WorldWideScience

Sample records for lamproite-carbonatite complexes petrology

  1. Mineralogy and petrology of cretaceous subsurface lamproite sills, southeastern Kansas, USA

    Science.gov (United States)

    Cullers, R.L.; Dorais, M.J.; Berendsen, P.; Chaudhuri, Sambhudas

    1996-01-01

    Cores and cuttings of lamproite sills and host sedimentary country rocks in southeastern Kansas from up to 312 m depth were analyzed for major elements in whole rocks and minerals, certain trace elements in whole rocks (including the REE) and Sr isotopic composition of the whole rocks. The lamproites are ultrapotassic (K2O/Na2O = 2.0-19.9), alkalic [molecular (K2O/Na2O)/Al2O3 = 1.3-2.8], enriched in mantle-incompatible elements (light REE, Ba, Rb, Sr, Th, Hf, Ta) and have nearly homogeneous initial Sr isotopic compositions (0.707764-0.708114). These lamproites could have formed by variable degrees of partial melting of harzburgite country rock and cross-cutting veins composed of phlogopite, K-Ti richterite, titanite, diopside, K-Ti silicates, or K-Ba-phosphate under high H2O/CO2 ratios and reducing conditions. Variability in melting of veins and wall rock and variable composition of the metasomatized veins could explain the significantly different composition of the Kansas lamproites. Least squares fractionation models preclude the derivation of the Kansas lamproites by fractional crystallization from magmas similar in composition to higher silica phlogopite-sanidine lamproites some believe to be primary lamproite melts found elsewhere. In all but one case, least squares fractionation models also preclude the derivation of magmas similar in composition to any of the Kansas lamproites from one another. A magma similar in composition to the average composition of the higher SiO2 Ecco Ranch lamproite (237.5-247.5 m depth) could, however, have marginally crystallized about 12% richterite, 12% sanidine, 7% diopside and 6% phlogopite to produce the average composition of the Guess lamproite (305-312 m depth). Lamproite from the Ecco Ranch core is internally fractionated in K2O, Al2O3, Ba, MgO, Fe2O3, Co and Cr most likely by crystal accumulation-removal of ferromagnesian minerals and sanidine. In contrast, the Guess core (305-312 m depth) has little fractionation

  2. The Seis Lagos Carbonatite Complex

    International Nuclear Information System (INIS)

    Issler, R.S.; Silva, G.G. da.

    1980-01-01

    The Seis Lagos Carbonatite Complex located about 840 Km from Manaus, on the northwestern part of the Estado do Amazonas, Brazil is described. Geological reconnaissance mapping by Radam Project/DNPM, of the southwestern portion of the Guianes Craton, determined three circular features arranged in a north-south trend and outcroping as thick lateritic radioactive hills surrounded by gneisses and mignatites of the peneplained Guianense Complex. Results of core drilling samples analysis of the Seis Lagos Carbonatite Complex are compared with some igneous rocks and limestones of the world on the basis of abundance of their minor and trace elements. Log-log variation diagram of strontium and barium in carbonatite and limestone, exemplifield by South Africa and Angola carbonatites, are compared with the Seis Lagos Carbonatite Complex. The Seis Lagos Carbonatite Complex belongs to the siderite-soevite type. (E.G.) [pt

  3. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    Science.gov (United States)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  4. Carbonatite ring-complexes explained by caldera-style volcanism.

    Science.gov (United States)

    Andersson, Magnus; Malehmir, Alireza; Troll, Valentin R; Dehghannejad, Mahdieh; Juhlin, Christopher; Ask, Maria

    2013-01-01

    Carbonatites are rare, carbonate-rich magmatic rocks that make up a minute portion of the crust only, yet they are of great relevance for our understanding of crustal and mantle processes. Although they occur in all continents and from Archaean to present, the deeper plumbing system of carbonatite ring-complexes is usually poorly constrained. Here, we show that carbonatite ring-complexes can be explained by caldera-style volcanism. Our geophysical investigation of the Alnö carbonatite ring-complex in central Sweden identifies a solidified saucer-shaped magma chamber at ~3 km depth that links to surface exposures through a ring fault system. Caldera subsidence during final stages of activity caused carbonatite eruptions north of the main complex, providing the crucial element to connect plutonic and eruptive features of carbonatite magmatism. The way carbonatite magmas are stored, transported and erupt at the surface is thus comparable to known emplacement styles from silicic calderas.

  5. Targeting heavy rare earth elements in carbonatite complexes

    Science.gov (United States)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  6. Carbon and oxygen isotopes in carbonatites from Puna, Jujuy and Salta, Argentina

    International Nuclear Information System (INIS)

    Zappettini, Eduardo O.; Rubiolo, Daniel

    1998-01-01

    δ 13 and δ 18 O data from carbonatites indicate that bodies formed by crystallization of carbonate magma with subsequent formation of metasomatic and hydrothermal carbonatitic veins. The isotopic data are consistent with the available geochemical and petrologic information. (author)

  7. The Relationship Between Carbonatitic, Melilititic and Potassic Trachytic Magma Types at the Saltpeterkop Carbonatite Complex, Sutherland, South Africa

    Science.gov (United States)

    Janney, P. E.; Marageni, M.

    2016-12-01

    The 74 Ma Saltpeterkop Carbonatite Complex near Sutherland, South Africa, is unusual in that it is one of the few southern African carbonatites with preserved volcanic features, including a 1 km-diameter tuff ring composed of silicified volcaniclastic breccia. Around the complex, the regionally flat-lying Karoo strata have been dramatically upwarped, with dips away from the Complex as high as 45°. Further, within about a 10 km radius of the center of the complex are hundreds of dikes, sills and diatremes composed mainly of carbonatite, potassic trachyte and olivine melilitite, with the spatial density of these intrusions decreasing with increasing distance. We have recently completed an in-depth geochemical reconnaissance of the Saltpeterkop complex, involving field sampling and whole-rock major and trace element analysis, with radiogenic and stable isotope measurements in progress. While the association with potassic trachytes is relatively common in southern African carbonatites, the presence of significant amounts of primitive olivine melilitite (30-40 wt.% SiO2, Mg# = 61-74) is unusual. Our preliminary model for the origin of the complex involves (1) ascent and intrusion of a mantle-derived carbonated and potassic magma into the mid-to upper crust, (2a) separation of an alkali carbonatite phase from this magma, resulting in intensive local fenitization and partial melting of mid-crustal rocks (thereby forming potassic trachytes), and possibly triggering the initial eruption, (2b) small amounts of primitive, but now less potassic, mantle-derived magma are emplaced as olivine melilitite dikes and diatremes, and (3) differentiation of the mantle-derived magma to generate significant quantities of mainly calcio- and ferro-carbonatite magmas emplaced as dykes and sills.

  8. Proterozoic kimberlites and lamproites and a preliminary age for the Argyle lamproite pipe, Western Australia

    International Nuclear Information System (INIS)

    Skinner, E.M.W.; Bristow, J.W.; Smith, C.B.; Scott Smith, B.H.; Dawson, J.B.

    1985-01-01

    The Argyle pipe occurring in the East Kimberley Province of Western Australia is a unique, highly-diamondiferous lamproite. Although it resembles other lamproites located in the West Kimberley Province with respect to its setting, structure, petrography and geochemistry, it is probably Proterozoic in age and hence substantially older than Tertiary occurrences of the West Kimberley Province. Rb-Sr measurements on whole rock and phlogopite samples from magmatic olivine-phlogopite lamproite, reveals a two point model age of 1126 +- 9 Ma for the Argyle pipe. This age is consistent with ages of other, similar volcanic igneous rocks occurring in several localities worldwide. The widespread occurrence of Proterozoic kimberlites and lamproites suggests that this was an important period of worldwide alkalic intrusive activity

  9. Evolution of pyrochlore composition in a carbonatite complex of the Eastern European platform

    International Nuclear Information System (INIS)

    Nechelyastnov, G.N.; Pozharitskaya, L.K.

    1986-01-01

    X-ray microanalysis is used to study 29 pyrochlore group mineral samples of the East European platform carbonatite complex. Pyrochlore sequential evolution: frm high in tantalum and uranium, passing uranium poor in tantalum to low in tantalum and uranium and also an increased content of iron, manganese, magnesium and lead, is shown. Calcium, niobium, tantalum non-homogeneous distribution in pyrochlore grains is detected. Peculiarities of pyrochlore group mineral composition reflect the effect of specific geologic-structural position of the East European platform carbonatites high depth of formation and intensive development of deformations) on general evolution for pyrochlore of carbonatite complexes and related to it pyrochlore specific nature, in particular, high uranium and low niobium contents

  10. Hot N Sour Mantle Soup on Indian Plate During Cretaceous- Evidence from Clumped Isotope and Geochemical Studies of Sung Valley Carbonatite, India

    Science.gov (United States)

    Ghosh, P.; Banerjee, Y.; Tiwari, A.; Srivastava, R. K.

    2015-12-01

    Geological processes involved in the formation of Carbonatite rocks are complex and so is the understanding about its formational temperature. Fluid inclusion studies (1) on Carbonatite and their associated Ijolites showed a homogenization temperature of 1000-1100°C for Ijoltes and a temperature (T) range of 200-600°C was assigned to the carbonatite melts. Liquid immiscibility process is held responsible for the origin of parental carbonated (ijolititic/ nephelinitic) magma. The homogenization T signifies about a time interval during which there must be a considerable amount of T dropdown soon after the formation of Ijolite and subsequent crystallization of the residual carbonatite magma. However the lack of information about the T of the primary carbonated melt remains as an important area of petrological research. Experimental studies suggest a T range of 950-1400°C for the primary carbonate melt (2). Advent of Clumped isotope thermometry (3) allowed independent method for estimation of the formational T and provide avenues to derive composition of CO2 in equilibrium with carbonate melt. Earlier attempt involving carbonatites from several locations (4) captured range of T between 83°-416°C . Here we present our observation on calcite growth T in the carbonatites from the Cretaceous Sung valley ultramafic-alkaline-carbonatite complex. Based on stable C,O isotope study and Sr, Nd isotopic composition a mantle origin- genetically linked with the Kerguelen plume was proposed (5). Clumped isotope study on the same samples revealed consistent C and O isotope compositions, providing Δ47 values ranging from 0.32 to 0.48. δ13C and δ18O (in VPDB) values of the present study falls within the "Primary Igneous Carbonatite Field" (6). Using high T thermometry equation (7) we obtained a T range of 137-474 °C for the calcite present in the samples. The T recorded in our study is lower than that deduced experimental values of 960-625°C at 0.1 GPa (8) and fluid inclusion

  11. Rb-Sr geochronology of some Miocene West Australian lamproites

    International Nuclear Information System (INIS)

    Allsopp, H.L.; Scott Smith, B.H.; Danchin, R.V.

    1985-01-01

    Rb-Sr ages are presented for four lamproite intrusions (Mount North, Old Leopold Hill, Mount Rose and Seltrust Pipe 2) located in the west Kimberley region of West Australia. The data are in agreement with the early Miocene ages previously obtained for the lamproites of this area. The lamproites are characterized by high initial-Sr ratios, indicative of derivation from an enriched source. Localized and regional mantle heterogeneity is indicated by new and existing data

  12. Geochemistry of Precambrian carbonatite complexes of India : present status of, and gaps in our knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Udas, G R [Department of Atomic Energy, Hyderabad (India). Atomic Minerals Div.

    1974-01-01

    Carbonatites of Precambrian age occur at Newania and Mundwara in Rajasthan, Sevathur and Hogenakal in Tamil Nadu, Kunavaram in Andhra Pradesh, and Kollegal in Karnataka. The Newia carvonatite is 952 +- 24 m.v. old (K-Ar age of an alkali amplibole), and the Sevathur carbontite is 720 +- 30 m.y. old (K-Ar age of a biotite). Although comprehensive geochemical studies involving major, minor, and trace elements, and carbon, oxygen and strontium isotopes have been undertaken on the 37.5 +- 2.5 m.y. old Eocene carbonatite complex at Amba Dongar, Gujarat, geochemical studies on the Precambrian carbonatites of India have been confined only to routine determinations of selected elements like Sr, Ba, Y, Ce, La, Nb, Zr, Th, Mn, Ti, F and P to demonstrate their carbonatitic affinites. Except for two K-Ar ages, and for some limited trace element data, no attempts have been made to elucidate the chronologic and petrogenetic evolution of these Precambrian carbonatites by the application of Rb-Sr, K-Ar, and U-Pb geochronometry, critical element ratios, stable and radiogenic isotope abundances, and geothermometry. Basic researches aimed at formulating geochemical criteria for locating commercially exploitable economic Precambrian carbonatite complexes are yet to be initiated in India. (auth)

  13. Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India

    Science.gov (United States)

    Ackerman, Lukáš; Magna, Tomáš; Rapprich, Vladislav; Upadhyay, Dewashish; Krátký, Ondřej; Čejková, Bohuslava; Erban, Vojtěch; Kochergina, Yulia V.; Hrstka, Tomáš

    2017-07-01

    Two Neoproterozoic carbonatite suites of spatially related carbonatites and associated silicate alkaline rocks from Sevattur and Samalpatti, south India, have been investigated in terms of petrography, chemistry and radiogenic-stable isotopic compositions in order to provide further constraints on their genesis. The cumulative evidence indicates that the Sevattur suite is derived from an enriched mantle source without significant post-emplacement modifications through crustal contamination and hydrothermal overprint. The stable (C, O) isotopic compositions confirm mantle origin of Sevattur carbonatites with only a modest difference to Paleoproterozoic Hogenakal carbonatite, emplaced in the same tectonic setting. On the contrary, multiple processes have shaped the petrography, chemistry and isotopic systematics of the Samalpatti suite. These include pre-emplacement interaction with the ambient crustal materials with more pronounced signatures of such a process in silicocarbonatites. Calc-silicate marbles present in the Samalpatti area could represent a possible evolved end member due to the inability of common silicate rocks (pyroxenites, granites, diorites) to comply with radiogenic isotopic constraints. In addition, Samalpatti carbonatites show a range of C-O isotopic compositions, and δ13CV-PDB values between + 1.8 and + 4.1‰ found for a sub-suite of Samalpatti carbonatites belong to the highest values ever reported for magmatic carbonates. These heavy C-O isotopic signatures in Samalpatti carbonatites could be indicative of massive hydrothermal interaction with carbonated fluids. Unusual high-Cr silicocarbonatites, discovered at Samalpatti, seek their origin in the reaction of pyroxenites with enriched mantle-derived alkali-CO2-rich melts, as also evidenced by mantle-like O isotopic compositions. Field and petrographic observations as well as isotopic constraints must, however, be combined with the complex chemistry of incompatible trace elements as indicated

  14. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma

    Science.gov (United States)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh; Shukla, Anil D.; Rai, Vinai K.; Kumar, Alok; Awasthi, Neeraj; Smitha, R. S.; Panda, Dipak K.

    2013-12-01

    The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm-143Nd, 207Pb-206Pb and 40Ar-39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr-Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb-206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261-273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite-magnesite-ankerite-Cr-rich magnetite-magnesio-arfvedsonite-pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio-carbonatite

  15. Between carbonatite and lamproite—Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes

    Science.gov (United States)

    Tappe, Sebastian; Foley, Stephen F.; Kjarsgaard, Bruce A.; Romer, Rolf L.; Heaman, Larry M.; Stracke, Andreas; Jenner, George A.

    2008-07-01

    induced volatile-fluxed fusion of the MARID-type veins and the cold peridotite substrate. Isotopic modelling suggests that only 5-12% trace element contribution from such geochemically extreme MARID-type material is required to produce the observed compositional shift from the isotopically most depleted aillikites/carbonatites towards enriched mela-aillikites. We conclude that cold cratonic mantle lithosphere can host several generations of contrasting vein assemblages, and that each may have formed during past tectonic and magmatic events under distinctively different physicochemical conditions. Although cratonic MARID-type and carbonate-bearing veins in peridotite can be the respective sources for lamproite and carbonatite magmas when present as the sole metasome, their concomitant fusion in a complex source region may give rise to a whole new variety of deep volatile-rich magmas and we suggest that orangeites (formerly Group 2 kimberlites), kamafugites, and certain types of ultramafic lamprophyre are formed in this manner.

  16. Carbon and oxygen isotopes in carbonatites from Puna, Jujuy and Salta, Argentina; Isotopos de carbono y oxigeno en carbonatitas en la Puna Oriental, Provincias de Jujuy y Salta, Republica Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Zappettini, Eduardo O; Rubiolo, Daniel [Servicio Geologico Minero Argentino (SEGEMAR), Buenos Aires (Argentina). Instituto de Geologia y Recursos Naturales; Hubberten, Hans W [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Bremerhaven (Germany)

    1998-07-01

    {delta}{sup 13} and {delta}{sup 18}O data from carbonatites indicate that bodies formed by crystallization of carbonate magma with subsequent formation of metasomatic and hydrothermal carbonatitic veins. The isotopic data are consistent with the available geochemical and petrologic information. (author)

  17. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    Science.gov (United States)

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  18. Southern African Phanerozoic Carbonatites: Perspectives on Their Sources and Petrogeneses

    Science.gov (United States)

    Janney, P. E.; Ogungbuyi, P. I.; Marageni, M.; Harris, C.; Reid, D. L.

    2017-12-01

    Found worldwide, carbonatites are particularly numerous in southern Africa and reflect one expression of abundant intraplate alkaline magmatism of Proterozoic to Paleogene age in the region. Phanerozoic southern African carbonatites tend to be concentrated near the margins of the continent (especially the western margin), and near the East African Rift, and often occur in discrete magmatic lineations also containing kimberlites, melilitites, nephelinites and differentiated silica-undersaturated rocks such as phonolites and syenites. We present a synthesis of geochemical and radiogenic and stable isotope results for southern African carbonatites, including new trace element and isotope data from four Phanerozoic carbonatite complexes in South Africa and Namibia: Marinkas Quellen (MQ; southernmost Namibia, ≈525 Ma), Saltpeterkop (SPK; near Sutherland, South Africa, 74 Ma), Zandkopsdrift (ZKD; near Garies, South Africa, 55 Ma, a major REE deposit in development), and Dicker Willem (DW; near Aus, southern Namibia, 49 Ma). All are located in the Early-mid Proterozoic Namaqua-Natal mobile belt. These carbonatite complexes are each associated with linear, NE-SW oriented magmatic provinces, i.e., the Kuboos-Bremen Line of felsic alkaline intrusions and ultramafic lamprophyres (MQ); the Western Cape olivine melilitite province (SPK); the Namaqualand-Bushmanland-Warmbad province of olivine melilitites and kimberlites (ZKD) and the Schwarzeberg-Klinghardt-Gibeon swarm of nephelinites, phonolites and kimberlites (DW), the latter three provinces are of Paleogene to Late Cretaceous age and are clearly age progressive. Each of the four carbonatite complexes contain silica-undersaturated igneous rocks such as potassic trachyte (MQ, SPK & DW), alkaline lamprophyre (ZKD), ijolite (MQ & DW) and olivine melilitite (ZKD and SPK). Most also contain hybrid silicate-carbonate igneous rocks with <35 wt.% SiO2 and ≥20 wt.% CO2 such as nepheline sövite (DW), aillikite (ZKD) and other

  19. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    Science.gov (United States)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  20. The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic vs xenocrystic origin

    Science.gov (United States)

    Shaikh, Azhar M.; Kumar, Satya P.; Patel, Suresh C.; Thakur, Satyajeet S.; Ravi, Subramanian; Behera, Duryadhan

    2018-03-01

    Distinctly different groundmass mineralogy characterise the hypabyssal facies, Mesoproterozoic diamondiferous P3 and P4 intrusions from the Wajrakarur Kimberlite Field, southern India. P3 is an archetypal kimberlite with macrocrysts of olivine and phlogopite set in a groundmass dominated by phlogopite and monticellite with subordinate amounts of serpentine, spinel, perovskite, apatite, calcite and rare baddeleyite. P4 contains mega- and macrocrysts of olivine set in a groundmass dominated by clinopyroxene and phlogopite with subordinate amounts of serpentine, spinel, perovskite, apatite, and occasional gittinsite, and is mineralogically interpreted as an olivine lamproite. Three distinct populations of olivine, phlogopite and clinopyroxene are recognized based on their microtextural and compositional characteristics. The first population includes glimmerite and phlogopite-clinopyroxene nodules, and Mg-rich olivine macrocrysts (Fo 90-93) which are interpreted to be derived from disaggregated mantle xenoliths. The second population comprises macrocrysts of phlogopite and Fe-rich olivine (Fo 81-89) from P3, megacrysts and macrocrysts of Fe-rich olivine (Fo 85-87) from P4 and a rare olivine-clinopyroxene nodule from P4 which are suggested to have a genetic link with the precursor melt of the respective intrusions. The third population represents clearly magmatic minerals such as euhedral phenocrysts of Fe-rich olivine (Fo 85-90) crystallised at mantle depths, and olivine overgrowth rims formed contemporaneously with groundmass minerals at crustal levels. Close spatial association and contemporaneous emplacement of P3 kimberlite and P4 lamproite is explained by a unifying petrogenetic model which involves the interaction of a silica-poor carbonatite melt with differently metasomatised wall rocks in the lithospheric mantle. It is proposed that the metasomatised wall rock for lamproite contained abundant MARID-type and phlogopite-rich metasomatic veins, while that for

  1. Petrogenesis of Variscan lamproites of the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Krmíček, Lukáš; Romer, R. L.; Glodny, J.

    2015-01-01

    Roč. 17, - (2015) ISSN 1607-7962. [European Geosciences Union General Assembly. 12.04.2015-17.04.2015, Vienna] Institutional support: RVO:67985831 Keywords : orogenic lamproites * mineralogy * geochemistry * Sr-Nd-Pb-Li isotopes Subject RIV: DD - Geochemistry

  2. Geochemistry and petrogenesis of lamproites, late cretaceous age, Woodson County, Kansas, U.S.A.

    Science.gov (United States)

    Cullers, R.L.; Ramakrishnan, S.; Berendsen, P.; Griffin, T.

    1985-01-01

    Lamproite sills and their associated sedimentary and contact metamorphic rocks from Woodson County, Kansas have been analyzed for major elements, selected trace elements, and strontium isotopic composition. These lamproites, like lamproites elsewhere, are alkalic (molecular K2O + Na2O Al2O3 = 1.6-2.6), are ultrapotassic ( K2O Na2O = 9.6-150), are enriched in incompatible elements (LREE or light rare-earth elements, Ba, Th, Hf, Ta, Sr, Rb), and have moderate to high initial strontium isotopic compositions (0.7042 and 0.7102). The silica-saturated magma (olivine-hypersthene normative) of the Silver City lamproite could have formed by about 2 percent melting of a phlogopite-garnet lherzolite under high H2O CO2 ratios in which the Iherzolite was enriched before melting in the incompatible elements by metasomatism. The Rose Dome lamproite probably formed in a similar fashion although the extreme alteration due to addition of carbonate presumably from the underlying limestone makes its origin less certain. Significant fractional crystallization of phases that occur as phenocrysts (diopside, olivine, K-richterite, and phlogopite) in the Silver City magma and that concentrate Co, Cr, and Sc are precluded as the magma moved from the source toward the surface due to the high abundances of Co, Cr, and Sc in the magma similar to that predicted by direct melting of the metasomatized Iherzolite. Ba and, to a lesser extent, K and Rb and have been transported from the intrusions at shallow depth into the surrounding contact metamorphic zone. The Silver City lamproite has vertical fractionation of some elements due either to volatile transport or to variations in the abundance of phenocrysts relative to groundmass most probably due to flow differentiation although multiple injection or fractional crystallization cannot be conclusively rejected. ?? 1985.

  3. Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region

    Science.gov (United States)

    Lepore, Giovanni O.; Bindi, Luca; Pedrazzi, Giuseppe; Conticelli, Sandro; Bonazzi, Paola

    2017-08-01

    crystallisation conditions. The obtained data help to discriminate among lamproite-like rocks formed within a complex geodynamic framework but still related to a destructive tectonic margin and evidence different trends for micas from the youngest Torre Alfina (Northern Latium) lamproites, referred to the Apennine orogeny and those of the older lamproites from Orciatico, Montecatini Val di Cecina (Tuscany), Western Alps, and Corsica, the latter referred to the Alpine orogeny. Phlogopite crystals from the older lamproites fall within the compositional and structural field of worldwide phlogopites from both within-plate and subduction-related settings. Phlogopite from the Plio-Pleistocene lamproite-like occurrence in Tuscany and Northern Latium, despite crystals with low Mg# of the Torre Alfina rock plot well within the general field of the other crystals in less evolved samples, follows a different evolution trend similar to that of shoshonites from Tuscany and Northern Latium. On this basis, we argue that the observed differences are inherited by slight differences in the magma compositions that are related to different genetic and evolution pathways.

  4. Trace element geochemistry of Amba Dongar carbonatite complex ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the present study we have made an attempt to accomplish this by modeling the trace element con- tents of carbonatites ... fact that they represent a very small fraction of all the magmatic ... 2km north of the Narmada river in the state of. Gujarat ...

  5. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  6. Carbonatite magmatism in northeast India

    Science.gov (United States)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  7. Large igneous provinces (LIPs) and carbonatites

    Science.gov (United States)

    Ernst, Richard E.; Bell, Keith

    2010-03-01

    There is increasing evidence that many carbonatites are linked both spatially and temporally with large igneous provinces (LIPs), i.e. high volume, short duration, intraplate-type, magmatic events consisting mainly of flood basalts and their plumbing systems (of dykes, sills and layered intrusions). Examples of LIP-carbonatite associations include: i. the 66 Ma Deccan flood basalt province associated with the Amba Dongar, Sarnu-Dandali (Barmer), and Mundwara carbonatites and associated alkali rocks, ii. the 130 Ma Paraná-Etendeka (e.g. Jacupiranga, Messum); iii. the 250 Ma Siberian LIP that includes a major alkaline province, Maimecha-Kotui with numerous carbonatites, iv. the ca. 370 Ma Kola Alkaline Province coeval with basaltic magmatism widespread in parts of the East European craton, and v. the 615-555 Ma CIMP (Central Iapetus Magmatic Province) of eastern Laurentia and western Baltica. In the Superior craton, Canada, a number of carbonatites are associated with the 1114-1085 Ma Keweenawan LIP and some are coeval with the pan-Superior 1880 Ma mafic-ultramafic magmatism. In addition, the Phalaborwa and Shiel carbonatites are associated with the 2055 Ma Bushveld event of the Kaapvaal craton. The frequency of this LIP-carbonatite association suggests that LIPs and carbonatites might be considered as different evolutionary ‘pathways’ in a single magmatic process/system. The isotopic mantle components FOZO, HIMU, EM1 but not DMM, along with primitive noble gas signatures in some carbonatites, suggest a sub-lithospheric mantle source for carbonatites, consistent with a plume/asthenospheric upwelling origin proposed for many LIPs.

  8. First Report on Hawaiian Carbonatites

    OpenAIRE

    A. Rocholl; K. P. Jochum; B. Plessen; D. Rhede; R. L. Romer; R. Wirth

    2015-01-01

    Carbonatites are common in continental settings but have, so far, only been identified at two oceanic localities, the Cape Verde and Canary Islands, both resting on > 130 Ma old, thick and cool oceanic crust. Here, we report on the first carbonatites observed in a hotter and younger mid-ocean setting, occuring as xenolithic fragments in nephelinitic tuffs at Salt Lake Crater (SLC), Oahu, Hawaii. The existence of Hawaiian carbonatites has been hypothesized before from ...

  9. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    Science.gov (United States)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same

  10. Erratum to ``Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture (Southern Italy): The Monticchio Lakes Formation'' [Journal of Volcanology and Geothermal Research 78 (1997) 251 265

    Science.gov (United States)

    Stoppa, Francesco; Principe, Claudia

    1998-01-01

    The Monticchio Lakes Formation (MLF) is a newly identified carbonatite-melilitite tuff sequence which is exposed in the southwestern sector of the Vulture volcano. It is the youngest example (ca. 0.13 m.y.) of this type of volcanism in Italy, although other carbonatites of smaller volume, but with similar characteristics, have been discovered recently. This volcanic event occurred in isolation after a 0.35 m.y. period of inactivity at Vulture. The eruption produced two maar-type vents and formed tuff aprons mainly composed of dune beds of lapilli. Depositional features suggest that a dry surge mechanism, possibly triggered by CO 2 expansion, was dominant during tuff emplacement. The MLF event involved a mixture of carbonatite and melilitite liquids which were physically separated before the eruption. Abundant mantle xenoliths are direct evidence of the deep-seated origin of the parental magma and its high velocity of propagation towards the surface. Often, these nodules form the core of lapilli composed of concentric shells of melilitite and/or porphyritic carbonatite. Coarse-ash beds alternate with lapilli beds and consist of abundant lumps and spherulae of very fine-grained calcite immersed in a welded, highly compacted carbonatite matrix. Porphyritic carbonatite shells of the lapilli and fine-grained spherulae of calcite in the tuff matrix suggest incipient crystallisation of a carbonatite liquid in subvolcanic conditions and eruption of carbonatite-spray droplets. Dark coloured juvenile fragments mainly consist of melilite, phlogopite, calcite, apatite, perovskite, and häuyne crystals in a carbonatite or melilitite matrix. The rocks have an extremely primitive, ultramafic composition with very high Mg# (> 85) and Cr and Ni content (1500 ppm). The calcite contains high SrO, BaO and REE of up to 1.5 wt.%. Similar compositions are typical of primary, magmatic carbonates which are found in both intrusive and extrusive carbonatites. The high modal Sr

  11. Carbonatites in China: A review for genesis and mineralization

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2010-10-01

    Full Text Available Carbonatites are commonly related to the accumulation of economically valuable substances such as REE, Cu, and P. The debate over the origin of carbonatites and their relationship to associated silicate rocks has been ongoing for about 45 years. Worldwide, the rocks characteristically display more geochemical enrichments in Ba, Sr and REE than sedimentary carbonate rocks. However, carbonatite’s geochemical features are disputed because of secondary mineral effects. Rock-forming carbonates from carbonatites at Qinling, Panxi region, and Bayan Obo in China show REE distribution patterns ranging from LREE enrichment to flat patterns. They are characterized by a Sr content more than 10 times higher than that of secondary carbonates. The coarse- and fine-grained dolomites from Bayan Obo H8 dolomite marbles also show similar high Sr abundance, indicating that they are of igneous origin. Some carbonates in Chinese carbonatites show REE (especially HREE contents and distribution patterns similar to those of the whole rocks. These intrusive carbonatites display lower platinum group elements and stronger fractionation between Pt and Ir relative to high-Si extrusive carbonatite. This indicates that most intrusive carbonatites may be carbonate cumulates. Maoniuping and Daluxiang in Panxi region are large REE deposits. Hydrothermal fluorite ore veins occur outside of the carbonatite bodies and are emplaced in wallrock syenite. The fluorite in Maoniuping has Sr and Nd isotopes similar to carbonatite. The Daluxiang fluorite shows Sr and REE compositions different from those in Maoniuping. The difference is reflected by both the carbonatites and rock-forming carbonates, indicating that REE mineralization is related to carbonatites. The cumulate processes of carbonate minerals make fractionated fluids rich in volatiles and LREE as a result of low partition coefficients for REE between carbonate and carbonatite melt and an increase from LREE to HREE. The

  12. Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa

    Science.gov (United States)

    Milani, Lorenzo; Bolhar, Robert; Frei, Dirk; Harlov, Daniel E.; Samuel, Vinod O.

    2017-12-01

    In-situ trace element analyses of fluorapatite, calcite, dolomite, olivine, and phlogopite have been undertaken on representative phoscorite and carbonatite rocks of the Palaeoproterozoic Phalaborwa Complex. Textural and compositional characterization reveals uniformity of fluorapatite and calcite among most of the intrusions, and seems to favor a common genetic origin for the phoscorite-carbonatite association. Representing major repositories for rare earth elements (REE), fluorapatite and calcite exhibit tightly correlated light REE (LREE) abundances, suggesting that partitioning of LREE into these rock forming minerals was principally controlled by simple igneous differentiation. However, light rare earth element distribution in apatite and calcite cannot be adequately explained by equilibrium and fractional crystallization and instead favors a complex crystallization history involving mixing of compositionally distinct magma batches, in agreement with previously reported mineral isotope variability that requires open-system behaviour.

  13. Approach of automatic 3D geological mapping: the case of the Kovdor phoscorite-carbonatite complex, NW Russia.

    Science.gov (United States)

    Kalashnikov, A O; Ivanyuk, G Yu; Mikhailova, J A; Sokharev, V A

    2017-07-31

    We have developed an approach for automatic 3D geological mapping based on conversion of chemical composition of rocks to mineral composition by logical computation. It allows to calculate mineral composition based on bulk rock chemistry, interpolate the mineral composition in the same way as chemical composition, and, finally, build a 3D geological model. The approach was developed for the Kovdor phoscorite-carbonatite complex containing the Kovdor baddeleyite-apatite-magnetite deposit. We used 4 bulk rock chemistry analyses - Fe magn , P 2 O 5 , CO 2 and SiO 2 . We used four techniques for prediction of rock types - calculation of normative mineral compositions (norms), multiple regression, artificial neural network and developed by logical evaluation. The two latter became the best. As a result, we distinguished 14 types of phoscorites (forsterite-apatite-magnetite-carbonate rock), carbonatite and host rocks. The results show good convergence with our petrographical studies of the deposit, and recent manually built maps. The proposed approach can be used as a tool of a deposit genesis reconstruction and preliminary geometallurgical modelling.

  14. Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?

    Science.gov (United States)

    Prokopyev, Ilya R.; Doroshkevich, Anna G.; Redina, Anna A.; Obukhov, Andrey V.

    2018-04-01

    The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.

  15. Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia

    Directory of Open Access Journals (Sweden)

    Robert Zimmermann

    2016-07-01

    Full Text Available On the example of the Epembe carbonatite-hosted Nb-Ta-LREE deposit, we demonstrate the use of hyperspectral reflectance data and geomorphic indicators for improving the accuracy of remote sensing exploration data of structurally-controlled critical raw material deposits. The results further show how exploration can benefit from a combination of expert knowledge and remotely-sensed relief, as well as imaging data. In the first stage, multi-source remote sensing data were used in lithological mapping based on Kohonen Self-Organizing Maps (SOM. We exemplify that morphological indices, such as Topographic Position Index (TPI, and spatial coordinates are crucial parameters to improve the accuracy of carbonate classification as much as 10%. The resulting lithological map shows the spatial distribution of the ridge forming carbonatite dyke, the fenitization zone, syenite plugs and mafic intrusions. In a second step, the internal zones of the carbonatite complex were identified using the Multi-Range Spectral Feature Fitting (MRSFF algorithm and a specific decision tree. This approach allowed detecting potential enrichment zones characterized by an abundance of fluorapatite and pyroxene, as well as dolomite-carbonatite (beforsite. Cross-validation of the mineral map with field observations and radiometric data confirms the accuracy of the proposed method.

  16. Instrumental neutron activation analysis of carbonatites from Homa Mountain, Kenya

    International Nuclear Information System (INIS)

    Ohde, S.

    2004-01-01

    Twenty eight (major and trace) elements including eight rare earth elements (REEs) in African carbonatite samples were determined by instrumental neutron activation analysis. The geochemical behavior of trace elements was studied in relation to the order of carbonatite intrusion from C1 to C4 through C2 and C3 at Homa Mountain, Kenya. The enrichment of Mn, Fe, Sr, Ba, Th, U and REE is found in the sixteen carbonatites examined in this study. The general increase in the concentrations of Na, Sc, Mn, Sb, Ba, Th, U and REE occurs from C1 to C4 through C2 and C2c, but C3 carbonatite shows a different pattern. The C3 carbonatite is extraordinarily enriched in Mn, Fe and Ba and is highly enriched in Cr, As, Sb and Th. The chondrite-normalized REE distribution pattern of the C3 carbonatite is not rich in the light REE. Strong fractionation between light and heavy REEs is found in the carbonatites, and moderate fractionation in the two alkalic igneous rock samples. In order to evaluate partitioning of REEs into carbonate, oxide and other mineral fractions, a selective chemical leaching technique on carbonatites was applied and is discussed. (author)

  17. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. A wide variety of other commodities have been exploited from carbonatites and alkaline igneous rocks including niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other elements enriched in these deposits include manganese, strontium, tantalum, thorium, vanadium, and uranium. Carbonatite and peralkaline intrusion-related rare earth element deposits are presented together in this report because of the spatial, and potentially genetic, association between carbonatite and alkaline rocks. Although these rock types occur together at many locations, carbonatite and peralkaline intrusion-related rare earth element deposits are not generally found together.

  18. Our contributions to the study of carbonatites

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Our contributions to the study of carbonatites. Carbonatite magmatism in flood basalt provinces has important implications. Liquid immiscibility is responsible for evolution of carbonate and silicate parental magmas. Crustal contamination of the primary magma is ...

  19. The petrogenesis of metamorphosed carbonatites in the Grenville Province, Ontario

    International Nuclear Information System (INIS)

    Moecher, D.P.; Anderson, E.D.; Cook, C.A.; Mezger, K.

    1997-01-01

    Veins and dikes of calcite-rich rocks within the Central Metasedimentary Belt boundary zone (CMBbz) in the Grenville Province of Ontario have been interpreted to be true carbonatites or to be pseudocarbonatites derived from interaction of pegmatite melts and regional Grenville marble. The putative carbonatites have been metamorphosed and consist mainly of calcite, biotite, and apatite with lesser amounts of clinopyroxene, magnetite, allanite, zircon, titanite, cerite, celestite, and barite. The rocks have high P and rare earth element (REE) contents, and calcite in carbonatite has elevated Sr, Fe, and Mn contents relative to Grenville Supergroup marble and marble melange. Values of δ 18 O SMOW (9.9 - 13.3o/oo) and δ 13 C PDB (-4.8 to -1.9o/oo) for calcite are also distinct from those for marble and most marble melange. Titanites extracted from clinopyroxene -calcite-scapolite skarns formed by metasomatic interaction of carbonatites and silicate lithologies yield U-Pb ages of 1085 to 1035 Ma. Zircon from one carbonatite body yields a U-Pb age of 1089 ± 5 Ma; zircon ages from two other bodies are 1170 ± 3 and 1143 ± 8 Ma, suggesting several carbonatite formation events or remobilization of carbonatite during deformation and metamorphism around 1080 Ma. Values of ε Nd (T) are 1.7 - 3.2 for carbonatites, -1.5 -1.0 for REE-rich granite dikes intruding the CMBbz, and 1.6 - 1.7 for marble. The mineralogy and geochemical data are consistent with derivation of the carbonatites from a depleted mantle source. Mixing calculations indicate that interaction of REE-rich pegmatites with regional marbles cannot reproduce selected major and minor element abundance, REE contents, and O and Nd isotope compositions of the carbonatites. (author)

  20. Contribution to chemical-mineralogical study of carbonatites

    International Nuclear Information System (INIS)

    Costa, M.Q. da; Lima, W.N. de; Correa, S.L.A.

    1982-01-01

    A preliminary chemical-mineralogical study of carbonatites from Jacupiranga (SP,Brazil) and Alto Pinheiros (SC,Brazil) enabled not only to ratify hypotheses previously described by Brazilian researchers but also made clear certain aspects related to the geochemistry of carbonatites concerning their occurrence, the probable genesis of these species and their chemical and mineralogical characteristics.(Author) [pt

  1. Contrasting isotopic mantle sources for proterozoic lamproites and kimberlites from the Cuddapah basin and eastern Dharwar craton: implication for proterozoic mantle heterogeneity beneath southern India

    International Nuclear Information System (INIS)

    Chalapathi Rao, N.V.; Gibson, S.A.; Pyle, D.M.; Dickin, A.P.

    1998-01-01

    Kimberlites intruding the Precambrian basement towards the western margin of the Cuddapah basin near Anantapur (1090 Ma) and Mahbubnagar (1360 Ma) in Andhra Pradesh have initial 87 Sr/ 86 Sr between 0.70205 to 0.70734 and σNd between +0.5 to +4.68. Mesoproterozoic lamproites (1380 Ma) from the Cuddapah basin (Chelima and Zangamarajupalle) and its NE margin (Ramannapeta) have initial 87 Sr/ 86 Sr between 0.70520 and 0.7390 and εNd from -6.43 to -8.29. Combined Sr- and Nd- isotopic ratios suggest that lamproites were derived from enriched sources which have time-averaged higher Rb/Sr and lower Sm/Nd ratios than the Bulk Earth whereas kimberlites were derived from depleted source with lower Rb/Sr and higher Sm/Nd ratios. Calculated T DM model ages suggest that the lamproite source enrichment (∼2 Ga) preceded that of kimberlites (∼1.37 Ga). Our work demonstrates the existence of isotopically contrasting upper mantle sources for southern Indian kimberlites and lamproites and provides evidence for a lateral, isotopically heterogeneous mantle beneath the Cuddapah basin and eastern Dharwar craton. The significance of our results in the context of diamond exploration is also highlighted. (author)

  2. The Elk Creek Carbonatite, Southeast Nebraska-An Overview

    International Nuclear Information System (INIS)

    Carlson, M. P.; Treves, S. B.

    2005-01-01

    A framework geophysical program in southeastern Nebraska during 1970 identified a near-circular feature having gravity relief of about 8 mgal and a magnetic anomaly of about 800 gammas. Analysis of the geophysical data provided a model of a cylindrical mass of indefinite length with a radius of 5500 ft (1676 m) and beveled at the basement surface at about 600 ft (183 m). At the approximate depth at which Precambrian rocks were expected, the initial test hole (2-B-71) encountered an iron-rich weathered zone overlying carbonate-rich rock. The carbonate rocks consist essentially of dolomite, calcite, and ankerite and lesser amounts of hematite, chlorite, phlogopite, barite, serpentine, pyrochlore, and quartz and contain barium, strontium, and rare earths. Total REE, P2O5, and 87Sr/86Sr ratios confirm the carbonatite identification. Texturally, the rocks range from fragmental to contorted to massive. Associated with the carbonatite are lesser amounts of basalt, lamprophyre, and syenite. Additional exploratory drilling has provided about 80,000 ft (24,384 m) of rock record and has penetrated about 3400 ft (1038 m) of carbonatite. The carbonatite is overlain by marine sediments of Pennsylvanian (Missourian) age. The surrounding Precambrian basement rocks are low-to medium-grade metamorphic gneiss and schist of island arc origin and granitic plutons. The Elk Creek carbonatite is located near the boundary between the Penokean orogen created at about 1.84 Ga (billion years) and the Dawes terrane (1.78 Ga) of the Central Plains orogen. This boundary strongly influenced the geometry of both the Midcontinent Rift System (1.1 Ga) and the Nemaha uplift (0.3 Ga). It is assumed that the emplacement of the Elk Creek carbonatite (0.5 Ga) was influenced similarly by the pre-existing tectonic sutures

  3. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China.

    Science.gov (United States)

    Song, Wenlei; Xu, Cheng; Smith, Martin P; Kynicky, Jindrich; Huang, Kangjun; Wei, Chunwan; Zhou, Li; Shu, Qihai

    2016-11-18

    Carbonatites, usually occurring within intra-continental rift-related settings, have strong light rare earth element (LREE) enrichment; they rarely contain economic heavy REE (HREE). Here, we report the identification of Late Triassic HREE-Mo-rich carbonatites in the northernmost Qinling orogen. The rocks contain abundant primary HREE minerals and molybdenite. Calcite-hosted fluid inclusions, inferred to represent a magmatic-derived aqueous fluid phase, contain significant concentrations of Mo (~17 ppm), reinforcing the inference that these carbonatitic magmas had high Mo concentrations. By contrast, Late Triassic carbonatites in southernmost Qinling have economic LREE concentrations, but are depleted in HREE and Mo. Both of these carbonatite types have low δ 26 Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution for REE enrichment in their mantle sources. We propose that the carbonatites in the Qinling orogen were formed, at least in part, by the melting of a subducted carbonate-bearing slab, and that 10 Ma younger carbonatite magmas in the northernmost Qinling metasomatized the thickened eclogitic lower crust to produce high levels of HREE and Mo.

  4. Subsolidus Evolution of the Magnetite-Spinel-UlvöSpinel Solid Solutions in the Kovdor Phoscorite-Carbonatite Complex, NW Russia

    Directory of Open Access Journals (Sweden)

    Gregory Yu. Ivanyuk

    2017-11-01

    Full Text Available The Kovdor phoscorite-carbonatite ore-pipe rocks form a natural series, where apatite and magnetite first gradually increase due to the presence of earlier crystallizing forsterite in the pipe marginal zone and then decrease as a result of carbonate development in the axial zone. In all lithologies, magnetite grains contain (oxyexsolution inclusions of comparatively earlier ilmenite group minerals and/or later spinel, and their relationship reflects the concentric zonation of the pipe. The temperature and oxygen fugacity of titanomagnetite oxy-exsolution decreases in the natural rock sequence from about 500 °C to about 300 °C and from NNO + 1 to NNO − 3 (NNO is Ni-NiO oxygen fugacity buffer, with a secondary positive maximum for vein calcite carbonatite. Exsolution spinel forms spherical grains, octahedral crystals, six-beam and eight-beam skeletal crystals co-oriented with host magnetite. The ilmenite group minerals occur as lamellae oriented along {111} and {100} planes of oxy-exsolved magnetite. The kinetics of inclusion growth depends mainly on the diffusivity of cations in magnetite: their comparatively low diffusivities in phoscorite and carbonatites of the ore-pipe internal part cause size-independent growth of exsolution inclusions; while higher diffusivities of cations in surrounding rocks, marginal forsterite-rich phoscorite and vein calcite carbonatite result in size-dependent growth of inclusions.

  5. Radioactive mineral potential of carbonatites in western parts of the South American shields

    International Nuclear Information System (INIS)

    Premoli, C.; Kroonenberg, S.B.

    1984-01-01

    During the last eight years at least six carbonatites or clusters of carbonatites have been discovered in the western parts of the South American cratons. In contrast to the carbonatites of the eastern part of the South American shields, which have been well studied and placed in a tectonic context together with the West African carbonatite provinces, those of the western part of the South American cratons have received litte attention. This paper is a compilation of published and original data on these occurrences, their geology, geochemistry, structural setting and radioactive mineral potential. An exploration strategy is devised based on experiences in this rainforest-clad area and the peculiar genetic aspect of carbonatites. Some details of a possibly new uranium mineral encountered in Cerro Cora carbonatite are given. (author)

  6. From Carbonatite to Ikaite: How high-T carbonates are transformed into low-T carbonate minerals in SW Greenland

    Science.gov (United States)

    Stockmann, G. J.; Tollefsen, E.; Ranta, E.; Skelton, A.; Sturkell, E.; Lundqvist, L.

    2015-12-01

    The 1300 Ma Grønnedal-Íka igneous complex in southwest Greenland comprises nepheline syenites and carbonatites. It belongs to a suite of intrusions formed 1300-1100 Ma ago referred to as the Gardar period. In modern time (the last ca. 8000 years), fluid-rock interactions involving the nepheline syenites and carbonatites gives rise to about one thousand submarine columns made of the rare low-T mineral ikaite (CaCO3x6H2O). The columns are found in a shallow, narrow fjord named Ikka Fjord and their distribution clearly follows the outcrop of the Grønnedal-Íka complex. When meteoric water percolates through the highly fractured complex, a sodium carbonate solution of pH 10 is formed through hitherto unknown fluid-rock reactions. This basic solution seeps up through fractures at the bottom of Ikka Fjord and when mixed with seawater, the mineral ikaite is formed. As the seepage water has a lower density than seawater, there is an upwards flow that creates columns. What is peculiar about ikaite is its limited stability making it unstable above +6 °C. Isotopic studies of ikaite reveal a seawater origin for the Ca2+ ions, and the carbonatite being the most likely source for the CO32- ions. The carbonatite is mainly of søvite composition (CaCO3) with high contents of siderite and ankerite in certain areas. The nepheline syenites contain Na,K-rich minerals like nepheline, alkali-feldspar, aegirine-augite, katophorite and biotite. Nepheline is mainly replaced by muscovite, and aegirine-augite partly by chlorite, which could release sodium into solution. A dolerite dyke of unknown age prompted extensive mineralization of magnetite by activating hydrothermal fluid convection. The fluid interacted with the carbonatite, replacing siderite and ankerite by magnetite and later hematite. In a newly launched project at Stockholm University, we are trying to unravel the chemical reactions taking place inside the Grønnedal-Íka igneous complex leading to the formation of the

  7. Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil

    Directory of Open Access Journals (Sweden)

    GIANBOSCO TRAVERSA

    2001-03-01

    Full Text Available The Araxá complex (16 km² comprises carbonatites forming a central core and a complex network of concentric and radial dykes as well as small veins; additionally, it includes mica-rich rocks, phoscorites and lamprophyres. Fenites also occur and are represented by Proterozoic quartzites and schists of the Araxá Group. The petrographic study of 130 borehole samples indicates that the complex is basically made up by two rock-types, carbonatites and mica-rich rocks, and subordinately by a third unit of hybrid composition. Carbonatites range chemically in composition, the most abundant type being magnesiocarbonatites. Dolomite and calcite correspond to the chief constituents, but other carbonate phases, including the Ce-group RE minerals, are also recognized. Phosphates and oxides are widespread accessories whereas silicate minerals consist of olivine, clinopyroxene, mica and amphibole. Mica-rich rocks are represented by abundant glimmeritic rocks and scarce cumulitic phlogopite-, olivine- and diopside-bearing pyroxenites. Hybrid rocks mainly contain phlogopite and tetraferriphlogopite as cumulus and intercumulus phases, respectively; carbonate minerals may also be found. Chemical data indicate that the carbonatites are strongly enriched in REE and have lower contents of Nb, Zr, V, Cr, Ni and Rb compared to the mica-rich rocks. The higher K, Nb and Zr contents of the latter rocks are believed to be related to metasomatic processes (glimmeritization of the pyroxenites. Similar REE patterns for carbonatites and mica-rich rocks seem to suggest that they are related to a single parental magma, possibly of ijolitic composition. Steep LREE/HREE fractionation and high sigmaREE content of some carbonatite samples would be explained by hydrothermal and supergenic processes.O complexo de Araxá (16 km² é constituído por carbonatitos na forma de um núcleo central e de complexa rede de diques concêntricos e radiais, além de pequenos veios

  8. Mineralogy, petrology and geochemistry of the Pocos de Caldas analogue study sites, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Waber, M.

    1991-01-01

    The thorium-rare-earth element deposit at Morro do Ferro is of supergene origin and was formed under lateritic weathering conditions. The ore body forms shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a stockwork of magnetite veins which have protected the underlying, highly argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatic in composition and was initially enhanced in thorium and rare-earth elements compared to the surrounding silicate rocks. Intrusion of the carbonatite produced fenitic alteration of the surrounding phonolites, consisting of an early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent lateritic weathering has completely destroyed the carbonatite, forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite leading to solutions enriched in carbonate and phosphate may have appreciably restricted the dissolution of the primary Th-REE phases. Strongly oxidic weathering has resulted in a fractionation between cerium and the other light rare-earth elements. Ce 3+ is oxidized to Ce 4+ and retained together with thorium by secondary mineral formation and adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation and adsorption at greater depths down the weathering column. (author) figs., tabs., 60 refs

  9. Origin of heavy REE mineralisation in carbonatites: Constraints form the Huanglongpu Mo-HREE deposit, Qinling, China.

    Science.gov (United States)

    Smith, Martin; Cheng, Xu; Kynicky, Jindrich; Cangelosi, Delia; Wenlei, Song

    2017-04-01

    . Solubility products are lower for LREE minerals compared to HREE minerals, so leaching in the presence of strong, LREE-selective ligands (Cl-, CO32-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during late stage alteration, and hence sulphate complexation may have been important for preferential HREE transport, as sulphate has been shown to be non-LREE selective during the formation of complex ions. The combination of mantle source with a recycled oceanic sediment component, and REE enrichment during magmatic processes, and late stage alteration with non-LREE selective ligands such as sulphate may be critical in forming HREE-enriched carbonatites. Song et al., (2016) Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Scientific Reports, 6:37377 | DOI: 10.1038/srep37377. Stein et al. (1997) Highly precise and accurate Re-Os ages for molybdenite from the East Qinling-Dabie molybdenum belt, Shaanxi province, China. Econ. Geol. 92, 827-835 (1997)

  10. Melanite garnet-bearing nepheline syenite minor intrusion in ...

    Indian Academy of Sciences (India)

    stone of Tertiary age to the east and south. At places, chilled marginal contact and ..... Soc. Am. Spec. Paper. 430 815–830. Srivastava R K and Sinha A K 2007b Petrogenesis of early Cretaceous ultramafic–mafic–alkaline–carbonatite igneous complexes from the Shillong plateau, NE India;. In: Igneous petrology: 21st ...

  11. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    Science.gov (United States)

    Mars, John C.; Rowan, Lawrence C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that

  12. Alkaline and carbonatite metasomatism of lithospheric mantle beneath SW Poland- Pilchowice case

    Science.gov (United States)

    Ćwiek, Mateusz; Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros

    2014-05-01

    The Cenozoic basanites from Pilchowice (SW Poland) form volcanic plug located exactly at Intra- Sudetic Fault. These basanites belong to the Polish part of the Central European Volcanic Province and contain numerous, usually small (pfu and mg# from 0.915- 0.920 . One xenolith contains clinopyroxene with abundant spongy rims. Primary clinopyroxene is very rare and Al-enriched (mg# 0.92, 0.17 atoms of Al pfu). The spinel is Cr enriched (cr# 0.46-0.68) and is usually associated with clinopyroxene. Orthopyroxene is depleted in REE compared to primitive mantle. Orthopyroxene from majority of xenoliths are strongly LREE depleted ((La/Lu)N = 0.03-0.21). All studied peridotites contain clinopyroxene which is enriched (2 to 70 times) in REE compared to primitive mantle. Clinopyroxene patterns show relative low HREE concentration ((La/Lu)N = 4.75- 19.99), moreover patterns from three samples are convex- upward shaped with inflection point on Nd ((La/Nd)N = 0.36-0.96). Clinopyroxene- poor lithology, high cr# in spinel and LREE- depleted nature of orthopyroxene suggest that upper mantle sampled by Pilchowice basanite is a restite after partial melting. The LREE enriched composition of clinopyroxene suggest that peridotites were metasomatised. Clinopyroxene convex- upward shaped REE plots with inflection point on Nd is typical for metasomatism related with alkaline melt. On the other hand very low ratios of Ti/ Eu (24.8- 738.9) and high (La/ Yb)N (3.5- 17) ratio (Coltorti, 1999) suggest that the metasomatic agent was either a mixture of alkaline silicate melt with carbonatite or peridotite reaction with two independent agents is recorded. This study is a part of MSc thesis of the first author and was possible thanks to the project NCN 2011/03/B/ST10/06248 of Polish National Centre for Science. Coltorti, M., Bonadiman, C., Hinton, R. W., Siena, F. & Upton, B. G. J. (1999). Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in

  13. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    Science.gov (United States)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  14. Petrogenesis of orogenic lamproites of the Bohemian Massif: Sr-Nd-Pb-Li isotope constraints for Variscan enrichment of ultra-depleted mantle domains

    Czech Academy of Sciences Publication Activity Database

    Krmíček, Lukáš; Romer, R. L.; Ulrych, Jaromír; Glodny, J.; Prelevič, D.

    2016-01-01

    Roč. 35, 1 July (2016), s. 198-216 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : Silica-rich lamproites * Sr-Nb-Pb-Li isotopes * mantle metasomatism * Variscides Subject RIV: DB - Geology ; Mineralogy Impact factor: 6.959, year: 2016

  15. The peculiar case of Marosticano xenoliths: a cratonic mantle fragment affected by carbonatite metasomatism in the Veneto Volcanic Province (Northern Italy)

    Science.gov (United States)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo; Florencia Fahnestock, M.; Bryce, Julia G.; Marzoli, Andrea

    2017-04-01

    Province, Southern Alps. Geological Society of America, 131-152. Beccaluva L., Bonadiman C., Coltorti M., Salvini L., Siena F. (2001). Depletion events, nature of metasomatizing agent and timing of enrichment processes in lithospheric mantle xenoliths from the Veneto Volcanic Province. Journal of Petrology, 42, 173-187. Coltorti, M., Bonadiman, C., Hinton, R.W., Siena, F., Upton, B.G.J. (1999). Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40, 133-165. Downes, H., MacDonald, R., Upton, B.G.J., Cox, K.G, Bodinier, J-L, Mason, P.R.D, James, D., Hill, P.G., Hearn, C. Jr (2004). Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming Carton. Journal of Petrology, 45, 1631-1662. Foley, S.F. (2011). A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. Journal of Petrology, 52, 1363-1391. Gasperini D., Bosch D., Braga R., Bondi M., Macera P., Morten L. (2006). Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithospere. Geochemical Journal, 40, 377-404. Kelemen, P.B., Hart, S.R., Bernstein, S. (1998). Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387-406. Ramsey, R.R, Tompkins, L.A. (1994). The geology, heavy mineral concentrate mineralogy, and diamond prospectivity of the Boa Esperança and Cana Verde pipes, Corrego D'anta, Minas Gerais, Brazil, in: Meyer, H.O.A and Leonardos, O.H. (Eds.), Proceeding of the Fifth International Kimberlite Conference 2. Companhia de Pesquisa de Recursors Minerais, Special Publications, 329-345. Siena F., Coltorti M. (1989). Lithospheric mantle evolution: evidences from ultramafic xenoliths in the Lessinean volcanics

  16. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    Science.gov (United States)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok

    2017-03-01

    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro

  17. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  18. Evaluation and economics aspects of the lying of rare earth and iron-alloys in the Seis Lagos Carbonatite Complex-Amazonas-Brazil

    International Nuclear Information System (INIS)

    Wetterle Bonow, C. de; Issler, R.S.

    1980-01-01

    New data on rare earth mineralization and iron-alloys as well as other rare elements in the Seis Lagos Carbonatite Complex are described. Drilling and field work data have permited to define in surface, subsidence zones (subsurface collapses), in the interval of 14.65 to 73.10 meters depth a carbonaceous clay sequence, sapropelic, neogenic, highly enriched in Re, Nb, Th, V, Zn and Be as well as Sc, Y, Ga, Co and Sn as by-products were detected. Sedimentogenic aspects of the enrichment of detect elements, the scintillometric survey, the reserve calculation, the detected elements, the by-products and the complementary study for the deposit are discussed and finaly a value of US$ 6.7 x 10 9 is estimated for the detect deposit. (Author) [pt

  19. Compositional Evolution of Pyrochlore-Group Minerals in Carbonatites of the Belaya Zima Pluton, Eastern Sayan

    Science.gov (United States)

    Khromova, E. A.; Doroshkevich, A. G.; Sharygin, V. V.; Izbrodin, L. A.

    2017-12-01

    Pyrochlore-group minerals are the main concentrators of niobium in carbonatites of the Belaya Zima alkaline pluton. Fluorcalciopyrochlore, kenopyrochlore and hydropyrochlore were identified in chemical composition. Their main characteristics are given: compositional variation, morphology, and zoning. During evolution from early calcite to late ankerite carbonatites, the UO2, TiO2, REE, and Y contents gradually increased. All carbonatite types are suggested to contain initial fluorcalciopyrochlore. However, in calcite-dolomite and ankerite carbonatites, it is partially or completely hydrated due to hydrothermal processes at the late stage of the pluton. This hydration resulted in the appearance of kenopyrochlore and hydropyrochlore due to removal of Ca, Na and F, and input of Ba, H2O, K, Si, Fe, and probably U and REE. At the last stage of the pluton, this hydrated pyrochlore was replaced by Fe-bearing columbite.

  20. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  1. Emplacement time of Salai Patai carbonatite, Malakand, Pakistan, from fission track dating of zircon and apatite

    International Nuclear Information System (INIS)

    Qureshi, A.A.; Khan, H.A.

    1991-01-01

    Based on fission track dating of zircon and apatite, the emplacement history of Salai Patai carbonatite has been traced. It has been estimated that the carbonatite was emplaced along the thrust plane associated with the Indian-Eurasian plate collision during the Oligocene period followed by some thermal/tectonic episode during Early Miocene. This negates the previous proposal that all carbonatites found in Pakistan are a part of a 200 km long alkaline province associated with the rifting of Peshawar Valley during Late Cretaceous or early tertiary. (author)

  2. Ultrasound-assisted extraction of rare-earth elements from carbonatite rocks.

    Science.gov (United States)

    Diehl, Lisarb O; Gatiboni, Thais L; Mello, Paola A; Muller, Edson I; Duarte, Fabio A; Flores, Erico M M

    2018-01-01

    In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70°C and 20mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20kHz for 15min, ultrasound amplitude of 40% (692Wdm -3 ) and using a diluted extraction solution (3% v/v HNO 3 +2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Environmental Characteristics of Carbonatite and Alkaline Intrusion-related Rare Earth Element (REE) Deposits

    Science.gov (United States)

    Seal, R. R., II; Piatak, N. M.

    2017-12-01

    Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are

  4. Journal of Mineralogical and Petrological Sciences

    Science.gov (United States)

    Official journal of Japan Association of Mineralogical Sciences (JAMS), focusing on mineralogical and petrological sciences and their related fields. Journal of Mineralogical and Petrological Sciences (JMPS) is the successor journal to both “Journal of Mineralogy, Petrology and Economic Geology” and “Mineralogical Journal”. Journal of Mineralogical and Petrological Sciences (JMPS) is indexed in the ISI database (Thomson Reuters), the Science Citation Index-Expanded, Current Contents/Physical, Chemical & Earth Sciences, and ISI Alerting Services.

  5. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    Science.gov (United States)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE

  6. The Brazil-Angola alkaline - carbonatite province and its main economic aspects

    International Nuclear Information System (INIS)

    Loureiro, F.E.V.L.; Di Valderano, M.H.W.

    1982-01-01

    The principal characteristics of the Brazil-Angola Alkaline Carbonatite Province are defined and described with specific reference to tectonic setting and economic aspects. The economic aspects of the Brazilian uranium deposits are emphasised. The Brazil-Angola Alkaline-Carbonatite Province can be divided into six Brazilian sub-provinces and two Angolan sub-provinces. Correlation between the sub-provinces of Brazil and Angola remains speculative due to the lack of detailed information, especially age determinations on the Angolan rocks. However, an analysis of the tectonic and petrochemical aspects suggests that the two Brazilian sub-provinces situated along the littoral of Rio de Janeiro/ Sao Paulo and around the periphery of the Parana Basin may be more easily comparable to the two Angolan sub-provinces than the remaining four. (Author) [pt

  7. Portrait of a giant deep-seated magmatic conduit system: The Seiland Igneous Province

    Science.gov (United States)

    Larsen, Rune B.; Grant, Thomas; Sørensen, Bjørn E.; Tegner, Christian; McEnroe, Suzanne; Pastore, Zeudia; Fichler, Christine; Nikolaisen, Even; Grannes, Kim R.; Church, Nathan; ter Maat, Geertje W.; Michels, Alexander

    2018-01-01

    The Seiland Igneous Province (SIP), Northern Norway, contains > 5000 km2 of mafic and ultramafic intrusions with minor alkaline, carbonatite and felsic rocks that were intruded into the lower continental crust at a depth of 25 to as much as 35 km. The SIP can be geochemically and temporally correlated to numerous dyke swarms throughout Scandinavia at 560-610 Ma, and is linked to magmatic provinces in W-Greenland and NE-America that are collectively known as the Central Iapetus Magmatic Province (CIMP). Revised mapping show that the SIP exposes 85-90% layered tholeiitic- alkaline- and syeno-gabbros, 8-10% peridotitic complexes, 2-5% carbonatite, syenite and diorite that formed within a narrow (mela-gabbro over pyroxenites that grades in to an olivine-clinopyroxenite zone, which is followed by a wehrlite zone and, finally, the centre of the complexes comprises pure dunite. From pyroxenite to dunite, olivine changes from Fo72 to Fo85 and clinopyroxene from Di80 to Di92 i.e. the complexes observe a reverse fractional crystallisation sequence with time. Parental melt compositions modelled from early dykes indicate komatiitic to picritic melts with 16-22 wt% MgO, Cr of 1594 ppm and Ni of 611 ppm, which were emplaced at 1450-1500 °C. Melt compositions calculated from clinopyroxene compositions from Reinfjord are OIB-like with LREE enriched over HREE. The high abundance of carbonatites and lamproites demonstrates the volatile-rich nature of the mantle source region and is further corroborated by the unusually high abundance of magmatic sulphides (0.5-1%) and carbonated and hydrous assemblages (c. 1%) throughout the region. In Reinfjord, they are also closely associated with PGE-Cu-Ni reef deposits. Essentially, the ultramafic complexes in the SIP comprises deep-seated transient magma chambers that facilitated mixing and homogenisation of a rich diversity of fertile asthenospheric melts en route to the upper parts of the continental crust.

  8. The Marbat metamorphic core-complex (Southern Arabian Peninsula) : reassessment of the evolution of a Neoproterozoic island-arc from petrological, geochemical and U-Pb zircon data

    OpenAIRE

    Barbey, P.; Denele, Y.; Paquette, J. L.; Berger, J.; Ganne, Jérôme; Roques, D.

    2018-01-01

    The Marbat basement (Sultanate of Oman) belongs to the Neoproterozoic accretion domain of the Arabian-Nubian shield. We present new geochronological, petrological and geochemical data as an extension of our previous study (Denele et al., 2017) re-interpreting this basement as a metamorphic core complex (MCC). We showed that this MCC consists of a metamorphic unit (Juffa complex) separated by an extensional detachment from a plutonic unit (Sadh complex and Tonalite plutons). Geochemical data s...

  9. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization

    Science.gov (United States)

    Song, WenLei; Xu, Cheng; Veksler, Ilya V.; Kynicky, Jindrich

    2016-01-01

    Carbonatites host some unique ore deposits, especially rare earth elements (REE). Hydrothermal fluids have been proposed to play a significant role in the concentration and transport of REE and other rare metals in carbonatites, but experimental constraints on fluid-melt equilibria in carbonatitic systems are sparse. Here we present an experimental study of trace element (REE, Ba, Sr, Mo and W) partitioning between hydrous fluids and carbonatitic melts, bearing on potential hydrothermal activity associated with carbonatite ore-forming systems. The experiments were performed on mixtures of synthetic carbonate melts and aqueous fluids at 700-800 °C and 100-200 MPa using rapid-quench cold-seal pressure vessels and double-capsule assemblages with diamond traps for analyzing fluid precipitates in the outer capsule. Starting mixtures were composed of Ca, Mg and Na carbonates spiked with trace elements. Small amounts of F or Cl were added to some of the mixtures to study the effects of halogens on the element distribution. The results show that REE, Ba, Sr, Mo and W all preferentially partition into carbonatite melt and have fluid-melt distribution coefficients ( D f/m) below unity. The REE partitioning is slightly dependent on the major element (Ca, Mg and Na) composition of the starting mixtures, and it is influenced by temperature, pressure, and the presence of halogens. The fluid-melt D values of individual REE vary from 0.02 to 0.15 with D_{Lu}^{f} / {fm}{m} being larger than D_{La}^{f} / {fm}{m} by a factor of 1.1-2. The halogens F and Cl have strong and opposite effects on the REE partitioning. Fluid-melt D REE are about three times higher in F-bearing compositions and ten times lower in Cl-bearing compositions than in halogen-free systems. D_{W}^{f} / {fm}{m} and D_{Mo}^{f} / {fm}{m} are the highest among the studied elements and vary between 0.6 and 0.7; D_{Ba}^{f} / {fm}{m} is between 0.05 and 0.09, whereas D_{Sr}^{f} / {fm}{m} is at about 0.01-0.02. The

  10. Hyperspectral remote sensing exploration of carbonatite - an example from Epembe, Kunene region, Namibia

    Science.gov (United States)

    Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard

    2015-04-01

    Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures

  11. Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India

    Czech Academy of Sciences Publication Activity Database

    Ackerman, Lukáš; Magna, T.; Rapprich, V.; Upadhyay, D.; Krátký, O.; Čejková, B.; Erban, V.; Kochergina, Y. V.; Hrstka, Tomáš

    284/285, 1 July (2017), s. 257-275 ISSN 0024-4937 Institutional support: RVO:67985831 Keywords : carbonatite * geochemistry * Samalpatti * Sevattur * silicocarbonatite * Sr–Nd–Pb–C–O isotopic systematics Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.677, year: 2016

  12. Petrologic Characteristics of the Lunar Surface.

    Science.gov (United States)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  13. EMI – young HIMU rock association at the Cape Verde Islands revisited: on the role of oceanic carbonatites

    DEFF Research Database (Denmark)

    Holm, Paul Martin; Kokfelt, Thomas Find; Dyhr, Charlotte Thorup

    Isotopic compositions of the Cape Verde (Central) hotspot magmas indicate a predominant influence from young HIMU and EM-1 type sources. Detailed modelling based on high precision Sr, Nd and Pb (DS) isotope data suggests that seven local mantle end-members explain the isotopic variation within five...... HIMU. Carbonatites are widespread throughout Cape Verde Islands but volumetrically minor and are low in Ti, K, and Rb. In several silicate rocks from all three islands low Ti/Eu is evidence for a carbonatite component and is accompanied by LREE enrichment, and relatively low K and Rb. Other rocks have...

  14. Carbonatites of the World, Explored Deposits of Nb and REE - Database and Grade and Tonnage Models

    Science.gov (United States)

    Berger, Vladimir I.; Singer, Donald A.; Orris, Greta J.

    2009-01-01

    This report is based on published tonnage and grade data on 58 Nb- and rare-earth-element (REE)-bearing carbonatite deposits that are mostly well explored and are partially mined or contain resources of these elements. The deposits represent only a part of the known 527 carbonatites around the world, but they are characterized by reliable quantitative data on ore tonnages and grades of niobium and REE. Grade and tonnage models are an important component of mineral resource assessments. Carbonatites present one of the main natural sources of niobium and rare-earth elements, the economic importance of which grows consistently. A purpose of this report is to update earlier publications. New information about known deposits, as well as data on new deposits published during the last decade, are incorporated in the present paper. The compiled database (appendix 1; linked to right) contains 60 explored Nb- and REE-bearing carbonatite deposits - resources of 55 of these deposits are taken from publications. In the present updated grade-tonnage model we have added 24 deposits comparing with the previous model of Singer (1998). Resources of most deposits are residuum ores in the upper part of carbonatite bodies. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types are present in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment, and the grade and tonnage models allow economists to

  15. Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores

    Science.gov (United States)

    Ni, Xiao

    Currently the recovery of niobium oxide minerals from carbonatite niobium ores relies on the use of non-selective cationic collectors. This leads to complicated process flowsheets involving multiple desliming and multiple reverse flotation stages, and low niobium recovery. In this research, anionic collectors that are capable of strong chemisorption on the niobium minerals were studied with the objective of directly floating the niobium oxide minerals from the carbonatite ores. In the flotation of both high purity minerals and Niobec ores, it was shown that the combination of hydroxamic acid and sodium metaphosphate was an effective reagent scheme for the direct flotation of niobium oxide from its ores. Batch flotation on the Niobec Mill Feed showed that over 95% of niobium oxide was recovered into a rougher concentrate that was less than 47% of the original feed mass. Preliminary cleaning tests showed that the reagent scheme could also be used to upgrade the rougher concentrate, although the depression of iron oxide minerals required further study. X-ray photoelectron spectroscopic (XPS) measurement results confirm that OHA (octyl hydroxamic acid) could chemisorb on pyrochlore surface while only physically adsorb on calcite, judging by the chemical shifts of electron binding energies in the elements in both OHA and the mineral surfaces. When hydroxamic acid was adsorbed on calcite surface, the binding energies of the N 1s electrons, at 400.3 eV, did not shift. However, after adsorption on pyrochlore, the N 1s binding energy peak split into two peaks, one at a binding energy of around 399 eV, representing chemically adsorbed OHA, the other at between 400 and 401 eV. The experimental data suggested a strong chemisorption of the OHA on pyrochlore surface in the form of a vertical head-on orientation of the OHA molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations, followed by possibly randomly oriented physisorbed OHA molecules

  16. Carbonatitic dykes during Pangaea transtension (Pelagonian Zone, Greece)

    Science.gov (United States)

    Schenker, Filippo Luca; Burg, Jean-Pierre; Kostopoulos, Dimitrios; Baumgartner, Lukas P.; Bouvier, Anne-Sophie

    2018-03-01

    Carbonatitic dykes surrounded by K-Na-fenites were discovered in the Pelagonian Zone in Greece. Their carbonate portions have an isotopic mantle signature of δ13C and δ18O ranging from -5.18 to -5.56 (‰ vs. VPDB) and from 10.68 to 11.59 (‰ vs. VSMOW) respectively, whereas their mafic silicate portions have high Nb, Ta and ɛNd values, typical of alkaline basalts. Textural relationships hint at a cogenetic intrusion of silicate and carbonate liquids that according to antithetic REE profiles segregated at shallow depths (Pangaea dextral transform fault that signalled the forthcoming penetrating breakoff of the supercontinent, manifested in the Permo-Triassic.

  17. Geology and petrology of alkaline Massif from Ilha de Vitoria, Sao Paulo State

    International Nuclear Information System (INIS)

    Motoki, A.

    1986-01-01

    Geological and petrological studies of the Vitoria Island Alkaline Complex, State of Sao Paulo, have been carried out by means of photo interpretation; field work, thin section studies, whole-rock chemical analysis, x-ray diffractometry, EPMA mineral analysis, and K-Ar and Rb-Sr dating. Radiometric dating indicates a late Cretaceous age for the Vitoria Island Alkaline Complex, which is concordant with the ages of other neighbouring alkaline bodies. (author)

  18. Petrology, mineralogy and geochemistry of surficial uranium deposits

    International Nuclear Information System (INIS)

    Pagel, M.

    1984-01-01

    A comprehensive understanding of the petrology, mineralogy, and geochemistry of surficial uranium ore deposits is important for developing prospecting and evaluation strategies. Carnotite is the main uranium mineral and is found in those deposits that have the greatest potential uranium resources. The following uranium-bearing minerals have been reported to occur in surficial deposits: carnotite, tyuyamunite, soddyite, weeksite, haiweeite, uranophane, betauranophane, metaankoleite, torbernite, autunite, phosphuranylite, schroeckingerite, Pb-V-U hydroxide (unnamed mineral), uraninite and organourano complexes. The interrelationships between some of the minerals of the host rocks (especially the clays) are not well understood. (author)

  19. Gamma-ray and electrical resistivity measurements in soil with application of carbonatite and agricultural fertilizers in Distrito Federal

    International Nuclear Information System (INIS)

    Nascimento, Carlos Tadeu Carvalho do; Gaspar, Jose Carlos; Pires, Augusto Cesar Bittencourt; Ferreira, Francisco Jose Fonseca; Andrade, Leide Rovenia Miranda de

    2008-01-01

    EMBRAPA (Empresa Brasileira de Pesquisa Agropecuaria) and Brasilia University developed a research project about the viability of carbonatite rock as agricultural fertilizer. As an initial experiment, several mixtures of carbonatite, limestone, phosphorous and potassium compounds were added as fertilizers in an oxisol area (red-latosol, according with Brazilian System of Soil Classification), in Distrito Federal, central Brazil. The experiment area was divided in 56 plots (4 x 7m) and each plot received a fertilizer mixture. The purpose of this work was to verify if the addition of fertilizer mixture to the soil modified its radiometric and resistivity properties and if it is possible to identify this change. Gamma-ray and electrical resistivity measurements were obtained in an experimental area and in a natural savannah type vegetation area. The results showed that the fertilizer addition modified soil natural properties causing a small increase in K, U, Th levels and decreasing ten times electrical resistivity. A low contrast of radiation was observed between plots, and then it was not possible to differentiate the several treatments in base of gamma-ray measurements. Electrical resistivity was efficient to identify three groups of plots related to mixtures characteristics, respectively with phosphorous, potassium and limestone / carbonatite predominance. (author)

  20. Are the Vinjamur rocks carbonatites or meta-limestones?

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, K V; Bhaskar Rao, B [Indian Institute of Technology, Bombay (India). Dept. of Earth Sciences; Le Bas, M J [Univ. of Leicester, Leicester (United Kingdom). Dept. of Geology

    1995-08-01

    New whole-rock rare earth element (REE) data for the metacarbonate rocks inter bedded with schists at Vinjamur in the Nellore schist belt of Andhra Pradesh, show low total REE contents ({sigma}9-128 ppm) that are inconsistent with an igneous carbonatitic origin but which correspond more closely with a sedimentary limestone origin. The REE data of these rocks however, do not give absolute discrimination between marbles of meta-limestone and metacarbonatite origin. Micro-probe analytical data give better discrimination, and the chemical compositions of the calcite, micas, amphibole, plagioclase, apatite, monazite and staurolite in the Vinjamur marbles give strong and consistent evidence of a metamorphosed sedimentary rather than an igneous origin. (author). 35 refs., 7 figs., 9 tabs.

  1. Are the Vinjamur rocks carbonatites or meta-limestones?

    International Nuclear Information System (INIS)

    Subbarao, K.V.; Bhaskar Rao, B.; Le Bas, M.J.

    1995-01-01

    New whole-rock rare earth element (REE) data for the metacarbonate rocks inter bedded with schists at Vinjamur in the Nellore schist belt of Andhra Pradesh, show low total REE contents (σ9-128 ppm) that are inconsistent with an igneous carbonatitic origin but which correspond more closely with a sedimentary limestone origin. The REE data of these rocks however, do not give absolute discrimination between marbles of meta-limestone and metacarbonatite origin. Micro-probe analytical data give better discrimination, and the chemical compositions of the calcite, micas, amphibole, plagioclase, apatite, monazite and staurolite in the Vinjamur marbles give strong and consistent evidence of a metamorphosed sedimentary rather than an igneous origin. (author). 35 refs., 7 figs., 9 tabs

  2. Towards modern petrological collections

    NARCIS (Netherlands)

    Kriegsman, L.M.

    2004-01-01

    Petrological collections result from sampling for academic research, for aesthetic or commercial reasons, and to document natural diversity. Selection criteria for reducing and enhancing collections include adequate documentation, potential for future use, information density, time and money

  3. Cenozoic alkaline volcanic rocks with carbonatite affinity in the Bohemian Massif: Their sources and magma generation

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Štěpánková-Svobodová, Jana

    2014-01-01

    Roč. 46, 1/2 (2014), s. 45-58 ISSN 0369-2086 R&D Projects: GA AV ČR(CZ) IAA300130902 Institutional support: RVO:67985831 Keywords : alkaline volcanic rocks * melilitic rocks * carbonatites * magma generation * metasomatism * Cenozoic * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy

  4. Review of the petrology of the Auckland Volcanic Field

    International Nuclear Information System (INIS)

    Smith, I.E.M.; McGee, L.E.; Lindsay, J.M.

    2009-01-01

    Research has long shown that the petrology of suites of volcanic rock can be used to define and understand the fundamental parameters of the magmatic systems that feed volcanoes. The geochemistry of volcanic rocks provides information about the nature of the source rocks, depths and amounts of melting, the processes that act on magmas as they rise to the surface and, most importantly, the rates of these processes. In turn, the answers to fundamental petrological questions can provide input to important questions concerning volcano hazard scenarios and hazard mitigation challenges. The multi-disciplinary DEVORA research programme, launched in 2008, is a GNS Science-University of Auckland collaboration with the aim of DEtermining VOlcanic Risk in Auckland. One of its main themes is the development of an integrated geological model for the Auckland Volcanic Field (AVF) by investigating the physical controls on magma generation, ascent and eruption though detailed structural and petrological investigations. A key data set underpinning this theme is a comprehensive geochemical database for the rocks of the AVF. This report, Review of the Petrology of the Auckland Volcanic Field, is a synthesis and commentary of all petrological and geochemical data currently available for the AVF. It represents one of several reports carried out as part of the 'synthesis' phase of DEVORA, whereby existing data from previous work is collated and summarised, so that gaps in current knowledge can be appropriately addressed. In this report we utilise published and unpublished sources to summarise the petrological data available up to May 2009, and identify where new data and approaches will improve our understanding of the magmatic system which feeds the field. (author). 53 refs., 7 figs., 2 tabs.

  5. Fluids in the Siilinjärvi carbonatite complex, eastern Finland: Fluid inclusion evidence for the formation conditions of zircon and apatite

    Directory of Open Access Journals (Sweden)

    Poutiainen, M.

    1995-06-01

    Full Text Available In the studied zircon and apatite crystals, data recorded two different compositional types of fluid inclusions: Type 1 H2O-CO2, low salinity inclusions (XCO2 = 0.42 to 0.87; XNaCl = 0.001 to 0.005 with bulk densities of 0.73 to 0.87 g/cm3, and Type 2 H2O moderate salinity (XNaCl = 0.03 to 0.06 inclusions with densities of 0.83 to 1.02 g/cm3. The Type 1 inclusions are not present in apatite. In zircon, the observed fluid inclusion types occur in separate domains: around (Type 1 and outside (Type 2 the apparent core. Fluid inclusions are further subdivided into pseudosecondary and secondary inclusions. Using a combination of SEM-EDS, optical characteristics and crushing-stage, various daughter and captive minerals were identified. The fluid inclusion data suggest that the pseudosecondary Type 1 and Type 2 inclusions in zircon and apatite were trapped during the pre-emplacement evolution of the carbonatite at mid-crustal conditions (P≥4 kbar, T≥625°C. The Type 1 fluid was depleted in CO2, during crystal fractionation and cooling leading to a fluid phase enriched in water and alkalies. Fenitization was obviously induced by these saline aqueous fluids. During emplacement of the carbonatite to the present level, zircon phenocrysts were intensively fractured, some Type 1 inclusions were re-equilibrated, and multiphase Type 2 inclusions were trapped. It is assumed that all these inclusions in zircon and the pseudosecondary Type 2 inclusions in apatite have a magmatic origin. In apatite, calcite inclusions occur side-by-side with the secondary Type 2 inclusions. These calcites co-existed with the aqueous fluid during fracturing and metamorphic re-crystallization of apatites. Probably, this metamorphic fluid also is responsible for the transport and deposition of at least some of the calcite at low temperatures (200-350°C.

  6. The use of petrology in Philippine geothermal system

    International Nuclear Information System (INIS)

    Reyes, A.G.

    1992-01-01

    Petrology is used in the various stages of exploration, development and exploitation of a geothermal area, often in conjunction with other fields of study. It is an effective operations tool for predicting syn- and post-drilling conditions in a well, for field and well maintenance, and to a small extent for monitoring fluids passing through the pipelines and steam turbines. Petrological data and interpretations are important in assessing an exploration area, and in formulating and developing strategy of a geothermal field. (auth.). 11 figs

  7. Fifteenth annual meeting of the Society for Organic Petrology. Abstracts and program. Volume 15

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, P.K.; Avery, M.P.; Calder, J.H.; Goodarzi, F. (eds.)

    1998-01-01

    The theme of the conference was 'Sailing into the new millennium'. Abstracts of the papers are included in this volume. Topics covered included: environmental implications of fossil fuel use - geochemical and petrological perspectives; environment, coal structure, and applied coal petrology; new innovations in coal microscopy and petrology/geochemistry of coal and coke; Eastern Canadian basins with implications for hydrocarbon resources; and organic petrology/geochemistry and petroleum system - world basin perspectives. Abstracts of the poster presentations are also included. Papers will be published in an issue of the International Journal of Coal Geology.

  8. Meeting of Commission of International Committee on Petrology of Coals

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, P P; Bogolyubova, L I

    1982-03-01

    In Urbana, Illinois from 18-20 May 1979 the XXXII session of the International Committee on Petrology met. Reports were made on standards for the study of bituminous and anthracite coals. Use of reflective capacity of vitrain to determine coalification of coals was discussed along with a proposition to establish numerical boundaries between brown, bituminous and anthracite coals. The re-editing of the International Dictionary on Petrology of Coals was agreed upon in view of new facts on microcomponents of coal and methods of studying them. The next meeting of the Commission took place at Ostrav, Czechoslovakia from 14-26 April 1980. At the plenary session, new officials were elected and agreement to re-edit the Dictionary on Petrology of Coals was confirmed. At the meeting of the Commission on Coal Petrography the question of the determination of components of coal by quantitative diagnosis, and results of determining components of vitrain by measuring its reflective capacity were reported on. At the meeting of the Committee on Applying Facts of Petrology in Geology, the classification of solid oil bitumen and organic substance of sediments was discussed. At the meeting of the Committee on the Application of the Petrology of Coals in Industry, attention was given to discussing basic parameters for the international classification of coals to be presented at the meeting of the Economic Commission of Europe in Geneva. In the final plenary session of the commission, results of discussions were summarized. The next session was to be held in France in 1981. (In Russian)

  9. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii

    Science.gov (United States)

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika

    2008-09-01

    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also

  10. Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, a new very complex Ba-Sc phosphate mineral from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia)

    Science.gov (United States)

    Yakovenchuk, Victor N.; Ivanyuk, Gregory Yu.; Pakhomovsky, Yakov A.; Panikorovskii, Taras L.; Britvin, Sergei N.; Krivovichev, Sergey V.; Shilovskikh, Vladimir V.; Bocharov, Vladimir N.

    2018-02-01

    Kampelite, Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O, is a new Ba-Sc phosphate from the Kovdor phoscorite-carbonatite complex (Kola Peninsula, Russia). It is orthorhombic, Pnma, a = 11.256(1), b = 8.512(1), c = 27.707(4) Å, V = 2654.6(3) Å3 and Z = 4 (from powder diffraction data) or a = 11.2261(9), b = 8.5039(6), c = 27.699(2) Å, V = 2644.3(3) Å3 (from single-crystal diffraction data). The mineral was found in a void within the calcite-magnetite phoscorite (enriched in hydroxylapatite and Sc-rich baddeleyite) inside the axial zone of the Kovdor phoscorite-carbonatite pipe. Kampelite forms radiated aggregates (up to 1.5 mm in diameter) of platy crystals grown on the surfaces of crystals of quintinite-2 H in close association with pyrite, bobierrite and quintinite-3 R. Kampelite is colourless, with a pearly lustre and a white streak. The cleavage is perfect on {001}, the fracture is smooth. Mohs hardness is about 1. In transmitted light, the mineral is colourless without pleochroism or dispersion. Kampelite is biaxial + (pseudouniaxial), α ≈ β = 1.607(2), γ = 1.612(2) (589 nm), and 2 V calc = 0°. The calculated and measured densities are 3.28 and 3.07(3) g·cm-3, respectively. The mean chemical composition determined by electron microprobe is: MgO 4.79, Al2O3 0.45, P2O5 31.66, K2O 0.34, Sc2O3 16.17, Mn2O3 1.62, Fe2O3 1.38, SrO 3.44, and BaO 29.81 wt%. The H2O content estimated from the crystal-structure refinement is 7.12 wt%, giving a total of 96.51 wt%. The empirical formula calculated on the basis of P = 6 apfu (atoms per formula unit) is (Ba2.62Sr0.45K0.10Ca0.06)Σ3.23Mg1.60Mn0.28(Sc3.15Fe3+ 0.23Al0.12)Σ3.50(PO4)6(OH)2.61·4.01H2O. The simplified formula is Ba3Mg1.5Sc4(PO4)6(OH)3·4H2O. The mineral easily dissolves in 10% cold HCl. The strongest X-ray powder-diffraction lines [listed as d in Å ( I) ( hkl)] are as follows: 15.80(100)(001), 13.86(45)(002), 3.184(18)(223), 3.129(19)(026), 2.756(16)(402), 2.688(24)(10 10). The crystal structure of kampelite was

  11. Carbonatitic liquids and COH fluids from epidote-dolomite eclogites at 3.7 - 4.6 GPa: new perspectives on carbon transfer at subduction zones

    Science.gov (United States)

    Poli, S.

    2013-12-01

    Current knowledge on the solidus temperature for carbonate-bearing rocks suggests that carbonatitic liquids should not form in a subducted oceanic lithosphere, unless anomalous thermal relaxation occurs. For a mildly warm subduction path, COH-bearing basaltic eclogites are expected to loose all H2O component at epidote breakdown, located at approx. 2.8-3.0 GPa. Above this pressure limit, the solidus is that of a carbonated basaltic eclogite which shows a minimum temperature of 1020 °C at 4.0-4.5 GPa (Dasgupta et al. 2004). However, the oceanic crust includes a range of gabbroic rocks, altered on rifts and transforms, with large amounts of An-rich plagioclase. It has been shown that epidote disappearance with pressure depend on the normative anorthite content of the bulk composition considered (Poli et al. 2009); we therefore expect that altered gabbros might display a much wider pressure range where epidote persists, potentially affecting the solidus relationships. Notably, this applies to epidosite rocks formed in hydrothermal environments at oceanic settings, then recovered in high-pressure and ultra-high pressure terrains. New experimental data from 3.7 to 4.6 GPa, 750°C to 1000 °C are intended to unravel the effect of variable bulk and volatile compositions in model eclogites, enriched in the normative anorthite component (An37 and An45). Experiments are performed in piston cylinder and multianvil machines apparatus, using both single and, buffered, double capsule techniques. Garnet, clinopyroxene and coesite form in all syntheses. Lawsonite was found to persist at 3.7 GPa, 750 °C, with both dolomite and magnesite; at 3.8 GPa, 775-800 °C, fluid saturated conditions, epidote coexists with kyanite, dolomite and magnesite. The anhydrous assemblage garnet, omphacite, aragonite, kyanite is found at 4.2 GPa, 850 °C. At 900 °C, fluid-rich conditions, a silicate fluid/melt of granitoid composition, a carbonatitic melt and Na-carbonate are observed. Close to

  12. Mineralogy and geochemistry of triassic carbonatites in the Matcha alkaline intrusive complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian orogenic belt

    Science.gov (United States)

    Vrublevskii, V. V.; Morova, A. A.; Bukharova, O. V.; Konovalenko, S. I.

    2018-03-01

    Postorogenic intrusions of essexites and alkaline and nepheline syenites in the Turkestan-Alai segment of the Kyrgyz Southern Tien Shan coexist with dikes and veins of carbonatites dated at ∼220 Ma by the Ar-Ar and Rb-Sr age methods. They are mainly composed of calcite and dolomite (60-85%), as well as sodic amphibole, phlogopite, clinopyroxene, microcline, albite, apatite, and magnetite, with accessory niobate, ilmenite, Nb-rutile, titanite, zircon, baddeleyite, monazite-(Ce), barite, and sulfides. The rocks share mineralogical and geochemical similarity with carbonatites that originated by liquid immiscibility at high temperatures above 500 °C. Alkaline silicate and salt-carbonate melts are derived from sources with mainly negative bulk εNd(t) ∼ from -11 to 0 and high initial 87Sr/86Sr ratios (∼0.7061-0.7095) which may be due to mixing of PREMA and EM-type mantle material. Pb isotopic ratios in accessory pyrrhotite (206Pb/204Pb = 18.38; 207Pb/204Pb = 15.64; 208Pb/204Pb = 38.41) exhibit an EM2 trend. The intrusions bear signatures of significant crustal contamination as a result of magma genesis by syntexis and hybridism. Concordant isotope composition changes of δ13C (-6.5 to -1.9‰), δ18O (9.2-23‰), δD (-58 to -41‰), and δ34S (12.6-12.8‰) in minerals and rocks indicate inputs of crustal material at the stage of melting and effect of hot fluids released during dehydration of metamorphosed oceanic basalts or sediments. The observed HFSE patterns of the oldest alkaline gabbro may be due to interaction of the primary mafic magma with IAB-type material. The isotope similarity of alkaline rocks with spatially proximal basalts of the Tarim large igneous province does not contradict the evolution of the Turkestan-Alai Triassic magmatism as the "last echo" of the Tarim mantle plume.

  13. Crystallisation of mela-aillikites of the Narsaq region, Gardar alkaline province, south Greenland and relationships to other aillikitic carbonatitic associations in the province

    Science.gov (United States)

    Upton, B. G. J.; Craven, J. A.; Kirstein, L. A.

    2006-11-01

    Aillikites (carbonated, melilite-free ultramafic lamprophyres grading to carbonatites) are minor components of the Gardar alkaline igneous province. They occur principally as minor intrusions and as clasts in diatremes, but more voluminous aillikitic intrusions crop out near the Ilímaussaq Complex, which they predate by a few million years. These larger intrusions were emplaced at 1160 ± 5 Ma. They are essentially carbonate-free and, consisting almost wholly of ferromagnesian silicate and oxide minerals, are mela-aillikites. Typically the mela-aillikites are fine-grained rocks composed largely of olivine, clinopyroxene, phlogopite and magnetite that crystallised in open systems, permitting loss of volatile-rich residues. The petrography is highly complex, involving at least 28 mineral species. Pyroxenitic veins were emplaced while the host-rocks were still at high temperatures and represent channels through which fluorinated silico-carbonatitic residual melts escaped, with exsolving CO 2 as propellant. Precipitation of Ca-rich minerals including monticellite, perovskite, vesuvianite, wollastonite and cuspidine was a result of dissociation of the calcium carbonate in the residual melts. Late-stage crystallisation was in a highly oxidising environment in which the 'common minerals' attain extreme compositions (almost pure forsterite, ferrian-diopside, highly magnesian ilmenite, Ba-Ti-rich phlogopite and Sr-rich kaersutite). Spatially associated diatremes may be vents through which CO 2-rich gases erupted. The whole-rock compositions are considered to be well removed from those of co-existing melts: compaction and expulsion of highly mobile residual melts is inferred to have left the mela-aillikites as aberrant cumulates. The mela-aillikites are a late-Gardar manifestation of the aillikitic magmatism that occurred intermittently in the province for over 120 Ma. Repetitive formation of metasomite vein systems in the deep lithospheric mantle is postulated. These

  14. Petrological significance of REE in uraninite

    International Nuclear Information System (INIS)

    Feng Mingyue; Li Yuexiang; Xu Zhan.

    1992-01-01

    According to the petrological study of Zhuguangshan and Huanglongmiao granites and REE in uraninite from these granites, it can be concluded that REE contents in uraninite and granites are positively correlative; the partition characteristics of REE in uraninite are related to the acidity of initial rocks; and the fractionation degree of REE in uraninite reflects the differentiation degree of initial rocks

  15. Petrological significance of REE in uraninite

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Yuexiang, Li; Zhan, Xu

    1992-09-01

    According to the petrological study of Zhuguangshan and Huanglongmiao granites and REE in uraninite from these granites, it can be concluded that REE contents in uraninite and granites are positively correlative; the partition characteristics of REE in uraninite are related to the acidity of initial rocks; and the fractionation degree of REE in uraninite reflects the differentiation degree of initial rocks.

  16. Study of petrological characteristics of uranium-bearing sandstone in the south of ordos basin, China

    International Nuclear Information System (INIS)

    Tian Cheng; Jia Licheng; Li Song; Zhang Zimin

    2007-01-01

    This paper discusses the relation between uranium-bearing abundance and texture constituent of sedimentary rock, on the basis of the research of petrological characteristic of sandstone in the south of Ordos basin. The influence of infiltration of sandstone and uranium migration and accumulation by the major diagenesis of compaction and cementation, clay minerals evolution, corrosion and forming of secondary porosity are discussed. Uranium-bearing sandstones are divided into four types and their petrological characteristics are discussed. After mineralization conditions being summed up, the uranium-mineralization model of sandstone-type is built. Reliable petrological evidences for evaluating favourable uranium mineralization rich areas are furnished. (authors)

  17. PETRO.CALC.PLOT, Microsoft Excel macros to aid petrologic interpretation

    Science.gov (United States)

    Sidder, G.B.

    1994-01-01

    PETRO.CALC.PLOT is a package of macros which normalizes whole-rock oxide data to 100%, calculates the cation percentages and molecular proportions used for normative mineral calculations, computes the apices for ternary diagrams, determines sums and ratios of specific elements of petrologic interest, and plots 33 X-Y graphs and five ternary diagrams. PETRO.CALC.PLOT also may be used to create other diagrams as desired by the user. The macros run in Microsoft Excel 3.0 and 4.0 for Macintosh computers and in Microsoft Excel 3.0 and 4.0 for Windows. Macros provided in PETRO.CALC.PLOT minimize repetition and time required to recalculate and plot whole-rock oxide data for petrologic analysis. ?? 1994.

  18. Petrology of the Sutherland commanage melilite intrusives

    International Nuclear Information System (INIS)

    Viljoen, K.S.

    1990-01-01

    The petrology of the Sutherland Commonage olivine melilitite intrusives have been investigated using petrographic and chemical methods. The results of the geochemical study suggest that the Commonage melilites were derived by the melting of a recently metasomatised region of the asthenosphere, probably under the influence of an ocean-island-type hotspot situated in the lower mantle

  19. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    Science.gov (United States)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  20. A Virtual Petrological Microscope for All Apollo 11 Lunar Samples

    Science.gov (United States)

    Pillnger, C. T.; Tindle, A. G.; Kelley, S. P.; Quick, K.; Scott, P.; Gibson, E. K.; Zeigler, R. A.

    2014-01-01

    A means of viewing, over the Internet, polished thin sections of every rock in the Apollo lunar sample collections via software, duplicaing many of the functions of a petrological microscope, is described.

  1. Review and update of the applications of organic petrology: Part 2, geological and multidisciplinary applications

    Science.gov (United States)

    Suarez-Ruiz, Isabel; Flores, Deolinda; Mendonça Filho, João Graciano; Hackley, Paul C.

    2012-01-01

    The present paper is focused on organic petrology applied to unconventional and multidisciplinary investigations and is the second part of a two part review that describes the geological applications and uses of this branch of earth sciences. Therefore, this paper reviews the use of organic petrology in investigations of: (i) ore genesis when organic matter occurs associated with mineralization; (ii) the behavior of organic matter in coal fires (self-heating and self-combustion); (iii) environmental and anthropogenic impacts associated with the management and industrial utilization of coal; (iv) archeology and the nature and geographical provenance of objects of organic nature such as jet, amber, other artifacts and coal from archeological sites; and (v) forensic science connected with criminal behavior or disasters. This second part of the review outlines the most recent research and applications of organic petrology in those fields.

  2. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions

    Science.gov (United States)

    Guzmics, Tibor; Zajacz, Zoltán; Mitchell, Roger H.; Szabó, Csaba; Wälle, Markus

    2015-02-01

    We have reconstructed the compositional evolution of the silicate and carbonate melt, and various crystalline phases in the subvolcanic reservoir of Kerimasi Volcano in the East African Rift. Trace element concentrations of silicate and carbonate melt inclusions trapped in nepheline, apatite and magnetite from plutonic afrikandite (clinopyroxene-nepheline-perovskite-magnetite-melilite rock) and calciocarbonatite (calcite-apatite-magnetite-perovskite-monticellite-phlogopite rock) show that liquid immiscibility occurred during the generation of carbonatite magmas from a CO2-rich melilite-nephelinite magma formed at relatively high temperatures (1,100 °C). This carbonatite magma is notably more calcic and less alkaline than that occurring at Oldoinyo Lengai. The CaO-rich (32-41 wt%) nature and alkali-"poor" (at least 7-10 wt% Na2O + K2O) nature of these high-temperature (>1,000 °C) carbonate melts result from strong partitioning of Ca (relative to Mg, Fe and Mn) in the immiscible carbonate and the CaO-rich nature (12-17 wt%) of its silicate parent (e.g., melilite-nephelinite). Evolution of the Kerimasi carbonate magma can result in the formation of natrocarbonatite melts with similar composition to those of Oldoinyo Lengai, but with pronounced depletion in REE and HFSE elements. We suggest that this compositional difference results from the different initial parental magmas, e.g., melilite-nephelinite at Kerimasi and a nephelinite at Oldoinyo Lengai. The difference in parental magma composition led to a significant difference in the fractionating mineral phase assemblage and the element partitioning systematics upon silicate-carbonate melt immiscibility. LA-ICP-MS analysis of coeval silicate and carbonate melt inclusions provides an opportunity to infer carbonate melt/silicate melt partition coefficients for a wide range of elements. These data show that Li, Na, Pb, Ca, Sr, Ba, B, all REE (except Sc), U, V, Nb, Ta, P, Mo, W and S are partitioned into the carbonate

  3. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models

    DEFF Research Database (Denmark)

    Cammarano, Fabio; Tackley, Paul J.; Boschi, Lapo

    2011-01-01

    Mapping the thermal and compositional structure of the upper mantle requires a combined interpretation of geophysical and petrological observations. Based on current knowledge of material properties, we interpret available global seismic models for temperature assuming end-member compositional...... structures. In particular, we test the effects of modelling a depleted lithosphere, which accounts for petrological constraints on continents. Differences between seismicmodels translate into large temperature and density variations, respectively, up to 400K and 0.06 g cm-3 at 150 km depth. Introducing...... lateral compositional variations does not change significantly the thermal interpretation of seismic models, but gives a more realistic density structure. Modelling a petrological lithosphere gives cratonic temperatures at 150 km depth that are only 100 K hotter than those obtained assuming pyrolite...

  4. Experimental and petrological constraints on local-scale interaction of biotite-amphibole gneiss with H2O-CO2-(K, NaCl fluids at middle-crustal conditions: Example from the Limpopo Complex, South Africa

    Directory of Open Access Journals (Sweden)

    Oleg G. Safonov

    2012-11-01

    Full Text Available Reaction textures and fluid inclusions in the ∼2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses (Central Zone of the Limpopo Complex suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750–800 °C and 5.5–6.2 kbar, partial melting, and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650–700 °C. These processes caused local variations of water and alkali activity in the fluids, resulting in various mineral assemblages within the dehydration zone. The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO2-(K, NaCl fluids at 750 and 800 °C and 5.5 kbar. It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K, NaCl fluids is accompanied by partial melting at 750–800 °C. Orthopyroxene-bearing assemblages are characteristic for temperature 800 °C and are stable in equilibrium with fluids with low salt concentrations, while salt-rich fluids produce clinopyroxene-bearing assemblages. These observations are in good agreement with the petrological data on the dehydration zones within the Sand River orthogneisses.

  5. Gamma-ray and electrical resistivity measurements in soil with application of carbonatite and agricultural fertilizers in Distrito Federal; Radiacao gama e resistividade eletrica em solo com aplicacao de carbonatito e fertilizantes agricolas no Distrito Federal

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Carlos Tadeu Carvalho do; Gaspar, Jose Carlos; Pires, Augusto Cesar Bittencourt, E-mail: carlostadeu@unb.br, E-mail: gasp@unb.br, E-mail: acbpires@unb.br [Instituto de Geociencias, Universidade de Brasilia, DF (Brazil); Ferreira, Francisco Jose Fonseca, E-mail: francisco.ferreira@ufpr.br [Departamento de Geologia, Universidade Federal do Parana, Curitiba, PR (Brazil); Andrade, Leide Rovenia Miranda de, E-mail: leide@cpac.embrapa.br [Empresa Brasileira de Pesquisa Agropecuaria, Centro de Pesquisa Agropecuaria dos Cerrados, Planaltina, DF (Brazil)

    2008-01-15

    EMBRAPA (Empresa Brasileira de Pesquisa Agropecuaria) and Brasilia University developed a research project about the viability of carbonatite rock as agricultural fertilizer. As an initial experiment, several mixtures of carbonatite, limestone, phosphorous and potassium compounds were added as fertilizers in an oxisol area (red-latosol, according with Brazilian System of Soil Classification), in Distrito Federal, central Brazil. The experiment area was divided in 56 plots (4 x 7m) and each plot received a fertilizer mixture. The purpose of this work was to verify if the addition of fertilizer mixture to the soil modified its radiometric and resistivity properties and if it is possible to identify this change. Gamma-ray and electrical resistivity measurements were obtained in an experimental area and in a natural savannah type vegetation area. The results showed that the fertilizer addition modified soil natural properties causing a small increase in K, U, Th levels and decreasing ten times electrical resistivity. A low contrast of radiation was observed between plots, and then it was not possible to differentiate the several treatments in base of gamma-ray measurements. Electrical resistivity was efficient to identify three groups of plots related to mixtures characteristics, respectively with phosphorous, potassium and limestone / carbonatite predominance. (author)

  6. Apollo 12 feldspathic basalts 12031, 12038, and 12072; petrology, comparison and interpretations

    International Nuclear Information System (INIS)

    Beaty, E.W.; Hill, S.M.R.; Albee, A.L.; Baldridge, W.S.

    1979-01-01

    Modal and chemical data indicate that 12072, 12038, and 12031, the Apollo 12 feldspathic basalts, form a well-defined group which cannot be related to the other Apollo 12 rock types. 12072 contains phenocrysts of olivine and pigeonite and microphenocrysts of Cr-spinel set in a fine-grained, variolitic groundmass. 12038 is a medium-grained, equigranular basalt with a texture indicating it was multiply saturated. 12031 is a coarse-grained rock with granular to graphic intergrowths of pyroxene and plagioclase; it was also multiply saturated. Petrologic observations, as well as the bulk chemistry, are consistent with the interpretation that 12031 could be derived from 12072 through fractionation of Cr-spinel, olivine, and pigeonite, the observed phenocryst assemblage. 12038, however, contains more pigeonite, less olivine, three times as much Ca-phosphate minerals, one-fifth as much troilite, and much more sodic plagioclase than 12072. These differences indicate that 12038 must have come from a separate igneous body. Consideration of the bulk compositions indicates that neither 12072 and 12031 nor 12038 could have been derived from the Apollo 12 olivine, pigeonite, or ilmenite basalts by crystal--liquid fractionation. The general petrologic similarities between 12072, 12031, and the other Apollo 12 basalts suggests that they were produced in either the same or similar source regions. 12038, however, is petrologically and chemically unique, and is probably exotic to the Apollo 12 landing site

  7. The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations

    Science.gov (United States)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.

    2017-12-01

    Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and

  8. Musa massif: mapping, petrology and petrochemical, Rio Maria, SE from Para State

    International Nuclear Information System (INIS)

    Gastal, M.C.P.

    1987-01-01

    The petrological, geochemical and geochronological studies allow some insight on the genesis and evolution of the Musa Massif. The different facies of the granitic body are cogenetic, although each of these facies presents some peculiarities in its genesis and evolution. These data suggests that the granite magma evolution was complex or, alternatively, that the facies were generated by liquids derived from different sources. A model of magmatic emplacement, genesis and differentiation is proposed and discussed. The granitic facies show a calc-alkaline compositions, exhibiting strong analogies with cordilleran granites or magnetite granites. An age of 1692 +- 11 Ma (Rb/Sr) with IR of 0,70777 +- 0,00023 was obtained for different facies of Massif. A preliminary attempt to individualize geochronology the principal facies was done and showed that there is a coincidence between the ages and the emplacement sequence of these facies of the pluton. (author)

  9. Assessment of fire-damaged concrete. Combining metamorphic petrology and concrete petrography

    NARCIS (Netherlands)

    Larbi, J.A.; Nijland, T.G.

    2001-01-01

    Metamorphic petrology is a branch of geology that deals with the study of changes in rocks due changing physio-chemical conditions. As conditions shift in or out of the thermodynamic stability field of phases, new phases may appear whereas others disappear. A basic approach is mapping of so-called

  10. Petrology of Oligocene Ghaleh Yaghmesh granitoids in the west of Yazd province

    Directory of Open Access Journals (Sweden)

    Bahareh Fazeli

    2017-02-01

    that magma mixing process was likely responsible for the formation of the rocks being studied. Acknowledgements The authors would like to thank the University of Isfahan for the financial support. We also thank the Southern Methodist University (SMU (Dallas - USA for the XRF chemical analysis undertaken for this project. References Alavi, M., 1994. Tectonics of Zagros orogenic belt of Iran, new data and interpretation. Tectonophysics, 229(3: 211–238. Chappell, B.W. and White, A.J., 1974. Two contrasting granite types. Pacific Geology, 8: 173-174. Clemens, J.D., Stevens G., and Farina, F., 2011. The enigmatic sources of I-type granites: The peritectic conexión. Lithos, 126(3: 174–181. Didier, J., 1991. The main types of enclaves in the Hercynian granitoids of the Massif Central, France. In: J. Didier and B. Barbarin (Editors, Enclaves and Granite Petrology. Developments in Petrology, V. 13. Elsevier, Amsterdam, pp. 47–61. Didier, J. and Barbarin, B., 1991. Enclaves and granite petrology.Developments in Petrology, V. 13. Elsevier, Amsterdam, 625 pp. Ellis, D.J. and Thompson, A.B., 1986. Subsolidus and partial melting reactions in the quartz-excess and water deficient conditions of peraluminous melts from mafic rocks. Journal of Petrology, 27(1: 91-121. Honarmand, M., Rashidnejad-Omran, N., Corfu , F., Emami, M. H. and Nabatian, G., 2013. Geochronology and magmatic history of a calc-alkaline plutonic complex in the Urumieh-Dokhtar Magmatic Belt, Central Iran: Zircon ages as evidence for two major plutonic episodes. Neues Jahrbuch fur Mineralogie, Abhandlungen, 190(1: 67–77. Kananian, A., Sarjoughian, F., Nadimi A., Ahmadian, J. and Ling, W., 2014. Geochemical characteristics of the Kuh-e Dom intrusion, Urumieh–Dokhtar Magmatic Arc (Iran: Implications for source regions and magmatic evolution. Journal of Asian Earth Sciences, 90: 137-148. Sepahi, A.A. and Malvandi, F., 2008. Petrology of the Bouein Zahra-Naein Plutonic Complexes, Urumieh-Dokhtar Belt, Iran: With

  11. Sedimentary Petrology: from Sorby to the globalization of Sedimentary Geology

    International Nuclear Information System (INIS)

    Alonso-Zarza, A. M.

    2013-01-01

    We describe here the most important milestones and contributions to Sedimentary Petrology compared to other geological disciplines. We define the main aim of our study and the scientific and economic interests involved in Sedimentary Petrology. The body of the paper focuses upon the historical development of this discipline from Henry Sorby's initial work until the present day. The major milestones in its history include: 1) initial descriptive works; 2) experimental studies; 3) the establishment of the different classifications of sedimentary rocks; 4) studies into facies and sedimentary environments; 5) advances in the study of diagenetic processes and their role in hydrocarbon prospection; and 6) the development of Sedimentary Geochemistry. Relationships and coincidences with Sedimentology are discussed. We go on to look at the advances that have taken place over the last 30 years, in which the study of sedimentary rocks is necessarily included in the wider field of Sedimentary Geology as a logical result of the proposal of global models of a changing Earth in which Sedimentary Geology plays a significant part. Finally we mention the notable contributions of Spanish sedimentary petrologists to this whole field of science. (Author) 120 refs.

  12. Petrography and petrology of the Hamadan pegmatites

    International Nuclear Information System (INIS)

    Valizadeh, M.V.; Torkian, A.

    2000-01-01

    Petrological investigation on the pegmatites of Hamadan area was carried out for their abundance, mineralogical variations and their distribution. They reveal the genesis of Granitoid of Alvand in western parts of Iran in Sanandaj - Sirjan metamorphic belt. Field investigations show that pegmatites are mainly dispersed both on north and south of Alvand mass. They mainly consist of Graphic - pegmatites, Tourmaline Pegmatites, Aluminosilicate - pegmatites and Quartz veins. Muscovite - Aluminosilicate pegmatites are located only in south and outside of granitoid mass, for example near Dehnow Asad - Ol - llah - Khan and Manga villages. Regarding to field investigation, mineralogical characteristics and based on radiometric dating the age of biotites of granitoid is a bout 70-80 M.Y. and the age of Muscovite - pegmatites is about 100 M.Y. Therefore, pegmatites are prior to Alvand emplacement. This is in accordance with pegmatites genesis idea proposed by Winkler and von Platen. So, we suppose that pegmatites of Alvand are metamorphic and their formation do not follow normal magmatic trends. Our petrologic investigation shows that as a result of movement of Arabic plate towards Iranian pa lte (SW - NE), sedimentary rocks composing of metamorphed clays (meta-sediments) in 680-800 d eg C and 2-5 kbar was melted resulting in aplitic melt to come upwards. With the present of thermal dome, transportation of water and mineralizing gas large crystals of Muscovite and Tourmaline were formed slowly and gradually pegmatites were formed. In this condition a melt from sandstone-shale source began to move upward and in different T-P condition it formed aluminosilicate pegmatites. Each of these assemblages present specific conditions of formation

  13. Teaching Igneous and Metamorphic Petrology Through Guided Inquiry Projects

    Science.gov (United States)

    McMillan, N. J.

    2003-12-01

    Undergraduate Petrology at New Mexico State University (GEOL 399) has been taught using three, 5-6 week long projects in place of lectures, lab, and exams for the last six years. Reasons for changing from the traditional format include: 1) to move the focus from identification and memorization to petrologic thinking; 2) the need for undergraduate students to apply basic chemical, structural, and field concepts to igneous and metamorphic rocks; 3) student boredom in the traditional mode by the topic that has captivated my professional life, in spite of my best efforts to offer thrilling lectures, problems, and labs. The course has three guided inquiry projects: volcanic, plutonic, and pelitic dynamothermal. Two of the rock suites are investigated during field trips. Each project provides hand samples and thin sections; the igneous projects also include whole-rock major and trace element data. Students write a scientific paper that classifies and describes the rocks, describes the data (mineralogical and geochemical), and uses data to interpret parameters such as tectonic setting, igneous processes, relationship to phase diagrams, geologic history, metamorphic grade, metamorphic facies, and polymetamorphic history. Students use the text as a major resource for self-learning; mini-lectures on pertinent topics are presented when needed by the majority of students. Project scores include evaluation of small parts of the paper due each Friday and participation in peer review as well as the final report. I have found that petrology is much more fun, although more difficult, to teach using this method. It is challenging to be totally prepared for class because students are working at different speeds on different levels on different aspects of the project. Students enjoy the course, especially the opportunity to engage in scientific investigation and debate. A significant flaw in this course is that students see fewer rocks and have less experience in rock classification

  14. Geochemistry and petrology of mafic Proterozoic and Permian dykes on Bornholm, Denmark:

    DEFF Research Database (Denmark)

    Holm, Paul Martin; Pedersen, Lise E.; Højsteeen, Birte

    2010-01-01

    More than 250 dykes cut the mid Proterozoic basement gneisses and granites of Bornholm. Most trend between NNW and NNE, whereas a few trend NE and NW. Field, geochemical and petrological evidence suggest that the dyke intrusions occurred as four distinct events at around 1326 Ma (Kelseaa dyke...

  15. The petrology and petrogenesis of the Swaldale region, Motzfeldt Center, South Greenland

    Science.gov (United States)

    Reekie, Callum; Finch, Adrian

    2016-04-01

    Motzfeldt is one of several high-level alkaline plutonic centers that collectively define the mid-Proterozoic Gardar Province of South Greenland. Despite pyrochlore-hosted Ta-enrichment (± Nb-Zr-REE), the petrology, geochemistry and petrogenesis across the center remain to be fully constrained. We present petrological and geochemical data for the Swaldale region, an arcuate band of nepheline syenite and associated intrusives on Motzfeldt's NW margin. Work for this present study was undertaken in collaboration with the license holder, Regency Mines plc. Swaldale comprises two geochemically distinct magmatic members. The largest, the Motzfeldt Sø Formation (MSF; EuN/Eu*N = 0.35), is a suite of diverse syenite variants that show significant petrological and geochemical heterogeneity. These rocks have a relatively restricted SiO2 range (57.4-62.9 wt.%) with concurrent variation in (Na+K)/Al (0.75-0.95), Mg/(Mg+Fe) (2.18-19.82) and ΣREE (595.0-3095.9 ppm), emphasizing their evolved but not peralkaline nature. Fractionation is mirrored by pyroxene geochemistry with evolution from aegirine-augite, aegirine-hedenbergite, to aegirine. Accessory pyrochlore, titanite, and zircon are rare; however, anomalous facies of zircon-rich (~2 wt.%) syenite are observed. Intercumulus fluorite is a common accessory within MSF rocks. Hydrothermal alteration, marked by hematized alkali-feldspar, is pervasive and ubiquitous. Further peraluminous syenite of the Geologfjeld Formation ((Na+K)/Al = 0.74; EuN/Eu*N = 1.60) marks the truncated remnant of an early syenite stock to the north of the MSF. These rocks contain salite, which, in addition to a lower ΣREE and higher Mg/(Mg+Fe) (18.01), demonstrates the less-fractionated nature of this stock in comparison with the MSF. Sheeted intrusions of peralkaline syenite ((Na+K)/Al = 1.1; Ta = 32.4 ppm) truncate the MSF across central Swaldale. On a mineralogical basis, it is hypothesized that such intrusions reflect outward sheeting of the

  16. Mineralogy, petrology and geochemistry of carbonaceous chondritic clasts in the LEW 85300 polymict eucrite

    Science.gov (United States)

    Zolensky, M. E.; Hewins, R. H.; Mittlefehldt, D. W.; Lindstrom, M. M.; Xiao, X.; Lipschutz, M. E.

    1992-01-01

    We have performed a detailed petrologic and mineralogic study of two chondritic clasts from the polymict eucrite Lewis Cliff (LEW) 85300, and performed chemical analyses by INAA and RNAA on one of these. Petrologically, the clasts are identified and are composed of dispersed aggregates, chondrules, and chondrule fragments supported by matrix. The aggregates and chondrules are composed of olivine, orthopyroxene, plus some diopside. The matrix consists of fine-grained olivine, and lesser orthopyroxene and augite. Fine-grained saponite is common in the matrix. The bulk major composition of the clast studied by INAA and RNAA shows unusual abundance patterns for lithophile, siderophile and chalcophile elements but is basically chondritic. The INAA/RNAA data preclude assignment of the LEW 85300,15 clast to any commonly accepted group of carbonaceous chondrite.

  17. Petrology of seamounts in the Central Indian Ocean Basin: Evidence for near-axis origin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.; Iyer, S.D.

    Previous studies on the distribution and morphology of ancient seamount chains (>50 Ma) in the Central Indian Ocean basin (CIOB) indicated their generation from the fast spreading Southeast Indian Ridge. The petrology of some of these seamounts...

  18. Semantically Enabling Knowledge Representation of Metamorphic Petrology Data

    Science.gov (United States)

    West, P.; Fox, P. A.; Spear, F. S.; Adali, S.; Nguyen, C.; Hallett, B. W.; Horkley, L. K.

    2012-12-01

    More and more metamorphic petrology data is being collected around the world, and is now being organized together into different virtual data portals by means of virtual organizations. For example, there is the virtual data portal Petrological Database (PetDB, http://www.petdb.org) of the Ocean Floor that is organizing scientific information about geochemical data of ocean floor igneous and metamorphic rocks; and also The Metamorphic Petrology Database (MetPetDB, http://metpetdb.rpi.edu) that is being created by a global community of metamorphic petrologists in collaboration with software engineers and data managers at Rensselaer Polytechnic Institute. The current focus is to provide the ability for scientists and researchers to register their data and search the databases for information regarding sample collections. What we present here is the next step in evolution of the MetPetDB portal, utilizing semantically enabled features such as discovery, data casting, faceted search, knowledge representation, and linked data as well as organizing information about the community and collaboration within the virtual community itself. We take the information that is currently represented in a relational database and make it available through web services, SPARQL endpoints, semantic and triple-stores where inferencing is enabled. We will be leveraging research that has taken place in virtual observatories, such as the Virtual Solar Terrestrial Observatory (VSTO) and the Biological and Chemical Oceanography Data Management Office (BCO-DMO); vocabulary work done in various communities such as Observations and Measurements (ISO 19156), FOAF (Friend of a Friend), Bibo (Bibliography Ontology), and domain specific ontologies; enabling provenance traces of samples and subsamples using the different provenance ontologies; and providing the much needed linking of data from the various research organizations into a common, collaborative virtual observatory. In addition to better

  19. Radiological Mapping of the Alkaline Intrusive Complex of Jombo, South Coastal Kenya by In-Situ Gamma-Ray Spectrometry

    Science.gov (United States)

    Kaniu, Ian; Darby, Iain G.; Kalambuka Angeyo, Hudson

    2016-04-01

    Carbonatites and alkaline intrusive complexes are rich in a variety of mineral deposits such as rare earth elements (REEs), including Nb, Zr and Mn. These are often associated with U and Th bearing minerals, including monazite, samarskite and pyrochlore. Mining waste resulting from mineral processing activities can be highly radioactive and therefore poses a risk to human health and environment. The Jombo complex located in Kenya's south coastal region is potentially one of the richest sources of Nb and REEs in the world. It consists of the main intrusion at Jombo hill, three associated satellite intrusions at Mrima, Kiruku and Nguluku hills, and several dykes. The complex is highly heterogeneous with regard to its geological formation as it is characterized by alkaline igneous rocks and carbonatites which also influence its radio-ecological dynamics. In-situ gamma spectrometry offers a low-cost, rapid and spatially representative radioactivity estimate across a range of landscapes compared to conventional radiometric techniques. In this work, a wide ranging radiological survey was conducted in the Jombo complex as follow up on previous studies[1,2], to determine radiation exposure levels and source distributions, and perform radiological risk assessments. The in-situ measurements were carried out using a 2.0 l NaI(Tl) PGIS-2 portable detector from Pico Envirotec Inc integrated with GPS, deployed for ground (back-pack) and vehicular gamma-ray spectrometry. Preliminary results of radiological distribution and mapping will be presented. [1] Patel, J. P. (1991). Discovery and Innovation, 3(3): 31-35. [2] Kebwaro, J. M. et. al. (2011). J. Phys. Sci., 6(13): 3105-3110.

  20. A Magnetic Petrology Database for Satellite Magnetic Anomaly Interpretations

    Science.gov (United States)

    Nazarova, K.; Wasilewski, P.; Didenko, A.; Genshaft, Y.; Pashkevich, I.

    2002-05-01

    A Magnetic Petrology Database (MPDB) is now being compiled at NASA/Goddard Space Flight Center in cooperation with Russian and Ukrainian Institutions. The purpose of this database is to provide the geomagnetic community with a comprehensive and user-friendly method of accessing magnetic petrology data via Internet for more realistic interpretation of satellite magnetic anomalies. Magnetic Petrology Data had been accumulated in NASA/Goddard Space Flight Center, United Institute of Physics of the Earth (Russia) and Institute of Geophysics (Ukraine) over several decades and now consists of many thousands of records of data in our archives. The MPDB was, and continues to be in big demand especially since recent launching in near Earth orbit of the mini-constellation of three satellites - Oersted (in 1999), Champ (in 2000), and SAC-C (in 2000) which will provide lithospheric magnetic maps with better spatial and amplitude resolution (about 1 nT). The MPDB is focused on lower crustal and upper mantle rocks and will include data on mantle xenoliths, serpentinized ultramafic rocks, granulites, iron quartzites and rocks from Archean-Proterozoic metamorphic sequences from all around the world. A substantial amount of data is coming from the area of unique Kursk Magnetic Anomaly and Kola Deep Borehole (which recovered 12 km of continental crust). A prototype MPDB can be found on the Geodynamics Branch web server of Goddard Space Flight Center at http://core2.gsfc.nasa.gov/terr_mag/magnpetr.html. The MPDB employs a searchable relational design and consists of 7 interrelated tables. The schema of database is shown at http://core2.gsfc.nasa.gov/terr_mag/doc.html. MySQL database server was utilized to implement MPDB. The SQL (Structured Query Language) is used to query the database. To present the results of queries on WEB and for WEB programming we utilized PHP scripting language and CGI scripts. The prototype MPDB is designed to search database by major satellite magnetic

  1. Genesis of apocarbonatitic titanium metasomatites of the Petyayan-vara rare-earth occurrence (Vuoriyarvi, the Kola Region

    Directory of Open Access Journals (Sweden)

    Kozlov E. N.

    2018-03-01

    Full Text Available The objects of the study are apocarbonatitic titanium metasomatites ("titanium carbonatites" associated with the rare earth carbonatites of the Petyayan-Vara area of the Vuoriyarvi complex (the Kola region. In this paper, the following mechanism for the formation of these rocks has been substantiated based on the agreed results of mineralogical and geochemical studies. Prior to the onset of carbonatite genesis, a fluorine-enriched fluid phase originated in the lower horizons of the complex passed along the deep-permeating fracture system of several hundred meters length up to the level of the modern erosion surface. It transported Al, Fe2+, Mg, Ti, P into the pyroxenites and Si, Ca and Na out of them, as a result of which the pyroxenites were transformed into giant-grained phlogopite rocks – glimmerites. The most probable source of this fluid is alkaline aluminosilicate magma. Then carbonate melts intruded along the same fractures. In the course of carbonatite genesis, F-fluid caused a local migration of K, Al, Si, Fe, P, Ti, Nb, Ta, Zr, Hf and HREE out of glimmerites into igneous dolomite carbonatites, which led to the formation of apocarbonatitic titanium metasomatites. They represent several paragenetic associations superimposed on each other, the mineral composition and the formation sequence of which correspond to the metasomatic column zones directly observed within the contact "carbonatite – altered pyroxenite". The separation of HFSE and REE is controlled by the same metasomatic column: Ti, Nb and Ta were accumulated in titanium carbonatites, i. e. in associations of the frontal and intermediate zones, and Zr, Hf and HREE – in apatitized fields corresponding to the rear zone of the column. Accordingly, the fractionation of these elements occurred due to the "fluid – rock" interaction. Subsequently, the same long-lived fractures served as a channel for REE-Sr-Ba-S fluids, but the recrystallization caused by K

  2. Geochemistry of radioactive elements in the process of weathering of carbonatites, acidic and alkali rocks

    International Nuclear Information System (INIS)

    Zhmodik, S.M.

    1984-01-01

    Geochemical peculiarities of uranium and thorium behaviour under formation of area crusts of weathering of granitoids, alkali rocks and carbonatites of certain areas of East Siberia are considered. The presented crysts of weathering have been formed under different climatic conditions, they have different age (in the limit of upper Cretaceous period - Neogene up to Quaternary time), chemical and mineral composition. Factors determining and controlling the level of uranium and thorium concentrations in weathering products are disclosed on the basis of facts using the methods of neutron-fragmentary radiography and by-fractional balances. Uranium and thorium distribution in granulometric fractions of crysts of weathering is considered in detail. Data on change in forms of radioactive elements under weathering, effect of fine-dispersed hypergene minerals (kaolinite, montmorillonite, goethite, etc.) on the character of uranium and thorium distribution in eluvial products as well as on sources of migrating uranium in crusts of weathering are presented. Scales of uranium and thorium redistribution under weathering are revealed. Supposition on the source of uranium and throium in sediments is made

  3. Upper Cretaceous to Pleistocene melilitic volcanic rocks of the Bohemian Massif: Petrology and mineral chemistry

    Czech Academy of Sciences Publication Activity Database

    Skála, Roman; Ulrych, Jaromír; Krmíček, Lukáš; Fediuk, F.; Balogh, K.; Hegner, E.

    2015-01-01

    Roč. 66, č. 3 (2015), s. 197-216 ISSN 1335-0552 Institutional support: RVO:67985831 Keywords : Bohemian Massif * Cenozoic volcanism * isotope geochemistry * melilitic rock * mineralogy * petrology Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.523, year: 2015

  4. Investigating combined influence of petrology and technological parameters on strength of porous coke body

    Energy Technology Data Exchange (ETDEWEB)

    Dinel' t, V.M.; Shkoller, M.B.; Stankevich, A.S.; Korchuganova, G.S.

    1983-09-01

    The VUKhIN branch in Kuznetsk investigated effects of coal petrology and coking conditions on structural strength of coke in blast furnaces. Structural strength of coke produced from black coal from the Kuzbass as well as structural strength of coke partially gasified by carbon dioxide under conditions similar to those in blast furnaces was investigated. Fourteen samples of coal mixtures from the Kuzbass were used. Regression analysis was applied. Equations for forecasting coke properties on the basis of coal petrology and selected parameters characterizing coking were derived. Analyses showed that coke structural strength was decisively influenced by coefficients which characterized the average reflectivity of vitrinite in a coal mixture and its average density. After partial coke gasification by carbon dioxide effects of coefficients which characterized coal mixture nonhomogeneity (fluctuations of vitrinite reflectivity) and coal mixture density increased. Increasing coal density partially compensated negative effects of fluctuations of vitrinite reflectivity on coke structural strength. (10 refs.) (In Russian)

  5. Processing of Pakistani carbonatites for separation of cerium from adjacent rare earths

    International Nuclear Information System (INIS)

    Akram, M.; Qazi, N.K.; Khan, M.F.; Hasan, G.H.; Ahmed, N.; Chughtai, N.A.

    2003-01-01

    Carbonatite rock of Loe-Shilman area in North Western Frontier Province (NWFP) of Pakistan contains rare earth elements. This rock was upgraded in terms of its rare earths content from 2,000 ppm to 10,000 ppm rare earths oxide (REO) by crushing, calcination at 1000 deg. C for 3 hrs and cold leaching with 2% HCl for 1 hr. 80% to 95% of rare earths present in carbonatite powder were digested in nitric acid at 60 deg. C after 2 hrs stirring. Tributyl phosphate (TBP), diluted with dodecane, was used as extractant for extraction of rare earths. Since extraction is dependent on pH of the aqueous feed solution, the role of nitrate ions concentration in the solvent extraction of rare earth elements (REEs) was studied. It was observed that extraction of REEs was maximum at pH 1.1. The solvent had been unable to extract REEs from high acidic feed solutions. Solvents of different molarities were also tried against aqueous phase of pH 1.1. Studies showed a poor gain at 0 M and 0.5 M of organic phase while no gain observed beyond 2 molar solvent. 1 M organic phase gave maximum yield of rare earths salt, Ln(OH)/sub 3/, when stripped solution precipitated with ammonium hydroxide solution. It was also observed that if aqueous solution of 3.0 N was treated with blank solvent (i.e. Molarity = 0), it gave almost the same result. It was further established that optimum quantity of caging agent, Al(NO/sub 3/)/sub 3/-9H/sub 2/O added to aqueous solution prior to pH adjustment (i.e. 10 gm/100 gm powder dissolved) suppressed fluoride ions (F') which were hindering the extraction of rare earths. This improved the extraction efficiency of desired elements. To optimise the process parameters like solvent dilution, aqueous to organic ratio and extraction/stripping times, a' series of experiments were performed. Recovery for the desired elements had been between 78% to 86%. The optimum extraction parameters were found to be TBP concentration 40% (v/v) for aqueous to organic ratio 1:5 and 50

  6. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran

    NARCIS (Netherlands)

    Aghazadeh, Mehraj; Castro, Antonio; Badrzadeh, Zahra; Vogt, Katharina

    2011-01-01

    The petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt.

  7. Mineralogy, petrology and whole-rock chemistry data compilation for selected samples of Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Connolly, J.R.

    1991-12-01

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a number-sign 1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates

  8. Petrology, geochemistry and source characteristics of the Burpala alkaline massif, North Baikal

    Directory of Open Access Journals (Sweden)

    N.V. Vladykin

    2017-07-01

    Full Text Available The Burpala alkaline massif contains rocks with more than 50 minerals rich in Zr, Nb, Ti, Th, Be and rare earth elements (REE. The rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite and contain up to 10% LILE and HSFE, 3.6% of REE and varying amounts of other trace elements (4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th and 0.1% U. Geological and geochemical data suggest that all the rocks in the Burpala massif were derived from alkaline magma enriched in rare earth elements. The extreme products of magma fractionation are REE rich pegmatites, apatite–fluorite bearing rocks and carbonatites. The Sr and Nd isotope data suggest that the source of primary melt is enriched mantle (EM-II. We correlate the massif to mantle plume impact on the active margin of the Siberian continent.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    40Ar-39Ar analyses of three fresh alkaline rock samples and a phlogopite separate from a carbonatite from Amba Dongar carbonatite-alkaline complex of the Deccan Flood Basalt Province, India, yield indistinguishable precise plateau ages of 64.8 ± 0.6, 64.7 ± 0.5, 65.5 ± 0.8 and 65.3 ± 0.6 Ma, giving a mean plateau age ...

  10. Portland clinker production with carbonatite waste and tire-derived fuel: crystallochemistry of minor and trace elements

    Directory of Open Access Journals (Sweden)

    F. R. D. Andrade

    2014-12-01

    Full Text Available This paper presents results on the composition of Portland clinkers produced with non-conventional raw-materials and fuels, focusing on the distribution of selected trace elements. Clinkers produced with three different fuel compositions were sampled in an industrial plant, where all other parameters were kept unchanged. The fuels have chemical fingerprints, which are sulfur for petroleum coke and zinc for TDF (tire-derived fuel. Presence of carbonatite in the raw materials is indicated by high amounts of strontium and phosphorous. Electron microprobe data was used to determine occupation of structural site of both C3S and C2S, and the distribution of trace elements among clinker phases. Phosphorous occurs in similar proportions in C3S and C2S; while considering its modal abundance, C3S is its main reservoir in the clinker. Sulfur is preferentially partitioned toward C2S compared to C3S. Strontium substitutes for Ca2+ mainly in C2S and in non-silicatic phases, compared to C3S.

  11. Petrology of basalts from Loihi Seamount, Hawaii

    Science.gov (United States)

    Hawkins, James; Melchior, John

    1983-12-01

    Loihi Seamount is the southeasternmost active volcano of the Emperor-Hawaii linear volcanic chain. It comprises a spectrum of basalt compositional varieties including basanite, alkali basalt, transitional basalt and tholeiite. Samples from four dredge collections made on Scripps Institution of Oceanography Benthic Expedition in October 1982 are tholeiite. The samples include highly vesicular, olivine-rich basalt and dense glass-rich pillow fragments containing olivine and augite phenocrysts. Both quartz-normative and olivine-normative tholeiites are present. Minor and trace element data indicate relatively high abundances of low partition coefficient elements (e.g., Ti, K, P. Rb, Ba, Zr) and suggest that the samples were derived by relatively small to moderate extent of partial melting, of an undepleted mantle source. Olivine composition, MgO, Cr and Ni abundances, and Mg/(Mg+Fe), are typical of moderately fractionated to relatively unfractionated "primary" magmas. The variations in chemistry between samples cannot be adequately explained by low-pressure fractional crystallization but can be satisfied by minor variations in extent of melting if a homogeneous source is postulated. Alternatively, a heterogeneous source with variable abundances of certain trace elements, or mixing of liquids, may have been involved. Data for 3He/ 4He, presented in a separate paper, implies a mantle plume origin for the helium composition of the Loihi samples. There is little variation in the helium isotope ratio for samples having different compositions and textures. The helium data are not distinctive enough to unequivocally separate the magma sources for the tholeiitic rocks from the other rock types such as Loihi alkalic basalts and the whole source region for Loihi may have a nearly uniform helium compositions even though other element abundances may be variable. Complex petrologic processes including variable melting, fractional crystallization and magma mixing may have blurred

  12. Weathering of Igneous, Metamorphic, and Sedimentary Rocks in a Semi-arid Climate - An Engineering Application of Petrology

    Science.gov (United States)

    Harrison, W. J.; Wendlandt, R. F.

    2003-12-01

    Over the last 10 years, analytical methods have been introduced to students in CSM's undergraduate geological engineering program through a multi-year and multi-course approach. Beginning with principles and simple applications of XRD and SEM in sophomore Mineralogy and building on these skills in subsequent junior and senior year courses, geological engineers acquire proficiency in analytical methods. Essential workplace skills are thus acquired without adding an extra course in the undergraduate program. The following exercise is completed by juniors in an integrated Ig.-Met.-Sed. petrology course. The identification of clay mineral assemblages in soils provides a unique opportunity to demonstrate how basic principles of petrology and geochemistry are applied to engineering design criteria in construction site preparation. Specifically, the problem investigates the conditions leading to the formation of smectite in soils and the resulting construction risk due to soil expansion. Students examine soils developed on igneous, metamorphic, and sedimentary rocks near Denver, Colorado. The field locations are areas of suburban growth and several have expansive soil problems. The 2-week exercise includes sample collection, description, and preparation, determining clay mineralogy by XRD, and measurement of Atterberg Plasticity Indices. Teaching materials may be found at: http://serc.carleton.edu/NAGTWorkshops/petrology03/. This exercise accomplishes three objectives: First, skills in XRD analysis are developed by introducing students to concepts of particle size separation, particle orientation, and sequential analysis steps which are standard practices in clay characterization. Second, lecture material on the geochemistry of weathering of different rock types is reinforced. Students interpret the origin of clay mineral assemblages developed in soils derived from Precambrian gneisses, lower Paleozoic feldspathic sandstones, upper Paleozoic marine shales, and Tertiary

  13. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  14. Ring complexes and related rocks in Africa

    Science.gov (United States)

    Vail, J. R.

    Over 625 igneous complexes throughout Africa and Arabia have been selected and classified on the basis of petrographic association and chronology into six broad age groups forming 29 provinces. The groups range from Mid-Proterozoic to Tertiary and include gabbro, granite, syenite, foid syenite and carbonatite plutonic rocks, the majority in the form of ring-dykes, cone-sheets, plugs, circular intrusions, and their associated extrusive phases. Pan-African late or post-orogenic complexes (720-490 Ma) are common in the Arabian-Nubian and Tuareg shields of north Africa originating from subduction zone derived magmatism. Anorogenic complexes in Egypt, NE and central Sudan, Niger, Nigeria, Cameroon, Zaïre-Burundi, Malawi, Mozambique, Zimbabwe, Namibia and Angola span 550 to 50 Ma and are dominantly alkali granites and foid syenites. Many groups occur as en-echelon bands within linear arrays, and show migrating centres of intrusion in variable directions. In W. Africa there was a progressive shift of emplacement southwards during early Ordovician to Mid-Cretaceous times. Distribution patterns suggest thatdeep seated features, such as shear zones associated with lithospheric plate movements,controlled melting, and the resultant location of the complexes. Economic mineralization is not widespread in the rocks of the African ring complexes and is mainly restricted to small deposits of Sn, W, F, U and Nb.

  15. Petrology and radiogeology of the Stripa pluton

    International Nuclear Information System (INIS)

    Wollenberg, Harold; Flexser, Steve; Andersson, Lennart

    1980-01-01

    To better define the character of the rock encompassing the thermomechanical and hydrological experiments at the Stripa mine in central Sweden, and to help determine the size of the Stripa pluton, detailed studies were conducted of the petrology and radiogeology of the quartz monzonite and adjacent rocks. Petrologic studies emphasized optical petrography, with supplementary X-ray diffraction, X-ray fluorescence and microprobe analyses. Radiogeologic investigations were based primarily on surface and underground gamma-ray spectrometric measurements of uranium, thorium and potassium, supplemented by laboratory gamma spectrometric analyses and fission-track radiographic determinations of the locations and abundance of uranium in the rock matrix. Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monzonite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the leptite and other plutons in the region. Uranium and thorium abundances are both- 30 ppm, considerably higher than in 'normal' granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat

  16. Petrology and radiogeology of the Stripa pluton

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, Harold; Flexser, Steve; Andersson, Lennart

    1980-12-01

    To better define the character of the rock encompassing the thermomechanical and hydrological experiments at the Stripa mine in central Sweden, and to help determine the size of the Stripa pluton, detailed studies were conducted of the petrology and radiogeology of the quartz monzonite and adjacent rocks. Petrologic studies emphasized optical petrography, with supplementary X-ray diffraction, X-ray fluorescence and microprobe analyses. Radiogeologic investigations were based primarily on surface and underground gamma-ray spectrometric measurements of uranium, thorium and potassium, supplemented by laboratory gamma spectrometric analyses and fission-track radiographic determinations of the locations and abundance of uranium in the rock matrix. Both the quartz monzonite and the metavolcanic leptite which it intruded are strongly fractured. Two stages of fracture filling are evident; an earlier stage encompassing quartz, sericite, feldspar, epidote, and chlorite, and a later stage dominated by carbonate minerals. The Stripa quartz monzonite is chemically and mineralogically distinct from other plutons in the region. Muscovite is the predominant mica in the quartz monzonite; biotite has been altered to chlorite, hornblende is absent, and accessory minerals are scarce. In contrast, in other plutons in the Stripa region biotite and hornblende are prominent mafic minerals and accessory minerals are abundant. The Stripa quartz monzonite is also considerably more radioactive than the leptite and other plutons in the region. Uranium and thorium abundances are both- 30 ppm, considerably higher than in "normal" granitic rocks where the thorium-to-uranium ratio generally exceeds 2. Potassium-argon dating of muscovite from the Stripa quartz monzonite indicates that this rock may be older, at 1691 million years than granitic rock of the neighboring Gusselby and Kloten massifs, whose ages, based on K-Ar dating of biotite, are respectively 1604 and 1640 m.y. Heat flow and heat

  17. INAA and petrological study of sandstones from the Angkor monuments

    International Nuclear Information System (INIS)

    Kucera, J.; Kranda, K.; Soukal, L.; Novak, J.K.; Lang, M.; Poncar, J.; Krausova, I.; Cunin, O.

    2008-01-01

    We determined 35 major, minor and trace elements in sandstone samples taken from building blocks of 19 Angkor temples and from an old and a new quarry using INAA. We also characterized the sandstone samples with conventional microscopy and electron microprobe analysis. Using cluster analysis, we found no straightforward correlation between the chemical/petrological properties of the sandstones and a presumed period of individual temples construction. The poor correlation may result either from the inherent inhomogeneity of sandstone or just reflect the diversity of quarries that supplied building blocks for the construction of any particular temple. (author)

  18. Preliminary characterization of the rare earth ore from the Barra do Itapirapua, Sao Paulo and Parana states, Brazil. Detail 1 area

    International Nuclear Information System (INIS)

    Lorenzi, M.L.B.; Lorenzi, V.E.; Kahn, H.

    1996-01-01

    The main rare earth mineralization on Barra do Itapirapua Alkaline-Carbonatitic Complex is related to the weathering mantle of the Serrana Body carbonatite plug - detail 1 area. The present work describes the preliminary RE ore types established from correlation between geological observations, geochemical weathering profile and mineralogical studies. Mineralogical studies, comprising around 40 thin section analysis, were performed by scanning electron microscopy (SEM) with energy dispersive systems (EDS). (author)

  19. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  20. Archean crust-mantle geochemical differentiation

    Science.gov (United States)

    Tilton, G. R.

    1983-01-01

    Isotope measurements on carbonatite complexes and komatiites can provide information on the geochemical character and geochemical evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.

  1. Petrological and geochemical characterization of the plutonic rocks of the Sierra de La Aguada, Province of San Luis, Argentina: Genetic implications with the Famatinian magmatic arc

    Directory of Open Access Journals (Sweden)

    E. Cristofolini

    2017-07-01

    Full Text Available This study presents a synthesis on the geology of the crystalline complex that constitute the Sierra de la Aguada, San Luis province, Argentine, from an approach based on field relations, petrologic and structural features and geochemical characteristic. This mountain range exposes a basement dominated by intermediate to mafic calcalkaline igneous rocks and peraluminous felsic granitoids, both emplaced in low to medium grade metamorphic rocks stabilized under low amphibolite facies. All this lithological terrane has been grouped in the El Carrizal-La Aguada Complex. Field relations, petrographic characterization and geochemical comparison of the plutonic rocks from the study area with those belonging to the Ordovician Famatinian suit exposed in the Sierra Grande de San Luis, suggest a genetic and temporal relation linked to the development of the Famatinian magmatic arc.

  2. Petrological cycles and caldera-forming events

    Science.gov (United States)

    Bachmann, O.; Deering, C. D.

    2012-12-01

    Many caldera-forming events can be framed within broad petrological cycles; volcanic stratigraphy typically defines a trend from mafic to more silicic magmas with time, culminating in the catastrophic evacuation of an upper crustal reservoir filled with the silicic magma, followed by a return to the eruption of more mafic magmas shortly after caldera collapse. Understanding how such cycles develop has clear implications for characterizing the current state of an active system. Here, we focus on a detailed examination of the well-exposed Quaternary Kos-Nisyros eruptive sequence (eastern Aegean arc) to frame a potential model for such cycles. On the basis of zircon U/Th/Pb ages, building the upper crustal magma chamber large enough to induce caldera collapse required at least a few hundred thousand years. This timeframe is necessary not only for the accumulation of large amounts of viscous, gas-rich silicic magma, but also to heat the upper crust sufficiently to allow the developing reservoir to be maintained above the solidus. In the Kos-Nisyros volcanic center, small eruptions precede the caldera-forming event and mark this period of thermal maturation as the system transitions from intermediate to silicic magma, reaching the most-evolved state only shortly prior to the caldera-forming event, the Kos Plateau Tuff (> 60 km3 of volatile-rich, high-silica rhyolite). The Kos Plateau Tuff was then followed by small-volume eruptions of more mafic magma (basaltic andesite, andesite, and dacites) that are characterized by a drier mineral assemblage. With time, the system transitioned back to cold, wet, high-SiO2 rhyolite. We suggest that the changes in magma composition and mineralogy following the caldera-forming event are due to a near-complete crystallization of the non-erupted mush in the upper crustal reservoir as it is abruptly decompressed during eruption. This rapid crystallization (1) leads to the formation of a porphyritic texture in the crystalline residual - a

  3. Preliminary characterization of the rare earth ore from the Barra do Itapirapua, Sao Paulo and Parana states, Brazil. Detail 1 area; Caracterizacao preliminar do minerio de terras raras da Barra do Itapirapua, SP/PR - area de detalhe 1

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzi, M.L.B.; Lorenzi, V.E.; Kahn, H

    1996-12-31

    The main rare earth mineralization on Barra do Itapirapua Alkaline-Carbonatitic Complex is related to the weathering mantle of the Serrana Body carbonatite plug - detail 1 area. The present work describes the preliminary RE ore types established from correlation between geological observations, geochemical weathering profile and mineralogical studies. Mineralogical studies, comprising around 40 thin section analysis, were performed by scanning electron microscopy (SEM) with energy dispersive systems (EDS). (author) 5 refs., 2 figs., 1 tab.

  4. Using a Differential Scanning Calorimeter to Teach Phase Equilibria to Students of Igneous and Metamorphic Petrology

    Science.gov (United States)

    Maria, Anton H.; Millam, Evan L.; Wright, Carrie L.

    2011-01-01

    As an aid for teaching phase equilibria to undergraduate students of igneous and metamorphic petrology, we have designed a laboratory exercise that allows them to create a phase diagram from data produced by differential scanning calorimetry. By preparing and analyzing samples of naphthalene and phenanthrene, students acquire hands-on insight into…

  5. Subduction of Proterozoic to Late Triassic continental basement in the Guatemala suture zone: A petrological and geochronological study of high-pressure metagranitoids from the Chuacús complex

    Science.gov (United States)

    Maldonado, Roberto; Ortega-Gutiérrez, Fernando; Ortíz-Joya, Guillermo A.

    2018-05-01

    Many continental subduction complexes contain abundant granitic rocks coexisting with minor volumes of eclogite-facies rocks. Characterization of granitic protoliths is crucial to decipher the origin of subducted continental crust, whereas knowledge of its metamorphic evolution is required to constrain the mechanisms of burial and exhumation. In this work we present geochronological and petrological evidence that demonstrate the occurrence of a subducted Proterozoic to Late Triassic granitic basement in the Chuacús complex of central Guatemala. Metagranitoids exposed in this area are interlayered with eclogite and other high-pressure rocks, and their structure is considerably variable due to strain partitioning during deformation. Laser ablation-inductively coupled plasma-mass spectrometry U-Pb zircon data from two ferroan metagranites yield protolith crystallization ages of ca. 1.1 Ga and their trace-element abundances suggest an origin related to intraplate magmatism, while a high-silica, peraluminous metagranite is dated at 1.0 Ga and was probably originated by partial melting of a high-grade continental crust. On the other hand, two megacrystic to augen metagranitoids yield protolith crystallization ages of ca. 224 Ma, which are identical within errors to the protolith age of hosted eclogitic metabasites. Their high incompatible trace element abundances together with the observed spatial-temporal relationships with mafic protoliths suggest that Late Triassic bimodal magmatism in the Chuacús complex was probably originated in a within-plate setting. Regardless of their age or structure, the studied metagranites preserve evidences for high-pressure metamorphic equilibration, such as the occurrence of Ca-rich garnet (XCa up to 0.52) in association with phengite (Si contents of up to 3.4 pfu) and rutile. The integration of Zr-in-rutile thermometry and phengite barometry allows the peak metamorphic conditions to be constrained at 640-680 °C and 13 kbar. This

  6. Brief introduction to the geology of the Ilimaussaq alkaline complex, South Greenland, and its exploration history

    International Nuclear Information System (INIS)

    Soerensen, H.

    2001-01-01

    The Ilimaussaq alkaline complex, the type locality of agpaitic nepheline syenites, is made up of three intrusive phases, 1) augite syenite, 2) alkali acid rocks and 3) agpaitic nepheline syenites which occupy the major part of the complex. The agpaitic phase comprises a roof series, a floor series and an intermediate sequence of rocks. The roof series crystallised from the roof downwards beginning with non-agpaitic pulaskite and ending with distinctly agpaitic naujaite. The exposed part of the floor series is made up of the layered agpaitic nepheline syenite kakortokite. The intermediate sequence consists of several types of distinctly agpaitic lujavrites which are accompanied by occurrences of uranium and other rare elements. The complex was first visited by K.L. Giesecke in 1806 and 1809. The first detailed mapping of the complex was carried out by N.V. Ussing in 1900 and 1908. He presented a precise description of the major rock types and an illuminating discussion of the petrology of the complex in his 1912 memoir. In the period 1912-1955 there was very limited activity in the complex. Exploration for radioactive minerals in Ilimaussaq was initiated in 1955 and in subsequent years followed by geological mapping carried out by the Geological Survey of Greenland. This led to a series of detailed studies of the occurrences of not only U, but also Be, Nb, REE and Zr, and to mineralogical, geochemical and petrological studies as well as commercial evaluation and drilling. (au)

  7. MARID-type Glimmerites from Kimberley, South Africa: Metasomes or high-pressure cumulates?

    Science.gov (United States)

    Förster, Michael W.; Prelevic, Dejan; Buhre, Stephan; Jacob, Dorrit E.

    2015-04-01

    . References Dawson, J. B., & Smith, J. V. (1977). The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochimica et Cosmochimica Acta, 41(2), 309-323. Dawson, J. B. (1987). The MARID suite of xenoliths in kimberlite: relationship to veined and metasomatised peridotite xenoliths. Mantle Xenoliths. Chichester: John Wiley, 465-474. Konzett, J., Krenn, K., Rubatto, D., Hauzenberger, C., & Stalder, R. (2014). The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages-Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta, 147, 1-25. Nguuri, T. K., Gore, J., James, D. E., Webb, S. J., Wright, C., Zengeni, T. G., Gwavava, O. & Snoke, J. A. (2001). Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons. Geophysical Research Letters, 28(13), 2501-2504. Putirka, K. D. (2008). Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1), 61-120. Sweeney, R. J., Thompson, A. B., & Ulmer, P. (1993). Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contributions to Mineralogy and Petrology, 115(2), 225-241. Waters, F. G. (1987). A suggested origin of MARID xenoliths in kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite. Contributions to Mineralogy and Petrology, 95(4), 523-533.

  8. Mineralogy, Petrology, Chronology, and Exposure History of the Chelyabinsk Meteorite and Parent Body

    Science.gov (United States)

    Righter, K.; Abell, P.; Agresti, D.; Berger, E. L.; Burton, A. S.; Delaney, J. S.; Fries, M. D.; Gibson, E. K.; Harrington, R.; Herzog, G. F.; hide

    2015-01-01

    The Chelyabinsk meteorite fall on February 15, 2013 attracted much more attention worldwide than do most falls. A consortium led by JSC received 3 masses of Chelyabinsk (Chel-101, -102, -103) that were collected shortly after the fall and handled with care to minimize contamination. Initial studies were reported in 2013; we have studied these samples with a wide range of analytical techniques to better understand the mineralogy, petrology, chronology and exposure history of the Chelyabinsk parent body.

  9. Petrology, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China), July 1 2002

    NARCIS (Netherlands)

    Fu, B.; Zheng, Y.-F.; Touret, J.L.R.

    2002-01-01

    In addition to the Triassic Hong'an low-T-high-P eclogite and the Xinxian coesite-bearing kyanite-glaucophane eclogite, Silurian coesite-free amphibole eclogites occur in the Sujiahe region, NW Dabie Shan of central China. A comprehensive study of petrology, Nd-Sr, O-H isotopes and fluid inclusions

  10. The Private Lives of Minerals: Social Network Analysis Applied to Mineralogy and Petrology

    Science.gov (United States)

    Hazen, R. M.; Morrison, S. M.; Fox, P. A.; Golden, J. J.; Downs, R. T.; Eleish, A.; Prabhu, A.; Li, C.; Liu, C.

    2016-12-01

    Comprehensive databases of mineral species (rruff.info/ima) and their geographic localities and co-existing mineral assemblages (mindat.org) reveal patterns of mineral association and distribution that mimic social networks, as commonly applied to such varied topics as social media interactions, the spread of disease, terrorism networks, and research collaborations. Applying social network analysis (SNA) to common assemblages of rock-forming igneous and regional metamorphic mineral species, we find patterns of cohesion, segregation, density, and cliques that are similar to those of human social networks. These patterns highlight classic trends in lithologic evolution and are illustrated with sociograms, in which mineral species are the "nodes" and co-existing species form "links." Filters based on chemistry, age, structural group, and other parameters highlight visually both familiar and new aspects of mineralogy and petrology. We quantify sociograms with SNA metrics, including connectivity (based on the frequency of co-occurrence of mineral pairs), homophily (the extent to which co-existing mineral species share compositional and other characteristics), network closure (based on the degree of network interconnectivity), and segmentation (as revealed by isolated "cliques" of mineral species). Exploitation of large and growing mineral data resources with SNA offers promising avenues for discovering previously hidden trends in mineral diversity-distribution systematics, as well as providing new pedagogical approaches to teaching mineralogy and petrology.

  11. Petrology and organic geochemistry of the lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Havelcová, Martina; Sýkorová, Ivana; Mach, K.; Trejtnarová, Hana; Blažek, Jaroslav

    2015-01-01

    Roč. 139, Special issue (2015), s. 26-39 ISSN 0166-5162 R&D Projects: GA ČR(CZ) GA13-18482S Institutional support: RVO:67985891 Keywords : Most Basin * Miocene * coal facies indices * coal petrology * organic geochemistry Subject RIV: DD - Geochemistry Impact factor: 3.294, year: 2015 http://www.sciencedirect.com/science/article/pii/S0166516214001529#

  12. Geology and geochemistry of Massangana Granitoid Complex, Brazil, and its relation with tin mineralization

    International Nuclear Information System (INIS)

    Romanini, S.J.

    1982-01-01

    The geochemical and petroLogical characteristics of the Massangana Granitoid Complex, situated in the Rondonia Federal Territory, Brazil, aiming to discriminate the tin mineralized granitic rocks from the no mineralized ones. The collected samples consists of examples in tin mineralized and sterile phases. The elements traces were determined by x-ray fluorescence analysis, emission spectrography, molecular absorption spectrophotometry and atomic absorption spectrophotometry. The complex edifying evolved in four sucessive episodes called Massangana Phase, Bom Jardim Phase, Sao domingos Phase and Taboca Phase ordered stratigraphycally in this sequence. (author/M.C.K.) [pt

  13. Research on petrologic, geochemical characteristics and genesis of volcanic rocks in Dachangsha basin

    International Nuclear Information System (INIS)

    Wei Sanyuan

    1999-01-01

    On the basis of research on petrologic, geochemical characteristics and isotope composition of volcanic rocks in Dachangsha basin, the author concludes that the volcanic rocks formed from magma of different genesis and depth are double-cycle effusive. It is proposed that the magma forming the intermediate-basic volcanics of the first cycle comes from the mixing of the partial melting of the deep crust and mantle, and the intermediate-acidic volcanics of the secondary cycle are derived from the remelting of the upper crust

  14. Geology, petrology and geochronology of meridional and oriental regions of the Morungaba complex, SP

    International Nuclear Information System (INIS)

    Vlach, S.R.F.

    1985-01-01

    This work studies the Morungaba Intensive Complex, in Southwestern of Sao Paulo State. Formed principally by granitoid rocks with biotite. 31 granitoid facies with structural was recognized. Petrographic own characteristics. The rocks from Morungaba Complex was joint in three magmatics groups, denominated: Roby Gray and Porphyritic. Petrographic and mineralogical composition studies of this three groups were done. Geochranological studies by Rb/Sr and K/sr methods made possible to establish the ages and evolution of this rocks. This Complex formation and evolution are associated with the dioritic rocks presence. This work also concluded that the Morungaba Intrusive Complex represent the pos-orogenic wents from Brazilian Cycle. (C.D.G.) [pt

  15. Serpentinization and alteration in an olivine cumulate from the Stillwater Complex, Southwestern Montana

    Science.gov (United States)

    Page, N.J.

    1976-01-01

    Some of the olivine cumulates of the Ultramafic zone of the Stillwater Complex, Montana, are progressively altered to serpentine minerals and thompsonite. Lizardite and chrysotile developed in the cumulus olivine and postcumulus pyroxenes; thompsonite developed in postcumulus plagioclase. The detailed mineralogy, petrology, and chemistry indicate that olivine and plagioclase react to form the alteration products, except for H2O, without changes in the bulk composition of the rocks. ?? 1976 Springer-Verlag.

  16. Geochemical typification of kimberlite and related rocks of the North Anabar region, Yakutia

    Science.gov (United States)

    Kargin, A. V.; Golubeva, Yu. Yu.

    2017-11-01

    The results of geochemical typification of kimberlites and related rocks (alneites and carbonatites) of the North Anabar region are presented with consideration of the geochemical specification of their source and estimation of their potential for diamonds. The content of representative trace elements indicates the predominant contribution of an asthenospheric component (kimberlites and carbonatites) in their source, with a subordinate contribution of vein metasomatic formations containing Cr-diopside and ilmenite. A significant contribution of water-bearing potassium metasomatic parageneses is not recognized. According to the complex of geochemical data, the studied rocks are not industrially diamondiferous.

  17. Petrology and geochemistry of the Miocene-Pliocene fluvial succession, Katawaz Basin, Western Pakistan: Implications on provenance and source area weathering

    DEFF Research Database (Denmark)

    Kasi, Aimal K.; Kassi, Aktar Muhammad; Friis, Henrik

    Petrology and geochemistry of sandstones and mudstones of the Miocene Dasht Murgha Group (DMG) and Pliocene Malthanai Formation (MF) of the Pishin Belt (Katawaz Basin), northwestern Pakistan have been carried out to find out their provenance and source area weathering. Sandstones of the Dasht...

  18. Garnet Signatures in Geophysical and Geochemical Observations: Insights into the Thermo-Petrological Structure of Oceanic Upper Mantle

    Science.gov (United States)

    Grose, C. J.; Afonso, J. C.

    2013-12-01

    We have developed new physically comprehensive thermal plate models of the oceanic lithosphere which incorporate temperature- and pressure-dependent heat transport properties and thermal expansivity, melting beneath ridges, hydrothermal circulation near ridge axes, and insulating oceanic crust. These models provide good fits to global databases of seafloor topography and heat flow, and seismic evidence of thermal structure near ridge axes. We couple these thermal plate models with thermodynamic models to predict the petrology of oceanic lithosphere. Geoid height predictions from our models suggest that there is a strong anomaly in geoid slope (over age) above ~25 Ma lithosphere due to the topography of garnet-field mantle. A similar anomaly is also present in geoid data over fracture zones. In addition, we show that a new assessment of a large database of ocean island basalt Sm/Yb systematics indicates that there is an unmistakable step-like increase in Sm/Yb values around 15-20 Ma, indicating the presence of garnet. To explain this feature, we have attempted to couple our thermo-petrological models of oceanic upper mantle with an open system, non-modal, dynamic melting model with diffusion kinetics to investigate trace element partitioning in an ascending mantle column.

  19. Petrology and Geochemistry of Unbrecciated Harzburgitic Diogenite MIL 07001: A Window Into Vestan Geological Evolution

    Science.gov (United States)

    Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.; Mertzman, K. R.

    2014-01-01

    There is a strong case that asteroid 4 Vesta is the parent of the howardite, eucrite and diogenite (HED) meteorites. Models developed for the geological evolution of Vesta can satisfy the compositions of basaltic eucrites that dominate in the upper crust. The bulk compositional characteristics of diogenites - cumulate harzburgites and orthopyroxenites from the lower crust - do not fit into global magma ocean models that can describe the compositions of basaltic and cumulate eucrites. Recent more detailed formation models do make provision for a more complicated origin for diogenites, but this model has yet to be completely vetted. Compositional studies of bulk samples has led to the hypothesis that many diogenites were formed late by interaction of their parent melts with a eucritic crust, but those observations may alternatively be explained by subsolidus equilibration of trace elements between orthopyroxene and plagioclase and Ca-phosphate in the rocks. Differences in radiogenic Mg-26 content between diogenites and eucrites favors early formation of the former, not later formation. Understanding the origin of diogenites is crucial for understanding the petrologic evolution of Vesta. We have been doing coordinated studies of a suite of diogenites including petrologic investigations, bulk rock major and trace element studies, and in situ trace element analyses of orthopyroxene. Here we will focus on an especially unusual, and potentially key, diogenite, MIL 07001.

  20. Petrology of Terra Nova pluton, Brazil, and associated ultrapotassic dykes

    International Nuclear Information System (INIS)

    Silva Filho, A.F. da; Thompson, R.N.; Leat, P.T.

    1987-01-01

    The Upper Precambrian Terra Nova Pluton, situated 550 Km inland from Recife, Brazil, is 220 Km 2 in area and intrudes deformed metasedimentary rocks of the Pianco-Alto Brigida Mobile Belt. The Pluton shows complex petrological relationships. It consists of subalkaline quartz-monzonites and quartz-syenites, and the major minerals are K-feldspars, albite, hornblende, and quartz. The pluton is intermediate in composition (SiO 2 = 58.9-65.6 wt%, MgO=0.9-3.7 wt%) and is dominantly potassic (K 2 O=3.3-5.6 wt %; K 2 O/Na 2 O=0.9-1.8). Ba (up to 2.300 ppm) and Sr (up to 1,100 ppm) are abundant in the rocks, and LREE are enriched relative to HREE (La N /Lu N = 25.6-43.2). There is no significant Eu Anomaly. Rounded autoliths within the pluton are similar, but more mafic in composition (SiO 2 =54.6-57.5 wt %; MgO=4.9-6.4 wt %). A suite of dykes cut pluton and the surrounding country rocks. These dykes are varied in composition, encompassing most of the chemical range shown by the pluton and associated autoliths. The dykes are holocrystalline, peralkaline, and strongly enriched in both K 2 O(K 2 O=5.3-11.4 wt %) and Ba (Ba=2,400 ppm-10,500 ppm), which are considered to be magmatic abundances. The dykes have similar REE and other trace elements and ratios to the autoliths and plutonic rocks, and the dykes and the pluton are thought to be chemically related. The Terra Nova Pluton records the fractionation of mantle-derived ultrapotassic magma from mafic to intermediate compositions. (author) [pt

  1. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Science.gov (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    modeled topography. We also test several viscosity models, either radially symmetric, the V1 profile from Mitrovica and Forte [2004], or more complex laterally varying structures. All the property fields are expanded in spherical harmonics, until degree 24, and implemented in the code StagYY [Tackley, 2008] to perform mantle instantaneous flow modeling and compute surface topography and gravitational field. Our results show the importance of constraining the crustal and mantle density structure relying on a multidisciplinary approach that involves experimentally robust thermodynamic datasets. Crustal density field has a strong effect on the isostatic component of topography. The models that we test, CRUST 1.0 and those in Guerri and Cammarano [2015], produce strong differences in the computed isostatic topography, in the range ±600 m. For the lithospheric mantle, relying on experimentally robust material properties constraints is necessary to infer a reliable density model that takes into account chemical heterogeneities. This approach is also fundamental to correctly interpret seismic models in temperature, a crucial parameter, necessary to determine the lithosphere-asthenosphere boundary, where static effects on topography leave place to dynamic ones. The comparison between results obtained with different viscosity fields, either radially symmetric or vertically and laterally varying, shows how lateral viscosity variations affect the results, in particular the modeled geoid, at different wavelengths. References: Brocher, T. M. (2005), Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust, Bulletin of the Seismological Society of America, 95(6), 2081-2092. Cammarano, F., P. J. Tackley, and L. Boschi (2011), Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models, Geophys. J. Int. Connolly, J. A. D. (2005), Computation of phase equilibria by linear programming: A

  2. Magmatic plumbing system of Kilauea Volcano: Insights from Petrologic and Geochemical Monitoring

    Science.gov (United States)

    Garcia, M. O.; Pietruszka, A. J.; Marske, J.; Greene, A.; Lynn, K. J.

    2016-12-01

    Monitoring the petrology and geochemistry of lavas from active volcanoes in near realtime affords the opportunity to formulate and evaluate models for magma transport, mixing, and storage to help predict eruption scenarios with greater confidence and better understand magmatic plumbing systems (e.g., Poland et al. 2012, Nat. Geosci. 5, 295-300). Continous petrologic and geochemical monitoring of two ongoing eruptions at the summit and east rift zone of Kilauea Volcano on the Island of Hawaii have revealed much about the dynamics of magmatic processes. When the composition of lava shifted to a more MgO-rich composition in April 1983, we predicted that the Puu Oo eruption would not be short-lived. We had no idea it would continue for over 33 years. Subsequent changes in lava composition have highlighted the interplay between mixing pockets of rift-zone stored magma with new mantle-derived magma and the cooling-induced crystal fractionation during brief (usually days) eruption hiatuses. Surprisingly, the mantle derived magma has continued to change in composition including several 10-year cycles in Pb isotope ratios superimposed on a progressive depletion in highly incompatible elements (Greene et al. 2013, G3, doi: 10.1002/ggge.20285). These compositional trends are contrary to those observed for sustained basaltic eruptions on continents and argue for melt extraction from a multi-component source with 1-3 km wide heterogeneities. Compositional zoning within olivine phenocrysts, created by diffusive re-equilibration, also provide insights into magma mixing, storage, and transport at Kilauea. Timescales modeling of Fe-Mg and Ni concentration gradients within Puu Oo olivine indicate that crystals can be stored at magmatic temperatures for months to a few years before eruption (Shea et al. 2015, Geology 43, 935-938). Kilauea's ongoing eruptions continue to provide a dynamic laboratory for positing and testing models for the generation and evolution of basaltic magma.

  3. Geology, petrology and geochemistry of the Cacapava do Sul Granitic complex, RS

    International Nuclear Information System (INIS)

    Nardi, L.V.S.; Bitencourt, M. de F.

    1989-01-01

    The Cacapava do Sul Granitic Complex comprises mainly hornblende and biotite-rich granodioritic rocks, leucogranitoids which may contain muscovite and garnet, and transitional types of granitoids. The available data suggest that it is a diapiric intrusion synchronous, with the second regional metamorphism and deformation phase, inprinted on the country rocks and on the batholith itself. Geochemical evidences are consistent with a comagmatic character for the granitic rocks and also indicate calc-alkaline affinity, with an origin either from partial melting of the lower crust or from differentiation of mantle-derived basaltic magmas, with crustal contamination. The geochemical features indicate strong similarities with orogenic granitoids intruded in highly mature arcs. The re-evaluation of Rb-Sr data indicates an age of 549 Ma and initial ratio of 0.7051 for the leucogranites. The available data suggest that the studied complex has been emplaced during the late stages of the Brasiliano Cycle, which were marked by the development of ensialic basins and shear zones, with associated granitic magmatism. In its early stages, this orogeny may be interpreted according to the classical model, involving subduction of oceanic crust. (author) [pt

  4. Petrologic comparisons of Cayley and Descartes on the basis of Apollo 16 soils from stations 4 and 11

    Science.gov (United States)

    Basu, A.; Mckay, D. S.

    1984-01-01

    Petrologic aspects of the Cayley and Descartes formations are reviewed in the light of new data on Apollo 16 soils. Specific comparison of the modal abundances of lithic fragments in drive tube sample 64001/2 from the slopes of Stone Mountain (station 4) and in soil 67941 from the North Ray Crater rim (station 11) shows that melt rocks, especially poikilitic rocks, are more abundant at station 4 than at station 11; the reverse is true for fragmental breccias. Such lithologic differences suggest that stations 4 and 11 do not belong to the same geologic formation. Metamorphosed breccias are pervasive in both the formations and may represent a local component that has been reworked and diluted as fresh materials were added. Lithologic compositions inferred from the study of soil samples are different from lithologic compositions inferred from the study of rake samples or breccia clasts. This difference may be related to a mixing of material of different grain size distributions. The petrology of soils at the Apollo 16 site may not accurately reflect original material associated with either the Descartes or the Cayley formation because of extensive mixing with local material.

  5. Petrology and chemistry of the Green Acres gabbro complex near Winchester, Riverside County, California

    Science.gov (United States)

    Berger, Byron R.; Morton, Douglas M.; Miller, Fred K.

    2014-01-01

    The Cretaceous Green Acres layered igneous complex, northeast of Winchester, California, is composed of a suite of olivine- and hornblende-bearing gabbros in the Peninsular Ranges batholith within the Perris tectonic block. A consistent mineral assemblage is observed throughout the complex, but there is considerable textural and modal heterogeneity. Both preclude a consistent set of principles based on appearance and mineralogy on which to delineate map units. Distinct changes in the chemistry of olivine, pyroxene, and hornblende, however, serve to define discrete mappable units, and the complex has been divided into five geochemical map units on this basis.Limited whole-rock data show the Green Acres complex is chemically comparable to other Peninsular Ranges batholith gabbroic rocks, and rare earth element (REE) concentrations and patterns are typical of magmas generated in convergent margin settings. For the complex as a whole, olivine is Fo80–35, plagioclase is An100–64, clinopyroxene is Wo49–41En48–38Fs18–6 and Wo36–26En65–42Fs30–8, and orthopyroxene is Wo5–0En78–42Fs50–21, where Fo is forsterite, An is anorthite, Wo is wollastonite, En is enstatite, and Fs is ferrosilite. The Mg/(Mg + ΣFe) atomic ratio in hornblende ranges from 0.84 to 0.50.Magmatic lineations and modal and textural layering are prevalent throughout the complex. Mineral chemistry does not change in any systematic way within and between layers in any map unit. Although the strike of layering varies, in any map unit at any given location it is the same in all units irrespective of intrusive order. Thin dikes, typically late-stage hornblende gabbro, commonly intrude parallel to layering. The strikes of magmatic lineations and modal layers are consistent with the populations of strikes of fabrics in the metamorphic basement as well as tectonic features in surrounding, postgabbro granitic rocks. These relations imply that the regional state of stress at the time of gabbro

  6. Teaching Mineralogy, Petrology and Geochemistry in the 21st Century: Instructional Resources for Geoscience Faculty

    Science.gov (United States)

    Mogk, D. W.; Beane, R. J.; Whitney, D. L.; Nicolaysen, K. E.; Panero, W. R.; Peck, W. H.

    2011-12-01

    Mineralogy, petrology and geochemistry (MPG) are pillars of the geoscience curriculum because of their relevance in interpreting Earth history and processes, application to geo-hazards, resources, and environmental issues, and contributions to emerging fields such as geology and human health. To keep faculty current in scientific advances in these fields, and in modern instructional methods, the On the Cutting Edge program convened a workshop at the University of Minnesota in August, 2011. This workshop builds on the previous 15 year's work that has been focused on identifying, aggregating, and developing high-quality collections of teaching activities and related resources, and in building a community of scholars in support of excellence in instruction in MPG courses. The goals of the workshop were to: a) develop an integrated, comprehensive and reviewed curriculum for MPG courses, and to seek ways to make connections with the larger geoscience curriculum; b) to explore emerging topics in MPG such as geobiology and climate change; c) demonstrate effective methods in teaching MPG in the context of Earth system science; d) share effective teaching activities and strategies for the classroom, laboratory and field including advances in pedagogy, assessments and research on learning; e) keep faculty current on recent advances in mineralogy, petrology and geochemistry research and to apply these findings to our teaching; f) explore and utilize current societal and global issues that intersect mineralogy, petrology and geochemistry to heighten the relevancy of course content for students; and h) meet colleagues and foster future teaching and research collaborations. A significant outcome of this workshop is a peer reviewed of collection of 300+ existing teaching activities, and a gap analysis to identify teaching activities needed to make these collections comprehensive and coherent. In addition, a series of thematic collections were developed to assist high priority

  7. Geochemical and petrological considerations about the basalts of upper aluminium in the Fildes Peninsula. (Rei George), Antartica

    International Nuclear Information System (INIS)

    Machado, A.; Fernandes de Lima, E.; Chemale, F.

    1998-01-01

    Petrographic, geochemical and petrological studies of lower Tertiary basaltic rocks from Fildes Peninsula in Antarctica were made to characterize their source and magmatic evolution. These basaltic rocks have porphyritic, glomeroporphyritic, intergranular and intersertal textures. The phenocrysts are of plagioclase (An), augite, pigeonite and Ti-magnetite. These basaltic rocks have AL O from 16 to 22%, Ni from 6 to 88 ppm, Co from 24 to 33 ppm and Cr from 54 to 123 ppm. Enrichment of Rb. Ba, Sr and LREE with respect to HREE is observed as relative depleted in HFSE is detected. The mass balance realized to understand the evolution of liquid that gave source the different basaltic rocks. Showed that the extracted mineral fractions were 76% of plagioclase, 2% of clinopiroxene and 21% of olivine. The intermediate volcanic rocks of Fildes Peninsula can be explained by cristalization fractionation of a basic liquid. The isotopic dates showed initial rations of Sr/Sr <0,704 and positive values of Nd epsilon. These results are strong support a mantelic source for basaltic rocks of Fildes Peninsula. On basis of geochemical, petrological and isotopic characteristics is possible concluded that these rocks were formed in an island are environment with parcial melting of mantle wedge. (author)

  8. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland

    Directory of Open Access Journals (Sweden)

    Kristoffer Szilas

    2018-05-01

    Full Text Available This paper investigates the petrogenesis of the Seqi Ultramafic Complex, which covers a total area of approximately 0.5 km2. The ultramafic rocks are hosted by tonalitic orthogneiss of the ca. 3000 Ma Akia terrane with crosscutting granitoid sheets providing an absolute minimum age of 2978 ± 8 Ma for the Seqi Ultramafic Complex. The Seqi rocks represent a broad range of olivine-dominated plutonic rocks with varying modal amounts of chromite, orthopyroxene and amphibole, i.e. various types of dunite (s.s., peridotite (s.l., as well as chromitite. The Seqi Ultramafic Complex is characterised primarily by refractory dunite, with highly forsteritic olivine with core compositions having Mg# ranging from about 91 to 93. The overall high modal contents, as well as the specific compositions, of chromite rule out that these rocks represent a fragment of Earth's mantle. The occurrence of stratiform chromitite bands in peridotite, thin chromite layers in dunite and poikilitic orthopyroxene in peridotite instead supports the interpretation that the Seqi Ultramafic Complex represents the remnant of a fragmented layered complex or a magma conduit, which was subsequently broken up and entrained during the formation of the regional continental crust.Integrating all of the characteristics of the Seqi Ultramafic Complex points to formation of these highly refractory peridotites from an extremely magnesian (Mg# ∼ 80, near-anhydrous magma, as olivine-dominated cumulates with high modal contents of chromite. It is noted that the Seqi cumulates were derived from a mantle source by extreme degrees of partial melting (>40%. This mantle source could potentially represent the precursor for the sub-continental lithospheric mantle (SCLM in this region, which has previously been shown to be ultra-depleted. The Seqi Ultramafic Complex, as well as similar peridotite bodies in the Fiskefjord region, may thus constitute the earliest cumulates that formed during the

  9. Geology and petrology of Lages Alkaline District, Santa Catarina State

    International Nuclear Information System (INIS)

    Scheibe, L.F.

    1986-01-01

    A 1:100.000 geological map shows the main outcrops, covering about 50 Km 2 , of the leucocratic alkaline rocks, ultra basic alkaline rocks, carbonatites and volcanic breccias which intruded the Gondwanic sedimentary rocks within a short time interval and characterize the Alkaline District of Lages. Chemical analyses of 33 whole-rock samples confirm the petrographic classification, but the agpaitic indexes, mostly below 1.0, do not reflect the mineralogical variations of the leucocratic alkaline rocks adequately. Partial REE analyses indicate that the light as well as the heavy rare earth contents decrease from the basic to the more evolved rocks, the La/Y ratio remaining approximately constant. Eleven new K/Ar ages from porphyritic nepheline syenites porphyritic phonolites, ultra basic alkaline rocks and pipe-breccias, together with six already available ages, show a major concentration in the range 65 to 75 Ma, with a mode at ca. 70 Ma. But one Rb/Sr whole-rock reference isochron diagram gives an age of 82+-6 Ma for the agpaitic phonolites of the Serra Chapada, which are considered younger than the miaskitic porphyriric nepheline syenites. The 87 Sr/ 86 Sr ratios of 0.705-0.706 are compatible with a sub continental mantelic origin, devoid of crustal contamination. A petrogenetic model based on subtraction diagrams and taking into consideration the geologic, petrographic, mineralogic and petrochemical characteristics of the alkaline rocks of Lages consists of limited partial melting with CO 2 , contribution of the previously metasomatized upper mantle, in a region submitted to decompression. (author)

  10. South-Tibetan partially molten batholiths: geophysical characterization and petrological assessment of their origin

    Science.gov (United States)

    Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.

    2017-12-01

    Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (features of the geodynamic evolution. Their transience excludes both long-distance and long-lasting channel flow transport in Tibet.

  11. Petrology and geochemistry of Late Proterozoic hornblende gabbros from southeast of Fariman, Khorasan Razavi province, Iran

    Directory of Open Access Journals (Sweden)

    Seyed Masoud Homam

    2015-04-01

    Full Text Available Introduction Hornblende-bearing gabbroic rocks are quite common in subduction-related magmatic suites and considered to represent magmatic differentiation process in arc magmas (Heliker, 1995; Hickey-Vargas et al., 1995; Mandal and Ray, 2012. The presence of hornblende as an important mineral phase in gabbroic rocks of subduction zone has been considered either as an early crystallizing mineral from water-bearing mafic magmas (Beard and Borgia 1989; Mandal and Ray, 2012 or as a product of reaction of early crystallized minerals (olivine, pyroxene and plagioclase and water-rich evolved melt/aqueous fluid (Costa et al., 2002; Mandal and Ray, 2012. The careful study of petrology and geochemistry of hornblende-bearing gabbroic rocks from Chahak area, of Neoproterozoic age, can provide important information about their petrogenesis. Because of the special characteristics of Chahak hornblende gabbros according to their age and their situation in the main structural units of Iran, their study can present critical keys for the knowledge of geological history of Iran specially central Iran zone. Material and Methods This study carried out in two parts including field and laboratory works. Sampling and structural studies were carried out during field work. Geological map for the study area was also prepared. 65 thin and polished thin sections for petrographical purpose were studied. Major oxides, rare earth elements and trace elements were analyzed for 4 samples (92P-1, 92P-3, B1and B6 from hornblende gabbros on the basis of 4AB1 method using ICP-MS of ACME Laboratory from Canada. In addition, major oxides of three hornblende gabbro samples (89P-62, 89P-59 and 89P-46 were used from Partovifar (Partovifar, 2012. Results and discussion Fariman metamorphic terrains, of Proterozoic age, consist of metamorphosed sedimentary and igneous (plutonic and volcanic rocks. Hornblende gabbros of the study area include plagioclase, hornblende, biotite pyroxene and

  12. High-temperature carbonates in the Stillwater Complex, Montana, USA

    Science.gov (United States)

    Aird, H. M.; Boudreau, A. E.

    2012-12-01

    by Cl-rich fluids [4]. The association of high-temperature carbonates with sulphides beneath the J-M reef supports the hydromagmatic theory which involves a late-stage chloride-carbonate fluid percolating upwards, dissolving PGE and sulphides and redepositing them at a higher stratigraphic level. [1] Anovitz, L.M., and Essene, E.J., 1987, Phase Equilibria in the System CaCO3-MgCO3-FeCO3: Journal of Petrology, v. 28, p. 389-414. [2] Hanley, J.J., Mungall, J.E., Pettke, T., Spooner, E.T.C., and Bray, C.J., 2008, Fluid and Halide Melt Inclusions of Magmatic Origin in the Ultramafic and Lower Banded Series, Stillwater Complex, Montana, USA: Journal of Petrology, v. 49, p. 1133-1160. [3] Boudreau, A.E., and McCallum, I.S., 1989, Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition: Contributions to Mineralogy and Petrology, v. 102, p. 138-153. [4] Newton, R.C., and Manning, C.E., 2002, Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/upper mantle pressures and temperature: implications for metasomatic processes in shear zones: American Mineralogist, v. 87, p. 1401-1409.

  13. A re-evaluation of palaeoclimatic conditions during the Pleistocene and Holocene from the western continental shelf of India - Evidences from the petrology of the limestones

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nair, R.R.

    and 150 m water depth were studied for their petrology and to evaluate the palaeoclimatic conditions during Quaternary. The limestones characteristic of abundant microspar and pseudospar are found at water depths 65 and 95 m, respectively...

  14. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft)

    OpenAIRE

    Jamal Rasouli; Mansour Ghorbani; Vahid Ahadnejad

    2017-01-01

    Introduction The Jebale-Barez Plutonic Complex (JBPC) is composed of many intrusive bodies and is located in the southeastern province of Kerman on the longitude of the 57◦ 45 ' east to 58◦ 00' and Northern latitudes 28◦ 30' to 29◦ 00'. The petrologic composition is composed of granodiorite, quartzdiorite, granite, alkali-granite, and trace amounts of tonalite with dominant granodiorite composition. Previously, the JBPC was separated into three plutonic phases by Ghorbani (2014). The fi...

  15. Petrology and chemistry of Jebel Tanumah complex, Khamis Mushayt, Southern Arabian shield, Saudi Arabia

    Science.gov (United States)

    Nassief, M. O.; Ali, H. M.; Zakir, F. A.

    The mafic intrusive complex at Jebel Tanumah is located 15 km north-west of Khamis Mushayt in the southern Arabian Shield and includes olivine-bearing gabbro as well as amphibole-diopside-hornblende gabbro cumulates. These rocks have been generally metamorphosed to upper greeenschist-lower amphibolite facies. Fourteen white rock silicate analyses indicate that the majority of the rocks are calc-alkaline to tholeiitic in composition. The two major structural units in the Khamis Mushayt region identified by Coleman consist of the basement complex of Asir Mountains and the younger metamorphic rocks. Syntectonic granitic rocks intruded the antiforms characterizing the younger rocks whereas the lower parts of the synforms are intruded by post-tectonic intrusions of layered gabbros such as the one studied at Jebel Tanumah.

  16. Geology, market and supply chain of niobium and tantalum—a review

    Science.gov (United States)

    Mackay, Duncan A. R.; Simandl, George J.

    2014-12-01

    Tantalum (Ta) and niobium (Nb) are essential metals in modern society. Their use in corrosion prevention, micro-electronics, specialty alloys and high-strength low-alloy (HSLA) steel earns them a strategic designation in most industrialised countries. The Ta market is unstable due in part to historic influx of `conflict' columbite-tantalite concentrate, or "Coltan," that caused Ta mines in Australia and Canada to be placed on care and maintenance. More recently, the growing appetite of modern society for consumer goods made of `conflict-free' minerals or metals has put pressure on suppliers. Pegmatites, rare-element-enriched granites, related placer deposits and weathered crusts overlying carbonatite and peralkaline complexes account for the majority of Ta production. Several carbonatite-related deposits (e.g. Upper Fir and Crevier, Canada) are being considered for potential co-production of Ta and Nb. Pyrochlore (Nb-Ta), columbite-tantalite (Nb-Ta), wodginite (Ta, Nb and Sn) and microlite (Ta and Nb) are the main ore minerals. Approximately 40 % of Ta used in 2012 came from Ta mines, 30 % from recycling, 20 % from tin slag refining and 10 % from secondary mine concentrates. Due to rapid industrialisation and increased use of Nb in steel making in countries such as China and India, demand for Nb is rising. Weathered crusts overlying carbonatite complexes in Brazil and one hard rock carbonatite deposit in Canada account for about 92 and 7 % of Nb world mine production, respectively. Since the bulk of the production is geographically and politically restricted to a single country, security of supply is considered at risk. Other prospective resources of Nb, beside carbonatites and associated weathered crusts, are peralkaline complexes (e.g. Nechalacho; where Nb is considered as a potential co-product of REE and zirconium). Economically, significant deposits of Ta and Nb contain pyrochlore, columbite-tantalite, fersmite, loparite and strüverite. Assuming continued

  17. Pan-Gondwanaland post-collisional extension marked by 650 500 Ma alkaline rocks and carbonatites and related detrital zircons: A review

    Science.gov (United States)

    Veevers, J. J.

    2007-07-01

    Pan-Gondwanaland (650-500 Ma) tectonics is dominated by transcurrent motions driven by post-collisional oblique stresses. Extension is commonly marked by the intrusion of alkaline rocks, in particular A-type granite, nepheline syenite, and carbonatites (ARCs), during or after collision, as well as by field studies. ARCs of this age are common in Africa, South America, India, Antarctica, and Australia, and are indicated by related detrital zircons of 650-500 Ma age in Permian-Triassic and younger sediments from Australia, Antarctica, southern Africa, and India. Structural studies suggest that ARCs fill openings at releasing bends along transcurrent fractures and during reversal of the sense of motion as well as during relaxation of stress after collision. On the Paleo-Pacific margin, 550-500 Ma ARCs of the Koettlitz Glacier Alkaline Province were emplaced syn-tectonically within the Ross orogen during oblique subduction. The concentration of ARC magmas emplaced during the amalgamation of Gondwanaland is correlated with the transtension generated by the 650-570 Ma oblique subduction between Avalonia-Cadomia and the West African craton, and the 550-490 Ma oblique subduction of the Paleo-Pacific underneath Antarctica. In the Eastern Ghats and the Prince Charles Mountains of East Antarctica, ARCs and related zircons were generated 1000-900 Ma during an earlier continental collision.

  18. Mineralogy and geochemistry of REE-Zr-Nb mineralised nepheline syenites in the peralkaline Ilímaussaq complex, South Greenland

    DEFF Research Database (Denmark)

    Borst, Anouk Margaretha

    Summary: The rare earth elements (REE) share unique physical, chemical and light-emitting properties that are of great importance to the high-tech industry. Among the many rocks containing appreciable amounts of REE, alkaline igneous rocks and carbonatites provide important resources for these el...

  19. Progress in 1988 1990 with computer applications in the ``hard-rock'' arena: Geochemistry, mineralogy, petrology, and volcanology

    Science.gov (United States)

    Rock, Nicholas M. S.

    This review covers rock, mineral and isotope geochemistry, mineralogy, igneous and metamorphic petrology, and volcanology. Crystallography, exploration geochemistry, and mineral exploration are excluded. Fairly extended comments on software availability, and on computerization of the publication process and of specimen collection indexes, may interest a wider audience. A proliferation of both published and commercial software in the past 3 years indicates increasing interest in what traditionally has been a rather reluctant sphere of geoscience computer activity. However, much of this software duplicates the same old functions (Harker and triangular plots, mineral recalculations, etc.). It usually is more efficient nowadays to use someone else's program, or to employ the command language in one of many general-purpose spreadsheet or statistical packages available, than to program a specialist operation from scratch in, say, FORTRAN. Greatest activity has been in mineralogy, where several journals specifically encourage publication of computer-related activities, and IMA and MSA Working Groups on microcomputers have been convened. In petrology and geochemistry, large national databases of rock and mineral analyses continue to multiply, whereas the international database IGBA grows slowly; some form of integration is necessary to make these disparate systems of lasting value to the global "hard-rock" community. Total merging or separate addressing via an intelligent "front-end" are both possibilities. In volcanology, the BBC's videodisk Volcanoes and the Smithsonian Institution's Global Volcanism Project use the most up-to-date computer technology in an exciting and innovative way, to promote public education.

  20. Rare Earth Elements (La, Ce, Pr, Nd, and Sm from a Carbonatite Deposit: Mineralogical Characterization and Geochemical Behavior

    Directory of Open Access Journals (Sweden)

    Mohamed Edahbi

    2018-02-01

    Full Text Available Geochemical characterization including mineralogical measurements and kinetic testing was completed on samples from the Montviel carbonatite deposit, located in Quebec (Canada. Three main lithological units representing both waste and ore grades were sampled from drill core. A rare earth element (REE concentrate was produced through a combination of gravity and magnetic separation. All samples were characterized using different mineralogical techniques (i.e., quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN, X-ray diffraction (XRD, and scanning electron microscopy with X-ray microanalysis (SEM-EDS in order to quantify modal mineralogy, liberation, REE deportment and composition of REE-bearing phases. The REE concentrate was then submitted for kinetic testing (weathering cell in order to investigate the REE leaching potential. The mineralogical results indicate that: (i the main REE-bearing minerals in all samples are burbankite, kukharenkoite-Ce, monazite, and apatite; (ii the samples are dominated by REE-free carbonates (i.e., calcite, ankerite, and siderite; and (iii LREE is more abundant than HREE. Grades of REE minerals, sulfides and oxides are richer in the concentrate than in the host lithologies. The geochemical test results show that low concentrations of light REE are leached under kinetic testing conditions (8.8–139.6 µg/L total light REE. These results are explained by a low reactivity of the REE-bearing carbonates in the kinetic testing conditions, low amounts of REE in solids, and by precipitation of secondary REE minerals.

  1. Unraveling the Alteration History of Serpentinites and Associated Ultramafic Rocks from the Kampos HPLT Subduction Complex, Syros, Greece

    Science.gov (United States)

    Cooperdock, E. H. G.; Stockli, D. F.

    2016-12-01

    Serpentinization, hydration of peridotite, has a profound effect on fundamental tectonic and petrologic processes such as deformation of the lithosphere, bulk rheology, fluid-mobile element cycling and deep earth carbon cycling. Though numerous studies have investigated the petrology, structure and geochemistry of serpentinites, the absolute chronology of serpentinization remains elusive due to a lack of accessory minerals that can be dated using established geochronological techniques. Magnetite forms as a common secondary mineral in serpentinites from the fluid-induced breakdown reaction of primary peridotite minerals. Magnetite (U-Th)/He chronometry provides the potential to directly date the cooling of exhumed ultramafic bodies and the low-temperature fluid alteration of serpentinites. We present the first application of magnetite (U-Th)/He chronometry to date stages of alteration in ultramafic rocks from the Kampos mélange belt, a high-pressure low-temperature (HP-LT) subduction complex that experienced exhumation in the Miocene on the island of Syros, Greece. Two generations of magnetite are distinguishable by grain size, magnetite trace element geochemistry and (U-Th)/He age. Large magnetite grains (mm) from a chlorite schist and a serpentinite schist have distinct geochemical signatures indicative of formation during blackwall-related fluid alteration and record Mid-Miocene exhumation-related cooling ages, similar to zircon (U-Th)/He ages from northern Syros. Smaller grains (µm) from the serpentinite schist lack blackwall-related fluid signatures and record post-exhumation mineral formation associated with widespread high-angle Pliocene normal faulting. These results reveal evidence for multiple episodes of fluid-rock alteration, which has implications for the cooling history and local geochemical exchanges of this HP-LT terrane. Given the fundamental impact of serpentinizaton on a vast array of tectonic, petrological, and geochemical processes, the

  2. In situ Sr/Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2003-01-01

    In situ Sr isotopic compositions of coexisting apatite and carbonate for carbonatites from the Sarfartoq alkaline complex, Greenland, have been determined by laser-ablation multicollector inductively coupled plasma mass spectrometry. This study is the first to examine the extent of Sr isotopic ho...

  3. Lunar Science Conference, 4th, Houston, Tex., March 5-8, 1973, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 - Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    Science.gov (United States)

    Gose, W. A.

    1973-01-01

    The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.

  4. Tectonic significance of dykes in the Sarnu-Dandali alkaline complex, Rajasthan, northwestern Deccan Traps

    Directory of Open Access Journals (Sweden)

    Anjali Vijayan

    2016-09-01

    Full Text Available Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNW–SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes, dominantly strike NNW–SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NW–SE in the early Cretaceous and NE–SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable, whereas the regional Precambrian basement trends (Aravalli and Malani run NE–SW and NNE–SSW. We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale Barmer-Cambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENE–WSW extension, for which there is varied independent evidence.

  5. Petrologic evolution of CM chondrites: The difficulty of discriminating between nebular and parent-body effects

    Science.gov (United States)

    Kerridge, J. F.; McSween, H. Y., Jr.; Bunch, T. E.

    1994-07-01

    We wish to draw attention to a major controversy that has arisen in the area of CM-chondrite petrology. The problem is important because its resolution will have profound implications for ideas concerning nebular dynamics, gas-solid interactions in the nebula, and accretionary processes in the nebula, among other issues. On the one hand, cogent arguments have been presented that 'accretionary dust mantles,' were formed in the solar nebula prior to accretion of the CM parent asteroid(s). On the other hand, no-less-powerful arguments have been advanced that a significant fraction of the CM lithology is secondary, produced by aqueous alteration in the near-surface regions of an asteroid-sized object. Because most, if not all, CM chondrites are breccias, these two views could coexist harmoniously, were it not for the fact that some of the coarse-grained lithologies surrounded by 'accretion dust mantles' are themselves of apparently secondary origin. Such an observation must clearly force a reassessment of one or both of the present schools of thought. Our objective here is to stimulate such a reassessment. Four possible resolutions of this conflict may be postulated. First, perhaps nature found a way of permitting such secondary alteration to take place in the nebula. Second, maybe dust mantles could form in a regolith, rather than a nebular, environment. Third, it is possible that dust mantles around secondary lithologies are different from those around primary lithologies. Finally, perhaps formation of CM chondrites involved a more complex sequence of events than visualized so far, so that some apparently 'primary' processes postdated certain 'secondary' processes.

  6. Sedimentary Petrology: from Sorby to the globalization of Sedimentary Geology; La Petrologia Sedimentaria: desde Sorby a la globalizacion de la Geologia Sedimentaria

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Zarza, A M

    2013-02-01

    We describe here the most important milestones and contributions to Sedimentary Petrology compared to other geological disciplines. We define the main aim of our study and the scientific and economic interests involved in Sedimentary Petrology. The body of the paper focuses upon the historical development of this discipline from Henry Sorby's initial work until the present day. The major milestones in its history include: 1) initial descriptive works; 2) experimental studies; 3) the establishment of the different classifications of sedimentary rocks; 4) studies into facies and sedimentary environments; 5) advances in the study of diagenetic processes and their role in hydrocarbon prospection; and 6) the development of Sedimentary Geochemistry. Relationships and coincidences with Sedimentology are discussed. We go on to look at the advances that have taken place over the last 30 years, in which the study of sedimentary rocks is necessarily included in the wider field of Sedimentary Geology as a logical result of the proposal of global models of a changing Earth in which Sedimentary Geology plays a significant part. Finally we mention the notable contributions of Spanish sedimentary petrologists to this whole field of science. (Author) 120 refs.

  7. Sedimentary Petrology: from Sorby to the globalization of Sedimentary Geology; La Petrologia Sedimentaria: desde Sorby a la globalizacion de la Geologia Sedimentaria

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Zarza, A. M.

    2013-02-01

    We describe here the most important milestones and contributions to Sedimentary Petrology compared to other geological disciplines. We define the main aim of our study and the scientific and economic interests involved in Sedimentary Petrology. The body of the paper focuses upon the historical development of this discipline from Henry Sorby's initial work until the present day. The major milestones in its history include: 1) initial descriptive works; 2) experimental studies; 3) the establishment of the different classifications of sedimentary rocks; 4) studies into facies and sedimentary environments; 5) advances in the study of diagenetic processes and their role in hydrocarbon prospection; and 6) the development of Sedimentary Geochemistry. Relationships and coincidences with Sedimentology are discussed. We go on to look at the advances that have taken place over the last 30 years, in which the study of sedimentary rocks is necessarily included in the wider field of Sedimentary Geology as a logical result of the proposal of global models of a changing Earth in which Sedimentary Geology plays a significant part. Finally we mention the notable contributions of Spanish sedimentary petrologists to this whole field of science. (Author) 120 refs.

  8. Geological characters and petrological characters of metamorphosed medium-acidic intrusive complexes in Ludong Orogenic Belt,China

    Institute of Scientific and Technical Information of China (English)

    凌贤长; 胡庆立; 王丽霞

    2002-01-01

    Ludong orogenic belt in China is an importantal continent collision orogenic belt in eastern Asia, between Sino-Korean landmass and Yangtze landmass. The host rock of the orogenic belt is metamorphosed medium-acidic intrusive complexes, which can be divided into four types, that's, quartz dioritz, granite dioritz, monzonitic granite and undertint monzonitic granite, principal minerals are plagioclases, potassium feldspars and quartzs, minor minerals are hornblendes, biotites, clinopyxenes and garnets, accessory mineral types and assemblages are very similar, specially, various rocks are mainly fine-grained textures. They have the history of regional amphibolite facies metamorphism and deep-middle-shallow structural layer deformation, and are changed into various gneiss and tectonic system. There are many xenolithes of middle Proterozoic eclogite-host rock extrahigh-high pressure metamorphic complexes, a small xenolithes of early Proterozoic layered metamorphite system and granulites, and ultrabasic-basic rocks of various epoches in the metamorphosed medium-acidic intrusive complexes.

  9. Petrology of Ortsog-Uul peridotite-gabbro massif in Western Mongolia

    Science.gov (United States)

    Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Cherdantseva, M.

    2017-12-01

    The Ortsog-Uul mafic-ultramafic massif of Western Mongolia is located in a tectonic block with overturned bedding. The massif hosts two intrusions: a rhythmically-layered peridotite-gabbro association (Intrusion 1) and massive Bt-bearing amphibole-olivine gabbro (Intrusion 2). Intrusions 1 and 2 have different petrology features. Early Intrusion 1 (278±2.5Ma) is characterized by lower concentrations of alkalis, titanium and phosphorus than late Intrusion 2 (272±2Ma). The chondrite-normalized REE and primitive mantle-normalized rare elements patterns of Ortsog-Uul intrusions have similar curves of elements distribution. However, Intrusion 2 is characterized higher contents of REE and rare elements. High concentrations of incompatible elements are indicative of strong fractionation process. It has been suggested that Intrusions 1 and 2 derived from compositionally different parental melts. Model calculations (COMAGMAT-3.57) show that parental melts of two intrusions were close to high-Mg picrobasaltic magmas. The concentration of MgO in melt is 16.21 (Intrusion 1) and 16.17 (Intrusion 2). Isotopic data of Ortsog-Uul magmatic rocks exhibit different values of εNd (positive and negative) for Intrusion 1 and 2, respectively.

  10. Petrologic, morphologic and functional analyses of ground and abrasive stone tools from Rug Bair, Ovche Pole valley

    International Nuclear Information System (INIS)

    Boev, Blazho; Dimitrovska, Vasilka

    2011-01-01

    This paper represents the results of the ground and abrasive stone tools analyses based on the finds collected during the excavation of Rug Bair undertaken in 1970, and today stored in the Museum and Institute for Protection of Shtip. The studies were made possible with the help from the Faculty of Natural and Technical Sciences, Shtip, Republic of Macedonia. Through the stone material, an attempt was made a more comprehensive picture of the raw material, petrologic, technical and typo logical characteristics of the Neolithic stone industry at this site to be gained as well as its relationship with related simultaneously industries. (Author)

  11. 57Fe Moessbauer spectroscopy study of phlogopite megacrysts from an evolved carbonatitic kimberlite in the northeastern Oman Mountains

    International Nuclear Information System (INIS)

    Al-Rawas, A. D.; Nasir, S.; Gismelseed, A. M.

    2008-01-01

    The Fe oxidation degree determined by 57 Fe Moessbauer spectroscopy and microprobe was used to characterize fresh and altered phlogopite megacrysts from an evolved carbonatitic kimberlite from northeastern Oman. The Quadrupole splitting (QS) varies between 2.19 and 2.48 mm/s (Fe 2+ ) in the fresh phlogopite samples and between 2.40 and 2.47 mm/s in the altered phlogopite samples. The quadrupole splitting of the Fe 3+ doublets varies between 0.66 and 0.85 mm/s in the fresh samples. The altered phlogopite samples show three Fe 3+ doublets; the first show a quadrupole splitting between 0.97 and 1.13, the second quadrupole splitting varies between 0.24 and 0.46 mm/s and the third varies between - 0.23 and - 0.35 mm/s. The phlogopite was observed to have an average Fe 3+ /Fe total of 35% to 37%, and corresponds to fresh phlogopite. The second one results from the alteration of the first type, and the Fe 3+ /Fe total ranges between 40% and 57%. Tetrahedral Fe 3+ ions were confirmed in the altered phlogopite samples. Quantitative Fe site distributions can be obtained from room-temperature Moessbauer data if the different recoilless factors for octahedral Fe 2+ and tetrahedral Fe 3+ are considered. The observed isomer shifts are consistent with Moessbauer temperatures of 330 K, reported in the literature for tetrahedral and octahedral Fe 3+ and Fe 2+ in phlogopite. The results are compared to those obtained for natural and synthetic phlogopite from worldwide.

  12. Complex pegmatite - apelitic of Cabecinha - strategies appreciation of geological heritage and economic development of the region

    Science.gov (United States)

    Nobre, José; Cabral, Tiago; Cabral, João; Gomes, Ana

    2014-05-01

    The Complex pegmatite - apelitic of Cabecinha corresponds to an isolated ridge that reaches 933 meters, located in the middle zone of transition between the Hesperian massif and the Cova da Beira being located in the NE central part of Portugal, more specifically in the Mountainous region of the province of Beira Alta, council of Sabugal. This complex lies embedded in porphyritic granites with terms of switching to a medium-grained granite rich in sodium feldspars in which they are muscovite granite intrusions. The lodes have pegmatites with NE-SW orientation, presenting phases of predominantly quartz crystallization with multiple parageneses. The inclusions observed are veins filonianian secondary. Some veins have structural discontinuity due to further their training tectonics. The apelitico material is basic in nature engaging in descontinuiddes of pegmatite material, showing no preferred orientation. The petrological characteristics of the area in question provide the appearance of motivating exotic landforms of scientific interest. These landforms, over time, have motivated the popular level the emergence of various myths, thus contributing to the enrichment of the local cultural heritage. This study proceeded to the geological and geomorphological mapping an area of about 6945,350 m2 with a maximum length of 182 m. The huge patent mineralogical, petrological and geomorphological level geodiversity, allied to the structural complexity and associated cultural heritage, allow geoconservation strategies and recovery, using new multimedia technologies including use of QR codes and 3D. All this geological framework and environment becomes an asset for the scientific, educational and economic development of the region. On the other hand, it has the vital Importance in the context of the strategy of forming a geological park, in the point of view of tourism, research and interpretation.

  13. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    International Nuclear Information System (INIS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-01-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite ± tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  14. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Rietmeijer, Frans J. M. [Department of Earth and Planetary Sciences, MSC 03 2040, 1-University of New Mexico, Albuquerque, NM 87131-001 (United States); Nuth, Joseph A., E-mail: fransjmr@unm.edu [Astrochemistry Laboratory, Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  15. Petrology, magnetostratigraphy and geochronology of the Miocene volcaniclastic Tepoztlán Formation: implications for the initiation of the Transmexican Volcanic Belt (Central Mexico)

    OpenAIRE

    Lenhardt, Nils; Böhnel, Harald; Wemmer, Klaus; Torres-Alvarado, Ignacio; Hornung, Jens; Hinderer, Matthias

    2010-01-01

    The volcaniclastic Tepoztlán Formation (TF) represents an important rock record to unravel the early evolution of the Transmexican Volcanic Belt (TMVB). Here, a depositional model together with a chronostratigraphy of this Formation is presented, based on detailed field observations together with new geochronological, paleomagnetic, and petrological data. The TF consists predominantly of deposits from pyroclastic density currents and extensive epiclastic products such as tuffaceous sandstones...

  16. Jyotiranjan S Ray

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Jyotiranjan S Ray. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 39-47. Emplacement of Amba Dongar Carbonatite-alkaline Complex at Cretaceous/Tertiary Boundary: Evidence from 40Ar-39Ar Chronology · Jyotiranjan S Ray ...

  17. Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield

    Science.gov (United States)

    Doroshkevich, Anna G.; Prokopyev, Ilya R.; Izokh, Andrey E.; Klemd, Reiner; Ponomarchuk, Anton V.; Nikolaeva, Irina V.; Vladykin, Nikolay V.

    2018-04-01

    The Paleoproterozoic Seligdar magnesiocarbonatite intrusion of the Aldan-Stanovoy shield in Russia underwent extensive postmagmatic hydrothermal alteration and metamorphic events. This study comprises new isotopic (Sr, Nd, C and O) data, whole-rock major and trace element compositions and trace element characteristics of the major minerals to gain a better understanding of the source and the formation process of the carbonatites. The Seligdar carbonatites have high concentrations of P2O5 (up to 18 wt%) and low concentrations of Na, K, Sr and Ba. The chondrite-normalized REE patterns of these carbonatites display significant enrichments of LREE relative to HREE with an average La/Ybcn ratio of 95. Hydrothermal and metamorphic overprints changed the trace element characteristics of the carbonatites and their minerals. These alteration processes were responsible for Sr loss and the shifting of the Sr isotopic compositions towards more radiogenic values. The altered carbonatites are further characterized by distinct 18O- and 13C-enrichments compared to the primary igneous carbonatites. The alteration most likely resulted from both the percolation of crustal-derived hydrothermal fluids and subsequent metamorphic processes accompanied by interaction with limestone-derived CO2. The narrow range of negative εNd(T) values indicates that the Seligdar carbonatites are dominated by a homogenous enriched mantle source component that was separated from the depleted mantle during the Archean.

  18. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i: Chapter 8

    Science.gov (United States)

    Thornber, Carl R.; Orr, Tim R.; Heliker, Christina; Hoblitt, Richard P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic monitoring of Kīlauea Volcano from January 1983 to October 2013 has yielded an extensive record of glass, phenocryst, melt inclusion, and bulk-lava chemistry from well-quenched lava. When correlated with 30+ years of geophysical and geologic monitoring, petrologic details testify to physical maturation of summit-to-rift magma plumbing associated with sporadic intrusion and prolonged magmatic overpressurization. Changes through time in bulk-lava major- and trace-element compositions, along with glass thermometry, record shifts in the dynamic balance of fractionation, mixing, and assimilation processes inherent to magma storage and transport during near-continuous recharge and eruption. Phenocryst composition, morphology, and texture, along with the sulfur content of melt inclusions, constrain coupled changes in eruption behavior and geochemistry to processes occurring in the shallow magmatic system. For the first 17 years of eruption, magma was steadily tapped from a summit reservoir at 1–4 km depth and circulating between 1180 and 1200°C. Furthermore, magma cooled another 30°C while flowing through the 18 km long rift conduit, before erupting olivine-spinel-phyric lava at temperatures of 1150–1170°C in a pattern linked with edifice deformation, vent formation, eruptive vigor, and presumably the flux of magma into and out of the summit reservoir. During 2000–2001, a fundamental change in steady state eruption petrology to that of relatively low-temperature, low-MgO, olivine(-spinel)-clinopyroxene-plagioclase-phryic lava points to a physical transformation of the shallow volcano plumbing uprift of the vent. Preeruptive comagmatic mixing between hotter and cooler magma is documented by resorption, overgrowth, and compositional zonation in a mixed population of phenocrysts grown at higher and lower temperatures. Large variations of sulfur (50 to >1000 ppm) in melt inclusions within individual phenocrysts and among phenocrysts in most samples

  19. The U-Pb System in Schorlomite from Calcite-Amphobole-Pyroxene Pegmatite of the Afrikanda Complex (Kola Peninsula)

    Science.gov (United States)

    Salnikova, E. B.; Stifeeva, M. V.; Chakhmouradian, A. R.; Glebovitsky, V. A.; Reguir, E. P.

    2018-02-01

    The geochronological U-Pb study of shorlomite from igneous rocks of the alkali-ultramafic Afrikanda massif (Kola Peninsula) was performed. The results demonstrate the reliability of calcium garnet as a mineral for the U-Pb geochronology of a wide range of igneous rocks, i.e., carbonatite, syenite, foidolite, foidite, melilitolite, melilitite, lamprophyres, micaceous kimberlites, etc., and associated rare earth and trace elements (REE, Nb, Zr) mineralization.

  20. Magmatic and petrologic evolution of the mesozvic vulcanic acid rocks from Piraju-Ourinhos region (SP-PR)

    International Nuclear Information System (INIS)

    Raposo, M.I.B.

    1987-01-01

    This work presents the result of geological, petrological and geochemical studies, on the volcanic rocks from Piraju-Ourinhos region, SP, with special emphasis on the rocks. A geological mapping was carried out by using images from Landsat satellite. Petrographic and chemical analyses have defined a suite represented by basic lithotype - tholeutic andesibasalt - with high TiO 2 , rich in incompable elements - mainly Sr, Zr, La, Ce, and Ba - and by acid lithotype - rhyolite - rhyodacite. k-Ar ages are determined in feldspar concentrated, and indicate an age of 133+- 4m,y, for the volcanic acid rocks. Determinations of Sr isotopes. In order to explain the genesis of Chapeco type acid magnas quantitative models were tested using both fractional Crystallization [pt

  1. The 2003 phreatomagmatic eruptions of Anatahan volcano - Textural and petrologic features of deposits at an emergent island volcano

    Science.gov (United States)

    Pallister, J.S.; Trusdell, F.A.; Brownfield, I.K.; Siems, D.F.; Budahn, J.R.; Sutley, S.F.

    2005-01-01

    Stratigraphic and field data are used in conjunction with textural and chemical evidence (including data from scanning electron microscope, electron microprobe, X-ray fluorescence, X-ray diffraction, and instrumental neutron activation analysis) to establish that the 2003 eruption of Anatahan volcano was mainly phreatomagmatic, dominated by explosive interaction of homogeneous composition low-viscosity crystal-poor andesite magma with water. The hydromagmatic mode of eruption contributed to the significant height of initial eruptive columns and to the excavation and eruption of altered rock debris from the sub-volcanic hydrothermal system. Volatile contents of glass inclusions in equilibrium phenocrysts less abundances of these constituents in matrix glass times the estimated mass of juvenile magma indicate minimum emissions of 19 kt SO2 and 13 kt Cl. This petrologic estimate of SO2 emission is an order-of-magnitude less than an estimate from TOMS. Similarly, inferred magma volumes from the petrologic data are an order of magnitude greater than those modeled from deformation data. Both discrepancies indicate additional sources of volatiles, likely derived from a separate fluid phase in the magma. The paucity of near-source volcanic-tectonic earthquakes preceding the eruption, and the dominance of sustained long-period tremor are attributed to the ease of ascent of the hot low-viscosity andesite, followed by a shallow phreatomagmatic mode of eruption. Phreatomagmatic eruptions are probably more common at emergent tropical island volcanoes, where shallow fresh-water lenses occur at near-sea-level vents. These relations suggest that phreatomagmatic explosions contributed to the formation of many of the near-sea-level craters and possibly even to the small calderas at the other Mariana islands.

  2. Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions

    Science.gov (United States)

    Sharygin, Igor S.; Shatskiy, Anton; Litasov, Konstantin D.; Golovin, Alexander V.; Ohtani, Eiji; Pokhilenko, Nikolay P.

    2018-03-01

    We performed an experimental study, designed to reproduce the formation of an unusual merwinite + olivine-bearing mantle assemblage recently described as a part of a Ca-rich suite of inclusions in sublithospheric diamonds, through the interaction of peridotite with an alkali-rich Ca-carbonatite melt, derived from deeply subducted oceanic crust. In the first set of experiments, we studied the reaction between powdered Mg-silicates, olivine and orthopyroxene, and a model Ca-carbonate melt (molar Na:K:Ca = 1:1:2), in a homogeneous mixture, at 3.1 and 6.5 GPa. In these equilibration experiments, we observed the formation of a merwinite + olivine-bearing assemblage at 3.1 GPa and 1200 °C and at 6.5 GPa and 1300-1400 °C. The melts coexisting with this assemblage have a low Si and high Ca content (Ca# = molar 100 × Ca/(Ca + Mg) > 0.57). In the second set of experiments, we investigated reaction rims produced by interaction of the same Ca-carbonate melt (molar Na:K:Ca = 1:1:2) with Mg-silicate, olivine and orthopyroxene, single crystals at 3.1 GPa and 1300 °C and at 6.5 GPa and 1400 °C. The interaction of the Ca-carbonate melt with olivine leads to merwinite formation through the expected reaction: 2Mg2SiO4 (olivine) + 6CaCO3 (liquid) = Ca3MgSi2O8 (merwinite) + 3CaMg(CO3)2 (liquid). Thus, our experiments confirm the idea that merwinite in the upper mantle may originate via interaction of peridotite with Ca-rich carbonatite melt, and that diamonds hosting merwinite may have a metasomatic origin. It is remarkable that the interaction of the Ca-carbonate melt with orthopyroxene crystals does not produce merwinite both at 3.1 and 6.5 GPa. This indicates that olivine grain boundaries are preferable for merwinite formation in the upper mantle.

  3. A New Approach to Teaching Petrology: Active Learning in a Studio Classroom

    Science.gov (United States)

    Perkins, D.

    2003-12-01

    During the past 15 years it has become clear that the traditional lecture and lab approach to college science teaching leaves much to be desired. The traditional approach is instructor oriented and based on passive learning. In contrast, current studies show that most students learn best when actively engaged in the learning process. Inquiry based learning and open ended projects have been shown to especially enhance learning by promoting higher order thinking. Recognizing the need for change, however, does not mean the changes are simple. The task of overhauling a course, replacing traditional approaches with more student oriented activities, requires a great deal of time and effort. It also involves much uncertainty and risk. At UND we have been experimenting with alternative pedagogies for a number of years. Change has been incremental, but this year we made wholesale changes in our petrology class. We converted it from the standard three lecture and one lab format to two 3-hour studio sessions per week. The distinction between lab and lecture is gone. In fact, there really are no lectures. The instructor talks for no more than 15 or 20 minutes at a time. Students spend most of their time doing, not listening. We emphasize collaborative active learning projects, some quite short and others lengthy and involved, and use a wide variety of activities. To assess the class, we have an outside consultant and we carry out weekly assessments to measure (1) how students are reacting to the various pedagogical approaches, and (2) how much student learning is actually occurring. This allows us to make adjustments and fine tune as necessary. We could not have made such changes a few years ago, simply because of the amount of work involved to create and test the necessary classroom materials. Today, however, there are many resources available to the reform minded teacher, and the resource base continues to grow. We borrowed heavily from other instructors at other

  4. Padrt'stock (Teplá–Barrandian unit, Bohemian Massif): Petrology, geochemistry, U-Pb zircon dating of granodiorite, and Re-Os age and origin of related molybdenite mineralization

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Svojtka, Martin; Breiter, Karel; Ackerman, Lukáš; Zachariáš, J.; Pašava, J.; Veselovský, F.; Litochleb, J.; Ďurišová, Jana; Haluzová, Eva

    2014-01-01

    Roč. 59, č. 4 (2014), s. 351-366 ISSN 1802-6222 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : geochemistry * petrology * Re–Os molybdenite dating * Teplá–barrandian unit * U–Pb zircon dating * Variscan granitoids Subject RIV: DD - Geochemistry Impact factor: 1.405, year: 2014

  5. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc:A review

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa

    2014-01-01

    Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the“seafloor spreading”process in the southwest segment,“rift propagation”process in the middle seg-ment, and

  6. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon

    Science.gov (United States)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low

  7. Incorporating Problem-Based Learning Into A Petrology Course Through A Research Project In The Local Northern Sierra Nevada

    Science.gov (United States)

    Aird, H. M.

    2016-12-01

    A research project into the local petrology was integrated into the Spring 2016 Petrology and Optical Mineralogy course at California State University, Chico. This is a required majors course, typically taken during spring of the junior year, with an enrollment of 10-20 students. Since the labs for this course have a strong focus on petrography, a research project was introduced to give students experience in using a multi-faceted approach to investigate a problem. In many cases, this is their first taste of research. During the first week of the Spring 2016 class, students were introduced to the research question: In the broader context of Californian tectonic history, are the Bucks Lake and Grizzly plutons of the northern Sierra Nevada petrogenetically related? With faculty guidance over the course of the semester, students carried out fieldwork and sampling, lithologic description, selection of the best samples for further analysis, thin section production, petrographic description, and analysis and interpretation of published geochemical data. Research activities were strategically scheduled within the course framework such that students were academically prepared to carry out each task. Each student was responsible for generating all the data for one sample, and data were then collated as a class, so students wrote their individual final reports using all the data collected by the class. Careful scaffolding of writing assignments throughout the semester guided students through the preparation of an academic-style scientific report, while allowing for repeated feedback on their writing style and content. In mid-May, the class presented a group poster at the College of Natural Sciences annual poster symposium, and were awarded `Best Student Class Project' by the judges. Anecdotal student feedback indicated they highly valued the research experience and some were inspired to pursue individual undergraduate research projects under faculty supervision.

  8. Organic petrology in the service of archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Teichmueller, M.

    1992-02-01

    The techniques of organic petrology have been used to study the nature and provenance of 81 ornaments ranging in age from the Celtic (dated as late Hallstatt-early La Tene times, 500-300 B.C.) to Roman (1st-4th Century A.D.) periods, which have been recovered from graves and settlements in Germany and Switzerland. The ornaments were mainly black or dark brown armlets but also included beads, buttons and medallions. The most commonly used source material was jet (22 objects) which is derived from bituminized drift woods found in Liassic oil shale, probably mainly of English provenance. Eleven objects were made from Carboniferous cannel coal and four from boghead coal, both of unknown geographic provenance. Only one object proved to be made from {ital Posidonia} shale, a liassic oil shale from southern Germany. The identification of two distinctive sapropelites, used mainly for the production of armlets, is of particular interest. These sapropelites are the 'Schwarte' from the top of the Kounova Seam (Stephanian) of northern Bohemia (15 objects) and the Kimmeridge 'coal' of Dorset, England (19 objects). The recognition of these organic materials was made possible by the study of fresh rock samples. All the armlets made from 'Schwarte' were excavated in the Celtic oppidum at Manching in southern Germany; the armlets made from Kimmeridge 'coal' were found in Celtic and Roman graves. These discoveries suggest the existence of early trade routes crossing the English Channel and passing south to Switzerland, probably along the River Rhine. A very few armlets were made from dark tuff (probably of Bohemian origin), black glass or dark brown bone. These materials were probably all used as substitutes for jet and/or sapropelites. It is interesting to note that all these dark armlets were thought to possess magic properties, which may explain their frequency. 26 refs., 4 figs., 4 tabs.

  9. Are diamond-bearing Cretaceous kimberlites related to shallow-angle subduction beneath western North America?

    Science.gov (United States)

    Currie, C. A.; Beaumont, C.

    2009-05-01

    The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (subduction that places the Farallon Plate beneath the western edge of the cratonic interior of North America. This geometry is consistent with the observed continental dynamic subsidence that lead to the development of the Western Interior Seaway. The models also show that the subducting plate has a cool thermal structure, and subducted hydrous minerals (serpentine, phengite and phlogopite) remain stable to more than 1200 km from the trench, where they may break down and release fluids that infiltrate the overlying craton lithosphere. This is supported by geochemical studies that indicate metasomatism of the Colorado Plateau and Wyoming craton mantle lithosphere by an aqueous fluid and/or silicate melt with a subduction signature. Through Cretaceous shallow-angle subduction, the Farallon Plate was in a position to mechanically and chemically interact with North American craton lithosphere at the time of

  10. Visualizing Complex Environments in the Geo- and BioSciences

    Science.gov (United States)

    Prabhu, A.; Fox, P. A.; Zhong, H.; Eleish, A.; Ma, X.; Zednik, S.; Morrison, S. M.; Moore, E. K.; Muscente, D.; Meyer, M.; Hazen, R. M.

    2017-12-01

    Earth's living and non-living components have co-evolved for 4 billion years through numerous positive and negative feedbacks. Earth and life scientists have amassed vast amounts of data in diverse fields related to planetary evolution through deep time-mineralogy and petrology, paleobiology and paleontology, paleotectonics and paleomagnetism, geochemistry and geochrononology, genomics and proteomics, and more. Integrating the data from these complimentary disciplines is very useful in gaining an understanding of the evolution of our planet's environment. The integrated data however, represent many extremely complex environments. In order to gain insights and make discoveries using this data, it is important for us to model and visualize these complex environments. As part of work in understanding the "Co-Evolution of Geo and Biospheres using Data Driven Methodologies," we have developed several visualizations to help represent the information stored in the datasets from complimentary disciplines. These visualizations include 2D and 3D force directed Networks, Chord Diagrams, 3D Klee Diagrams. Evolving Network Diagrams, Skyline Diagrams and Tree Diagrams. Combining these visualizations with the results of machine learning and data analysis methods leads to a powerful way to discover patterns and relationships about the Earth's past and today's changing environment.

  11. Magma transport and storage at Mt. Etna (Italy): A review of geodetic and petrological data for the 2002-03, 2004 and 2006 eruptions

    Science.gov (United States)

    Palano, Mimmo; Viccaro, Marco; Zuccarello, Francesco; Gresta, Stefano

    2017-11-01

    A detailed reconstruction of magma movements within the plumbing system of Mt. Etna volcano has been made by reviewing the eruptions occurring during the October 2002-December 2006 period. The availability of continuous GPS data allowed detecting at least ten different ground deformation stages, highlighting deflationary and inflationary episodes as well as the occurrence of a shallow dike intrusion. These data have been coupled with the available petrological datasets including major/trace elements and Sr-Nd-Pb isotope compositions for the volcanic rocks erupted in the 2002-2006 period. We identified two main magmatic reservoirs located at different depths along the plumbing system of the volcano. The former is located at a depth of 7 km bsl and fed the 2001 and 2002-03 eruptions, while the latter, located from 3.5 to 5.5 km bsl, fed the 2004-05 and 2006 eruptions. Petrological characteristics of emitted products have been correlated with the inflation vs. deflation cycles related to the identified sources, providing evidence for changes through time of the evolutionary degree of the erupted magmas along with variations in their geochemical feature. Finally, we suggest that a modification of the deep plumbing system of the volcano might have occurred during the 2002-03 eruption, as a consequence of the major seaward motion of the eastern flank of the volcano.

  12. The Carboniferous to Jurassic evolution of the pre-Alpine basement of Crete: Constraints from U-Pb and U-(Th)-Pb dating of orthogneiss, fission-track dating of zircon, structural and petrological data

    Czech Academy of Sciences Publication Activity Database

    Romano, S. S.; Brix, M. R.; Dörr, K.; Fiala, Jiří; Krenn, E.; Zulauf, G.

    2006-01-01

    Roč. 260, - (2006), s. 69-90 ISSN 0375-6440 Institutional research plan: CEZ:AV0Z30130516 Keywords : tectonic-evolution * Carboniferous * Jurassic * uranium-lead-dating * orthogneiss * fission-track-dating * zircon * structural-geology * petrology * metamorphism * high-temperature Subject RIV: DB - Geology ; Mineralogy

  13. Isotopic dating of the post-Alpine Neogene volcanism in the Betic Cordilleras, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, F A; Rondeel, H E [Amsterdam Univ. (Netherlands). Geologisch Inst.; Andriessen, P A.M.; Hebeda, E H; Priem, H N.A. [Laboratorium voor Isotopen-Geologie, Amsterdam (Netherlands)

    1981-06-01

    The post-Alpine lamproitic volcanism in the Prebetic of the External Zone of the Betic Cordilleras of southern Spain is dated at 7.6-7.2 Ma by the K-Ar data from two richterites, two sanidines, a phlogopite and a whole-rock, and the fission-track analysis of an apatite. Biotite from a lava of the rhyolitic-dacitic suite in the post-orogenic Vera basin of the Internal Zone produces the same age. Phlogopite from a lamproitic (veritic) subvolcanic body in the Vera basin yields an age of about 8.6 Ma; as lavas belonging to the veritic suite reportedly overlie Late Messinian sediments, pointing to an age of less than about 5 Ma, this type of volcanism in the Vera basin must have been active over several million years.

  14. Endeavor research into evolving paradigms around ophiolites: the case of the oceanic igneous complexes of Costa Rica

    International Nuclear Information System (INIS)

    Alvarado, Guillermo E.; Denyer, Perci; Gazel, Esteban

    2009-01-01

    , like Santa Elena Peninsula, Tortugal, Herradura and Quepos, the picture on these oceanic complexes are more or less clear. In the case of Osa-Golfito-Burica area, more studies are necessary. In general, the detailed field mapping is a powerful tool in combination with the modern techniques. The similarity in age, petrology, geochemistry and tectonic context for other oceanic complexes in Guatemala, Antilles and the northern part of South America, is more than a coincidence, they have a similar evolution. Therefore, a multidisciplinary study of the chrono- and bio-stratigraphic relations, together with modern petrology, geochemical and micropaleontology approach is necessary to provide a solid base for a robust plate tectonic reconstruction and geologic history. (author)

  15. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  16. Geochemistry and zircon U-Pb geochronology of the Pulang complex, Yunnan province, China

    International Nuclear Information System (INIS)

    Pang, Zhenshan; Du, Yangsong; Cao, Yi; Gao, Fuping; Wang, Gongwen; Dong, Qian

    2014-01-01

    The Pulang complex is located tectonically at the southern margin of the Yidun-Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U-Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr-Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257∼ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas. (author)

  17. Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models

    Science.gov (United States)

    Aulbach, Sonja; Massuyeau, Malcolm; Gaillard, Fabrice

    2017-01-01

    Geophysically detectible mid-lithospheric discontinuities (MLD) and lithosphere-asthenosphere boundaries (LAB) beneath cratons have received much attention over recent years, but a consensus on their origin has not yet emerged. Cratonic lithosphere composition and origin is peculiar due to its ultra-depletion during plume or accretionary tectonics, cool present-day geothermal gradients, compositional and rheological stratification and multiple metasomatic overprints. Bearing this in mind, we integrate current knowledge on the physical properties, chemical composition, mineralogy and fabric of cratonic mantle with experimental and thermodynamic constraints on the formation and migration of melts, both below and within cratonic lithosphere, in order to find petrologically viable explanations for cratonic mantle discontinuities. LABs characterised by strong seismic velocity gradients and increased conductivity require the presence of melts, which can form beneath intact cratonic roots reaching to 200-250 km depth only in exceptionally warm and/or volatile-rich mantle, thus explaining the paucity of seismical LAB observations beneath cratons. When present, pervasive interaction of these - typically carbonated - melts with the deep lithosphere leads to densification and thermochemical erosion, which generates topography at the LAB and results in intermittent seismic LAB signals or conflicting seismic, petrologic and thermal LAB depths. In rare cases (e.g. Tanzanian craton), the tops of live melt percolation fronts may appear as MLDs and, after complete lithosphere rejuvenation, may be sites of future, shallower LABs (e.g. North China craton). Since intact cratons are presently tectonomagmatically quiescent, and since MLDs produce both positive and negative velocity gradients, in some cases with anisotropy, most MLDs may be best explained by accumulations (metasomes) of seismically slow minerals (pyroxenes, phlogopite, amphibole, carbonates) deposited during past

  18. Thorium, UNFC (3,3,3) In Brasil

    International Nuclear Information System (INIS)

    Villas-Bôas, Roberto C.

    2014-01-01

    Types of thorium UNFC (3,3,3) in Brasil: • Placer, shoreline; • Placer, alluvial; • Carbonatite with residual enrichment (Barreiro,Catalao); • Carbonatite (Salitre, MG); • Pitinga granites (AM); • Alkalic Igneous

  19. Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants

    Science.gov (United States)

    Rickman, D. L.; Young, C.; Stoeser, D.; Edmunson, J.

    2014-01-01

    The availability of pure, high calcium plagioclase would be a significant asset in any attempt to manufacture high-quality lunar simulants. A suitable plagioclase product can be obtained from materials obtained from the Stillwater Complex of Montana. The access, geology, petrology, and mineralogy of the relevant rocks and the mill tailings are described here. This study demonstrates successful plagioclase recovery from mill tailings produced by the Stillwater Mine Company. Hydrogen peroxide was used to remove carboxymethyl cellulose from the tailing. The characteristics of the plagioclase products are shown and locked grains are identified as a limit to achievable purity. Based on the experimental results, flowsheets were developed showing how these resources could be processed and made into 'separates' of (1) high calcium plagioclase and (2) orthopyroxene/clinopyroxene with the thought that they would be combined later to make simulant.

  20. The depositional environment and petrology of the White Rim Sandstone Member of the Permian Cutler Formation, Canyonlands National Park, Utah

    Science.gov (United States)

    Steele-Mallory, B. A.

    1982-01-01

    The White Rim Sandstone Member of the Cutler Formation of Permian age in Canyonlands National Park, Utah, was deposited in coastal eolian and associated interdune environments. This conclusion is based on stratigraphic relationships primary sedimentary structures, and petrologic features. The White Rim consists of two major genetic units. The first represents a coastal dune field and the second represents related interdune ponds. Distinctive sedimentary structures of the coastal dune unit include large- to medium-scale, unidirectional, tabular-planar cross-bedding; high-index ripples oriented parallel to dip direction of the foresets; coarse-grained lag layers; avalanche or slump marks; and raindrop impressions. Cross-bedding measurements suggest the dunes were deposited as transverse ridges by a dominantly northwest to southeast wind. Distinctive sedimentary structures of the interdune pond unit include wavy, horizontally laminated bedding, adhesion ripples, and desiccation polygons. These features may have been produced by alternate wetting and drying of sediment during water-table fluctuations. Evidence of bioturbation is also present in this unit. Petrologic characteristics of the White Rim helped to define the depositional environment as coastal. A crinoid fragment was identified at one location; both units are enriched in heavy minerals, and small amounts of well rounded, reworked glauconite were found in the White Rim throughout the study area. Earlier work indicates that the White Rim sandstone is late Wolfcampian to early Leonardian in age. During this time, the Canyonlands area was located in a depositional area alternately dominated by marine and nonmarine environments. Results of this study suggest the White Rim represents a coastal dune field that was deposited by predominantly on-shore winds during a period of marine transgression.

  1. The petrologic evolution and pre-eruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean arc)

    Science.gov (United States)

    Bachmann, Olivier

    2010-09-01

    The Kos Plateau Tuff is a large (>60 km3) and young (160 k.y.) calc-alkaline, high-SiO2 rhyolitic ignimbrite from the active Kos-Nisyros volcanic center in the Aegean arc (Greece). Combined textural, petrological and geochemical information suggest that (1) the system evolved dominantly by crystal fractionation from (mostly unerupted) more mafic parents, (2) the magma chamber grew over ≥ 250 000 years at shallow depth (˜1.5-2.5 kb) and was stored as a H2O-rich crystalline mush close to its solidus (˜670-750°C), (3) the eruption occurred after a reheating event triggered by the intrusion of hydrous mafic magma at the base of the rhyolitic mush. Rare banded pumices indicate that the mafic magma only mingled with a trivial portion of resident crystal-rich rhyolite; most of the mush was remobilized following partial melting of quartz and feldspars induced by advection of heat and volatiles from the underplated, hotter mafic influx.

  2. Detection of rare-earth-mineral phases by scanning electron microscopy/energy dispersive x-rays (SEM/EDX) in the alkaline complexes of Tamil Nadu

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Nathan, N.P.; Ganesan, V.; Shome, S.

    2005-01-01

    The alkaline complexes of the Southern Granulite Terrain (SGT) are generally restricted within NNW-SSE-trending Dharmapuri Shear Zone (DSZ), extending from Gudiyatham in the north and Bhavani in the south in Tamil Nadu. REE-rich phases have been studied under EDX (Energy Dispersive X-rays) from the different alkaline suites of Tamil Nadu. In Elagiri, the Th-rich epidote/allanite is concentrically zoned and occurs in the outermost coarse sub-solvus syenite, indicating that the REE concentration is restricted within the late-stage magmatic activity. In Koratti, the apatites are LREE rich. In Samalpatti Complex, the carbonatites host a number of REE-rich minerals commonly classified as betafite, along with nioborutite and nioboilmenite. The niobo-rutile and niobo-ilmenite show exsolved texture. The betafite is zoned with mendelyeerite. Some of the molybdenite in Samalpatti is dendritic indicating incomplete crystallisation. In Sivamalai, the REE phases are generally associated with ferrosyenite and nepheline syenite as adsorbed grains around apatite or carbonate. The REE minerals are Zr-REE titanate, REE-titano silicate and REE-yttrium silicate. In the Pikkili Complex, the REE minerals generally occur as rim around apatite and calcite. A discrete metamict allanite grain with radial cracks occurs within syenite. In Pakkanadu Complex zoned allanite occurs with distinct chemical zonation in syenite. Monazite and celesto-barite are associated with barite suggesting that the REE phases are developed in the late intrusive stage. (author)

  3. Petrology and geochemistry of greywackes of Middle Aravalli supergroup, NW India: evidence for active margin processes

    International Nuclear Information System (INIS)

    Absar, Nurul; Sreenivas, B.

    2013-01-01

    Aravalli Mountain Belt (AMB) of Northwestern, India represents one of the major Proterozoic accretionary orogens of the world, preserving two Wilson cycles; viz. Paleoproterozoic Aravalli Supergroup and Mesoproterozoic Delhi Supergroup. Although two gross Wilson cycles involving opening and closing of Paleoproterozoic Aravalli ocean and Mesoproterozoic Delhi ocean are recognized, the finer details of the evolution of the orogen are still poorly understood. We have carried out geochemical and petrological study of the well-preserved greywacke horizon of the 'Middle Aravalli Supergroup' in order to place constraints on early evolution of the Aravalli basin. These greywackes are enriched in Fe, Mg and K; and depleted in Na in comparison to normal greywackes and can be classified as ferroan potassic sandstone. Petrographic examination indicate that the greywacke samples contain about 30 to 50% matrix that is mainly composed of biotite/chlorite and interspersed with fine Fe-Ti rich opaque mineral phases

  4. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  5. Decarbonation in an intracratonic setting: Insight from petrological-thermomechanical modeling

    Science.gov (United States)

    Gonzalez, Christopher M.; Gorczyk, Weronika

    2017-08-01

    Cratons form the stable core roots of the continental crust. Despite long-term stability, cratons have failed in the past. Cratonic destruction (e.g., North Atlantic Craton) due to chemical rejuvenation at the base of the lithosphere remains poorly constrained numerically. We use 2-D petrological-thermomechanical models to assess cratonic rifting characteristics and mantle CO2 degassing in the presence of a carbonated subcontinental lithospheric mantle (SCLM). We test two tectonothermal SCLM compositions: Archon (depleted) and Tecton (fertilized) using 2 CO2 wt % in the bulk composition to represent a metasomatized SCLM. We parameterize cratonic breakup via extensional duration (7-12 Ma; full breakup), tectonothermal age, TMoho (300-600°C), and crustal rheology. The two compositions with metasomatized SCLMs share similar rifting features and decarbonation trends during initial extension. However, we show long-term (>67 Ma) stability differences due to lithospheric density contrasts between SCLM compositions. The Tecton model shows convective removal and thinning of the metasomatized SCLM during failed rifting. The Archon composition remained stable, highlighting the primary role for SCLM density even when metasomatized at its base. In the short-term, three failed rifting characteristics emerge: failed rifting without decarbonation, failed rifting with decarbonation, and semifailed rifting with dry asthenospheric melting and decarbonation. Decarbonation trends were greatest in the failed rifts, reaching peak fluxes of 94 × 104 kg m-3. Increased TMoho did not alter the effects of rifting or decarbonation. Lastly, we show mantle regions where decarbonation, mantle melting in the presence of carbonate, and preservation of carbonated mantle occur during rifting.

  6. Hf isotope evidence for a hidden mantle reservoir

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2002-01-01

    High-precision Hf isotopic analyses and U-Pb ages of carbonatites and kimberlites from Greenland and eastern North America, including Earth's oldest known carbonatite (3 Ga), indicate derivation from an enriched mantle source. This previously unidentified mantle reservoir-marked by an unradiogenic...... Hf isotopic composition and preserved in the deep mantle for at least 3 b.y.-may account for the mass imbalance in Earth's Hf-Nd budget. The Hf isotopic data presented here support a common mantle source region and genetic link between carbonatite and some oceanic-island basalt volcanoes....

  7. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  8. Estimation of Water Within the Lithospheric Mantle of Central Tibet from Petrological-Geophysical Investigations

    Science.gov (United States)

    Vozar, J.; Fullea, J.; Jones, A. G.

    2013-12-01

    Investigations of the lithosphere and sub-lithospheric upper mantle by integrated petrological-geophysical modeling of magnetotelluric (MT) and seismic surface-wave data, which are differently sensitive to temperature and composition, allows us to reduce the uncertainties associated with modeling these two data sets independently, as commonly undertaken. We use selected INDEPTH MT data, which have appropriate dimensionality and large penetration depths, across central Tibet for 1D modeling. Our deep resistivity models from the data can be classified into two different and distinct groups: (i) the Lhasa Terrane and (ii) the Qiangtang Terrane. For the Lhasa Terrane group, the models show the existence of upper mantle conductive layer localized at depths of 200 km, whereas for the Qiangtang Terrane, this conductive layer is shallower at depths of 120 km. We perform the integrated geophysical-petrological modeling of the MT and surface-wave data using the software package LitMod. The program facilitates definition of realistic temperature and pressure distributions within the upper mantle for given thermal structure and oxide chemistry in the CFMAS system. This allows us to define a bulk geoelectric and seismic model of the upper mantle based on laboratory and xenolith data for the most relevant mantle minerals, and to compute synthetic geophysical observables. Our results suggest an 80-120 km-thick, dry lithosphere in the central part of the Qiangtang Terrane. In contrast, in the central Lhasa Terrane the predicted MT responses are too resistive for a dry lithosphere regardless its thickness; according to seismic and topography data the expected lithospheric thickness is about 200 km. The presence of small amounts of water significantly decreases the electrical resistivity of mantle rocks and is required to fit the MT responses. We test the hypothesis of small amounts of water (ppm scale) in the nominally anhydrous minerals of the lithospheric mantle. Such a small

  9. A study of the Eocene S-type granites of Chapedony metamorphic core complex (northeast of Yazd province, Central Iran)

    International Nuclear Information System (INIS)

    Zakipour, A.; Torabi, Gh.

    2016-01-01

    The Eocene Chapedony metamorphic core complex, is located in western part of the Posht-e-Badam block. This complex is consisting of migmatite, gneiss, amphibolite, marble, micaschist and various types of granitoids. In middle part of this complex (Kalut-e-Chapedony), an Eocene granitic rock unit cross cuts the other rocks. The minerals of this granite are plagioclase (An 9 Ab 8 7O r 4), potassium feldspars (orthoclase), quartz, euhedral garnet (Alm 7 7Sps 1 3Prp 9 Grs 1 ), zircon, apatite, fibrolitic sillimanite and muscovite. Petrology and geochemical studies reveal calc-alkaline, peraluminous and S-type nature of the studied granites. Chondrite-normalized REE patterns represent evident negative anomaly of Eu and low values of the REEs. Continental crust and North American shale composite (NASC) - normalized multi-elements spider diagrams indicate trace elements depletion. These granites are formed by melting of continental crust sedimentary rocks, resulted by emplacement of mantle-derived magma at the bottom of continental crust which formed the Chapedony metamorphic core complex. The source rock of these granites should be a clay-rich sedimentary rock with low amount of plagioclase and CaO/Na 2 O ratio.

  10. Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, R.F.; Potter, P.E.

    1980-11-01

    Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

  11. Evidence for crustal recycling during the Archean: the parental magmas of the stillwater complex

    International Nuclear Information System (INIS)

    McCallum, I.S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana, is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area

  12. Cretaceous magmatism in North-Eastern India and Gondwanaland ...

    Indian Academy of Sciences (India)

    jsray

    Cretaceous magmatism of NEI: Major Objectives. • Age and duration of Sylhet Traps and its connection to Kerguelene hotspot and Gondwanaland breakup? • Age of carbonatite magmatism associated with the traps? • Relationship of basaltic-carbonatite magmatism with. Aptian (~116 Ma) Mass Extinction event? • Nature of ...

  13. Tectonic significance of the Xilin Gol Complex, Inner Mongolia, China: Petrological, geochemical and U–Pb zircon age constraints

    NARCIS (Netherlands)

    Li, Y.; Zhou, H; Brouwer, F.M.; Wijbrans, J.R.; Zhong, Z.; Liu, H.

    2011-01-01

    The Xilin Gol Complex, consisting of strongly deformed and metamorphosed rocks, is exposed as a large tectonic unit within the Central-Asian Orogenic Belt (CAOB). It is located on the Xilinhot-Sonidzuoqi north-dipping thrust belt and near the Solonker suture zone that is widely regarded to record

  14. Geology and age of the Lac a la Perdrix fenite, southern Gatineau district, Quebec

    International Nuclear Information System (INIS)

    Hogarth, D.D.

    1996-01-01

    The Lac a Ia Perdrix fenite lies in the Central Metasedimentary Belt of the Grenville Province. This 30 m wide fenite, adjacent to a narrow calciocarbonatite sill, replaces diopside-oligoclase gneiss and is composed of magnesio-arfvedsonite, aegirine, microcline, albite, and fluorapatite. Near the contact with carbonatite, it contains appreciable monazite and barite whereas aegirine virtually disappears. Fenitization probably took place early in the igneous stage of carbonatite development. A Pb/U monazite age of 1026 ± 2 Ma is thought to date fenite formation. Together with published data, this age shows that carbonatite intruded metamorphic rocks near the close of the Grenville Orogeny. (author). 33 refs., 4 tabs., 5 figs

  15. Geology and age of the Lac a la Perdrix fenite, southern Gatineau district, Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Hogarth, D D [Ottawa Univ., ON (Canada). Dept. of Geology; VanBreemen, O [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    The Lac a Ia Perdrix fenite lies in the Central Metasedimentary Belt of the Grenville Province. This 30 m wide fenite, adjacent to a narrow calciocarbonatite sill, replaces diopside-oligoclase gneiss and is composed of magnesio-arfvedsonite, aegirine, microcline, albite, and fluorapatite. Near the contact with carbonatite, it contains appreciable monazite and barite whereas aegirine virtually disappears. Fenitization probably took place early in the igneous stage of carbonatite development. A Pb/U monazite age of 1026 {+-} 2 Ma is thought to date fenite formation. Together with published data, this age shows that carbonatite intruded metamorphic rocks near the close of the Grenville Orogeny. (author). 33 refs., 4 tabs., 5 figs.

  16. Evolution of depleted mantle: The lead perspective

    Science.gov (United States)

    Tilton, George R.

    1983-07-01

    Isotopic data have established that, compared to estimated bulk earth abundances, the sources of oceanic basaltic lavas have been depleted in large ion lithophile elements for at least several billions of years. Various data on the Tertiary-Mesozoic Gorgona komatiite and Cretaceous Oka carbonatite show that those rocks also sample depleted mantle sources. This information is used by analogy to compare Pb isotopic data from 2.6 billion year old komatiite and carbonatite from the Suomussalmi belt of eastern Finland and Munro Township, Ontario that are with associated granitic rocks and ores that should contain marked crustal components. Within experimental error no differences are detected in the isotopic composition of initial Pb in either of the rock suites. These observations agree closely with Sr and Nd data from other laboratories showing that depleted mantle could not have originated in those areas more than a few tenths of billions of years before the rocks were emplaced. On a world-wide basis the Pb isotope data are consistent with production of depleted mantle by continuous differentiation processes acting over approximately the past 3 billion years. The data show that Pb evolution is more complex than the simpler models derived from the Rb-Sr and Sm-Nd systems. The nature of the complexity is still poorly understood.

  17. Geochemistry and petrology of basaltic rocks from the Marshall Islands

    Science.gov (United States)

    Davis, Alice S.; Schwab, William C.; Haggerty, Janet A.

    1986-01-01

    A variety of volcanic rock was recovered from the flanks of seamounts, guyots, atolls, and islands in the Ratak chain of the Marshall Islands on the U.S. Geological Survey cruise L9-84-CP. The main objective of this cruise was to study the distribution and composition of ferromanganese oxide crusts. Preliminary results of managanese crust composition are reported by Schwab et al. (1985) and detailed studies are in preparation (Schwab et al., 1986). A total of seven seafloor edifices were studied using 12 khz, 3.5 khz and air gun seismic reflection, chain dredge and box corer. Bathymetry and ship track lines are presented by Schwab and Bailey (1985). Of the seven edifices surveyed two support atolls (Majuro and Taongi) and one is a tiny island (Jemo). Dredge locations and water depths are given in Table 1 and dredge locations are shown in Figure 1. Due to equipment failures depths of dredge hauls were limited to shallow depth for all except the first two sites occupied. Recovery consisted mostly of young, poorly-consolidated limestone of fore-reef slope deposit and minor volcanogenic breccia and loose talus. The breccia and pieces of talus are thickly encrusted with ferromanganese oxide, whereas the young limestone is only coated by a thin layer. Four of the seven sites surveyed yielded volcanic rock. The volcanic rock, volumetrically a minor part of each dredge haul, consists mostly of lapilli and cobble-size clasts in a calcareous matrix or as loose talus. Most clasts show evidence of reworking, being sub- to well rounded, sometimes with a thin ferromanganese crust of their own. This paper reports preliminary findings on the petrology and geochemistry of volcanic rock recovered.

  18. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory

  19. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory

  20. Mining, ore preparation and ferroniobium production at CBMM

    International Nuclear Information System (INIS)

    deSouza Paraiso, O.; deFuccio, R.

    1984-01-01

    The paper presents a chronology of the history and development of the Araxa carbonatite complex with respect to the production of niobium products. Mining and geology are described, including the background on methods used for defining reserves. The ore treatment technology and material flow patterns are described in detail, together with descriptions on impurity removal by calcination and leaching. Ferroniobium is produced aluminothermically in simple, yet massive, reactors and details of the process are given

  1. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China

    Science.gov (United States)

    Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.

    1990-11-01

    Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.

  2. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach

    Science.gov (United States)

    Palin, Richard M.; Reuber, Georg S.; White, Richard W.; Kaus, Boris J. P.; Weller, Owen M.

    2017-06-01

    The Tso Morari massif is one of only two regions where ultrahigh-pressure (UHP) metamorphism of subducted crust has been documented in the Himalayan Range. The tectonic evolution of the massif is enigmatic, as reported pressure estimates for peak metamorphism vary from ∼2.4 GPa to ∼4.8 GPa. This uncertainty is problematic for constructing large-scale numerical models of the early stages of India-Asia collision. To address this, we provide new constraints on the tectonothermal evolution of the massif via a combined geodynamic and petrological forward-modelling approach. A prograde-to-peak pressure-temperature-time (P-T-t) path has been derived from thermomechanical simulations tailored for Eocene subduction in the northwestern Himalaya. Phase equilibrium modelling performed along this P-T path has described the petrological evolution of felsic and mafic components of the massif crust, and shows that differences in their fluid contents would have controlled the degree of metamorphic phase transformation in each during subduction. Our model predicts that peak P-T conditions of ∼2.6-2.8 GPa and ∼600-620 ∘C, representative of 90-100 km depth (assuming lithostatic pressure), could have been reached just ∼3 Myr after the onset of subduction of continental crust. This P-T path and subduction duration correlate well with constraints reported for similar UHP eclogite in the Kaghan Valley, Pakistan Himalaya, suggesting that the northwest Himalaya contains dismembered remnants of what may have been a ∼400-km-long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. A maximum overpressure of ∼0.5 GPa was calculated in our simulations for a homogeneous crust, although small-scale mechanical heterogeneities may produce overpressures that are larger in magnitude. Nonetheless, the extremely high pressures for peak metamorphism reported by some workers (up to 4.8 GPa) are unreliable owing to conventional thermobarometry

  3. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    Science.gov (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  4. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    International Nuclear Information System (INIS)

    Belkin, Harvey E.; Tewalt, Susan J.; Hower, James C.; Stucker, J.D.; O'Keefe, J.M.K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  5. Petrology And Geochemistry Of Barite Mineralisation Around Azara North Central Nigeria

    Directory of Open Access Journals (Sweden)

    Tanko

    2015-05-01

    Full Text Available ABSTRACT The Azara barite deposits formed parts of Middle Benue Trough which is located in an elongated rift or faulted-bounded mega structural depression trending NE-SW to a length of over 1000 km and a width of 100 km.Petrological and geochemical investigations of Azrara barite deposits were carried out. Eight 8 selected samples of barites were collected from the veins four from known veins V1V3V17 and V 18 and four from new veins VAVBVCand VD werecarried out with the aim of determining their mineralisation potentials using petrographic studies and gravimetric method of analyses. The Petrographic studies of some of the thin section of the samples conducted using a polarizing microscope to determine the contents distributions and textures of the various veins Table 1. The weight percentage composition of barite in the samples are V1 86.39 VC82.61 V1881.48 V3 81.17 V17 79.82 VA78.94 VB76.82 and VD 70.55 respectively. It is deduced from this work that the chemical weathering of the carbonates resulted in two distinct types of barites Barite associated with mainly quartz SiO2 and limonite FeOOH.nH2O as major gangue and barite with siderite Ferrous Carbonate with high amount of Mg ankerite Ca Fe Mg CO3 and Calcite CaCO3. The outcomes were compared with the barite specification of Weigal1937 of 95.00 and were found to be good for making drilling mud for use in the oil industry paints and other chemicals

  6. Rare Mineralogy in Alkaline Ultramafic Rocks, Western Kentucky Fluorspar District

    Science.gov (United States)

    Anderson, W.

    2017-12-01

    The alkaline ultramafic intrusive dike complex in the Western Kentucky Fluorspar District contains unusual mineralogy that was derived from mantle magma sources. Lamprophyre and peridotite petrologic types occur in the district where altered fractionated peridotites are enriched in Rare Earth Elements (REE) and some lamprophyre facies are depleted in incompatible elements. Unusual minerals in dikes, determined by petrography and X-ray diffraction, include schorlomite and andradite titanium garnets, astrophyllite, spodumene, niobium rutile, wüstite, fluoro-tetraferriphlogopite, villiaumite, molybdenite, and fluocerite, a REE-bearing fluoride fluorescent mineral. Mixing of MVT sphalerite ore fluids accompanies a mid-stage igneous alteration and intrusion event consistent with paragenetic studies. The presence of lithium in the spodumene and fluoro-tetraferriphlogopite suggests a lithium phase in the mineral fluids, and the presence of enriched REE in dikes and fluorite mineralization suggest a metasomatic event. Several of these rare minerals have never been described in the fluorspar district, and their occurrence suggests deep mantle metasomatism. Several REE-bearing fluoride minerals occur in the dikes and in other worldwide occurrences, they are usually associated with nepheline syenite and carbonatite differentiates. There is an early and late stage fluoride mineralization, which accompanied dike intrusion and was also analyzed for REE content. One fluorite group is enriched in LREE and another in MREE, which suggests a bimodal or periodic fluorite emplacement. Whole-rock elemental analysis was chondrite normalized and indicates that some of the dikes are slightly enriched in light REE and show a classic fractionation enrichment. Variations in major-element content; high titanium, niobium, and zirconium values; and high La/Yb, Zr/Y, Zr/Hf, and Nb/Ta ratios suggest metasomatized lithospheric-asthenospheric mantle-sourced intrusions. The high La/Yb ratios in some

  7. Brine/Rock Interaction in Deep Oceanic Layered Gabbros: Petrological Evidence from Cl-Rich Amphibole, High-Temperature Hydrothermal Veins, and Experiments

    Science.gov (United States)

    Currin Sala, A. M.; Koepke, J.; Almeev, R. R.; Teagle, D. A. H.; Zihlmann, B.; Wolff, P. E.

    2017-12-01

    Evidence of high temperature brine/rock interaction is found in hydrothermal veins and dykelets that cross-cut layered olivine gabbros in the deep palaeocrust of the Sumail Ophiolite, Sultanate of Oman. Here we present petrological and geochemical data from these samples, and an experimental attempt to simulate brine/gabbro interaction using externally heated cold seal pressure vessels. The studied natural veins and dykelets contain pargasite, hornblende, actinolite, and Cl-rich pargasite with up to 5 wt% Cl, showing a range of formation conditions from magmatic to metamorphic (hydrothermal) and thus a complex history of brine/rock interaction. In addition, the isotopic study of the radiogenic 87/86Sr and stable 18O in different amphibole types provide an estimate for the extent of seawater influence as alteration agent in the veins of the studied samples. Experiments performed at 750 °C and 200 MPa with different starting materials (chlorine-free amphibole, olivine gabbro powder) and 20 wt% NaCl aqueous brine, illustrate the process by which gabbro-hosted amphibole-rich veins evolve at subsolidus temperatures in the presence of a seawater-derived fluid. Our results demonstrate a decrease in olivine, plagioclase and magnetite content in favour of hastingsite, pargasite and magnesiohornblende, a decrease of IVAl and Ti in the starting amphibole, and an increase in Cl in amphibole, up to 0.2 Cl wt%. Our experiments show the change of magmatic pargasite towards more magnesium and silica-rich end members with results comparable to mildly chlorine-rich pargasites and hornblendes found in the natural samples studied. However, the experimental setup also presents limitations in the attainment of very high-chlorine amphibole (up to 5 wt%). Our analytical and experimental results provide further evidence for the existence of a hydrothermal cooling system in the deep oceanic crust.

  8. Are Majhgawan–Hinota pipe rocks truly group-I kimberlite?

    Indian Academy of Sciences (India)

    and Paul 1989; Halder and Ghosh 1978, 1981) to designate the rocks as micaceous kimberlite/basaltic kimberlite and kimberlite breccia. Kent et al (1998) preferred to call the ... from Damodar Valley, eastern India (Kent et al 1998). The majority of the ..... 27: Average (6 analyses) Leucite Hill madupitic lamproite. 28: Olivine ...

  9. The role of amphibole in Merapi arc magma petrogenesis: insights from petrology and geochemistry of lava hosted xenoliths and xenocrysts

    Science.gov (United States)

    Chadwick, J. P.; Troll, V. R.; Schulz, B.; Dallai, L.; Freda, C.; Schwarzkopf, L. M.; Annersten, H.; Skogby, H.

    2010-05-01

    Recently, increasing attention has been paid to the role of amphibole in the differentiation of arc magmas. The geochemical composition of these magmas suggests that deep to mid crustal fractionation of amphibole has occurred. However, this phase is typically an infrequent modal phenocryst phase in subduction zone eruptive deposits(1). Nevertheless, erupted material only represents a portion of the magmatism produced in subduction zone settings, with many opportunities for melts to stall on route to the surface. This discrepancy between whole rock geochemistry and petrological interpretation of arc magmas has lead many scientists to postulate that, at mid to deep crustal levels, there may be significant volumes of amphibole bearing lithologies. Amphibole instability at shallow levels can also contribute to its scarcity in eruptive deposits. This argument is strengthened by field and petrological evidence, including the widespread occurrence of amphibole-rich intrusive rocks in exhumed orogenicbelts formed during subduction zone activity, e.g. the Adamello batholith (2),as well as the presence of amphibole-rich xenoliths and xenocrysts preserved in arc lavas worldwide, e.g. in Indonesia, Antilles, and Central America. Thus, amphibole appears to play an integral role in subduction zone magmatism and identifying and constraining this role is central to understanding arc magma petrogenisis. Amphibole-rich melts or bodies in the deep to mid crust could be a significant hydrous reservoir for intra-crustal melts and fluids (1). In this preliminary study, we have carried out petrological and geochemical analyses of recent basaltic andesite and amphibole bearing crystalline igneous inclusions and xenocrysts from Merapi volcano in Java, Indonesia. The basaltic andesite geochemistry is consistent with amphibole fractionation and the crystalline inclusions are cogenetic to the Merapi magmatic system. These inclusions are likely to represent fractionation residues reflecting

  10. Constraints on the depth of generation and emplacement of a magmatic epidote-bearing quartz diorite pluton in the Coast Plutonic Complex, British Columbia

    Science.gov (United States)

    Chang, J.M.; Andronicos, C.L.

    2009-01-01

    Petrology and P-T estimates indicate that a magmatic epidote-bearing quartz diorite pluton from Mt. Gamsby, Coast Plutonic Complex, British Columbia, was sourced at pressures below ???1.4 GPa and cooled nearly isobarically at ???0.9 GPa. The P-T path indicates that the magma was within the stability field of magmatic epidote early and remained there upon final crystallization. The pluton formed and crystallized at depths greater than ???30 km. REE data indicate that garnet was absent in the melting region and did not fractionate during crystallization. This suggests that the crust was less than or equal to ???55 km thick at 188 Ma during the early phases of magmatism in the Coast Plutonic Complex. Late Cretaceous contractional deformation and early Tertiary extension exhumed the rocks to upper crustal levels. Textures of magmatic epidote and other magmatic phases, combined with REE data, can be important for constraining the P-T path followed by magmas. ?? 2009 Blackwell Publishing Ltd.

  11. Rare earth minerals and resources in the world

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Yasuo [Human Resource Department, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)]. E-mail: y.kanazawa@aist.go.jp; Kamitani, Masaharu [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567 (Japan)

    2006-02-09

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO{sub 3})F, monazite (Ce,La)PO{sub 4}, xenotime YPO{sub 4}, and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite

  12. Rare earth minerals and resources in the world

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Kamitani, Masaharu

    2006-01-01

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO 3 )F, monazite (Ce,La)PO 4 , xenotime YPO 4 , and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite and

  13. Heterogenous Oxygen Isotopic Composition of a Complex Wark-Lovering Rim and the Margin of a Refractory Inclusion from Leoville

    Science.gov (United States)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2014-01-01

    Wark-Lovering (WL) rims [1] surrounding many refractory inclusions represent marker events in the early evolution of the Solar System in which many inclusions were exposed to changes in pressure [2], temperature [3], and isotopic reservoirs [4-7]. The effects of these events can be complex, not only producing mineralogical variability of WL rims [2], but also leading to mineralogical [8-10] and isotopic [7, 11, 12] changes within inclusion interiors. Extreme oxygen isotopic heterogeneity measured in CAIs has been explained by mixing between distinct oxygen gas reservoirs in the nebula [13]. Some WL rims contain relatively simple mineral layering and/or are isotopically homogeneous [14, 15]. As part of a larger effort to document and understand the modifications observed in some CAIs, an inclusion (L6) with a complex WL rim from Leoville, a member of the reduced CV3 subgroup was studied. Initial study of the textures and mineral chemistry was presented by [16]. Here we present NanoSIMS oxygen isotopic measurements to complement these petrologic observations.

  14. A petrological view of early Earth geodynamics

    Science.gov (United States)

    Herzberg, C.

    2003-04-01

    Xenoliths of low T Archean cratonic mantle consist mostly of harzburgite and lherzolite with geochemical depletions that are characterisitc of igneous residues. Many authors have identified the complementary magmas as komatiites. This model is re-examined in light of work presented in Herzberg & O'Hara (2002) and found to be problematic. Munro-type alumina-undepleted komatiites from Alexo, Pyke Hill, and other locations often contain olivine phenocrysts with maximum Mg# \\cong 94. Residues of fractional melting would consist of pure dunite having Mg# = 97-98, but these are not observed. Residues of equilibrium melting would also be pure dunite with Mg# = 94, but these are also not observed. Olivines with Mg# = 94 are found in rare harzburgites, indicating that residues of alumina-undepleted komatiite have either been overprinted by subsequent magmatism or they have been geodynamically eroded. Alumina-undepleted komatiites can be successfully modeled with a primary magma containing 30% MgO produced by 0.5 mass fractions of equilibrium melting of depleted peridotite. A hot plume interpretation is consistent with both the petrology and helium isotopic compositions of alumina-undepleted komatiites. But what about cratonic mantle? The FeO and MgO contents of residues of fertile mantle peridotite formed by both equilibrium and fractional melting can be predicted and applied to xenoliths of cratonic mantle in most cases. Application to xenoliths from the Kaapvaal and Slave cratons is not possible owing to a second stage of Opx enrichment, but results can be applied to most xenoliths from Siberia, Tanzania, Somerset Island, and east Greenland as they contain less than 45% SiO_2. These xenoliths are very similar to residues produced by fractional melting. Pressures of initial melting were mostly 3 to 5 GPa, but can be as high 7 GPa. Pressures of final melting were highly variable and can be as low as 1 GPa. Potential temperatures (T_P) were typically 1450 to 1600oC and

  15. Acaiaca Granulite Complex, MG: age, petrogenesis and tectonics implications

    International Nuclear Information System (INIS)

    Teixeira, W.; Kawashita, K.; Evangelista, H.J.; Taylor, P.N.

    1987-01-01

    Rb-SR and Pb-Pb geochronological work has been carried out on rocks from the Acaiaca granulite complex (mainly pyribolites, piriclasites and plagiogranulites) in Minas Gerais state. The results are interpreted together with petrographical and geochemical data, in order to delineate the evolution of those rocks. The Rb-Pb whole rock isochrons are concordant in age (around 2.0 b.y.) and they define the Transamazonian orogeny as the main event in the investigated area. In addition, the Sr and Pb evidences suggest a strong reworking of prior continental crust at that time. In turn, the estimation of P-T conditions of regional metamorphism based on geo thermo barometric calculations and on petrology resulted in T ≅ 700-900 O C and P tot =5,6-8 and 8-10 Kbar. The whole group of data is coherent with the development of is Transamazonian mobile zone of ensialic character, along the eastern border of an Archaean fragment. Within an area considered cratonic during the Upper Proterozoic. A model of evolution of the Sao Francisco Craton as well the differences between the Archaean and early Proterozoic domains are discussed. (M.V.M.)

  16. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States)]|[University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, J.M.K. [Morehead State University, Department of Physical Science, Morehead, KY 40351 (United States)

    2009-01-31

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  17. Formation of cratonic lithosphere: An integrated thermal and petrological model

    Science.gov (United States)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  18. On the Grand Challenges in Physical Petrology: the Multiphase Crossroads

    Science.gov (United States)

    Bergantz, G. W.

    2014-12-01

    Rapid progress in experimental, micro-analytical and textural analysis at the crystal scale has produced an unprecedented record of magmatic processes. However an obstacle to further progress is the lack of understanding of how mass, energy and momentum flux associated with crystal-rich, open-system events produces identifiable outcomes. Hence developing a physically-based understanding of magmatic systems linking micro-scale petrological observations with a physical template operating at the macro-scale presents a so-called "Grand Challenge." The essence of this challenge is that magmatic systems have characteristic length and feedback scales between those accessible by classical continuum and discrete methods. It has become increasingly obvious that the old-school continuum methods have limited resolution and power of explanation for multiphase (real) magma dynamics. This is, in part, because in crystal-rich systems the deformation is non-affine, and so the concept of constitutive behavior is less applicable and likely not even relevant, especially if one is interested in the emergent character of micro-scale processes. One expression of this is the cottage industry of proposing viscosity laws for magmas, which serves as "blunt force" de facto corrections for what is intrinsically multiphase behavior. Even in more fluid-rich systems many of these laws are not suitable for use in the very transport theories they aim to support. The alternative approach is the discrete method, where multiphase interactions are explicitly resolved. This is a daunting prospect given the numbers of crystals in magmas. But perhaps all crystals don't need to be modeled. I will demonstrate how discrete methods can recover critical state behavior, resolve crystal migration, the onset of visco-elastic behavior such as melt-present shear bands which sets the large-scale mixing volumes, some of the general morpho-dynamics that underlies purported rheological models, and transient controls on

  19. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  20. [Proceedings of the VII international symposium 'Cultural heritage in geosciences, mining and metallurgy : libraries, archives, museums' : "Museums and their collections" held at the Nationaal Natuurhistorisch Museum Leiden (The Netherlands), 19-23 May, 2003 / Cor F. Winkler Prins and Stephen K. Donovan (editors)]: Towards modern petrological collections

    NARCIS (Netherlands)

    Kriegsman, L.M.

    2004-01-01

    Petrological collections result from sampling for academic research, for aesthetic or commercial reasons, and to document natural diversity. Selection criteria for reducing and enhancing collections include adequate documentation, potential for future use, information density, time and money

  1. Tectonic Mechanism for the Mid-Cretaceous - Early Paleogene Intraplate Magmatism from the Gulf of Mexico to Northwestern Canada

    Science.gov (United States)

    Liu, Y.; Murphy, M. A.; Snow, J. E.; van Wijk, J.; Cannon, J. M.; Parsons, C.

    2017-12-01

    Tectonic mechanisms have remained controversial for a number of intraplate igneous suites of mid-Cretaceous - early Paleogene age across North America. They span the northern Gulf of Mexico (GoM), through Arkansas and Kansas in the US, to Saskatchewan and Northwestern Territories in Canada, resembling a belt that is located 1000+ km inboard from, and aligned sub-parallel to, the western margin of North America. The northern GoM magmatism is characterized by lamproites, carbonatites, nephelinites, with other alkaline rocks, whereas the rest igneous provinces are dominated by kimberlites. Their geochemical signatures, in general, point to a sub-lithospheric mantle origin. Hypotheses that explain the tectonic origin of these magmatic rocks include: (1) hotspots and mantle plumes, (2) edge-driven convection, (3) lithospheric reactivation, and (4) low-angle subduction. Evaluation based on our integration of published geological and geophysical data shows that contradictions exist in each model between observations and predictions. To explain this plate-scale phenomenon, we propose that the Farallon slab may have stagnated within or around the mantle transition zone during the Early Cretaceous, with its leading edge reaching ca. 1600 km inland beneath the North American plate. Dehydration and decarbonation of the slab produces sporadic, dense, low-degree partial melts at the mantle transition zone depths. As the slab descends into the lower mantle, Rayleigh-Taylor instabilities are induced at slab edges, causing passive upwelling that brings alkali-rich carbonate silicate melts to the base of the overriding plate. Subsequently, the North American lithosphere with varying thicknesses, discontinuities, and compositions interacts with the rising partial melts, generating a spectrum of igneous rocks. Fragments of the once-stagnated slab may still be detectable in the lower mantle beneath eastern US in seismic tomography models. This study highlights a profound plate

  2. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    Science.gov (United States)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly

  3. Contribution to the geochronology of the Lages alkaline complex, state of Santa Catarina, Brazil

    International Nuclear Information System (INIS)

    Scheibe, L.F.; Kawashita, K.; Barros Gomes, C. de

    1985-01-01

    Field evidences and petrogentic inferences at the Lages alkaline complex are indicative of a lithological sequence, considering a single petrogenetic linneage: ultrabasic alkaline rocks, porphyritic phonolites, agpaitic phonolites, analcite trachytes, carbonatites and pipe breccias. Eleven new K/Ar determinations, as well as six already available, show a major concentration in the 65 to 75 m.y. range, with a mode of Ca. 70 m.y. in place of the previously preferred K/Ar age of 65 m.y. for the complex. A Rb/Sr whole rock reference isochron diagram of analytical results for phonolites from the Serra da Chapada gives an age of 82 +- m.y. and an initial Sr 87 /Sr 86 ratio of 0.7060 +- 0.0015 which is in good agreement, considering the analytical error with the 0.7052 and 0.7056 +- 0.0014 ratios determined for the Sr-rich porphiritic nepheline syenites from the Cerro Alto de Cima. A hystogram of K/Ar ages shows a preference for older ages in the porphyritic nepheline syenites, while the phonolites prefer the 65-70 m.y. range. Most of the pipe breccias plot between 70 and 75 m.y. The two younger ages are for the olivine melilitite and the Janjao Kimberlite. Disregarding possible analitical imprecisions, these tendencies ractify the younger age for the agpaitic phonolites when compared to the porphyritic nepheline syenites, but do not fit with the petrogenetic scheme indicated above. This overall picture may suggest a revision of the proposed sequence or, alternatively, be interpreted as an indirect evidence that the determined K/Ar ages do not represent the crystallization age of these rocks, but later thermal events, as suggested by Kawashita et al. (1984) for the Pocos de Caldas massif. (D.J.M.) [pt

  4. Investigation of environmental conditions at Sarfartoq 1987-88. Collection of samples for testing, measurement of radon and analyses for polonium-210 and lead-210. [Greenland]. Miljoeundersoegelser ved Sarfartoq 1987-88. Proeveindsamling, radonmaaling og analyser for polonium-210 og bly-210

    Energy Technology Data Exchange (ETDEWEB)

    Aastrup, P; Munk Hansen, M

    1989-01-01

    The sampling of plants and animals is part of environmental base line studies initiated by the Mineral Resources Administration for Greenland in relation to plans for exploration and exploitation of a niobium occurence. Samples have been collected in areas expected to be influenced by mining activities and in reference areas. The collected species of plants include northern willow, Bellard's kobresia, lichen (Cetraria nivalis), and others. Samples of animals include musk oxen, reindeer, alpine hare, ptarmigan, fox, and arctic char. However, 60 samples have been analyzed for polonium-210 and lead-210. The highest concentrations were found in lichen and the lowest in muscle tissue. In many samples systematic differences between the concentrations of the two isotopes were observed indicating that polonium-210 should continue to be part of the base line study program and the monitoring program if mining is started. The observed concentrations pose no health problem. 30 kg bulk samples of the best pyrochlore ore and the rock c. 10 m on both sides of the mineralization (the side rock) were analyzed for niobium, tantalum, some trace elements, and natural radioactive isotopes. The ore sample has concentrations of 33.17% niobium, 0.4% tantalum, 0.77% uranium, and more than 0.37% rare earth elements. The concentrations of all other analyzed elements are low. The ore has very well defined boundaries and there is a very low concentration of radioactive elements in the side rock. The naturally occurring concentrations of radon have been measured at stations on top of the mineralization, within the carbonatite complex and outside the complex. The concentrations generally are very low. However, the concentrations in the complex are significantly higher than outside the complex. This reflects an elevated uranium concentration of the carbonatite complex rocks. (AB).

  5. Geochemical characteristics of Mesoproterozoic metabasite dykes ...

    Indian Academy of Sciences (India)

    High Mg# observed in a number of samples indicates their derivation from .... show characteristic of orangeites, lamproites or ail- ... ite, and iron oxides. .... while preparing powder for the chemical analy- ses. ..... Cai K, Sun M, Yuan C, Zhao G, Xiao W, Long X and Wu .... Mallik A K, Gupta S N and Ray Barman T 1991 Dating.

  6. New Petrology, Mineral Chemistry and Stable MG Isotope Compositions of an Allende CAI: EK-459-7-2

    Science.gov (United States)

    Jeffcoat, C. R.; Kerekgyarto, A. G.; Lapen, T. J.; Righter, M.; Simon, J. I.; Ross, D. K.

    2016-01-01

    Calcium-aluminum-rich inclusions (CAIs) are the key to understanding physical and chemical conditions in the nascent solar nebula. These inclusions have the oldest radiometric ages of solar system materials and are composed of phases that are predicted to condense early from a gas of solar composition. Thus, their chemistry and textures record conditions and processes in the earliest stages of development of the solar nebula. Type B inclusions are typically larger and more coarse grained than other types with substantial evidence that many of them were at least partially molten. Type B inclusions are further subdivided into Type B1 (possess thick melilite mantle) and Type B2 (lack melilite mantle). Despite being extensively studied, the origin of the melilite mantles of Type B1 inclusions remains uncertain. We present petrologic and chemical data for a Type B inclusion, EK-459-7-2, that bears features found in both Type B1 and B2 inclusions and likely represents an intermediate between the two types. Detailed studies of more of these intermediate objects may help to constrain models for Type B1 rim formation.

  7. Petrological-geochemical characteristics of coarse-grained clastic sedimentary rocks of Quantou Formation, Cretaceous in Songliao basin and their geological significance

    International Nuclear Information System (INIS)

    Wang Gan; Zhang Bangtong

    2005-01-01

    Clastic sedimentary rocks of Quantou Formation, Cretaceous in Qing-an area, Songliao basin are mainly composed of sandstone, mudstone and siltstone. The petrological-chemical analysis of clastic sedimentary rocks from Quantou Formation, Cretaceous indicates that their lithology mainly consists of arkose, shale and minor rock debris sandstone and greywacke by chemical classification of bulk elements. REE distribution pattern displays the apparent enrichment of LREE and negative anomaly of Eu and is similar to that of NASC and PAAS. The ratio of trace-element in sedimentary rocks to that of upper crust shows gentle character. All the above features indicate that these sedimentary rocks were slowly deposited under weakly active tectonic setting. They are sediments typical for passive continental margin and active continental margin. It is suggested that material source of clastic sediments of Quantou Formation, Cretaceous in Qing-an area, Songliao basin was originated from Hercynian granite of Zhangguangchai Mountain, and the granite was originated from upper crust. (authors)

  8. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark A

    2013-03-01

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  9. A conceptual model for the asthenosphere: redox melting in the C-O-H-bearing mantle vs. geophysical observations

    Science.gov (United States)

    Gaillard, Fabrice; Tarits, Pascal; Massuyeau, Malcolm; David, Sifre; Leila, Hashim; Emmanuel, Gardes

    2013-04-01

    The asthenosphere has classically been considered as a convective layer, with its viscosity decreased by the presence of 100's ppm water in olivine, and being overtopped by a rigid and dry lithosphere. It, however, needs a new conceptual definition as the presence of water seems not able to affect the rheology of olivine; furthermore, properties such as electrical conductivity and seismic wave's velocity are not sensibly affected by water content in olivine, leaving the geophysical features of the asthenosphere unexplained. An asthenosphere impregnated by low melt fractions is consistent with constraints on melting behavior of C-O-H-bearing peridotites and may also better explain electrical conductivity and seismic features. The challenge is therefore to confront and reconcile the complexity of mantle melting in the C-O-H system with geophysical observations. This work reviews and discusses several key properties of the asthenosphere and relates their vertical and lateral heterogeneities to geodynamic processes. The first discussion is about the top of the Lithosphere-Asthenosphere boundary in the oceanic mantle. The discontinuity identified by seismic and electrical surveys is located at an average depth of 65km and is weakly influenced by the age, and therefore, the temperature of the lithosphere. This puzzling observation is shown here to be in perfect line the onset of peridotite melting in presence of both H2O and CO2. Mantle melting is therefore expected at 65 km depth, where the melt is essentially carbonatitic, inducing weakening and imposing transition in the regime of thermal transfer. Deeper, the melt evolve to silica-richer compositions. Twenty years of petrological investigations on processes that control mantle redox state unanimously concur on an increasingly reduced mantle with increasing depth. The conventional wisdom defines garnet as being increasingly abundant and increasingly able to concentrate ferric iron with increasing depth. Such oxygen

  10. High-grade metamorphic rocks of the Mellid area, Galicia, NW Spain

    NARCIS (Netherlands)

    Hubregtse, J.J.M.W.

    1973-01-01

    This study concerns the petrology of the Mellid area, the SE portion of the outer zone of the Ordenes Complex which is one of the upthrusted Precambrian complexes in the axial zone of the Hercynian orogen in Galicia, NW Spain. An eugeosynclinal rock sequence is found containing units with different

  11. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2015-10-01

    FeO content and temperature of crystallization of clinopyroxene-rich rocks (Talkington et al., 1984; Von Gruenewaldt et al., 1990. Nickel-rich pentlandite is the main sulfide in the Faryab complex. The composition of this is mineral is consistent with the crystallization in an equilibrium condition (Song et al., 2008. The sulfide may have been introduced from external sources during upward movement and emplacement of parent magma. Acknowledgments The authors are grateful to the Research Council of Shiraz University for financially supporting this study. References Edwards, S.J., Pearce, J.A. and Freeman, J., 2002. New insights concerning the influence of water during the formation of podiform chromitite. Geological Society of America, Special Paper, 349 (3 139-147. Evans, A.M., 2000. Ore geology and industrial minerals. An Introduction. Black well Pub, Oxford, London, 389 pp. Naldrett, A.J., 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Springer, New York, 727 pp. Rajabzadeh, M.A., Moosavinasab, Z., 2013. Mineralogy and distribution of Platinum-Group-Minerals (PGM and other solid inclusions in the Faryab ophiolitic chromitites, Southern Iran. Mineralogy and Petrology, 107 (6: 943-962. Song, X., Zhou M., Tao Y., and Xia, J., 2008. Controls on the metal compositions of magmatic sulfide deposits in the Emeishan large igneous province, SW China. Chemical Geology, 253 (1-2: 38-49. Talkington, R.W., Watkinson, D.H, Whittaker P.J., Jones P.C., 1984. Platinum group minerals and other solide inclusions in chromite of ophiolitic complexes: occurrences and petrological significance. Tschermakes Mineralogische und Petrographische Mitteilungen, 32 (4: 285-301. Von Gruenewaldt, G., Dicks, D., Wet J. and Horsch, H., 1990. PGE mineralization in the western sector of the Eastern Bushveld complex. Mineralogy and Petrology, 42 (1: 71-95.

  12. Apatite ore mine tailings as an amendment for remediation of a lead-contaminated shooting range soil.

    Science.gov (United States)

    Venäläinen, Salla H

    2011-10-01

    This study investigated the use of tailings from apatite ore beneficiation in the remediation of a heavily contaminated shooting range soil. The tailings originating in Siilinjärvi carbonatite complex, Finland, consist of apatite residues accompanied by phlogopite and calcite. In a pot experiment, organic top layer of a boreal forest soil predisposed to pellet-derived lead (Pb) was amended with tailings of various particle-sizes (Ø>0.2mm, Øremediation technique at polluted sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. The formation of FeO-rich pyroxene and enstatite in unequilibrated enstatite chondrites: A petrologic-trace element (SIMS) study

    Science.gov (United States)

    Weisberg, M. K.; Prinz, M.; Fogel, R. A.; Shimizu, N.

    1993-01-01

    Enstatite (En) chondrites record the most reducing conditions known in the early solar system. Their oxidation state may be the result of condensation in a nebular region having an enhanced C/O ratio, reduction of more oxidized materials in a reducing nebula, reduction during metamorphic reheating in a parent body, or a combination of these events. The presence of more oxidized Fe-rich silicates, two types of En (distinguished by red and blue CL), and the juxtaposition of FeO-rich pyroxenes (Fe-pyx) surrounded by blue En (enstatite) in the UEC's (unequilibrated enstatite chondrites) is intriguing and led to the examination of the question of enstatite chondrite formation. Previously, data was presented on the petrologic-geochemical characteristics of the Fe-pyx and coexisting red and blue En. Here minor and trace element abundances (determined by ion probe-SIMS) on these three types of pyroxenes are reported on in the following meteorites: Kota Kota and LEW87223 (EH3), MAC88136 (EL3), St. Marks (EH4), and Hvittis (EL6). More data are currently being collected.

  14. Excursions in the catazonal rock complexes of the polyorogenic terrain of Cabo Ortegal (NW Spain)

    NARCIS (Netherlands)

    Vogel, D.E.

    1967-01-01

    This excursion program anticipates the publication of a PhD. thesis (Vogel, in preparation) in this periodical and is intended as a guide to those points at Cabo Ortegal, that are readily accessible, well exposed and of general petrological interest. The described localities are indicated on a small

  15. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis

    Directory of Open Access Journals (Sweden)

    Hong-Rui Fan

    2016-05-01

    Full Text Available Bayan Obo ore deposit is the largest rare-earth element (REE resource, and the second largest niobium (Nb resource in the world. Due to the complicated element/mineral compositions and involving several geological events, the REE enrichment mechanism and genesis of this giant deposit still remains intense debated. The deposit is hosted in the massive dolomite, and nearly one hundred carbonatite dykes occur in the vicinity of the deposit. The carbonatite dykes can be divided into three types from early to late: dolomite, co-existing dolomite-calcite and calcite type, corresponding to different evolutionary stages of carbonatite magmatism based on the REE and trace element data. The latter always has higher REE content. The origin of the ore-hosting dolomite at Bayan Obo has been addressed in various models, ranging from a normal sedimentary carbonate rocks to volcano-sedimentary sequence, and a large carbonatitic intrusion. More geochemical evidences show that the coarse-grained dolomite represents a Mesoproterozoic carbonatite pluton and the fine-grained dolomite resulted from the extensive REE mineralization and modification of the coarse-grained variety. The ore bodies, distributed along an E–W striking belt, occur as large lenses and underwent more intense fluoritization and fenitization. The first episode mineralization is characterized by disseminated mineralization in the dolomite. The second or main-episode is banded and/or massive mineralization, cut by the third episode consisting of aegirine-rich veins. Various dating methods gave different mineralization ages at Bayan Obo, resulting in long and hot debates. Compilation of available data suggests that the mineralization is rather variable with two peaks at ∼1400 and 440 Ma. The early mineralization peak closes in time to the intrusion of the carbonatite dykes. A significant thermal event at ca. 440 Ma resulted in the formation of late-stage veins with coarse crystals of REE

  16. Petrological features of selected components of the Cergowa sandstones (Outer Carpathians) recorded by scanning electron microscopy - preliminary study

    Science.gov (United States)

    Pszonka, Joanna

    2017-11-01

    The scanning electron microscope analysis of the Cergowa sandstones brings new data on their petrological features and chemical composition. Previous work in standard petrographic examination, e.g. polarising (PL) or cathodoluminescence (CL) microscopy, displayed limited information on grain surface topography and only assumptions to their geochemistry. Both identification and characterisation of minerals are fundamental in the progress of mining and minerals processing systems. Detrital grains of the Cergowa sandstones are bound by calcite and dolomitic cement and commonly corroded by diagenetic fluids, however, in varying degrees, which is illustrated here by feldspar, quartz and dolomite minerals. Dissolution processes of marginal parts of these mineral grains resulted in corrosion, which increased the contact surface between the grains and the cement. The difference in resistance to these processes was observed not only among distinct groups of minerals, but also within the group of feldspars: between K-feldspars and minerals of plagioclase. That combination resulted in exceptionally strong cementation of the Cergowa sandstones, which is expressed by their high hardness and resistance to abrasion, freezing, and thawing. Inherent parameters of sandstones are characterised by their petrographical properties.

  17. Geology and petrology of the Woods Mountains Volcanic Center, southeastern California: Implications for the genesis of peralkaline rhyolite ash flow tuffs

    Science.gov (United States)

    McCurry, Michael

    1988-12-01

    The Woods Mountains Volcanic Center is a middle Miocene silicic caldera complex located at the transition from the northern to the southern Basin and Range provinces of the western United States. It consists of a trachyte-trachydacite-rhyolite-peralkaline rhyolite association of lava flows, domes, plugs, pyroclastic rocks, and epiclastic breccia. Volcanism began at about 16.4 Ma, near the end of a local resurgence of felsic to intermediate magmatism and associated crustal extension. Numerous metaluminous high-K trachyte, trachydacite, and rhyolite lava flows, domes, and pyroclastic deposits accumulated from vents scattered over an area of 200 km2 forming a broad volcanic field with an initial volume of about 10 km3. At 15.8 Ma, about 80 km3 of metaluminous to mildly peralkaline high-K rhyolite ash flows were erupted from vents in the western part of fhe field in three closely spaced pulses, resulting in the formation of a trap door caldera 10 km in diameter. The ash flows formed the Wild Horse Mesa Tuff, a compositionally zoned ash flow sheet that originally covered an area of about 600 km2 to a maximum thickness of at least 320 m. High-K trachyte pumice lapilli, some of which are intimately banded with rhyolite, were produced late in the two later eruptions, Intracaldera volcanism from widely distributed vents rapidly filled the caldera with about 10 km3 of high-K, mildly peralkaline, high-silica rhyolite lava flows and pyroclastic deposits. These are interlayered with breccia derived from the caldera scarp. They are intruded by numerous compositionally similar plugs, some of which structurally uplifted and fractured the center of the caldera. The center evolved above a high-K trachyte magma chamber about 10 km in diameter that had developed and differentiated within the upper crust at about 15.8 Ma. Petrological, geochemical, and geophysical data are consistent with the idea that a cap of peralkaline rhyolite magma formed within the trachyte chamber as a result

  18. Seismic anisotropy and compositionally induced velocity anomalies in the lithosphere above mantle plumes: a petrological and microstructural study of mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, Andréa; Godard, Marguerite; Coromina, Guilhem; Dautria, Jean-Marie; Barsczus, Hans

    2004-11-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we investigated the relationship between petrological processes and microstructure in mantle xenoliths from different hotspots tracks in South Pacific Superswell region: the Austral-Cook, Society, and Marquesas islands in French Polynesia. Olivine forsterite contents in the studied spinel peridotites vary continuously from Fo91 to Fo83. Dunites and wehrlites display the lowest forsterite contents. Their microstructure and high Ni contents preclude a cumulate origin, suggesting that these rocks result from melt/rock reactions involving olivine precipitation and pyroxene dissolution. In addition, lherzolites and wehrlites display evidence of late crystallization of clinopyroxene, which may result from a near-solidus melt-freezing reaction. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. These compositional changes, particularly iron enrichment in olivine, result in lower P- and S-waves velocities. Relative to normal lithospheric mantle, compositionally induced seismic anomalies may attain -2.2% for S-waves and -1% for P-waves. Smaller negative anomalies for P-waves are due to a higher sensitivity to modal composition. Conversely, crystal-preferred orientations (CPO) and seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO. Very weak, almost random olivine CPO is nevertheless rare, suggesting that CPO destruction is restricted to domains of

  19. Widespread melt/rock interaction and seismic properties of the lithosphere above mantle plumes: A petrological and microstructural study of mantle xenoliths from French Polynesia

    Science.gov (United States)

    Tommasi, A.; Godard, M.

    2002-12-01

    In addition to thermal erosion, plume/lithosphere interaction may induce significant changes in the lithosphere chemical composition. To constrain the extent of this process in an oceanic environment and its consequences on the lithosphere seismic properties, we studied the relationship between petrological processes and microstructure in mantle xenoliths from the Austral-Cook, Society and Marquesas islands. Olivine forsterite contents in our sp-peridotites vary continuously from Fo91 to Fo83, the lowest Fo being observed in dunites and wehrlites. Yet, their high Ni content (up to 2500 ppm) precludes a cumulate origin. These rocks are rather interpreted as resulting from melt/rock reactions involving olivine precipitation and pyroxene dissolution, the dunites indicating high melt-rock ratios. Moreover, wehrlites display poikiloblastic diopside enclosing corroded olivines. Late crystallization of clinopyroxene, also observed in lherzolites, may result from a near-solidus melt-freezing reaction occurring at the boundary of a partial melting domain developed at the expenses of lithospheric mantle. These data suggest that the lithosphere above a mantle plume undergoes a complex sequence of magmatic processes that significantly change its composition. Yet, crystal preferred orientations and thus seismic anisotropy are little affected by these processes. Lherzolites and harzburgites, independent from composition, show high-temperature porphyroclastic microstructures and strong olivine CPO. Although dunites and wehrlites display annealing microstructures to which is associated a progressive dispersion of the olivine CPO, very weak CPO are limited to a few dunites and wehrlites, suggesting that CPO destruction is restricted to domains of intense magma-rock interaction due to localized flow or accumulation of magmas. Conversely, the compositional changes result in lower seismic velocities for P- and S-waves. Relative to normal mantle, seismic anomalies may attain -2

  20. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Science.gov (United States)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  1. Petrological constraints on melt generation beneath the Asal Rift (Djibouti) using quaternary basalts

    Science.gov (United States)

    Pinzuti, Paul; Humler, Eric; Manighetti, Isabelle; Gaudemer, Yves

    2013-08-01

    The temporal evolution of the mantle melting processes in the Asal Rift is evaluated from the chemical composition of 56 new lava flows sampled along 10 km of the rift axis and 9 km off-axis (i.e., erupted within the last 620 kyr). Petrological and primary geochemical results show that most of the samples of the inner floor of the Asal Rift are affected by plagioclase accumulation. Trace element ratios and major element compositions corrected for mineral accumulation and crystallization show a symmetric pattern relative to the rift axis and preserved a clear signal of mantle melting depth variations. While FeO, Fe8.0, Zr/Y, and (Dy/Yb)N decrease from the rift shoulders to the rift axis, SiO2, Na/Ti, Lu/Hf increase and Na2O and Na8.0 are constant across the rift. These variations are qualitatively consistent with shallow melting beneath the rift axis and deeper melting for off-axis lava flows. Na8.0 and Fe8.0 contents show that beneath the rift axis, melting paths are shallow, from 81 ± 4 to 43 ± 5 km. These melting paths are consistent with adiabatic melting in normal-temperature fertile asthenosphere, beneath an extensively thinned mantle lithosphere. On the contrary, melting on the rift shoulders (from 107 ± 7 to 67 ± 8 km) occurred beneath thicker lithosphere, requiring a mantle solidus temperature 100 ± 40°C hotter. In this geodynamic environment, the calculated rate of lithospheric thinning appears to be 4.0 ± 2.0 cm yr-1, a value close to the mean spreading rate (2.9 ± 0.2 cm yr-1) over the last 620 kyr.

  2. Petrology, Geochemistry and Tectonomagmatic Setting of Farmahin Volcanic Rocks (North of Arak

    Directory of Open Access Journals (Sweden)

    Reza Zarei Sahamieh

    2018-04-01

    fractional crystallization (AFC were the dominant processes in the genesis of the studied volcanic rocks. As a conclusion and according to field evidence and geochemical characteristics presented in this article, the studied area is composed of lava flows and pyroclastic rocks such as andesite, dacite, rhyodacite, ignimbrite, tuff and tuffits that cross cut by younger dykes and belong to the middle to late Eocene age (middle to upper Lutetien. According to Sm/Yb vs. Sm diagram (Aldanmaz et al., 2000, all the studied samples in terms of composition are similar to enriched mantle-derived melts that are generated by varying degrees of partial melting (10% - 20% from a spinel lherzolite to spinel-garnet lherzolite source. Considering the evidences, all rocks in the studied area belong to the subduction zone and the parent magma originated from mantle and was contaminated with continental crust during eruption and rising. Acknowledgments The authors wish to thank the Journal Manager and reviewers who critically reviewed the manuscript and made valuable suggestions for its improvement. References Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1–2: 67–95. Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj-Sirjan zone (Iran. Journal of Asian Earth Sciences, 26 (6: 683–693. Hajian, J., 1970. Geological map of Farmahin, scale1:100000. Geological Survey of Iran. Irvine, T.N. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5: 523–548. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology, 27 (3:745–750. Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I.V., Ross, M., Seifert, F

  3. Petrological features of selected components of the Cergowa sandstones (Outer Carpathians recorded by scanning electron microscopy – preliminary study

    Directory of Open Access Journals (Sweden)

    Pszonka Joanna

    2017-01-01

    Full Text Available The scanning electron microscope analysis of the Cergowa sandstones brings new data on their petrological features and chemical composition. Previous work in standard petrographic examination, e.g. polarising (PL or cathodoluminescence (CL microscopy, displayed limited information on grain surface topography and only assumptions to their geochemistry. Both identification and characterisation of minerals are fundamental in the progress of mining and minerals processing systems. Detrital grains of the Cergowa sandstones are bound by calcite and dolomitic cement and commonly corroded by diagenetic fluids, however, in varying degrees, which is illustrated here by feldspar, quartz and dolomite minerals. Dissolution processes of marginal parts of these mineral grains resulted in corrosion, which increased the contact surface between the grains and the cement. The difference in resistance to these processes was observed not only among distinct groups of minerals, but also within the group of feldspars: between K–feldspars and minerals of plagioclase. That combination resulted in exceptionally strong cementation of the Cergowa sandstones, which is expressed by their high hardness and resistance to abrasion, freezing, and thawing. Inherent parameters of sandstones are characterised by their petrographical properties.

  4. Petrology of the axial ridge of the Mariana Trough backarc spreading center

    International Nuclear Information System (INIS)

    Hawkins, J.W.; Lonsdale, P.F.; Macdougall, J.D.; Volpe, A.M.

    1990-01-01

    The axial ridge of the Mariana Trough backarc basin, between 17deg40'N and 18deg30'N rises as much as 1 km above the floor of a 10-15 km wide rift valley. Physiographic segmentation, with minor ridge offsets and overlaps, coincides with a petrologic segmentation seen in trace element and isotope chemistry. Analyses of 239 glass and 40 aphyric basalt samples, collected with ALVIN and by dredging, show that the axial ridge is formed largely of (olivine) hypersthene-normative tholeiitic basalt. About half of these are enriched in both LIL elements and volatiles, but are depleted in HFS elements like other rocks found throughout much of the Mariana Trough. The LIL enrichments distinguish these rocks from N-MORB even though Nd and Sr isotope ratios indicate that much of the crust formed from a source similar to that for N-MORB. In addition to LIL-enriched basalt there is LIL depleted basalts even more closely resembling N-MORB in major and trace elements as well as Sr, Nd and Pb isotopes. Both basalt varieties have higher Al and lower total Fe than MORB at equivalent Mg level. Mg ranges from relatively ''primitive'' (e.g. Mg 65-70) to more highly fractionated (e.g. Mg 45-50). Highest parts of the axial ridge are capped by pinnacles with elongated pillows of basaltic andesite (e.g. 52-56%) SiO 2 . These are due to extreme fractional crystallization of basalts forming the axial ridge. Active hydrothermal vents with chimneys and mats of opaline silica, barite, sphalerite and lesser amounts of pyrite, chalcopyrite and galena formed near these silicic rocks. The vents are surrounded by distinctive vent animals, polychaete worms, crabs and barnacles. Isotope data indicate that the Mariana Trough crust was derived from a heterogeneous source including mantle resembling the MORB-source and an ''arc-source'' component. The latter was depleted in HFS elements in previous melting events and later modified by addition of H 2 O and LIL elements. (orig.)

  5. Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): evidence for progressively elevated fAs conditions in the upper mantle sequence

    Science.gov (United States)

    Kapsiotis, Argirios; Grammatikopoulos, Tassos A.; Tsikouras, Basilios; Hatzipanagiotou, Konstantin; Zaccarini, Federica; Garuti, Giorgio

    2011-01-01

    The Pindos ophiolite complex, located in the northwestern part of continental Greece, hosts various chromite deposits of both metallurgical (high-Cr) and refractory (high-Al) type. The Pefki chromitites are banded and sub-concordant to the surrounding serpentinized dunites. The Cr# [Cr/(Cr + Al)] of magnesiochromite varies between 0.75 and 0.79. The total PGE grade ranges from 105.9 up to 300.0 ppb. IPGE are higher than PPGE, typical of mantle hosted ophiolitic chromitites. The PGM assemblage in chromitites comprises anduoite, ruarsite, laurite, irarsite, sperrylite, hollingworthite, Os-Ru-Ir alloys including osmium and rutheniridosmine, Ru-bearing oxides, braggite, paolovite, platarsite, cooperite, vysotskite, and palladodymite. Iridarsenite and omeiite were also observed as exsolutions in other PGM. Rare electrum and native Ag are recovered in concentrates. This PGM assemblage is of great petrogenetic importance because it is significantly different from that commonly observed in podiform mantle-hosted and banded crustal-hosted ophiolitic chromitites. PGE chalcogenides of As and S are primary, and possibly crystallized directly from a progressively enriched in As boninitic melt before or during magnesiochromite precipitation. The presence of Ru-bearing oxides implies simultaneous desulfurization and dearsenication processes. Chemically zoned laurite and composite paolovite-electrum intergrowths are indicative of the relatively high mobility of certain PGE at low temperatures under locally oxidizing conditions. The PGM assemblage and chemistry, in conjunction with geological and petrologic data of the studied chromitites, indicate that it is characteristic of chromitites found within or close to the petrologic Moho. Furthermore, the strikingly different PGM assemblages between the high-Cr chromitites within the Pindos massif is suggestive of non-homogeneous group of ores.

  6. Geologic map of Harrat Hutaymah, with petrologic classification and distribution of ultramafic inclusions, Saudi Arabia

    Science.gov (United States)

    Thornber, Carl R.

    1990-01-01

    This map shows detailed geology of the Quaternary and Tertiary volcanic deposits that comprise Harrat Hutaymah and an updated and generalized compilation of the underlying Proterozoic and Paleozoic basement rocks. Quaternary alluvial cover and details of basement geology (that is, faults, dikes, and other features) are not shown. Volcanic unit descriptions and contact relations are based upon field investigation by the author and on compilation and revision of mapping Kellogg (1984; northern half of area) and Pallister (1984; southern half of area). A single K-Ar date of 1.80 ± 0.05 Ma for an alkali olivine basalt flow transected by the Al Hutaymah tuff ring (Pallister, 1984) provides the basis for an estimated late Tertiary to Quaternary age range for all harrat volcanic units other than unit Qtr (tuff reworked during Quaternary age time). Contact relations and unit descriptions for the basement rocks were compiled from Pallister (1984), Kellogg (1984 and 1985), DuBray (1984), Johnson and Williams (1984), Vaslet and others (1987), Cole and Hedge (1986), and Richter and others (1984). All rock unit names in this report are informal and capitalization follows Saudi Arabian stratigraphic nomenclature (Fitch, 1980). Geographic information was compiled from Pallister (1984), Kellogg (1984), and Fuller (in Johnson and Williams, 1984) and from field investigation by the author in 1986. The pie diagrams on the map show the distribution and petrology of ultramafic xenoliths of Harrat Hutaymah. The pie diagrams are explained by a detailed classification of ultramafic xenoliths that is introduced in this report.

  7. Sequence stratigraphy, organic petrology and chemistry applied to the upper and lower coal seams in the Candiota Coalfield, Parana Basin, RS, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.S. de; Kalkreuth, W. [Instituto de Geociencias, UFRGS, Porto Alegre (Brazil)

    2010-12-01

    The Permian age coal seams in the Candiota Coalfield represent the largest coal deposit of the country. Currently two seams are mined, called ''Camada Candiota Superior'' and ''Camada Candiota Inferior''. The other coal seams of the coalfield, seams S1-S9 (upper seams) and I1-I5 (lower seams) have as yet not been exploited. The objective of this paper is to perform a detailed sequence stratigraphic, petrologic and chemical study of the upper and lower coal seams, thereby generating data for assisting in the development and better use of the coal-bearing interval. The methodology includes application of the concepts of sequence stratigraphy, which includes the lithological interpretation of the core to establish the depositional environments and genetic correlation between facies associations to define parasequences and bounding surfaces; coal petrology (analysis of the reflectance of vitrinite, determination of the petrographic composition of the coals by maceral analyses), and chemical analyses such as sulphur determination, proximate analyses (ash, moisture, volatile matter, and fixed carbon), and elemental analyses. Three main depositional systems were so far identified: alluvial fan, fluvial system, lagoonal estuary system. This study shows that coal development was controlled by accommodation/accumulation rates, with coal seams with greater thickness and lateral continuity being formed within the transgressive systems tract (lagoonal depositional system) of parasequence 2 (PS2), indicating that the accumulation rates of the peat and distribution of the coal seams were controlled by stratigraphic setting. Vitrinite reflectances for the upper and lower coal seams are indicative of subbituminous rank (Rrandom = 0.36-0.47%), with evidence that anomalously low reflectance values are related to high mineral-matter contents. Maceral composition is highly variable, with some coal seams being extremely rich in inertinite (up to

  8. A new approach to the unrest and subsequent eruption at El Hierro Island (2011) based on petrological, seismological, geodetical and gravimetric data

    Science.gov (United States)

    Meletlidis, Stavros; Di Roberto, Alessio; Domínguez Cerdeña, Itahiza; Pompilio, Massimo; García-Cañada, Laura; Bertagnini, Antonella; Benito Saz, Maria Angeles; Del Carlo, Paola; Sainz-Maza Aparicio, Sergio; Lopez Moreno, Carmen; Moure García, David

    2014-05-01

    A shallow submarine eruption took place on 10th October 2011, about 1.8 km off the coast of La Restinga, a small village located in El Hierro (Canary Islands, Spain). The eruption lasted for about four months and ended by early March 2012. The eruption was preceded by an unrest episode that initiated about three months before, in July 2011, and characterized by more than 10,000 localized earthquakes accompanied by up to 5 cm of vertical ground deformation. In the Canary Islands, this event represents the first case of an eruption that was monitored since the unrest to the end by the monitoring network of IGN (Instituto Geográfico National), providing a huge dataset that includes geophysical (seismic, magnetic and gravimetric), geodetic, geochemistry and petrological data. In this work we use the seismic, GPS and gravity records collected by IGN along with the petrological data derived from the study of various lava balloons, scoriaceous fragments and ash.Geophysical and geochemical monitoring tools provide a variety of information that need to be interpreted in terms of magma movement and/or interaction of magma with host rocks. We present a model, based on this data, which describes the intrusion and ascent of the magma. According to this model, a major intrusion beneath and around preexisting high-density magmatic bodies, localized in the central sector of the island, led to an eruption in the Southern sector of the island. After a failed attempt to reach the surface, while various dykes were emplaced, through a low fractured area in the Central and Northern parts of the island, the ascending magma finally found its way in the submarine area of La Restinga, in the South rift zone, at a depth of 350 m below sea level. Feeding of the eruption was achieved by the ascension of an important volume of material from the upper mantle which was emplaced near the crust-mantle boundary. However, the very energetic post-eruptive unrests - we had five episodes up today with

  9. Fluid Inclusion Study of Quartz Xenocrysts in Mafic Dykes from Kawant Area, Chhota Udaipur District, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Randive Kirtikumar

    2015-09-01

    Full Text Available Unusual mafic dykes occur in the proximity of the Ambadongar Carbonatite Complex, Lower Narmada Valley, Gujarat, India. The dykes contain dense population of quartz xenocrysts within the basaltic matrix metasomatised by carbonate-rich fluids. Plagioclase feldspars, relict pyroxenes, chlorite, barite, rutile, magnetite, Fe-Ti oxides and glass were identified in the basaltic matrix. Quartz xenocrysts occur in various shapes and sizes and form an intricate growth pattern with carbonates. The xenocrysts are fractured and contain several types of primary and secondary, single phase and two-phase fluid inclusions. The two-phase inclusions are dominated by aqueous liquid, whereas the monophase inclusions are composed of carbonic gas and the aqueous inclusions homogenize to liquid between 226°C and 361°C. Majority of the inclusions are secondary in origin and are therefore unrelated to the crystallization of quartz. Moreover, the inclusions have mixed carbonic-aqueous compositions that inhibit their direct correlation with the crustal or mantle fluids. The composition of dilute CO2-rich fluids observed in the quartz xenocrysts appear similar to those exsolved during the final stages of evolution of the Amba Dongar carbonatites. However, the carbonates are devoid of fluid inclusions and therefore their genetic relation with the quartz xenocrysts cannot be established.

  10. Petrological and geochemical Highlights in the floating fragments of the October 2011 submarine eruption offshore El Hierro (Canary Islands): Relevance of submarine hydrothermal processes

    Science.gov (United States)

    Rodriguez-Losada, Jose A.; Eff-Darwich, Antonio; Hernandez, Luis E.; Viñas, Ronaldo; Pérez, Nemesio; Hernandez, Pedro; Melián, Gladys; Martinez-Frías, Jesús; Romero-Ruiz, M. Carmen; Coello-Bravo, Juan Jesús

    2015-02-01

    This paper describes the main physical, petrological and geochemical features of the floating fragments that were emitted in the initial stages of the 2011-2012 submarine eruption off the coast of the Canarian island of El Hierro, located 380 km from the Northwest African Coast. It attempts to assess the potential of radiometric analyses to discern the intriguing origin of the floating fragments and the differences between their constituent parts. In this regard, the material that conforms the core of the fragments contains the largest concentration of uranium (U) ever found in volcanic rocks of the Canary Islands. This enrichment in U is not found in the content of thorium (Th), hence the floating fragments have an unusual U/Th ratio, namely equal to or larger than 3. Although the origin of this material is under discussion, it is proposed that the enrichment in U is the result of hydrothermal processes.

  11. Geochronologic study of polycyclic rocks from Sao Vicente complex in anticlinorium of Caico and Florania - RN, Brazil

    International Nuclear Information System (INIS)

    Pessoa, D.A.R.

    1976-01-01

    The characterization of geochronologic standard in a polycyclic area, verifying the interpretative potentials of Rubidium-Strontium and Potassium-Argon methods is the main objective of this paper. The determinations of K/Ar were made in amphiboles, moscovites and biotites. Petrology studies were also made for verifying the composition of several lithological types. (author)

  12. Lithospheric Structure of Central Europe: Puzzle Pieces from Pannonian Basin to Trans-European Suture Zone Resolved by Geophysical-Petrological Modeling

    Science.gov (United States)

    Bielik, M.; Tašárová, Z. A.; Fullea, J.; Sroda, P.

    2017-12-01

    We have analysed the thermochemical structure of the mantle in Central Europe comprising the Western Carpathians, Pannonian Basin and parts of the European Platform, Bohemian Massif and easternmost Eastern Alps. This area is very complex and characterized by a highly heterogeneous lithospheric structure reflecting the interplay of contraction, strike slip, subduction, and extension tectonics. Our modelling is based on an integrative 3-D approach (LitMod) that combines in a self-consistent manner concepts and data from thermodynamics, mineral physics, geochemistry, petrology, and solid Earth geophysics. This approach minimizes uncertainties of the estimates derived from modelling of various data sets separately. To further constrain our 3-D model we have made use of the vast geophysical and geological data (2-D and 3-D, shallow/crustal versus deep lithospheric experiments) based on experiments performed in Central Europe in the past decades. Given the amount and the different nature/resolution of the available constraints, one of the most challenging tasks of this study was to consistently combine them. Our goal was to find a trade-off between all local and regional data sets available in a way that preserves as many structural details as possible and summarizes those data sets into a single robust regional model. The resulting P/T-dependent mantle densities are in LitMod 3-D calculated based on a given mineralogical composition. Therefore, they provide more reliable estimates compared to pure gravity models and enhance modelling of the crustal structures. Our results clearly indicate presence of several lithospheric domains characterized by distinct features, Pannonian Basin being one of the most outstanding ones. It has the thinnest crust and lithosphere in the area modelled, characterized by relatively fertile composition. Z. Alasonati Tašárová's research project was financed by Deutsche Forschungsgemeinschaft (project TA553/1-2); M. Bielik was funded by the

  13. Sources and timing of pyroxenite formation in the sub-arc mantle: Case study of the Cabo Ortegal Complex, Spain

    Science.gov (United States)

    Tilhac, Romain; Grégoire, Michel; O'Reilly, Suzanne Y.; Griffin, William L.; Henry, Hadrien; Ceuleneer, Georges

    2017-09-01

    Pyroxenites exposed in ophiolites and orogenic peridotite massifs may record petrogenetic processes occurring in mantle domains generated and/or transferred in supra-subduction environments. However, the timing of their formation and the geochemical characteristics of their source region commonly are obscured by metamorphic and metasomatic overprints. This is especially critical in arc-related environments, where pyroxenites may be formed during the differentiation of primitive magmas. Our approach combines Sr- and Nd-isotope geochemistry and geochronology, and modelling of REE diffusion, to further constrain the origin of a well-characterized set of pyroxenites from the arc-related Cabo Ortegal Complex, Spain. In the light of petrological constraints, Sr- and Nd-isotope systematics consistently indicate that cpx and amphibole have acquired disequilibrium during two main episodes: (1) a magmatic/metasomatic episode that led to the formation of the pyroxenites, coeval with that of Cabo Ortegal granulites and corresponding to the incipient stage of a potential Cadomian arc (459-762 Ma; isochron and second-stage Nd model ages); (2) an episode of metamorphic amphibolitization upon the percolation of relatively unradiogenic and LREE-enriched hydrous fluids, subsequent to the delamination of the pyroxenites from their arc-root settings during Devonian subduction. Calculations of diffusional timescale for the re-equilibration of REE are consistent with this scenario but provide only poor additional constraints due to the sensitivity of this method to grain size and sub-solidus temperature. We thus emphasize the necessity to combine isochron ages and Nd model ages corrected for radiogenic ingrowth to put time constraints on the formation of subduction- and/or collision-related pyroxenites, along with petrological and geochemical constraints. Homogeneous age-corrected 143Nd/144Nd of 0.5121-0.5125 (εNd between 0 and +7.5) and 87Sr/86Sr of 0.7037-0.7048 provide information

  14. Petrologic and geochemical characterization and mineralization of the metavolcanic rocks of the Heib Formation, Kid Metamorphic Complex, Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Khalifa

    2011-07-01

    Full Text Available Metavolcanic rocks hosting base metal sulphide mineralization, and belonging to the Kid Metamorphic Complex, are exposed in the Samra-Tarr area, Southern Sinai. The rocks consist of slightly metamorphosed varicolored porphyritic lavas of rhyolite-to-andesite composition, and their equivalent pyroclastics. Geochemically, these metavolcanics are classified as high-K calc-alkaline, metaluminous andesites, trachyandesites, dacites, and rhyolites. The geochemical characteristics of these metavolcanics strongly point to their derivation from continental crust in an active continental margin. The sulphide mineralization in these metavolcanics occurs in two major ore zones, and is represented by four distinct styles of mineralization. The mineralization occurs either as low-grade disseminations or as small massive pockets. The associated hydrothermal alterations include carbonatization, silicification, sericitization and argillic alterations. The base metal sulphide mineralization is epigenetic and was formed by hydrothermal solutions associated with subduction-related volcanic activity.

  15. Microchemistry, geochemistry and geochronology of the Lagoa Real Uranium Province (BA) magmatic association: petrological and evolutionary significance

    International Nuclear Information System (INIS)

    Amorim, Lucas Eustaquio Dias

    2016-01-01

    The Lagoa Real Uranium Province (PULR) is located in the center-south of the Bahia State, in the central part of Sao Francisco Craton and consists of an association of Paleoproterozoic meta-granites, alkali-gneiss, albitites, meta-leucodiorite and charnockites. This work has as objective the studies of the magmatic association, trying to understand its petrological and evolutionary meaning. For this purpose, representative bodies were sampled in order to develop unpublished studies of litogeochemistry, isotopes, geochronology and mineral chemistry. These analyzes were performed in: different preserved granitoid facies (Lagoa do Barro, Sao Timoteo, Juazeirinho and late pegmatitic phases), the meta-leucodiorites and charnockite. The data obtained using several modern methodologies, such as geochronology and mineral chemistry by LA-ICP-MS, provided results that allowed the characterization of two magmatic lithologies not described in the literature (Juazeirinho granite e late pegmatitic phases), and also a lithology preliminarily described (Lagoa do Barro granite). Moreover, these data contributed to elucidate the origin and meaning of the leucodiorite and charnoquito varieties, and made it possible to verify new compositional and mineral chemistry tendencies of Sao Timoteo granite. The data presented show that the studied granites were affected by albititization events (tardi or post-magmatic), which have different micro-chemical characteristics from the processes of albite formation related to the non-mineralized albitites bodies. Three albititization events were identified: a) An event that affected the granites characterized by the formation of albite with Rb and U, (b) Another event related to fluids associated with late pegmatitic bodies that formed albite with high levels of U, Rb and Ba, and partially affected the granites of the next pegmatoids portions; and (c) a final albititization event that caused the formation of the albite gneiss bodies, with albite

  16. Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints

    Science.gov (United States)

    Arakawa, Yoji; Endo, Daisuke; Ikehata, Kei; Oshika, Junya; Shinmura, Taro; Mori, Yasushi

    2017-03-01

    We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths) in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899-955°C) and pressures (3.6-5.9 kbar) than the B-type gabbro (687-824°C and 0.8-3.6 kbar). These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic) magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.

  17. Channel flow and localized fault bounded slice tectonics (LFBST): Insights from petrological, structural, geochronological and geospeedometric studies in the Sikkim Himalaya, NE India

    Science.gov (United States)

    Chakraborty, Sumit; Mukhopadhyay, Dilip K.; Chowdhury, Priyadarshi; Rubatto, Daniela; Anczkiewicz, Robert; Trepmann, Claudia; Gaidies, Fred; Sorcar, Nilanjana; Dasgupta, Somnath

    2017-06-01

    One of the enduring debates in the study of the Himalayan orogen (and continental collision zones in general) is whether the salient observed features are explained (a) by localized deformation along discrete, narrow fault zones/ductile shear zones separating individual blocks or slices (e.g. critical taper or wedge tectonic models), or (b) by distributed deformation dominated by wide zones of visco-plastic flow in the solid or a partially molten state (e.g. channel flow models). A balanced cross-section from Sikkim in the eastern Himalaya that is based on structural data and is drawn to satisfy petrological and geophysical constraints as well, is used in combination with information from petrology, geochronology, geospeedometry and microstructural data to address this question. We discuss that any tectonic model needs to be thermally, rheologically, geometrically and temporally viable in order to qualify as a suitable description of a system; models such as channel flow and critical taper are considered in this context. It is shown that channel flow models may operate with or without an erosional porthole (channel with tunnel and funnel mode vs. channels with only the tunnel mode) and that the predicted features differ significantly between the two. Subsequently, we consider a large body of data from Sikkim to show that a channel flow type model (in the tunneling without funneling mode), such as the ones of Faccenda et al. (2008), describes features formed at high temperatures very well, while features formed at lower temperatures are more consistent with the operation of localized, fault-bounded, slice tectonics, (LFBST, be it in the form of critical taper, wedge tectonics, or something else). Thus, the two modes are not competing, but collaborating, processes and both affect a given rock unit at different points of time during burial, metamorphism and exhumation. A transitional stage separates the two end-member styles of tectonic evolution. The proposed models

  18. Petrology, thermobarometry and geochronology of Yelapa Complex: Implications in the tectonic history of the basement of Puerto Vallarta Batholith, Mexico

    Science.gov (United States)

    Gutiérrez Aguilar, F.; Schaaf, P. E. G.; Hernandez-Trevino, T.; Solis-Pichardo, G.; Vite-Sánchez, O.

    2017-12-01

    The Yelapa Complex (YC) is localizated in the north, central and western of Cabo Corrientes in Jalisco, México. Is constituted by metasedimentary, metaigneous and migmatites which are intruded by deformed plutons. The YC are part of the Puerto Vallarta Batholith a body of 9000 km2 exposed at the mid-western part of the Mexican Pacific margin. The para-gneis of YC in the region of Chimo, present a mineral assemblage of Sil + Bt + Pl ± Grt ± Fsp ± Ilm. The orto-gneis in the región of Cabo Corrientes are constituted by Pl + Amp ± Qz ± Ap ± Zrn. Phase equilibria modelling of two paragneis yield peak conditions of 7-8 kbar and 650-700ºC. The patterns of REE of the studied rocks suggest: 1) Enrichment of LREE and flat patterns in HREE with respect to chondrite and; 2) Negative Eu anomaly in all samples analyzed suggesting plagioclase fractionation. On the other hand, the study of individual zircons using LA-ICP-MS from 3 para-gneis and 1 orto-gneis yield following information: 1) A máximum depositional age of 223 Ma, which also show abundant zircón populations with ages between 241-273 Ma for para-gneis and 2) The protolith age crystallization of 127 Ma for orto-gneis. The results along with new Sr-Nd isotopic data from whole rock and Rb-Sr in micas, suggest a tectonic evolution for the Yelapa Complex as a transition from a passive continental margin regime ( 223-273 Ma) to a continental arc setting ( 127). Thus, regional metamorphism and multiple magmatic episodes were associated to the convergence of the Farallon and North America plates during the Middle Jurassic to the Late Cretaceous.

  19. Petrologic Applications of Tourmaline

    Science.gov (United States)

    London, D.; Morgan, G. B., VI; Wolf, M. B.; Guttery, B. M.

    2011-12-01

    Compositions of tourmaline reflect its chemical environment of formation. Schorl-dravite is an accessory in metapelites and persists up to the onset of anatexis. Amphibolites and marbles contain uvite, and magnesiofoitite-povandraite is distinctive of base-metal porphyries. In granitic pegmatites, schorl-dravite at the contacts evolves toward foitite and olenite (aluminous) components as Fe is depleted from the melt. Fractionation may bring residual melts to saturation in elbaite, an Li-rich component of tourmaline. Common tourmaline (schorl-dravite-olenite-foitite solid solution) possesses a wide P-T field of stability. Synthesis experiments put the upper thermal limit of common tourmaline at ~ 750°-850°C from 50 MPa to 10 GPa, and dravite has been synthesized as low as 350°C. The boron content of granitic melt or aqueous fluid in equilibrium with common tourmaline alone and with equivalent silicate mineral assemblages varies sharply with temperature according to a relationship of CB2O3melt,vapor ~ 0.0032e0.0087T(C). Common tourmaline is stable over an aSiO2 at and below saturation in Qtz; besides FeMg, its stability hinges principally on the solubility product [aAl2O3]3*[aB2O3]1.5 in vapor or melt. Surprisingly, increasing activities of H2O or fluoride components (both are present in tourmaline) destabilize common tourmaline in granitic melt, as both components form complexes with Al that reduce aAl2O3 in the melt. As a result, common tourmaline may survive anatexis when the aH2O attending melting is low. In contrast to common tourmaline, most attempts to synthesize elbaite have failed. Aluminous tourmaline containing 37 mol% Elb component has been synthesized recently, which is significant for understanding occurrences in pegmatites as well as for the potential appearance of synthetic elbaite on the gem market. Experimental calibration of δ11B between aqueous fluid and dravite at 50-500 MPa and 350°-750°C varies by only 6.1 % over this range of conditions

  20. Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Piedad-Sanchez, Noe; Martinez, Luis; Izart, Alain; Elie, Marcel [UMR G2R/7566, Geologie et Gestion des Ressources Minerales et Energetiques, Faculte des Sciences, Universite Henri Poincare, Nancy 1, BP-239, Boulevard des Aiguillettes, Vandoeuvre-les-Nancy Cedex 54506 (France); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon (CSIC), C/ Francisco Pintado Fe, 26, Ap. Co., 73, Oviedo 33011 (Spain); Keravis, Didier [Institut des Sciences de la Terre (ISTO), CNRS-Universite d' Orleans, Batiment Geosciences, BP 6759, Orleans 45067 (France)

    2004-03-23

    This paper presents for the first time a petrological and geochemical study of coals from the Central Asturian Coal Basin (North Spain) of Carboniferous (Pennsylvanian), mainly of Moscovian, age. A paleoenvironmental approach was used, taking into account both petrographic and organic geochemical studies. Vitrinite reflectance (R{sub r}) ranges from 0.5% to 2.5%, which indicates a high volatile bituminous to semianthracite and anthracite coal rank. The coal samples selected for paleoenvironmental reconstruction are located inside the oil-gas-prone phase, corresponding to the interval between the onset of oil generation and first gas generation and efficient expulsion of oil. This phase is represented by coals that have retained their hydrocarbon potential and also preserved biomarker information. Paleodepositional reconstruction based on maceral and petrographic indices points to a swamp environment with vitrinite-rich coal facies and variable mineral matter content. The gelification index (GI) and groundwater influence index (GWI) indicate strong gelification and wet conditions. The biomarkers exhibit a high pristane/phytane ratio, suggesting an increase in this ratio from diagenetic processes, and a high diterpanes ratio. This, in turn, would seem to indicate a high swamp water table and a humid climate. The maximum point of coal accumulation occurred during the regressive part of the Late Moscovian sequence and in the most humid climate described for this period of time in the well-known coal basins of Europe and North America.

  1. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    Science.gov (United States)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be

  2. Magmas and inclusions of Monte Amiata volcano, Tuscany, Italy

    NARCIS (Netherlands)

    van Bergen, M.J.|info:eu-repo/dai/nl/07009277X

    1984-01-01

    Mt. Amiata, a Pleistocene volcanic complex in south Tuscany consists mainly of silicic (62-67 wt.% Si02) lavas and domes, many of which contain abundant metamorphic and mafic igneous inclusions. The results of a detailed geochemical and petrological study indicate a bimodal magmatic system where

  3. Geology, Alteration, Mineralization, Geochemistry and Petrology of intrusive units in the Shah Soltan Ali prospect area (Southwest of Birjand, South Khorasan province

    Directory of Open Access Journals (Sweden)

    Samaneh Nadermezerji

    2017-07-01

    Full Text Available Introduction The Shah Soltan Ali area is located 85 km southwest of Birjand in the South Khorasan province. This area is part of the Tertiary volcanic-plutonic rocks in the east of the Lut block. The Lut block is bounded to the east by the Nehbandan and associated faults, to the north by the Doruneh and related faults (Sabzevar zone, to the south by the Makran arc and Bazman volcanic complex and to the west by the Nayband Fault. The Lut block is the main metallogenic province in the east of Iran (Karimpour et al., 2012, that comprises of numerous porphyry Cu and Cu–Au deposits, low and high sulfidation epithermal Au deposits, iron oxide deposits, base-metal deposits and Cu–Pb–Zn vein-type deposits. The geology of Shah Soltan Ali area is dominated by volcanic rocks, comprised of andesite and basalt, which are intruded by subvolanic units such as monzonite porphyry, monzodiorite porphyry and diorite porphyry. Materials and methods 1. 170 thin sections of the rock samples as well as 25 polished and thin polished sections were prepared for petrography, alteration and mineralization. 2. Twenty five samples were analyzed for Cu, Pb, Zn, Sb, Mo and As elements by the Aqua regia method in the Zarazama laboratory in Tehran, Iran. 3. Nine samples were analyzed for trace elements [including rare earth elements (REEs]. As a result of these analyses, trace elements and REE were determined by inductively coupled plasma mass spectrometry (ICP-MS in the ACME Analytical Laboratories (Vancouver Ltd., Canada. 4. Ten samples were analyzed for major elements by wavelength dispersive X-ray fluorescence spectrometry in the East Amethyst laboratory in Mashhad, Iran. 5. Five samples were analyzed for Firre Assay analysis in the Zarazma Laboratory in Tehran, Iran. 6. The results of XRD analysis were used for 4 samples. Discussion and results Petrographic studies indicate that subvolcanic rocks consist of diorite porphyry, monzonite porphyry and monzodiorite

  4. Metamorphic Evolution of Garnet-bearing Epidote-Barroisite Schist from the Meratus Complex in South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Nugroho Imam Setiawan

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.139-156This paper presents metamorphic evolution of metamorphic rocks from the Meratus Complex in South Kalimantan, Indonesia. Eight varieties of metamorphic rocks samples from this location, which are garnet-bearing epidote-barroisite schist, epidote-barroisite schist, glaucophane-quartz schist, garnet-muscovite schist, actinolite-talc schist, epidote schist, muscovite schist, and serpentinite, were investigated in detail its petrological and mineralogical characteristics by using polarization microscope and electron probe micro analyzer (EPMA. Furthermore, the pressure-temperature path of garnet-bearing epidote-barroisite schist was estimated by using mineral parageneses, reaction textures, and mineral chemistries to assess the metamorphic history. The primary stage of this rock might be represented by the assemblage of glaucophane + epidote + titanite ± paragonite. The assemblage yields 1.7 - 1.0 GPa in assumed temperature of 300 - 550 °C, which is interpreted as maximum pressure limit of prograde stage. The peak P-T condition estimated on the basis of the equilibrium of garnet rim, barroisite, phengite, epidote, and quartz, yields 547 - 690 °C and 1.1 - 1.5 GPa on the albite epidote amphibolite-facies that correspond to the depth of 38 - 50 km. The retrograde stage was presented by changing mineral compositions of amphiboles from the Si-rich barroisite to the actinolite, which lies near 0.5 GPa at 350 °C. It could be concluded that metamorphic rocks from the Meratus Complex experienced low-temperature and high-pressure conditions (blueschist-facies prior to the peak metamorphism of the epidote amphibolite-facies. The subduction environments in Meratus Complex during Cretaceous should be responsible for this metamorphic condition.

  5. Metamorphic and tectonic evolution of the Greater Himalayan Crystalline Complex in Nyalam region, south Tibet

    Science.gov (United States)

    Wang, Jia-Min; Zhang, Jin-Jiang; Rubatto, Daniela

    2016-04-01

    Recent studies evoke dispute whether the Himalayan metamorphic core - Greater Himalayan Crystalline Complex (GHC) - was exhumed as a lateral crustal flow or a critical taper wedge during the India-Asia collision. This contribution investigated the evolution of the GHC in the Nyalam region, south Tibet, with comprehensive studies on structural kinematics, metamorphic petrology and geochronology. The GHC in the Nyalam region can be divided into the lower and upper GHC. Phase equilibria modelling and conventional thermobarometric results show that peak temperature conditions are lower in the lower GHC (~660-700°C) and higher in the upper GHC (~740-780°C), whereas corresponding pressure conditions at peak-T decrease from ~9-13 kbar to ~4 kbar northward. Monazite, zircon and rutile U-Pb dating results reveal two distinct blocks within the GHC of the Nyalam region. The upper GHC underwent higher degree of partial melting (15-25%, via muscovite dehydration melting) that initiated at ~32 Ma, peaked at ~29 Ma to 25 Ma, possibly ended at ~20 Ma. The lower GHC underwent lower degree of melting (0-10%) that lasted from 19 to 16 Ma, which was produced mainly via H2O-saturated melting. At different times, both the upper and lower blocks underwent initial slow cooling (35 ± 8 and 10 ± 5°C/Myr, respectively) and subsequent rapid cooling (120 ± 40°C/Myr). The established timescale of metamorphism suggests that high-temperature metamorphism within the GHC lasted a long duration (~15 Myr), whereas duration of partial melting lasted for ~3 Myr in the lower GHC and lasted for 7-12 Myr in the upper GHC. The documented diachronous metamorphism and discontinuity of peak P-T conditions implies the presence of the Nyalam Thrust in the study area. This thrust is probably connected to the other thrusts in Nepal and Sikkim Himalaya, which extends over ~800 km and is named the "High Himalayan Thrust". Timing of activity along this thrust is at ~25-16 Ma, which is coeval with active

  6. Petrological constraints on the recycling of mafic crystal mushes, magma ascent and intrusion of braided sills in the Torres del Paine mafic complex (Patagonia)

    Science.gov (United States)

    Leuthold, Julien; Müntener, Othmar; Baumgartner, Lukas; Putlitz, Benita

    2014-05-01

    Cumulate and crystal mush disruption and reactivation are difficult to recognise in coarse grained shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. We will present the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its sub-vertical feeder-zone. The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine grained monzodioritic sills. The mafic units were over-accreted over 41±11 ka, underplating the overlying granite. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ~300 to ~500 MPa. The corresponding rims and monzodiorite matrix crystallized at 950°C) from the middle crust reservoir to the emplacement level. We show that hornblende-plagioclase thermobarometry is a useful monitor for the determination of segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and cooling.

  7. On the Future of Thermochemical Databases, the Development of Solution Models and the Practical Use of Computational Thermodynamics in Volcanology, Geochemistry and Petrology: Can Innovations of Modern Data Science Democratize an Oligarchy?

    Science.gov (United States)

    Ghiorso, M. S.

    2014-12-01

    Computational thermodynamics (CT) has now become an essential tool of petrologic and geochemical research. CT is the basis for the construction of phase diagrams, the application of geothermometers and geobarometers, the equilibrium speciation of solutions, the construction of pseudosections, calculations of mass transfer between minerals, melts and fluids, and, it provides a means of estimating materials properties for the evaluation of constitutive relations in fluid dynamical simulations. The practical application of CT to Earth science problems requires data. Data on the thermochemical properties and the equation of state of relevant materials, and data on the relative stability and partitioning of chemical elements between phases as a function of temperature and pressure. These data must be evaluated and synthesized into a self consistent collection of theoretical models and model parameters that is colloquially known as a thermodynamic database. Quantitative outcomes derived from CT reply on the existence, maintenance and integrity of thermodynamic databases. Unfortunately, the community is reliant on too few such databases, developed by a small number of research groups, and mostly under circumstances where refinement and updates to the database lag behind or are unresponsive to need. Given the increasing level of reliance on CT calculations, what is required is a paradigm shift in the way thermodynamic databases are developed, maintained and disseminated. They must become community resources, with flexible and assessable software interfaces that permit easy modification, while at the same time maintaining theoretical integrity and fidelity to the underlying experimental observations. Advances in computational and data science give us the tools and resources to address this problem, allowing CT results to be obtained at the speed of thought, and permitting geochemical and petrological intuition to play a key role in model development and calibration.

  8. Alkaline / peralkaline gneisses near the northern margin of the Natal structural and metamorphic province

    International Nuclear Information System (INIS)

    Scogings, A.J.

    1990-01-01

    Alkaline / peralkaline gneisses occur within three granitoid complexes at Ngoye, Bull's Run and Wangu, near the northern margin of the Natal Structural and Metamorphic Province. A wide range of rock types is present, from nepheline syenite gneisses through to peralkaline granite gneisses, with minor carbonatite and monzodiorite gneiss intrusive phases noted within two of the bodies. It is suggested that the three alkaline gneiss occurences so far mapped constitute the remnants of a metamorphosed alkaline magmatic province, and that such magmatism occured either in a post-collisional or anorogenic post-D1, pre-D2 tectonic setting. The three complexes are described with respect to mineralogy and chemistry, followed by a brief overview of the possible tectonic setting at the time of their intrusion. 1 tab., 3 refs

  9. Two types of gabbroic xenoliths from rhyolite dominated Niijima volcano, northern part of Izu-Bonin arc: petrological and geochemical constraints

    Directory of Open Access Journals (Sweden)

    Arakawa Yoji

    2017-03-01

    Full Text Available We examined the petrography, petrology, and geochemistry of two types of gabbroic xenoliths (A- and B-type xenoliths in olivine basalt and biotite rhyolite units among the dominantly rhyolitic rocks in Niijima volcano, northern Izu-Bonin volcanic arc, central Japan. A-type gabbroic xenoliths consisting of plagioclase, clinopyroxene, and orthopyroxene with an adcumulate texture were found in both olivine basalt and biotite rhyolite units, and B-type gabbroic xenoliths consisting of plagioclase and amphibole with an orthocumulate texture were found only in biotite rhyolite units. Geothermal- and barometricmodelling based on mineral chemistry indicated that the A-type gabbro formed at higher temperatures (899–955°C and pressures (3.6–5.9 kbar than the B-type gabbro (687–824°C and 0.8–3.6 kbar. These findings and whole-rock chemistry suggest different parental magmas for the two types of gabbro. The A-type gabbro was likely formed from basaltic magma, whereas the B-type gabbro was likely formed from an intermediate (andesitic magma. The gabbroic xenoliths in erupted products at Niijima volcano indicate the presence of mafic to intermediate cumulate bodies of different origins at relatively shallower levels beneath the dominantly rhyolitic volcano.

  10. Petrology and geochemistry of Granitoids at Khanchay-Aliabad region, Tarom sub-zone, East of Zanjan

    Directory of Open Access Journals (Sweden)

    Arefeh Saiedi

    2018-03-01

    Full Text Available Khanchay-Aliabad area as a part of Tarom magmatic belt contains some shallow depth intrusions which are intruded the Eocene volcanic- sedimentary rocks and have very close association with Cu mineralization. The Eocene volcanic- sedimentary rocks include alternation of basalt, basaltic andesite and andesite, various kinds of tuff, tuffaceous sandstone, sandstone, siltstone and occasionally shale. Petrographical studies demonstrate that intrusions are pyroxene quartz monzonite and olivine gabbro in composition. The Khanchay pyroxene quartz monzonite have porphyritic to porphyroidic, hetero-granular to sereitic, ophitic and sub- ophitic textures and composed of plagioclase, clinopyroxene, hornblende, quartz, K-feldspar and biotite. The Aliabad pyroxene quartz monzonite shows porphyritic to porphyroidic textures composing of plagioclase, clinopyroxene and hornblende in the quartz- feldspatic matrix. The Khanchay olivine gabbro is characterized by the presence of coarse grained granular, ophitic and sub- ophitic textures as well as the occurrence of plagioclase, clinopyroxene and olivine. Geochemical studies indicate that the Khanchay- Aliabad pyroxene quartz monzonitic intrusions have SiO2 content varying from 59.58 to 61.34 %. These intrusions have high- K calc- alkaline nature and are classified as I-type metaluminous granitoids. Their similar patterns on spider diagrams are indication of genetic relation of these intrusions. On these diagrams LILEs (Ba, K, Th and Pb enrichment along with negative anomalies of HFSEs (Nb and Ti are observed. Moreover, the Chondrite normalized REE patterns demonstrate LREE enrichment with high ratio of LREE/HREE and Lan/Ybn ratio ranging from 3.08 to 3.72. The overall  field investigation, petrological and geochemical studies as well as  tectonic setting discrimination diagrams confirm that the Khanchay- Aliabad high-K intrusions were formed from a subduction related metasomatized lithospheric mantle in a post

  11. Petrological mineralogical and geochemical characterization of the granitoids and fracture fillings developed in Ratones Mines (Spain)

    International Nuclear Information System (INIS)

    Buil Gutierrez, B.

    2002-01-01

    The petrological, mineralogical and geochemical characterisation of the granitoids and fracture fillings developed in the Ratones Mine (Caceres, Spain) has been done in order to understand rock-water interaction processes which control water geochemical parameters. Special interest has been devoted to the analysis and interpretation of REE patterns in the solid phase (granitoids and fracture fillings) because they constitute geochemical tracers in water-rock interaction process. Moreover, REE are considered as actinide analogues. In order to characterise the solid phase (granitoids and fracture fillings) several investigation scales (system, outcrop, whole rock, mineral and geochemical components) have been considered and different types of samples have been analysed. These factors control the methodological approach used in this investigation. The analytical methods we have used in this investigation are microscope, qualitative and semi-quantitative methods (XRD, SEM,EDAX) and quantitative methods (ICP-MS, XRF, EM, LAM-IC-MS). The bulk of the granitoids located around the Ratones Mine Belongs to the alkaline feldspar granite-sienogranite lihotype and they show a peraluminous and subalkaline pattern. From the mineralogical point of view, they are composed by quartz, K-feldspar (Or>90%), showing sericitation, moscovitization and turmolinization altherations, alkaline plagioclase (An-=-3%), usually altered to sericite, saussirite and less frequently affected by moscovitization processes, Fe-Al biotite, frequently affected by chloritization processes and sometimes replaced by muscovite, and finally muscovite (>2% celadonite and <4% paragonite) both of primary and secondary origin. The differences observed between the different lithotypes are related with the modal proportion of the principal minerals,with the presence or absence of certain accessory minerals ( turmaline, cordierite), with specific textural patterns, grain size and also with the richness in specific

  12. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    diverse and often complex in composition. At least 245 individual REE-bearing minerals are recognized; they are mainly carbonates, fluorocarbonates, and hydroxylcarbonates (n = 42); oxides (n = 59); silicates (n = 85); and phosphates (n = 26).Many of the world’s significant REE deposits occur in carbonatites, which are carbonate igneous rocks. The REEs also have a strong genetic association with alkaline magmatism. The systematic geologic and chemical processes that explain these observations are not well understood. Economic or potentially economic REE deposits have been found in (a) carbonatites, (b) peralkaline igneous systems, (c) magmatic magnetite-hematite bodies, (d) iron oxide-copper-gold (IOCG) deposits, (e) xenotime-monazite accumulations in mafic gneiss, (f) ion-absorption clay deposits, and (g) monazite-xenotime-bearing placer deposits. Carbonatites have been the world’s main source for the light REEs since the 1960s. Ion-adsorption clay deposits in southern China are the world’s primary source of the heavy REEs. Monazite-bearing placer deposits were important sources of REEs before the mid-1960s and may be again in the future. In recent years, REEs have been produced from large carbonatite bodies mined at the Mountain Pass deposit in California and, in China, at the Bayan Obo deposit in Nei Mongol Autonomous Region, the Maoniuping deposit in Sichuan Province, the Daluxiang deposit in Sichuan Province, and the Weishan deposit in Anhui Province. Alkaline igneous complexes have recently been targeted for exploration because of their enrichments in the heavy REEs.Information relevant to the environmental aspects of REE mining is limited. Little is known about the aquatic toxicity of REEs. The United States lacks drinking water standards for REEs. The concentrations of REEs in environmental media are influenced by their low abundances in crustal rocks and their limited solubility in most groundwaters and surface waters. The scarcity of sulfide minerals

  13. Petrological evolution of subducted rodingite from seafloor metamorphism to dehydration of enclosing antigorite-serpentinite (Cerro del Almirez massif, southern Spain)

    Science.gov (United States)

    Laborda-López, Casto; López Sánchez-Vizcaíno, Vicente; Marchesi, Claudio; Gómez-Pugnaire, María Teresa; Garrido, Carlos J.; Jabaloy-Sánchez, Antonio; Padrón-Navarta, José Alberto

    2016-04-01

    . Close to the contact with the blackwall, antigorite-serpentinite is very rich in diopside, olivine and Ti-clinohumite. In this study we present a thermodynamic model of phase relationships in rodingites and transitional blackwalls during their metamorphic history. We mainly aim to establish the evolution of P-T conditions experienced by metarodingites during subduction and the influence of fluids in the formation of mineral assemblages at different metamorphic stages. REFERENCES Padrón-Navarta, J.A., López Sánchez-Vizcaíno, V., Garrido, C.J., Gómez-Pugnaire, M.T., (2011): Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro Del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52, 2047-2078.

  14. Petrology and oxygen isotope geochemistry of the Pucon ignimbrite - Southern Andean volcanic zone, Chile: Implications for genesis of mafic ignimbrites

    International Nuclear Information System (INIS)

    McCurry, Michael; Schmidt, Keegan

    2001-01-01

    Although mafic components of dominantly intermediate to silicic ignimbrites are rather common, voluminous, dominantly mafic ignimbrites are rare (e.g., Smith, 1979; cf. Freundt and Schmincke, 1995). Volcan Villarrica, the most active composite volcano in South America, located in the Southern Andean Volcanic Zone (SAVZ, Lopez-Escobar and Moreno, 1994a), has produced two such ignimbrites, respectively the Lican and Pucon Ignimbrites, in the last 14,000 years (Clavero, 1996). The two ignimbrites are low-Si andesite and basaltic-andesite to low-Si andesite, respectively, the former about twice as voluminous as the later (10 and 5 km 3 ). Eruption of the ignimbrites produced calderas respectively 5 and 2 km in diameter (Moreno, 1995; Clavero, 1996). In addition to its mafic bulk composition, the Pucon Ignimbrite (PI) is also distinguished by numerous xenolithic fragments among and also within magmatic pyroclasts. Many of these are fragments of granitoid rocks. Volcan Villarrica has also produced numerous smaller mafic ignimbrites and pyroclastic surge deposits, as well as dominantly basaltic fallout and lava flows (Lopez-Escobar and Moreno, 1994; Moreno, 1995; Clavero, 1996; Hickey-Vargas et al., 1989; Tormey et al., 1991). Reasons for the unusual style of mafic explosive activity at Volcan Villarrica are unclear. Clavero (1996), based upon an exemplary thesis-study of the physical volcanology and petrology of the PI, suggests it formed in response to a sequence of events beginning with injection of a shallow basaltic andesite magma chamber by hotter basaltic magma. In his model mixing and heat transfer between the two magmas initiated a violent Strombolian eruption that destabilized the chamber causing infiltration of large amounts of meteoric-water saturated country rocks. The Pucon Ignimbrite formed in response to subsequent phreatomagmatic interactions. In contrast, Lopez-Escobar and Moreno (1994) infer on geochemical grounds that volatiles leading to the explosive

  15. Petrological studies of plutonic rocks of Ecuador

    International Nuclear Information System (INIS)

    Aly, S.

    1980-01-01

    The feldspars of many tonalitic plutonic rocks in the coastal regions and West Andean regions are zoned. This leads to the conclusion that they are relatively flat intrusions and to some extent transition rocks in the subvulcanite direction. This is in accordance with the genetic and chronological relationship between plutonites and the surrounding vulcanites of the Basic Igreous Complex (BIC). The composition of representative minerals, e.g. alkali feldspar, plagioclase feldspar, biotite, chlorite, and amphibole has been determined as well as the age of plutonite samples by the K/Ar dating method. (DG) [de

  16. Molybdenite Re-Os dating of Mo-Th-Nb-REE rich marbles: pre-Variscan processes in Moldanubian Variegated Group (Czech Republic

    Directory of Open Access Journals (Sweden)

    Drábek Milan

    2015-06-01

    Full Text Available In an effort to contribute to the discussion concerning the age of rocks of the Moldanubian Variegated Group, we have undertaken Re-Os dating of molybdenite of banded carbonatite-like marbles (CLM from the graphite mine Václav at Bližná (Southern Bohemia, which belong to the metamorphic sequence of this group. The Re-Os model ages for the molybdenites range between 493 and 497 Ma and apparently correspond to the early stages of metamorphism connected with pre-Variscan rift-related tectono-metamorphic events, which affected and recrystallized sedimentary CLM material rich in Mo-Th-Nb-REE. The molybdenite bearing carbonatite like marbles situated in the footwall of Bližná graphite mine have been interpreted as carbonates with a large share of volcano-detritic material derived from contemporaneous primitive alkaline (carbonatite-like volcanism deposited in a shallow marine lagoonal environment. There is no geological evidence for the participation of fluids mobilized from host rocks in the formation of the CLM. Because the Re-Os chronometer in molybdenite is demonstrably stable through later Variscan facies metamorphism, the molybdenite chronometer has not been affected by subsequent thermal overprints associated with the Variscan orogeny.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c.2.5Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 ...

  18. SNC meteorites: Clues to martian petrologic evolution

    International Nuclear Information System (INIS)

    McSween, H.Y. Jr.

    1985-01-01

    The shergottites, nakhlites, and Chassigny (SNC meteorites) are apparently cumulate mafic and ultramafic rocks that crystallized at shallow levels in the crust of their parent body. The mineralogy and chemistry of these meteorites are remarkably like equivalent terrestrial rocks, although their ratios of Fe/(Fe+Mg) and certain incompatible elements and their oxygen isotopic compositions are distinctive. All have crystallization ages of 1.3 b.y. or younger and formed from magmas produced by partial melting of previously fractionated source regions. Isotope systematics suggest that the SNC parent body had a complex and protracted thermal history spanning most of geologic time. Some meteorites have been severely shock metamorphosed, and all were ejected from their parent body at relatively recent times, possibly in several impact events. Late crystallization ages, complex petrogenesis, and possible evidence for a large gravitational field suggest that these meteorites are derived from a large planet. Trapped gases in shergottite shock melts have compositions similar to the composition measured in the Martian atmosphere. Ejection of Martian meteorites may have been accomplished by acceleration of near-surface spalls or other mechanisms not fully understood. If SNC meteorites are of Martian origin, they provide important information on planetary composition and evolution. The bulk composition and redox state of the Martian mantle, as constrained by shergottite phase equilibria, must be more earthlike than most current models. Planetary thermal models should benefit from data on the abundances of radioactive heat sources, the melting behavior of the mantle, and the timing of planetary differentiation

  19. Petrologic and zircon U-Pb geochronological characteristics of the pelitic granulites from the Badu Complex of the Cathaysia Block, South China

    Science.gov (United States)

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Liu, Bo; Cui, Xiahong

    2018-06-01

    The recognition of the Indosinian Orogeny in the South China block has been controversial and difficult because of strong weathering and thick cover. High temperature (HT) and high pressure (HP) metamorphic rocks related to this orogeny were considered to be absent from this orogenic belt until the recent discovery of eclogite and granulite facies meta-igneous rocks, occurring as lenses within the meta-sedimentary rocks of the Badu Complex. However, metamorphic state of these meta-sedimentary rocks is still not clear. Besides, there have been no geochronological data of HT pelitic granulites previously reported from the Badu Complex. This paper presents petrographic characteristics and zircon geochronological results on the newly discovered kyanite garnet gneiss, pyroxene garnet gneiss and the HT pelitic granulites (sillimanite garnet gneiss). Mineral assemblages are garnet + sillimanite + ternary feldspar + plagioclase + quartz + biotite for the HT pelitic granulite, kyanite + ternary feldspar + garnet + sillimanite + plagioclase + quartz + biotite for the kyanite garnet gneiss, and garnet + biotite + pyroxene + plagioclase + ternary feldspar + quartz for the pyroxene garnet gneiss, respectively. Decompressional coronas around garnet grains can be observed in all these pelitic rocks. Typical granulite facies mineral assemblages and reaction textures suggest that these rocks experienced HP granulite facies metamorphism and overprinted decompression along a clockwise P-T loop. Results from integrated U-Pb dating and REE analysis indicate the growth of metamorphic zircons from depleted heavy REE sources (100-50 chondrite) compared with detrital zircons derived from granitic sources (typically > 1000 chondrite). Metamorphic zircons in HP granulite exhibit no or subdued negative Eu anomalies, which perhaps indicate zircon overgrowth under eclogite facies conditions. The zircon overgrowth ages range from 250 to 235 Ma, suggesting that HP granulite (eclogite) to

  20. Natural radioactivity and associated radiation characteristic of the new high background radiation area of lambwe east southern Kenya

    International Nuclear Information System (INIS)

    Achola, S.O.; Patel, J.P.; Angeyo, H.K.; Mustapha, A.O.

    2010-01-01

    Rocks and soils from a number of areas underlined by carbonatite rocks in Kenya have been associated with high levels of natural background radioactivity. People in such high background radiation areas (HBRA), are exposed to abnormally high annual absorbed dose (that have health implications) than the global normal 1 mSvyr-1. In this paper, results of field background radiation measurements, activity concentrations of primordial radionuclides in (mainly carbonatite rock and soil) matrices, and estimated annual external effective dose rates are presented for South and North Ruri hills in Lambwe East location of Suba District, which lies roughly between latitudes 0°30'S and 1°00'S, bounded on the east by longitude 34°30'E and on the west by the shores of Lake Victoria 16 and Winnam Gulf. Altitudes in the region range from about 1000 m on the shores of Lake Victoria to above 1800 m on top of the Ruri hills. The main geological features are carbonatite formations. Twenty one samples were analyzed using high-purity germanium (HPGe) gamma-ray spectrometer. The activity concentrations ranged 14.18 - 6559.99 Bqkg-1 (average: 1396.85 Bqkg-1) for Th-232; 2.73 - 499.24 Bqkg-1 (average: 178.69 Bqkg-1) for U-238; and 56.67 - 1454.73 Bqkg-1 (average: 508.67 Bqkg-1) for K-40. The variability in Th distribution could be due to another contributing factor apart from carbonatite: Homa hills geothermal field fluids might be responsible for delivery of Th to surface rocks; some hot spots have travertine deposits. Measured absorbed dose rates in air outdoors range 700 - 6000.00 nGyh-1 (mean: 2325.84 nGy h-1); assuming 0.4 occupancy factor, these values correspond to individual annual effective dose rates of 1.717 - 14.717 mSvyr-1 (mean: 5.705 mSv yr-1). Measured absorbed dose rates are higher than calculated values since they include the contribution of cosmic rays. The natural radioactivity is fractionated with higher levels in the soils than carbonatite rocks

  1. Petrology and Rock Magnetism of the peridotites of Pindos Ophiolite (Greece), insights into the serpentinization process

    Science.gov (United States)

    Bonnemains, D.; Carlut, J. H.; Mevel, C.; Andreani, M.; Escartin, J.; Debret, B.

    2015-12-01

    We present a petrological and magnetic study of a suite of serpentinized peridotites from the Pindos ophiolite spanning a wide range in the degree of serpentinization (from ~10 to 100%). The Pindos ophiolite, in Northern Greece, is a portion of Late Triassic oceanic lithosphere obducted during the convergence of the Apulian and Pelagonian micro-continents. This ophiolite is interpreted mainly as the result of a supra-subduction zone spreading process but its complete history remains largely unknown. Therefore, it is not clear when the ultramafic section was exposed to fluid circulation that resulted in its serpentinization. Element partitioning during serpentinization reactions is dependent on parameters such as temperature and water-rock ratio. In particular, they affect the behavior of the iron released by olivine, which can be taken up either by magnetite, serpentine and/or brucite. Analyses of the reaction products are therefore a key to constrain the conditions during the main stage of the alteration. Our study was designed to gain insight on the conditions prevailing during hydration. Our results indicate that even fully serpentinized samples have a very low magnetization and magnetite content. Moreover, microprobe and μXanes results show that serpentine is the main host of iron in the divalent but also trivalent form. These results are compared with a set of data from serpentinized ultramafics sampled from the ocean floors, as well as from various other ophiolites. We suggest that serpentinization at Pindos occurred at relatively low-temperature (less than 200 °C), therefore not at a ridge environment. In addition, we stress that the presence of trivalent iron in serpentine indicates that serpentinization may remain a producer of hydrogen even when very little magnetite is formed.

  2. New insights on the petrology of submarine volcanics from the Western Pontine Archipelago (Tyrrhenian Sea, Italy)

    Science.gov (United States)

    Conte, A. M.; Perinelli, C.; Bianchini, G.; Natali, C.; Martorelli, E.; Chiocci, F. L.

    2016-11-01

    The Pontine Islands form a volcanic archipelago in the Tyrrhenian Sea. It consists of two edifices, the islands of Ponza, Palmarola and Zannone and the islands of Ventotene and Santo Stefano, respectively. The Archipelago developed during two main volcanic cycles in the Plio-Pleistocene: 1) the Pliocene episode erupted subalkaline, silica-rich volcanic units, which constitute the dominant products in the western edifice (Ponza and Zannone Islands); 2) the Pleistocene episode erupted more alkaline products, represented by evolved rocks (trachytes to peralkaline rhyolites) in the islands of Ponza and Palmarola and by basic to intermediate rocks in the eastern edifice (Ventotene and Santo Stefano Islands). In this paper we present new geochemical and petrological data from submarine rock samples collected in two oceanographic cruises and a scuba diving survey. The main result is the recovery of relatively undifferentiated lithotypes that provide further insights on the magmatic spectrum existing in the Pontine Archipelago, allowing modelling of the whole suite of rocks by fractional crystallization processes. New major and trace element data and thermodynamic constrains (by the software PELE) indicate the existence of three distinct evolutionary trends corresponding to a HK calcalkaline series in the Pliocene, followed by a transitional and then by a shoshonite series in the Pleistocene. In particular, the transitional series, so far overlooked in the literature, is required in order to explain the genesis of several peralkaline felsic rocks recognized in the Archipelago. On the whole, the new geochemical data i) confirm the orogenic signature of the suites, ii) allow to rule out an anatectic origin for both subalkaline and peralkaline rhyolites and iii) indicate highly heterogeneous mantle sources, due to crustal components variously recycled in the mantle via subduction.

  3. Terrane-Scale Metastability in Subducted Himalayan Continental Crust as Revealed by Integrated Petrological and Geodynamic Modeling

    Science.gov (United States)

    Palin, R. M.; Reuber, G. S.; White, R. W.; Kaus, B. J. P.; Weller, O. M.

    2017-12-01

    The Tso Morari massif, northwest India, is one of only two regions in the Himalayan Range that exposes subduction-related ultrahigh-pressure (UHP) metamorphic rocks. The tectonic evolution of the massif is strongly debated, however, as reported pressure estimates for peak metamorphism range between 2.4 GPa and 4.8 GPa. Such ambiguity hinders effective lithospheric-scale modeling of the early stages of the orogen's evolution. We present the results of integrated petrological and geodynamic modeling (Palin et al., 2017, EPSL) that provide new quantitative constraints on the prograde-to-peak pressure-temperature-time (P-T-t) path, and predict the parageneses that felsic and mafic components of the massif crust should have formed under equilibrium conditions. Our model shows that peak P-T conditions of 2.6-2.8 GPa and 600-620 °C, representative of subduction to 90-100 km depth (assuming lithostatic pressure), were reached just 3 Myr after the onset of collision. These P-T-t constraints correlate well with those reported for similar UHP eclogite in the along-strike Kaghan Valley, Pakistan, suggesting that the northwest Himalaya contains dismembered remnants of a 400-km long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. The extremely high pressures (up to 4.8 GPa) for peak metamorphism reported by some workers are likely to be unreliable due to thermobarometry having been performed on minerals that did not represent equilibrium assemblages. Furthermore, key high-P minerals predicted to form in subducted Tso Morari continental crust (e.g. jadeite, Mg-rich garnet) are absent from natural samples in the region, reflecting the widespread metastable preservation of lower-pressure protolith assemblages during subduction and exhumation. This result questions the reliability of geodynamic simulations of orogenesis that are commonly predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.

  4. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    Science.gov (United States)

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a

  5. First insights on the molybdenum-copper Bled M'Dena complex (Eglab massif, Algeria)

    Science.gov (United States)

    Lagraa, Karima; Salvi, Stefano; Béziat, Didier; Debat, Pierre; Kolli, Omar

    2017-03-01

    Molybdenum-Copper showings in the Eglab massif (eastern part of the Reguibat rise of Algeria), are found in quartz-monzodiorite and granodiorite of the Bled M'Dena complex, a Paleoproterozoic circular structure of ∼5 km in diameter, comprising volcanic and intrusive suites. The latter consist of quartz-diorite, quartz-monzodiorite and granodiorite with a metaluminous normative composition. They display an "adakitic character" with moderate light rare-earth element (LREE) enrichment, minor Eu anomalies, high Sr/Y ratio and low Yb concentration, suggestive of a hydrous, arc magma of volcanic-arc affinity. The mineralization occurs mostly in quartz + molybdenite + chalcopyrite stockwork veins marked by widespread propylitic alteration along the selvages. Molybdenite and chalcopyrite are commonly associated with calcite, which precipitated at relatively late stages of the hydrothermal alteration. Fluid inclusions related to the mineralization stage, range from aqueous to aqueous-carbonic to solid bearing. The latter inclusions have the highest homogenization temperature (up to ∼400 °C), are salt saturated, and commonly contain molybdenite and/or chalcopyrite crystals. The petrology and geochemistry of the host rocks, the style of the hydrothermal alteration, the ore mineral associations, and the characteristics of the fluid inclusions, are all coherent in indicating that the Bled M'Dena represents a Paleoproterozoic porphyry style Mo mineralization, which is far unreported in the African continent.

  6. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    Science.gov (United States)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates

  7. Petrology, Palynology, and Geochemistry of Gray Hawk Coal (Early Pennsylvanian, Langsettian in Eastern Kentucky, USA

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2015-09-01

    Full Text Available This study presents recently collected data examining the organic petrology, palynology, mineralogy and geochemistry of the Gray Hawk coal bed. From the Early Pennsylvanian, Langsettian substage, Gray Hawk coal has been mined near the western edge of the eastern Kentucky portion of the Central Appalachian coalfield. While the coal is thin, rarely more than 0.5-m thick, it has a low-ash yield and a low-S content, making it an important local resource. The Gray Hawk coal palynology is dominated by Lycospora spp., and contains a diverse spectrum of small lycopods, tree ferns, small ferns, calamites, and gymnosperms. The maceral assemblages show an abundance of collotelinite, telinite, vitrodetrinite, fusinite, and semifusinite. Fecal pellet-derived macrinite, albeit with more compaction than is typically seen in younger coals, was observed in the Gray Hawk coal. The minerals in the coal are dominated by clay minerals (e.g., kaolinite, mixed-layer illite/smectite, illite, and to a lesser extent, pyrite, quartz, and iron III hydroxyl-sulfate, along with traces of chlorite, and in some cases, jarosite, szomolnokite, anatase, and calcite. The clay minerals are of authigenic and detrital origins. The occurrence of anatase as cell-fillings also indicates an authigenic origin. With the exception of Ge and As, which are slightly enriched in the coals, the concentrations of other trace elements are either close to or much lower than the averages for world hard coals. Arsenic and Hg are also enriched in the top bench of the coal and probably occur in pyrite. The elemental associations (e.g., Al2O3/TiO2, Cr/Th-Sc/Th indicate a sediment-source region with intermediate and felsic compositions. Rare metals, including Ga, rare earth elements and Ge, are highly enriched in the coal ashes, and the Gray Hawk coals have a great potential for industrial use of these metals. The rare earth elements in the samples are weakly fractionated or are characterized by heavy

  8. Patterns of seismicity in a complex volcanic crisis at Brava, Cabo Verde

    Science.gov (United States)

    Faria, B. V. E.; Day, S. J.

    2017-12-01

    Brava is the smallest inhabited island of the Cape Verde archipelago, with an area of 62.5 km2 and a population of 6000. Geologically recent volcanism on Brava has produced lava (including carbonatite) flows, phonolite lava domes, pyroclastic density current deposits, and many phreatomagmatic craters in central Brava (where most of the population lives). Recent geological studies indicate that last eruptive period is about 1000 years old. Brava has experienced recurrent seismic swarms and felt earthquakes. The first permanent seismic station was installed in 1999, and a small network in 2011. From then until 2015 the seismic rate was near constant with sporadic peaks. Most seismic events were located offshore and associated with submarine volcanoes. However, the pattern of activity has been very different since 25th September 2015, when a M4 earthquake occurred in the submarine slopes of Brava. Subsequently, the seismicity became very complex with frequent volcano-tectonic (VT) earthquake swarms beneath Brava itself, with a few offshore events in some months. In addition, long-period, hybrid and hydrothermal events and likely very weak volcanic tremor episodes have been recorded. These non-VT events support the hypothesis that magma emplacement beneath Brava is at the origin of the abnormal seismic activity. The VT swarms indicate deformation around the magma body and possible dike intrusions, and there are indications of perturbation of a shallow hydrothermal system. The largest swarm occurred on the 1st and 2nd August 2016, with almost 1000 shallow events, including a M3.7 VT earthquake, medium-frequency events and weak volcanic tremor. An alert for a possible eruption was issued and a village (about 300 people) was evacuated as a precaution. Distributions of the cumulative number of events with depth in the main swarms suggest that the hypocenters are becoming shallower with time. Thus a possible eruption in the near future cannot be ruled out.

  9. Stratigraphy and Petrology of the Grande Soufriere Hills Volcano, Dominica, Lesser Antilles

    Science.gov (United States)

    Daly, G.; Smith, A. L.; Garcia, R.; Killingsworth, N.

    2007-12-01

    O2, Sr, V, and Sc and increasing values for Na2O, K2O, Ba, Rb, and Zr with increasing silica. Samples from the megabreccia can be chemically distinguished from the younger rocks of this center. Petrologic models suggest that the younger rocks from the Grand Soufriere Hills can be produced by fractional crystallization of basaltic magma such as those erupted from other centers (such as Morne Anglais to the west). Minor variations within this suite of andesites can be related to upper crustal fractionation of phenocryst phases.

  10. Mineralogical aspects of the laterites of Maicuru

    International Nuclear Information System (INIS)

    Lemos, V.P.; Costa, M.C. da

    1989-01-01

    This paper presents the prelimary mineralogical data of the weathering materials derived from the alkaline-ultramafic-carbonatitic Maicuru complex, State of Para. These material include several minerals species: iron, titanium and aluminium oxides/hydroxides as aluminous goethite, geothite, hematite, maghemite, lepidocrocite, anatase; and gibbsite; clay minerals of the smectite, chlorite, vermiculite and kaolinite groups and interstratified chlorite-smectite, mica-vermiculite, vermiculite-chlorite and Kaolinite-smectite; and aluminous phosphates of the crandalite group, wardite, augelite, senegalite, wavelite and variscite. The principal characteristics of these minerals were obtained by X-ray diffraction, optical methods, electron probe microanalysis, energy dispersive scanning electron microscope, X-ray fluorescence, atomic absorption, inductively coupled plasma-ICP source spectrometry and colorimetric methods. (author) [pt

  11. Petrology of forearc basalt-related isotropic gabbros from the Bonin Ridge, Izu-Bonin forearc

    Science.gov (United States)

    Garcia, S. E.; Loocke, M. P.; Snow, J. E.

    2017-12-01

    The early arc volcanic rocks exposed on the Bonin Ridge (BR), a large forearc massif in the Izu-Bonin arc, have provided us with a natural laboratory for the study of subduction initiation and early arc development. The BR has been the subject of focused sampling by way of dredging, diving, and drilling (IODP EXP352) expeditions which have revealed a composite stratigraphy consisting, from bottom to top, of intercalated peridotites and gabbros, isotropic gabbros, sheeted dykes, and a lava sequence which transitions from forearc basalt (FAB) to more arc-like volcanics up section. Although little has been published regarding the moho-transition zone rocks of the BR in comparison to the volcanic rocks, even less work has been published regarding the isotropic gabbros recovered in close association with FABs. Ishizuka et al. (2011) determined that the isotropic gabbros are compositionally and temporally related to the FABs. We provide the first petrologic characterization, including petrography and electron probe microanalysis, of a suite of FAB-related gabbros recovered by dredge D42 of the 2007 R/V Hakuho Maru KH07-02 dredging cruise. Preliminary petrographic observations of the fourteen thin sections reveal that all of the samples contain variable amounts of relict orthopyroxene and consist of five disseminated oxide gabbros, 5 oxide gabbros, and 2 gabbros. We note that all of the D42 gabbros exhibit strong textural variability akin to the varitextured gabbros described in the dyke-gabbro transition of ophiolites (e.g., MacLeod and Yaouancq, 2000). Geochemical data from this critically understudied horizon have the potential to inform regarding the nature of crustal accretion during subduction initiation and the formation, migration, and evolution of FABs. Further, with many authors comparing the volcanic record and crustal stratigraphy of the BR to ophiolites (e.g., Ishizuka et al., 2014), these data would provide another in situ analogue for comparison with the

  12. Genesis and petrology of Late Neoproterozoic pegmatites and aplites associated with the Taba metamorphic complex in southern Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdelfadil, K.M.; Asimow, P.D.; Azer, M.K.; Gahlan, H.A.

    2016-07-01

    We present new field, petrographical, mineralogical and geochemical data from late Neoproterozoic pegmatites and aplites in southern Sinai, Egypt, at the northernmost limit of the Arabian-Nubian Shield. The pegmatites cross-cut host rocks in the Taba Metamorphic Complex (TMC) with sharp contacts and are divided into massive and zoned pegmatites. Massive pegmatites are the most common and form veins, dykes and masses of variable dimensions; strikes range mainly from E-W through NW-SE to N-S. Mineralogically, the massive pegmatites are divided into K-feldspar-rich and albite-rich groups. Zoned pegmatites occur as lenses of variable dimensions, featuring a quartz core, an intermediate zone rich in K-feldspars and an outer finer-grained zone rich in albite. All compositions are highly evolved and display geochemical characteristics of post-collisional A-type granites: high SiO2, Na2O+K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga and Y alongside low CaO, MgO, Ba and Sr. They are rich in Rare Earth Elements (REE) and have extreme negative Eu anomalies (Eu/Eu*= 0.03–0.09). A genetic linkage between the pegmatites, aplites and alkali granite is confirmed by their common mild alkaline affinity and many other geochemical characteristics. These pegmatites and aplites represent the last small fraction of liquid remaining after extensive crystallization of granitic magma, injected along the foliation and into fractures of the host metamorphic rocks. The extensional tectonic regime and shallow depth of emplacement are consistent with a post-collisional environment. (Author)

  13. A coupled petrological-geodynamical model to investigate the evolution of crustal magmatic systems

    Science.gov (United States)

    Kaus, B. J. P.; Rummel, L.; White, R. W.

    2017-12-01

    The evolution of crustal magmatic systems can be analyzed from different physical and chemical perspectives. Most previous work focus either on the petrological side (considering thermal effects and ignoring mechanics), or on the mechanical evolution (assuming a fixed melt chemistry). Here, we consider both by combining a 2D finite element code, MVEP2, with a thermodynamic modelling approach (Perple_X). Density, melt fraction and the chemical composition of the liquid and solid phase are computed for different starting rock compositions and the evolving chemistry is tracked on markers via 10 main oxides (SiO2-TiO2-Al2O3-Cr2O3-MgO-FeO-CaO-Na2O-K2O-H2O). As soon as the local chemistry changes due to melt extraction, new phase diagrams are computed based on the residual solid chemistry for the deflated magma chamber or on the liquid chemistry for newly generated magma filled fractures. To investigate the chemical evolution in magma chambers and magma filled fractures, we inject mafic sills periodically at varying depth levels into the continental crust. The initial sill injections are focused in either one or two main zones in the crust and may interact with each other. The formation of magma filled fractures from this partially molten zone is tracked with a semi analytical dike initiation algorithm that forms new dikes as a function of the local stress field above the partially molten region and subsequently depletes and compacts the magma source region. Dike generation is thus affected by the background strain rate, amount and depth of melt accumulations as well as parameters that control the plastic and viscous behaviour of the crust (e.g. cohesion, viscous creep flow low etc.). Results show that magma filled fractures triggered by sill injections preferentially form under extensional conditions, particularly within the middle crust (in ca. 25 km depth). Magma chambers in the lower continental crust, on the other hand, are stable over a longer period of time due a

  14. Organic petrological and organic geochemical characterisation of the Tertiary coal-bearing sequence of Batu Arang, Selangor, Malaysia

    Science.gov (United States)

    Wan Hasiah, Abdullah; Abolins, Peter

    1998-08-01

    The Tertiary coal-bearing sequence at Batu Arang in Selangor, Peninsular Malaysia consists of a sandstone-coal-oil shale facies assemblage. A detailed organic petrological and organic geochemical study was carried out on several organic-rich sediments from this sequence. The oil shales are dominated by Botryococcus-derived telalginite and Pediastrum-derived lamalginite. The coals, hypautochthonous in origin, are mainly duroclarite-type, although other minor microlithotypes also occur. Alginite is not observed in the coals, but other liptinitic constituents are very common, particularly thin-walled cutinite and sporinite. The oil shales and the coals are thermally immature. This immaturity has a considerable influence on the biomarker distributions, particularly so on the triterpanes which are dominated by C 31αβ 22R and C 30ββ compounds. Interestingly, for Tertiary aged sediments of continental origin, the diagnostic biomarker compounds such as 18 α(H)-oleanane and bicadinanes, normally linked to the higher land plant group of angiosperms, are not observed in the samples analysed. Tricyclic terpanes occur only in very low relative abundance or are virtually absent. A clear distinction, however, in the biomarker distributions of the shales and the coals/carbargilite can be made based upon the distribution of C 27-C 29 regular steranes: the shales, with a source input being predominantly planktonic algae, are dominated by 5 α(H),14 α(H),17 α(H) 20R cholestane, while the coals/carbargilites, with a source input consisting mainly of higher plant material, are dominated by 5 α(H),14 α(H),17 α(H) 20R ethyl cholestane. The depositional environment of the Batu Arang coal-bearing sequence is interpreted as varying from an alluvial flood plain peat-swamp to fluvio-lacustrine depositional setting.

  15. A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data

    Science.gov (United States)

    Manuella, Fabio Carmelo; Brancato, Alfonso; Carbone, Serafina; Gresta, Stefano

    2013-05-01

    An interdisciplinary approach is proposed to investigate the structure and composition of the Permo-Triassic basement of the Hyblean Plateau and Sicily Channel. Comparisons of published data on peridotites and spinels from different geodynamic settings, and new data on Hyblean spinels, reveal the affinity of the Hyblean basement with an ultra-slow spreading oceanic lithosphere, rather than with the Africa continental plate. Similar results derive from volcanic rocks of the studied area, whose Nb/Yb vs. Th/Yb ratio hints at their affinity with the MORB-OIB array, even excluding any possible contamination with continental crust lithologies, unlike North Africa lavas. The comparison of He isotopic ratios from Hyblean Plateau and Sicily Channel highlights their similarity with values measured in fluids emitted from the Rainbow and Logatchev hydrothermal fields in Mid-Atlantic Ridge. Based on petrologic and geochemical evidence for the oceanic nature of the Permo-Triassic basement in southeastern Sicily, and the occurrence of serpentinized harzburgite xenoliths in Hyblean diatremes, the P-wave velocity model proposed for the investigated area is used to estimate lithospheric pressure, density, degree of serpentinization and magnetic susceptibility also considering both abyssal and ophiolitic serpentinites. The resulting values suggest the presence of peridotites affected by different degrees of serpentinization (35-100 vol.%) ranging to a depth of 8-19 km. As a whole, combined seismic, gravimetric and magnetic data indicate the presence of a marked anomaly at a depth of about 19 km. As a consequence, we consider the Moho discontinuity as a serpentinization front, by fixing the relative top at a depth of 19 km. Our results suggest that the oceanic lithospheric model for southeastern Sicily could be broadened to the Sicily Channel, which is possibly correlated to the adjacent Ionian oceanic basin, inferred as belonging to the Oman-Iraq-Levantine-Sicily seaway.

  16. Petrological study of the eastern part of Rio Maria batholith located in the SE of Para State

    International Nuclear Information System (INIS)

    Medeiros, H. de.

    1987-01-01

    This work is a petrological and geochronological study in the eastern part of Rio Maria batholith located in the SE of Para State (Brazil), in which granodioritic composition predominates. Selected samples including all varieties present in the eastern portion of Rio Maria granodioritic batholith were analyzed for major, minor and some trace elements. The results suggest two differentiation trends. The first is (BHGd + HBGd) - HBM sub(z)G, with decrease in CaO, TiO sub(2), Fe total, MgO and Sr contents, whereas K2O and Rb increase. The second trend is (BHGd + HBGd) - BGd, where the BGd have the highest values of SiO sub(2), and low CaO, TiO sub(2), Fe total, MgO and Sr contents. This results are in agreement with that obtained to the calc-alkaline rock series. Six selected samples, including all varieties, were dated by the Rb/Sr Whole-rock method, producing a isochronic age of 2564 +- 68 m.y. with an initial Sr sup(87)/Sr sup(86) ratio of 0.70288 +- 00092. The crystallization sequence proposed to the BHGd and BHGd, when correlated to the experimental results obtained in the rocks of granodioritic composition, suggests that the magma crystallization was in low pressure conditions (2 to 4kb). The temperature interval would be between 950 and +- 700 sup(0)C. The best explanation to the granodioritic magma origin is by partial fusion in the crustal base, with contribution of mantle material or not. The association of the rock units, including granodiorites, trondhjemites, meta-volcan-sedimentary sequences and gneisses of tonalitic to granodioritic composition observed in the Rio Maria region, and the Archaeyan ages obtained by the Rb/Sr method suggest that this region can be correlated with granite-greenstone terrains exposed in the Rhodesian, Kaapvaal and western Australia cratons. (author)

  17. Organic petrology and geochemistry of Eocene Suzak bituminous marl, north-central Afghanistan: Depositional environment and source rock potential

    Science.gov (United States)

    Hackley, Paul C.; Sanfilipo, John

    2016-01-01

    Organic geochemistry and petrology of Eocene Suzak bituminous marl outcrop samples from Madr village in north-central Afghanistan were characterized via an integrated analytical approach to evaluate depositional environment and source rock potential. Multiple proxies suggest the organic-rich (TOC ∼6 wt.%) bituminous marls are ‘immature’ for oil generation (e.g., vitrinite Ro  1) indicating organic input from marine algae and/or bacterial biomass, and sterane/hopane ratios are low (0.12–0.14). Monoaromatic steroids are dominated by C28clearly indicating a marine setting. High gammacerane index values (∼0.9) are consistent with anoxia stratification and may indicate intermittent saline-hypersaline conditions. Stable C isotope ratios also suggest a marine depositional scenario for the Suzak samples, consistent with the presence of marine foraminifera including abundant planktic globigerinida(?) and rare benthic discocyclina(?) and nummulites(?). Biomarker 2α-methylhopane for photosynthetic cyanobacteria implies shallow photic zone deposition of Madr marls and 3β-methylhopane indicates presence of methanotrophic archaea in the microbial consortium. The data presented herein are consistent with deposition of Suzak bituminous marls in shallow stratified waters of a restricted marine basin associated with the southeastern incipient or proto-Paratethys. Geochemical proxies from Suzak rock extracts (S content, high polar content, C isotopes, normal (αααR) C27–29 steranes, and C29/C30 and C26/C25 hopane ratios) are similar to extant data from Paleogene oils produced to the north in the Afghan-Tajik Basin. This observation may indicate laterally equivalent strata are effective source rocks as suggested by previous workers; however, further work is needed to strengthen oil-source correlations.

  18. Petrology of blueschist and meta-greywacke along the Turkmeni-Ordib fault (Turkmeni area, SE of Anarak

    Directory of Open Access Journals (Sweden)

    Fereshteh Bayat

    2015-10-01

    Full Text Available Introduction The occurrence of blueschist metamorphic facies is believed to mark the existence of former subduction zones. This facies is represented in the main constituents of subduction-accretion complexes, where it occurs in separate tectonic sheets, imbricated slices, lenses, or exotic blocks within a serpentinite mélange (Volkova et al., 2011. The evidence of the presence and maturity of Paleo- Tethys oceanic crust in the CEIM (define this in Paleo-Tethys branches, subduction and collision has been studied by various authors (Bagheri, 2007; Zanchi et al., 2009; Bayat and Torabi, 2011; Torabi 2011. Late Paleozoic blueschists have recognized in the western part of the CEIM (e. g. Anarak, Chupanan and Turkmeni in linear trends. Metamorphic rocks of the Turkmeni area (SE of Anarak are composed of blueschist and meta-greywacke and are situated along the Turkmeni-Ordib fault associated with Paleozoic rock units and serpentinized peridotite bodies. Turkmeni blueschist and meta-greywackes have not been studied by previous workers. The Turkmeni blueschists consist of albite, winchite, actinolite and epidote. Granoblastic, nematoblastic and lepidoblastic are main textures in these rocks. Winchite is found in the matrix and around epidote grains. This sodic-calcic amphibole serves as an index mineral in blueschist facies. Actinolite and epidote formed during retrograde metamorphism of blueschists in the greenschist facies. The mineral assemblage of albite, epidote, chlorite and phengite ± garnet is present in meta-greywackes in the Turkmeni blueschists. Veins of garnet, muscovite, quartz and opaque minerals are extensive in these rocks. Epidote and chlorite formed in meta-greywackes by retrograde metamorphism in the greenschist facies. The aim of the present study is to determine the petrological and geochemical characteristics, P-T condition of blueschists and meta-greywackes, as well as the geotectonic setting of primary basaltic rocks of the

  19. Petrography and petrology of Quaternary volcanic rocks from Ghezel Ghaleh, northwest Qorveh

    Directory of Open Access Journals (Sweden)

    Alireza Bajelan

    2014-10-01

    Full Text Available Introduction In the east and northeast of Sanandaj in the Qorveh-Bijar-Takab axis, there are series of basaltic composition volcanoes with Quaternary age. The study area is part of the Sanandaj-Sirjan zone and is located between 47°52' and 47°57' E longitudes and 35°26 and '35°30' N latitudes. Due to the location of the volcanic cone on Pliocene clastic sediments and Quaternary travertine, the age of these volcanoes is considered to be Quaternary. The cones mostly consist of low scoria, ash, volcanic bombs, lapilli deposits and basaltic lava (Moein Vaziri and Aminsobhani, 1985. Petrological and geochemical studies have been carried out to evaluate Quaternary magmatism in the area and to determine the nature of the lithological characteristics, such as the evaluation of source rocks and magma type, degree of partial melting and the tectonic setting of Ghezel Ghaleh rocks (Moein Vaziri, 1997. Simplified geological map of the study area is characterized by ER-Mapper software. Materials and methods In the course of field studies in the region, 40 samples were taken, 30 thin sections were prepared and polished. XRD analyses were performed on some whole rock samples. All major, minor and trace elements were assessed by ICP-MS at Lab Weft Laboratory in Australia. Results Based on the classification of structural zones, the area is located in the Sanandaj-Sirjan zone, hundred kilometers away from the main Zagros thrust along the NW-SE direction. After early Cimmerian orogeny, andesitic volcanic activity took place (Moein Vaziri and Aminsobhani, 1985. A major secondary mineral in these rocks is iddingsite, formed by hydration and oxidation of the olivine (Shelley, 1993. According to SiO2 against Na2O + K2O (TAS diagram (Irvine and Baragar , 1971 and cationic R1 and R2 diagram (De La Roche et el., 1980, volcanic rocks of the area indicate alkaline series. Discussion To obtain more information on the tectonic setting of these rocks, the Zr/Y-Zr diagram

  20. Composition of uppermost mantle beneath the Northern Fennoscandia - numerical modeling and petrological interpretation

    Science.gov (United States)

    Virshylo, Ivan; Kozlovskaya, Elena; Prodaivoda, George; Silvennoinen, Hanna

    2013-04-01

    Studying of the uppermost mantle beneath the northern Fennoscandia is based on the data of the POLENET/LAPNET passive seismic array. Firstly, arrivals of P-waves of teleseismic events were inverted into P-wave velocity model using non-linear tomography (Silvennoinen et al., in preparation). The second stage was numerical petrological interpretation of referred above velocity model. This study presents estimation of mineralogical composition of the uppermost mantle as a result of numerical modeling. There are many studies concerning calculation of seismic velocities for polymineral media under high pressure and temperature conditions (Afonso, Fernàndez, Ranalli, Griffin, & Connolly, 2008; Fullea et al., 2009; Hacker, 2004; Xu, Lithgow-Bertelloni, Stixrude, & Ritsema, 2008). The elastic properties under high pressure and temperature (PT) conditions were modelled using the expanded Hook's law - Duhamel-Neumann equation, which allows computation of thermoelastic strains. Furthermore, we used a matrix model with multi-component inclusions that has no any restrictions on shape, orientation or concentration of inclusions. Stochastic method of conditional moment with computation scheme of Mori-Tanaka (Prodaivoda, Khoroshun, Nazarenko, & Vyzhva, 2000) is applied instead of traditional Voigt-Reuss-Hill and Hashin-Shtrikman equations. We developed software for both forward and inverse problem calculation. Inverse algorithm uses methods of global non-linear optimization. We prefer a "model-based" approach for ill-posed problem, which means that the problem is solved using geological and geophysical constraints for each parameter of a priori and final models. Additionally, we are checking at least several different hypothesis explaining how it is possible to get the solution with good fit to the observed data. If the a priori model is close to the real medium, the nearest solution would be found by the inversion. Otherwise, the global optimization is searching inside the

  1. Chemical petrology of polymetamorphic ultramafic rocks from Galicia, NW Spain

    NARCIS (Netherlands)

    Maaskant, P.

    1970-01-01

    The investigated polymetamorphic peridotites occur associated with metabasic rocks in several complexes of probably Precambrian age in the northern part of the Hesperian massif (Iberian peninsula). Spinel-clinopyroxene-, spinel-pargasite-, spinel-hornblende- and chlorite-amphibole-peridotites,

  2. New isotopic and field evidence for the ages and distribution of Archaean rocks in east Antarctica

    International Nuclear Information System (INIS)

    Kinny, P.D.; Delor, C.P.

    1990-01-01

    The Precambrian shield of East Antarctica is composed of a number of recognised Archaean cratonic nuclei surrounded by Proterozoic metamorphic complexes. Poor exposure, inaccessibility and the effects of multiple tectonothermal overprints combine to confound the knowledge of the early history of these terranes. Against this, it is shown how recent advances in zircon geochronology allied with new petrological, geochemical and field observations have resulted in major revisions to the chronostratigraphy of several key areas, including Napier Complex of Enderby Land, Vestfold Hills and Rauer Group. 11 refs

  3. Facilitating Research and Learning in Petrology and Geochemistry through Classroom Applications of Remotely Operable Research Instrumentation

    Science.gov (United States)

    Ryan, J. G.

    2012-12-01

    Bringing the use of cutting-edge research tools into student classroom experiences has long been a popular educational strategy in the geosciences and other STEM disciplines. The NSF CCLI and TUES programs have funded a large number of projects that placed research-grade instrumentation at educational institutions for instructional use and use in supporting undergraduate research activities. While student and faculty response to these activities has largely been positive, a range of challenges exist related to their educational effectiveness. Many of the obstacles these approaches have faced relate to "scaling up" of research mentoring experiences (e.g., providing training and time for use for an entire classroom of students, as opposed to one or two), and to time tradeoffs associated with providing technical training for effective instrument use versus course content coverage. The biggest challenge has often been simple logistics: a single instrument, housed in a different space, is difficult to integrate effectively into instructional activities. My CCLI-funded project sought primarily to knock down the logistical obstacles to research instrument use by taking advantage of remote instrument operation technologies, which allow the in-classroom use of networked analytical tools. Remote use of electron microprobe and SEM instruments of the Florida Center for Analytical Electron Microscopy (FCAEM) in Miami, FL was integrated into two geoscience courses at USF in Tampa, FL. Remote operation permitted the development of whole-class laboratory exercises to familiarize students with the tools, their function, and their capabilities; and it allowed students to collect high-quality chemical and image data on their own prepared samples in the classroom during laboratory periods. These activities improve student engagement in the course, appear to improve learning of key concepts in mineralogy and petrology, and have led to students pursuing independent research projects, as

  4. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T. (Ehime U); (WHOI); (UC); (ANU)

    2008-10-08

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as

  5. Experimental and petrological constraints on long-term magma dynamics and post-climactic eruptions at the Cerro Galán caldera system, NW Argentina

    Science.gov (United States)

    Grocke, Stephanie B.; Andrews, Benjamin J.; de Silva, Shanaka L.

    2017-11-01

    Cerro Galán in NW Argentina records > 3.5 Myr of magmatic evolution of a major resurgent caldera complex. Beginning at 5.72 Ma, nine rhyodacitic ignimbrites (68-71 wt% SiO2) with a combined minimum volume of > 1200 km3 (Dense Rock Equivalent; DRE) have been erupted. The youngest of those ignimbrites is the eponymous, geochemically homogenous, caldera-forming 2.08 ± 0.02 Ma Cerro Galán Ignimbrite (CGI; > 630 km3 DRE). Following this climactic supereruption, structural and magmatic resurgence led to the formation of a resurgent dome and post-climactic lava domes and their associated pyroclastic deposits. A clear transition from amphibole to sanidine-bearing magmas occurred during the evolution of Cerro Galán and is inferred to represent a shallowing of the magma system. We test this hypothesis here using experimental phase equilibria. We conducted a series of phase equilibria experiments on the post-climactic dome lithologies under H2O-saturated conditions using cold seal Waspaloy pressure vessels with an intrinsic log fO2 of NNO + 1 ± 0.5 across a temperature-pressure range of 750-900 °C and 50-200 MPa (PH2O = Ptotal), respectively. Petrologic and geochemical analysis of the post-climactic lithologies shows that the natural phase assemblage (plagioclase + quartz + biotite + sanidine + Fe-Ti oxides ± apatite ± zircon) is stable at history of Cerro Galán is informed through a detailed investigation of the textural differences among the post-climactic dome lithologies, and a comparison of those textures with previously published decompression experiments. These suggest that the highly vesiculated, pumiceous clasts with rare microlites represent magma stored within the core of the lava dome that decompressed relatively rapidly (0.003-0.0003 MPa s-1) and evolved via closed system degassing. Resulting over-pressure of the dome may have triggered superficial explosion. In contrast, dense clasts with abundant crystalline silica precipitates represent more typical

  6. A petrological study of Paleoarchean rocks of the Onverwacht Group: New insights into the geologic evolution of the Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Grosch, E. G.; Mcloughlin, N.; Abu-Alam, T. S.; Vidal, O.

    2012-12-01

    This study presents a multi-disciplinary petrological approach applied to surface samples and a total of 800 m of scientific drill core that furthers our understanding of the geologic evolution of the ca. 3.5 to 3.2 Ga Onverwacht Group of the Barberton greenstone belt (BGB), South Africa. Detrital zircon grains in coarse (diamictite) to fine-grained clastic sedimentary rocks of the Noisy formation (drill core KD2a) that unconformably overlies the volcanic ca. 3472 Ma Hooggenoeg Formation, are investigated by laser ablation LA-ICP-MS to constrain their 207Pb/206Pb ages for depositional age and provenance. A wide range in 207Pb/206Pb ages between ca. 3600 and 3430 Ma is reported, corresponding to surrounding TTG plutons and the ca.3667-3223 Ma Ancient Gneiss Complex. The youngest detrital zircon grain identified has an age of 3432 ± 10 Ma. Given the short time interval for a major change in geologic environment between ca. 3472 Ma and ca. 3432 Ma, it is argued here, that the Noisy formation is the earliest tectonic basin in the BGB, which developed during major tectonic uplift at ca. 3432 Ma. In the overlying ca. 3334 Ma Kromberg type-section, application of a chlorite thermodynamic multi-equilibrium calculation, dioctahedral mica hydration-temperature curve and pseudosection modelling, indicates a wide range in metamorphic conditions from sub-greenschist to the uppermost greenschist facies across the Kromberg type-section. A central mylonitic fuchsite-bearing zone, referred to as the Kromberg Section Mylonites, records at least two metamorphic events: a high-T, low-P (420 ± 30oC, sedimentary sequence contains detrital and diagenetic pyrites with a significant variation in Δ33S of -0.62 to +1.4‰ and δ34SCDT between -7.00 and +12.6‰ in the upper turbidite unit, to more narrow isotopic ranges with magmatic-atmospheric values in the underlying polymictitic diamictite. A sedimentary quartz-pyrite vein in the diamictite records the largest range and most negative

  7. Petrology and geochemistry of igneous inclusions in recent Merapi deposits

    DEFF Research Database (Denmark)

    Chadwick, J.P.; Troll, V.R.; Waight, Tod Earle

    2013-01-01

    Recent basaltic-andesite lavas from Merapi volcano contain abundant and varied igneous inclusions suggesting a complex sub-volcanic magmatic system for Merapi volcano. In order to better understand the processes occurring beneath Merapi, we have studied this suite of inclusions by petrography, ge...

  8. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  9. Proceedings of 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analytical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  10. Research on uranium and thorium elements exploration through the study of petrography, petrology and geophysical method in the Saghand Area (Central Iran) Islamic Republic of Iran

    International Nuclear Information System (INIS)

    Iranmanesh, J.; Fattahi, V.; Raziani, S.

    2014-01-01

    This study is a research on uranium and thorium exploration by use of the petrography, petrology and radiometric data in the Saghand area, Central Iran plateau. The lithologies of this area comprise of granite and metasomatized granite. As a result of metasomatic process, uranium and thorium bearing minerals such as davidite and alanite were formed. Sericitization and albitization are the main alterations detected in the study area and thorium mineralization is more common in albitization. By investigation of the chemical classification, non-radioactive specimens, rock types include: diorite and granodiorite, while radioactive specimens consist of gabbroic rocks (basalt). According to the magma source graphs, these rocks formed by calc-alkaline series magma. A scintillometer and spectrometer (MGS-150) were used for radiometric data acquisition. 1001 data points have been obtained from 11 profiles and total counts for, K, U, Th were measured. After primary data processing, data logarithms were calculated for normalizing, and the radiometric data show that uranium and thorium enrichment is more than potassium, while thorium and uranium enrichment are approximately equal. After data integration, two probable anomalies were determined in northwest and northeast parts of the study area. (author)

  11. New data on boltwoodite

    International Nuclear Information System (INIS)

    Bayushkin, I.M.; Butler, A.S.; Gurvich, M.Yu.

    1984-01-01

    New data on boltwoodite (uranyl silicate) discovered in the oxidation zone of carbonatite massif of Pliocene-Quaternary age in Afghanistan are presented. The mineral is established by means of X-ray diffraction analysis. Parameters of the elementary cell of K-Na-boltwoodite essentially differ from those given earlier. The results of high-temperature X-ray diffraction analysis have revealed that water weakly bound and removing at t deg =130 deg and structurally bound partially removing from the mineral at t deg above 300 deg occurs in K-Na-boltwoodite. At heating up to 540 deg K-Na-boltwoodite passes the stage of amorphization and at further increase of temperature decrystallization of sodium, potassium uranates and minerals of complex composition (of vicsite type) is observed

  12. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    Science.gov (United States)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist 74, 896-901. Rønsbo, J.G. (2008): Apatite in the Ilímaussaq alkaline complex: Occurrence, zonation and compositional variation. Lithos 106 (1-2), 71-82.

  13. Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the western Mediterranean: An integrated model arising from petrological and geophysical data

    International Nuclear Information System (INIS)

    Frezzotti, Maria Luce; Peccerillo, Angelo; Panza, Giuliano

    2009-03-01

    We present an integrated petrological, geochemical, and geophysical model that offers an explanation for the present-day anomalously high non-volcanic deep (mantle derived) CO 2 emission in the Tyrrhenian region. We investigate how decarbonation or melting of carbonate-rich lithologies from a subducted lithosphere may affect the efficiency of carbon release in the lithosphere-asthenosphere system. We propose that melting of sediments and/or continental crust of the subducted Adriatic-Ionian (African) lithosphere at pressure greater than 4 GPa (130 km) may represent an efficient mean for carbon cycling into the upper mantle and into the exosphere in the Western Mediterranean area. Melting of carbonated lithologies, induced by the progressive rise of mantle temperatures behind the eastward retreating Adriatic-Ionian subducting plate, generates low fractions of carbonate-rich (hydrous-silicate) melts. Due to their low density and viscosity, such melts can migrate upward through the mantle, forming a carbonated partially molten CO 2 -rich mantle recorded by tomographic images in the depth range from 130 to 60 km. Upwelling in the mantle of carbonate-rich melts to depths less than 60 - 70 km, induces massive outgassing of CO 2 . Buoyancy forces, probably favored by fluid overpressures, are able to allow migration of CO 2 from the mantle to the surface, through deep lithospheric faults, and its accumulation beneath the Moho and within the lower crust. The present model may also explain CO 2 enrichment of the Etna active volcano. Deep CO 2 cycling is tentatively quantified in terms of conservative carbon mantle flux in the investigated area. (author)

  14. Deposits, petrology and mechanism of the 2010-2013 eruption of Kizimen volcano in Kamchatka, Russia

    Science.gov (United States)

    Auer, A.; Belousov, A.; Belousova, M.

    2018-04-01

    Kizimen volcano in Kamchatka is well known as a source of highly heterogeneous poorly mingled magmas ranging from dacites to basaltic andesites. In 2010-2013, the volcano produced its first historical magmatic eruption with the deposition of 0.27 km3 of block and ash pyroclastic flows accompanied by slow extrusion of a 200-m-thick, highly viscous (1010-1011 Pa s) block lava flow with a volume of 0.3 km3. The total volume of erupted magma comprised approximately 0.4 km3 DRE. We provide description of the eruption chronology, as well as the lithology and petrology of eruptive products. The erupted material is represented by banded dacite and high-silica andesite. The dacitic magma was formed during a long dormancy after the previous magmatic eruption several hundred years ago with mineral compositions indicating average pre-eruptive temperatures of 810 °C, fO2 of 0.9-1.6 log units above the nickel-nickel oxide (NNO) buffer and shallow crustal storage conditions at 123 MPa. The silica-rich andesite represents a hybrid magma, which shows signs of recent thermal and compositional disequilibrium. We suggest that the hybrid magma started to form in 1963 when a swarm of deep earthquakes indicated an input of mafic magma from depth into the 6-11-km-deep silicic magma chamber. It took the following 46 years until the magma filling the chamber reached an eruptible state. Poor mingling of the two melts is attributed to its unusually high viscosity that could be associated with the pre-eruptive long-term leakage of volatiles from the chamber through a regional tectonic fault. Our investigations have shown that shallow magma chambers of dormant volcanoes demonstrating strong persistent fumarolic activity can contain highly viscous, degassed magma of evolved composition. Reactivation of such magma chambers by injection of basic magma takes a long time (several decades). Thus, eruption forecasts at such volcanoes should include a possibility of long time lag between a swarm of

  15. Melt compositions and processes in the kimberlite provience of southern West Greenland

    DEFF Research Database (Denmark)

    Pilbeam, Llewellyn; Nielsen, Troels; Waight, Tod Earle

    2011-01-01

    ] whilst the silica content and H2O/CO2 ratio of the bulk rocks increases towards Sisimuit [2, 3]. A common carbonatite rich end-member is implicated [2]. This is in contrast to the prevailing dogma of a continuum from carbonatite though aillikite to kimberlite with increasing melting degree [4......]. The authors have demonstrated that a process of DFC (digestion fractional crystallisation) whereby the cognate olivine crystallisation is coupled to entrained xenocrystic orthopyroxene assimilation is a key process during the formation of the Majugaa occurrence of the Manitsoq region [5]. Mass balance...... considerations are here applied to the Majuagaa bulk rock in term of the DFC mechanism obtaining an estimate of parental melt and magma composition for the Majuagaa kimberlite. We use bulk rock major and trace element geochemistry together with mineral chemistry to investigate the range of melt compositions...

  16. Le volcanisme alcalin tertiaire et quaternaire du moyen atlas (Maroc): chronologie K/Ar et cadre géodynamique

    Science.gov (United States)

    Harmand, C.; Cantagrel, J. M.

    A geochronological survey (KAr) of the volcanic area of Mid Atlas and Haute Moulouya valley exhibits three stages of alkali magmatism. The oldest volcanics are located along the northern boundary of High Atlas mountains. Their ages are Eocene, and they are thought to be related to the syenite-carbonatite complex of Bou-Agrao. During mid and late Miocene (between 15 and 6 m.y.) a scattered volcanic activity occurs in the Mid Atlas, simultaneously with the Rif orogenesis and the uplift of central Morocco. Then, during mid Quaternary (1.8-0.5 m.y.) a volcanic chain is emplaced along a N. 170 trending axis almost 120 km long. During this compression phase, the magma uprising occurs in secondary tension fractured zones on account of the European-African plates collision.

  17. Hydroxycalciopyrochlore from a regionally metamorphic marble at Bližná, Southwestern Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Drábek, M.; Frýda, J.; Šarbach, M.; Skála, Roman

    2017-01-01

    Roč. 194, č. 1 (2017), s. 49-59 ISSN 0077-7757 Institutional support: RVO:67985831 Keywords : hydroxycalciopyrochlore * pyrochlore * carbonatite-like marble * marble * Moldanubian Varied Group Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Mineralogy Impact factor: 0.811, year: 2016

  18. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  19. Communication complexity and information complexity

    Science.gov (United States)

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  20. New evidence for the asthenospheric origin of the Cameroon Volcanic Line from 1D shear wave velocities

    CSIR Research Space (South Africa)

    Tokam, AP

    2013-10-01

    Full Text Available the mantle composition beneath Ethiopia and southern Brazil (Keranen et al., 2009; Julia et al., 2008). Many petrological studies of ultramafic orogenic massifs and ultramafic xenoliths along the CVL (mainly around Mount Cameroon and the Adamawa....N. and Oya, M. 2010. Petrological and chemical variability of peridotite xenoliths from the Cameroon Volcanic Line, West Africa: an evidence from Plume emplacement. Journal of Mineralogical and Petrological Sciences, 107, 57-69. McKenzie, D...

  1. Petrological and zircon evidence for the Early Cretaceous granulite-facies metamorphism in the Dabie orogen, China

    Science.gov (United States)

    Gao, Xiao-Ying; Zhang, Qiang-Qiang; Zheng, Yong-Fei; Chen, Yi-Xiang

    2017-07-01

    An integrated study of petrology, mineralogy, geochemistry, and geochronology was carried out for contemporaneous mafic granulite and diorite from the Dabie orogen. The results provide evidence for granulite-facies reworking of the ultrahigh-pressure (UHP) metamorphic rock in the collisional orogen. Most zircons from the granulite are new growth, and their U-Pb ages are clearly categorized into two groups at 122-127 Ma and 188 ± 2 Ma. Although these two groups of zircons show similarly steep HREE patterns and variably negative Eu anomalies, the younger group has much higher U, Th and REE contents and Th/U ratios, much lower εHf(t) values than the older group. This suggests their growth is associated with different types of dehydration reactions. The older zircon domains contain mineral inclusions of garnet + clinopyroxene ± quartz, indicating their growth through metamorphic reactions at high pressures. In contrast, the young zircon domains only contain a few quartz inclusions and the garnet-clinopyroxene-plagioclase-quartz barometry yields pressures of 4.9 to 12.5 kb. In addition, the clinopyroxene-garnet Fe-Mg exchange thermometry gives temperatures of 738-951 °C. Therefore, the young zircon domains would have grown through peritectic reaction at low to medium pressures. The younger granulite-facies metamorphic age is in agreement not only with the adjacent diorite at 125 ± 1 Ma in this study but also the voluminous emplacement of coeval mafic and felsic magmas in the Dabie orogen. Mineral separates from both mafic granulite and its adjacent diorite show uniformly lower δ18O values than normal mantle, similar to those for UHP eclogite-facies metaigneous rocks in the Dabie orogen. In combination with major-trace elements and zircon Lu-Hf isotope compositions, it is inferred that the protolith of mafic granulites shares with the source rock of diorites, both being a kind of mafic metasomatites at the slab-mantle interface in the continental subduction channel

  2. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis.

    Science.gov (United States)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi

    2017-04-01

    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in

  3. Petrological and geochemical studies of mantle xenoliths from La Palma, Canary Islands

    Science.gov (United States)

    Janisch, Astrid; Ntaflos, Theodoros

    2015-04-01

    .7 to 91.6. Cr# in sp extends from 50.4 to 87.9 suggesting that all pre-existing sp has been influenced by melt percolation. A striking feature of these rocks is the presence of intergranular glasses as an effect of melt percolation. The composition of the glasses is phonolitic, trachytic and basanitic. Such compositions correspond to the rock types found in the south of La Palma along the Cumbre Vieja ridge indicating that the xenoliths besides the modal metasomatism have experienced host basalt infiltration. The peculiarity of one sample is haüyne, localized within veins in association with amphibole, olivine and clinopyroxene. Evidently in this sample, the host-basalt infiltrated the mantle xenolith for haüyne is commonly part of basaltic lava. Equilibration temperatures calculated using two-pyroxene-thermometer of Brey and Koehler (1990) are estimated to be in the wide range of 726 to 1105°C at 1.5 GPa pressure, indicating that the studied xenoliths sample various depths of the oceanic lithosphere underneath the Canary Islands. References BREY, G.P. & KOEHLER, T. (1990). Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology 31, 1353-1378.

  4. Carbonate Melt Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    Science.gov (United States)

    Osinski, G. R.; Spray, J. G.; Lee, P.

    2002-01-01

    The target rocks at the Haughton impact structure, Canada, are predominantly carbonates. The well preserved allochthonous crater-fill deposits are reinterpreted here as being carbonatitic impact melt rocks. The implications of our findings will be discussed. Additional information is contained in the original extended abstract.

  5. Cattaraugus Creek Harbor, New York General Design Memorandum. Phase II. (Detailed Design). Volume II. Appendix E. Littoral Processes and Sedimentation in the Cattaraugus Embayment, New York. Appendix F. Sediment Transport in Cattaraugus Creek.

    Science.gov (United States)

    1976-03-01

    Cattaraugus Creek. Records of wells drilled through the glacial deposits indicate that the elevation of bedrock is between 200 and 300 feet below sea...noticeable, are sketched. An oblique, low-altitude aerial photo of the fall spit complex is shown in Plate 11. The water level at the Keene Marina staff gauge ...Hayes, M.O., and Boothroyd, J. C., 1972, Comparison of ridge and runnel systems in tidal and non-tidal environ- ments: Jour. Sedimentary Petrology , v

  6. Organic petrology of subbituminous carbonaceous shale samples from Chalaw, Kabul Province, Afghanistan: Considerations for paleoenvironment and energy resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C.; SanFilipo, John R. [U.S. Geological Survey, MS 956 National Center, Reston VA, 20192 (United States); Azizi, Gul Pacha [Afghanistan Geological Survey, Macroryan Square, Kabul (Afghanistan); Davis, Philip A. [U.S. Geological Survey, 520 N. Park Avenue, Tucson AZ, 85719 (United States); Starratt, Scott W. [U.S. Geological Survey, MS 910, 345 Middlefield Rd, Menlo Park CA, 94025 (United States)

    2010-04-01

    Neogene (?) subbituminous carbonaceous shale deposits from Chalaw, Afghanistan, were investigated through organic petrology techniques and standard coal analyses to determine paleoenvironment and potential for resource utilization. The Chalaw deposit, approximately 30 km southeast of Kabul, currently is exploited for brick making and domestic heating and cooking. Three multiple-bench channel samples of the mined bed at Chalaw were collected and evaluated. The presence of significant huminite (ranging from 0.2 to 59.0 vol.%, mineral-inclusive basis) is suggestive of a terrestrial lignin-rich precursor plant material. Measured reflectance values of 0.38-0.55% indicate subbituminous rank. This rank suggests burial depths of approximately 1500 m and maximum temperatures of approximately 50 C. Structured liptinite macerals generally are absent except for some fluorescing morphologies interpreted to be poorly-preserved root cork suberinite. Sponge spicule bioliths including gemmoscleres and megascleres are common. These petrographic observations, in addition to high mineral matter content (33 to > 95 vol.%), medium to high sulfur content (2.1-11.5 wt.%, dry basis; db), and the presence of common gastropod? shell fragments and an aragonite-needle chalk bed are consistent with, but not directly indicative of, a marginal marine or estuarine mangrove depositional environment. However, additional data are necessary to confirm this hypothesis and deposition in a freshwater environment cannot be ruled out at this time. Commercial-scale development and utilization of the Chalaw deposit as a thermal fuel resource may be possible using a fluidized bed combustion system which could accept the low-quality mine product currently produced. Samples examined herein contain high-ash yield (45-90 wt.%, db), high total moisture content (17-39 wt.%), low calorific value (980-6860 Btu/lb, m,mmf), and have poor agglomerating properties (FSI = 0), consistent with fuels utilized in fluidized

  7. The mineralogy and petrology of I-type cosmic spherules: Implications for their sources, origins and identification in sedimentary rocks

    Science.gov (United States)

    Genge, Matthew J.; Davies, Bridie; Suttle, Martin D.; van Ginneken, Matthias; Tomkins, Andrew G.

    2017-12-01

    I-type cosmic spherules are micrometeorites that formed by melting during atmospheric entry and consist mainly of iron oxides and FeNi metal. I-types are important because they can readily be recovered from sedimentary rocks allowing study of solar system events over geological time. We report the results of a study of the mineralogy and petrology of 88 I-type cosmic spherules recovered from Antarctica in order to evaluate how they formed and evolved during atmospheric entry, to constrain the nature of their precursors and to establish rigorous criteria by which they may be conclusively identified within sediments and sedimentary rocks. Two textural types of I-type cosmic spherule are recognised: (1) metal bead-bearing (MET) spherules dominated by Ni-poor (100 and suggest that metal from H-group ordinary, CM, CR and iron meteorites may form the majority of particles. Oxidation during entry heating increases in the series MET 80 wt% Ni comprising a particle mass fraction of exchange of Ni between wüstite and metal, and magnetite and wüstite are suggested as proxies for the rate of oxidation and cooling rate respectively. Variations in magnetite and wüstite crystal sizes are also suggested to relate to cooling rate allowing relative entry angle of particles to be evaluated. The formation of secondary metal in the form of sub-micron Ni-rich or Pt-group nuggets and as symplectite with magnetite was also identified and suggested to occur largely due to the exsolution of metallic alloys during decomposition of non-stoichiometric wüstite. Weathering is restricted to replacement of metal by iron hydroxides. The following criteria are recommended for the conclusive identification of I-type spherules within sediments and sedimentary rocks: (i) spherical particle morphologies, (ii) dendritic crystal morphologies, (iii) the presence of wüstite and magnetite, (iv) Ni-bearing wüstite and magnetite, and (v) the presence of relict FeNi metal.

  8. The lithospheric structure beneath Ireland and surrounding areas from integrated geophysical-petrological modelling of magnetic and other geophysical data

    Science.gov (United States)

    Baykiev, E.; Guerri, M.; Fullea, J.

    2017-12-01

    The availability of unprecedented resolution aeromagnetic data in Ireland (Tellus project, http://www.tellus.ie/) in conjunction with new satellite magnetic data (e.g., ESÁs Swarm mission) has opened the possibility of detailed modelling of the Irish subsurface magnetic structure. A detailed knowledge of the magnetic characteristics (susceptibility, magnetite content) of the crust is relevant for a number of purposes, including geological mapping and mineral and geothermal energy prospection. In this work we model the magnetic structure of Ireland and surrounding areas using primarily aeromagnetic and satellite observations but also other geophysical data sets. To this aim we use a geophysical-petrological modelling tool (LitMod) in which key properties of rocks (i.e., density, electrical conductivity and seismic velocities) that can be inferred from geophysical data (gravity, seismic, EM) are self consistently determined based on the thermochemical conditions (using the software Perple_X). In contrast to the mantle, where thermodynamic equilibrium is prevalent, in the crust metastable conditions are dominant, i.e. rock properties may not be representative of the current, in situ, temperature and pressure conditions. Instead, the rock properties inferred from geophysical data may be reflecting the mineralogy stable at rock formation conditions. In addition, temperature plays a major role in the distribution of the long wavelength crustal magnetic anomalies. Magnetite retains its magnetic properties below its Curie temperature (585 ºC) and the depth of Curie's isotherm provides an estimate of the thickness of the magnetic crust. Hence, a precise knowledge of the crustal geotherm is required to consistently model crustal magnetic anomalies. In this work LitMod has been modified to account for metastable crustal lithology, to predict susceptibility in the areas below Curie's temperature, and to compute magnetic anomalies based on a magnetic tesseroid approach. The

  9. Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mathews, Runcie P.; Saraswati, Pratul K.; Banerjee, Santanu [Department of Earth Sciences, Indian Institute of Technology Bombay (India); Singh, Bhagwan D.; Tripathi, Suryakant M.; Singh, Alpana [Birbal Sahni Institute of Palaeobotany, Lucknow (India); Mann, Ulrich [Forschungszentrum Juelich (Germany). Institut fuer chemie und Dynamik der Geosphaere

    2011-01-01

    Petrological, palynological and organic-geochemical investigations were undertaken to determine the source vegetation, depositional conditions and hydrocarbon source potential of Eocene Matanomadh lignites from Kutch Basin, western India. The maceral study reveals that studied lignites are rich in huminite (av. 63%) with sub-ordinate amount of liptinite (av. 19%) and low inertinite (av. 3%), along with low to moderately high associated mineral matters (av. 15%). The overall petrographic composition points to a lagoonal condition for the formation of these lignites. The mean huminite reflectance values (R{sub r}: 0.28-0.34%, av. 0.31%) as well as low Rock-Eval T{sub max} (av. 417 C) values for the seams, suggest brown coal or lignitic stage/rank for the studied lignites. The palynological assemblages, dominated by tropical angiospermic pollen, suggest prevalence of warm humid tropical climate during the deposition of these lignites. The total organic carbon (TOC) content of lignites ranges between 26 and 58 wt.%, whereas the TOC content of the associated carbonaceous shales is around 4 wt.%. The Hydrogen Index (HI) ranging from 23 to 452 mg HC/g TOC indicates that the lignite sequence has the potential to produce mixed oil and gaseous hydrocarbons on maturation. The major pyrolysis products of lignites, derived from Curie point pyrolysis-GC-MS, are straight chain aliphatics, phenols and cadalene-based C{sub 15} bicyclic sesquiterpenoids. The exclusive occurrence of C{sub 15} bicyclic sesquiterpenoids suggests that these compounds are derived from dammar resin of angiosperm plants, belonging to family Dipterocarpaceae. (author)

  10. The petrology, geochronology and significance of Granite Harbour Intrusive Complex xenoliths and outcrop sampled in western McMurdo Sound, Southern Victoria Land, Antarctica

    International Nuclear Information System (INIS)

    Martin, A.P.; Cooper, A.F.; Price, R.C.; Turnbull, R.E.; Roberts, N.M.W.

    2015-01-01

    Granite Harbour Intrusive Complex xenoliths in McMurdo Volcanic Group rocks and in situ outcrops have been studied from Mount Morning, western McMurdo Sound, Antarctica. Calc-alkalic samples have whole rock signatures and normative compositions similar to the Dry Valleys 1b suite, and zircon grains in one specimen yield a 545.2 ± 4.4 Ma crystallisation age. This supports subduction-related magmatism initiating in Southern Victoria Land by 545 Ma. A second group of xenoliths is alkalic, with titanite grains in one xenolith from this group dated at 538 ± 8 Ma. Whole rock chemistry, normative compositions and geochronology of the alkalic group are comparable to the Koettlitz Glacier Alkaline Suite (KGAS). The position of a proposed lower crustal discontinuity that may form a significant basement suture in the McMurdo Sound region is newly constrained to the east of Mount Morning, perhaps along the trace of the Discovery Glacier. The boundary between East and West Antarctica may also pass along the trace of the Discovery Glacier if, as previously hypothesised, its location is controlled by the basement suture. A significant basement suture may also have provided the necessary egress for the (regionally) early and sustained magmatic activity observed at Mount Morning over the last 24 million years. (author).

  11. Platinum, palladium, and rhodium in volcanic and plutonic rocks from the Gravina-Nutzotin belt, Alaska

    Science.gov (United States)

    Page, Norman J; Berg, Henry C.; Haffty, Joseph

    1977-01-01

    The Gravina-Nutzotin belt of Middle (?) Jurassic to middle Cretaceous sedimentary and volcanic rocks in south and southeastern Alaska includes concentrically zoned ultramafic complexes known to contain platinum-group metals. Previous isotopic, petrologic, and geologic studies suggested a close relation in time and space between the volcanic rocks and the ultramafic complexes. Interpretation of 40 analyses for platinum, palladium, and rhodium in volcanic and plutonic rocks of the belt indicates a strong geochemical correlation between the two groups of rocks and is in support of their being cogenetic either from directly connected magma chambers and flows or indirectly by selective concentration processes from similar mantle material.

  12. Chemical and oxygen isotope zonings in garnet from subducted continental crust record mineral replacement and metasomatism

    Science.gov (United States)

    Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2017-04-01

    Garnet is a key mineral in metamorphic petrology for constraining pressure, temperature and time paths. Garnet can preserve multiple growth stages due to its wide P-T stability field and the relatively slow diffusivity for major and trace elements at sub-solidus temperatures. Pressure-temperature-time-fluid paths of the host rock may be reconstructed by combining metamorphic petrology with microscale trace element and oxygen isotope measurements in garnet. Subduction zones represent relevant geological settings for geochemical investigation of element exchanges during aqueous fluid-rock interactions. The Sesia Zone consists of a complex continental sequence containing a variety of mono-metamorphic and poly-metamorphic lithologies such as metagranitoids, sediments and mafic boudins. The precursor Varisican-Permian amphibolite-facies basement (6-9 kbar 650-850°C; Lardeaux and Spalla, 1991; Robyr et al., 2013) experienced high pressure metamorphism (15-22 kbar 500-550°C; Regis, et al. 2014; Robyr et al., 2013) during Alpine subduction. In different lithologies of the Internal Complex (Eclogitic Micaschist Complex), including metabasites from the Ivozio Complex, Ti-rich metasediments from Val Malone and pre-Alpine Mn-quartzites associated to metagabbros from Cima Bonze, garnet is abundant and shows a variety of complex textures that cannot be reconciled with typical growth zoning, but indicate resorption and replacement processes and possible metasomatism. In-situ, microscale oxygen isotopes analysis of garnet zones was performed by ion microprobe with the SwissSIMS Cameca IMS 1280-HR at University of Lausanne and SHRIMP-SI at the Australian National University. Each sample has a distinct δ18O composition, and the δ18O values show different degrees of variation between domains. Homogeneously low values of < 5‰ are measured in the garnets from the Ivozio Complex metagabbro. Intragrain variations of up to 3.5‰ in the porphyroblasts from Val Malone metasediments

  13. Key new pieces of the HIMU puzzle from olivines and diamond inclusions.

    Science.gov (United States)

    Weiss, Yaakov; Class, Cornelia; Goldstein, Steven L; Hanyu, Takeshi

    2016-09-29

    Mantle melting, which leads to the formation of oceanic and continental crust, together with crust recycling through plate tectonics, are the primary processes that drive the chemical differentiation of the silicate Earth. The present-day mantle, as sampled by oceanic basalts, shows large chemical and isotopic variability bounded by a few end-member compositions. Among these, the HIMU end-member (having a high U/Pb ratio, μ) has been generally considered to represent subducted/recycled basaltic oceanic crust. However, this concept has been challenged by recent studies of the mantle source of HIMU magmas. For example, analyses of olivine phenocrysts in HIMU lavas indicate derivation from the partial melting of peridotite, rather than from the pyroxenitic remnants of recycled oceanic basalt. Here we report data that elucidate the source of these lavas: high-precision trace-element analyses of olivine phenocrysts point to peridotite that has been metasomatized by carbonatite fluids. Moreover, similarities in the trace-element patterns of carbonatitic melt inclusions in diamonds and HIMU lavas indicate that the metasomatism occurred in the subcontinental lithospheric mantle, fused to the base of the continental crust and isolated from mantle convection. Taking into account evidence from sulfur isotope data for Archean to early Proterozoic surface material in the deep HIMU mantle source, a multi-stage evolution is revealed for the HIMU end-member, spanning more than half of Earth's history. Before entrainment in the convecting mantle, storage in a boundary layer, upwelling as a mantle plume and partial melting to become ocean island basalt, the HIMU source formed as Archean-early Proterozoic subduction-related carbonatite-metasomatized subcontinental lithospheric mantle.

  14. Tracing the Source of Borneo's Cempaka Diamond Deposit

    Science.gov (United States)

    White, L. T.; Graham, I.; Armstrong, R. A.; Hall, R.

    2014-12-01

    Several gem quality diamond deposits are found in paleo-alluvial deposits across Borneo. The source of the diamonds and their origin are enigmatic. They could have formed in Borneo and be derived from local sources, or they could be related to diamond deposits in NW Australia, and carried with the Southwest Borneo Block after it rifted from Australia in the Late Jurassic. We collected U-Pb isotopic data from detrital zircons from the Cempaka alluvial diamond deposit in southeast Borneo. Two thirds of the zircons that were dated crystallized between 75 Ma and 110 Ma. The other third are Triassic or older (223 Ma, 314-319 Ma, 353-367 Ma, 402-414 Ma, 474 Ma, 521 Ma, 549 Ma, 1135-1176 Ma, 1535 Ma, 2716 Ma). All of the Cretaceous zircons are angular, euhedral grains with minor evidence of mechanical abrasion. Considering their age and morphology they were likely derived from the nearby Schwaner Granites. The Triassic and older grains are rounded to semi-rounded and were likely derived from Australia before Borneo rifted from Gondwana. Some of the zircons have ages that resemble those of the Merlin and Argyle diamond deposits of Australia. The diamonds themselves have delicate resorption features and overgrowths that would potentially be destroyed with prolonged transport. Geochemical data collected from the diamonds implies they were associated with lamproite intrusions. Deep seismic lines and zircons from igneous rocks suggest SE Borneo, the East Java Sea and East Java are largely underlain by thick lithosphere rifted from NW Australia. Based on several lines of evidence, we propose that diamond-bearing lamproites intruded before rifting of SW Borneo from Australia, or after collision with Sundaland of SW Borneo and the East Java-West Sulawesi Blocks during the Cretaceous. Exposure of the source after the Late Cretaceous led to diamond accumulation in river systems that flowed from the Schwaner Mountains.

  15. Hydrocarbon Prospectivity of Nigeria's Inland Basins: From the View Point of Organic Geochemistry and Organic Petrology

    International Nuclear Information System (INIS)

    Obaje, N. G.; Abubakar, M. B.; Jauro, A.; Tukur, A.; Wehner, H.

    2003-01-01

    The inland basins of Nigeria comprise the Anambra basin, the lower, middle and upper Benue trough, the southeastern sector of the Chad basin, the Mid-Niger (Bida) basin, and the Sokoto basin. Organic geochemical and organic petrologic studies indicate that coal beds constitute major potential source rocks in the whole of the Benue trough (Anambra basin inclusive). The generation and production of liquid and i gaseous hydrocarbons from coal beds presently is world-wide indisputable. In the Anambra basin, the coal beds in the Mamu Formation have TOC contents of up to 60.8wt%, mean Hydrogen Index (HI) of 364mgHC/gTOC, vitrinite reflectivity (Ro) of 0.54 to 0.56% and Tmax 430 to 433degrees C. Biomarker data indicate a dominance of high molecular weight : n-alkanes, very high pristane/phytane ratios, pronounced odd-over-even predominance (OEP), preponderance of C29 regular steranes but with also relatively high contents of C28. In the middle Benue trough, the coal beds of the Awgu Formation have TOC contents of up to 79.1 Owt%, Ro of 0.83 to 1.07%, and mean HI of 281 mgHC/gTOC; unimodal distributions of both low and high molecular weight n-alkanes with no obvious OEP, and a predominance of C29 steranes but also with relatively high contents of C27 and C28. Coal beds from the Lamja Formation in the upper Benue trough yielded TOC contents of up to 50.7wt% with HI of 184mgHC/gTOC, Ro of 0.70 to 0.73%, low and high molecular weights n- alkane dominance with an unpronounced OEP, high pristane/phytane ratios, and very high contents of C29 regular steranes. On a basinal evaluation level, incorporating source rock data from the other formations in the respective sectors, plots on the modified Van Krevelen diagram alongside biomarker and maceral data indicate good i to fair source rock qualities (oil and gas) in the Anambra basin and middle Benue trough; and fair to poor (gaseous to dry) in the upper Benue trough and the Chad basin, with sporadic good to fair source rock

  16. Effect of round particles on shear strength properties of railway ballast

    CSIR Research Space (South Africa)

    Mvelase, GM

    2016-07-01

    Full Text Available particles. Sedimentary Petrology, 11, pp. 64-72, 1941. [11] Folk, R.L., Student operator error in determining of roundness, sphericity and grain size. Sedimentary Petrology, 25, pp. 297-301, 1955. [12] Janoo, V.C., Quantification of shape, angularity...

  17. Sedimentology and marine geology of the Banda Arc, Eastern Indonesia

    NARCIS (Netherlands)

    Situmorang, M.

    1992-01-01

    The aim of this study is to analyze and to relate several aspects of the sedimentological, petrological and geotechnical characteristics of the Quaternary sea floor lithofacies deposited in tectonically active basins in the Banda Sea region. The combined sedimentological, petrological, and

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Inliers of alkali pyroxenite and alkali gabbro occur within this ijolite –melteigite suite of rocks.The pluton is also traversed by younger intrusives of nepheline syenite and carbonatite.Development of sporadic,lumpy magnetite ore bodies is also recorded within the pluton.Petrographic details of the constituent lithomembers of ...

  19. Petrology of an eclogite- and pyrigarnite-bearing polymetamorphic rock complex at Cabo Ortegal, NW Spain

    NARCIS (Netherlands)

    Vogel, D.E.

    1967-01-01

    At Cabo Ortegal, paragneisses are found in association with amphibolites, metagabbros, amphibolized eclogites, amphibolized (plagio) pyrigarnites, and serpentinized ultrabasic rocks. On the basis of petrographical and chemical evidence, their geological history was reconstructed as follows:

  20. Petrology and Wavespeeds in Central Tibet Indicate a Partially Melted Mica-Bearing Crust

    Science.gov (United States)

    Hacker, B. R.; Ritzwoller, M. H.; Xie, J.

    2013-12-01

    S-wave speeds and Vp/Vs ratios in the middle to deep crust of Tibet are best explained by a partially melted, mica-bearing middle to lower crust with a subhorizontal to gently dipping foliation. Surface-wave tomography [e.g., Yang et al., 2012; Xie et al., 2013] shows that the central Tibetan Plateau (the Qiangtang block) is characterized by i) slow S-wave speeds of 3.3-3.5 km/s at depths from 20-25 km to 45-50 km, ii) S-wave radial anisotropy of at least 4% (Vsh > Vsv) with stronger anisotropy in the west than the east [Duret et al., 2010], and iii) whole-crust Vp/Vs ratios in the range of 1.73-1.78 [Xu et al., 2013]. The depth of the Curie temperature for magnetite inferred from satellite magnetic measurements [Alsdorf and Nelson, 1999], the depth of the α-β quartz transition inferred from Vp/Vs ratios [Mechie et al., 2004], and the equilibration pressures and temperatures of xenoliths erupted from the mid-deep crust [Hacker et al., 2000] indicate that the thermal gradient in Qiangtang is steep, reaching 1000°C at 30-40 km depth. This thermal gradient crosses the dehydration-melting solidi for crustal rocks at 20-30 km depth, implying the presence or former presence of melt in the mid-deep crust. These temperatures do not require the wholesale breakdown of mica at these depths, because F and Ti can stabilize mica to at least 1300°C [Dooley and Patino Douce, 1996]. Petrology suggests, then, that the Qiangtang middle to deep crust consists of a mica-bearing residue from which melt has been extracted or is being extracted. Wavespeeds calculated for mica-bearing rocks with a subhorizontal to gently dipping foliation and minor silicate melt are the best match to the wavespeeds and anisotropy observed by seismology. Alsdorf, D., and D. Nelson, The Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?, Geology, 27, 943-946, 1999. Dooley, D.F., and A.F. Patino Douce, Fluid-absent melting of F-rich phlogopite + rutile +quartz, American

  1. Sedimentology and marine geology of the Banda Arc, Eastern Indonesia

    NARCIS (Netherlands)

    Situmorang, M

    1992-01-01

    The aim of this study is to analyze and to relate several aspects of the sedimentological, petrological and geotechnical characteristics of the Quaternary sea floor lithofacies deposited in tectonically active basins in the Banda Sea region. The combined sedimentological, petrological, and faunal

  2. Petrogenesis and metallogenesis of the Wajilitag and Puchang Fe-Ti oxide-rich intrusive complexes, northwestern Tarim Large Igneous Province

    Science.gov (United States)

    Zhang, Dongyang; Zhang, Zhaochong; Huang, He; Cheng, Zhiguo; Charlier, Bernard

    2018-04-01

    liquidus earlier in the crystallization sequence, especially relative to the crystallization of plagioclase. This is attributed to the relatively high TFeO, TiO2 and initial H2O contents of the parental magma. In combination with definitive field and petrological evidence, the enrichment of highly incompatible elements (e.g., Zr, Hf, Nb and Ta) and the depletion of rare earth elements in the Fe-Ti oxide ores is consistent with the plausible interpretation that the ores could be formed by fractional crystallization and crystal accumulation of the Fe-Ti oxide crystals from the ferrobasaltic parental magmas. A considerable amount of the Fe-Ti oxides in the Puchang has transported and sunk from higher up in the chamber to the underlying unconsolidated silicate crystal pile. The highly dense Fe-Ti oxide crystal slurries further tended to effective accumulate Fe-Ti oxides to form high-grade Fe-Ti oxide ore bodies, and subsequent rapid collapse and intrusive into lower lithologies within the complex under a H2O-rich environment during the late-stage of magmatic differentiation. The development of massive Fe-Ti oxide ores in the case of the Puchang, could plausibly result from a combination of the protracted differentiation history of a Fe highly enriched parental magma and the later addition of external H2O from the country rocks (e.g., carbonates) to the slowly cooling magma chamber.

  3. DURATION OF GRANITOID MAGMATISM IN PERIPHERAL PARTS OF LARGE IGNEOUS PROVINCES (BASED ON 40AR/39AR ISOTOPIC STUDIES OF ALTAI PERMIAN-TRIASSIC GRANITOIDS

    Directory of Open Access Journals (Sweden)

    O. A. Gavryushkina

    2017-01-01

    Full Text Available In large igneous provinces (LIP of fold areas, granitoid rocks are dominant, while mantle-derivated rocks play a subordinate role in rock formation. If magma emissions are impulsive, it may take 25–30 million years for a LIP to form and take shape. In this paper, we present the results of 40Ar/39Ar isotopic studies of Permian-Triassic grani­toids in the Altai region, Russia, and clarify the evolution of this region located at the periphery of the Siberian LIP. These granitoids are very diverse and differ not only in their rock set, but also in the composition features. In the study region, the granodiorite-granite and granite-leucogranite association with the characteristics of I- and S-types as well rare metal ore-bearing leucogranites are observed along with gabbro- and syenite-granite series, including mafic and intermediate rocks with the A2-type geochemical features. The 40Ar/39Ar data obtained in our study suggest that most of the studied granitoids intruded within a short period of time, 254–247 Ma. This timeline is closely related to the formation of granitoids in theKuznetsk basin and dolerite dikes in the Terekta complex (251–248 and 255±5 Ma, respectively, as well as intrusions of lamproite and lamprophyre dikes of the Chuya complex (245–242 and 237–235 Ma. Thus, we conclude that the Altai Permian-Triassic granitoids are varied mainly due to the evolution of mafic magmatism.

  4. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province

    Science.gov (United States)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Chen, Lili; Ke, Shan; Xu, Lijuan

    2017-04-01

    The Tarim Large Igneous Province in NW China hosts numerous magmatic carbonatite dikes along its northern margin. The carbonatites are composed mainly of dolomite (90 vol.%) and minor calcite (5 vol.%), with apatite, barite, celestine, aegirine, monazite and bastnaesite as accessory minerals. The rocks correspond to magnesiocarbonatites with a compositional range of 13.73-19.59 wt.% MgO, and 20.03-30.11 wt.% CaO, along with 1.65-3.31 wt.% total Fe2O3, 0.02-2.39 wt.% SiO2 and other minor elements, such as P2O5, Na2O and K2O. These magnesiocarbonatites are characterized by extreme enrichment in incompatible elements with high total rare earth element (REE) contents of 372-36965 ppm. The strontium [(87Sr/86Sr)i = 0.70378-0.70386], neodymium [εNd(t) = +2.51 - +3.59] and oxygen (δ18OV-SMOW = 5.9‰-8.0‰) isotope values of these rocks are consistent with a mantle origin, whereas the magnesium (δ26Mg = -1.09‰ to -0.85‰) and carbon (δ13CV-PDB = -4.1‰ to -5.9‰) isotopes are decoupled from mantle values and reflect signature of recycled sedimentary carbonates. Global plate tectonic models predict that sedimentary carbonates in convergent margins are subducted to deep domains in the mantle, with phase transitions from calcite/dolomite to magnesite, and eventually to periclase/perovskite. The involvement of a mantle plume enhances the normal mantle geotherms and promotes decomposition reactions of magnesite. The decoupling of Mg-C and Sr-Nd-O isotopes in the mangesiocarbonatites provides insights on the origin of carbonatites, and also illustrates a case of interaction between mantle plume and subduction-related components.

  5. Metamorphism of the northern Liaoning Complex: Implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton

    Directory of Open Access Journals (Sweden)

    Kam Kuen Wu

    2013-05-01

    Full Text Available As one of the areas where typical late Archean crust is exposed in the Eastern Block of the North China Craton, the northern Laioning Complex consists principally of tonalitic-trondhjemitic-granodioritic (TTG gneisses, massive granitoids and supracrustal rocks. The supracrustal rocks, named the Qingyuan Group, consist of interbedded amphibolite, hornblende granulite, biotite granulite and BIF. Petrological evidence indicates that the amphibolites experienced the early prograde (M1, peak (M2 and post-peak (M3 metamorphism. The early prograde assemblage (M1 is preserved as mineral inclusions, represented by actinotite + hornblende + plagioclase + epidote + quartz + sphene, within garnet porphyroblasts. The peak assemblage (M2 is indicated by garnet + clinopyroxene + hornblende + plagioclase + quartz + ilmenite, which occur as major mineral phases in the rock. The post-peak assemblage (M3 is characterized by the garnet + quartz symplectite. The P–T pseudosections in the NCFMASHTO system constructed by using THERMOCALC define the P–T conditions of M1, M2 and M3 at 490–550 °C/<4.5 kbar, 780–810 °C/7.65–8.40 kbar and 630–670 °C/8.15–9.40 kbar, respectively. As a result, an anticlockwise P–T path involving isobaric cooling is inferred for the metamorphic evolution of the amphibolites. Such a P–T path suggests that the late Archean metamorphism of the northern Liaoning Complex was related to the intrusion and underplating of mantle-derived magmas. The underplating of voluminous mantle-derived magmas leading to metamorphism with an anticlockwise P–T path involving isobaric cooling may have occurred in continental magmatic arc regions, above hot spots driven by mantle plumes, or in continental rift environments. A mantle plume model is favored because this model can reasonably interpret many other geological features of late Archean basement rocks from the northern Liaoning Complex in the Eastern Block of

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 110; Issue 3. Volume 110, Issue 3. September 2001, pages 185-265. pp 185-190. Ar-Ar age of carbonatite-alkaline magmatism in Sung Valley, Maghalaya, India · Jyotiranjan S Ray Kanchan Pande · More Details Abstract Fulltext PDF. 40Ar-39Ar analyses of one ...

  7. Magmatic structures in the Krkonoše Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal mechanical instabilities in a granitic magma chamber

    Science.gov (United States)

    Žák, Jiří; Klomínský, Josef

    2007-08-01

    The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.

  8. Organic petrology and Rock-Eval characteristics in selected surficial samples of the Tertiary Formation, South Sumatra Basin

    Directory of Open Access Journals (Sweden)

    M. H. Hermiyanto

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol4no3.20096Organic petrologic data of the DOM of Talangakar and Muaraenim Formations show that the organic matter consisting mainly of vitrinite group is essentially composed of telocollinite (1.0 – 70.8 % and desmocollinite (0.8 – 66.6 % with minor telinite (0.6 – 9.4 %, detrovitrinite (0.6 – 6.0 %, and cor- pocollinite (0.6 – 2.0 %. Minor exinite (0.4 – 7.8 % and inertinite (0.4 – 8.0 % are also determined. However, mineral matter varies from 0.6 – 99.44 %. Downwards, the increase in vitrinite reflectance (0.33 – 0.48 % is concomitant with the depth of each formation. Furthermore, based on Rock-eval pyrolysis, TOC value of the Talangakar Formation ranges from 0.09 – 15.38 %, Gumai 0.34 – 0.39 %, Airbenakat 0.32 – 4.82 %, and Muaraenim between 0.08 – 15.22 %. Moreover the PY (Potential Yield value variation of the Talangakar, Gumai, Airbenakat, and Muaraenim Formations are between 0.04 – 36.61 mg HC/g rock, 0.53 – 0.81 mg HC/g rock, 0.1 – 4.37 mg HC/g rock, and 0.07 – 129.8 mg HC/g rock respectively. Therefore, on the basis of those two parameters, the four formations are included into a gas - oil prone source rock potential. However, the Talangakar and Muaraenim Formations are poor to excellent category, whereas the Air Benakat tends to indicate a poor – fair category and Gumai Formation are only within a poor category. Tmax value of the Talangakar ranges from 237 – 4380 C, Gumai 316 – 3590 C, Airbenakat 398 – 4340 C with exceptions of 4970 C and 5180 C, and Muaraenim Forma- tions 264 – 4250 C. The Talangakar Formation contains kerogen Type II dan III, with the HI (Hydrogen Index value varies from 45.16 – 365.43. However two samples show value of 0. The organic content of the Gumai and Air Benakat Formations are included into kerogen type III, with HI value ranges from11.87 – 40.82, and 19 – 114 respectively. Moreover the Muaraenim Formation has two category of

  9. Mineral resources of the South Mccullough Mountains Wilderness Study Area, Clark County, Nevada

    International Nuclear Information System (INIS)

    DeWitt, E.; Anderson, J.L.; Barton, H.N.; Jachens, R.C.; Podwysocki, M.H.; Brickey, D.W.; Close, T.J.

    1989-01-01

    The authors present a study of 19,558 acres of the South McCullough Mountains Wilderness Study Area. The study area contains no identified mineral resources and has no areas of high mineral resource potential. However, five areas that make up 20 percent of the study area have a moderate potential either for undiscovered silver, gold, lead, copper, and zinc resources in small vein deposits; for lanthanum and other rare-earth elements, uranium, thorium, and niobium in medium-size carbonatite bodies and dikes; for tungsten and copper in small- to medium-size vein deposits; or for silver and gold in small vein or breccia-pipe deposits. Six areas that makeup 24 percent of the study area have an unknown resource potential either for gold, silver, lead, and copper in small vein deposits; for gold, silver, lead, zinc, copper, and arsenic in small vein or breccia-pipe deposits; for lanthanum and other rare-earth elements, uranium, thorium, and niobium in medium-size carbonatite bodies and dikes; or for tungsten and copper in small vein deposits

  10. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    Science.gov (United States)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  11. Pre-Alpine evolution of the Seckau Complex (Austroalpine basement/Eastern Alps): Constraints from in-situ LA-ICP-MS Usbnd Pb zircon geochronology

    Science.gov (United States)

    Mandl, Magdalena; Kurz, Walter; Hauzenberger, Christoph; Fritz, Harald; Klötzli, Urs; Schuster, Ralf

    2018-01-01

    The Variscan European Belt is a complex orogen with its southern margin partly obscured by Alpine tectonics and metamorphism. We present a study of one of the units, the Seckau Complex, that constitute the southern part of the Variscan European Belt in the Eastern Alps in order to clarify its origin, age and lithostratigraphy. The magmatic and geochronological evolution of this Complex in the northwestern part of the Seckau Nappe (as part of the Austroalpine Silvretta-Seckau Nappe System) was investigated by zircon Usbnd Pb dating of paragneisses and metagranitoids coupled with petrological and geochemical data. This reveals the distinction of three newly defined lithostratigraphic/lithodemic sub-units: (1) Glaneck Metamorphic Suite, (2) Hochreichart Plutonic Suite and (3) Hintertal Plutonic Suite. The Glaneck Metamorphic Suite is mainly composed of fine-grained paragneisses that yield Usbnd Pb zircon ages in the range between 2.7 Ga and 2.0 Ga, as well as concordia ages from 572 ± 7 Ma to 559 ± 11 Ma. All of these ages are interpreted as detrital zircon ages originating from an igneous source. The paragneisses are the host rock for the large volumes of metagranitoids of the Hochreichart Plutonic Suite and the Hintertal Plutonic Suite. The Hochreichart Plutonic Suite comprises highly fractionated melts with mainly S-type characteristics and late Cambrian to Early Ordovician Usbnd Pb zircon ages (508 ± 9 Ma to 486 ± 9 Ma), interpreted as magmatic protolith ages. The Hintertal Plutonic Suite is composed of metagranitoids with Late Devonian to early Carboniferous (365 ± 11 Ma and 331 ± 10 Ma) protolith ages, that intruded during an early phase of the Variscan tectonometamorphic event. The metagranitoids of the Hintertal Plutonic Suites define a magmatic fractionation trend, seen in variable Rb/Sr ratios. On this base they can be further subdivided into (a) the Griessstein Pluton characterized by S-type metagranitoids and (b) the Pletzen Pluton distinguished by

  12. Metamorphism on Ios and the geological history of the Southern Cyclades, Greece

    NARCIS (Netherlands)

    Maar, P.A. van der

    1981-01-01

    The geology and petrology of the island of los, Greece are outlined in chapter I. The geology is determined by a mantled gneiss dome which forms the basement, on top of which a marble-schist series is emplaced. The various rocks of the island are described petrologically and their mineral

  13. Metamorphism on Ios and the geological history of the Southern Cyclades, Greece

    NARCIS (Netherlands)

    van der Maar, P.A.

    1981-01-01

    The geology and petrology of the island of los, Greece are outlined in chapter I. The geology is determined by a mantled gneiss dome which forms the basement, on top of which a marble-schist series is emplaced. The various rocks of the island are described petrologically and their mineral contents

  14. Preliminary petrological and geochemical results from the Salton Sea Geothermal Field, California: A near-field natural analog of a radioactive waste repository in salt: Topical report No. 2

    International Nuclear Information System (INIS)

    Elders, W.A.; Cohen, L.H.; Williams, A.E.; Neville, S.; Collier, P.; Oakes, C.

    1986-03-01

    High concentrations of radionuclides and high temperatures are not naturally encountered in salt beds. For this reason, the Salton Sea Geothermal Field (SSGF) may be the best available geologic analog of some of the processes expected to occur in high level nuclear waste repositories in salt. Subsurface temperatures and brine concentrations in the SSGF span most of the temperature range and fluid inclusion brine range expected in a salt repository, and the clay-rich sedimentary rocks are similar to those which host bedded or domal salts. As many of the chemical processes observed in the SSGF are similar to those expected to occur in or near a salt repository, data derived from it can be used in the validation of geochemical models of the near-field of a repository in salt. This report describes preliminary data on petrology and geochemistry, emphasizing the distribution of rare earth elements and U and Th, of cores and cuttings from several deep wells chosen to span a range of temperature gradients and salinities. Subsurface temperature logs have been augmented by fluid inclusion studies, to reveal the effects of brines of varying temperature and salinity. The presence of brines with different oxygen isotopic signatures also indicate lack of mixing. Whole rock major, minor and trace element analyses and data on brine compositions are being used to study chemical migration in these sediments. 65 refs., 20 figs., 3 tabs

  15. Estimates of the topographic uplift of the Southern African Plateau from the African Superswell through petrologically-consistent thermo-chemical modelling of the geoid, SHF, Rayleigh and Love dispersion curves and MT data

    Science.gov (United States)

    Jones, Alan G.; Afonso, Juan Carlos; Fullea, Javier

    2015-04-01

    The deep mantle African Superswell is thought to cause up to 500 m of the uplift of the Southern African Plateau. We investigate this phenomenon through stochastic thermo-chemical inversion modelling of the geoid, surface heat flow, Rayleigh and Love dispersion curves and MT data, in a manner that is fully petrologically-consistent. We invert for a three layer crustal velocity, density and thermal structure, but assume the resistivity layering (based on prior inversion of the MT data alone). Inversions are performed using an improved Delayed Rejection and Adaptive Metropolis (DRAM) type Markov chain Monte Carlo (MCMC) algorithm. We demonstrate that a single layer lithosphere can fit most of the data, but not the MT responses. We further demonstrate that modelling the seismic data alone, without the constraint of requiring reasonable oxide chemistry or of fitting the geoid, permits wildly acceptable elevations and with very poorly defined lithosphere-asthenosphere boundary (LAB). We parameterise the lithosphere into three layers, and bound the permitted oxide chemistry of each layer consistent with known chemical layering. We find acceptable models, from 5 million tested in each case, that fit all responses and yield a posteriori elevation distributions centred on 900-950 m, suggesting dynamic support from the lower mantle of some 400 m.

  16. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    Science.gov (United States)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  17. REE in some tertiary volcanic complexes in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Tasev, Goran; Serafimovski, Todor

    2009-01-01

    Petrological and geochemical features of the Tertiary magmatic rocks from the Republic of Macedonia were subject of study in this paper. The latest K-Ar, 87 Sr/ 86 Sr, and REE data for samples from Kratovo- Zletovo, Sasa-Toranica and Damjan-Buchim ore districts are presented. Whole rock XRF analyses confirmed host rock composition as dacites, quartz-latites, trachyandesites, rhyolites and rhyodacites. Absolute age determinations by the K-Ar dating method have shown ages range from 31 to 14 Ma confirming Oligocene-Miocene age as previously determined by relative methods. Determinations of 87 Sr/ 86 Sr ratios (0.70504 to 0.71126) suggest material is sourced from the contact zone between the lower crust and upper mantle where contamination of primary melt occurred. New REE data including negative Eu anomalies along with previously determined La/Yb ratios ranging from 13.3 to 43.0 (Serafimovski 1990) confirm inferred material source. These new data reconfirm previous results, provide insight into the Tertiary magmatic history of the district, and suggest the exact origin of the material that produced the Tertiary magmatic rocks.

  18. Petrology of Olkiluoto

    International Nuclear Information System (INIS)

    Kaerki, A.; Paulamaeki, S.

    2006-11-01

    The rocks of Olkiluoto fall into four main groups: (1) gneisses, (2) migmatitic gneisses, (3) TGG-gneisses (TGG = tonalite-granodiorite-granite) and 4) pegmatitic granites. In addition, narrow diabase dykes occur sporadically. The gneisses include homogeneous mica-bearing quartz gneisses, banded mica gneisses and hornblende or pyroxene-bearing mafic gneisses. The migmatitic gneisses, which typically comprise 20 - 40% leucosome, can be divided into three subgroups in terms of their migmatite structures: veined gneisses, stromatic gneisses and diatexitic gneisses. The leucosomes of the veined gneisses show vein-like, more or less elongated traces with some features similar to augen structures. Planar leucosome layers characterize the stromatic gneisses, while the migmatite structure of the diatexitic gneisses is asymmetric and irregular. The TGG gneisses are medium-grained, relatively homogeneous rocks that can show a blastomylonitic foliation, but they can also resemble plutonic, unfoliated rocks. The pegmatitic granites are leucocratic, very coarse-grained rocks, which may contain large garnet, tourmaline and cordierite phenocrysts. Mica gneiss inclusions are typical of the larger pegmatitic bodies. Gneisses, which are weakly or not at all migmatitic, make ca. 9% of the bedrock. Migmatitic gneisses make up over 64% of the volume of the Olkiluoto bedrock, with the veined gneisses accounting for 43%, the stromatic gneisses for 0.4% and the diatexitic gneisses for 21%, based on drill core logging. Of the remaining lithologies, TGG gneisses constitute 8% and pegmatitic granites almost 20% by volume. The supracrustal rocks of Olkiluoto can be divided into four series by reference to whole rock chemical composition: a T series, S series, P series and basic, volcanogenic gneisses. Rocks of the T, S and P series seem to make up 42%, 12% and 26%, respectively, of the volume of central part of the island of Olkiluoto, in addition to which, pegmatitic granites and diabases form groups of their own that can be identified both macroscopically and chemically. The rocks of the T series are various veined gneisses and diatexitic gneisses, together with various mica gneisses and quartz gneisses. One typical feature of this series is the occurrence of strongly pinitized cordierite and sometimes also a small proportion of sillimanite. The T series is an transition series, the end members of which are relatively dark and often cordierite-bearing mica gneisses and migmatites with less than 60% SiO 2 and quartz gneisses with more than 75% SiO 2 , representing clay mineral-rich pelitic materials and greywacke-type impure sandstones, respectively. Certain TGG gneisses that are typically granitic in their modal mineral composition show a chemical similarity to the members of the T series. The members of the S series may be identified from their textures and mineral compositions as quartz gneisses, mica gneisses, migmatites and mafic gneisses. The most essential difference between these and the members of the other series is their high calcium concentration, the figure typically exceeding 2%, with maximum concentrations over 13%, while those in the T series are below 2%. A relatively low alkali content and high manganese content are also typical of this series, the members of which are assumed to have originated from calcareous sedimentary materials. The members of the P series are TGG gneisses, veined gneisses, diatexitic gneisses, mafic gneisses and mica gneisses typically with a small proportion of leucosome. These stand out from the other series by virtue of their high phosphorus content. P2O 5 concentrations exceeding 0.3% are characteristic of the members of the P series, whereas the other common supracrustal rock types at Olkiluoto contain less than 0.2% P2O 5 . Mafic gneisses and metadiabases not included in the above-mentioned three series are represented only by a couple of samples, the characteristic chemical variables of which are high MgO, alkalis, TiO 2 and P2O 5 . The chemical compositions of these rocks resemble those of picrites or picritic basalts. (orig.)

  19. The geological and petrological studies of the subduction boundaries and suggestion for the geological future work in Japan - How to avoid ultra-mega-earthquakes -

    Science.gov (United States)

    Ishii, T.

    2015-12-01

    The Pacific plate is surrounded by circum-Pacific active margin, along which volcanic and seismic activities are very high. Ultra-Mega-Earthquakes (=UMEs, M>9.0) are occasionally observed along the margin, where sedimentary rocks of subducting slaves contact with the accreted sedimentary rocks of subducted slaves. But, those UME have never been occured along western Pacific islandarc-trench system including Izu-Ogasawara (=Bonin)-Mariana-Yap-Palau-Philippine-Tonga-Kermadec Trenches. I assume that the geological and petrological characteristics of the subduction boundaries are very important to understand those different seismic activities. Along the above mentioned trench inner wall, especially in the southern Mariana, mantle peridotites are widely distributed. Subducting slave contacts directly with the olivine dominant mantle peridotites of subducted slave, serpentinite layer can be deposited easily under hydrous oceanic sub-bottom environment and very slippery subduction boundaries are left along the subduction zone.On the other hand, those geological evidences give us some ideas on how to avoid UMEs in the Japanese Islands along Japan Trench and Nankai Trough in future. We will be able to change artificially from normal subduction boundaries with asperity zone into slippery subduction boundaries with serpentine layer, by means of serpentine mud injection toward the subduction boundaries interior by combining the following improved drilling technologies A and B. (A) Deep Sea Drilling Vessel CHIKYU has a drilling ability to reach subduction boundary with asperity zone in the Nankai Trough. (B) Advanced drilling technology in the shale gas industry is tremendous, that is, after one vertical deep drilling, horizontal drilling towards several direction are performed, then shale gas is collected by hydraulic fracturing method. I hope that, after several generations, our posterity will be able to avoid UMEs by continuous serpentine mud injection.

  20. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    Science.gov (United States)

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins

  1. Experimental petrology for the thermobarometric determination of mineral paragenesis: the fluid inclusions; Petrologia experimental para la determinacion termobarometrica de paragenesis minerales: las inclusiones fluidas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Partida, Eduardo; Torres Rodriguez, Vicente; Birkle, Peter [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1994-05-01

    There is a great number of phenomena in nature in which some fluid participates as the main component. Such is the case of oil deposits formation, of metallic minerals, geothermal systems, metamorphic and diagenetic deposits. The common denominator of all of them is that in some part of their stages important physico-chemical processes occurred in the related fluids, leaving evidence of such phenomena in the fluid inclusions. The Geothermal Department has petrologic vanguard tools for reservoir problems resolution, since it has laboratories for the study on fluid inclusions by means of the technique called cryoscopic-microthermometry that permits the definition of physico-chemical conditions of the brine that participated or participates in the hydrothermal systems formation. The method simultaneously permits to know the characteristics of the initial brine that participated in the interaction water-rock phenomenon, observe the boiling phenomena, and determine conditions of initial pressure in the reservoirs. [Espanol] Existe un gran numero de fenomenos en la naturaleza en los que participa algun fluido como componente principal. Tal es el caso de la formacion de yacimientos de petroleo, de minerales metalicos, de sistemas geotermicos, yacimientos metamorficos y diageneticos. El comun denominador de todos ellos es que en alguna de sus etapas ocurrieron procesos fisicoquimicos importantes en los fluidos relacionados, quedando evidencia de tales fenomenos en las inclusiones fluidas. El Departamento de Geotermia cuenta con herramientas petrologicas de vanguardia para la resolucion de problemas en yacimientos, ya que tiene laboratorios para el estudio de las inclusiones fluidas por medio de la tecnica denominada microtermometria-crioscopica que permite definir condiciones fisicoquimicas de la salmuera que participo o participa en la formacion de sistemas hidrotermales. El metodo permite simultaneamente conocer las caracteristicas de la salmuera inicial que participo en

  2. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  3. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas; field trip guidebook for the Society for Organic Petrology, Twelfth Annual Meeting, The Woodlands, Texas, August 30, 1995

    Science.gov (United States)

    Warwick, Peter D.; Crowley, Sharon S.

    1995-01-01

    The Jackson and Wilcox Groups of eastern Texas (fig. 1) are the major lignite producing intervals in the Gulf Region. Within these groups, the major lignite-producing formations are the Paleocene-Eocene Calvert Bluff Formation (Wilcox) and the Eocene Manning Formation (Jackson). According to the Keystone Coal Industry Manual (Maclean Hunter Publishing Company, 1994), the Gulf Coast basin produces about 57 million short tons of lignite annually. The state of Texas ranks number 6 in coal production in the United States. Most of the lignite is used for electric power generation in mine-mouth power plant facilities. In recent years, particular interest has been given to lignite quality and the distribution and concentration of about a dozen trace elements that have been identified as potential hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendments. As pointed out by Oman and Finkelman (1994), Gulf Coast lignite deposits have elevated concentrations of many of the HAPs elements (Be, Cd, Co, Cr, Hg, Mn, Se, U) on a as-received gm/mmBtu basis when compared to other United States coal deposits used for fuel in thermo-electric power plants. Although regulations have not yet been established for acceptable emissions of the HAPs elements during coal burning, considerable research effort has been given to the characterization of these elements in coal feed stocks. The general purpose of the present field trip and of the accompanying collection of papers is to investigate how various aspects of east Texas lignite geology might collectively influence the quality of the lignite fuel. We hope that this collection of papers will help future researchers understand the complex, multifaceted interrelations of coal geology, petrology, palynology and coal quality, and that this introduction to the geology of the lignite deposits of east Texas might serve as a stimulus for new ideas to be applied to other coal basins in the U.S. and abroad.

  4. Placer mineral resources of Tamil Nadu

    International Nuclear Information System (INIS)

    Anil Kumar, V.

    2016-01-01

    Tamil Nadu, the southernmost state with second longest coast line in India has many placer heavy mineral deposits. These deposits contain economically important light heavy minerals like ilmenite, rutile, leucoxene, monazite, zircon, garnet, sillimanite, kyanite and non-economic minerals like pyroxenes, amphiboles and magnetite along with associated accessory minerals like staurolite, epidote, spinel, biotite and tourmaline. Geologically, granulitic rocks, principally Khondalites (garnet-sillimanite-graphite gneisses), charnockites and granitic gneisses bordered by sedimentary rocks are exposed along the eastern coastal plains of the Tamil Nadu. The principal highland areas, as for example, Shavaroys, Nilgiris, Palni-Kodaikanal Hills and Cardomom hills consists primarily of Charnockites. The margins of highland show a gradation into less metamorphosed rocks generally of amphibolite facies. The khondalites are found south of Kodaikanal massif. Anorthosites and layered mafic complexes occur at Sittampundi, Kadavur areas. Alkaline rocks and carbonatites are prominent at Simalpatti, Sevattur and Sivamalai. Coastal sedimentaries include, Gondwanas, Cretaceous, Tertiary and Quaternary rocks along with lateritic soils and beach sands

  5. Petrologic Aspects of Seamount and Guyot Volcanism on the Ancestral Mesozoic Pacific Plate: a Review

    Science.gov (United States)

    Natland, J. H.

    2007-12-01

    Hundreds of large seamounts and guyots are widely scattered almost in a "shotgun-blast" arrangement in an area about the size of the United States west of the Mississippi River on the Mesozoic Pacific plate between the Mariana Trench and the Gilbert Islands. Most of these formed between ~160-100 Ma while the Pacific plate was surrounded by spreading ridges and growing outward in all directions. There is little to no indication that the seamounts and guyots formed along linear seamount chains; existing radiometric-age data show no age progressions. The volcanoes appear to have formed in response to a uniform stress configuration across the plate, which was either not moving or moving very slowly at the time (1, 2), much like the modern Antarctic plate. When the growing plate started to encounter subduction systems in the western Pacific at ~90 Ma, consistent stress patterns began to develop, and the broad linear Gilbert and Line volcanic ridge systems began to form. Even then, however, considerable overlapping of volcanism occurred, and only the most general age progressions are evident in existing data. Petrologic data from samples obtained from dozens of volcanic summits by dredging and beneath several carbonate platforms by drilling reveal considerable diversity in development of differentiated alkalic magmatic lineages rooted in diverse parental basaltic rocks. These include transitional, alkalic and basanitic compositions, with differentiates of hawaiite, mugearite, trachyte and one phonolite. Many of the basaltic rocks are partly to significantly transformed by alteration under oxidative conditions (dredged rocks) and both oxidative and non-oxidative conditions (drilled rocks). This can make estimations of mantle geochemical provenance difficult. Nevertheless, the province has been linked by backtracking techniques to the modern SOPITA region of the South Pacific (3), and its rocks show enrichments in trace elements and isotopic characteristics similar to

  6. Petrology, composition, and age of intrusive rocks associated with the Quartz Hill molybdenite deposit, southeastern Alaska.

    Science.gov (United States)

    Hudson, T.; Smith, James G.; Elliott, R.L.

    1979-01-01

    A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors

  7. Energy-constrained open-system magmatic processes IV: Geochemical, thermal and mass consequences of energy-constrained recharge, assimilation and fractional crystallization (EC-RAFC)

    International Nuclear Information System (INIS)

    Wendy A. Bohrson Department of Geological Sciences, Central Washington University, Ellensburg, Washington, 98926, USA; Frank J. Spera Institute for Crustal Studies and Department of Geological Sciences, University of California, Santa Barbara, California, 93106, USA

    2003-01-01

    A wealth of geochemical and petrological data provide evidence that the processes of fractional crystallization, assimilation, and magma recharge (replenishment) dominate the chemical signatures of many terrestrial igneous rocks. Previous work [Spera and Bohrson, 2001 ; Bohrson and Spera, 2001] has established the importance of integrating energy, species and mass conservation into simulations of complex magma chamber processes. An extended version of the energy-constrained formulation, Energy-Constrained Recharge, Assimilation, Fractional Crystallization (EC-RAFC), tracks mass and compositional variations of melt, cumulates, and enclaves in a magma body undergoing simultaneous recharge, assimilation, and fractional crystallization [Spera and Bohrson, 2002]. Because many EC-RAFC results are distinct from those predicted by extant RAFC formulations, the primary goal of this paper is to present a range of geochemical and mass relationships for selected cases that highlight issues relevant to modern petrology. Among the plethora of petrologic problems that have important, well-documented analogues in nature are the geochemical distinctions that arise when a magma body undergoes continuous versus episodic recharge, the connection between erupted magmas and associated cumulate bodies, the behavior of recharge-fractionation dominated systems (RFC), thermodynamic conditions that promote the formation of enclaves versus cumulates, and the conditions under which magma bodies may be described as chemically homogeneous. Investigation of the effects of continuous versus episodic recharge for mafic magma undergoing RAFC in the lower crust indicates that the resulting geochemical trends for melt and solids are sensitive to the intensity and composition of recharge, suggesting that EC-RAFC may be used as a tool to distinguish the nature of the recharge events. Compared to the record preserved in melts, the geochemical and mass characteristics of solids associated with particular

  8. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  9. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching

    Science.gov (United States)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2018-04-01

    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  10. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia

    Science.gov (United States)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella

    2018-06-01

    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  11. The peraluminous leucogranitic complex of St Sylvestre (France, Massif Central NW). Evolution of the crystallochemistry of mineral phases and of the geochemistry of major and trace elements. Polygenetism characterization in peraluminous granites. Implication on uranium metallogeny

    International Nuclear Information System (INIS)

    Friedrich, M.

    1983-07-01

    The main purpose of this study is to improve the knowledge of the behaviour of uranium during magmatic and late magmatic processes. In France and other part of the world the close association of uranium (Sn-W) deposits and showings with this type of granite justifies the metallogenic interest of this study. At the scale of the whole granitic complex two distinct petrological groups are redefined: the facies of Brame and St Sylvestre. Mineral paragenesis closely follow the geochemical differentiation. Abundance of uraninite and scarcity of monazite and zircon, are additional features of these samples. The opposite behaviour of monazite (typical of the less evolved facies) and uraninite (whose abundance is directly related to the degree of differentiation) suggests two conclusions. Abundance in uranium is directly related to the magmatic differentiation processes. The early crystallization of monazite and zircon and their high abundance in poorly evolved facies imply a compatible behaviour for Th, Zr and light rare earths. More detailed geochemical studies evidence heterogeneities at on hectometric and locally at a metric scale. Differentiation processes, which appear to be continuous at a kilometric scale in the St Sylvestre facies, are discontinuous at the hectometric and metric scale. Such petrogeochemical discontinuities, implying petrogenitic heterogeneities are expressed in the concept of polygenetism [fr

  12. Origin of leucite-rich and sanidine-rich flow layers in the Leucite Hills Volcanic Field, Wyoming

    Science.gov (United States)

    Gunter, W. D.; Hoinkes, Georg; Ogden, Palmer; Pajari, G. E.

    1990-09-01

    Two types of orendite (sanidine-phlogopite lamproite) and wyomingite (leucite-phlogopite lamproite) intraflow layering are present in the ultrapotassic Leucite Hills Volcanic Field, Wyoming. In large-scale layering, wyomingites are confined to the base of the flow, while in centimeter-scale layering, orendite and wyomingite alternate throughout the flow. The mineralogy of the orendites and wyomingites are the same; only the relative amount of each mineral vary substantially. The chemical compositions of adjacent layers of wyomingite and orendite are almost identical except for water. The centimeter-scale flow layering probably represents fossil streamlines of the lava and therefore defines the path of circulation of the viscous melt. Toward the front of the flow, the layers are commonly folded. Structures present which are indicative that the flows may have possessed a yield strength are limb shears, boudinage, and slumping. Phlogopite phenocrysts are poorly aligned in the orendite layers, while they are often in subparallel alignment in the wyomingite layers; and they are used as a measure of shearing intensity during emplacement of the flow. Vesicle volumes are concentrated in the orendite layers. In the large-scale layering, a discontinuous base rubble zone of autobreccia is overlain by a thin platy zone followed by a massive zone which composes more than the upper 75% of the flow. Consequently, we feel that the origin of the layering may be related to shearing. Two extremes in the geometry of shearing are proposed: closely spaced, thin, densely sheared layers separated by discrete intervals throughout a lava flow as in the centimeter-scale layering and classical plug flow where all the shearing is confined to the base as in the large-scale layering. A mechanism is proposed which causes thixotropic behavior and localizes shearing: the driving force is the breakdown of molecular water to form T-OH bonds which establishes a chemical potential gradient for water in

  13. Stratigraphy, sedimentology and petrology of neogene rocks in the Deschutes Basin, Central Oregon: a record of continental-margin volcanism and its influence on fluvial sedimentation in an arc-adjacent basin

    International Nuclear Information System (INIS)

    Smith, G.A.

    1986-07-01

    Neogene rocks of the Deschutes basin include the middle Miocene Columbia River Basalt Group and Simtustus Formation, and late Miocene to early Pliocene Deschutes Formation. Assignment of Prineville chemical-type flows to the Grande Ronde Basalt of the Columbia River Basalt Group is based on correlation of these lavas from their type area through the Deschutes basin and onto the Columbia Plateau, where they have been previously mapped as Grande Ronde Basalt. Simtustus Formation is a newly defined unit intercalated with and conformable upon these basalts, and is unconformably overlain by Deschutes Formation. Burial of mature topography by middle Miocene basalts raised local base levels and initiated aggradation by low-gradient streams within the basin represented by the tuffaceous sandstones and mudstones of the Simtustus Formation. These sediments are enriched in pyroclastic constituents relative to contemporaneous Western Cascades volcanics, reflecting preferential incorporation of easily eroded and more widespread pyroclastic debris in distal sedimentary sequences compared to epiclastic contributions from lavas. The abundance of basalts, combined with the paucity of hydrous minerals and FeO and TiO 2 enrichment in intermediate lavas, characterizes early High Cascade volcanics as atypical for convergent-margin arcs. These petrologic characteristics are consistent with high-level fractionation in an extensional regime. Extension culminated in the development of an intra-arc graben, which ended Deschutes Formation deposition by structurally isolating the basin from the High Cascade source area

  14. ComplexViewer: visualization of curated macromolecular complexes.

    Science.gov (United States)

    Combe, Colin W; Sivade, Marine Dumousseau; Hermjakob, Henning; Heimbach, Joshua; Meldal, Birgit H M; Micklem, Gos; Orchard, Sandra; Rappsilber, Juri

    2017-11-15

    Proteins frequently function as parts of complexes, assemblages of multiple proteins and other biomolecules, yet network visualizations usually only show proteins as parts of binary interactions. ComplexViewer visualizes interactions with more than two participants and thereby avoids the need to first expand these into multiple binary interactions. Furthermore, if binding regions between molecules are known then these can be displayed in the context of the larger complex. freely available under Apache version 2 license; EMBL-EBI Complex Portal: http://www.ebi.ac.uk/complexportal; Source code: https://github.com/MICommunity/ComplexViewer; Package: https://www.npmjs.com/package/complexviewer; http://biojs.io/d/complexviewer. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. colin.combe@ed.ac.uk or juri.rappsilber@ed.ac.uk. © The Author 2017. Published by Oxford University Press.

  15. What can blueschists tell about the Deep? High Pressure in the Anatolide - Taurid Belt

    Science.gov (United States)

    Oberhaensli, R.

    2011-12-01

    High-pressure metamorphic terranes in the Anatolide - Taurid belt document the complex distribution of paleo-sutures in the Tethyan realm. Field based petrologic studies of metapelites in the Anatolide-Taurid realm allow to trace HP-LT metamorphism not only in the well known ophiolitic Tavsanli Zone (2.4 GPa/500 °C) but also in the Afyon Zone (0.9 GPa/350 °C), the Menderes Massif (1.2 Gpa/500 °C;) and in the Lycian Nappes (1.0 Gpa/400 °C) - all situated north of the so called Taurid Platform. While the HP metamorphism is dated to 90-80 Ma (Rb/Sr; Ar/Ar) in the Tavsanli Zone, it ranges from 60-70 Ma (Ar/Ar) in the Afyon Zone and its tectonic equivalent, the Lycian Nappes. The Afyon Zone s.l. is closely related to the glaucophane- lawsonite-bearing rocks of the Tavsanli Zone and its eastward extension. Blueschist-facies metamorphism is documented by Fe,Mg-carpholite in regionally distributed metapelites and glaucophane in sparse mafic rocks (Afyon, Menderes, Lycia). Since observations of HP are based on Fe,Mg-carpholite bearing metasediments and not on mafic blueschists new thermodynamic data and petrologic modelling was elaborated to match P-T data and field-based observations. Moreover, newly formed phengitic mica allows precise dating. Both, Tavsanli and Afyon Zones can be followed along strike over more than 600 km and around the southern edge of the Central Anatolian Crystalline Complex. The two zones are situated north of the Taurid Platform and correlate with the Amasia Zone in Armenia. To the extreme East the Bitlis Complex underwent a LT - HP metamorphic blueschist evolution (1,1 GPa/ 350 °C; glaucophane, Fe,Mg-carpholite) in its sedimentary cover while the basement is eclogitic. Depending on the structural position and mineral association of phengitic mica metamorphic ages of the Bitlis blueschists scatter around 70-80 Ma. Eclogites from the basement are slightly older. These LT-HP units cannot be correlated with the Tavsanli - Afyon blueschist belts

  16. Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40/39Ar age determinations, Fuerteventura, Canary Islands

    Science.gov (United States)

    Allibon, James; Ovtcharova, Maria; Bussy, Francois; Cosca, Michael; Schaltegger, Urs; Bussien, Denise; Lewin, Eric

    2011-01-01

    High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 ± 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. 40Ar/39Ar amphibole dating yielded ages from 21.9 ± 0.6 to 21.8 ± 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between 40Ar/39Ar and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i.e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (Tc) of zircon (699-988 °C) to amphibole (500-600 °C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the 40Ar/39Ar and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole Tc is 0.8 Ma, suggesting PX1 lifetime of 520,000 to 800,000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 ± 0.07/0.08/0.15 Ma and 21.58 ± 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope δ18O values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.

  17. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements

    Directory of Open Access Journals (Sweden)

    M.P. Smith

    2016-05-01

    Full Text Available The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for individual, or a limited group of the elements. Taking the total REE resource, only one currently known deposit (Bayan Obo would class as giant (>1.7 × 107 tonnes contained metal, but a range of others classify as large (>1.7 × 106 tonnes. With the exception of unclassified resource estimates from the Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity – either carbonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of the primary igneous source, but the grade is a complex function of igneous source, magmatic crystallisation, hydrothermal modification and supergene enrichment during weathering. Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle, enriched in trace elements either by plume activity, or by previous subduction. The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits (e.g. Bayan Obo. Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade, depending on primary mineralogy and the availability of ligands. Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld (Australia and Tomtor (Russia. For the individual REE with the current highest economic value (Nd and the HREE, the boundaries for the large and giant size classes are two orders of magnitude lower, and deposits enriched in these metals (agpaitic systems, ion absorption deposits may have significant economic impact in the near future.

  18. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    Science.gov (United States)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The

  19. Petrología y Estructura del Complejo Ígneo-Metamórfico Aluminé, Provincia de Neuquén, Argentina Petrology and Structure of the Aluminé Igneous-Metamorphic Complex, Neuquén province, Argentina

    Directory of Open Access Journals (Sweden)

    Ivana A Urraza

    2011-01-01

    andinas (cretácicas o más modernas y el sector sur donde dominan los granitoides preandinos de edades permotriásicas-jurásicas, emplazados en un basamento paleozoico. Si bien los diagramas geoquímicos permiten diferenciar los diferentes petrotipos definidos petrográficamente y sus tendencias evolutivas podrían indicar procesos de cristalización fraccionada, la distribución areal de los mismos, sus características petrográfico-microestructurales y la geocronología, indican que podrían corresponder a diferentes pulsos-eventos magmáticos separados en el tiempo, aunque desarrollados en un contexto de características tectónicas similares.In the present contribution, the partial results of a detailed study of the magmatic, metamorphic and tectonic events developed in the Aluminé Igneous-Metamorphic Complex (AIMC are given. We define the AIMC as the set of pre-andean and andean intrusive igneous and metamorphic rocks, outcropping in the área located between the Aluminé, Moquehue, Ñorquinco and Pulmarí lakes in the Neuquén province, Argentina. Based on field and petrographic observations and geochemical characteristics, the granitic rocks forming part of the AIMC have been classified as: 1. quartz diorites, 2. tonalites-granodiorites, 3. granodiorites and 4. granites. The geochemical parameters indícate that the defined lithologies derive from calcic to weakly calcalkaline magmas of metaluminous composition, typical of Type I Cordilleran batholiths associated with active continental margins. Intercalated between the magmatic rocks, some outcrops of metamorphic basement composed mainly of schists, gneisses, amphibolites and scarce quartzose sandstones. Andesites, tuffs and basalts cover in part the metamorphites and granitoids are exposed. The structure of the sector is characterized by the presence of three main sets of regional lineaments, with NE-SW, NW-SE and N-S orientations. These directions coincide with the orientations of the three groups of

  20. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  1. Book Review: Potassic igneous rocks and associated gold-copper mineralization, Fourth edition (D. Muller and D.I. Groves)

    Science.gov (United States)

    Kelley, Karen D.

    2016-01-01

    The fourth edition of this comprehensive textbook, which succeeds those published in 1995, 1997, and 2000, very nicely summarizes the geochemical and petrological characteristics of potassic igneous rock complexes and the different tectonic settings in which they occur. The authors provide an overview and a classification of these rocks and they outline the geochemical differences between barren and mineralized potassic igneous complexes. Owing to the common association of potassic igneous rocks with many gold- and copper-rich ore deposits, this book will be of interest not only to research scientists but also to those exploring for major deposits in young and ancient terranes. In fact, there was a clear attempt by the authors to provide a good mix of theoretical discussions based on experimental work, with case studies that illustrate field and applied research.

  2. Report on opportunities and/or techniques for high-caliber experimental research (other) proposals for SSPEX

    International Nuclear Information System (INIS)

    Nuth, J.A. III; Corso, G.; Devincenzi, D.; Duba, A.; Freeman, J.; Lopez, R.; Stephens, J.; Strong, I.; Wolfe, J.; Lawrence Livermore National Lab., CA; Rice Univ., Houston, TX; Jet Propulsion Lab., Pasadena, CA; Los Alamos National Lab., NM)

    1986-01-01

    Brief discriptions of the following 13 experiments are included: ultrahigh vacuum petrology facility; artificial comet free flyer; artificial comet (tethered); cosmic dust detector; cosmic dust collector; dust collection using tethered satellites; artificial magnetosphere; microgravity petrological studies; slitless ultraviolet spectrometer; orbital determination and capture experiment (ODACE); high velocity sputtering of amorphous silicates; particle release experiments; and calibration of gamma and X-ray remote sensing probes

  3. Petrology and deformation style of lithospheric mantle beneath the Heldburg Dike swarm (Central Germany) subset of Central European Volcanic Province

    Science.gov (United States)

    Kukuła, Anna; Puziewicz, Jacek; Hidas, Károly; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Milke, Ralf

    2017-04-01

    -30 % of melting of primitive mantle, which was overprinted by silicate and/or carbonatite metasomatism. The xenolith 3140 seems not to be affected by metasomatic overprint. Based on the EBSD analyses of 15 xenoliths, olivine grains are characterized by relatively strong CPO (crystal preferred orientation) with J indices 4.4 - 13.3, and they have orthorhombic (8 xenoliths) or [100]-fiber CPO (6 xenoliths) symmetries except for one [010]-fiber symmetry observed in group B (Tommasi et al., 1999). Pyroxenes have weaker CPO and the distribution of their crystallographic axes is inconsistent with their coeval deformation with olivine. We propose that their CPO postdates that of olivine, hence strongly support a later origin for pyroxenes. Funding. This study was possible thanks to the project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science to JP Tommasi, A., B. Tikoff, and A. Vauchez (1999). Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties, Earth Planet Sc Lett,168, 173-186. Upton, B.G.J., Downes, H., Kirstein, L.A., Bonadiman, C., Hill, P.G., Ntaflos, T. (2011). The lithospheric mantle and lower crust-mantle relationships under Scotland: a xenolithic perspective. J Geol Soc, 168, 873-886.

  4. Current uranium activities in Pakistan

    International Nuclear Information System (INIS)

    Moghal, M.Y.

    2001-01-01

    The rocks of Siwaliks group in Pakistan, extending from Kashmir in the east through Potwar Plateau, Bannu Basin and Sulaiman range up to the Arabian Sea in the west have been extensively explored for uranium. The Dhok Pathan Formation, which is younger member of the middle Siwaliks has been aeroradiometrically surveyed and extensively prospected on foot. A large number of anomalies were encountered in Kashmir, Potwar Plateau, Bannu Basin and Sulaiman range. While exploratory work in Sulaiman range and Bannu Basin yielded a few workable deposits, none of the anomalous areas yielded an ore grade concentration in Potwar Plateau. As conventional exploration activities in Potwar Plateau did not yield any ore grade concentration therefore a resource potential evaluation programme through geological modeling was started under the guidance of an IAEA expert. The volcanic material found in the middle Siwaliks is considered to be the main source of uranium and siliceous cement in the sandstones. These findings have considerably increased uranium potential in Siwaliks. The tectonic deformation during and after the deposition of Siwaliks is considered to be the main reason for mobilization of uranium, while permeability barriers and upward movement of oil products may provide trappings for the mobilized uranium. Through this survey south western part of Potwar Plateau being relatively less deformed is considered to provide conducive environments for concentration of uranium. Low grade uranium concentrations have also been discovered in carbonatites in northern part of Pakistan. Preliminary exploration in Sallai Patti carbonatite through drilling supplemented by trenching, pitting and aditing, subsurface continuation of surface concentrations has been confirmed. The ore contains about 200 ppm of uranium and 3 to 4% phosphate in addition to magnetite, rare metals and rare earths. It has been demonstrated on laboratory/pilot scale that the concentrations of uranium and phosphate

  5. Charnockitic ortho gneisses and mafic granulites of Cerro Olivo complex, proterozoic basement of SE Uruguay, Part 1: Geology

    International Nuclear Information System (INIS)

    Masquelin, H.

    2008-01-01

    Charnockitic ortho gneisses and mafic granulite s exposed in the Cerro Bori Block, in the center of Punta del Este terrain, were the first document occurrence of granulitic rocks from SE sector of the Uruguayan Shield. We present here their main geological features, with the purpose to suggest some petrologic and structural interesting problems for a future lithogeochemical, mineral chemistry, stable isotopes and fluid inclusion studies about these rocks. We propose some speculation form field-based studies considering a cognate magmatic origin of both kinds of rocks, previous to a homogeneous granulitic metamorphism. Some structural evidences indicate that after their uplift, these rocks were located on over thickened crust, at great to medium deepness. A cataclasis during anatexis and amphibolite-facies mineral association stabilization are common phenomena. Other evidences suggest a polycyclic character for the regional geologic evolution

  6. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  7. Petrologically-constrained thermo-chemical modelling of cratonic upper mantle consistent with elevation, geoid, surface heat flow, seismic surface waves and MT data

    Science.gov (United States)

    Jones, A. G.; Afonso, J. C.

    2015-12-01

    The Earth comprises a single physio-chemical system that we interrogate from its surface and/or from space making observations related to various physical and chemical parameters. A change in one of those parameters affects many of the others; for example a change in velocity is almost always indicative of a concomitant change in density, which results in changes to elevation, gravity and geoid observations. Similarly, a change in oxide chemistry affects almost all physical parameters to a greater or lesser extent. We have now developed sophisticated tools to model/invert data in our individual disciplines to such an extent that we are obtaining high resolution, robust models from our datasets. However, in the vast majority of cases the different datasets are modelled/inverted independently of each other, and often even without considering other data in a qualitative sense. The LitMod framework of Afonso and colleagues presents integrated inversion of geoscientific data to yield thermo-chemical models that are petrologically consistent and constrained. Input data can comprise any combination of elevation, geoid, surface heat flow, seismic surface wave (Rayleigh and Love) data and receiver function data, and MT data. The basis of LitMod is characterization of the upper mantle in terms of five oxides in the CFMAS system and a thermal structure that is conductive to the LAB and convective along the adiabat below the LAB to the 410 km discontinuity. Candidate solutions are chosen from prior distributions of the oxides. For the crust, candidate solutions are chosen from distributions of crustal layering, velocity and density parameters. Those candidate solutions that fit the data within prescribed error limits are kept, and are used to establish broad posterior distributions from which new candidate solutions are chosen. Examples will be shown of application of this approach fitting data from the Kaapvaal Craton in South Africa and the Rae Craton in northern Canada. I

  8. A combined study of gas geochemistry, petrology, and lava effusion at Bagana, a unique persistently active lava cone in Papua New Guinea

    Science.gov (United States)

    McCormick, B. T.; Salem, L. C.; Edmonds, M.; D'Aleo, R. N. M.; Aiuppa, A.; Arellano, S. R.; Wallius, J.; Galle, B.; Barry, P. H.; Ballentine, C. J.; Mulina, K.; Sindang, M.; Itikarai, I.; Wadge, G.; Lopez, T. M.; Fischer, T. P.

    2016-12-01

    Bagana volcano (Bougainville Island, Papua New Guinea) has exhibited nearly continuous extrusion of andesitic lava for over a century, but has largely been studied by satellite remote sensing. Satellite UV spectroscopy has revealed Bagana to be among the largest volcanic sources of sulfur dioxide worldwide. Satellite radar measurements of lava extrusion rate suggest that the entire edifice could have been built in only a few centuries. Bagana is dominantly constructed from lava flows, but also exhibits violent PDC-forming explosive eruptions, which threaten local populations.We present new multi-parameter data from fieldwork on Bagana in September 2016. UV spectrometers were deployed to ground-truth satellite observations of SO2 emissions, and track sub-daily variations in gas output. In situ measurements and sampling of emissions provide the first gas composition data for this volcano. Aerial imagery filmed by UAV was obtained to generate a high resolution DEM of the edifice for use in calibrating ongoing satellite radar studies of deformation and extrusion rate. Lava and tephra samples were gathered, with the aim of comparing melt composition and volatile content between eruptions of different style. The combination of gas geochemistry, geophysical monitoring from space, and petrology will be used to build a model framework to understand the pulsatory nature of Bagana's lava extrusion, and transitions to explosive activity.A campaign to a continuously active but poorly-studied volcano affords many opportunities for education and outreach. The campaign participants included early career scientists from five countries, who planned and carried out the fieldwork and exchanged expertise in a range of techniques. All work was undertaken in close collaboration with Rabaul Volcano Observatory, and was informed by their strategic monitoring goals, a valuable experience for the field team of synergising research activities with more operational concerns. Footage obtained

  9. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  10. Garnet - two pyroxene rock from the Gridino complex, Russia: a record of the early metasomatic stage

    Science.gov (United States)

    Morgunova, Alena A.; Perchuk, Alexei L.

    2010-05-01

    The Gridino complex is one of the oldest high pressure complexes on the Earth. The most spectacular exposures occur in islands and in a 10-50 m wide belt along the shore of the White Sea in the Gridino area. The exotic blocks show wide range of compositions. In addition to predominating amphibolites and eclogites, there are also peridotites, zoisitites and sapphirine-bearing rocks. The peridotites are represented by garnet - two pyroxene rocks and orthopyroxenites. It this paper we present an intriguing results of the petrological study of the garnet- two pyroxene rock. The garnet- two pyroxene rock considered occurs as elliptical body 4×6 m in size within amphibole-biotite gneiss in the island Visokii. The rock consists of mosaic of coarse-grained primary garnet, clinopyroxene and orthopyroxene. Accessories are represented by magnetite, ilmenite, pyrite and zircon. Garnet contains inclusions of clinopyroxene, Mg-calcite and chlorite. The chlorite inclusions always intergrow with dendritic mineral enriched in REE (mainly Ce) situated on the wall of vacuole which shows the tendency of negative crystal shape. Similar chlorite inclusions are hosted by clino- and orthopyroxenes. The chlorite is of diabantite composition. The inclusions are often surrounded by the two systems of cracks - radial and concentric, which is really exotic phenomenon for crystalline rock. The primary minerals experienced different degree of the retrograde alteration expressed as amphibolization and/or growth of the orthopyroxene-amphibole-garnet symplectites. The retrogression is patchy in the central part of garnet- two pyroxene body, but intensifies towards the rims where primary minerals are absent. Mineral thermobarometry reveals HP rock equilibration at 670-750 оС and 14-20 kbar followed by subisothermal decompression down to 640-740 оС and 6-14 kbar. Specific composition of the chlorite and its association with REE phase in all rock-forming minerals suggests that anhydrous HP

  11. On Measuring the Complexity of Networks: Kolmogorov Complexity versus Entropy

    Directory of Open Access Journals (Sweden)

    Mikołaj Morzy

    2017-01-01

    Full Text Available One of the most popular methods of estimating the complexity of networks is to measure the entropy of network invariants, such as adjacency matrices or degree sequences. Unfortunately, entropy and all entropy-based information-theoretic measures have several vulnerabilities. These measures neither are independent of a particular representation of the network nor can capture the properties of the generative process, which produces the network. Instead, we advocate the use of the algorithmic entropy as the basis for complexity definition for networks. Algorithmic entropy (also known as Kolmogorov complexity or K-complexity for short evaluates the complexity of the description required for a lossless recreation of the network. This measure is not affected by a particular choice of network features and it does not depend on the method of network representation. We perform experiments on Shannon entropy and K-complexity for gradually evolving networks. The results of these experiments point to K-complexity as the more robust and reliable measure of network complexity. The original contribution of the paper includes the introduction of several new entropy-deceiving networks and the empirical comparison of entropy and K-complexity as fundamental quantities for constructing complexity measures for networks.

  12. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    Science.gov (United States)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  13. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...

  14. Complex Fuzzy Set-Valued Complex Fuzzy Measures and Their Properties

    Science.gov (United States)

    Ma, Shengquan; Li, Shenggang

    2014-01-01

    Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail. PMID:25093202

  15. The complex portal--an encyclopaedia of macromolecular complexes.

    Science.gov (United States)

    Meldal, Birgit H M; Forner-Martinez, Oscar; Costanzo, Maria C; Dana, Jose; Demeter, Janos; Dumousseau, Marine; Dwight, Selina S; Gaulton, Anna; Licata, Luana; Melidoni, Anna N; Ricard-Blum, Sylvie; Roechert, Bernd; Skyzypek, Marek S; Tiwari, Manu; Velankar, Sameer; Wong, Edith D; Hermjakob, Henning; Orchard, Sandra

    2015-01-01

    The IntAct molecular interaction database has created a new, free, open-source, manually curated resource, the Complex Portal (www.ebi.ac.uk/intact/complex), through which protein complexes from major model organisms are being collated and made available for search, viewing and download. It has been built in close collaboration with other bioinformatics services and populated with data from ChEMBL, MatrixDB, PDBe, Reactome and UniProtKB. Each entry contains information about the participating molecules (including small molecules and nucleic acids), their stoichiometry, topology and structural assembly. Complexes are annotated with details about their function, properties and complex-specific Gene Ontology (GO) terms. Consistent nomenclature is used throughout the resource with systematic names, recommended names and a list of synonyms all provided. The use of the Evidence Code Ontology allows us to indicate for which entries direct experimental evidence is available or if the complex has been inferred based on homology or orthology. The data are searchable using standard identifiers, such as UniProt, ChEBI and GO IDs, protein, gene and complex names or synonyms. This reference resource will be maintained and grow to encompass an increasing number of organisms. Input from groups and individuals with specific areas of expertise is welcome. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Complexity Plots

    KAUST Repository

    Thiyagalingam, Jeyarajan

    2013-06-01

    In this paper, we present a novel visualization technique for assisting the observation and analysis of algorithmic complexity. In comparison with conventional line graphs, this new technique is not sensitive to the units of measurement, allowing multivariate data series of different physical qualities (e.g., time, space and energy) to be juxtaposed together conveniently and consistently. It supports multivariate visualization as well as uncertainty visualization. It enables users to focus on algorithm categorization by complexity classes, while reducing visual impact caused by constants and algorithmic components that are insignificant to complexity analysis. It provides an effective means for observing the algorithmic complexity of programs with a mixture of algorithms and black-box software through visualization. Through two case studies, we demonstrate the effectiveness of complexity plots in complexity analysis in research, education and application. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  17. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  18. Deep structure across the Zagros Mountains and the Iranian Plateau. An integrated geophysical and petrological approach; Estructura profunda del Zagros y de la meseta de Iran: modelo geofisico y petrologico

    Energy Technology Data Exchange (ETDEWEB)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.

    2011-07-01

    The Zagros, mountains which cross Iran from NW to SE, were formed by the collision between the Arabian and Eurasian plates during the Cenozoic. A low seismic velocities anomaly (Maggi and Priestley, 2005; Alinaghi et al., 2007) and the integrated fitting of elevation, potential fields and thermal data (Molinaro et al., 2005), suggest a thinning in the upper mantle below the orogen. Using a method (Afonso et al., 2008) which combines elevation, geoid, gravity, superficial heat flow, seismic and petrological data, we investigate the mantle structure down to 400 km depth of a profile which crosses the westernmost part of the Zagros Mountains, passes the Alborz and reaches the southern coast of the Caspian Sea. The result shows a significant deficit of mass in the lithospheric mantle beneath the Zagros and we solve that with thickness variation of the lithospheric mantle. The lithosphere-astenosphere boundary (LAB), which is almost 230 km deep below the Foreland Basin, goes up to 120 km depth below the Sinandaj Sirjan Zone. A mantle thinning affects the whole area below the Zagros and the Alborz Mountains and is characterized by a negative density anomaly and a higher temperature. It was necessary to use three different mantle compositions to reach the best fit of the data: a Proton-6 (Griffin et al., 2008) for the mantle below the Mesopotamian foreland; a Tecton Tc-2 (Griffin et al., 2008) for the mantle below the orogen, and a different composition derived from Sahneh ophiolite composition for the mantle below the Eurasian plate. Keywords: lithospheric mantle, mantle composition, LAB. (Author) 30 refs.

  19. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  20. An ion microprobe study of CAIs from CO3 meteorites. [Abstract only

    Science.gov (United States)

    Russell, S. S.; Greenwood, R. C.; Fahey, A. J.; Huss, G. R.; Wasserburg, G. J.

    1994-01-01

    When attempting to interpret the history of Ca, Al-rich inclusions (CAIs) it is often difficult to distinguish between primary features inherited from the nebula and those produced during secondary processing on the parent body. We have undertaken a systematic study of CAIs from 10 CO chondrites, believed to represent a metamorphic sequence with the goal of distinguishing primary and secondary features. ALHA 77307 (3.0), Colony (3.0), Kainsaz (3.1), Felix (3.2), ALH 82101 (3.3), Ornans (3.3), Lance (3.4), ALHA 77003 (3.5), Warrenton (3.6), and Isna (3.7) were examined by Scanning Electron Microscopy (SEM) and optical microscopy. We have identified 141 CAIs within these samples, and studied in detail the petrology of 34 inclusions. The primary phases in the lower petrologic types are spinel, melilite, and hibonite. Perovskite, FeS, ilmenite, anorthite, kirschsteinite, and metallic Fe are present as minor phases. Melilite becomes less abundant in higher petrologic types and was not detected in chondrites of type 3.5 and above, confirming previous reports that this mineral easily breaks down during heating. Iron, an element that would not be expected to condense at high temperatures, has a lower abundance in spinel from low-petrologic-type meteorites than those of higher grade, and CaTiO3 is replaced by FeTiO3 in meteorites of higher petrologic type. The abundance of CAIs is similar in each meteorite. Eight inclusions have been analyzed by ion probe. The results are summarized. The results obtained to date show that CAIs in CO meteorites, like those from other meteorite classes, contain Mg* and that Mg in some inclusions has been redistributed.

  1. Workshop on Recommendation in Complex Scenarios (ComplexRec 2017)

    DEFF Research Database (Denmark)

    Bogers, Toine; Koolen, Marijn; Mobasher, Bamshad

    2017-01-01

    Recommendation algorithms for ratings prediction and item ranking have steadily matured during the past decade. However, these state-of-the-art algorithms are typically applied in relatively straightforward scenarios. In reality, recommendation is often a more complex problem: it is usually just...... a single step in the user's more complex background need. These background needs can often place a variety of constraints on which recommendations are interesting to the user and when they are appropriate. However, relatively little research has been done on these complex recommendation scenarios....... The ComplexRec 2017 workshop addressed this by providing an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all-solution....

  2. Aeromagnetic study of the Hengshan-Wutai-Fuping region: Unraveling a crustal profile of the Paleoproterozoic Trans-North China Orogen

    Science.gov (United States)

    Zhang, Jian; Zhao, Guochun; Shen, Wenlue; Li, Sanzhong; Sun, Min

    2015-11-01

    An integrated crustal profile of the intervening Trans-North China Orogen (TNCO) is one of the key issues to understanding the tectonic evolution of the North China Craton. However, the existing geological studies focus only on the surface-mapping based petrological, geochemical and structural analysis, but lack subsurface geophysical evidence and thus make the crustal profile interpretations ambiguous. In contrast, the current geophysical data covers a very large-scale lithospheric mantle and fails to image the detailed structural pattern of the orogenic crust. To achieve this goal, we present high-resolution aeromagnetic data for the Hengshan-Wutai-Fuping region, the largest exposure of the central TNCO. The reduced-to-pole magnetic anomaly map firstly verifies the regional tectonic subdivision that the high-grade metamorphic terranes (i.e. Hengshan and Fuping Complexes) are consistent with high-magnetic responses and long-wavelength anomalies, intervened by a low-grade terrane (Wutai Complex) characterized by low-magnetic responses and short-wavelength anomalies. 3D Euler deconvolution reveals that the tendencies of the clustered solutions show large consistence with the major structural pattern of the region which is characterized by a fan-shaped doubly-vergent orogenic wedge. Upward continuation further shows that the northwest part of the orogen yields a thicker crust and is most likely located closer to the paleosubduction zone. The new aeromagnetic data, combined with structural, petrological and metamorphic data indicate that an eastward-dipping subduction zone was most possibly active before the collision of the Western and Eastern Blocks, leading to the formation of the TNCO and the final amalgamation of the North China Craton.

  3. Dynamic complexity: plant receptor complexes at the plasma membrane.

    Science.gov (United States)

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Revitalizing Complex Analysis: A Transition-to-Proof Course Centered on Complex Topics

    Science.gov (United States)

    Sachs, Robert

    2017-01-01

    A new transition course centered on complex topics would help in revitalizing complex analysis in two ways: first, provide early exposure to complex functions, sparking greater interest in the complex analysis course; second, create extra time in the complex analysis course by eliminating the "complex precalculus" part of the course. In…

  5. Uranium occurrences of the Thunder Bay-Nipigon-Marathon area

    International Nuclear Information System (INIS)

    Scott, J.F.

    1987-01-01

    During the 1981, 1982 and 1983 field seasons an inventory of all known uranium occurrences in the North Central Region of Ontario was undertaken. Three major categories of uranium occurrences were identified: uranium associated with the rocks of the Quetico Subprovince; uranium associated with the Proterozoic/Archean unconformity; and uranium associated with alkalic and carbonatite rocks of Late Precambrian age. Occurrences associated with the Quetico Belt are in white, albite-quartz-muscovite pegmatites. Occurrences associated with the Proterozoic/Archean unconformity are usually of high gradee (up to 12% U 3 O 8 ), nearly always hematized and are related to fault or shear zones proximal to the unconformity. Although of high grade, many of the unconformity related occurrences are very narrow (<1 m). Alkalic and carbonatite rocks of Late Precambrian age are an important source of uranium but possible metallurgical problems might downgrade their potential. The Quetico Subprovince is anomalously high in background uranium, and therefore contains important source rocks for uranium. Areas that have the highest potential for uranium deposits in the North Central Region are the Nipigon Basin area, and the areas underlain by the Gunflint and Rove Formations. All the high grade vein-type uranium deposits related to the unconformity are found within the Nipigon Basin. 126 refs

  6. 3D complex: a structural classification of protein complexes.

    Directory of Open Access Journals (Sweden)

    Emmanuel D Levy

    2006-11-01

    Full Text Available Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes.

  7. The uranium deposits of Ontario

    International Nuclear Information System (INIS)

    Robertson, J.A.

    1981-01-01

    The principal types of uranium deposits in Ontario are carbonatites and fenites, alkalic volcanic rocks, pegiatites, calc-silicate rocks, pyritic quartz-pebble conglomerates, polymictic conglomerates and some pelitic rocks, and various 'pitchblende' deposits including late Precambrian unconformities, possibly late Precambrian diabase dikes, and other unconformities: carbonates, sandstones, lignites, and semi-pelitic rocks of middle and upper Precambrian age. Only red unzoned pegmatite and the pyritic quartz-pebble conglomerate have supported production. Ontario reasonably assured and estimated resources in the economic and subeconomic categories in 1977 amounted to 553 000 tonnes U, and 1977 production was 4000 tonnes U. Measured, indicated, and inferred resources in the Elliot Lake - Agnew Lake area are at least 400 000 tonnes U. The latter deposits are also a significant thorium resource. Geological features reflecting major changes in physics and chemistry are prime controls on distribution of uranium deposits. Geological province and subprovince boundaries, major faults, higher metamorphic grades, domain boundaries related to quartz monzonite batholiths, alkalic complexes, and the distribution of carbonate rocks are examples of such geological features

  8. Petrological and geochemical studies of alkaline rocks from continental Brazil. 8. The syenitic intrusion of Morro Redondo, RJ

    International Nuclear Information System (INIS)

    Brotzu, P.; Melluso, L.; Beccaluva, L.

    1989-01-01

    The alkaline complex of Morro Redondo is mainly composed of syenites, alkali syenites and nepheline syenites. The age of the intrusion, utilizing eleven newly available K/Ar data, is about 73 Ma. Petrography, mineral chemistry and geochemistry strongly support cogeneticity among the various lithotypes, linked by fractional crystallisation of the observed phases and crystal accumulation, preferentially of alkali feldspar. Initial Sr isotopic ratios indicate a mantle parental magma, probably generated in the subcontinental lithosphere, like other Brazilian alkaline complexes (e.g. Fortaleza, Juquia, Piratini, Tunas). (author) [pt

  9. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    International Nuclear Information System (INIS)

    Cao, Hongduo; Li, Ying

    2014-01-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process

  10. Unraveling chaotic attractors by complex networks and measurements of stock market complexity.

    Science.gov (United States)

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  11. Basic feature of host rock and its relation to the formation of leachable sandstone type uranium deposit in Shihongtan

    International Nuclear Information System (INIS)

    Quan Zhigao; Zhang Jiamin; Ji Haijun; Sun Yanhuan; Zhang Fa

    2012-01-01

    Basic feature of sedimentology and petrology and lithogeochemistry of middle Jurassic Xishanyao formation were discussed for Shihongtan uranium deposit in the paper. The relation between host rock and ore formation was analysed. It is indicated that the formation of Shihongtan uranium deposit de-ponds on the following host features in sedimentology, petrology, lithogeochemistry and the intense oxidized epigenetic alteration under hot dry climate condition during the formation of peneplain caused by the slow tilting uplift. (authors)

  12. Complex Correspondence Principle

    International Nuclear Information System (INIS)

    Bender, Carl M.; Meisinger, Peter N.; Hook, Daniel W.; Wang Qinghai

    2010-01-01

    Quantum mechanics and classical mechanics are distinctly different theories, but the correspondence principle states that quantum particles behave classically in the limit of high quantum number. In recent years much research has been done on extending both quantum and classical mechanics into the complex domain. These complex extensions continue to exhibit a correspondence, and this correspondence becomes more pronounced in the complex domain. The association between complex quantum mechanics and complex classical mechanics is subtle and demonstrating this relationship requires the use of asymptotics beyond all orders.

  13. Uranium thiolate complexes

    International Nuclear Information System (INIS)

    Leverd, Pascal C.

    1994-01-01

    This research thesis proposes a new approach to the chemistry of uranium thiolate complexes as these compounds are very promising for various uses (in bio-inorganic chemistry, in some industrial processes like oil desulphurization). It more particularly addresses the U-S bond or more generally bonds between polarizable materials and hard metals. The author thus reports the study of uranium organometallic thiolates (tricyclo-penta-dienic and mono-cyclo-octa-tetraenylic complexes), and of uranium homoleptic thiolates (tetra-thiolate complexes, hexa-thiolate complexes, reactivity of homoleptic thiolate complexes) [fr

  14. Clinical Complexity in Medicine: A Measurement Model of Task and Patient Complexity.

    Science.gov (United States)

    Islam, R; Weir, C; Del Fiol, G

    2016-01-01

    Complexity in medicine needs to be reduced to simple components in a way that is comprehensible to researchers and clinicians. Few studies in the current literature propose a measurement model that addresses both task and patient complexity in medicine. The objective of this paper is to develop an integrated approach to understand and measure clinical complexity by incorporating both task and patient complexity components focusing on the infectious disease domain. The measurement model was adapted and modified for the healthcare domain. Three clinical infectious disease teams were observed, audio-recorded and transcribed. Each team included an infectious diseases expert, one infectious diseases fellow, one physician assistant and one pharmacy resident fellow. The transcripts were parsed and the authors independently coded complexity attributes. This baseline measurement model of clinical complexity was modified in an initial set of coding processes and further validated in a consensus-based iterative process that included several meetings and email discussions by three clinical experts from diverse backgrounds from the Department of Biomedical Informatics at the University of Utah. Inter-rater reliability was calculated using Cohen's kappa. The proposed clinical complexity model consists of two separate components. The first is a clinical task complexity model with 13 clinical complexity-contributing factors and 7 dimensions. The second is the patient complexity model with 11 complexity-contributing factors and 5 dimensions. The measurement model for complexity encompassing both task and patient complexity will be a valuable resource for future researchers and industry to measure and understand complexity in healthcare.

  15. Origin of peraluminous minerals (corundum, spinel, and sapphirine) in a highly calcic anorthosite from the Sittampundi Layered Complex, Tamil Nadu, India

    Science.gov (United States)

    Karmakar, Shreya; Mukherjee, Subham; Sanyal, Sanjoy; Sengupta, Pulak

    2017-08-01

    The highly calcic anorthosite (An>95) from the Sittampundi Layered Complex (SLC) develops corundum, spinel and sapphirine that are hitherto not reported from any anorthositic rocks in the world. Petrological observations indicate the following sequence of mineral growth: plagioclasematrix → corundum; clinopyroxene → amphibole; corundum + amphibole → plagioclasecorona + spinel; and spinel + corundum → coronitic sapphirine. Phase relations in the CaO-Na2O-Al2O3-SiO2-H2O (CNASH) system suggest that corundum was presumably developed through vapour present incongruent melting of the highly calcic plagioclase during ultra-high temperature (UHT) metamorphism ( T ≥ 1000 °C, P ≥ 9 kbar). Topological constraints in parts of the Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASH) system suggest that subsequent to the UHT metamorphism, aqueous fluid(s) permeated the rock and the assemblage corundum + amphibole + anorthite + clinozoisite was stabilized during high-pressure (HP) metamorphism (11 ± 2 kbar, 750 ± 50 °C). Constraints of the NCMASH topology and thermodynamic and textural modeling study suggest that coronitic plagioclase and spinel formed at the expense of corundum + amphibole during a steeply decompressive retrograde P- T path (7-8 kbar and 700-800 °C) in an open system. Textural modeling studies combined with chemical potential diagrams (μSiO2-μMgO) in the MASH system support the view that sapphirine also formed from due to silica and Mg metasomatism of the precursor spinel ± corundum, on the steeply decompressive retrograde P- T path, prior to onset of significant cooling of the SLC. Extremely channelized fluid flow and large positive solid volume change of the stoichiometrically balanced sapphirine forming reaction explains the localized growth of sapphirine.

  16. New Ages for Gorgona Island, Colombia: Implications for Previous Petrogenetic and Tectonic Models

    Science.gov (United States)

    Serrano Duran, L.; Lopez Martinez, M.; Ferrari, L.

    2007-05-01

    The Gorgona Island, located 50 km to the west of the Colombian Pacific coast, is the only known site with Phanerozoic komatiites in the world besides a key element in several reconstruction of the interaction between the Caribbean and the South America Plate. The Gorgona komatiites are part of an igneous complex that also includes picritic basalts and breccias, gabbros and peridotites (dunites and wherlites), and is covered by deformed mid-Eocene and younger underformed marine sediments. Datings of the igneous rocks were only performed on basalts and include an 86 Ma K-Ar age, an 88.9 ± 1.2 Ma weighted mean of four Ar-Ar ages and an 89.2 ± 5.2 Ma Re-Os isochron age from basalts. Gorgona rocks are affected by reverse faulting with a general eastward vergence. The island is the only subaerially exposed part of a NE elongated sliver accreted in a dextral transpressional regime to the South America continental margin between the Late Eocene and the Early Miocene. Petrologic studies found large spread in radiogenic isotopes and incompatible trace element ratios in Gorgona ultramafic rocks, which have been interpreted as requiring at least two different sources of: 1) a depleted mantle responsible for the generation of the komatiites and most basalts, and 2) an enriched mantle responsible for some rarer enriched basalts and picrites. Despite the large compositional and isotopic heterogeneity the most common interpretation is that the Gorgona ultramafic rocks are the product of a single mantle plume, although it has recently proposed that this would be a separate plume from that generating the bulk of the Caribbean plateau at ~90 Ma. Our new study focused on the geochronology of the Gorgona igneous suite as we consider that this tectonically and petrologically complex island is unlike to have such a narrow age range. We attempted to date eight samples of komatiites, basalts and gabbros by Ar-Ar laser step heating. For four of these samples we successfully obtain

  17. Thinking Forbidden Thoughts: The Oedipus Complex as a Complex of Knowing.

    Science.gov (United States)

    Schein, Michael

    2016-04-01

    The Oedipus complex, considered by Freud the "nuclear complex of development," played a central role in the evolution of psychoanalytic thought. This paper returns to the point of transition from the seduction theory, Freud's initial theorem, to the oedipal model, and suggests that the Oedipus complex is first and foremost a text and as such contains a multiplicity of narratives. In particular, the author articulates the close relation between the Oedipus complex and the subject of knowing, postulating that underlying its surface level, the deep-level structure of this complex is one of knowing. As a complex of knowing it is of dual quality, both promoting and impeding the ability to know.

  18. Can Earth Materials BE Adequately Covered in a - or Two-Semester Course?

    Science.gov (United States)

    Hefferan, K. P.; O'Brien, J.

    2007-12-01

    Traditional geology programs offer courses in mineralogy, optical mineralogy, igneous petrology, metamorphic petrology, sedimentology and economic geology. At many universities this suite of mineralogy/petrology courses has been supplanted by a one-semester or two-semester Earth Materials course. This interactive poster poses five questions to faculty and students related to the means by which Earth Materials can be delivered: 1) Available online syllabi demonstrate a wide variation in the topics addressed in Earth Materials courses; is there a standard core of key topics that must be covered and in what level of detail? 2) Can a one-semester or two- semester Earth Materials course adequately cover these topics? 3) Excellent textbooks exist in both mineralogy and in petrology; what textbooks, if any, adequately encompass Earth Materials? 4) How has the online environment changed the way in which we use textbooks in the classroom? 5) Given the evolution of geology programs, higher education and the global economy in the past twenty years, what additional changes can be anticipated with respect to delivery and demand of Earth Materials topics? Answers-- or at least related discussions-- to these questions are encouraged via verbal dialogue among participants and/or by comments written on the poster. Our goal is to solicit faculty, student and industry feedback to create a textbook, curricula and online materials that support an Earth Materials course.

  19. Complexity-management in SME : organization of complex relationships

    NARCIS (Netherlands)

    Gregus, M.; Mandorf, S.

    2009-01-01

    The complexity of companies' environment IS growmg. Complexity management and restructuring of small and medium-sized enterprises (SME) become big challenges of business studies in the next future. A chance could be seen in the use of e-business strategies and the implementation of information

  20. Managing Complexity

    DEFF Research Database (Denmark)

    Maylath, Bruce; Vandepitte, Sonia; Minacori, Patricia

    2013-01-01

    and into French. The complexity of the undertaking proved to be a central element in the students' learning, as the collaboration closely resembles the complexity of international documentation workplaces of language service providers. © Association of Teachers of Technical Writing.......This article discusses the largest and most complex international learning-by-doing project to date- a project involving translation from Danish and Dutch into English and editing into American English alongside a project involving writing, usability testing, and translation from English into Dutch...

  1. Mathematics for electric engineers. Complex numbers; Mathematiques pour l`electricien. Nombres complexes

    Energy Technology Data Exchange (ETDEWEB)

    Rouxel, C. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1999-05-01

    Complex numbers are widely used in electrical engineering. This article is divided into 5 parts dealing successively with: the cartesian form of complex numbers (definition, conjugated complex numbers, graphical representation); the trigonometrical form of complex numbers (module and argument, trigonometrical form, exponential notation, multiplication and division of two complex numbers); Moivre and Euler formulae; applications (square root and second degree equation, n. roots, plan rotation and similarity); cissoidal transformation (definition, properties, applications to electricity: complex impedance in permanent sinusoidal regime, transfer function of a linear system in permanent regime, study of an example). (J.S.)

  2. Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V chondrite

    Science.gov (United States)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Sylvester, Paul J.; Macpherson, Glenn J.

    1991-01-01

    Results are presented on a detailed petrologic, chemical, and isotopic study of the so-called FUN inclusion (1623-5) from the Vigarano C3V chondrite. It is shown that the precursor material from which the Vigarano 1623-5 has formed contained some nuclear isotopic anomalies; this precursor was composed of melted and crystallized spinel, olivine, fassaite, and melilite. The results on the petrologic and isotopic properties of 1623-5 indicate unambiguously the action of volatilization in the evolution of this inclusion.

  3. ComplexRec 2017

    DEFF Research Database (Denmark)

    a single step in the user's more complex background need. These background needs can often place a variety of constraints on which recommendations are interesting to the user and when they are appropriate. However, relatively little research has been done on these complex recommendation scenarios....... The ComplexRec 2017 workshop addressed this by providing an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all-solution....

  4. Complex variables

    CERN Document Server

    Fisher, Stephen D

    1999-01-01

    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  5. Compositionally heterogeneous podiform chromitite in the Shetland Ophiolite Complex (Scotland): Implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite

    Science.gov (United States)

    Derbyshire, E. J.; O'Driscoll, B.; Lenaz, D.; Gertisser, R.; Kronz, A.

    2013-03-01

    The mantle sequence of the ~ 492 Ma Shetland Ophiolite Complex (SOC; Scotland) contains abundant compositionally heterogeneous podiform chromitite bodies enclosed in elongate dunite lenses in the vicinity of the petrological Moho. Chromitite petrogenesis and late-stage alteration events recorded in these seams are examined here using petrography, mineral chemistry and crystal structural data. The resistant nature of Cr-spinel to serpentinisation and other late-stage alteration means that primary igneous compositions are preserved in unaltered crystal cores. Chromitite mineralogy and texture from five sampled localities at The Viels, Hagdale, Harold's Grave, Nikka Vord and Cliff reveal significant inter-pod chemical heterogeneity. The Cr-spinel mineral chemistry is consistent with supra-subduction zone melt extraction from the SOC peridotites. The occurrence of chromitite seams in the centres of the dunite lenses combined with variable Cr-spinel compositions at different chromitite seam localities supports a model of chromitite formation from spatially (and temporally?) fluctuating amounts of melt-rock interaction through channelised and/or porous melt flow. Pervasive serpentinisation of the SOC has led to the almost complete replacement of the primary (mantle) silicate mineral assemblages with serpentine (lizardite with minor chrysotile and antigorite). Magmatic sulphide (e.g., pentlandite) in dunite and chromitite is locally converted to reduced Ni-sulphide varieties (e.g., heazlewoodite and millerite). A post-serpentinisation (prograde) oxidisation event is recorded in the extensively altered Cliff chromitite seams in the west of the studied area, where chromitite Cr-spinel is extensively altered to ferritchromit. The ferritchromit may comprise > 50% of the volume of the Cliff Cr-spinels and contain appreciable quantities of 1-2 μm inclusions of sperrylite (PtAs2) and Ni-arsenide, signifying the coeval formation of these minerals with ferritchromit at

  6. Complexity Management In Projects Between Rational Momentum And Complex Conditions

    DEFF Research Database (Denmark)

    Mac, Anita; Schlamovitz, Jesper

    2015-01-01

    Abstract: This study takes its departure in a model of complexity, developed by Stacey (1993), to test and discuss its practical benefit as perceived by practicing project managers. Based on a survey, the study finds that complexity is a phenomenon recognized by project managers, and complexity...... management is associated with benefits in the development of tasks and managing stakeholders. It is also associated with some difficulty in terms of an increased need for dialogue and a risk of creating goal ambiguity. Based on the findings, we conclude that classical project management approaches can...... benefit from incorporating complexity management....

  7. Complexity management in projects between rational momentum and complex conditions

    DEFF Research Database (Denmark)

    Mac, Anita; Schlamovitz, Jesper

    This study takes its departure in a model of complexity, developed by Stacey (1993), to test and discuss its practical benefit as perceived by practicing project managers. Based on a survey, the study finds that complexity is a phenomenon recognized by project managers, and complexity management...... is associated with benefits in the development of tasks and managing stakeholders. It is also associated with some difficulty in terms of an increased need for dialogue and a risk of creating goal ambiguity. Based on the findings, we conclude that classical project management approaches can benefit from...... incorporating complexity management....

  8. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source

    Science.gov (United States)

    Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora

    2017-11-01

    Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal

  9. Depositional setting, petrology and chemistry of Permian coals from the Parana Basin: 2. South Santa Catarina Coalfield, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kalkreuth, W.; Mexias, A.; Balbinot, M.; Levandowski, J. [Instituto de Geociencias, UFRGS, Porto Alegre (Brazil); Holz, M. [Inst. de Geociencias, UFBA, Salvador, Bahia (Brazil); Willett, J.; Finkelman, R. [U.S. Geological Survey, Reston, VA (United States); Burger, H. [Freie Universitaet Berlin, Geoinformatik, (Germany)

    2010-12-01

    In Brazil economically important coal deposits occur in the southern part of the Parana Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Parana Basin. In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapua, Barro Branco and Treviso seams). Seam thicknesses range from 1.70 to 2.39 m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapua seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapua seam has the highest inertinite content (33.8 vol%). Liptinite mean values range from 7.8 vol% (Barro Branco seam) to 22.5 vol% (Irapua seam). Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2 wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (> 50 wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the

  10. The Mineralogy, Geochemistry, and Redox State of Multivalent Cations During the Crystallization of Primitive Shergottitic Liquids at Various (f)O2. Insights into the (f)O2 Fugacity of the Martian Mantle and Crustal Influences on Redox Conditions of Martian Magmas.

    Science.gov (United States)

    Shearer, C. K.; Bell, A. S.; Burger, P. V.; Papike, J. J.; Jones, J.; Le, L.; Muttik, N.

    2016-01-01

    The (f)O2 [oxygen fugacity] of crystallization for martian basalts has been estimated in various studies to range from IW-1 to QFM+4 [1-3]. A striking geochemical feature of the shergottites is the large range in initial Sr isotopic ratios and initial epsilon(sup Nd) values. Studies by observed that within the shergottite group the (f)O2 [oxygen fugacity] of crystallization is highly correlated with these chemical and isotopic characteristics with depleted shergottites generally crystallizing at reduced conditions and enriched shergottites crystallizing under more oxidizing conditions. More recent work has shown that (f)O2 [oxygen fugacity] changed during the crystallization of these magmas from one order of magnitude in Y980459 (Y98) to several orders of magnitude in Larkman Nunatak 06319. These real or apparent variations within single shergottitic magmas have been attributed to mixing of a xenocrystic olivine component, volatile loss-water disassociation, auto-oxidation during crystallization of mafic phases, and assimilation of an oxidizing crustal component (e.g. sulfate). In contrast to the shergottites, augite basalts such as NWA 8159 are highly depleted yet appear to be highly oxidized (e.g. QFM+4). As a first step in attempting to unravel petrologic complexities that influence (f)O2 [oxygen fugacity] in martian magmas, this study explores the effect of (f)O2 [oxygen fugacity] on the liquid line of descent (LLD) for a primitive shergottite liquid composition (Y98). The results of this study will provide a fundamental basis for reconstructing the record of (f)O2 [oxygen fugacity] in shergottites and other martian basalts, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization (and other more complex processes) on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites.

  11. Khanneshin uranium deposit at the carbonatite volcano margin (Afghanistan)

    International Nuclear Information System (INIS)

    Pakul'nis, G.V.; Komarnitskij, G.M.

    1995-01-01

    Results of investigation of the Khanneshin uranium deposit (Afghanistan) are presented. It is shown that this deposit is the first example of true uranium mineralization, related with carbonatities, which doesn't contain thorium, titanium, niobium. The deposit is of early-quaternary age and is presented by uranyl-silicate minerals. Minerals and rocks, composing the deposit are described. Attention is paid to geochemical aspects of uranium mineralization. 6 refs.; 6 figs

  12. Geochemical studies, magmatic evolution, microstructures and replacement mechanisms in Jebale-Barez granitoid Complex (East and Southeast Jiroft

    Directory of Open Access Journals (Sweden)

    Jamal Rasouli

    2017-08-01

    Full Text Available Introduction The Jebale-Barez Plutonic Complex (JBPC is composed of many intrusive bodies and is located in the southeastern province of Kerman on the longitude of the 57◦ 45 ' east to 58◦ 00' and Northern latitudes 28◦ 30' to 29◦ 00'. The petrologic composition is composed of granodiorite, quartzdiorite, granite, alkali-granite, and trace amounts of tonalite with dominant granodiorite composition. Previously, the JBPC was separated into three plutonic phases by Ghorbani (2014. The first plutonic phase is the main body of the complex with composition of quartz-diorite to granodiorite. After differentiation of magma in the magmatic chamber, the porphyritic and not fully consolidated magmas have intruded into the main body. Their compositions were dominantly granodiorite and granite that are defined as the second plutonic phase. Finally, the last phase was started by an intrusion of the holo- leucogranite into the previous bodies. This plutonic activity was pursued by the minor Quaternary basaltic volcanism that shows metamorphic haloes in the contacts. They are dominantly porphyric leucogranites. However, some bodies show dendritic texture that may imply the existence of silicic fluids in the latest crystallization stages. Materials and methods In this article different analysis methods were used. For example, we used a total of two hundred samples of the various granitoids that were selected for common thin section study. Forty four representative samples from the different granitic rocks were selected for whole rock chemical analyses. The analyses of both major and trace elements were performed at the Department of Earth Sciences, the University of Perugia, Italy. The analysis for all major elements was carried out by an X-ray fluorescence spectrometry (XRF using a tube completed with a Rn and W anode under conditions with acceleration voltage of 40-45 kV and electric current ranging from I=30-35 mA. After calcination of powdered

  13. U,Th-21Ne dating and its applications

    International Nuclear Information System (INIS)

    Basu, Sudeshna; Murty, S.V.S.; Anil Kumar

    2003-01-01

    The potential of radiogenic and fissiogenic noble gas isotopes as dating tools has been well exploited. U, Th- 4 He , K- 40 Ar and U- fission Xe pairs as well as their variants like 39 Ar- 40 Ar and induced fission Xe- spontaneous fission Xe pairs have been extensively used as geochronological tools. A new dating method that utilizes the nucleogenic isotope 21 Ne and demonstrate its application for an apatite separate from a carbonatite is proposed

  14. Complexity Theory

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  15. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  16. Complex saddle points and the sign problem in complex Langevin simulation

    International Nuclear Information System (INIS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Tanizaki, Yuya

    2016-01-01

    We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  17. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  18. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  19. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complex Lü system, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  20. A new generative complexity science of learning for a complex pedagogy

    NARCIS (Netherlands)

    Jörg, T.

    2007-01-01

    Proposal for the SIG Chaos and Complexity Theories at AERA 2007 Title: A New Generative Complexity Science of Learning for a Complex Pedagogy Ton Jörg IVLOS Institute of Education University of Utrecht The Netherlands A.G.D.Jorg@ivlos.uu.nl Introduction My paper focuses on the link between thinking

  1. Morb - n. petrology and geochemistry of the metagabbro of Rio Olivares NNW Sector of Manizales (Caldas)

    International Nuclear Information System (INIS)

    Toro Toro, Luz Mary; Hincapie Jaramillo, Gustavo; Ossa Meza, Cesar Augusto

    2010-01-01

    The Rio Olivares metagabbro is a body of igneous intrusive rocks that outcrops along the Rio Olivares at NNW of the Manizales city (Department of Caldas, Colombia). This igneous body is defined by series of centimetro metric-sized faulted slivers within the western sector of Quebradagrande complex. Petrographic analyses show rocks with cumulus and isotropic gabbroic textures. The primary minerals are: calcium plagioclase and clinopyroxene, secondary minerals are: Amphibole, chlorite, epidote, plagioclase and less quartz, carbonate and occasionally opaque minerals. According to geochemical distribution of major elements, those rocks were generated from fractional crystallization of unique magma showing a typical tendency of tholeiitic series. Taking into account the behavior of trace elements in geotectonic discrimination diagrams; they were generated in an ocean floor setting and their sources coming from an n-morb segment in the upper mantle. REE patterns normalized with respect to chondrite, show relatively homogeneous patterns, flats and enriched up to 10 times compared to the typical n-morb. These rocks are part of the oceanic basement of the early cretaceous Quebradagrande complex, and they are affected by my ionitization and ocean floor metamorphism.

  2. Quantum complex rotation and uniform semiclassical calculations of complex energy eigenvalues

    International Nuclear Information System (INIS)

    Connor, J.N.L.; Smith, A.D.

    1983-01-01

    Quantum and semiclassical calculations of complex energy eigenvalues have been carried out for an exponential potential of the form V 0 r 2 exp(-r) and Lennard-Jones (12,6) potential. A straightforward method, based on the complex coordinate rotation technique, is described for the quantum calculation of complex eigenenergies. For singular potentials, the method involves an inward and outward integration of the radial Schroedinger equation, followed by matching of the logarithmic derivatives of the wave functions at an intermediate point. For regular potentials, the method is simpler, as only an inward integration is required. Attention is drawn to the World War II researches of Hartree and co-workers who anticipated later quantum mechanical work on the complex rotation method. Complex eigenenergies are also calculated from a uniform semiclassical three turning point quantization formula, which allows for the proximity of the outer pair of complex turning points. Limiting cases of this formula, which are valid for very narrow or very broad widths, are also used in the calculations. We obtain good agreement between the semiclassical and quantum results. For the Lennard-Jones (12,6) potential, we compare resonance energies and widths from the complex energy definition of a resonance with those obtained from the time delay definition

  3. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments

    Science.gov (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu

    2018-05-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  4. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    Science.gov (United States)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    thermobarometric evidence suggests that apatite-fluorite rocks were formed from the residual fluid-melt, separated after crystallization of rare-metal pegmatites. Petrochemical and geochemical data Burpalinsky are in accord of general trend of crystal differentiation of alkaline magma containing small concentrations of CO2 and higher P2O5 and F, which accumulated significantly separated from the pegmatite melts. In some pegmatites fluorite with rare-metal minerals (flyuocerit etc) are separating in schlieren. Apatite-fluorite rocks are cut by leucogranite dyke, having genetic connection with rare-metal pegmatites. Late granitic phases has its own association of rare-metal minerals described by A.A. Ganzeev (1972). Thermobarometric geochemical study of apatite-fluorite rocks Burpala massif found a large number of primary fluid inclusions (15-50 micrometers). Thermal and cryometric research of 60 individual fluid inclusions in fluorite showed the domination of Na, Ca, Mg chlorides and high temperatures salt inclusions in fluorites (above 550C) and melt inclusions in apatites (800C). Apatite-fluorite rocks in massif are similar to foskorites in carbonatite complexes, with similar high Ca content, but instead fluorite, together with other "foskoritovymi" minerals - apatite, magnetite, mica, and pyroxene were formed instead for calcite. Isotopic studies (Sr-Nd) indicate the mantle source of primary magma Burpala massif close to EM-2, which is characteristic of alkaline intrusions in the folded belts (Vladykin 2009). RBRF grant 14-45-04057

  5. Complex Constructivism: A Theoretical Model of Complexity and Cognition

    Science.gov (United States)

    Doolittle, Peter E.

    2014-01-01

    Education has long been driven by its metaphors for teaching and learning. These metaphors have influenced both educational research and educational practice. Complexity and constructivism are two theories that provide functional and robust metaphors. Complexity provides a metaphor for the structure of myriad phenomena, while constructivism…

  6. Complexity in phonology: The complex consonants of simple CV ...

    African Journals Online (AJOL)

    The main objective of this article is to investigate the interplay of simplicity and complexity in the phonological structure of Zezuru. The article argues that Zezuru affricates, prenasalised consonants (NCs) and velarised consonants (Cws) are subsegmentally complex segments which function as simple onsets. Treating them ...

  7. Cobalt(III) complex

    Indian Academy of Sciences (India)

    Administrator

    e, 40 µM complex, 10 hrs after dissolution, f, 40 µM complex, after irradiation dose 15 Gy. and H-atoms result in reduction of Co(III) to Co. (II). 6. It is interesting to see in complex containing multiple ligands what is the fate of electron adduct species formed by electron addition. Reduction to. Co(II) and intramolecular transfer ...

  8. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane

    Science.gov (United States)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.

    2002-01-01

    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  9. Nuclear weapons complex

    International Nuclear Information System (INIS)

    Rezendes, V.S.

    1991-03-01

    In this book, GAO characterizes DOE's January 1991 Nuclear Weapons Complex Reconfiguration Study as a starting point for reaching agreement on solutions to many of the complex's safety and environmental problems. Key decisions still need to be made about the size of the complex, where to relocate plutonium operations, what technologies to use for new tritium production, and what to do with excess plutonium. The total cost for reconfiguring and modernizing the complex is still uncertain, and some management issues remain unresolved. Congress faces a difficult task in making test decisions given the conflicting demands for scarce resources in a time of growing budget deficits and war in the Persian Gulf

  10. Complex Networks

    CERN Document Server

    Evsukoff, Alexandre; González, Marta

    2013-01-01

    In the last decade we have seen the emergence of a new inter-disciplinary field focusing on the understanding of networks which are dynamic, large, open, and have a structure sometimes called random-biased. The field of Complex Networks is helping us better understand many complex phenomena such as the spread of  deseases, protein interactions, social relationships, to name but a few. Studies in Complex Networks are gaining attention due to some major scientific breakthroughs proposed by network scientists helping us understand and model interactions contained in large datasets. In fact, if we could point to one event leading to the widespread use of complex network analysis is the availability of online databases. Theories of Random Graphs from Erdös and Rényi from the late 1950s led us to believe that most networks had random characteristics. The work on large online datasets told us otherwise. Starting with the work of Barabási and Albert as well as Watts and Strogatz in the late 1990s, we now know th...

  11. Power grid complexity

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Shengwei; Zhang, Xuemin [Tsinghua Univ., Beijing, BJ (China). Dept. of Electrical Engineering; Cao, Ming [Groningen Univ. (Netherlands). Faculty of Mathematics and Natural Sciences

    2011-07-01

    ''Power Grid Complexity'' introduces the complex system theory known as self-organized criticality (SOC) theory and complex network theory, and their applications to power systems. It studies the network characteristics of power systems, such as their small-world properties, structural vulnerability, decomposition and coordination strategies, and simplification and equivalence methods. The book also establishes four blackout models based on SOC theory through which the SOC of power systems is studied at both the macroscopic and microscopic levels. Additionally, applications of complex system theory in power system planning and emergency management platforms are also discussed in depth. This book can serve as a useful reference for engineers and researchers working with power systems. (orig.)

  12. Coxeter-like complexes

    Directory of Open Access Journals (Sweden)

    Eric Babson

    2004-12-01

    Full Text Available Motivated by the Coxeter complex associated to a Coxeter system (W,S, we introduce a simplicial regular cell complex Δ(G,S with a G-action associated to any pair (G,S where G is a group and S is a finite set of generators for G which is minimal with respect to inclusion. We examine the topology of Δ(G,S, and in particular the representations of G on its homology groups. We look closely at the case of the symmetric group S n minimally generated by (not necessarily adjacent transpositions, and their type-selected subcomplexes. These include not only the Coxeter complexes of type A, but also the well-studied chessboard complexes.

  13. Technetium complexation by macrocyclic compounds

    International Nuclear Information System (INIS)

    Li Fan Yu.

    1983-01-01

    Research in nuclear medicine are directed towards the labelling of biological molecules, however, sup(99m)Tc does not show sufficient affinity for these molecules. The aim of this study was to evaluate the ability of macrocyclic compounds to bind strongly technetium in order to be used as complexation intermediate. The reducing agents used were a stannous complex and sodium dithionite. Cryptates and polyesters are not good complexing agents. They form two complexes: a 2:1 sandwich complex or 3:2 and a 1:1 complex. Cyclams are good complexing agents for technetium their complexations strength was determined by competition with pyrophosphate, gluconate and DTPA. Using the method of ligand exchange, the oxidation state of technetium in the Tc-cyclam complex was IV or V. They are 1:1 cationic complexes, the complex charge is +1. The biodistribution in rats of labelling solutions containing (cyclam 14 ane N 4 ) C 12 H 25 shows a good urinary excretion without intoxication risks [fr

  14. Time-scales of assembly and thermal history of a composite felsic pluton: constraints from the Emerald Lake area, northern Canadian Cordillera, Yukon

    Science.gov (United States)

    Coulson, Ian M.; Villeneuve, Mike E.; Dipple, Gregory M.; Duncan, Robert A.; Russell, James K.; Mortensen, James K.

    2002-05-01

    Knowledge of the time-scales of emplacement and thermal history during assembly of composite felsic plutons in the shallow crust are critical to deciphering the processes of crustal growth and magma chamber development. Detailed petrological and chemical study of the mid-Cretaceous, composite Emerald Lake pluton, from the northern Canadian Cordillera, Yukon Territory, coupled with U-Pb and 40Ar/ 39Ar geochronology, indicates that this pluton was intruded as a series of magmatic pulses. Intrusion of these pulses produced a strong petrological zonation from augite syenite, hornblende quartz syenite and monzonite, to biotite granite. Our data further indicate that multiple phases were emplaced and cooled to below the mineral closure temperatures over a time-scale on the order of the resolution of the 40Ar/ 39Ar technique (˜1 Myr), and that emplacement occurred at 94.3 Ma. Simple thermal modelling and heat conduction calculations were used to further constrain the temporal relationships within the intrusion. These calculations are consistent with the geochronology and show that emplacement and cooling were complete in less than 100 kyr and probably 70±5 kyr. These results demonstrate that production, transport and emplacement of the different phases of the Emerald Lake pluton occurred essentially simultaneously, and that these processes must also have been closely related in time and space. By analogy, these results provide insights into the assembly and petrogenesis of other complex intrusions and ultimately lead to an understanding of the processes involved in crustal development.

  15. [Tissue-specific nucleoprotein complexes].

    Science.gov (United States)

    Riadnova, I Iu; Shataeva, L K; Khavinson, V Kh

    2000-01-01

    A method of isolation of native nucleorprotein complexes from cattle cerebral cortex, thymus, and liver was developed. Compositions of these complexes were studied by means of gel-chromatography and ion-exchange chromatography. These preparations were shown to consist of several fractions of proteins and their complexes differ by molecular mass and electro-chemical properties. Native nucleoprotein complexes revealed high tissue specific activity, which was not species-specific.

  16. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  17. On Complex Random Variables

    Directory of Open Access Journals (Sweden)

    Anwer Khurshid

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper, it is shown that a complex multivariate random variable  is a complex multivariate normal random variable of dimensionality if and only if all nondegenerate complex linear combinations of  have a complex univariate normal distribution. The characteristic function of  has been derived, and simpler forms of some theorems have been given using this characterization theorem without assuming that the variance-covariance matrix of the vector  is Hermitian positive definite. Marginal distributions of  have been given. In addition, a complex multivariate t-distribution has been defined and the density derived. A characterization of the complex multivariate t-distribution is given. A few possible uses of this distribution have been suggested.

  18. Experimental Simulations of Lunar Magma Ocean Crystallization: The Plot (But Not the Crust) Thickens

    Science.gov (United States)

    Draper, D. S.; Rapp, J. F.; Elardo, S. M.; Shearer, C. K., Jr.; Neal, C. R.

    2016-01-01

    Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.

  19. Refining Southern California Geotherms Using Seismologic, Geologic, and Petrologic Constraints

    Science.gov (United States)

    Thatcher, W. R.; Chapman, D. S.; Allam, A. A.; Williams, C. F.

    2017-12-01

    Lithospheric deformation in tectonically active regions depends on the 3D distribution of rheology, which is in turn critically controlled by temperature. Under the auspices of the Southern California Earthquake Center (SCEC) we are developing a 3D Community Thermal Model (CTM) to constrain rheology and so better understand deformation processes within this complex but densely monitored and relatively well-understood region. The San Andreas transform system has sliced southern California into distinct blocks, each with characteristic lithologies, seismic velocities and thermal structures. Guided by the geometry of these blocks we use more than 250 surface heat-flow measurements to define 13 geographically distinct heat flow regions (HFRs). Model geotherms within each HFR are constrained by averages and variances of surface heat flow q0 and the 1D depth distribution of thermal conductivity (k) and radiogenic heat production (A), which are strongly dependent on rock type. Crustal lithologies are not always well known and we turn to seismic imaging for help. We interrogate the SCEC Community Velocity Model (CVM) to determine averages and variances of Vp, Vs and Vp/Vs versus depth within each HFR. We bound (A, k) versus depth by relying on empirical relations between seismic wave speed and rock type and laboratory and modeling methods relating (A, k) to rock type. Many 1D conductive geotherms for each HFR are allowed by the variances in surface heat flow and subsurface (A, k). An additional constraint on the lithosphere temperature field is provided by comparing lithosphere-asthenosphere boundary (LAB) depths identified seismologically with those defined thermally as the depth of onset of partial melting. Receiver function studies in Southern California indicate LAB depths that range from 40 km to 90 km. Shallow LAB depths are correlated with high surface heat flow and deep LAB with low heat flow. The much-restricted families of geotherms that intersect peridotite

  20. Complex Systems: An Introduction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...