in other works. As a result, end effector tracking error, which is inherited from damped least squares by introducing damping factors, is minimized. The effectiveness of our approach is compared with other methods in both non-redundant robot and redundant robot

  4. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid

    Science.gov (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2010-04-01

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  5. Investigation of Damping Physics and CFD Tool Validation for Simulation of Baffled Tanks at Variable Slosh Amplitude

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involves the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations were mainly carried out by extensive experiments. A systematical study is needed to understand the damping physics of baffled tanks, to identify the difference between the empirical Miles equation and experimental measurements, and to develop new semi-empirical relations to better represent the real damping physics. The approach of this study is to use Computational Fluid Dynamics (CFD) technology to shed light on the damping mechanisms of a baffled tank. First, a 1-D Navier-Stokes equation representing different length scales and time scales in the baffle damping physics is developed and analyzed. Loci-STREAM-VOF, a well validated CFD solver developed at NASA MSFC, is applied to study the vorticity field around a baffle and around the fluid-gas interface to highlight the dissipation mechanisms at different slosh amplitudes. Previous measurement data is then used to validate the CFD damping results. The study found several critical parameters controlling fluid damping from a baffle: local slosh amplitude to baffle thickness (A/t), surface liquid depth to tank radius (d/R), local slosh amplitude to baffle width (A/W); and non-dimensional slosh frequency. The simulation highlights three significant damping regimes where different mechanisms dominate. The study proves that the previously found discrepancies between Miles equation and experimental measurement are not due to the measurement scatter, but rather due to different damping mechanisms at various slosh amplitudes. The limitations on the use of Miles equation are discussed based on the flow regime.

  6. Under the spell of Landau when theoretical physics was shaping destinies

    CERN Document Server

    2013-01-01

    This invaluable collection of memoirs and reviews on scientific activities of the most prominent theoretical physicists belonging to the Landau School - Landau, Anselm, Gribov, Zeldovich, Kirzhnits, Migdal, Ter-Martirosyan and Larkin - are being published in English for the first time. The main goal is to acquaint readers with the life and work of outstanding Soviet physicists who, to a large extent, shaped theoretical physics in the 1950s - 70s. Many intriguing details have remained unknown beyond the "Iron Curtain" which was dismantled only with the fall of the USSR.

  7. Terahertz imaging of Landau levels in HgTe-based topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Kadykov, Aleksandr M.; Krishtopenko, Sergey S. [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Torres, Jeremie [Institut d' Electronique et des Systèmes (IES), UMR 5214 CNRS–Université de Montpellier, Montpellier (France); Consejo, Christophe; Ruffenach, Sandra; Marcinkiewicz, Michal; But, Dmytro; Teppe, Frederic, E-mail: frederic.teppe@umontpellier.fr [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Knap, Wojciech [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Institute of High Pressure Institute Physics, Polish Academy of Sciences, 01-447 Warsaw (Poland); Morozov, Sergey V.; Gavrilenko, Vladimir I. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, Nikolai N. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Dvoretsky, Sergey A. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, 630090 Novosibirsk (Russian Federation)

    2016-06-27

    We report on sub-terahertz photoconductivity under the magnetic field of a two dimensional topological insulator based on HgTe quantum wells. We perform a detailed visualization of Landau levels by means of photoconductivity measured at different gate voltages. This technique allows one to determine a critical magnetic field, corresponding to topological phase transition from inverted to normal band structure, even in almost gapless samples. The comparison with realistic calculations of Landau levels reveals a smaller role of bulk inversion asymmetry in HgTe quantum wells than it was assumed previously.

  8. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    , which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium......The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...... operator, even for like-particle collisions....

  9. Suggestions for new transverse oscillations damping systems in large synchrotrons and colliders

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Melnikov, V.A.

    1994-01-01

    Due to the high requirements on beam quality, modern synchrotrons and colliders require special systems for transverse oscillation damping (TDS). New system for the correction of injection errors and multibunch instabilities is proposed. The special beam monitor on the basis of the axial-slotted lines is developed for the transverse beam velocity measuring. The special nonlinear regime of damping is suggested to decrease the operating time of TDS. 2 refs., 4 figs., 2 tabs

  10. Ensemble inequivalence: Landau theory and the ABC model

    International Nuclear Information System (INIS)

    Cohen, O; Mukamel, D

    2012-01-01

    It is well known that systems with long-range interactions may exhibit different phase diagrams when studied within two different ensembles. In many of the previously studied examples of ensemble inequivalence, the phase diagrams differ only when the transition in one of the ensembles is first order. By contrast, in a recent study of a generalized ABC model, the canonical and grand-canonical ensembles of the model were shown to differ even when they both exhibit a continuous transition. Here we show that the order of the transition where ensemble inequivalence may occur is related to the symmetry properties of the order parameter associated with the transition. This is done by analyzing the Landau expansion of a generic model with long-range interactions. The conclusions drawn from the generic analysis are demonstrated for the ABC model by explicit calculation of its Landau expansion. (paper)

  11. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  12. Ginzburg-Landau equation as a heuristic model for generating rogue waves

    Science.gov (United States)

    Lechuga, Antonio

    2016-04-01

    Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.

  13. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.

    Science.gov (United States)

    Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin

    2015-11-01

    Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Crumb Rubber Recycling in Enhancing Damping Properties of Concrete

    Science.gov (United States)

    Sugapriya, P.; Ramkrishnan, R.

    2018-02-01

    Damping plays a major role in the design of roadside structures that gets affected due to vibrations transmitted from moving traffic. In this study, fine aggregates were partially replaced with crumb rubber in concrete, at varying percentages of 5, 10, 15 and 20% by weight. Three different sets of concrete, mixed with crumb rubber were prepared using raw rubber, treated rubber and treated rubber with partial replacement of cement. Cement was partially replaced with Ultra-Fine Ground Granulated Blast furnace Slag (UFGGBS) for this study. Samples were cast, cured and tested for various properties on the 7th and 28th day. The damping ratio and frequency of the peak value from a number of waves in rubber incorporated beams were found out using a FFT Analyser along with its Strength, Damping and Sorptivity characteristics. SEM analysis was conducted to analyse the micro structural bonding between rubber and concrete. The mode shapes of pavement slabs were modelled and analysed using a FEM tool, ANSYS. From the results, the behaviour of the three sets of rubberized concrete were compared and analysed, and an optimum percentage for crumb rubber and UFGGBS was proposed to achieve best possible damping without compromising the strength properties.

  15. Improved Landau gauge fixing and discretisation errors

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.

    2000-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition

  16. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  17. Use of riser tube rotation equipment in the Emlichheim and Landau petroleum mines of Wintershall AG Erdoelwerke; Einsatz von Steigrohrdrehvorrichtungen in den Erdoelfoerderbetrieben Emlichheim und Landau der Wintershall AG Erdoelwerke

    Energy Technology Data Exchange (ETDEWEB)

    Caspari, R. [Wintershall AG Erdoelwerke, Emlichheim (Germany)

    1998-12-31

    Riser tube rotation equipment has been in use in the Emlichheim and Landau petroleum wells since 1994 in order to ensure longer life of the riser tubes. (orig.) [Deutsch] In den von Wintershall operierten Erdoelfoerderbetrieben Emlichheim und Landau werden ca. 90% der Bohrungen mit Gestaengetiefpumpen gefoerdert. Aufgrund der lagerstaettentechnischen Gegebenheiten, der Thermalmassnahmen in Emlichheim und der Infrastruktur der Betriebe koennen andere Foerderhilfsmittel wie Tauchkreiselpumpe, Excenterschneckenpumpe oder Gasliften nur bedingt zum Einsatz kommen. Ein wesentlicher Faktor fuer den wirtschaftlichen Betrieb dieser Bohrungen sind die Aufwaeltigungen zur Beseitigung von Schaeden an der Tiefpumpe, dem Pumpgestaenge und den Steigrohren. Waehrend die Einsatzdauer der Tiefpumpen und des Pumpgestaenges durch hoeherwertige Materialguete und geeignete Optimierungsmassnahmen erhoeht werden konnten, sind die Standzeiten der Steigrohre nahezu unveraendert geblieben. Um diese zu erhoehen, werden in den Erdoelfoerderbetrieben Emlichheim und Landau seit April 1994 Steigrohrdrehvorrichtungen eingesetzt. (orig.)

  18. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Directory of Open Access Journals (Sweden)

    H. K. Lee

    2016-05-01

    Full Text Available We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La0.7Sr0.3MnO3 (LSMO and Pt capped LSMO thin films on SrTiO3 (001 substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1 × 10−3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  19. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. K., E-mail: hankl@uci.edu; Barsukov, I.; Yang, L.; Krivorotov, I. N. [Physics and Astronomy, University of California, Irvine, California 92697 (United States); Swartz, A. G.; Kim, B. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hwang, H. Y. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and Pt capped LSMO thin films on SrTiO{sub 3} (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10{sup −3}, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  20. Excited Landau levels, orbital angular momentum and axial anomaly

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    1993-01-01

    The IR cutoff via the exclusion of the high orbital momentum components for the excited Landau levels leads to the physical interpretation of the cancellation between the explicity and anomalous chiral symmetry breaking. 21 refs

  1. Bose-Einstein correlation in Landau's model

    International Nuclear Information System (INIS)

    Hama, Y.; Padula, S.S.

    1986-01-01

    Bose-Einstein correlation is studied by taking an expanding fluid given by Landau's model as the source, where each space-time point is considered as an independent and chaotic emitting center with Planck's spectral distribution. As expected, the correlation depends on the relative angular positions as well as on the overall localization of the measuring system and it turns out that the average dimension of the source increases with the multiplicity N/sub ch/

  2. Current drive in a tokamak reactor during the heating of fast α particles

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Soboleva, T.K.

    1987-01-01

    Expressions are derived for the efficiency of the current drive in the approximation of a straight magnetic field through a solution of the kinetic equation for the distribution function of α particles as they are heated by rf waves. Three mechanisms for the absorption of the rf power in plasma are examined: cyclotron absorption at the fundamental frequency, Landau damping, and magnetic Landau damping. The efficiency of this method is shown to be at worst no lower than the efficiencies of methods involving electron heating

  3. Dyson-Schwinger equations and N = 4 SYM in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel; Zitz, Stefan [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)

    2016-03-15

    N = 4 Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory and the truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore discuss which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory. (orig.)

  4. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  5. Exact results for survival probability in the multistate Landau-Zener model

    International Nuclear Information System (INIS)

    Volkov, M V; Ostrovsky, V N

    2004-01-01

    An exact formula is derived for survival probability in the multistate Landau-Zener model in the special case where the initially populated state corresponds to the extremal (maximum or minimum) slope of a linear diabatic potential curve. The formula was originally guessed by S Brundobler and V Elzer (1993 J. Phys. A: Math. Gen. 26 1211) based on numerical calculations. It is a simple generalization of the expression for the probability of diabatic passage in the famous two-state Landau-Zener model. Our result is obtained via analysis and summation of the entire perturbation theory series

  6. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    Science.gov (United States)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  7. Investigations of a mirror device near the lower hybrid frequency

    International Nuclear Information System (INIS)

    Heinrich, B.

    1977-01-01

    In a plasma of low collision frequency and elevated electron temperature pronounced resonance absorption can be observed in the region near the lower hybrid frequency. The deviations from the results of theoretical models can be explained by additional damping. In the theoretical plasma model where Landau damping, caused by partially axial wave propagation, can be expected, the damping coefficients show the correct order of magnitude. Inhomogeneities in the direction of the magnetic field have no marked influence on the resonance behaviour. The plasma resistivity is determined by radial modes which are essentially dependent on the boundary conditions of the homogeneous plasma column. In the low hf-power regime no dependence on wave amplitude was found, whereas with increasing power additional damping was observed. This is probably due to the onset of parametric and non linear effects. (orig.) [de

  8. Modelling of Dampers and Damping in Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Riess

    2006-01-01

    and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions......, and thereby the damping, of flexible structures are generally described in terms of the dominant vibration modes. A system reduction technique, where the damped vibration mode is constructed as a linear combination of the undamped mode shape and the mode shape obtained by locking the damper, is applied....... This two-component representation leads to a simple solution for the modal damping representing the natural frequency and the associated damping ratio. It appears from numerical examples that this system reduction technique provides very accurate results. % Analytical expressions for the optimal tuning...

  9. Variant of multimodal vibration damping of electroviscoelastic structures by appropriate choice of external electric circuit parameters

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Oshmarin

    2016-09-01

    Full Text Available In technical applications it takes place the problem of vibration damping in certain regions of the structure, at the location of optical sensors for instance, at any external dynamic excitations with no mass increase and no changes in spectral portrait. In order to solve these problems it is widespread the use of special damping devices: piezoelectric elements connected to external electric circuits and attached to the structure. It became possible due to piezoelectric effect, which provides transformation of part of energy of vibrations into electric one, which is dissipated in external electric circuit. So that by using appropriate electric circuits one may dissipate internal energy and therefore reduce structural vibrations in definite frequency range. As a rule, external circuit of single branch, which shunts single piezoelectric element, allows vibration damping on one certain frequency. Due to the fact, that practical applications usually include requirements of damping of several modes by one and the same technical devices, the problem of multimodal vibration damping in smart-structures is rather acute. The objective of this paper is the study of possibility of vibration damping on several modes by using single external series RL-circuit, connected to electrodes of single piezoelectric element on the basis of solution of problems on natural and forced steady-state vibrations of electroelastic systems with external electric circuits.

  10. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  11. Modulational instability of the obliquely modulated ion acoustic waves in a warm ion plasma

    International Nuclear Information System (INIS)

    Saxena, M.K.; Arora, A.K.; Sharma, S.R.

    1981-01-01

    Using KBM. perturbation technique, it is shown that the modulationally unstable domain in the (kappa - phi) plane for the obliquely modulated ion acoustic waves is appreciably modified due to the finite ion temperature. It is also shown that in a collisionless plasma having small TAUsub(i)/TAUsub(e) ( 0 approximately 0.1) may exceed the Landau damping rate provided the modulation is sufficiently oblique. (author)

  12. Estimating the Partition Function Zeros by Using the Wang-Landau Monte Carlo Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Yeon [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    The concept of the partition function zeros is one of the most efficient methods for investigating the phase transitions and the critical phenomena in various physical systems. Estimating the partition function zeros requires information on the density of states Ω(E) as a function of the energy E. Currently, the Wang-Landau Monte Carlo algorithm is one of the best methods for calculating Ω(E). The partition function zeros in the complex temperature plane of the Ising model on an L × L square lattice (L = 10 ∼ 80) with a periodic boundary condition have been estimated by using the Wang-Landau Monte Carlo algorithm. The efficiency of the Wang-Landau Monte Carlo algorithm and the accuracies of the partition function zeros have been evaluated for three different, 5%, 10%, and 20%, flatness criteria for the histogram H(E).

  13. Design of the APS transverse and longitudinal damping system

    International Nuclear Information System (INIS)

    Sellyey, W.; Barr, D.; Kahana, E.; Votaw, A.

    1994-01-01

    The main sources of instabilities in the Advanced Photon Source (APS) storage ring are expected to be higher-order modes (HOMs) of the accelerating cavities and the resistive wall impedance of the small insertion devices beam tubes. Extensive efforts are being made to reduce the Qs of HOMs. The maximum operating current of the ring will be 300 mA. At this current, analysis of measurements on cavity prototypes shows that the transverse growth rates will be less than 500/sec above radiation damping. The longitudinal growth rate due to HOMs is predicted to never exceed the radiation damping of 213/sec. The largest transverse resistive wall growth rate is calculated to be 2720/sec when 54 evenly spaced rigid bunches are used to produce 300 mA. There will be 26 additional unstable modes. The sum of these growth rates is 17,163/sec. Thus, it is clear that an effective transverse damping system will be needed and that the strength of this damper will be dominated by the resistive wall modes. A longitudinal damper system will also be built. This will provide damping about 2/3 times that due to synchrotron radiation. The most serious disturbances which can initiate instabilities will take place at injection. Typically, each bunch in the ring will be accumulated by injecting 115 of the final charge five times. A standard mode of operation is used in this paper in which there will be 54 evenly spaced bunches around the ring. During the ring filling process, the highest growth rates will occur when the last fifth of a bunch is injected into the last bunch. The largest expected vertical excursion of 1/5 of a bunch is about 5 mm. Anything larger will cause the bunch to scrape in the insertion device sections

  14. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  15. On translational superfluidity and the Landau criterion for Bose gases in the Gross-Pitaevski limit

    International Nuclear Information System (INIS)

    Wreszinski, Walter F

    2008-01-01

    The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau's criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent. (fast track communication)

  16. A statistical characterization method for damping material properties and its application to structural-acoustic system design

    International Nuclear Information System (INIS)

    Jung, Byung C.; Lee, Doo Ho; Youn, Byeng D.; Lee, Soo Bum

    2011-01-01

    The performance of surface damping treatments may vary once the surface is exposed to a wide range of temperatures, because the performance of viscoelastic damping material is highly dependent on operational temperature. In addition, experimental data for dynamic responses of viscoelastic material are inherently random, which makes it difficult to design a robust damping layout. In this paper a statistical modeling procedure with a statistical calibration method is suggested for the variability characterization of viscoelastic damping material in constrained-layer damping structures. First, the viscoelastic material property is decomposed into two sources: (I) a random complex modulus due to operational temperature variability, and (II) experimental/model errors in the complex modulus. Next, the variability in the damping material property is obtained using the statistical calibration method by solving an unconstrained optimization problem with a likelihood function metric. Two case studies are considered to show the influence of the material variability on the acoustic performances in the structural-acoustic systems. It is shown that the variability of the damping material is propagated to that of the acoustic performances in the systems. Finally, robust and reliable damping layout designs of the two case studies are obtained through the reliability-based design optimization (RBDO) amidst severe variability in operational temperature and the damping material

  17. Exact solutions of generalized Zakharov and Ginzburg-Landau equations

    International Nuclear Information System (INIS)

    Zhang Jinliang; Wang Mingliang; Gao Kequan

    2007-01-01

    By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)

  18. Topology Optimization of Constrained Layer Damping on Plates Using Method of Moving Asymptote (MMA Approach

    Directory of Open Access Journals (Sweden)

    Zheng Ling

    2011-01-01

    Full Text Available Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an

  19. Evaluation of Nanomaterial Approaches to Damping in Epoxy Resin and Carbon Fiber/Epoxy Composite Structures by Dynamic Mechanical Analysis

    Science.gov (United States)

    Miller, G.; Heimann, Paula J.; Scheiman, Daniel A.; Duffy, Kirsten P.; Johnston, J. Chris; Roberts, Gary D.

    2013-01-01

    Vibration mitigation in composite structures has been demonstrated through widely varying methods which include both active and passive damping. Recently, nanomaterials have been investigated as a viable approach to composite vibration damping due to the large surface available to generate energy dissipation through friction. This work evaluates the influence of dispersed nanoparticles on the damping ratio of an epoxy matrix. Limited benefit was observed through dispersion methods, however nanoparticle application as a coating resulting in up to a three-fold increase in damping.

  20. Simplified analytical methods and experimental correlations of damping in piping during dynamic high-level inelastic response

    International Nuclear Information System (INIS)

    Severud, L.K.

    1987-01-01

    Simplified methods for predicting equivalent viscous damping are used to assess damping contributions due to piping inelastic plastic hinge action and support snubbers. These increments are compared to experimental findings from shake and snap-back tests of several pipe systems. Good correlations were found confirming the usefulness of the simplified methods

  1. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems

    International Nuclear Information System (INIS)

    Smith, Peter M; Kennett, Malcolm P

    2012-01-01

    Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role. (paper)

  2. Damped button electrode for B-Factory BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T; Akasaka, N; Obina, T; Chin, Y H [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    A new concept of damping of resonances in a button electrode has been proposed and tested in the BPM system for the B-Factory project at KEK (KEKB). Since a very high current beam has to be stored in the machine, even a small resonance in the ring will result in losing a beam due to multi-bunch instabilities. In a conventional button electrode used in BPMs, a TE110 mode resonance can be trapped in the gap between the electrode and the vacuum chamber. In order to damp this mode, the diameter of the electrode has been chosen to be small to increase the resonance frequency and to radiate the power into the beam pipe. In addition, an asymmetric structure is applied to extract the EM energy of the TE110 mode into the coaxial cable as the propagating TEM mode which has no cut-off frequency. Results of the computer simulations and tests with cold models are reported. The quality factor of the TE110 mode was small enough due to the radiation into the beam pipe even in the conventional electrode and the mode coupling effect due to the asymmetric shape was significant on a cavity-like TE111 mode. (author)

  3. Verifying the Kugo-Ojima Confinement Criterion in Landau Gauge Yang-Mills Theory

    International Nuclear Information System (INIS)

    Watson, Peter; Alkofer, Reinhard

    2001-01-01

    Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory

  4. Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Science.gov (United States)

    Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan

    2017-12-01

    Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.

  5. Stimulated Raman scattering in the presence of filamentation in underdense plasmas

    International Nuclear Information System (INIS)

    Barr, H.C.; Boyd, T.J.M.; Coutts, G.A.

    1986-01-01

    A model of stimulated Raman scattering from underdense plasmas in which the laser intensity profile and plasma density have been corrupted by the filamentation instability is described. The model accounts in a unified way for inhomogeneity in the density, for Landau damping, and for local enhancements in lightwave intensities. In shallow filaments the concentration of the light gives rise to modest increases in growth. On the other hand, for deeper filaments the inhomogeneity and Landau damping dominate to suppress the instability. In addition, backscatter is enhanced relative to sidescatter

  6. Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism

    Science.gov (United States)

    Ramos, J. J.; White, R. L.

    2018-03-01

    The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.

  7. Temperature effects on MIPs in the BGO calorimeters of DAMPE

    Science.gov (United States)

    Wang, Yuan-Peng; Wen, Si-Cheng; Jiang, Wei; Yue, Chuan; Zhang, Zhi-Yong; Wei, Yi-Feng; Zhang, YunLong; Zang, Jing-Jing; Wu, Jian

    2017-10-01

    In this paper, we present a study of temperature effects on BGO calorimeters using proton MIPs collected in the first year of operation of DAMPE. By directly comparing MIP calibration constants used by the DAMPE data production pipe line, we find an experimental relation between the temperature and signal amplitudes of each BGO bar: a general deviation of -1.162%/°C, and -0.47%/°C to -1.60%/°C statistically for each detector element. During 2016, DAMPE’s temperature changed by ˜8°C due to solar elevation angle, and the corresponding energy scale bias is about 9%. By frequent MIP calibration operation, this kind of bias is eliminated to an acceptable value. This work was supported by National Key Program for Research and Development (No. 2016YFA0400200) and by NSFC (11303105, 11673021). The DAMPE mission was funded by the strategic priority science and technology projects in space science of the Chinese Academy of Sciences (No. XDA04040000 and No. XDA04040400)

  8. Spider-silk-like shape memory polymer fiber for vibration damping

    International Nuclear Information System (INIS)

    Yang, Qianxi; Li, Guoqiang

    2014-01-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2–0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276–289 MJ m −3 versus 160 MJ m −3 ), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10–0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures. (paper)

  9. Structural damping results from vibration tests of straight piping sections

    International Nuclear Information System (INIS)

    Ware, A.G.; Thinnes, G.L.

    1984-01-01

    EG and G Idaho is assisting the USNRC and the Pressure Vessel Research Committee in supporting a final position on revised damping values for structural analyses of nuclear piping systems. As part of this program, a series of vibrational tests on 76-mm and 203-mm (3-in. amd 8-in.) Schedule 40 carbon steel piping was conducted to determine the changes in structural damping due to various parametric effects. The 10-m (33-ft) straight sections of piping were rigidly supported at the ends. Spring, rod, and constant force hangers, as well as a sway brace and snubbers were included as intermediate supports. Excitation was provided by low-force level hammer inpacts, a hydraulic shaker, and a 445-kN (50-ton) overhead crane. Data was recorded using acceleration, strain, and displacement time histories. This paper presents results from the testing showing the effect of stress level and type of supports on structural damping in piping

  10. Drift of Spiral Waves in Complex Ginzburg-Landau Equation

    International Nuclear Information System (INIS)

    Yang Junzhong; Zhang Mei

    2006-01-01

    The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.

  11. Magneto-transport in the zero-energy Landau level of single-layer and bilayer graphene

    International Nuclear Information System (INIS)

    Zeitler, U; Giesbers, A J M; Elferen, H J van; Kurganova, E V; McCollam, A; Maan, J C

    2011-01-01

    We present recent low-temperature magnetotransport experiments on single-layer and bilayer graphene in high magnetic field up to 33 T. In single layer graphene the fourfold degeneracy of the zero-energy Landau level is lifted by a gap opening at filling factor ν = 0. In bilayer graphene, we observe a partial lifting of the degeneracy of the eightfold degenerate zero-energy Landau level.

  12. Analysis of different responses of ion and electron in six-field two-fluid ELM simulations

    Science.gov (United States)

    Ma, Chenhao; Xu, Xueqiao

    2013-10-01

    We report simulation results of a Landau-Fluid (GLF) extension of the BOUT++ six-field two-fluid Braginskii model which contributes to increasing the physics understanding of ELMs. Landau-Fluid closure can fill the gap for parallel dynamics between hot, collisionless pedestal region and cold, collisional SOL region in H-mode plasmas. Our goal is extending the classical parallel heat flux with Landau-Fluid closures and making comparisons with other closure models. Our simulations show that for weakly collisional pedestal plasmas, the calculated growth rate with Landau-Fluid closure introduces more effective damping on the peeling-ballooning modes than that with the classical thermal diffusivity. Further nonlinear simulation shows that ELM size with Landau-Fluid Closure is smaller than that with classical thermal diffusivity. We find an ELM crash has two phases: fast initial crash of ion temperature perturbation on the Alfven time scale and slow turbulence spreading. Turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region which is due to a positive phase shift around π / 2 between electron temperature and potential on pedestal region while ion temperature is in-phase with potential. This work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344 and also supported by the China Scholarship Committee under contract N0.2011601099.

  13. Irreducible diagrams in Landau-Ginzburg field theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Jr, T A [Michigan Univ., Ann Arbor (USA). Dept. of Psychology

    1981-10-19

    It is shown that the free energy W of a Landau-Ginzburg-Wilson field theory with O(n) symmetry may be written in terms of the generating function V of diagrams irreducible in both propagator and interaction lines. This generalizes and simplifies a recent result of Des Cloizeaux. The functions W and V are related by a type of Legendre transformation on the bare mass variable.

  14. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  15. Identification of Damping from Structural Vibrations

    DEFF Research Database (Denmark)

    Bajric, Anela

    Reliable predictions of the dynamic loads and the lifetime of structures are influenced by the limited accuracy concerning the level of structural damping. The mechanisms of damping cannot be derived analytically from first principles, and in the design of structures the damping is therefore based...... on experience or estimated from measurements. This thesis consists of an extended summary and three papers which focus on enhanced methods for identification of damping from random struc-tural vibrations. The developed methods are validated by stochastic simulations, experimental data and full-scale measurements...... which are representative of the vibrations in small and large-scale structures. The first part of the thesis presents an automated procedure which is suitable for estimation of the natural frequencies and the modal damping ratios from random response of structures. The method can be incorporated within...

  16. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism

    Science.gov (United States)

    Wang, Zhihao; Chen, Zhengqing; Wang, Jianhui

    2012-09-01

    Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.

  17. Enhanced damping for bridge cables using a self-sensing MR damper

    Science.gov (United States)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  18. Effect of substitutional defects on Kambersky damping in L1{sub 0} magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Qu, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Victora, R. H., E-mail: victora@umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-02-16

    Kambersky damping, representing the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction, is calculated for L1{sub 0} FePt, FePd, CoPt, and CoPd alloys versus chemical degree of order. When more substitutional defects exist in the alloys, damping is predicted to increase due to the increase of the spin-flip channels allowed by the broken symmetry. It is demonstrated that this corresponds to an enhanced density of states (DOS) at the Fermi level, owing to the rounding of the DOS with loss of long-range order. Both the damping and the DOS of the Co-based alloy are found to be less affected by the disorder. Pd-based alloys are predicted to have lower damping than Pt-based alloys, making them more suitable for high density spintronic applications.

  19. Magnetization damping in two-component metal oxide micropowder and nanopowder compacts by broadband ferromagnetic resonance measurements

    Science.gov (United States)

    Youssef, Jamal Ben; Brosseau, Christian

    2006-12-01

    anisotropy contribution to the anisotropy of Fe2O3 nanoparticles. From these measurements, the characteristic intrinsic damping dependent on the selected material and the damping due to surface/interface effects and interparticle interaction were estimated. The inhomogeneous linewidth (damping) due to surface/interface effects decreases with diminishing particle size, whereas the homogeneous linewidth (damping) due to interactions increases with increasing volume fraction of magnetic particles (i.e., reducing the separation between neighboring magnetic phases) in the composite.

  20. On the Ginzburg-Landau critical field in three dimensions

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2009-01-01

    We study the three-dimensional Ginzburg-Landau model of superconductivity. Several natural definitions of the (third) critical field, HC3, governing the transition from the superconducting state to the normal state, are considered. We analyze the relation between these fields and give conditions ...

  1. Three-body interactions and the Landau levels using Nikiforov

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given.

  2. Performance analysis of conventional PSS and fuzzy controller for damping power system oscillations

    OpenAIRE

    Banna, Hasan UI; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro; Cabrera Tobar, Ana; Ghorbani, Hamidreza; Ying, Shaoqing

    2014-01-01

    Electro-mechanical oscillations are produced, in the machines of an interconnected power network, followed by a disturbance or due to high power transfer through weak tie lines. These oscillations should be damped as quickly as possible to ensure the reliable and stable operation of the network. To damp these oscillations different controllers, based on local or wide area signals, have been the subject of many papers. This paper presents the analysis of the performance of Conventional Power S...

  3. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  4. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    Science.gov (United States)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  5. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    International Nuclear Information System (INIS)

    Rivera, R.; Villarroel, D.

    2002-01-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics

  6. Avoidance of a Landau pole by flat contributions in QED

    Energy Technology Data Exchange (ETDEWEB)

    Klaczynski, Lutz, E-mail: lutz.klaczynski@gmx.de [Department of Physics, Humboldt University Berlin, 12489 Berlin (Germany); Kreimer, Dirk, E-mail: kreimer@mathematik.hu-berlin.de [Alexander von Humboldt Chair in Mathematical Physics, Humboldt University, Berlin 12489 (Germany)

    2014-05-15

    We consider massless Quantum Electrodynamics in the momentum scheme and carry forward an approach based on Dyson–Schwinger equations to approximate both the β-function and the renormalized photon self-energy (Yeats, 2011). Starting from the Callan–Symanzik equation, we derive a renormalization group (RG) recursion identity which implies a non-linear ODE for the anomalous dimension and extract a sufficient but not necessary criterion for the existence of a Landau pole. This criterion implies a necessary condition for QED to have no such pole. Solving the differential equation exactly for a toy model case, we integrate the corresponding RG equation for the running coupling and find that even though the β-function entails a Landau pole it exhibits a flat contribution capable of decreasing its growth, in other cases possibly to the extent that such a pole is avoided altogether. Finally, by applying the recursion identity, we compute the photon propagator and investigate the effect of flat contributions on both spacelike and timelike photons. -- Highlights: •We present an approach to approximate both the β-function and the photon self-energy. •We find a sufficient criterion for the self-energy to entail the existence of a Landau pole. •We study non-perturbative ‘flat’ contributions that emerge within the context of our approach. •We discuss a toy model and how it is affected by flat contributions.

  7. Raise and collapse of pseudo Landau levels in graphene

    Science.gov (United States)

    Castro, Eduardo V.; Cazalilla, Miguel A.; Vozmediano, María A. H.

    2017-12-01

    Lattice deformations couple to the low-energy electronic excitations of graphene as vector fields similar to the electromagnetic potential. The observation of strain-induced pseudo Landau levels with scanning tunnel microscopy experiments has been one of the most exciting events in the history of graphene. Nevertheless, the experimental observation presents some ambiguities. Similar strain patterns show different images that are sometimes difficult to interpret. In this Rapid Communication, we show that, for some strain configurations, the deformation potential acts as a parallel electric field able to destabilize the Landau level structure via a mechanism identical to that occurring for real electromagnetic fields. This effect also alters the estimations of the value of the pseudomagnetic field, which can be significantly bigger. The mechanism applies equally if the electric field has an external origin, which opens the door to an electric control of giant pseudomagnetic fields in graphene.

  8. Coherent Synchrotron Radiation effect in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T

    2004-01-01

    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter K. The primary consideration is a low frequency microwave-like instability in the damping rings of several linear collider projects. The threshold is determined by the instability with the longest possible wavelength

  9. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  10. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  11. Effects of Active Sting Damping on Common Research Model Data Quality

    Science.gov (United States)

    Acheson, Michael J.; Balakrishna, S.

    2011-01-01

    Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system.

  12. General oscillation damping analysis of the L-C filter circuit in the high-power rectifying power supply

    International Nuclear Information System (INIS)

    Xu Weihua; Chen Yonghao; Wu Junshuan; Kuang Guangli

    1998-06-01

    Rectifier circuit is the most popular converter. For the ripple demand of high-power load, the L-C filter with invert 'L' type has been used universally. Due to the influence of the second-order link, damped oscillation will occur with proper condition while the circuit state is changed. The ideal cascade damping condition and the parallel one can be obtained easily. Generally, the damping condition of the step response of the L-C filter circuit is induced, and the discussion is given

  13. A review of experimental soil-structure interaction damping

    International Nuclear Information System (INIS)

    Tsai, N.C.

    1981-01-01

    In soil-structure interaction analysis, the foundation soil is usually represented by impedance springs and dampers. The impedance damping includes the effect of both the material damping and the radiation damping. Because the impedance theory normally assumes a rigid structural base and an elastic bond between the soil and structure, it is generally held that the radiation damping has been overestimated by the theory. There are some published information on the dynamic tests of footings and structures that allow direct or indirect assessments of the validity of the analytical radiation damping. An overview of such information is presented here. Based on these limited test data, it is concluded that for horizontal soil-structure interaction analysis the analytical radiation damping alone is sufficient to represent the combined material and radiation damping in the field. On the other hand, for vertical analysis it appears that the theory may have overestimated the radiation damping and certain reduction is recommended. (orig.)

  14. Landau-Zener-Stueckelberg interferometry with low- and high-frequency driving

    Science.gov (United States)

    Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco

    2010-03-01

    The problem of a periodically driven two-level system cannot be solved exactly. The rotating-wave approximation (RWA) is the most common approximation used to analyze this problem. I will discuss an alternative approximation that applies in the case of very strong driving, where the RWA is generally invalid. The dynamics is approximated by a sequence of Landau-Zener transitions that can interfere constructively or destructively, depending on the Stueckelberg phase accumulated between transitions. It turns out that the resonance conditions are qualitatively different for the cases of low- and high-frequency driving. I will discuss the two respective limits. I will also show that our theoretical results describe recent experiments on Landau-Zener-Stuckelberg interferometry with superconducting qubits [S.N. Shevchenko, S. Ashhab, and F. Nori, arXiv:0911.1917].

  15. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term...... of the differential equation is allowed to be considerable compared to the linear term. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical solution is compared to the numerical solution, and the agreement is found to be very good....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  16. Chatter reduction in boring process by using piezoelectric shunt damping with experimental verification

    Science.gov (United States)

    Yigit, Ufuk; Cigeroglu, Ender; Budak, Erhan

    2017-09-01

    Chatter is a self-excited type of vibration that develops during machining due to process-structure dynamic interactions resulting in modulated chip thickness. Chatter is an important problem as it results in poor surface quality, reduced productivity and tool life. The stability of a cutting process is strongly influenced by the frequency response function (FRF) at the cutting point. In this study, the effect of piezoelectric shunt damping on chatter vibrations in a boring process is studied. In piezoelectric shunt damping method, an electrical impedance is connected to a piezoelectric transducer which is bonded on cutting tool. Electrical impedance of the circuit consisting of piezoceramic transducer and passive shunt is tuned to the desired natural frequency of the cutting tool in order to maximize damping. The optimum damping is achieved in analytical and finite element models (FEM) by using a genetic algorithm focusing on the real part of the tool point FRF rather than the amplitude. Later, a practical boring bar is considered where the optimum circuit parameters are obtained by the FEM. Afterwards, the effect of the optimized piezoelectric shunt damping on the dynamic rigidity and absolute stability limit of the cutting process are investigated experimentally by modal analysis and cutting tests. It is both theoretically and experimentally shown that application of piezoelectric shunt damping results in a significant increase in the absolute stability limit in boring operations.

  17. Using Field-Particle Correlations to Diagnose the Collisionless Damping of Plasma Turbulence

    Science.gov (United States)

    Howes, Gregory; Klein, Kristropher

    2016-10-01

    Plasma turbulence occurs ubiquitously throughout the heliosphere, yet our understanding of how turbulence governs energy transport and plasma heating remains incomplete, constituting a grand challenge problem in heliophysics. In weakly collisional heliospheric plasmas, such as the solar corona and solar wind, damping of the turbulent fluctuations occurs due to collisionless interactions between the electromagnetic fields and the individual plasma particles. A particular challenge in diagnosing this energy transfer is that spacecraft measurements are typically limited to a single point in space. Here we present an innovative field-particle correlation technique that can be used with single-point measurements to estimate the energization of the plasma particles due to the damping of the electromagnetic fields, providing vital new information about this how energy transfer is distributed as a function of particle velocity. This technique has the promise to transform our ability to diagnose the kinetic plasma physical mechanisms responsible for not only the damping of turbulence, but also the energy conversion in both collisionless magnetic reconnection and particle acceleration. The work has been supported by NSF CAREER Award AGS-1054061, NSF AGS-1331355, and DOE DE-SC0014599.

  18. Chiral algebras in Landau-Ginzburg models

    Science.gov (United States)

    Dedushenko, Mykola

    2018-03-01

    Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

  19. Swing damped movement of suspended objects

    International Nuclear Information System (INIS)

    Jones, J.F.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of large objects such as nuclear waste shipping casks using overhead cranes can induce pendular motion of the object. Residual oscillation from transportation typically must be damped or allowed to decay before the next process can take place. By properly programming the acceleration of the transporting device (e.g., crane) an oscillation damped transport and swing free stop are obtainable. This report reviews the theory associated with formulating such oscillation damped trajectories for a simply suspended object (e.g., simple pendulum). In addition, the use of force servo damping to eliminate initial oscillation of simply suspended objects is discussed. This is often needed to provide a well defined initial state for the system prior to executing an oscillation damped move. Also included are descriptions of experiments using a CIMCORP XR6100 gantry robot and results from these experiments. Finally, sources of error resulting in small residual oscillations are identified and possible solutions presented

  20. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    Science.gov (United States)

    Moran, Joaquin E.

    An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The model tube bundle had 10 cantilevered tubes in a parallel-triangular configuration, with a pitch ratio of 1.49. The two-phase flow loop used in this research utilized Refrigerant 11 as the working fluid, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of void fraction, density and velocity predictions. Three different damping measurement methodologies were implemented and compared in order to obtain a more reliable damping estimate. The methods were the traditionally used half-power bandwidth, the logarithmic decrement and an exponential fitting to the tube decay response. The decay trace was obtained by "plucking" the monitored tube from outside the test section using a novel technique, in which a pair of electromagnets changed their polarity at the natural frequency of the tube to produce resonance. The experiments showed that the half-power bandwidth produces higher damping values than the other two methods. The primary difference between the methods is caused by tube frequency shifting, triggered by fluctuations in the added mass and coupling between the tubes, which depend on void fraction and flow regime. The exponential fitting proved to be the more consistent and reliable approach to estimating damping. In order to examine the relationship between the damping ratio and mass flux, the former was plotted as a function of void fraction and pitch mass flux in an iso-contour plot. The results showed that damping is not independent of mass

  1. The influence of microseismic perturbations on a cold damped electrometer

    NARCIS (Netherlands)

    Milatz, J.M.W.; Wapstra, A.H.

    1953-01-01

    It is proved that the excess fluctuation of an electrometer above the electrical and mechanical Brownian movements found in a former investigation was due to microseismic movements of the soil. A theory is developed of the influence of mechanical perturbations on a cold damped 1) electrometer. This

  2. A review of damping of two-phase flows

    International Nuclear Information System (INIS)

    Hara, Fumio

    1993-01-01

    Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms

  3. Damping Wiggler Study at KEK-ATF

    CERN Document Server

    Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.

  4. Explosions in Landau Vlasov dynamics

    International Nuclear Information System (INIS)

    Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.

    1988-01-01

    A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed

  5. Influence of dynamic dislocation drag on amplitude dependences of damping decrement and modulus defect in lead

    International Nuclear Information System (INIS)

    Soifer, Y.M.; Golosovskii, M.A.; Kobelev, N.P.

    1981-01-01

    A study was made of the amplitude dependences of the damping decrement and the modulus defect in lead at low temperatures at frequencies of 100 kHz and 5 MHz. It was shown that in pure lead at high frequencies a change in the amplitude dependences of the damping decrement and the modulus defect under the superconducting transition is due mainly to the change in the losses caused by the dynamic drag of dislocations whereas in measurements at low frequencies the influence of the superconducting transition is due to the change in the conditions of dislocation unpinning from point defects. The influence of the dynamic dislocation drag on the amplitude dependences of the damping decrement and the modulus defect is calculated and a method is presented for experimental estimation of the contribution of dynamic effects to the amplitude-dependent internal friction

  6. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  7. Damping Estimation of Friction Systems in Random Vibrations

    DEFF Research Database (Denmark)

    Friis, Tobias; Katsanos, Evangelos; Amador, Sandro

    Friction is one of the most efficient and economical mechanisms to reduce vibrations in structural mechanics. However, the estimation of the equivalent linear damping of the friction damped systems in experimental modal analysis and operational modal analysis can be adversely affected by several...... assumptions regarding the definition of the linear damping and the identification methods or may be lacking a meaningful interpretation of the damping. Along these lines, this project focuses on assessing the potential to estimate efficiently the equivalent linear damping of friction systems in random...

  8. Emittance damping considerations for TESLA

    International Nuclear Information System (INIS)

    Floettmann, K.; Rossbach, J.

    1993-03-01

    Two schemes are considered to avoid very large damping rings for TESLA. The first (by K.F.) makes use of the linac tunnel to accomodate most of the damping 'ring' structure, which is, in fact, not a ring any more but a long linear structure with two small bends at each of its ends ('dog-bone'). The other scheme (by J.R.) is based on a positron (or electron, respectively) recycling scheme. It makes use of the specific TESLA property, that the full bunch train is much longer (240 km) than the linac length. The spent beams are recycled seven times after interaction, thus reducing the number of bunches to be stored in the damping ring by a factor of eight. Ultimately, this scheme can be used to operate TESLA in a storage ring mode ('storage linac'), with no damping ring at all. Finally, a combination of both schemes is considered. (orig.)

  9. Thermal Degradation and Damping Characteristic of UV Irradiated Biopolymer

    Directory of Open Access Journals (Sweden)

    Anika Zafiah M. Rus

    2015-01-01

    Full Text Available Biopolymer made from renewable material is one of the most important groups of polymer because of its versatility in application. In this study, biopolymers based on waste vegetable oil were synthesized and cross-link with commercial polymethane polyphenyl isocyanate (known as BF. The BF was compressed by using hot compression moulding technique at 90°C based on the evaporation of volatile matter, known as compress biopolymer (CB. Treatment with titanium dioxide (TiO2 was found to affect the physical property of compressed biopolymer composite (CBC. The characterization of thermal degradation, activation energy, morphology structure, density, vibration, and damping of CB were determined after UV irradiation exposure. This is to evaluate the photo- and thermal stability of the treated CB or CBC. The vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness, and percentages of TiO2 loading at the frequency range of 15–25 Hz due to the potential of the sample to dissipate energy during the oscillation harmonic system. The damping property of CBC was improved markedly upon prolonged exposure to UV irradiation.

  10. Analysis of enhanced modal damping ratio in porous materials using an acoustic-structure interaction model

    DEFF Research Database (Denmark)

    Kook, Junghwan; Jensen, Jakob Søndergaard

    2014-01-01

    The aim of this paper is to investigate the enhancement of the damping ratio of a structure with embedded microbeam resonators in air-filled internal cavities. In this context, we discuss theoretical aspects in the framework of the effective modal damping ratio (MDR) and derive an approximate...... relation expressing how an increased damping due to the acoustic medium surrounding the microbeam affect the MDR of the macrobeam. We further analyze the effect of including dissipation of the acoustic medium by using finite element (FE) analysis with acoustic-structure interaction (ASI) using a simple...... phenomenological acoustic loss model. An eigenvalue analysis is carried out to demonstrate the improvement of the damping characteristic of the macrobeam with the resonating microbeam in the lossy air and the results are compared to a forced vibration analysis for a macrobeam with one or multiple embedded...

  11. Analysis and application of microwave radiation from the damping manifolds of the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Seidel, M.; Miller, R.H.

    1997-05-01

    The power spectrum emerging from the damping manifolds of a DDS provides valuable quasi-local information on the displacement of a drive beam from the axis of individual cells, where the displacement may be due to beam offset, small cell misalignment, or a combination of the two. The degree of localization and the indexing of frequency to cell number is determined directly from the spectral function theory. Examples for specific DDS designs will be presented. These relations can be used to determine geometrical misalignment patterns

  12. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  13. Superelastic behavior and damping capacity of CuAlBe alloys

    International Nuclear Information System (INIS)

    Montecinos, Susana; Moroni, Maria Ofelia; Sepulveda, Aquiles

    2006-01-01

    Shape memory alloys (SMAs) showing the superelastic effect, dissipate energy through hysteretic cycles up to large strain amplitudes, without remnant strains after unloading. This effect is associated with a reversible stress-induced martensitic transformation. In this paper, the behavior of copper-based SMAs is examined, with the perspective of potential applications in seismic-energy dissipative devices. In particular, two different compositions of CuAlBe are characterized using chemical analysis, differential scanning calorimetry (DSC), light and scanning electron microscopy and X-rays diffraction. Mechanical and hysteretic damping properties are determined from cyclic tensile and tension-compression tests, for different strain amplitudes and frequencies. Both alloys show superelastic behavior, although hysteresis loops differ, due to differences in the composition and transformation phase temperatures. Equivalent damping up to 5% was obtained for the largest strain imposed. Frequency, in the range of interest for seismic applications, had a small influence on the damping values. It is concluded that alloy Cu-11.8 wt.% Al-0.5 wt.% Be best exhibited properties for the application intended

  14. Thermodynamic properties of and Nuclei using modified Ginzburg-Landau theory

    Directory of Open Access Journals (Sweden)

    V Dehghani

    2016-09-01

    Full Text Available In this paper, formulation of Modified Ginsberg – Landau theory of second grade phase transitions has been expressed. Using this theory, termodynamic properties, such as heat capacity, energy, entropy and order parameters ofandnuclei has been investigated. In the heat capacity curve, calculated according to tempreture, a smooth peak is observed which is assumed to be a signature of transition from the paired phase to the normal phase of the nuclei. The same pattern is also observed in the experimental data of the heat capacity of the studied nuclei. Calculations of this model shows that, by increasing tempreture, expectation value of the order parameter tends to zero with smoother slip, comparing with Ginsberg – Landau theory. This indicates  that the pairing effect exists between nucleons even at high temperatures. The experimental data obtained confirms the results of the model qualitatively.

  15. Fractional charge and inter-Landau-level states at points of singular curvature.

    Science.gov (United States)

    Biswas, Rudro R; Son, Dam Thanh

    2016-08-02

    The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.

  16. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu; Miron, Ioan Mihai; Gaudin, Gilles; Manchon, Aurelien

    2016-01-01

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  17. Phenomenology of chiral damping in noncentrosymmetric magnets

    KAUST Repository

    Akosa, Collins Ashu

    2016-06-21

    A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.

  18. Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes

    DEFF Research Database (Denmark)

    Holst, G; Høst, A; Doekes, G

    2016-01-01

    was identified based on technical inspection and bedroom dampness on parents' self-report. Classroom and bedroom dust was analysed for seven microbial components. Skin-prick-testing determined atopic sensitisation. Lung function was expressed as z-scores for forced expiratory volume in one second (zFEV1...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0...... (ETS) decreased zFEV1 (β-coef. -0.22; 95%CI -0.42- -0.02) and zFEV1 /zFVC-ratio (β-coef. -0.26; 95%CI -0.44 - -0.07) and increased upper airway symptoms (OR1.66; 95%CI 1.03-2.66). In conclusion, dampness in classrooms may have adverse respiratory health effects in pupils, but microbial agents...

  19. Magnon damping in two-dimensional Heisenberg ferromagnetic system

    International Nuclear Information System (INIS)

    Cheng, T.-M.; Li Lin; Ze Xianyu

    2006-01-01

    A magnon-phonon interaction model is set up for a two-dimensional insulating ferromagnetic system. By using Matsubara function theory we have studied the magnon damping -I m Σ* (1) (k->) and calculated the magnon damping -I m Σ* (1) (k->) curve on the main symmetric point and line in the Brillouin zone for various parameters in the system. It is concluded that at the boundary of Brillouin zone there is a strong magnon damping. However, the magnon damping is very weak on the zone of small wave vector and the magnon damping reaches maximal value at very low temperature. The contributions of longitudinal phonon and transverse phonon on the magnon damping are compared and the influences of various parameters are also discussed

  20. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

    International Nuclear Information System (INIS)

    Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.

    2008-01-01

    We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties

  1. Dynamic characteristics of a novel damped outrigger system

    Science.gov (United States)

    Tan, Ping; Fang, Chuangjie; Zhou, Fulin

    2014-06-01

    This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method (DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and efficiency are verified in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the influences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coefficient. Results show that the modal damping ratio is significantly influenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.

  2. Electromagnetic damping of neutron star oscillations

    International Nuclear Information System (INIS)

    McDermott, P.N.; Savedoff, M.P.; Van Horn, H.M.; Zweibel, E.G.; Hansen, C.J.

    1984-01-01

    Nonradial pulsations of a neutron star with a strong dipole magnetic field cause emission of electromagnetic radiation. Here we compute the power radiated to vacuum by neutron star g-mode pulsations and by torsional oscillations of the neutron star crust. For the low-order quadrupole fluid g-modes we have considered, we find electromagnetic damping to be considerably more effective than gravitational radiation. For example, a 0.5 M/sub sun/ neutron star with a core temperature approx.10 7 K has a g 1 -mode period of 371 ms; for this mode were find the electromagnetic damping time to be tau/sub FM/approx.0.3 s, assuming the surface magnetic field strength of the neutron star to be B 0 approx.10 12 gauss. This is considerably less than the corresponding gravitational radiation time tau/sub GR/approx.3 x 10 17 yr. For dipole g-mode oscillations, there is no gravitational radiation, but electromagnetic damping and ohmic dissipation are efficient damping mechanisms. For dipole torsional oscillations, we find that electromagnetic damping again dominates, with tau/sub EM/approx.5 yr. Among the cases we have studied, quadrupole torsional oscillations appear to be dominated by gravitational radiation damping, with tau/sub GR/approx.10 4 yr, as compared with tau/sub EM/approx.2 x 10 7 yr

  3. Three-body interactions and the Landau levels using Nikiforov ...

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given. Keywords. Nikiforov–Uvarov (NU) method; three-body ...

  4. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  5. The effect of boundaries on the asymptotic wavenumber of spiral wave solutions of the complex Ginzburg–Landau equation

    KAUST Repository

    Aguareles, M.

    2014-01-01

    In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d

  6. Doubly Fed Induction Generator System Resonance Active Damping through Stator Virtual Impedance

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    (positive capacitor or negative inductor) into the stator branch through stator current feedforward control. The effectiveness of the DFIG system active damping control is verified by a 7.5 kW experimental down-scaled DFIG system, and simulation results of a commercial 2 MW DFIG system is provided as well....... converters/loads. This paper analyzes and explains first the HFR phenomenon between the DFIG system and a parallel compensated weak network (series RL + shunt C). Then on the basis of the DFIG system impedance modeling, an active damping control strategy is introduced by inserting a virtual impedance...... Frequency Resonance (HFR) due to the impedance interaction between the DFIG system and the weak grid network whose impedance is comparative large. Thus, it is important to implement an active damping for the HFR in order to ensure a safe and reliable operation of both the DFIG system and the grid connected...

  7. An Empirical Method for Particle Damping Design

    Directory of Open Access Journals (Sweden)

    Zhi Wei Xu

    2004-01-01

    Full Text Available Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.

  8. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    International Nuclear Information System (INIS)

    Govaerts, Jan; Hounkonnou, M Norbert; Mweene, Habatwa V

    2009-01-01

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  9. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, Jan [Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucleaire, Universite catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve (Belgium); Hounkonnou, M Norbert [International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50, Cotonou (Benin); Mweene, Habatwa V [Physics Department, University of Zambia, PO Box 32379, Lusaka (Zambia)], E-mail: Jan.Govaerts@uclouvain.be, E-mail: hounkonnou@yahoo.fr, E-mail: norbert.hounkonnou@cipma.uac.bj, E-mail: habatwamweene@yahoo.com, E-mail: hmweene@unza.zm

    2009-12-04

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  10. Two-dimensional quantisation of the quasi-Landau hydrogenic spectrum

    International Nuclear Information System (INIS)

    Gallas, J.A.C.; O'Connell, R.F.

    1982-01-01

    Based on the two-dimensional WKB model, an equation is derived from which the non-relativistic quasi-Landau energy spectrum of hydrogen-like atoms may be easily obtained. In addition, the solution of radial equations in the WKB approximation and its relation with models recently used to fit experimental data are discussed. (author)

  11. Process Damping and Cutting Tool Geometry in Machining

    Science.gov (United States)

    Taylor, C. M.; Sims, N. D.; Turner, S.

    2011-12-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  12. Process Damping and Cutting Tool Geometry in Machining

    International Nuclear Information System (INIS)

    Taylor, C M; Sims, N D; Turner, S

    2011-01-01

    Regenerative vibration, or chatter, limits the performance of machining processes. Consequences of chatter include tool wear and poor machined surface finish. Process damping by tool-workpiece contact can reduce chatter effects and improve productivity. Process damping occurs when the flank (also known as the relief face) of the cutting tool makes contact with waves on the workpiece surface, created by chatter motion. Tool edge features can act to increase the damping effect. This paper examines how a tool's edge condition combines with the relief angle to affect process damping. An analytical model of cutting with chatter leads to a two-section curve describing how process damped vibration amplitude changes with surface speed for radiussed tools. The tool edge dominates the process damping effect at the lowest surface speeds, with the flank dominating at higher speeds. A similar curve is then proposed regarding tools with worn edges. Experimental data supports the notion of the two-section curve. A rule of thumb is proposed which could be useful to machine operators, regarding tool wear and process damping. The question is addressed, should a tool of a given geometry, used for a given application, be considered as sharp, radiussed or worn regarding process damping.

  13. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  14. Investigation of superstructure damping identification for the HDR containment building

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.

    1985-01-01

    A method for the estimation of first mode structural damping, developed by other investigators, was applied to shaker test data of the HDR containment building. Due to inadequate precision in the experimental phase measurements no valid results could be obtained. Based on modal analysis it was also noted that for systems such as the HDR building, contributions of higher modes are not negligible as was assumed in the original approach. Therefore, the procedure for the determination of superstructure damping using experimental data was extended to include the effects of higher modes. The extended method does not lead to any higher order nonlinear equations than the first mode approximation and was found to be as simple to apply as the original approach

  15. Damping Identification of Bridges Under Nonstationary Ambient Vibration

    Directory of Open Access Journals (Sweden)

    Sunjoong Kim

    2017-12-01

    Full Text Available This research focuses on identifying the damping ratio of bridges using nonstationary ambient vibration data. The damping ratios of bridges in service have generally been identified using operational modal analysis (OMA based on a stationary white noise assumption for input signals. However, most bridges are generally subjected to nonstationary excitations while in service, and this violation of the basic assumption can lead to uncertainties in damping identification. To deal with nonstationarity, an amplitude-modulating function was calculated from measured responses to eliminate global trends caused by nonstationary input. A natural excitation technique (NExT-eigensystem realization algorithm (ERA was applied to estimate the damping ratio for a stationarized process. To improve the accuracy of OMA-based damping estimates, a comparative analysis was performed between an extracted stationary process and nonstationary data to assess the effect of eliminating nonstationarity. The mean value and standard deviation of the damping ratio for the first vertical mode decreased after signal stationarization. Keywords: Damping, Operational modal analysis, Traffic-induced vibration, Nonstationary, Signal stationarization, Amplitude-modulating, Bridge, Cable-stayed, Suspension

  16. Transport description of damped nuclear reactions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    This lecture series is concerned with the transport description of damped nuclear reactions. Part 1 is an elementary introduction to the general transport theory of nuclear dynamics. It can be read without any special knowledge of the field, although basic quantum mechanics is required for the formal derivation of the general expressions for the transport coefficients. The results can also be used in a wider context than the present one. Part 2 gives the student an up-to-date orientation about recent progress in the understanding of the angular-momentum variables in damped reactions. The emphasis is here on the qualitative understanding of the physics rather than the, at times somewhat tedious, formal derivations. More detailed presentations are due to be published soon. By necessity entire topics have been omitted. For example, no discussion is given of the calculation of the form factors, and the several instructive applications of the theory to transport of mass and change are not covered at all. For these topics they refer to the literature. It is hoped that the present notes provide a sufficient basis to make the literature on the subject accessible to the student

  17. Injection and Extraction Lines for the ILC Damping Rings

    International Nuclear Information System (INIS)

    Reichel, Ina

    2007-01-01

    The current design for the injection and extraction lines into and out of the ILC Damping Rings is presented as well as the design for the abort line. Due to changes of the geometric boundary conditions by other subsystems of the ILC, a modular approach has been used to be able to respond to recurring layout changes while reusing previously designed parts

  18. Landau quantization and spin-momentum locking in topological Kondo insulators

    Directory of Open Access Journals (Sweden)

    P. Schlottmann

    2016-05-01

    Full Text Available SmB6 has been predicted to be a strong topological Kondo insulator and experimentally it has been confirmed that at low temperatures the electrical conductivity only takes place at the surfaces of the crystal. Quantum oscillations and ARPES measurements revealed several Dirac cones on the (001 and (101 surfaces of the crystal. We considered three types of surface Dirac cones with an additional parabolic dispersion and studied their Landau quantization and the expectation value of the spin of the electrons. The Landau quantization is quite similar in all three cases and would give rise to very similar de Haas-van Alphen oscillations. The spin-momentum locking, on the other hand, differs dramatically. Without the additional parabolic dispersion the spins are locked in the plane of the surface. The parabolic dispersion, however, produces a gradual canting of the spins out of the surface plane.

  19. Damping-off in forest nurseries

    Science.gov (United States)

    Carl Hartley

    1921-01-01

    Damping-off is the commonest English name for a symptomatic group of diseases affecting great numbers of plant species of widely separated phylogenetic groups. It is commonly used for any disease which results in the rapid decay of young succulent seedlings or soft cuttings. Young shoots from underground rootstocks may also be damped-off before they break through the...

  20. Exact Landau levels in two-dimensional electron systems with Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field

    International Nuclear Information System (INIS)

    Zhang Degang

    2006-01-01

    We study a two-dimensional electron system in the presence of both Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field. Defining two suitable boson operators and using the unitary transformations we are able to obtain the exact Landau levels in the range of all the parameters. When the strengths of the Rashba and Dresselhaus spin-orbit interactions are equal, a new analytical solution for the vanishing Zeeman energy is found, where the orbital and spin wavefunctions of the electron are separated. It is also shown that in this case the Zeeman and spin-orbit splittings are independent of the Landau level index n. Due to the Zeeman energy, new crossing between the eigenstates vertical bar n, k, s = 1, σ) and vertical bar n + 1, k, s' = -1, σ') is produced at a certain magnetic field for larger Rashba spin-orbit coupling. This degeneracy leads to a resonant spin Hall conductance if it happens at the Fermi level. (letter to the editor)

  1. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  2. Offline software for the DAMPE experiment

    Science.gov (United States)

    Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Liu, Yang; Jiang, Wei; Wen, Sicheng; Wu, Jian; Chang, Jin

    2017-10-01

    A software system has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite-based experiment. The DAMPE software is mainly written in C++ and steered using a Python script. This article presents an overview of the DAMPE offline software, including the major architecture design and specific implementation for simulation, calibration and reconstruction. The whole system has been successfully applied to DAMPE data analysis. Some results obtained using the system, from simulation and beam test experiments, are presented. Supported by Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (CAS) (XDA04040202-4), the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China (NSFC) and CAS (U1531126) and 100 Talents Program of the Chinese Academy of Science

  3. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    International Nuclear Information System (INIS)

    Chhaiba, Hassan; Demni, Nizar; Mouayn, Zouhair

    2016-01-01

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.

  4. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    Energy Technology Data Exchange (ETDEWEB)

    Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com [Department of Mathematics, Faculty of Sciences, Ibn Tofail University, P.O. Box 133, Kénitra (Morocco); Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr [IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma [Department of Mathematics, Faculty of Sciences and Technics (M’Ghila), Sultan Moulay Slimane, P.O. Box 523, Béni Mellal (Morocco)

    2016-07-15

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.

  5. Boundary condition for Ginzburg-Landau theory of superconducting layers

    Czech Academy of Sciences Publication Activity Database

    Koláček, Jan; Lipavský, Pavel; Morawetz, K.; Brandt, E. H.

    2009-01-01

    Roč. 79, č. 17 (2009), 174510/1-174510/6 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326; GA AV ČR IAA100100712 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  6. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  7. Landau-Darrieus instability in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A.R.; Portugues, R.F.

    2003-01-01

    An analytical model that shows the conditions for the existence of the Landau-Darrieus instability of an ablation front is presented. The model seems to agree with recently claimed simulation results [L. Masse et al., Proceedings of the 1st International Conference on Inertial Fusion Sciences and Applications (Elsevier, Paris, 2000), p. 220]. The model shows that the ablation front can be unstable in absence of gravity when the thermal flux is inhibited within the supercritical region of the corona

  8. Time-dependent Ginzburg-Landau equations for rotating and accelerating superconductors

    Czech Academy of Sciences Publication Activity Database

    Lipavský, P.; Bok, J.; Koláček, Jan

    2013-01-01

    Roč. 492, Sept (2013), 144-151 ISSN 0921-4534 R&D Projects: GA ČR(CZ) GAP204/11/0015 Institutional support: RVO:68378271 Keywords : superconductivity * Ginzburg-Landau theory * London field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.110, year: 2013

  9. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  10. Landau-de Gennes theory of surface-enhanced ordering in smectic films.

    Science.gov (United States)

    Shalaginov, A N; Sullivan, D E

    2001-03-01

    A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.

  11. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  12. A Faraday rotation search for magnetic fields in quasar damped Ly alpha absorption systems

    Science.gov (United States)

    Oren, Abraham L.; Wolfe, Arthur M.

    1995-01-01

    We present the results of a Faraday rotation survey of 61 radio-bright QSOs conducted at the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The Galactic contribution to the Faraday rotation is estimated and subtracted to determine the extragalactic rotation measure (RRM) for each source. Eleven of these QSOs are known to exhibit damped Ly alpha absorption. The rate of incidence of significant Faraday rotation of these 11 sources is compared to the remaining 50 and is found to be higher at the 99.8% confidence level. However, as this is based upon only two detections of Faraday rotation in the damped Ly alpha sample, the result is only tentative. If the two detections in the damped Ly alpha sample are dug to the absorbing systems, then the inferred rotation measure induced by these systems is roughly 250 rad/sq m. The two detections were for the two lowest redshift absorbers in the sample. We find that a rotation measure of 250 rad/sq m would have gone undetected for any other absorber in the damped Ly alpha sample due to the 1/(1 + 2) squared dilution of the observed RRM with redshift. Thus the data are consistent with, but do not prove, the hypothesis that Faraday rotation is a generic property of damped Ly alpha absorbers. We do not confirm the suggestion that the amplitude of RRMs increases with redshift. Rather, the data are consistent with no redshift evolution. We find that the uncertainty in the estimation of the Galactic rotation measure (GRM) is a more serious problem than previously realized for extra-galactic Faraday rotation studies of QSO absorbers. A careful analysis of current methods for estimating GRM indicate that it can be determined to an accuracy of about 15 - 20 rad/sq m. Previous studies underestimated this uncertainty by more than a factor of 2. Due to this uncertainty, rotation measures such as we suspect are associated with damped Ly alpha absorption systems can only be detected at redshifts less than z approximately

  13. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer

    Directory of Open Access Journals (Sweden)

    Jitka eFucikova

    2015-08-01

    Full Text Available It is now clear that human neoplasms form, progress and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (reactivation of tumor-targeting immune response. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as „immunogenic cell death (ICD. Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as „damage-associated molecular patterns (DAMPs, may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.

  14. Damping of Quasi-stationary Waves Between Two Miscible Liquids

    Science.gov (United States)

    Duval, Walter M. B.

    2002-01-01

    Two viscous miscible liquids with an initially sharp interface oriented vertically inside a cavity become unstable against oscillatory external forcing due to Kelvin-Helmholtz instability. The instability causes growth of quasi-stationary (q-s) waves at the interface between the two liquids. We examine computationally the dynamics of a four-mode q-s wave, for a fixed energy input, when one of the components of the external forcing is suddenly ceased. The external forcing consists of a steady and oscillatory component as realizable in a microgravity environment. Results show that when there is a jump discontinuity in the oscillatory excitation that produced the four-mode q-s wave, the interface does not return to its equilibrium position, the structure of the q-s wave remains imbedded between the two fluids over a long time scale. The damping characteristics of the q-s wave from the time history of the velocity field show overdamped and critically damped response; there is no underdamped oscillation as the flow field approaches steady state. Viscous effects serve as a dissipative mechanism to effectively damp the system. The stability of the four-mode q-s wave is dependent on both a geometric length scale as well as the level of background steady acceleration.

  15. Suppression of Stimulated Brillouin Scattering in multiple-ion species inertial confinement fusion Hohlraum Plasmas

    International Nuclear Information System (INIS)

    Neumayer, P

    2007-01-01

    A long-standing problem in the field of laser-plasma interactions is to successfully employ multiple-ion species plasmas to reduce stimulated Brillouin scattering (SBS) in inertial confinement fusion (ICF) hohlraum conditions. Multiple-ion species increase significantly the linear Landau damping for acoustic waves. Consequently, recent hohlraum designs for indirect-drive ignition on the National Ignition Facility investigate wall liner material options so that the liner gain for parametric instabilities will be below threshold for the onset SBS. Although the effect of two-ion species plasmas on Landau damping has been directly observed with Thomson scattering, early experiments on SBS in these plasmas have suffered from competing non-linear effects or laser beam filamentation. In this study, a reduction of SBS scattering to below the percent level has been observed in hohlraums at Omega that emulate the plasma conditions in an indirect drive ICF experiments. These experiments have measured the laser-plasma interaction processes in ignition-relevant high-electron temperature regime demonstrating Landau damping as a controlling process for SBS. The hohlraums have been filled with various fractions of CO 2 and C 3 H 8 varying the ratio of the light (H) to heavy (C and O) ion density from 0 to 2.6. They have been heated by 14.5 kJ of 351-nm light, thus increasing progressively Landau damping by an order of magnitude at constant electron density and temperature. A delayed 351-nm interaction beam, spatially smoothed to produce a 200-(micro)m laser spot at best focus, has propagated along the axis of the hohlraum. The backscattered light, both into the lens and outside, the transmitted light through the hohlraum plasma and the radiation temperature of the hohlraum has been measured. For ignition relevant laser intensities (3-9 10 14 Wcm -2 ), we find that the SBS reflectivity scales as predicted with Landau damping from >30% to <1%. Simultaneously, the hohlraum radiation

  16. Confirmation of soil radiation damping from test versus analysis

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Mukhim, G.S.; Desmond, T.P.

    1987-01-01

    The work was performed to demonstrate that soil-structure interaction effects for nuclear plant structures can be accurately (and conservatively) predicted using the finite element or soil spring methods of soil-structure interaction analysis. Further, the work was done to investigate the relative importance of soil radiation versus soil material damping in the total soil damping analytical treatment. The analytical work was benchmarked with forced vibration tests of a concrete circular slab resting on the soil surface. The applied loading was in the form of a suddenly applied pulse load, or snapback. The measured responses of the slap represent the free vibration of the slab after the pulse load has been applied. This simplifies the interpretation of soil damping, by the use of the logarithmic decay formulation. To make comparisons with the test results, the damping data calculated from the analytical models is also based on the logarithmic decay formulation. An attempt is made to differentiate the observed damped behavior of the concrete slab as being caused by soil radiation versus soil material damping. It is concluded that both the traditional soil radiation and material damping analytical simplifications are validated by the observed responses. It is concluded that arbitrary 'conservative' assumptions traditionally made in nuclear plant soil-structure interaction analyses are indeed arbitrary, and not born out by physical evidence. The amount of conservatism introduced by limiting total soil damping to values like 5% to 10% can be large. For the test slab sizes investigated, total soil damping is about 25%. For full size nuclear plant foundations, total soil damping is commonly in the 35% to 70% range. The authors suggest that full soil damping values (the combined radiation and material damping) should be used in the design, backfit and margin assessment of nuclear plants. (orig./HP)

  17. Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2005-01-01

    Equations built on fractional derivatives prove to be a powerful tool in the description of complex systems when the effects of singularity, fractal supports, and long-range dependence play a role. In this Letter, we advocate an application of the fractional derivative formalism to a fairly general...... class of critical phenomena when the organization of the system near the phase transition point is influenced by a competing nonlocal ordering. Fractional modifications of the free energy functional at criticality and of the widely known Ginzburg-Landau equation central to the classical Landau theory...... of second-type phase transitions are discussed in some detail. An implication of the fractional Ginzburg-Landau equation is a renormalization of the transition temperature owing to the nonlocality present. (c) 2005 Elsevier B.V. All rights reserved....

  18. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  19. Three-dimensional Ginzburg–Landau simulation of a vortex line ...

    Indian Academy of Sciences (India)

    pp. 295–304. Three-dimensional Ginzburg–Landau simulation of a vortex line displaced by a zigzag of pinning spheres. MAURO M DORIA1,∗, ANTONIO R de C ROMAGUERA1 and WELLES A M MORGADO2. 1Instituto de Fısica, Universidade Federal do Rio de Janeiro, C.P. 68528,. 21941-972, Rio de Janeiro RJ, Brazil.

  20. Improved Passive-Damped LCL Filter to Enhance Stability in Grid-Connected Voltage-Source Converters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    This paper proposes an improved passive-damped LCL filter to be used as interface between the grid-connected voltage-source converters and the utility grid. The proposed filter replaces the LCL filter capacitor with a traditional C-type filter with the resonant circuit tuned in such a way...... passive-damped LCL filter. To verify the benefits of the proposed filter, a comparison with the conventional filter is made in terms of losses and ratings when both the filters are designed under the same condition....... that switching harmonics due to pulse width modulation are to be cancelled. Since the tuned circuit of the C-type filter suppresses the switching harmonics more effectively, the total inductance of the filter can be reduced. Additionally, the rating of the damping resistor is lower, compared with conventional...

  1. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  2. Bunch lengthening in the SLC [Stanford Linear Collider] damping rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.

    1990-02-01

    A high level of current dependent bunch lengthening has been observed on the North damping ring of the Stanford Linear Collider (SLC). At currents of 3 x 10 10 this behavior does not appear to degrade the machine's performance significantly. However, at the higher currents that are envisioned for the future one fears that its performance could be greatly degraded due to the phenomenon of bunch lengthening. This was the motivation for the work described in this paper. In this paper we calculate the longitudinal impedance of the damping ring vacuum chamber. More specifically, in this paper we find the response function of the ring to a short Gaussian bunch, which we call the Green function wake. In addition, we try to estimate the relative importance of the different vacuum chamber objects, in order to see how we might reduce the ring impedance. This paper also describes bunch length measurements performed on the North damping ring. We use the Green function wake, discussed above, to compute the bunch lengthening. Then we compare these results with those obtained from the measurements. In addition, we calculate the current dependence of the tune distribution

  3. Cross-beam energy transfer: On the accuracy of linear stationary models in the linear kinetic regime

    Science.gov (United States)

    Debayle, A.; Masson-Laborde, P.-E.; Ruyer, C.; Casanova, M.; Loiseau, P.

    2018-05-01

    We present an extensive numerical study by means of particle-in-cell simulations of the energy transfer that occurs during the crossing of two laser beams. In the linear regime, when ions are not trapped in the potential well induced by the laser interference pattern, a very good agreement is obtained with a simple linear stationary model, provided the laser intensity is sufficiently smooth. These comparisons include different plasma compositions to cover the strong and weak Landau damping regimes as well as the multispecies case. The correct evaluation of the linear Landau damping at the phase velocity imposed by the laser interference pattern is essential to estimate the energy transfer rate between the laser beams, once the stationary regime is reached. The transient evolution obtained in kinetic simulations is also analysed by means of a full analytical formula that includes 3D beam energy exchange coupled with the ion acoustic wave response. Specific attention is paid to the energy transfer when the laser presents small-scale inhomogeneities. In particular, the energy transfer is reduced when the laser inhomogeneities are comparable with the Landau damping characteristic length of the ion acoustic wave.

  4. The DAMPE silicon–tungsten tracker

    Energy Technology Data Exchange (ETDEWEB)

    Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others

    2016-09-21

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  5. Landau-Ginsburg models with N=2 supersymmetry as conventional conformal theories

    International Nuclear Information System (INIS)

    Marshakov, A.

    1990-01-01

    The conformal Landau-Ginsburg (LG) models are identified with the Toda-like two-dimensional field theories. At least in the N=2 supersymmetric case they possess a simple free-field representation, related to the Nicolai map. (orig.)

  6. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    Science.gov (United States)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  7. Fourier acceleration in lattice gauge theories. I. Landau gauge fixing

    International Nuclear Information System (INIS)

    Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.

    1988-01-01

    Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations

  8. Stability of the Global Alfven Eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma

    International Nuclear Information System (INIS)

    Fu, G.Y.; Van Dam, J.W.

    1989-05-01

    The stability of the Global Alfven Eigenmodes is investigated in the presence of super-Alfvenic energetic particles, such as the fusion-product alpha particles in an ignited deuterium-tritium tokamak plasma. Alpha particles tend to destabilize these modes when ω *α > ω A , where ω A is the shear-Alfven modal frequency and ω *α is the alpha particle diamagnetic drift frequency. This destabilization due to alpha particles is found to be significantly enhanced when the alpha particles are modeled with a slowing-down distribution function rather than with a Maxwellian. However, previously neglected electron damping due to the magnetic curvature drift is found to be comparable in magnitude to the destabilizing alpha particle term. Furthermore, the effects of toroidicity are also found to be stabilizing, since the intrinsic toroidicity induces poloidal mode coupling, which enhances the parallel electron damping from the sideband shear-Alfven Landau resonance. In particular, for the parameters of the proposed Compact Ignition Tokamak, the Global Alfven Eigenmodes are found to be completely stabilized by either the electron damping that enters through the magnetic curvature drift or the damping introduced by finite toroidicity. 29 refs., 8 figs., 1 tab

  9. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  10. Size effect related to damping caused by water submersion

    International Nuclear Information System (INIS)

    Dong, R.G.

    1981-01-01

    An important effect of water submersion on the dynamic response of a structure is the increase in effective damping. The dynamic response of submerged structures is of interest in the nuclear power industry for reasons of operational safety during seismic and other dynamic excitations. In this paper, the added damping contribution that results from the viscosity of water and the dependence of the contribution on structural size are examined. Other factors considered are the applicable range of viscous damping with respect to displacement amplitude and, as far as damping is concerned, how far neighboring members must be from each other to respond as if in open water. An expression is derived for relating the damping value to structural size. Estimated added-damping values for representative fuel elements, fuel bundles, and main steam-pressure-relief-valve lines are given based on our derived expression for added damping

  11. Quantum correlation versus Bell-inequality violation under the amplitude damping channel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, WenChao; Xu, Shuai; Shi, Jiadong; Ye, Liu, E-mail: yeliu@ahu.edu.cn

    2015-11-06

    We investigate the quantum correlations including quantum discord and entanglement under the amplitude damping channel. Our analysis results indicate that although the entanglement of initial state is degraded due to decoherence, the distribution trend of entanglement is not to be affected. Moreover, we find that the survival time for entanglement is much longer than for the Bell inequality violation, i.e., as time goes on the Bell inequality violation of final state may be not satisfied while the final state still remains entangled. Especially, although quantum entanglement and quantum discord all decrease under the amplitude damping channel, quantum discord (QD) is reduced significantly slower than entanglement. Therefore, the quantum discord is more robust against amplitude damping in comparison to entanglement measures. Furthermore, we also find that there are mixed states having quantum discord higher than that for pure states for a given degree of Bell's inequality violation. This means that the manipulation of nonclassical correlations via a pure state can result in a larger loss of quantum discord than that via a mixed state. - Highlights: • Entanglement distribution trend is not be affected by the decoherent. • The survival time for entanglement is much longer than for the Bell inequality violation. • The quantum discord is more robust against amplitude damping in comparison entanglement measures.

  12. Chern-Simons field theory of two-dimensional electrons in the lowest Landau level

    International Nuclear Information System (INIS)

    Zhang, L.

    1996-01-01

    We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society

  13. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  14. Vibration damping method and apparatus

    Science.gov (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  15. Discrete Kinetic Eigenmode Spectra of Electron Plasma Oscillations in Weakly Collisional Plasma: A Numerical Study

    Science.gov (United States)

    Black, Carrie; Germaschewski, Kai; Bhattacharjee, Amitava; Ng, C. S.

    2013-01-01

    It has been demonstrated that in the presence of weak collisions, described by the Lenard-Bernstein collision operator, the Landau-damped solutions become true eigenmodes of the system and constitute a complete set. We present numerical results from an Eulerian Vlasov code that incorporates the Lenard-Bernstein collision operator. The effect of the collisions on the numerical recursion phenomenon seen in Vlasov codes is discussed. The code is benchmarked against exact linear eigenmode solutions in the presence of weak collisions, and a spectrum of Landau-damped solutions is determined within the limits of numerical resolution. Tests of the orthogonality and the completeness relation are presented.

  16. One-dimensional plasma simulation studies

    International Nuclear Information System (INIS)

    Friberg, Ari; Virtamo, Jorma

    1976-01-01

    Some basic plasma phenomena are studied by a one-dimensional electrostatic simulation code. A brief description of the code and its application to a test problem is given. The experiments carried out include Landau damping of an excited wave, particle retardation by smoothed field and beam-plasma instability. In each case, the set-up of the experiment is described and the results are compared with theoretical predictions. In the theoretical discussions, the oscillatory behaviour found in the Landau damping experiment is explained, an explicit formula for the particle retardation rate is derived and a rudimentary picture of the beam-plasma instability in terms of quasilinear theory is given. (author)

  17. Quantum behaviour of open pumped and damped Bose-Hubbard trimers

    Science.gov (United States)

    Chianca, C. V.; Olsen, M. K.

    2018-01-01

    We propose and analyse analogs of optical cavities for atoms using three-well inline Bose-Hubbard models with pumping and losses. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a qualitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, although most do enter a steady-state regime. We find quadrature squeezing, bipartite and tripartite inseparability and entanglement, and states exhibiting the EPR paradox, depending on the parameter regimes. We also discover situations where the mean-field solutions of our models are noticeably different from the quantum solutions for the mean fields. Due to recent experimental advances, it should be possible to demonstrate the effects we predict and investigate in this article.

  18. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations.

    Science.gov (United States)

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S

    2017-10-21

    For understanding the structure, dynamics, and thermal stability of (AgAu) 55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu) 55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag 28 Au 27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  19. Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties

    Science.gov (United States)

    Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian

    2018-04-01

    Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.

  20. High damping Fe-Mn martensitic alloys for engineering applications

    International Nuclear Information System (INIS)

    Baik, S.-H.

    2000-01-01

    Conventional methods for reducing vibration in engineering designs (i.e. by stiffening or detuning) may be undesirable or inadequate in conditions where size or weight must be minimized or where complex vibration spectra exist. Alloys which combine high damping capacity with good mechanical properties can provide attractive technical and economic solutions to problems involving seismic, shock and vibration isolation. To meet these trends, we have developed a new high damping Fe-17%Mn alloy. Also, the alloy has advantages of good mechanical properties and is more economical than any other known damping alloys (a quarter the cost of non-ferrous damping alloy). Thus, the high damping Fe-17%Mn alloy can be widely applied to household appliances, automobiles, industrial facilities and power plant components with its excellent damping capacity (SDC, 30%) and mechanical property (T.S. 700 MPa). It is the purpose of this paper to introduce the characterization of the high damping Fe-17%Mn alloy and the results of retrofit of several such applications. (orig.)

  1. Nonlinear damping of drift waves by strong flow curvature

    International Nuclear Information System (INIS)

    Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.

    1993-01-01

    A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method

  2. Structural dynamic analysis with generalized damping models analysis

    CERN Document Server

    Adhikari , Sondipon

    2013-01-01

    Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book

  3. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.

    1986-07-01

    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  4. Perceptual studies of violin body damping and vibrato.

    Science.gov (United States)

    Fritz, Claudia; Woodhouse, Jim; Cheng, Felicia P-H; Cross, Ian; Blackwell, Alan F; Moore, Brian C J

    2010-01-01

    This work explored how the perception of violin notes is influenced by the magnitude of the applied vibrato and by the level of damping of the violin resonance modes. Damping influences the "peakiness" of the frequency response, and vibrato interacts with this peakiness by producing fluctuations in spectral content as well as in frequency and amplitude. Initially, it was shown that thresholds for detecting a change in vibrato amplitude were independent of body damping, and thresholds for detecting a change in body damping were independent of vibrato amplitude. A study of perceptual similarity using triadic comparison showed that vibrato amplitude and damping were largely perceived as independent dimensions. A series of listening tests was conducted employing synthesized, recorded, or live performance to probe perceptual responses in terms of "liveliness" and preference. The results do not support the conclusion that liveliness results from the combination of the use of vibrato and a "peaky" violin response. Judgments based on listening to single notes showed inconsistent patterns for liveliness, while preferences were highest for damping that was slightly less than for a reference (real) violin. In contrast, judgments by players based on many notes showed preference for damping close to the reference value.

  5. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  6. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    International Nuclear Information System (INIS)

    Dai, Jin; He, Jianfeng; Niemi, Antti J.

    2016-01-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  7. Ultra-low magnetic damping in metallic and half-metallic systems

    Science.gov (United States)

    Shaw, Justin

    The phenomenology of magnetic damping is of critical importance to devices which seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in magnonics, spintronics and spin-orbitronics that depend on the ability to precisely control the damping of a material. I will discuss our recent work to precisely measure the intrinsic damping in several metallic and half-metallic material systems and compare experiment with several theoretical models. This investigation uncovered a metallic material composed of Co and Fe that exhibit ultra-low values of damping that approach values found in thin film YIG. Such ultra-low damping is unexpected in a metal since magnon-electron scattering dominates the damping in conductors. However, this system possesses a distinctive feature in the bandstructure that minimizes the density of states at the Fermi energy n(EF). These findings provide the theoretical framework by which such ultra-low damping can be achieved in metallic ferromagnets and may enable a new class of experiments where ultra-low damping can be combined with a charge current. Half-metallic Heusler compounds by definition have a bandgap in one of the spin channels at the Fermi energy. This feature can also lead to exceptionally low values of the damping parameter. Our results show a strong correlation of the damping with the order parameter in Co2MnGe. Finally, I will provide an overview of the recent advances in achieving low damping in thin film Heusler compounds.

  8. STS Observations of Landau Levels at Graphite Surfaces

    OpenAIRE

    Matsui, T.; Kambara, H.; Niimi, Y.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2004-01-01

    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular...

  9. Gauges for the Ginzburg-Landau equations of superconductivity

    International Nuclear Information System (INIS)

    Fleckinger-Pelle, J.; Kaper, H.G.

    1995-01-01

    This note is concerned with gauge choices for the time-dependent Ginzburg-Landau equations of superconductivity. The requiations model the state of a superconducting sample in a magnetic field near the critical tempeature. Any two solutions related through a ''gauge transformation'' describe the same state and are physically indistinquishable. This ''gauge invariance'' can be exploited for analtyical and numerical purposes. A new gauge is proposed, which reduces the equations to a particularly attractive form

  10. The Microstructural Basis of Damping in High Damping Alloys

    Science.gov (United States)

    1989-09-01

    This transformation is diffusionless and is characterized by the cooperative movement of atoms in a given section of crystal. Removal of the stress...martensites. The cooperative movement of atoms causes large internal friction and high damping. The temperature range in which this transformation can

  11. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  12. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator

    International Nuclear Information System (INIS)

    Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2009-01-01

    In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.

  13. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  14. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  15. DAMPE

    CERN Multimedia

    Chen, D

    The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.

  16. Avaliação audiológica e eletrofisiológica da audição na síndrome de Landau-Kleffner Audiologic and electrophysiologic evaluation in Landau-Kleffner syndrome

    Directory of Open Access Journals (Sweden)

    Carla Gentile Matas

    2007-06-01

    Full Text Available OBJETIVO: Descrever os resultados obtidos nas avaliações audiológica e eletrofisiológica da audição, verificando a ocorrência de alterações auditivas periféricas e/ou centrais, de indivíduos com síndrome de Landau-Kleffner. MÉTODOS: Foram submetidos à avaliação audiológica (inspeção do meato acústico externo, medidas de imitância acústica, audiometrias tonal e vocal e eletrofisiológica da audição (potenciais evocados auditivos de curta, média e longa latência, quatro indivíduos com diagnóstico de síndrome de Landau-Kleffner, na faixa etária de nove a 19 anos, encaminhados ao Laboratório de Investigação Fonoaudiológica em Potenciais Evocados Auditivos do Curso de Fonoaudiologia da Universidade de São Paulo. RESULTADOS: Os resultados mostraram que 100% dos indivíduos apresentaram alteração em pelo menos uma das avaliações realizadas, sendo que houve uma maior ocorrência de alterações no potencial evocado auditivo de média latência (100% dos indivíduos apresentaram alterações. CONCLUSÕES: Observou-se uma grande ocorrência de alterações nos resultados das avaliações audiológicas e eletrofisiológicas da audição em indivíduos com síndrome de Landau-Kleffner. Enfatiza-se a importância da investigação da função auditiva destes indivíduos a fim de verificar possíveis relações entre os déficits da comunicação e alterações auditivas que possam estar presentes nessa população.PURPOSE: To describe the audiological and electrophysiological results of individuals with Landau-Kleffner syndrome, verifying the occurrence of peripheral and/or central auditory disorders. METHODS: Four individuals with Landau-Kleffner syndrome with ages ranging from nine to 19 years old, referred to the Auditory Evoked Potentials Laboratory of the Speech and Language Pathology and Audiology Course of the University of São Paulo, were submitted to audiologic (otoscopy, immitance measurements, pure tone and

  17. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  18. An experimental study of damping characteristics with emphasis on insulation for nuclear power plant piping system (Seismic Damping Ratio Evaluation Program)

    International Nuclear Information System (INIS)

    Shibata, H.; Ito, M.; Hayashi, T.; Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1981-01-01

    To clarify the damping characteristics and mechanism in nuclear power plant piping systems, the study group was established and conducted to study SDREP (Seismic Damping Ratio Evaluation Program). As the Phase II of this study, vibration tests were conducted to investigate factors which might contribute to damping characteristics of piping systems. These tests are composed of the next three model tests: 1) The component damping characteristics test of thermal insulator 2) The simplified piping model test 3) The scale model test. In these tests, we studied damping characteristics with emphasis on thermal insulator (mainly calcium silicate insulator). The acceleartion level of pipings is the same as that of the actual seismic response. The excitation was by sinusoidal sweep method using the shaking table and by free vibration method using snapback. (orig./RW)

  19. Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project

    DEFF Research Database (Denmark)

    Chaviaropoulos, P.K.; Politis, E.S.; Lekou, D.J.

    2006-01-01

    A research programme enabling the development of damped wind turbine blades, having the acronym DAMPBLADE, has been supported by the EC under its 5th Framework Programme. In DAMPBLADE the following unique composite damping mechanisms were exploited aiming to increase the structural damping......: tailoring of laminate damping anisotropy, damping layers and damped polymer matrices. Additional objectives of the project were the development of the missing critical analytical technologies enabling the explicit modelling of composite structural damping and a novel ‘composite blade design capacity......’ enabling the direct prediction of aeroelastic stability and fatigue life; the development and characterization of damped composite materials; and the evaluation of new technology via the design and fabrication of damped prototype blades and their full-scale laboratory testing. After 4 years of work a 19 m...

  20. From Landau's hydrodynamical model to field theory model to field theory models of multiparticle production: a tribute to Peter

    International Nuclear Information System (INIS)

    Cooper, F.

    1996-01-01

    We review the assumptions and domain of applicability of Landau's Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear σ model, we demonstrate that many of Landau's ideas are verified in explicit field theory calculations

  1. Impedance effects in the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Mounet, N; Rumolo, G; Salvant, B

    2011-01-01

    Due to the unprecedented brilliance of the beams, the performance of the Compact Linear Collider (CLIC) damping rings (DR) is affected by collective effects. Single bunch instability thresholds based on a broad-band resonator model and the associated coherent tune shifts have been evaluated with the HEADTAIL code. Simulations performed for positive and negative values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability. This study also includes the effects of high frequency resistive wall impedance due to different coatings applied on the chambers of the wigglers for e-cloud mitigation and/or ultra-low vacuum pressure. The impact of the resistive wall wake fields on the transverse impedance budget is finally discussed.

  2. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  3. Techniques for the design of highly damped structures

    International Nuclear Information System (INIS)

    Nelson, F.C.

    1975-01-01

    This paper discusses several techniques for the design of highly damped structures, techniques which have proven successful for large scale, low frequency steel and concrete structures which are typical of nuclear power reactors and their components. The ability to augment structural damping can be useful in increasing the seismic withstandability of structures. Seismic excitation is broadband in its frequency content and will excite many strutural resonances. Broadband damping will limit these resonant responses and thereby reduce the seismic load on structures and their components. This paper discusses three techniques: the design of structural joints and interfaces to promote damping; the use of layers of viscoelastic material; and the employment of damping links. The emphasis is on explaining the ways in which these techniques work and in describing the ways in which they have been used. (Auth.)

  4. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    . In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....

  5. INEL/USNRC pipe damping experiments and studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-08-01

    Since the previous paper on this subject presented at the 8th SMiRT Conference, the Idaho National Engineering Laboratory (INEL) has conducted further research on piping system damping for the United States Nuclear Regulatory Commission (USNRC). These efforts have included vibration tests on two laboratory piping systems at response frequencies up to 100 Hz, and damping data calculations from both of these two systems and from a third laboratory piping system test series. In addition, a statistical analysis was performed on piping system damping data from tests representative of seismic and hydrodynamic events of greater than minimal excitation. The results of this program will be used to assist regulators in establishing suitable damping values for use in dynamic analyses of nuclear piping systems, and in revising USNRC Regulatory Guide (RG) 1.61

  6. Piezoelectric shunt damping of a circular saw blade with autonomous power supply for noise and vibration reduction

    Science.gov (United States)

    Pohl, Martin; Rose, Michael

    2016-01-01

    Circular saws are widespread tools for machining metal, wood or even ceramics. Due to the thin blade and excitation by the workpiece contact of the cutting edges, circular saws are prone to vibration and intense noise emission. Damping the blade will lower the hearing protection requirements of the users and possibly increase precision. Therefore a new damping concept for circular saw blades is presented in this paper. It is based on negative capacitance shunted piezoelectric transducers which are applied to the saw blade core. The required energy for the electronics is harvested from the rotation by a generator, so that no change of the machine tool is required. All components are integrated into an autonomous saw tool. Finally, the system is experimentally investigated without rotation, in idling and in cutting condition in a circular saw test stand in the Institute for Machine Tools and Production Engineering (IWF) at TU Braunschweig. The experimental investigation shows a good reduction of the vibration amplitude over a wide frequency range in the non-rotating condition. When rotating, the damping effect is lower and limited to some narrow frequency bands. The proposed reason for the reduced damping effect in rotating condition consists in the saturation of the electronic circuits due to the limited supply voltage capabilities.

  7. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components....... Hence, a new method is proposed in this paper to optimally design the passive damping circuit for the LCL filters and LCL with multi-tuned LC traps. In short, the optimization problem reduces to the proper choice of the multi-split capacitors or inductors in the high-order filter. Compared to existing...... filter resonance. The passive filters are designed, built and validated both analytically and experimentally for verification....

  8. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  9. Significance of non-classical damping in seismic qualification of equipment and piping

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Abhinav, E-mail: agupta1@ncsu.edu; Bose, Mrinal K.

    2017-06-15

    Highlights: • Damping in coupled building-piping or building-equipment systems is nonlclassical. • Significance of nonclassical damping is illustrated. • Classical damping assumption can over predict or under predict response. • Significance of nonclassical damping increases for very light secondary systems. • Composite modal damping is another form of classical damping. - Abstract: This paper presents a discussion on the significance of non-classical damping in coupled primary-secondary systems such as building-equipment or building-piping. Closed-form expressions are used to illustrate that the effect of non-classical damping is significant in systems with tuned or nearly tuned uncoupled modes when the mass-interaction is sufficiently small. Further, simple primary-secondary systems are used to illustrate that composite modal damping is another form of classical damping for which the transformed damping matrix, obtained after pre- and post-multiplication of the damping matrix with the modal matrix, contains only diagonal terms. Both the composite and the classical damping give almost identical results that can be much different from the corresponding results for non-classical damping. Finally, it is shown that consideration of classical damping (ignoring the off-diagonal terms) can give excessively conservative results in nearly tuned primary-secondary systems. For perfectly tuned primary-secondary systems, however, classical damping can give responses that are much lower than what they should be.

  10. Damping Improvement of Multiple Damping Controllers by Using Optimal Coordinated Design Based on PSS and FACTS-POD in a Multi-Machine Power System

    Directory of Open Access Journals (Sweden)

    Ali Nasser Hussain

    2016-09-01

    Full Text Available The aim of this study is to present a comprehensive comparison and assessment of the damping function improvement of power system oscillation for the multiple damping controllers using the simultaneously coordinated design based on Power System Stabilizer (PSS and Flexible AC Transmission System (FACTS devices. FACTS devices can help in the enhancing the stability of the power system by adding supplementary damping controller to the control channel of the FACTS input to implement the task of Power Oscillation Damping (FACT POD controller. Simultaneous coordination can be performed in different ways. First, the dual coordinated designs between PSS and FACTS POD controller or between different FACTS POD controllers are arranged in a multiple FACTS devices without PSS. Second, the simultaneous coordination has been extended to triple coordinated design among PSS and different FACTS POD controllers. The parameters of the damping controllers have been tuned in the individual controllers and coordinated designs by using a Chaotic Particle Swarm Optimization (CPSO algorithm that optimized the given eigenvalue-based objective function. The simulation results for a multi-machine power system show that the dual coordinated design provide satisfactory damping performance over the individual control responses. Furthermore, the triple coordinated design has been shown to be more effective in damping oscillations than the dual damping controllers.

  11. Surface plasmon polaritons in a semi-bounded degenerate plasma: Role of spatial dispersion and collisions

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Kompaneets, R.; Vladimirov, S. V.

    2012-01-01

    Surface plasmon polaritons (SPPs) in a semi-bounded degenerate plasma (e.g., a metal) are studied using the quasiclassical mean-field kinetic model, taking into account the spatial dispersion of the plasma (due to quantum degeneracy of electrons) and electron-ion (electron-lattice, for metals) collisions. SPP dispersion and damping are obtained in both retarded (ω/k z ∼c) and non-retarded (ω/k z ≪c) regions, as well as in between. It is shown that the plasma spatial dispersion significantly affects the properties of SPPs, especially at short wavelengths (less than the collisionless skin depth, λ ≲ c/ω pe ). Namely, the collisionless (Landau) damping of SPPs (due to spatial dispersion) is comparable to the purely collisional (Ohmic) damping (due to electron-lattice collisions) in a wide range of SPP wavelengths, e.g., from λ∼20 nm to λ∼0.8 nm for SPP in gold at T = 293 K and from λ∼400 nm to λ∼0.7 nm for SPPs in gold at T = 100 K. The spatial dispersion is also shown to affect, in a qualitative way, the dispersion of SPPs at short wavelengths λ ≲ c/ω pe .

  12. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.

    1985-01-01

    The damping ratio is one of the most important parameters in seismic analysis of nuclear power plant piping systems. Thermal Insulation is considered to contribute to the damping characteristics of piping systems. In the 6th SMiRT conference and 1983 ASME PVP, the damping effect and damping estimating formula was presented as a result of regression analysis from the component tests of 2'' , 4'', and 8'' diameter piping and the proof model test of 1'', 2'' and 4'' piping. In this study, in order to clarify the damping characteristics of larger diameter piping than 8'', the component test of 12'' and 20'' diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers it was found that the damping ratio of actual piping system with thermal insulation is at least 1% for all size diameter piping

  13. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

    DEFF Research Database (Denmark)

    Kachmar, Ayman

    2010-01-01

    This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied ...

  14. Fine structure of the lowest Landau level in suspended trilayer graphene

    NARCIS (Netherlands)

    van Elferen, H. J.; Veligura, A.; Tombros, N.; Kurganova, E. V.; van Wees, B. J.; Maan, J. C.; Zeitler, U.

    2013-01-01

    Magnetotransport experiments on ABC-stacked suspended trilayer graphene reveal a complete splitting of the 12-fold degenerated lowest Landau level, and, in particular, the opening of an exchange-driven gap at the charge neutrality point. A quantitative analysis of distinctness of the quantum Hall

  15. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  16. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  17. Application of small panel damping measurements to larger walls

    Science.gov (United States)

    Hastings, Mardi C.; Godfrey, Richard; Babcock, G. Madison

    1996-05-01

    Damping properties of a viscoelastic material were determined using a standard resonant beam technique. The damping material was then applied to 1 by 2 foot gypsum panels in a constrained layer construction. Damping loss factors in panels with and without the constrained layer were determined based on reverberation times after excitation at third-octave band center frequencies. The constrained damping layer had been designed to increase damping by an order of magnitude above that of a single gypsum panel at 2000 Hz; however, relative to a gypsum panel of the same overall thickness as the panel with the constrained layer, loss factors increased only by a factor of three to five. Next modal damping loss factors in 9 by 14 foot gypsum single and double walls were calculated from the experimentally determined quality factor for each modal resonance. Results showed that below 2500 Hz, modes in 1 by 2 foot gypsum panels had nearly the same damping loss factors as modes in a 9 by 14 foot gypsum wall of the same thickness; however, loss factors for the wall were an order of magnitude lower than those of the 1 by 2 foot panels at frequencies above 2500 Hz, the coincidence frequency for 5/8-inch thick gypsum plates. Thus it was inconclusive whether or not damping loss factors measured using small panels could be used to estimate the effect of a constrained damping layer on transmission loss through a 9 by 14 foot wall unless boundary conditions and modal frequencies were the same for each size.

  18. Controlled damping of a physical pendulum: experiments near critical conditions

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I; Bol, Alfredo

    2006-01-01

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions

  19. Hysteresis force loss and damping properties in a practical magnet-superconductor maglev test vehicle

    International Nuclear Information System (INIS)

    Yang Wenjiang; Liu Yu; Wen Zheng; Chen Xiaodong; Duan Yi

    2008-01-01

    In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs

  20. Partially filled Landau level at even denominators: A vortex metal with a Berry phase

    Science.gov (United States)

    You, Yizhi

    2018-04-01

    We develop a vortex metal theory for a partially filled Landau level at ν =1/2 n whose ground state contains a composite Fermi surface formed by the vortex of electrons. In the projected Landau-level limit, the composite Fermi surface contains a -π/n Berry phase. Such a fractional Berry phase is a consequence of Landau-level projection which produces the Girvin-MacDonald-Platzman [S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986), 10.1103/PhysRevB.33.2481] guiding center algebra and embellishes an anomalous velocity to the equation of motion for the vortex metal. Further, we investigate a particle-hole symmetric bilayer system with ν1=1/2 n and ν2=1 -1/2 n at each layer, and demonstrate that the -π/n Berry phase on the composite Fermi surface leads to the suppression of 2 kf backscattering between the particle-hole partner bilayer, which could be a smoking gun to detect the fractional Berry phase. We also mention various instabilities and competing orders in such bilayer systems, including a Z4 n topological order phase driven by quantum criticality.

  1. Onset of chaos in Josephson junctions with intermediate damping

    International Nuclear Information System (INIS)

    Yao, X.; Wu, J.Z.; Ting, C.S.

    1990-01-01

    By use of the analytical solution of the Stewart-McCumber equation including quadratic damping and dc bias, the Melnikov method has been extended to the parameter regions of intermediate damping and dc bias for the Josephson junctions with quadratic damping and with linear damping and cosφ term. The comparison between the thresholds predicted by the Melnikov method and that derived from numerical simulation has been studied. In addition, the validity conditions for the Melnikov threshold are also discussed

  2. Effect of domain variations on damping capacity of Fe-16Cr-2.5Mo alloy solution annealed at 1373 K and 1473 K

    International Nuclear Information System (INIS)

    Xu Yonggang; Ning Li; Wen Yuhua

    2011-01-01

    The damping capacity of Fe-16Cr-2.5Mo alloy heat-treated at different temperatures was investigated. A water-based magnetic fluid was used to analyze domain morphologies. The experimental results show that there is a maximum value of damping capacity when the solution annealing temperature of the material is 1373 K. When the annealing temperature is higher, the damping capacity of the alloy drops quickly. The change in damping capacity with the solution annealing temperature is believed to be due to different domain morphologies. The domains are larger and the domain-wall area is smaller in the alloy annealed at a higher temperature. The wedge-shaped domains acted as obstacles for pinning the domain-wall movement, even though movement of the 90 o domains is easy. As a result, the damping capacity of the alloys drops when the annealing temperature is very high. - Research Highlights: →The change in damping capacity with solution annealing temperature is believed to be due to different domain morphologies. →The domains are larger and the domain-wall area is smaller in the alloy annealed at a higher temperature. →The wedge-shaped domains acted as obstacles for pinning the domain-wall movement, even though movement of the 90 o domains is easy.

  3. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles

    Science.gov (United States)

    Ottander, John A.; Hall, Robert A.; Powers, J. F.

    2018-01-01

    A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.

  4. Damping test results for straight sections of 3-inch and 8-inch unpressurized pipes

    International Nuclear Information System (INIS)

    Ware, A.G.; Thinnes, G.L.

    1984-04-01

    EG and G Idaho is assisting the Nuclear Regulatory Commission and the Pressure Vessel Research Committee in supporting a final position on revised damping values for structural analyses of nuclear piping systems. As part of this program, a series of vibrational tests on unpressurized 3-in. and 8-in. Schedule 40 carbon steel piping was conducted to determine the changes in structural damping due to various parametric effects. The 33-ft straight sections of piping were supported at the ends. Additionally, intermediate supports comprising spring, rod, and constant-force hangers, as well as a sway brace and snubbers, were used. Excitation was provided by low-force-level hammer impacts, a hydraulic shaker, and a 50-ton overhead crane for snapback testing. Data was recorded using acceleration, strain, and displacement time histories. This report presents test results showing the effect of stress level and type of supports on structural damping in piping

  5. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...... rotation profiles are seen when heating at the second harmonic cyclotron frequency of He-3 and with mode conversion at high concentrations of He-3. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature...

  6. Damping in building structures during earthquakes: test data and modeling

    International Nuclear Information System (INIS)

    Coats, D.W. Jr.

    1982-01-01

    A review and evaluation of the state-of-the-art of damping in building structures during earthquakes is presented. The primary emphasis is in the following areas: 1) the evaluation of commonly used mathematical techniques for incorporating damping effects in both simple and complex systems; 2) a compilation and interpretation of damping test data; and 3) an evaluation of structure testing methods, building instrumentation practices, and an investigation of rigid-body rotation effects on damping values from test data. A literature review provided the basis for evaluating mathematical techiques used to incorporate earthquake induced damping effects in simple and complex systems. A discussion on the effectiveness of damping, as a function of excitation type, is also included. Test data, from a wide range of sources, has been compiled and interpreted for buidings, nuclear power plant structures, piping, equipment, and isolated structural elements. Test methods used to determine damping and frequency parameters are discussed. In particular, the advantages and disadvantages associated with the normal mode and transfer function approaches are evaluated. Additionally, the effect of rigid-body rotations on damping values deduced from strong-motion building response records is investigated. A discussion of identification techniques typically used to determine building parameters (frequency and damping) from strong motion records is included. Finally, an analytical demonstration problem is presented to quantify the potential error in predicting fixed-base structural frequency and damping values from strong motion records, when rigid-body rotations are not properly accounted for

  7. An experimental study on damping characteristics of thermal insulation

    International Nuclear Information System (INIS)

    Chiba, Toshio; Kobayashi, Hiroe; Aida, Shigekazu; Wada, Hidetoshi

    1984-01-01

    The damping ratio is one of the most important parameters in seismic analysis of piping systems in a nuclear power plant. Thermal insulation is considered contributing to the damping characteristics of piping systems. At the 6th SMiRT and 1983 ASME PVP conferences, the damping effect and damping estimating formula were presented as a result of regression analysis using the component test data for 2,4 and 8B diameter piping and the proof model test for 1,2 and 4B piping system. In this study, in order to clarify the damping characteristics of a larger diameter piping than 8B,the component test of 12 and 20B diameter piping with insulation was performed. From the results of these tests and the data survey of the previous papers, it was found that the damping ratio of anactual piping system with thermal insulation is at minimum 1% for all size diameter piping. (author)

  8. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.

    Science.gov (United States)

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2012-04-04

    Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd

  9. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  10. Research on the Multilayer Free Damping Structure Design

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2018-01-01

    Full Text Available The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specific damping structures, the mathematical model is verified through ABAQUS. With the given structural loss factor (η≥2 and the layer number (n=3,4,5,6, 34 kinds of multilayer free damping structures are then presented. The study is meant to provide a more flexible and more diverse design solution for multilayer free damping structures.

  11. Robinson's radiation damping sum rule: Reaffirmation and extension

    International Nuclear Information System (INIS)

    Mane, S.R.

    2011-01-01

    Robinson's radiation damping sum rule is one of the classic theorems of accelerator physics. Recently Orlov has claimed to find serious flaws in Robinson's proof of his sum rule. In view of the importance of the subject, I have independently examined the derivation of the Robinson radiation damping sum rule. Orlov's criticisms are without merit: I work through Robinson's derivation and demonstrate that Orlov's criticisms violate well-established mathematical theorems and are hence not valid. I also show that Robinson's derivation, and his damping sum rule, is valid in a larger domain than that treated by Robinson himself: Robinson derived his sum rule under the approximation of a small damping rate, but I show that Robinson's sum rule applies to arbitrary damping rates. I also display more concise derivations of the sum rule using matrix differential equations. I also show that Robinson's sum rule is valid in the vicinity of a parametric resonance.

  12. Self-consistent Ginzburg-Landau theory for transport currents in superconductors

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2012-01-01

    We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in princi...... in principle also be used for general geometries in three-dimensional superconductors....

  13. Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels

    Science.gov (United States)

    Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin; Ilan, Roni

    2016-10-01

    Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum space and unique spectral and transport properties follow. In this work, we study the effect of a space-dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial magnetic field B5 is observable through an enhancement of the conductivity as σ ˜B52 due to an underlying chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different spatial profiles of B5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can be reinterpreted as n =0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We conclude by discussing how our findings can be probed experimentally.

  14. High-temperature response functions and the non-Abelian Kubo formula

    International Nuclear Information System (INIS)

    Jackiw, R.; Nair, V.P.

    1993-01-01

    We describe the relationship between time-ordered and retarded response functions in a plasma. We obtain an expression, including the proper iε prescription, for the induced current due to hard thermal loops in a non-Abelian theory, thus giving the non-Abelian generalization of the Kubo formula. The result is closely related to the eikonal for a Chern-Simons theory and is relevant for a guage-invariant description of Landau damping in the quark-gluon plasma at high temperature

  15. ABOUT SOME APPROXIMATIONS TO THE CLOSED SET OF NOT TRIVIAL SOLUTIONS OF THE EQUATIONS OF GINZBURG - LANDAU

    Directory of Open Access Journals (Sweden)

    A. A. Fonarev

    2014-01-01

    Full Text Available Possibility of use of a projective iterative method for search of approximations to the closed set of not trivial generalised solutions of a boundary value problem for Ginzburg - Landau's equations of the phenomenological theory of superconduction is investigated. The projective iterative method combines a projective method and iterative process. The generalised solutions of a boundary value problem for Ginzburg - Landau's equations are critical points of a functional of a superconductor free energy.

  16. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  17. Design, Fabrication, and Properties of High Damping Metal Matrix Composites—A Review

    Directory of Open Access Journals (Sweden)

    Qianfeng Fang

    2009-08-01

    Full Text Available Nowadays it is commonly considered that high damping materials which have both the good mechanical properties as structural materials and the high damping capacity for vibration damping are the most direct vibration damping solution. In metals and alloys however, exhibiting simultaneously high damping capacity and good mechanical properties has been noted to be normally incompatible because the microscopic mechanisms responsible for internal friction (namely damping capacity are dependent upon the parameters that control mechanical strength. To achieve a compromise, one of the most important methods is to develop two-phase composites, in which each phase plays a specific role: damping or mechanical strength. In this review, we have summarized the development of the design concept of high damping composite materials and the investigation of their fabrication and properties, including mechanical and damping properties, and suggested a new design concept of high damping composite materials where the hard ceramic additives exhibit high damping capacity at room temperature owing to the stress-induced reorientation of high density point defects in the ceramic phases and the high damping capacity of the composite comes mainly from the ceramic phases.

  18. Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters

    Directory of Open Access Journals (Sweden)

    Iman Lorzadeh

    2016-08-01

    Full Text Available Inductive-capacitive-inductive (LCL-type line filters are widely used in grid-connected voltage source inverters (VSIs, since they can provide substantially improved attenuation of switching harmonics in currents injected into the grid with lower cost, weight and power losses than their L-type counterparts. However, the inclusion of third order LCL network complicates the current control design regarding the system stability issues because of an inherent resonance peak which appears in the open-loop transfer function of the inverter control system near the control stability boundary. To avoid passive (resistive resonance damping solutions, due to their additional power losses, active damping (AD techniques are often applied with proper control algorithms in order to damp the LCL filter resonance and stabilize the system. Among these techniques, the capacitor current feedback (CCF AD has attracted considerable attention due to its effective damping performance and simple implementation. This paper thus presents a state-of-the-art review of resonance and stability characteristics of CCF-based AD approaches for a digitally-controlled LCL filter-based grid-connected inverter taking into account the effect of computation and pulse width modulation (PWM delays along with a detailed analysis on proper design and implementation.

  19. Damping element for reducing the vibration of an airfoil

    Science.gov (United States)

    Campbell, Christian X; Marra, John J

    2013-11-12

    An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.

  20. A Resonant Damping Study Using Piezoelectric Materials

    Science.gov (United States)

    Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.

    2008-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.